WO2023143143A1 - 一种通信方法、装置、设备及存储介质 - Google Patents

一种通信方法、装置、设备及存储介质 Download PDF

Info

Publication number
WO2023143143A1
WO2023143143A1 PCT/CN2023/072167 CN2023072167W WO2023143143A1 WO 2023143143 A1 WO2023143143 A1 WO 2023143143A1 CN 2023072167 W CN2023072167 W CN 2023072167W WO 2023143143 A1 WO2023143143 A1 WO 2023143143A1
Authority
WO
WIPO (PCT)
Prior art keywords
measurement
frequency
terminal device
measurement result
information
Prior art date
Application number
PCT/CN2023/072167
Other languages
English (en)
French (fr)
Inventor
张晓然
刘亮
Original Assignee
中国移动通信有限公司研究院
中国移动通信集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国移动通信有限公司研究院, 中国移动通信集团有限公司 filed Critical 中国移动通信有限公司研究院
Publication of WO2023143143A1 publication Critical patent/WO2023143143A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states

Definitions

  • the present application relates to the technical field of mobile communication, and relates to but not limited to a communication method, device, equipment, and storage medium.
  • the network device After the terminal device enters the connection state, the network device performs measurement configuration for the terminal device, and after the terminal device reports the measurement results, the network device performs carrier aggregation (Carrier Aggregation, CA)/dual connectivity (Dual Connectivity, DC) configuration for the terminal device.
  • carrier aggregation Carrier Aggregation, CA
  • DC Dual Connectivity
  • the longest part of the whole process is measurement.
  • an early measurement report (EMR) mechanism is introduced to allow terminal devices in the idle state to perform measurements, and to allow terminal devices to Report the measurement results after the connection state, helping the network equipment to establish CA/DC for the terminal equipment as soon as possible.
  • EMR early measurement report
  • the measurement takes a long time, and due to channel changes, the timeliness of the measurement results that are too long will also be greatly affected, resulting in the establishment of CA/DC. fail.
  • Embodiments of the present application provide a communication method, device, device, and storage medium, which ensure the timeliness of measurement results and increase the success rate of CA/DC configuration.
  • An embodiment of the present application provides a communication method, the method includes:
  • the terminal device receives the first measurement configuration configured by the network device, and the first measurement configuration is used for the terminal device to perform measurement when accessing.
  • An embodiment of the present application provides a communication method, the method includes:
  • the network device sends the first measurement configuration to the terminal device, where the first measurement configuration is used for the terminal device to perform measurement during access.
  • An embodiment of the present application provides a communication device, which is applied to a terminal device, and the device includes:
  • the first receiving module is configured to receive a first measurement configuration configured by a network device, where the first measurement configuration is used for the terminal device to perform measurement during access.
  • An embodiment of the present application provides a communication device, which is applied to network equipment, and the device includes:
  • a sending module configured to send a first measurement configuration to a terminal device, where the first measurement configuration is used for the terminal device to perform measurement during access.
  • the embodiment of the present application also provides a communication device, including a memory, a processor, and a computer program stored on the memory and operable on the processor.
  • a communication device including a memory, a processor, and a computer program stored on the memory and operable on the processor.
  • the processor executes the computer program, the above-mentioned terminal device or network device is implemented. Steps in the communication method implemented.
  • the embodiment of the present application also provides a storage medium, on which a computer program is stored, and when the computer program is executed by a processor, the communication method implemented by the above-mentioned terminal device or network device is implemented.
  • the terminal device receives the first measurement configuration configured by the network device, and the first measurement configuration is used for the terminal device to perform measurement during access, so that Terminal equipment performs measurement when accessing, shortens the time interval between measurement and CA/DC configuration, and increases CA/DC while ensuring the timeliness of measurement results configuration success rate.
  • FIG. 1 is a schematic structural diagram of an optional wireless communication system provided by an embodiment of the present application.
  • FIG. 2 is a schematic flowchart of an optional communication method provided in the embodiment of the present application.
  • Fig. 3 is an optional schematic diagram of the measurement effect provided by the embodiment of the present application.
  • FIG. 4 is a schematic flowchart of an optional communication method provided in the embodiment of the present application.
  • FIG. 5 is a schematic flowchart of an optional communication method provided by the embodiment of the present application.
  • FIG. 6 is an optional schematic diagram of the measurement effect provided by the embodiment of the present application.
  • FIG. 7 is a schematic diagram of an optional effect of the co-site deployment provided by the embodiment of the present application.
  • FIG. 8 is a schematic diagram of an optional effect of the co-site deployment provided by the embodiment of the present application.
  • FIG. 9 is a schematic diagram of an optional effect of the co-site deployment provided by the embodiment of the present application.
  • FIG. 10 is a schematic diagram of an optional effect of the co-site deployment provided by the embodiment of the present application.
  • FIG. 11 is a schematic flowchart of an optional communication method provided by the embodiment of the present application.
  • FIG. 12 is a schematic flowchart of an optional communication method provided in the embodiment of the present application.
  • FIG. 13 is a schematic flowchart of an optional communication method provided by the embodiment of the present application.
  • FIG. 14 is a schematic flowchart of an optional communication method provided by the embodiment of the present application.
  • FIG. 15 is a schematic structural diagram of an optional communication device provided by an embodiment of the present application.
  • FIG. 16 is a schematic structural diagram of an optional communication device provided by an embodiment of the present application.
  • Embodiments of the present application may provide a communication method and device, and a storage medium.
  • the communication method can be implemented in electronic equipment, and each functional entity in the electronic equipment can be composed of hardware resources of the electronic equipment (such as terminal equipment, server), such as computing resources such as processors, communication resources (such as used to support the implementation of optical cable , cellular and other means of communication) collaborative realization.
  • FIG. 1 is a schematic diagram of an application scenario of an embodiment of the present application.
  • a communication system 100 may include a terminal device 110 and a network device 120 .
  • the network device 120 may communicate with the terminal device 110 through an air interface. Multi-service transmission is supported between the terminal device 110 and the network device 120 .
  • FIG. 1 exemplarily shows a network device, a core network device and two terminal devices.
  • the wireless communication system 100 may include multiple base station devices and each base station may include other numbers of The terminal device is not limited in this embodiment of the present application.
  • the embodiment of the present application is only described by using the communication system 100 as an example, but the embodiment of the present application is not limited thereto. That is to say, the technical solutions of the embodiments of the present application can be applied to various communication systems, such as: Long Term Evolution (Long Term Evolution, LTE) system, LTE Time Division Duplex (Time Division Duplex, TDD), Universal Mobile Communication System (Universal Mobile Telecommunication System, UMTS), Internet of Things (Internet of Things, IoT) system, Narrow Band Internet of Things (NB-IoT) system, enhanced Machine-Type Communications (eMTC) system, 5G communication system (also known as New Radio (NR) communication system), or future communication systems, etc.
  • LTE Long Term Evolution
  • LTE Time Division Duplex Time Division Duplex
  • TDD Time Division Duplex
  • Universal Mobile Telecommunication System Universal Mobile Telecommunication System
  • UMTS Universal Mobile Communication System
  • Internet of Things Internet of Things
  • NB-IoT Narrow Band Internet of Things
  • eMTC enhanced Machine-Type Communications
  • the network device may be an access network device that communicates with the terminal device.
  • the access network device can provide communication coverage for a specific geographic area, and can communicate with terminal devices (such as UEs) located in the coverage area.
  • the network device may be an evolved base station (Evolutional Node B, eNB or eNodeB) in a Long Term Evolution (Long Term Evolution, LTE) system, or a Next Generation Radio Access Network (Next Generation Radio Access Network, NG RAN) device, or It is a base station (gNB) in the NR system, or a wireless controller in a cloud radio access network (Cloud Radio Access Network, CRAN), or the network device 120 can be a relay station, an access point, a vehicle-mounted device, or a wearable device , a hub, a switch, a bridge, a router, or a network device in a future evolved public land mobile network (Public Land Mobile Network, PLMN), etc.
  • Evolutional Node B, eNB or eNodeB in a Long Term Evolution (Long Term Evolution, LTE) system, or a Next Generation Radio Access Network (Next Generation Radio Access Network, NG RAN) device, or It is a base station (gNB) in the NR system
  • the terminal device may be any terminal device, including but not limited to a terminal device that is wired or wirelessly connected to a network device or other terminal devices.
  • a terminal device may refer to an access terminal, a user equipment (User Equipment, UE), a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, a terminal, a wireless communication device, a user agent or user device.
  • Access terminals can be cellular phones, cordless phones, Session Initiation Protocol (SIP) phones, IoT devices, satellite handheld terminals, Wireless Local Loop (WLL) stations, Personal Digital Assistant , PDA), handheld devices with wireless communication functions, computing devices or other processing devices connected to wireless modems, vehicle-mounted devices, wearable devices, terminal devices in 5G networks or terminal devices in future evolution networks, etc.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • the wireless communication system 100 may also include a core network device 130 that communicates with the base station.
  • the core network device 130 may be a 5G core network (5G Core, 5GC) device, for example, Access and Mobility Management Function (Access and Mobility Management Function , AMF), and for example, authentication server function (Authentication Server Function, AUSF), and for example, user plane function (User Plane Function, UPF), and for example, session management function (Session Management Function, SMF).
  • the core network device 130 may also be a packet core evolution (Evolved Packet Core, EPC) device of the LTE network, for example, a data gateway (Session Management Function+Core Packet Gateway, SMF+PGW- C) Equipment.
  • EPC packet core evolution
  • SMF+PGW-C can realize the functions of SMF and PGW-C at the same time.
  • the above-mentioned core network equipment may be called by other names, or a new network entity may be formed by dividing functions of the core network, which is not limited in this embodiment of the present application.
  • Various functional units in the communication system 100 may also establish a connection through a next generation network (next generation, NG) interface to implement communication.
  • NG next generation network
  • the communication method provided in the embodiment of the present application is applied to a terminal device, as shown in FIG. 2 , including:
  • the terminal device receives a first measurement configuration configured by a network device, where the first measurement configuration is used for the terminal device to perform measurement during access.
  • the network device configures the first measurement configuration for the terminal device, and sends the configured first measurement configuration to the terminal device.
  • the terminal device may determine, based on the first measurement configuration, the frequency for performing measurements during access, that is, the measurement frequency.
  • the terminal device may also determine, based on the first measurement configuration, the receiving beam used when performing measurement based on the measurement frequency.
  • access can be understood as an access process performed when switching from an idle state or a deactivated state to a connected state, including: random access, initial access, connection establishment, and the like.
  • the terminal device After determining the measurement frequency, uses the measurement frequency to perform measurement at the time of access, and reports the measurement result to the network device, so that the network device establishes CA/DC based on the measurement result reported by the terminal device.
  • the terminal device may report the measurement result to the network device after successfully accessing and entering the connected state.
  • the terminal device performs access between t301 and t302, and performs measurement based on the first measurement configuration between t301 and t302, and obtains the measurement result, and the terminal device successfully accesses at t302 Then report the measurement result to the network device.
  • the terminal device can perform multiple measurements during the access process, and report multiple measurement results obtained from multiple measurements to the network device.
  • the network device can select the distance from the multiple measurement results to report The measurement with the shortest time interval from the current time establishes CA/DC.
  • the terminal device receives the first measurement configuration configured by the network device, and the first measurement configuration is used for the terminal device to perform measurement during access, so that the terminal device performs measurement during access , shorten the time interval between measurement and CA/DC configuration, and increase the success rate of CA/DC configuration while ensuring the timeliness of measurement results.
  • the communication method provided in the embodiment of the present application is applied to a network device, as shown in FIG. 4, including:
  • the network device sends a first measurement configuration to the terminal device, where the first measurement configuration is used for the terminal device to perform measurement during access.
  • the network device configures the first measurement configuration for the terminal device, and sends the configured first measurement configuration to the terminal device.
  • the terminal device may determine, based on the first measurement configuration, the frequency for performing measurements during access, that is, the measurement frequency.
  • the terminal device may also determine, based on the first measurement configuration, the receiving beam used when performing measurement based on the measurement frequency.
  • access can be understood as an access process performed when switching from an idle state or a deactivated state to a connected state, including: random access, initial access, connection establishment, and the like.
  • the terminal device After determining the measurement frequency, uses the measurement frequency to perform measurement at the time of access, and reports the measurement result to the network device, so that the network device establishes CA/DC based on the measurement result reported by the terminal device.
  • the terminal device may report the measurement result to the network device after successfully accessing and entering the connected state.
  • the terminal device performs access between t301 and t302, and performs measurement based on the first measurement configuration between t301 and t302, and obtains the measurement result, and the terminal device successfully accesses at t302 Then report the measurement result to the network device.
  • the terminal device can perform multiple measurements during the access process, and report multiple measurement results obtained from multiple measurements to the network device.
  • the network device can select the distance reporting time from the multiple measurement results The measurement with the shortest time interval from the current time establishes CA/DC.
  • the network device sends the first measurement configuration to the terminal device, and the first measurement configuration is used for the terminal device to perform measurement during access, so that the terminal device can
  • the device performs measurement when it is connected, shortening the time interval between measurement and CA/DC configuration, and increasing the success rate of CA/DC configuration while ensuring the timeliness of measurement results.
  • the communication method provided in the embodiment of the present application is applied to a wireless communication system including a terminal device and a network device, as shown in FIG. 5 , including:
  • the network device sends the first measurement configuration to the terminal device.
  • the terminal device performs measurement during access based on the first measurement configuration.
  • the first measurement configuration includes at least one of the following information:
  • first frequency information where the first frequency information indicates at least one first frequency, where the first frequency is a measurement frequency during access;
  • priority information where the priority information indicates the measurement priority of the frequency
  • the first threshold is a threshold value of signal strength or signal quality
  • Beam Information A4 beam information, where the beam information is used to indicate the receiving beam used by the terminal device for receiving or measuring.
  • the first measurement configuration includes information A1.
  • the first measurement configuration includes information A2.
  • the first measurement configuration includes information A3.
  • the first measurement configuration includes information A4.
  • the first measurement configuration includes information A1 and information A2.
  • the first measurement configuration includes information A2 and information A3.
  • the first measurement configuration includes information A1, information A2, information A3, and information A4.
  • At least one first frequency indicated by the first frequency information may constitute a first frequency table, and the terminal device may use part or all of the at least one first frequency indicated by the information A1 as the first frequency for measurement during access The measurement frequency used.
  • the first frequency indicated by the first frequency information includes: f1, f2, and f3, and the terminal device selects one or more frequencies from f1, f2, and f3 to perform measurement during access.
  • the information A2 indicates the measurement priority of the frequency, where the measurement priority can be understood as the priority of measurement.
  • the priority information is: the order of priority from high to low is: f1, f2, f3, and f4, then during access, f1 is preferentially used for measurement, and if there is no f1, f2 is used for measurement Measured using f3 in the absence of f1 and f2 and f4 in the absence of f1, f2 and f3.
  • RSRP Reference Signal Receiving Power
  • RSRQ Reference Signal Receiving Quality
  • information A4 it can be the beam identifier of a beam, or it can be information indicating the relationship between the receiving beam used for receiving or measuring and the receiving beam used for access.
  • the beam information indicates the receiving or measuring There is no limitation on the indication method of the receiving beam used at the time.
  • At least one measurement frequency used by the terminal device for measurement during access includes at least one of the following situations:
  • Case A1 the at least one first frequency
  • Case A2 Based on the priority information, select a first frequency with a high measurement priority from the at least one first frequency;
  • Case A3 Based on the first measurement results of each first frequency in the at least one first frequency, select a first frequency with a high first measurement result from the at least one first frequency, and the first measurement result is at The result of an idle state or deactivated state measurement.
  • the way for the terminal device to determine the measurement frequency is: way 1: determine the first frequency indicated by the first frequency information as the measurement frequency.
  • the terminal device uses at least one first frequency indicated by the first frequency information to perform measurement during access.
  • At least one first frequency indicated by the first frequency information includes f1, then the terminal device uses f1 to perform Measurement.
  • the at least one first frequency indicated by the first frequency information includes f1 and f2, and the terminal device uses f1 and f2 to perform measurement during access.
  • the number of measurement frequencies used by the terminal device during access may be determined based on whether the terminal device supports measurement of multiple frequencies.
  • the method for the terminal device to determine the measurement frequency is: method 2: among the first frequencies indicated by the first frequency information, the first frequency with a higher measurement priority is determined as the measurement frequency. frequency.
  • the terminal device selects one or more first frequencies with high measurement priorities from at least one first frequency indicated by the first frequency information according to the priority information, and determines the selected one or more first frequencies as The measurement frequency at which the measurements are taken on connection.
  • the at least one first frequency indicated by the first frequency information includes f1 and f2, and the priority information indicates that the measurement priorities of f1, f2, and f3 are f1, f2, and f3 from high to low, and the measurement priority is high f1 is the measurement frequency, and the terminal device uses f1 to perform measurement when accessing.
  • the at least one first frequency indicated by the first frequency information includes f1, f2, and f3, and the priority information indicates that the measurement priorities of f1, f2, and f3 are f1, f2, and f3 from high to low, and the measurement priority
  • the high-level f1 and f2 are measurement frequencies, and the terminal equipment uses f1 and f2 for measurement when accessing.
  • the method for the terminal device to determine the measurement frequency is: Method 3: among the at least one first frequency indicated by the first frequency information, the first frequency with the highest first measurement result determined as the measurement frequency.
  • the terminal device determines the first measurement result of each first frequency among the at least one first frequency indicated by the first frequency information, and obtains the at least one first frequency indicated by the first frequency information according to the first measurement result of each first frequency.
  • a frequency selects one or more first frequencies for which the first measurement is high. At this time, one or more first frequencies with high first measurement results are used for measurement during access.
  • the at least one first frequency indicated by the first frequency information includes f1 and f2, the first measurement result M1 of f1 and the first measurement result M2 of f2, M1 is higher than M2, f1 is the measurement frequency, and the terminal device Use f1 to measure when plugged in.
  • the at least one first frequency indicated by the first frequency information includes f1, f2, and f3, and among the first measurement result M1 of f1, the first measurement result M2 of f2, and the first measurement result M3 of f3, M1 is high
  • M2 is higher than M3
  • f1 and f2 are the measurement frequencies
  • f1 and f2 are used for measurement when terminal equipment accesses.
  • the terminal device uses at least one first frequency indicated by the first frequency to perform measurement in the idle state or deactivated state, and obtains the first measurement result of each first frequency .
  • the measurement sequence of each measurement frequency may be determined based on priority information.
  • the frequencies used for measurement during access include f1 and f2, and in the priority information, the measurement priority of f1 is higher than the measurement priority of f2, then the measurement order of f1 and f2 is f1 and f2, then When the terminal device accesses, measure f1 first, and then measure f2. If the access is not completed after the measurement of f2 is completed, it can continue to measure f1 until the access is completed.
  • the terminal device further implements the following steps: the terminal device receives a second measurement configuration sent by the network device, and the second measurement configuration is used for the terminal device to perform measurements in an idle state or a deactivated state .
  • the network device implements the following steps: the network device sends a second measurement configuration to the terminal device, and the second measurement configuration is used for the terminal device to perform measurement in an idle state or a deactivated state.
  • the network device configures the second measurement configuration for the terminal device, and sends the configured second measurement configuration to the terminal device. After receiving the second measurement configuration, the terminal device performs idle state or deactivated state measurement based on the second measurement configuration.
  • the measurement in the idle state or the deactivated state can be understood as performing the measurement in the idle state or the deactivated state.
  • the terminal device performs idle state or deactivated state measurement based on the second measurement configuration from t303 to t301, performs access between t301 and t302, and performs measurement between t301 and t302 Based on the measurement of the first measurement configuration, the terminal device reports the measurement result to the network device after successful access at t302, wherein, between t303 and t301 is an idle state or a deactivated state.
  • the network device sends the first measurement configuration and the second measurement configuration to the terminal device through the same message.
  • the network device sends the first measurement configuration and the second measurement configuration to the terminal device through different messages.
  • the second measurement configuration includes:
  • Second frequency information indicates at least one second frequency
  • the second frequency is a measurement frequency in an idle state or a deactivated state.
  • At least one second frequency indicated by the second frequency information may constitute a second frequency table, and the terminal device may use the at least one second frequency indicated by the information B1 to perform measurements in an idle state or a deactivated state.
  • the first frequency indicated by the second frequency information includes: f1 and f2, and the terminal device uses f1 and f2 to perform measurement in an idle state or a deactivated state.
  • the first frequency indicated by the second frequency information includes: f1, f2, and f3, and the terminal device uses f1, f2, and f3 to perform measurement in the idle state or in the deactivated state.
  • the at least one measurement frequency used by the terminal device for measurement during access includes at least one of the following situations:
  • Case B the at least one second frequency
  • Case B2 selecting a second frequency with a high measurement priority from the at least one second frequency based on the priority information
  • Case B3 based on the first measurement results of each second frequency in the at least one second frequency, selecting a second frequency with a high first measurement result from the at least one second frequency, the first measurement result is results of measurements in the idle state or in the deactivated state;
  • Case B4 at least one candidate frequency selected from the at least one second frequency; the candidate frequency is determined based on the first threshold;
  • Case B5 based on the priority information, selecting a candidate frequency with a high measurement priority from the at least one candidate frequency;
  • a candidate frequency with a high first measurement result is selected from the at least one candidate frequency.
  • the method for the terminal device to determine the measurement frequency is: method 4: determine the second frequency indicated by the second frequency information as the measurement frequency. At this time, the terminal device uses at least one second frequency indicated by the second frequency information to perform measurement during access.
  • At least one second frequency indicated by the second frequency information includes f1, then the terminal device uses f2 to perform measurement when in an idle state or a deactivated state, and uses f2 to perform measurement when accessing.
  • the at least one second frequency indicated by the second frequency information includes f1 and f2, then the terminal device uses f1 and f2 to perform measurement when in an idle state or a deactivated state, and uses f1 and f2 to perform measurement when accessing.
  • Method 5 Determine the second frequency with the highest measurement priority among the second frequencies indicated by the second frequency information as the measurement frequency frequency.
  • the terminal device selects one or more second frequencies with high measurement priority from at least one second frequency indicated by the second frequency information according to the priority information, and uses the selected second frequency with high measurement priority when accessing. frequency to measure.
  • the at least one second frequency indicated by the second frequency information includes f1 and f2, and the priority information indicates that the measurement priorities of f1, f2, and f3 are f1, f2, and f3 from high to low, and the measurement priority is high f1 is the measurement frequency, the terminal equipment uses f1 and f2 to perform measurement in idle state or deactivated state, and uses f1 to perform measurement when accessing.
  • the at least one second frequency indicated by the second frequency information includes f1, f2, and f3, and the priority information indicates that the measurement priorities of f1, f2, and f3 are f1, f2, and f3 from high to low, and the measurement priority is
  • the high-level f1 and f2 are measurement frequencies.
  • the terminal equipment uses f1, f2 and f3 to perform measurement in idle state or deactivated state, and uses f1 and f2 to perform measurement during access.
  • the method for the terminal device to determine the measurement frequency is: Method 6: among the at least one second frequency indicated by the second frequency information, the second frequency with the highest first measurement result determined as the measurement frequency.
  • the terminal device determines the first measurement results of each second frequency among the at least one second frequency indicated by the second frequency information, and selects one or more from the at least one second frequency according to the first measurement results of each second frequency.
  • one or more second frequencies whose first measurement result is high are used for measurement during access.
  • the at least one second frequency indicated by the second frequency information includes f1 and f2, and the terminal device uses f1 and f2 to perform measurement in the idle state or deactivated state, and obtains the first measurement result M1 of f1 and the first frequency of f2.
  • the measurement result is M2, and M1 is higher than M2, then f1 is the measurement frequency, and the terminal device uses f1 to perform measurement when accessing.
  • the at least one second frequency indicated by the second frequency information includes f1, f2, and f3, and the terminal device uses f1, f2, and f3 to perform measurements in the idle state or deactivated state, and obtains the first measurement results M1,
  • the first measurement result M2 of f2 and the first measurement result M3 of f3, and M1 is higher than M2, and M2 is higher than M3, then f1 and f2 are measurement frequencies, and the terminal device uses f1 and f2 to perform measurement during access.
  • the method for the terminal device to determine the measurement frequency is: method 7, the candidate frequency determined from at least one second frequency indicated by the second frequency information based on the first threshold is Measurement frequency. At this time, the terminal device determines at least one candidate frequency from at least one second frequency indicated by the second frequency information based on the first threshold. The terminal device uses at least one candidate frequency for measurement when accessing.
  • the at least one second frequency indicated by the second frequency information includes f1 and f2, and the candidate frequencies determined by the terminal device based on the first threshold include: f1, then the terminal device uses f1 and f2 in the idle state or deactivated state to perform Measure, use f1 to measure when plugged in.
  • the at least one second frequency indicated by the second frequency information includes f1, f2, and f3, and the candidate frequencies determined by the terminal device based on the first threshold include: f1 and f2, and the terminal device uses f1 in an idle state or a deactivated state , f2 and f3 are measured, when accessing Measured using f1 and f2.
  • Method 8 Determine a candidate frequency from at least one second frequency indicated by the second frequency information based on the first threshold, and set the candidate frequency to Among the frequencies, the candidate frequency with the highest measurement priority is determined as the measurement frequency.
  • the terminal device determines at least one candidate frequency from at least one second frequency indicated by the second frequency information based on the first threshold, and selects a candidate frequency with a high measurement priority from the at least one candidate frequency according to the priority information, and then When accessing, use the selected candidate frequency with high measurement priority for measurement.
  • the at least one second frequency indicated by the second frequency information includes f1 and f2, and the terminal device determines the candidate frequencies based on the first threshold to include: f1 and f2, and the priority information indicates that the measurement priorities of f1, f2, and f3 are from High to low is f1, f2, f3, then f1 with the highest measurement priority is the measurement frequency, the terminal device uses f1 and f2 for measurement in the idle state or deactivated state, and uses f1 for measurement during access.
  • the at least one second frequency indicated by the second frequency information includes f1, f2, and f3, and the terminal device determines that candidate frequencies include: f1 and f2 based on the first threshold, and the priority information indicates that the measurement of f1, f2, and f3 is prioritized
  • the levels are f1, f2, and f3 from high to low, and f1 with the highest measurement priority is the measurement frequency.
  • the terminal equipment uses f1, f2, and f3 for measurement in the idle state or deactivated state, and uses f1 for measurement during access.
  • Method 9 Determine the candidate frequency with the highest first measurement result among at least one candidate frequency as the measurement frequency.
  • the terminal device determines at least one candidate frequency in the second frequency indicated by the second frequency information, and determines the first measurement result of each candidate frequency, and selects one from at least one candidate frequency according to the first measurement result of each candidate frequency or multiple candidate frequencies with a high first measurement result.
  • one or more candidate frequencies whose first measurement result is high are used for measurement during access.
  • the at least one second frequency indicated by the second frequency information includes f1 and f2, and the terminal device uses f1 and f2 to perform measurement in the idle state or deactivated state, and obtains the first measurement result M1 of f1 and the first frequency of f2.
  • the measurement result is M2, and M1 is higher than M2, the terminal device determines the candidate frequencies based on the first threshold including: f1 and f2, then f1 is the measurement frequency, and the terminal device uses f1 for measurement when accessing.
  • the at least one second frequency indicated by the second frequency information includes f1, f2, and f3, and the terminal device uses f1, f2, and f3 to perform measurements in the idle state or deactivated state, and obtains the first measurement results M1,
  • the first measurement result M2 of f2 and the first measurement result M3 of f3, and M1 is higher than M2, and M2 is higher than M3,
  • the candidate frequencies determined based on the first threshold include: f1 and f2, then f1 is the measurement frequency, and the terminal device is connected to When entering, use f1 to measure.
  • the terminal device when the terminal device receives the first measurement configuration and the second measurement configuration, the first measurement configuration includes first frequency information, and the second measurement configuration includes second frequency information.
  • the terminal device determines the measurement frequency based on the first frequency information.
  • the manner of determining the measurement frequency based on the first frequency information includes one or more of manner 1, manner 2, and manner 3.
  • the terminal device determines the measurement frequency based on the second frequency information.
  • the manner of determining the measurement frequency based on the second frequency information includes one or more of manners 4 to 9. In the embodiment of the present application, there is no limitation on the usage priority or usage rules of modes 4 to 9.
  • one or more candidate frequencies with the highest priority are selected as the measurement frequencies among the candidate frequencies; if the terminal device has determined the candidate frequencies, but the first measurement configuration does not include Priority information, select one or more candidate frequencies with good first measurement results as the measurement frequency; if the terminal device does not determine the candidate frequency, select one or more second frequencies with good first measurement results as the measurement frequency.
  • the candidate frequency is a second frequency whose first measurement result is higher than or equal to the first threshold.
  • the terminal device performs measurement using the second frequency indicated by the second frequency information in the idle state or the deactivated state, obtains the first measurement result of each second frequency, and compares the first measurement result of each second frequency with the first threshold , for a second frequency, when the first measurement result is higher than the first threshold, the second frequency is a candidate frequency.
  • the first threshold is -70dBm
  • the second measurement frequency includes: f1, f2, and the first measurement result of f1 is -55dBm
  • the first measurement result of f2 is -80dBm
  • the first measurement result is - f2 of 80dBm is the candidate frequency.
  • the first threshold is -70dBm
  • the second measurement frequency includes: f1, f2, the first measurement result of f1 is -60dBm, the first measurement result of f2 is -70dBm, because the first measurement result of f1 and f2
  • the results are all greater than or equal to -70dBm, then the candidate frequencies include: f1, f2.
  • the beam information includes at least one first indication information, and the first indication information is used to indicate the first Whether the receiving beam is the same as the second receiving beam, the first receiving beam is the beam used by the terminal to receive or measure the third frequency, and the second receiving beam is the cell where the terminal device resides or accesses beam.
  • the beam information indicates one or more third frequencies as the receiving beams when the measurement frequency is the first receiving beam.
  • the measurement frequency corresponding to the first receiving beam indicated by the beam information is referred to as the third frequency.
  • the beam information includes the following first indication information: indication information 1, indication information 2, wherein the indication information 1 indicates whether the receiving beam used by the terminal device to receive f1 or measure f1 is consistent with the terminal device when it is camping or accessing Whether the receiving beams in the case of the cell are the same, the indication information 2 indicates whether the receiving beam used by the terminal device to receive f2 or measure f2 is the same as the receiving beam used by the terminal device in the case of camping or accessing a cell.
  • the first indication information corresponding to different third frequencies is independent of each other.
  • the beam used for receiving or measuring the third frequency is the second receiving beam.
  • the terminal device uses the same receiving beam as the current camping/accessing cell to perform f1 measurement.
  • the beam used for receiving or measuring the third frequency is in an idle state or deactivated The receive beam used when measuring the third frequency in a state.
  • the terminal device side uses the receiving beam used for measuring f1 in the idle state or deactivated state to measure f1 during access.
  • the first indication information may be determined based on the co-site deployment of F1 and F2, where F1 and F2 are different frequencies, and F1 and F2 may belong to the same frequency band or may belong to different frequency bands.
  • the terminal device can use the same receiving beam as the cell currently camped on or accessed when accessing, This will greatly reduce the receiving beam scanning time.
  • the terminal device cannot use the same receiving beam as the current camping/access cell Measurements are made at access time, at which point the terminal device needs to change the direction of the receive beam that is being measured at access time.
  • the first measurement result includes: the highest measurement result among the measurement results of multiple cells measured in the idle state or the deactivated state.
  • the terminal device measures the second frequency on multiple cells to obtain the measurement results of the second frequency in multiple cells.
  • the second frequency is The measurement results of the cells are compared, and the highest measurement result is used as the first measurement result of the second frequency.
  • the terminal device when there are cell 1 and cell 2 on the second frequency f1, the terminal device measures f1 in cell 1 and measures f1 in cell 2 in the idle state or deactivated state, and the measurement result of cell 1 on f1 is -80dBm, and the measurement result of cell 2 on f1 is -60dBm, then -60dBm is taken as the first measurement result of f1.
  • the terminal device also implements the following processes:
  • the terminal device reports a measurement result to the network device, where the measurement result includes at least a second measurement result, and the second measurement result includes a result obtained by the terminal device measuring the at least one measurement frequency during access. measurement results.
  • the network device implements the following processing:
  • the network device receives the measurement result reported by the terminal device, where the measurement result includes at least a second measurement result, and the second measurement result includes a measurement result obtained by the terminal device from measuring the at least one measurement frequency during access. measurement results.
  • the measurement result reported by the terminal device further includes: a third measurement result, where the third measurement result includes the first measurement result of each measurement frequency in at least one measurement frequency.
  • the measurement result further includes: a measurement sample number of a first measurement frequency, where the first measurement frequency is any measurement frequency in the at least one measurement frequency.
  • the measurement result reported by the terminal device to the network device includes the second measurement result obtained by measuring the measurement frequency during access, and may also include at least one of the following:
  • the third measurement result includes the first measurement result of at least one measurement frequency.
  • the terminal device When the terminal device reports the third measurement result, it may report the first measurement result based on at least one second measurement frequency indicated by the second frequency information to the network device.
  • the third measurement is used to determine whether the second measurement is for CA/DC configuration.
  • the terminal device reports the third measurement result, for a measurement frequency
  • the terminal device reports the measurement result and the first measurement result when the measurement frequency is accessed to the network device at the same time, and the network device receives the access of the measurement frequency Based on the measurement result when the measurement frequency is accessed and the first measurement result, it can be determined whether the measurement result of the measurement frequency is stable.
  • the use of the second measurement result for CA/DC configuration may be understood as a reference for the second measurement result to be used for CA/DC configuration.
  • the CA/DC configuration may be performed based on the measurement frequency.
  • the measurement frequency when the difference between the measurement result when a measurement frequency is accessed and the first measurement result is less than the set second threshold, the measurement frequency is considered stable, and at this time, the measurement frequency is used for CA/DC configuration;
  • the difference between the measurement result when a measurement frequency is accessed and the first measurement result is greater than or equal to the second threshold, it is considered that the measurement frequency is unstable, and the measurement frequency is not used for CA/DC configuration.
  • the terminal device When the terminal device reports the number of measurement samples, the number of measurement samples based on one or more measurement frequencies in at least one measurement frequency may be reported to the network device.
  • the number of measurement samples can represent the number of times a terminal device measures a measurement frequency during access.
  • the terminal device measures f2 during access, and the SMTC cycle of f2's synchronization signal block (Synchronization Signal Block, SSB) measurement time configuration is 20ms, and the access process lasts for 80ms. During this period, the terminal acquires 4 The measurement samples of f2 are used to perform the access measurement. At this time, the number of measurement samples of f2 is 4.
  • SSB Synchronization Signal Block
  • the terminal device measures f2 during access, the SMTC period of f2 is 20 ms, and the access process lasts for 50 ms, then the number of samples for the terminal to measure f2 is 2.
  • the number of measurement samples is used to determine whether the measurement of the first frequency in the second measurement is for a CA/DC configuration.
  • the terminal device reports the number of measurement samples, for the first measurement frequency
  • the terminal device reports the number of measurement samples of the first measurement frequency when accessing to the network device, and the network device receives the access data for each first measurement frequency It is possible to determine whether the measurement results of each first measurement frequency are stable based on the measurement results and the number of measurement samples when the measurement frequency is accessed.
  • CA/DC configuration may be performed based on the first measurement frequency.
  • the measurement frequency when the number of measurement samples of a first measurement frequency is greater than or equal to the third threshold, the measurement frequency is considered to be stable, and at this time, the measurement frequency is used for CA/DC configuration; when a measurement sample of the first measurement frequency If the number is less than the third threshold one, it is considered that the measurement frequency is unstable, and the measurement frequency is not used for CA/DC configuration.
  • the condition that the measurement result includes the measurement sample number of the first measurement frequency includes: the measurement sample number of the first measurement frequency is greater than or equal to a sample number threshold.
  • the sample number threshold is: preset by the terminal device; or configured by the network device.
  • the terminal When the terminal measures at least one measurement frequency access and obtains measurement results of each measurement frequency access, it determines the number of measurement results obtained when each measurement frequency is access, that is, the number of measurement samples.
  • the number of measurement samples of a measurement frequency is greater than or equal to the sample number threshold, the measurement result obtained when the measurement frequency is accessed is reported to the network device, and the measurement frequency may be regarded as the first measurement frequency.
  • the number of measurement samples of a measurement frequency is less than the sample number threshold, it is considered that the measurement of the measurement frequency fails, and the measurement result obtained when the measurement frequency is accessed is not reported to the network device.
  • the sample number threshold is smaller than a third threshold.
  • the sample number threshold is equal to the third threshold.
  • the measurement frequency at which the terminal device reports the measurement sample number is the measurement frequency with stable measurement results, and the network device can directly use the measurement frequency at which the measurement sample number is reported for CA/DC configuration.
  • the manner in which the network device uses the measurement frequency to perform CA/DC configuration is: the network connection device configures the measurement frequency as a CA/DC secondary cell to the terminal device.
  • the network After the terminal device enters the connected state, the network performs measurement configuration for the terminal, and after the terminal reports the measurement results, the network then performs carrier aggregation CA/DC configuration for the terminal. Among them, the longest part of the whole process is measurement. In order to speed up the establishment process of CA/DC configuration, the EMR mechanism is introduced to help the network as soon as possible by allowing the terminals in the idle state to measure and report their measurement results after entering the connected state. Perform CA/DC configuration for the terminal.
  • the time required to measure one FR2 frequency exceeds 2 minutes, and as the number of carriers to be measured increases, the time required for measurement will also increase linearly.
  • due to the high frequency range of FR2 millimeter wave its channel changes faster, and the timeliness of long measurement results will also be greatly affected.
  • the terminal measured the results of four FR2 carriers 8 minutes before entering the connected state. , these results may have been invalid when entering the connected state to report (for example, the channel environment changes, the terminal moves, etc.), and the effectiveness of the EMR function is greatly affected, which may cause the establishment and configuration of CA/DC to fail.
  • the embodiment of the present application provides an optimization method for advance measurement, which can solve the problems of measurement failure and CA/DC configuration failure caused by too long measurement time.
  • the idea in the related technology is to allow the terminal to increase the frequency of measurement, and shorten the measurement time to improve the effectiveness of the measurement results, but this will increase the power consumption of the terminal in idle state, which has obvious disadvantages.
  • the idea provided by the embodiment of this application is to allow the terminal to perform advance measurement during the access process on the basis of the existing EMR advance measurement mechanism.
  • the establishment process from the idle state to the connected state usually takes 50ms to 100ms. Measurements can be made during the access process, which is the last process of entering the connected state, and the validity of the measurement results can be guaranteed.
  • the problem to be solved is: how to determine the carrier that the terminal needs to measure during the access process? Since the access process usually takes 50ms to 100ms, in this process, if the terminal has the capability of multi-carrier aggregation, it can measure multiple carriers at the same time, otherwise the terminal may only complete the measurement of one carrier.
  • Terminal type 1 The terminal supports multi-carrier aggregation. For example, the terminal supports f1+f2+f3 carrier aggregation. At this time, the terminal initiates access on f1, and the terminal can simultaneously measure f2 and f3.
  • Terminal type 2 The terminal supports 2 carrier aggregation.
  • the terminal supports f1+f2 carrier aggregation and f1+f3 carrier aggregation.
  • the terminal initiates access on f1, and the terminal can only measure f2 or f3 during the access process.
  • the communication method provided by the embodiment of the present application is optimized for terminal type 2. At the same time, although the capability of the terminal type 1 is strong, there is also a problem of power consumption when measuring multiple carriers at the same time.
  • the communication method provided by the embodiment of the present application is also applicable to Terminal type 1 with power saving requirements.
  • the terminal receives the idle state or deactivated state measurement configuration sent by the network, that is, the second measurement configuration, and the access measurement configuration, that is, the first measurement configuration, wherein,
  • idle state or deactivated state measurement configuration includes: frequency list 1, frequency list 1 includes idle state or deactivated state frequency information to be measured;
  • access measurement configuration includes one or more of the following: frequency list 2, priority, threshold 1 (RSRP or RSRQ), beam information; where,
  • the frequency list 2 includes frequency information to be measured during access
  • the priority indicates the frequency priority in the frequency list, and is used to determine the measurement carrier when accessing when there are multiple candidate frequencies;
  • Threshold 1 used to select a candidate frequency for access measurement in the frequency list, for example, the first measurement result higher than the threshold 1 can be used as a candidate frequency;
  • Beam information which tells the terminal whether to use the same receiving beam as the current camping/accessing cell for measurement.
  • the terminal can use the same receiving beam, which will greatly reduce the time for receiving beam scanning.
  • the terminal cannot use the same receiving beam as the current resident/access cell for measurement and needs to change the direction of the receiving beam.
  • the terminal can first try the receiving beam used for idle state or deactivated state measurement. beam direction.
  • the terminal selects the frequency higher than the threshold 1 in the first measurement result in the frequency list 2 as the candidate frequency for access measurement. If one of the first measurement results If there are multiple cells on the frequency, the cell with the highest measurement result is selected to represent the first measurement result of the frequency.
  • the terminal can use the same receiving beam as the current camping/accessing cell for measurement, then the terminal uses the same receiving beam as the current camping/accessing cell for the measurement frequency measurement;
  • the terminal uses the receiving beam used for idle state or deactivated state measurement to perform the measurement frequency measurement.
  • the terminal measures f2 during the access process
  • the SSB measurement time of f2 is configured with an SMTC period of 20 ms, and the access process lasts for 80 ms.
  • the terminal obtains 4 measurement samples of f2 for access measurement;
  • the SMTC period of f2 is 20ms, and the access process lasts for 50ms, then the number of samples for the terminal to measure f2 is 2. This is to assist the network in judging the accuracy of the access measurement. For example, when the first measurement result differs greatly from the access measurement result, or when the access measurement results of multiple frequencies are all good, the more measurement samples, the greater the number of measurement samples. Indicates that the measurement results are more accurate and reliable.
  • the network presets the number of measurement samples required for the terminal to send at least, for example, the minimum number of measurement samples required is 2. If the number of samples used for measurement is less than 2 when the terminal accesses the measurement, then If the terminal does not report the access measurement result, it means that the access measurement fails.
  • the communication method provided in the embodiment of this application, as shown in Figure 11, includes:
  • the terminal receives the idle state or deactivated state measurement configuration and access measurement configuration sent by the network.
  • the frequency list 1 included in the idle state or deactivated state measurement configuration includes f1 and f2, and the access measurement configuration includes the following information:
  • the terminal performs idle state or deactivated state measurement based on the idle state or deactivated state measurement configuration.
  • the terminal performs measurements based on frequency f1 and frequency f2 in the idle state or deactivated state measurement configuration in the idle state or deactivated state, and obtains the idle state or deactivated state measurement results, wherein the measurement result of cell 1 on frequency f1 is -80dBm , the measurement result of cell 2 on frequency f1 is -60dBm, then take -60dBm as the measurement result of frequency f1; the measurement result of cell 1 on frequency f2 is -70dBm, and the measurement result of cell 2 on frequency f2 is -90dBm, then take -70dBm is taken as the measurement result of frequency f2.
  • the terminal determines candidate frequencies.
  • the terminal determines candidate frequencies according to the measurement result in S1102 and the threshold 1 in the access measurement configuration. Wherein, since the measurement results of frequency f1 and frequency f2 are both greater than or equal to -70dBm, these two frequencies can be used as candidate frequencies.
  • the terminal determines a measurement frequency among candidate frequencies.
  • f1 may be determined as the measurement frequency for measurement during the access process.
  • the terminal performs frequency measurement during the access process. result
  • f1 of the beam information can use the same receiving beam as the camping/accessing cell, then the terminal uses the current receiving beam (that is, the same receiving beam as the currently accessing cell) to perform f1 during the access process
  • the measurement of the cell 2 on the frequency obtains the access measurement result.
  • the cell 2 measurement result of frequency f1 is -55dBm.
  • the terminal reports an idle state or deactivated state measurement result and an access measurement result.
  • the measurement results of the idle state or the deactivated state include: the measurement result of the cell 2 on the frequency f1 is -60dBm, and the measurement result of the cell 1 on the frequency f2 is -70dBm.
  • the access measurement results include: the cell 2 measurement result of frequency f1 is -55dBm.
  • the network device determines whether the CA/DC configuration can be performed on the access measurement based on the idle state or deactivated state measurement result and the access measurement result.
  • the network receives the measurement results reported by the terminal, and based on the idle state or deactivated state measurement results, considers that the measurement result of cell 2 of f1 in the access measurement results is better, and can be added to the terminal as a CA/DC secondary cell.
  • the communication method provided in the embodiment of this application, as shown in Figure 12, includes:
  • the terminal receives the idle state or deactivated state measurement configuration and access measurement configuration sent by the network.
  • f1, f2 and f3 are included in the frequency list 1 included in the idle state or deactivated state measurement configuration
  • Access measurement configuration includes the following information:
  • Priority the priority order of f1, f2, f3 is: f1, f2, f3,
  • the terminal performs idle state or deactivated state measurement based on the idle state or deactivated state measurement configuration.
  • the terminal performs measurements in the idle state or the deactivated state based on the frequency f1, the frequency f2, and the frequency f3 in the idle state or the deactivated state measurement configuration, and obtains the idle state or the deactivated state measurement result.
  • the terminal determines the measurement frequency according to the priority information.
  • f1 is determined as the measurement frequency for measurement during the access process.
  • the terminal performs frequency measurement during the access process based on the beam information.
  • f1 of the beam information can use the same receiving beam as the camping/accessing cell, then the terminal uses the current receiving beam (that is, the same receiving beam as the currently accessing cell) to perform f1 during the access process Frequency measurement to obtain access measurement results.
  • the terminal reports an idle state or deactivated state measurement result and an access measurement result.
  • the network device determines whether the CA/DC configuration can be performed for the access measurement based on the idle state or deactivated state measurement result and the access measurement result.
  • the network receives the measurement result reported by the terminal, and if the measurement result of the cell on frequency f1 is higher than the threshold of the CA/DC secondary cell configured by the network, it can be added to the terminal as a CA/DC secondary cell.
  • the communication method provided in the embodiment of this application, as shown in Figure 13, includes:
  • the terminal receives the idle state or deactivated state measurement configuration and the access measurement configuration sent by the network.
  • f1, f2 and f3 are included in the frequency list 1 included in the idle state or deactivated state measurement configuration
  • Access measurement configuration includes the following information:
  • Frequency list 2 including: f1 and f2.
  • the terminal performs idle state or deactivated state measurement based on the idle state or deactivated state measurement configuration.
  • the terminal performs measurements in the idle state or the deactivated state based on the frequency f1, the frequency f2, and the frequency f3 in the idle state or the deactivated state measurement configuration, and obtains the idle state or the deactivated state measurement result.
  • the measurement result of f1 in the idle state or deactivated state is -70dBm
  • the measurement result of f2 is -60dBm.
  • the terminal determines the measurement frequency.
  • the measurement frequencies that can be determined by the terminal 1 may include: frequency 1 and frequency 2.
  • the terminal 2 When the terminal 2 can only measure one frequency, since there is no priority information, the terminal 2 adopts f2 with a higher measurement result in the first measurement result as the access measurement frequency.
  • the terminal performs frequency measurement during the access process.
  • the terminal uses the receiving beam measurement frequency f1 or measurement frequency f1 and frequency f2 used in idle state or deactivated state measurement to obtain access measurement results.
  • the measurement result of f1 of terminal 1 is -80dBm, and the number of measurement samples is 3; the measurement result of f2 is -110dBm, and the number of measurement samples is 3.
  • the f2 measurement result of Terminal 2 is -110dBm, and the number of measurement samples is 3.
  • the terminal reports an idle state or deactivated state measurement result and an access measurement result.
  • the network device determines whether CA/DC configuration can be performed for the access measurement based on the idle state or deactivated state measurement result and the access measurement result.
  • f2 is better than f1 in the idle state or deactivated state measurement results reported by terminal 1, but f2 is worse than f1 in the access measurement results.
  • the network believes that the access measurement results are reliable, so The network determines that the terminal configures the cell on f1 as the CA/DC secondary cell.
  • f2 is better than f1 in the idle state or deactivated state measurement results reported by terminal 2, but the access measurement result f2 is poor.
  • the network believes that the access measurement results are reliable, so f2
  • the cell on f1 is not suitable to be added to terminal 2 as a CA/DC secondary carrier.
  • the network configures the cell on f1 as a CA/DC secondary cell for the terminal.
  • the embodiment of the present application provides a communication device 1400, which is applied to a terminal device.
  • the communication device 1400 includes:
  • the first receiving module 1401 is configured to receive a first measurement configuration configured by a network device, where the first measurement configuration is used for the terminal device to perform measurement during access.
  • the first measurement configuration includes at least one of the following information:
  • the first frequency information indicating at least one first frequency, the first frequency being a measurement frequency at the time of access;
  • priority information indicating a measurement priority of frequencies
  • the first threshold is a threshold value of signal strength or signal quality
  • Beam information where the beam information is used to indicate the receiving beam used by the terminal device for receiving or measuring.
  • the at least one measurement frequency used by the terminal device for measurement during access includes at least one of the following:
  • a first frequency with a high measurement priority selected from the at least one first frequency
  • the first measurement result is in the idle state Or deactivate the result of a live measurement.
  • the first receiving module 1401 is further configured to receive a second measurement configuration sent by the network device, and the second measurement configuration is used for the terminal device to perform measurement in an idle state or a deactivated state.
  • the second measurement configuration includes: second frequency information, where the second frequency information indicates at least one second frequency, and the second frequency is a measurement frequency in an idle state or a deactivated state.
  • the at least one measurement frequency used by the terminal device for measurement during access includes at least one of the following:
  • a candidate frequency with a high first measurement result is selected from the at least one candidate frequency.
  • the candidate frequency is a second frequency whose first measurement result is higher than or equal to the first threshold.
  • the beam information includes at least one first indication information, the first indication information is used to indicate whether the first receiving beam is the same as the second receiving beam, the first receiving beam is the terminal device A beam used for receiving or measuring a third frequency, the second receiving beam is a beam of a cell where the terminal device resides or accesses.
  • the beam used for receiving or measuring the third frequency is the second receiving beam
  • the beam used to receive or measure the third frequency is to measure the The receive beam used at the third frequency.
  • the first measurement result includes: the highest measurement result among the measurement results of multiple cells measured in the idle state or the deactivated state.
  • device 1400 also includes:
  • a reporting module configured to report a measurement result to the network device, where the measurement result includes at least a second measurement result, and the second measurement result includes the terminal device measuring the at least one measurement frequency during access. measurement results.
  • the measurement result further includes: a third measurement result, where the third measurement result includes the first measurement result of each measurement frequency in the at least one measurement frequency.
  • the third measurement is used to determine whether the second measurement is for CA/DC configuration.
  • the measurement results also include:
  • the number of measurement samples is used to determine whether the measurement of the first frequency in the second measurement is for a CA/DC configuration.
  • condition that the measurement result includes the number of measurement samples of the first measurement frequency includes:
  • the number of measurement samples of the first measurement frequency is greater than or equal to a sample number threshold.
  • the sample number threshold is:
  • the network device is configured.
  • the embodiment of the present application provides a communication device 1500, which is applied to network equipment.
  • the communication device 1500 includes:
  • the sending module 1501 is configured to send a first measurement configuration to a terminal device, where the first measurement configuration is used for the terminal device to perform measurement during access.
  • the first measurement configuration includes at least one of the following information:
  • the first frequency information indicating at least one first frequency, the first frequency being a measurement frequency at the time of access;
  • priority information indicating a measurement priority of frequencies
  • the first threshold is a threshold value of signal strength or signal quality
  • Beam information where the beam information is used to indicate the receiving beam used by the terminal device for receiving or measuring.
  • the at least one measurement frequency used by the terminal device for measurement during access includes at least one of the following:
  • a first frequency with a high measurement priority selected from the at least one first frequency
  • the first measurement result is in the idle state Or deactivate the result of a live measurement.
  • the sending module 1501 is further configured to send a second measurement configuration to the terminal device, where the second measurement configuration is used for the terminal device to perform measurements in an idle state or a deactivated state.
  • the second measurement configuration includes: second frequency information, where the second frequency information indicates at least one second frequency, and the second frequency is a measurement frequency in an idle state or a deactivated state.
  • the at least one measurement frequency used by the terminal device for measurement during access includes at least one of the following:
  • a candidate frequency with a high first measurement result is selected from the at least one candidate frequency.
  • the candidate frequency is a second frequency whose first measurement result is higher than or equal to the first threshold.
  • the beam information includes at least one first indication information, the first indication information is used for whether the first receiving beam is the same as the second receiving beam, the first receiving beam is received by the terminal device Or measure a beam used by the third frequency, the second receiving beam is a beam of a cell where the terminal device resides or accesses.
  • the beam used for receiving or measuring the third frequency is the second receiving beam
  • the beam used to receive or measure the third frequency is to measure the The receive beam used at the third frequency.
  • the first measurement result includes: the highest measurement result among the measurement results of multiple cells measured in the idle state or the deactivated state.
  • device 1500 also includes:
  • the second receiving module is configured to receive the measurement result reported by the network device, the measurement result includes at least a second measurement result, and the second measurement result includes the at least one measurement frequency of the terminal device during access The measurement result obtained by performing the measurement.
  • the measurement result further includes: a third measurement result, where the third measurement result includes the first measurement result of each measurement frequency in the at least one measurement frequency.
  • the third measurement is used to determine whether the second measurement is for CA/DC configuration.
  • the measurement results also include:
  • the number of measurement samples is used to determine whether the measurement of the first frequency in the second measurement is for a CA/DC configuration.
  • condition that the measurement result includes the number of measurement samples of the first measurement frequency includes:
  • the number of measurement samples of the first measurement frequency is greater than or equal to a sample number threshold.
  • the sample number threshold is:
  • the network device is configured.
  • the above-mentioned communication method is implemented in the form of a software function module and sold or used as an independent product, it may also be stored in a computer-readable storage medium.
  • the computer software products are stored in a storage medium and include several instructions to make A computer device (which may be a personal computer, a server, or a network device, etc.) executes all or part of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: various media that can store program codes such as U disk, mobile hard disk, read-only memory (Read Only Memory, ROM), magnetic disk or optical disk.
  • embodiments of the present application are not limited to any specific combination of hardware and software.
  • an embodiment of the present application provides an electronic device, including a memory and a processor, the memory stores a computer program that can run on the processor, and the processor implements the computer programs provided in the above-mentioned embodiments when executing the program. steps in a communication method.
  • the embodiments of the present application provide a storage medium, that is, a computer-readable storage medium, on which a computer program is stored, and when the computer program is executed by a processor, the communication method provided in the foregoing embodiments is implemented.
  • FIG. 16 is a schematic diagram of a hardware entity of a communication device (terminal device or network device) according to an embodiment of the present application.
  • the electronic device 1600 includes: a processor 1601, at least one communication bus 1602 , user interface 1603 , at least one external communication interface 1604 and memory 1605 .
  • the communication bus 1602 is configured to realize connection and communication between these components.
  • the user interface 1603 may include a display screen
  • the external communication interface 1604 may include a standard wired interface and a wireless interface.
  • the memory 1605 is configured to store instructions and applications executable by the processor 1601, and can also cache data to be processed or processed by the processor 1601 and various modules in the electronic device (for example, image data, audio data, voice communication data and video data) Communication data), which can be realized by flash memory (FLASH) or random access memory (Random Access Memory, RAM).
  • the disclosed devices and methods may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division.
  • the coupling, or direct coupling, or communication connection between the components shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be electrical, mechanical or other forms of.
  • the units described above as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units; they may be located in one place or distributed to multiple network units; can be based on actual Some or all of the units need to be selected to realize the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application can be integrated into one processing unit, or each unit can be used as a single unit, or two or more units can be integrated into one unit; the above-mentioned integration
  • the unit can be realized in the form of hardware or in the form of hardware plus software functional unit.
  • the above-mentioned integrated units of the present application are realized in the form of software function modules and sold or used as independent products, they can also be stored in a computer-readable storage medium.
  • the computer software products are stored in a storage medium and include several instructions to make A computer device (which may be a personal computer, a server, or a network device, etc.) executes all or part of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes various media capable of storing program codes such as removable storage devices, ROMs, magnetic disks or optical disks.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种通信方法、装置、设备及存储介质,包括:终端设备接收网络设备配置的第一测量配置,所述第一测量配置用于所述终端设备在接入时进行测量;能够保证测量结果的时效性,增加CA/DC配置的成功率。

Description

一种通信方法、装置、设备及存储介质
相关申请的交叉引用
本申请基于申请号为202210103067.2、申请日为2022年1月27日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此以引入方式并入本申请。
技术领域
本申请涉及移动通信技术领域,涉及但不限于一种通信方法、装置、设备、及存储介质。
背景技术
终端设备进入连接态后,网络设备为终端设备进行测量配置,终端设备测量上报结果后,网络设备再给终端设备进行载波聚合(Carrier Aggregation,CA)/双连接((Dual Connectivity,DC)配置。其中,整个过程耗时最长的部分是测量,为了加快CA/DC的建立过程,引入了提前测量报告(earlymeasurement report,EMR)机制,让空闲态的终端设备进行测量,并让终端设备在进入连接态后上报其测量结果,帮助网络设备尽快的为终端设备建立CA/DC。
然而,对于有些载波,比如FR2毫米波,测量所需要的时间较长,而基于信道变化的原因,过长的测量结果的时效性也会受到很大影响,导致CA/DC的建立也可能会失败。
发明内容
本申请本申请实施例提供一种通信方法、装置、设备及存储介质,保证了测量结果的时效性,增加了CA/DC配置的成功率。
本申请实施例的技术方案是这样实现的:
本申请实施例提供了一种通信方法,所述方法包括:
终端设备接收网络设备配置的第一测量配置,所述第一测量配置用于所述终端设备在接入时进行测量。
本申请实施例提供了一种通信方法,所述方法包括:
网络设备向终端设备发送第一测量配置,所述第一测量配置用于所述终端设备在接入时进行测量。
本申请实施例提供了一种通信装置,应用于终端设备,所述装置包括:
第一接收模块,配置为接收网络设备配置的第一测量配置,所述第一测量配置用于所述终端设备在接入时进行测量。
本申请实施例提供了一种通信装置,应用于网络设备,所述装置包括:
发送模块,配置为向终端设备发送第一测量配置,所述第一测量配置用于所述终端设备在接入时进行测量。
本申请实施例还提供了一种通信设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现上述终端设备或网络设备实施的通信方法中的步骤。
本申请实施例还提供了一种存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现上述终端设备或网络设备实施的通信方法。
本申请实施例所提供的通信方法、装置、设备及存储介质,终端设备接收网络设备配置的第一测量配置,所述第一测量配置用于所述终端设备在接入时进行测量,从而使得终端设备在接入时进行测量,缩短测量与CA/DC配置之间的时间间隔,在保证测量结果的时效性的同时,增加CA/DC 配置的成功率。
附图说明
图1为本申请实施例提供的无线通信系统的一种可选的结构示意图;
图2为本申请实施例提供的通信方法的一种可选的流程示意图;
图3为本申请实施例提供的测量效果的一种可选的示意图;
图4为本申请实施例提供的通信方法的一种可选的流程示意图;
图5为本申请实施例提供的通信方法的一种可选的流程示意图;
图6为本申请实施例提供的测量效果的一种可选的示意图;
图7为本申请实施例提供的共站部署的一种可选的效果示意图;
图8为本申请实施例提供的共站部署的一种可选的效果示意图;
图9为本申请实施例提供的共站部署的一种可选的效果示意图;
图10为本申请实施例提供的共站部署的一种可选的效果示意图;
图11为本申请实施例提供的通信方法的一种可选的流程示意图;
图12为本申请实施例提供的通信方法的一种可选的流程示意图;
图13为本申请实施例提供的通信方法的一种可选的流程示意图;
图14为本申请实施例提供的通信方法的一种可选的流程示意图;
图15为本申请实施例提供的通信装置的一种可选的结构示意图;
图16为本申请实施例提供的通信设备的一种可选的结构示意图。
具体实施方式
下面为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对申请的具体技术方案做进一步详细描述。以下实施例用于说明本申请,但不用来限制本申请的范围。
本申请实施例可提供为通信方法及设备、存储介质。实际应用中,通信方法可实施于电子设备,电子设备中的各功能实体可以由电子设备(如终端设备、服务器)的硬件资源,如处理器等计算资源、通信资源(如用于支持实现光缆、蜂窝等各种方式通信)协同实现。
图1是本申请实施例的一个应用场景的示意图。如图1所示,通信系统100可以包括终端设备110和网络设备120。网络设备120可以通过空口与终端设备110通信。终端设备110和网络设备120之间支持多业务传输。
图1示例性地示出了一个网络设备、一个核心网设备和两个终端设备,可选地,该无线通信系统100可以包括多个基站设备并且每个基站的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。
应理解,本申请实施例仅以通信系统100进行示例性说明,但本申请实施例不限定于此。也就是说,本申请实施例的技术方案可以应用于各种通信系统,例如:长期演进(Long Term Evolution,LTE)系统、LTE时分双工(Time Division Duplex,TDD)、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、物联网(Internet of Things,IoT)系统、窄带物联网(Narrow Band Internet of Things,NB-IoT)系统、增强的机器类型通信(enhanced Machine-Type Communications,eMTC)系统、5G通信系统(也称为新无线(New Radio,NR)通信系统),或未来的通信系统等。
在图1所示的通信系统100中,网络设备可以是与终端设备通信的接入网设备。接入网设备可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备(例如UE)进行通信。
网络设备可以是长期演进(Long Term Evolution,LTE)系统中的演进型基站(Evolutional Node B,eNB或eNodeB),或者是下一代无线接入网(Next Generation Radio Access Network,NG RAN)设备,或者是NR系统中的基站(gNB),或者是云无线接入网络(Cloud Radio Access Network,CRAN)中的无线控制器,或者该网络设备120可以为中继站、接入点、车载设备、可穿戴设备、集线器、交换机、网桥、路由器,或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)中的网络设备等。
终端设备可以是任意终端设备,其包括但不限于与网络设备或其它终端设备采用有线或者无线连接的终端设备。
例如,终端设备可以指接入终端、用户设备(User Equipment,UE)、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、IoT设备、卫星手持终端、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、5G网络中的终端设备或者未来演进网络中的终端设备等。
无线通信系统100还可以包括与基站进行通信的核心网设备130,该核心网设备130可以是5G核心网(5G Core,5GC)设备,例如,接入与移动性管理功能(Access and Mobility Management Function,AMF),又例如,认证服务器功能(Authentication Server Function,AUSF),又例如,用户面功能(User Plane Function,UPF),又例如,会话管理功能(Session Management Function,SMF)。可选地,核心网络设备130也可以是LTE网络的分组核心演进(Evolved Packet Core,EPC)设备,例如,会话管理功能+核心网络的数据网关(Session Management Function+Core Packet Gateway,SMF+PGW-C)设备。应理解,SMF+PGW-C可以同时实现SMF和PGW-C所能实现的功能。在网络演进过程中,上述核心网设备也有可能叫其它名字,或者通过对核心网的功能进行划分形成新的网络实体,对此本申请实施例不做限制。
通信系统100中的各个功能单元之间还可以通过下一代网络(next generation,NG)接口建立连接实现通信。
为便于理解本申请实施例的技术方案,以下通过具体实施例详述本申请的技术方案。以上相关技术作为可选方案与本申请实施例的技术方案可以进行任意结合,其均属于本申请实施例的保护范围。本申请实施例包括以下内容中的至少部分内容。
本申请实施例提供的通信方法,应用于终端设备,如图2所示,包括:
S201、终端设备接收网络设备配置的第一测量配置,所述第一测量配置用于所述终端设备在接入时进行测量。
网络设备为终端设备配置第一测量配置,并将配置的第一测量配置发送至终端设备。
终端设备在接收到第一测量配置后,可基于第一测量配置确定在接入时进行测量的频率即测量频率。可选地,终端设备还可基于第一测量配置确定基于测量频率进行测量时使用的接收波束。
本申请实施例中,接入可理解为从空闲态或去激活态切换至连接态时,执行的接入过程,包括:随机接入、初始接入、连接建立等。
终端设备在确定测量频率后,在进行接入时刻使用测量频率进行测量,并将测量结果上报至网络设备,使得网络设备基于终端设备上报的测量结果建立CA/DC。
本申请实施例中,终端设备可在接入成功进入连接态后,将测量结果上报至网络设备。
在一示例中,如图3所示,终端设备在t301和t302之间进行接入,并在t301和t302之间进行基于第一测量配置的测量,得到测量结果,终端设备在t302接入成功后将测量结果上报至网络设备。
本申请实施例中,终端设备可在接入过程中进行多次测量,并将多次测量得到的多个测量结果上报至网络设备,此时,网络设备可从多个测量结果中选取距离上报时间距离当前时间的时间间隔最短的测量结果建立CA/DC。
本申请实施例提供的通信方法,终端设备接收网络设备配置的第一测量配置,所述第一测量配置用于所述终端设备在接入时进行测量,从而使得终端设备在接入时进行测量,缩短测量与CA/DC配置之间的时间间隔,在保证测量结果的时效性的同时,增加CA/DC配置的成功率。
本申请实施例提供的通信方法,应用于网络设备,如图4所示,包括:
S401、网络设备向终端设备发送第一测量配置,所述第一测量配置用于所述终端设备在接入时进行测量。
网络设备为终端设备配置第一测量配置,并将配置的第一测量配置发送至终端设备。
终端设备在接收到第一测量配置后,可基于第一测量配置确定在接入时进行测量的频率即测量频率。可选地,终端设备还可基于第一测量配置确定基于测量频率进行测量时使用的接收波束。
本申请实施例中,接入可理解为从空闲态或去激活态切换至连接态时,执行的接入过程,包括:随机接入、初始接入、连接建立等。
终端设备在确定测量频率后,在进行接入时刻使用测量频率进行测量,并将测量结果上报至网络设备,使得网络设备基于终端设备上报的测量结果建立CA/DC。
本申请实施例中,终端设备可在接入成功进入连接态后,将测量结果上报至网络设备。
在一示例中,如图3所示,终端设备在t301和t302之间进行接入,并在t301和t302之间进行基于第一测量配置的测量,得到测量结果,终端设备在t302接入成功后将测量结果上报至网络设备。
本申请实施例中,终端设备可在接入过程中进行多次测量,并将多次测量得到的多个测量结果上报至网络设备,此时网络设备可从多个测量结果中选取距离上报时间距离当前时间的时间间隔最短的测量结果建立CA/DC。
本申请实施例提供的通信方法,网络设备向终端设备发送第一测量配置,所述第一测量配置用于所述终端设备在接入时进行测量,从而通过第一测量配置的配置,使得终端设备在接入时进行测量,缩短测量与CA/DC配置之间的时间间隔,在保证测量结果的时效性的同时,增加CA/DC配置的成功率。
本申请实施例提供的通信方法,应用于包括终端设备和网络设备的无线通信系统,如图5所示,包括:
S501、网络设备向终端设备发送第一测量配置。
S502、终端设备基于第一测量配置在接入时进行测量。
这里,关于S501和S502的描述可参见S201和S401的描述,这里不再赘述。
在一些实施例中,所述第一测量配置包括以下信息至少之一:
信息A1、第一频率信息,所述第一频率信息指示至少一个第一频率,所述第一频率为在接入时的测量频率;
信息A2、优先级信息,所述优先级信息指示频率的测量优先级;
信息A3、第一门限,所述第一门限为信号强度或信号质量的门限值;
信息A4、波束信息,所述波束信息用于指示所述终端设备进行接收或测量时使用的接收波束。
在一示例中,第一测量配置包括信息A1。
在一示例中,第一测量配置包括信息A2。
在一示例中,第一测量配置包括信息A3。
在一示例中,第一测量配置包括信息A4。
在一示例中,第一测量配置包括信息A1和信息A2。
在一示例中,第一测量配置包括信息A2和信息A3。
在一示例中,第一测量配置包括信息A1、信息A2、信息A3和信息A4。
对于信息A1,第一频率信息指示的至少一个第一频率可构成第一频率表,终端设备可将信息A1指示的至少一个第一频率中的部分或全部第一频率作为在接入时进行测量所使用的测量频率。
在一示例中,第一频率信息指示的第一频率包括:f1、f2和f3,则终端设备从f1、f2和f3中选择一个或多个频率在接入时进行测量。
对于信息A2,指示频率的测量优先级,这里,测量优先级可理解为进行测量的优先级。
在一示例中,优先级信息为:优先级从高到低的顺序为:f1、f2、f3和f4,则在接入时,优先使用f1进行测量,再没有f1的情况下,使用f2进行测量,在没有f1和f2的情况下,使用f3进行测量,在没有f1、f2和f3的情况下,使用f4进行测量。
对于信息A3,可为参考信号接收功率(Reference Signal Receiving Power,RSRP)门限值或参考信号接收质量(Reference Signal Receiving Quality,RSRQ)门限值。
对于信息A4,可为一波束的波束标识,也可为指示接收或测量时使用的接收波束与进行接入时的接收波束的关系的信息,本申请实施例中,对波束信息指示接收或测量时使用的接收波束的指示方式不进行任何限定。
在一些实施例中,在所述第一测量配置包括第一频率信息的情况下,所述终端设备在接入时进行测量使用的至少一个测量频率包括以下情况至少之一:
情况A1、所述至少一个第一频率;
情况A2、基于所述优先级信息,从所述至少一个第一频率中选择的测量优先级高的第一频率;
情况A3、基于所述至少一个第一频率中各第一频率的第一测量结果,从所述至少一个第一频率中选择第一测量结果高的第一频率,所述第一测量结果为在空闲态或去激活态测量的结果。
以进行接入时进行测量使用的频率为情况A1为例,终端设备确定测量频率的方式为:方式一、将第一频率信息指示的第一频率确定为测量频率。此时,终端设备使用第一频率信息指示的至少一个第一频率在接入时进行测量。
在一示例中,第一频率信息指示的至少一个第一频率包括f1,则终端设备在接入时使用f1进行 测量。
在一示例中,第一频率信息指示的至少一个第一频率包括f1和f2,则终端设备在接入时使用f1和f2进行测量。
在实际应用中,终端设备在接入时使用的测量频率的数量可基于终端设备是否支持多个频率的测量决定。
以进行接入时进行测量使用的频率为情况A2为例,终端设备确定测量频率的方式为:方式二、将第一频率信息指示的第一频率中测量优先级高的第一频率确定为测量频率。此时,终端设备根据优先级信息从第一频率信息指示的至少一个第一频率中,选择一个或多个测量优先级高的第一频率,并将选择的一个或多个第一频率确定为接入时进行测量的测量频率。
在一示例中,第一频率信息指示的至少一个第一频率包括f1和f2,优先级信息指示f1、f2、f3的测量优先级从高到低为f1、f2、f3,则测量优先级高的f1为测量频率,终端设备在接入时使用f1进行测量。
在一示例中,第一频率信息指示的至少一个第一频率包括f1、f2和f3,优先级信息指示f1、f2、f3的测量优先级从高到低为f1、f2、f3,则测量优先级高的f1和f2为测量频率,终端设备在接入时使用f1和f2进行测量。
以进行接入时进行测量使用的频率为情况A3为例,终端设备确定测量频率的方式为:方式三、将第一频率信息指示的至少一个第一频率中第一测量结果高的第一频率确定为测量频率。此时,终端设备确定第一频率信息指示的至少一个第一频率中,各第一频率的第一测量结果,并根据各第一频率的第一测量结果从第一频率信息指示的至少一个第一频率选择一个或多个第一测量结果高的第一频率。此时,在接入时使用第一测量结果高的一个或多个第一频率进行测量。
在一示例中,第一频率信息指示的至少一个第一频率包括f1和f2,f1的第一测量结果M1和f2的第一测量结果M2中M1高于M2,f1为测量频率,终端设备在接入时使用f1进行测量。
在一示例中,第一频率信息指示的至少一个第一频率包括f1、f2和f3,f1的第一测量结果M1、f2的第一测量结果M2和f3的第一测量结果M3中,M1高于M2,M2高于M3,则f1和f2为测量频率,终端设备接入时使用f1和f2进行测量。
在进行接入时进行测量使用的频率为情况A3的情况下,终端设备在空闲态或去激活态使用第一频率指示的至少一个第一频率进行测量,得到各个第一频率的第一测量结果。
在实际应用中,当终端设备使用多个测量频率进行测量时,可基于优先级信息来确定各个测量频率的测量顺序。
在一示例中,在接入时进行测量使用的频率包括f1和f2,优先级信息中,f1的测量优先级高于f2的测量优先级,则f1和f2的测量顺序为f1、f2,则终端设备在接入时,先测量f1,再测量f2,如果f2测量完成后,接入未完成,可继续测量f1,直到完成接入。
在一些实施例中,终端设备还实施以下步骤:所述终端设备接收所述网络设备发送的第二测量配置,所述第二测量配置用于所述终端设备在空闲态或去激活态进行测量。
此时,网络设备实施以下步骤:网络设备向终端设备发送第二测量配置,所述第二测量配置用于所述终端设备在空闲态或去激活态进行测量。
这里,网络设备为终端设备配置第二测量配置,并将配置的第二测量配置发送至终端设备,终端设备接收到第二测量配置后,基于第二测量配置进行空闲态或去激活态测量。其中,空闲态或去激活态测量可理解为在空闲态或去激活态进行测量。
在一示例中,如图6所示,终端设备在t303至t301进行基于第二测量配置的空闲态或去激活态测量,在t301和t302之间进行接入,并在t301和t302之间进行基于第一测量配置的测量,终端设备在t302接入成功后将测量结果上报至网络设备,其中,t303至t301之间为空闲态或去激活态。
可选地,网络设备通过同一条消息向终端设备发送第一测量配置和第二测量配置。
可选地,网络设备通过不同的消息向终端设备发送第一测量配置和第二测量配置。
在一些实施例中,第二测量配置包括:
信息B1、第二频率信息,所述第二频率信息指示至少一个第二频率,所述第二频率为在空闲态或去激活态的测量频率。
对于信息B1,第二频率信息指示的至少一个第二频率可构成第二频率表,终端设备可使用信息B1指示的至少一个第二频率在空闲态或去激活态进行测量。
在一示例中,第二频率信息指示的第一频率包括:f1和f2,则终端设备在空闲态或去激活态测量时,使用f1和f2进行测量。
在一示例中,第二频率信息指示的第一频率包括:f1、f2和f3,则终端设备在空闲态或去激活态测量时,使用f1、f2和f3进行测量。
在一些实施例中,在所述第一测量配置不包括所述第一频率信息的情况下,所述终端设备在接入时进行测量使用的至少一个测量频率包括以下情况至少之一:
情况B1、所述至少一个第二频率;
情况B2、基于所述优先级信息从所述至少一个第二频率中选择的测量优先级高的第二频率;
情况B3、基于所述至少一个第二频率中各第二频率的第一测量结果,从所述至少一个第二频率中选择的第一测量结果高的第二频率,所述第一测量结果为在空闲态或去激活态测量的结果;
情况B4、从所述至少一个第二频率中选择的至少一个候选频率;所述候选频率基于所述第一门限确定;
情况B5、基于所述优先级信息,从所述至少一个候选频率中选择的测量优先级高的候选频率;
情况B6,基于所述至少一个候选频率中各候选频率的第一测量结果,从所述至少一个候选频率中选择的第一测量结果高的候选频率。
以进行接入时进行测量使用的频率为情况B1为例,终端设备确定测量频率的方式为:方式四、将第二频率信息指示的第二频率确定为测量频率。此时,终端设备使用第二频率信息指示的至少一个第二频率在接入时进行测量。
在一示例中,第二频率信息指示的至少一个第二频率包括f1,则终端设备在空闲态或去激活态时使用f2进行测量,在接入时使用f2进行测量。
在一示例中,第二频率信息指示的至少一个第二频率包括f1和f2,则终端设备在空闲态或去激活态时使用f1和f2进行测量,在接入时使用f1和f2进行测量。
以进行接入时进行测量使用的频率为情况B2为例,终端设备确定测量频率的方式为:方式五、将第二频率信息指示的第二频率中测量优先级高的第二频率确定为测量频率。此时,终端设备根据优先级信息从第二频率信息指示的至少一个第二频率中,选择一个或多个测量优先级高的第二频率,在接入时使用选择的测量优先高的第二频率进行测量。
在一示例中,第二频率信息指示的至少一个第二频率包括f1和f2,优先级信息指示f1、f2、f3的测量优先级从高到低为f1、f2、f3,则测量优先级高的f1为测量频率,终端设备在空闲态或去激活态使用f1和f2进行测量,在接入时使用f1进行测量。
在一示例中,第二频率信息指示的至少一个第二频率包括f1、f2和f3,优先级信息指示f1、f2、f3的测量优先级从高到低为f1、f2、f3,则测量优先级高的f1和f2为测量频率,终端设备在空闲态或去激活态使用f1、f2和f3进行测量,在接入时使用f1和f2进行测量。
以进行接入时进行测量使用的频率为情况B3为例,终端设备确定测量频率的方式为:方式六、将第二频率信息指示的至少一个第二频率中第一测量结果高的第二频率确定为测量频率。此时,终端设备确定第二频率信息指示的至少一个第二频率中,各第二频率的第一测量结果,并根据各第二频率的第一测量结果从至少一个第二频率选择一个或多个第一测量结果高的第二频率。此时,在接入时使用第一测量结果高的一个或多个第二频率进行测量。
在一示例中,第二频率信息指示的至少一个第二频率包括f1和f2,终端设备在空闲态或去激活态使用f1和f2进行测量,得到f1的第一测量结果M1和f2的第一测量结果M2,且M1高于M2,则f1为测量频率,终端设备在接入时使用f1进行测量。
在一示例中,第二频率信息指示的至少一个第二频率包括f1、f2和f3,终端设备在空闲态或去激活态使用f1、f2和f3进行测量,得到f1的第一测量结果M1、f2的第一测量结果M2和f3的第一测量结果M3,且M1高于M2,M2高于M3,则f1和f2为测量频率,终端设备在接入时使用f1和f2进行测量。
以进行接入时进行测量使用的频率为情况B4为例,终端设备确定测量频率的方式为:方式七、将基于第一门限从第二频率信息指示的至少一个第二频率确定的候选频率为测量频率。此时,终端设备基于第一门限从第二频率信息指示的至少一个第二频率中,确定至少一个候选频率。终端设备在接入时使用至少一个候选频率进行测量。
在一示例中,第二频率信息指示的至少一个第二频率包括f1和f2,终端设备基于第一门限确定的候选频率包括:f1,则终端设备在空闲态或去激活态使用f1和f2进行测量,在接入时使用f1进行测量。
在一示例中,第二频率信息指示的至少一个第二频率包括f1、f2和f3,终端设备基于第一门限确定的候选频率包括:f1和f2,终端设备在空闲态或去激活态使用f1、f2和f3进行测量,在接入时 使用f1和f2进行测量。
以进行接入时进行测量使用的频率为情况B5为例,终端设备确定测量频率的方式为:方式八、基于第一门限从第二频率信息指示的至少一个第二频率确定候选频率,将候选频率中测量优先级高的候选频率确定为测量频率。此时,终端设备基于第一门限从第二频率信息指示的至少一个第二频率中,确定至少一个候选频率,并根据优先级信息从至少一个候选频率中选择测量优先级高的候选频率,在接入时使用选择的测量优先高的候选频率进行测量。
在一示例中,第二频率信息指示的至少一个第二频率包括f1和f2,终端设备基于第一门限确定候选频率包括:f1和f2,优先级信息指示f1、f2、f3的测量优先级从高到低为f1、f2、f3,则测量优先级高的f1为测量频率,终端设备在空闲态或去激活态使用f1和f2进行测量,在接入时使用f1进行测量则。
在一示例中,第二频率信息指示的至少一个第二频率包括f1、f2和f3,终端设备基于第一门限确定候选频率包括:f1和f2,优先级信息指示f1、f2、f3的测量优先级从高到低为f1、f2、f3,则测量优先级高的f1为测量频率,终端设备在空闲态或去激活态使用f1、f2和f3进行测量,在接入时使用f1进行测量。
以进行接入时进行测量使用的频率为情况B6为例,终端设备确定测量频率的方式为:方式九、将至少一个候选频率中第一测量结果高的候选频率确定为测量频率。此时,终端设备确定第二频率信息指示的至少一个第二频率中的候选频率,并确定各候选频率的第一测量结果,并根据各候选频率的第一测量结果从至少一个候选频率选择一个或多个第一测量结果高的候选频率。此时,在接入时使用第一测量结果高的一个或多个候选频率进行测量。
在一示例中,第二频率信息指示的至少一个第二频率包括f1和f2,终端设备在空闲态或去激活态使用f1和f2进行测量,得到f1的第一测量结果M1和f2的第一测量结果M2,且M1高于M2,终端设备基于第一门限确定候选频率包括:f1和f2,则f1为测量频率,终端设备在接入时使用f1进行测量则。
在一示例中,第二频率信息指示的至少一个第二频率包括f1、f2和f3,终端设备在空闲态或去激活态使用f1、f2和f3进行测量,得到f1的第一测量结果M1、f2的第一测量结果M2和f3的第一测量结果M3,且M1高于M2,M2高于M3,基于第一门限确定候选频率包括:f1、f2,则f1为测量频率,终端设备在接入时使用f1进行测量。
在实际应用中,终端设备在接收到第一测量配置和第二测量配置的情况下,第一测量配置包括第一频率信息,第二测量配置包括第二频率信息。
在第一测量配置中包括第一频率信息、第二测量配置中包括第二频率信息的情况下,终端设备基于第一频率信息确定测量频率。其中,基于第一频率信息确定测量频率的方式包括方式一、方式二和方式三中的一种或多种。本申请实施例中,对方式一、方式二和方式三的使用优先级或使用规则不进行任何限定。
在第一测量配置中不包括第一频率信息、第二测量配置中包括第二频率信息的情况下,终端设备基于第二频率信息确定测量频率。其中,基于第二频率信息确定测量频率的方式包括方式四至方式九中的一种或多种。本申请实施例中,对方式四至方式九的使用优先级或使用规则的不进行任何限定。
在一示例中,若终端设备已确定了候选频率,则在候选频率中选择优先级最高的一个或多个候选频率作为测量频率;若终端设备已确定了候选频率,但是第一测量配置不包括优先级信息,则选择第一测量结果好的一个或多个候选频率作为测量频率;若终端设备未确定候选频率,则选择第一测量结果好的一个或多个第二频率作为测量频率。
在一些实施例中,所述候选频率为第一测量结果高于或等于所述第一门限的第二频率。
终端设备在空闲态或去激活态使用第二频率信息指示的第二频率进行测量,得到各第二频率的第一测量结果,并将各第二频率的第一测量结果和第一门限进行比较,对于一第二频率,当其第一测量结果高于第一门限的情况下,则该第二频率为候选频率。
在一示例中,第一门限为-70dBm,第二测量频率包括:f1、f2,且f1的第一测量结果为-55dBm,f2的第一测量结果为-80dBm,则第一测量结果为-80dBm的f2为候选频率。
在一示例中,第一门限为-70dBm,第二测量频率包括:f1、f2,f1的第一测量结果为-60dBm,f2的第一测量结果为-70dBm,由于f1和f2的第一测量结果都大于或等于-70dBm,则候选频率包括:f1、f2。
在一些实施例中,所述波束信息包括至少一个第一指示信息,所述第一指示信息用于指示第一 接收波束是否与第二接收波束相同,所述第一接收波束为所述终端接收或测量第三频率使用的波束,所述第二接收波束为所述终端设备在驻留或接入的小区的波束。
波束信息指示一个或多个第三频率作为测量频率时的接收波束即第一接收波束,这里,将波束信息指示的第一接收波束对应的测量频率称为第三频率。
在一示例中,波束信息包括以下第一指示信息:指示信息1、指示信息2,其中,指示信息1指示终端设备接收f1或测量f1时使用的接收波束是否与终端设备在驻留或接入小区情况下的接收波束是否相同,指示信息2指示终端设备接收f2或测量f2时使用的接收波束是否与终端设备在驻留或接入小区情况下的接收波束是否相同。
其中,不同第三频率对应的第一指示信息相互独立。
可选地,在所述第三频率对应的第一指示信息指示第一接收波束与第二接收波束相同的情况下,接收或测量所述第三频率使用的波束为所述第二接收波束。
在一示例中,对于第三频率f1,若波束信息中的f1对应的第一指示信息指示f1的第一接收波束和第二接收波束相同,即指示终端设备在接入时使用f1进行测量时,可以用和当前驻留/接入小区相同的接收波束进行测量,则终端设备采用和当前驻留/接入小区相同的接收波束进行f1的测量。
可选地,在所述第三频率对应的第一指示信息指示第一接收波束与第二接收波束不相同的情况下,接收或测量所述第三频率使用的波束为在空闲态或去激活态测量所述第三频率时使用的接收波束。
在一示例中,对于第三频率f1,若波束信息中的f1对应的第一指示信息指示f1的第一接收波束和第二接收波束不同,即指示终端设备在接入时使用f1进行测量时,无法使用和当前驻留/接入小区相同的接收波束进行测量,则终端设备端使用空闲态或去激活态测量f1时使用的接收波束进行在接入时进行f1的测量。
本申请实施例中,第一指示信息可基于F1和F2的共站部署情况确定,其中,F1和F2为不同的频率,F1和F2可属于同一频段,也可属于不同的频段。
可选地,当F1和F2的共站部署情况为图7或图8所示的共站部署情况下,终端设备在接入时可以使用与当前驻留或接入的小区相同的接收波束,这样会大大减少接收波束扫描的时间。
可选地,当F1和F2的共站部署情况为图9所示的插花部署或图10所示的非共站部署的情况,终端设备无法使用和当前驻留/接入小区相同的接收波束在接入时进行测量,此时,终端设备需要更改在接入时进行测量的接收波束的方向。
在一些实施例中,所述第一测量结果包括:在空闲态或去激活态测量的多个小区的测量结果中,最高的测量结果。
在一个第二频率有多个小区的情况下,终端设备在多个小区上对该第二频率进行测量,得到该第二频率在多个小区的测量结果,此时,将该第二频率在各小区的测量结果进行比较,将最高的测量结果作为该第二频率的第一测量结果。
在一示例中,当第二频率f1上有小区1和小区2,终端设备在空闲态或去激活态在小区1对f1进行测量且在小区2对f1进行测量,f1上小区1的测量结果为-80dBm,f1上小区2的测量结果为-60dBm,则把-60dBm作为f1的第一测量结果。
在一些实施例中,终端设备还实施以下处理:
所述终端设备向所述网络设备上报测量结果,所述测量结果至少包括第二测量结果,所述第二测量结果包括所述终端设备在接入时对所述至少一个测量频率进行测量得到的测量结果。
此时,网络设备实施以下处理:
所述网络设备接收所述终端设备上报的测量结果,所述测量结果至少包括第二测量结果,所述第二测量结果包括所述终端设备在接入时对所述至少一个测量频率进行测量得到的测量结果。
在一些实施例中,终端设备上报的测量结果还包括:第三测量结果,所述第三测量结果包括至少一个测量频率中各测量频率的第一测量结果。
在一些实施例中,所述测量结果还包括:第一测量频率的测量样本数,所述第一测量频率为所述至少一个测量频率中任一测量频率。
本申请实施例中,终端设备向网络设备上报的测量结果包括在接入时对测量频率进行测量得到的第二测量结果外,还可包括以下至少之一:
第三测量结果,
测量样本数。
其中,第三测量结果包括至少一个测量频率的第一测量结果。
当终端设备上报第三测量结果的情况下,可将基于第二频率信息指示的至少一个第二测量频率的第一测量结果上报至网络设备。
在一些实施例中,所述第三测量结果用于确定所述第二测量结果是否用于CA/DC配置。
在终端设备上报第三测量结果的情况下,对于一个测量频率,终端设备将该测量频率的接入时的测量结果和第一测量结果同时上报至网络设备,网络设备接收到该测量频率的接入时的测量结果和第一测量结果,能够基于该测量频率的接入时的测量结果和第一测量结果确定该测量频率的测量结果是否稳定。第二测量结果用于CA/DC配置可理解为第二测量结果用于进行CA/DC配置的参考。
网络设备确定一测量频率的测量结果稳定的情况下,可基于该测量频率进行CA/DC配置。
可选地,当一个测量频率的接入时的测量结果和第一测量结果的差别小于设定的第二门限,则认为该测量频率稳定,此时,使用该测量频率进行CA/DC配置;当一个测量频率的接入时的测量结果和第一测量结果的差别大于或等于第二门限,则认为该测量频率不稳定,不使用该测量频率进行CA/DC配置。
当终端设备上报测量样本数的情况下,可将基于至少一个测量频率中一个或多个测量频率的测量样本数上报至网络设备。
本申请实施例中,测量样本数能够表征终端设备在接入时测量一个测量频率的次数。
在一示例中,终端设备在接入时测量f2,f2的同步信号块(Synchronization Signal Block,SSB)测量时间配置SMTC周期是20ms,接入过程持续了80ms,在此期间,终端获取了4个f2的测量样本来进行接入的测量,此时,f2的测量样本数为4。
在一示例中,终端设备在接入时测量f2,f2的SMTC周期是20ms,接入过程持续了50ms,则终端测量f2的样本数为2。
在一些实施例中,所述测量样本数用于确定所述第二测量结果中第一频率的测量结果是否用于CA/DC配置。
在终端设备上报测量样本数的情况下,对于第一测量频率,终端设备将该第一测量频率在接入时的测量样本数上报至网络设备,网络设备接收到针对各第一测量频率的接入时的测量结果和测量样本数,能够基于测量频率的接入时的测量结果和测量样本数确定各第一测量频率的测量结果是否稳定。
网络设备确定一第一测量频率的测量结果稳定的情况下,可基于该第一测量频率进行CA/DC配置。
可选地,当一个第一测量频率的测量样本数大于或等于第三门限,则认为该测量频率稳定,此时,使用该测量频率进行CA/DC配置;当一个第一测量频率的测量样本数小于第三门限一,则认为该测量频率不稳定,不使用该测量频率进行CA/DC配置。
在一些实施例中,所述测量结果包括第一测量频率的测量样本数的条件包括:所述第一测量频率的测量样本数大于或等于样本数阈值。
在一些实施例中,所述样本数阈值为:所述终端设备预设的;或者,所述网络设备配置的。
当终端对至少一个测量频率在接入进行测量后,得到各测量频率在接入的测量结果,则判断各测量频率在接入时得到的测量结果的数量即测量样本数。当一测量频率的测量样本数大于或等于样本数阈值,则将该测量频率在接入时得到的测量结果上报至网络设备,该测量频率可认为是第一测量频率。当一测量频率的测量样本数小于样本数阈值,则认为该测量频率的测量失败,不将该测量频率在接入时得到的测量结果上报至网络设备。
可选地,样本数阈值小于第三门限。
可选地,样本数阈值等于第三门限。在样本数阈值等于第三门限的情况下,则终端设备上报测量样本数的测量频率为测量结果稳定的测量频率,网络设备可直接使用上报测量样本数的测量频率进行CA/DC配置。
可选地,网络设备使用测量频率进行CA/DC配置的方式为:网络接设备将测量频率作为CA/DC的辅小区配置给终端设备。
下面,对本申请实施例提供的通信方法进行进一步说明。
终端设备进入连接态后,网络为终端进行测量配置,终端测量上报结果后,网络再给终端进行载波聚合CA/DC配置。其中,整个过程耗时最长的部分是测量,为了加快CA/DC配置的建立过程,引入了EMR机制,通过让空闲态的终端测量并在进入连接态后上报其测量结果,帮助网络尽快的为终端进行CA/DC配置。
以非连续接收(Discontinuous Reception,DRX)周期为0.32秒为例,FR1测量需要的时间为11.5*1*1.5=17.28s,而FR2测量需要的时间为11.5*8*1.5=138.24s(2.3min)。可见,测量一个FR2频率需要的时间超过了2分钟,随着需要测量的载波数量增加,测量所需要的时间也会线性增加。而FR2毫米波由于频率范围很高,其信道变化也更快,过长的测量结果时效性也会受到很大影响,例如,终端在进入连接态之前的8分钟测量了4个FR2载波的结果,这些结果在进入连接态上报时可能已经失效了(例如信道环境变化、终端发生了移动等),EMR功能的有效性受到了很大影响,从而导致CA/DC的建立配置也可能会失败。
本申请实施例提供一种提前测量的优化方法,能够解决测量时间过长导致的测量失效和CA/DC配置失败的问题。
相关技术中的思路是让终端增加测量的频次,通过缩短测量时间来提高测量结果的有效性,但是这会增加终端空闲态的功耗,缺点较为明显。本申请实施例提供的思路是在现有EMR提前测量机制的基础上,让终端在接入的过程中进行提前测量,从空闲态到连接态的建立过程通常需要50ms~100ms,如果终端在接入的过程中能做测量,接入的过程是进入连接态的最后一个过程,测量结果的有效性可以得到保障。
需要解决的问题是:如何确定终端在接入的过程中需要测量的载波?由于接入的过程通常需要50ms~100ms,在这个过程中,若终端具备多载波聚合的能力,可以同时测量多个载波,否则终端可能只能完成一个载波的测量。
终端类型1:终端支持多载波聚合能力,例如终端支持f1+f2+f3载波聚合,此时终端在f1上发起接入,终端可以同时测量f2和f3。
终端类型2:终端支持2载波聚合,例如终端支持f1+f2载波聚合和f1+f3载波聚合,此时终端在f1上发起接入,终端在接入接入过程中只能测量f2或者f3,此时需要确定终端在接入过程中具体测量的载波。
本申请实施例提供的通信方法针对终端类型2进行优化,同时对于终端类型1虽然其能力较强,但是同时测量多个载波也存在耗电问题,本申请实施例提供的通信方法也同时适用于有节电需求的终端类型1。
本申请实施例提供的通信方法,包括:
1、终端接收网络发送的空闲态或去激活态测量配置即第二测量配置和接入测量配置即第一测量配置,其中,
a)、空闲态或去激活态测量配置包括:频率列表1,频率列表1包括空闲态或去激活态待测量的频率信息;
b)、接入测量配置包括以下一种或多种:频率列表2、优先级、门限1(RSRP或RSRQ)、波束信息;其中,
i、频率列表2包括接入中待测量的频率信息;
ii.、优先级表示频率列表中的频率优先级,在存在多个候选频率时,用于确定接入时的测量载波;
iii、门限1(RSRP或RSRQ),用于在频率列表中选出接入测量的候选频率,例如第一测量结果高于门限1的可以作为候选频率;
iv、波束信息,告知终端是否用和当前驻留/接入小区相同的接收波束进行测量。其中,在图7、图8所示的共站部署情况下,终端是可以使用相同的接收波束,这样会大大减少接收波束扫描的时间,对于图9所示的插花部署或图10所示的非共站部署的情况,终端是无法使用和当前驻留/接入小区相同的接收波束进行测量需要更改接收波束的方向,此时,终端可以先尝试空闲态或去激活态测量时使用的接收波束方向。
2、在1的基础上,还包括确定接入测量的候选频率,终端在频率列表2中选择第一测量结果中高于门限1的频率作为接入测量的候选频率,若第一测量结果中一个频率上有多个小区,则选择测量结果最高的小区代表该频率的第一测量结果。
3、在1或2的基础上,还包括确定接入测量的一个或多个频率,
a)、若已确定了候选频率,则在候选频率中选择优先级最高的一个或多个频率作为接入的测量频率;
b)、若已确定了候选频率,但是没有收到优先级信息,则选择第一测量结果最好的一个或多个频率作为接入的测量频率;
c)、若未确定候选频率,则选择第一测量结果最好的一个或多个频率作为接入的测量频率。
4、在1的基础上,还包括终端确定接收波束方向。
a)、若网络指示频率列表2中的某个频率,终端可以用和当前驻留/接入小区相同的接收波束进行测量,则终端采用和当前驻留/接入小区相同的接收波束进行该频率的测量;
b)、若网络指示频率列表2中的某个频率,终端无法使用和当前驻留/接入小区相同的接收波束进行测量,则终端使用空闲态或去激活态测量时使用的接收波束进行该频率的测量。
5、在1、2、3或4的基础上,还包括终端上报接入的测量结果和第一测量结果。
6、在5所述的基础上,还包括终端上报接入的测量的样本数。
例如,终端在接入过程中测量f2,f2的SSB测量时间配置SMTC周期是20ms,接入过程持续了80ms,在此期间,终端获取了4个f2的测量样本来进行接入的测量;再例如f2的SMTC周期是20ms,接入过程持续了50ms,则终端测量f2的样本数为2。这是为了辅助网络判断接入测量的准确性,例如当第一测量结果和接入测量结果差别较大时,或者有多个频率的接入测量结果都很好时,测量样本数越多,表示测量结果越准确可靠。
7、在5的基础上,还包括网络预设终端发送至少需要的测量样本数,例如至少需要的测量样本数为2,如果终端在接入测量时,用于测量的样本数小于2,则终端不上报该接入测量结果,即代表该接入测量失败了。
本申请实施例提供的通信方法,可实施为但不限于以下实施例:
实施例一
本申请实施例提供的通信方法,如图11所示,包括:
S1101、终端接收网络发送的空闲态或去激活态测量配置和接入测量配置。
空闲态或去激活态测量配置所包括的频率列表1中包括f1和f2,接入测量配置包括以下信息:
i、优先级:f1优先级高于f2,
ii、门限1:RSRP=-70dBm,
iii、波束信息:f1可以使用和驻留/接入小区相同的接收波束,f2不可以使用和驻留/接入小区相同的接收波束。
S1102、终端基于空闲态或去激活态测量配置进行空闲态或去激活态测量。
终端在空闲态或去激活态基于空闲态或去激活态测量配置中的频率f1和频率f2进行测量,得到空闲态或去激活态测量结果,其中,频率f1上小区1的测量结果为-80dBm,频率f1上小区2的测量结果为-60dBm,则把-60dBm作为频率f1的测量结果;频率f2上小区1的测量结果为-70dBm,频率f2上小区2的测量结果为-90dBm,则把-70dBm作为频率f2的测量结果。
S1103、终端确定候选频率。
终端根据S1102的测量结果和接入测量配置中的门限1确定候选频率。其中,由于频率f1和频率f2的测量结果都大于或等于-70dBm,则这两个频率都可以作为候选频率。
S1104、终端在候选频率中确定测量频率。
根据接入测量配置中的优先级f1优先级高于f2,可确定f1为在接入过程中进行测量的测量频率。
S1105、终端在接入过程中进行测量频率的测量。结果
在接入测量配置中,波束信息的f1可以使用和驻留/接入小区相同的接收波束,则终端采用当前接收波束(即当前接入小区相同的接收波束)在接入过程中来进行f1频率上小区2的测量,得到接入测量结果。其中,频率f1的小区2测量结果为-55dBm。
S1106、终端上报空闲态或去激活态测量结果和接入测量结果。
空闲态或去激活态测量结果包括:频率f1上小区2的测量结果为-60dBm,频率f2上小区1的测量结果为-70dBm。接入测量结果包括:频率f1的小区2测量结果为-55dBm。
S1107、网络设备基于空闲态或去激活态测量结果和接入测量结果确定接入测量是否可进行CA/DC配置。
网络接收终端上报的测量结果,基于空闲态或去激活态测量结果认为接入测量结果中f1的小区2测量结果较好,可以作为CA/DC的辅小区添加给终端。
实施例二
本申请实施例提供的通信方法,如图12所示,包括:
S1201、终端接收网络发送的空闲态或去激活态测量配置和接入测量配置。
空闲态或去激活态测量配置所包括的频率列表1中包括f1、f2和f3,
接入测量配置包括以下信息:
i、优先级:f1、f2、f3的优先级排序为:f1、f2、f3,
ii、波束信息:f1、f3可以使用和驻留/接入小区相同的接收波束,f2不可以使用和驻留/接入小区相同的接收波束。
S1202、终端基于空闲态或去激活态测量配置进行空闲态或去激活态测量。
终端在空闲态或去激活态基于空闲态或去激活态测量配置中的频率f1、频率f2、频率f3进行测量,得到空闲态或去激活态测量结果。
S1203、终端根据优先级信息确定测量频率。
根据接入测量配置中的优先级信息,确定f1为在接入过程中进行测量的测量频率。
S1204、终端基于波束信息在接入过程中进行测量频率的测量。
在接入测量配置中,波束信息的f1可以使用和驻留/接入小区相同的接收波束,则终端采用当前接收波束(即当前接入小区相同的接收波束)在接入过程中来进行f1频率的测量,得到接入测量结果。
S1205、终端上报空闲态或去激活态测量结果和接入测量结果。
S1206、网络设备基于空闲态或去激活态测量结果和接入测量结果确定接入测量是否可进行CA/DC配置。
网络接收终端上报的测量结果,若频率f1上小区的测量结果高于网络配置CA/DC辅小区的门限,可以作为CA/DC的辅小区添加给终端。
实施例三
本申请实施例提供的通信方法,如图13所示,包括:
S1301、终端接收网络发送的空闲态或去激活态测量配置和接入测量配置。
空闲态或去激活态测量配置所包括的频率列表1中包括f1、f2和f3,
接入测量配置包括以下信息:
频率列表2,包括:f1和f2。
S1302、终端基于空闲态或去激活态测量配置进行空闲态或去激活态测量。
终端在空闲态或去激活态基于空闲态或去激活态测量配置中的频率f1、频率f2、频率f3进行测量,得到空闲态或去激活态测量结果。空闲态或去激活态测量结果中f1测量结果为-70dBm,f2测量结果为-60dBm。
S1303、终端确定测量频率。
终端1可确定的测量频率可包括:频率1和频率2。
终端2只可以测量1个频率的情况下,由于没有优先级信息,因此终端2采用第一测量结果中测量结果较高的f2作为接入的测量频率。
S1304、终端在接入过程中进行测量频率的测量。
接入测量配置中不包括波束信息,则在接入测量配置中,终端使用空闲态或去激活态测量时使用的接收波束测量频率f1或测量频率f1和频率f2,得到接入测量结果。
其中,终端1的f1测量结果为-80dBm,测量样本数为3;f2测量结果为-110dBm,测量样本数为3。终端2的f2测量结果为-110dBm,测量样本数为3。
这里,可认为终端1和终端2的位置相同,因此,对于f1和f2的测量结果相近。
S1305、终端上报空闲态或去激活态测量结果和接入测量结果。
S1306、网络设备基于空闲态或去激活态测量结果和接入测量结果确定接入测量是否可进行CA/DC配置。
对于终端1,终端1上报的空闲态或去激活态测量结果中f2好于f1,但是接入测量结果f2差于f1,根据上报的测量样本数3,网络认为接入测量结果可信,因此网络确定终端配置f1上的小区为CA/DC辅小区。
对于终端2,终端2上报的空闲态或去激活态测量结果中f2好于f1,但是接入测量结果f2较差,根据上报的测量样本数3,网络认为接入测量结果可信,因此f2上的小区不适合作为CA/DC的辅载波添加给终端2,根据之前的空闲态或去激活态测量结果,网络为终端配置f1上的小区为CA/DC辅小区。
本申请实施例提供一种通信装置1400,应用于终端设备,如图14所示,通信装置1400包括:
第一接收模块1401,配置为接收网络设备配置的第一测量配置,所述第一测量配置用于所述终端设备在接入时进行测量。
在一些实施例中,所述第一测量配置包括以下信息至少之一:
第一频率信息,所述第一频率信息指示至少一个第一频率,所述第一频率为在接入时的测量频率;
优先级信息,所述优先级信息指示频率的测量优先级;
第一门限,所述第一门限为信号强度或信号质量的门限值;
波束信息,所述波束信息用于指示所述终端设备进行接收或测量时使用的接收波束。
在一些实施例中,在所述第一测量配置包括第一频率信息的情况下,所述终端设备在接入时进行测量使用的至少一个测量频率包括以下至少之一:
所述至少一个第一频率;
基于所述优先级信息,从所述至少一个第一频率中选择的测量优先级高的第一频率;
基于所述至少一个第一频率中各第一频率的第一测量结果,从所述至少一个第一频率中选择的第一测量结果高的第一频率,所述第一测量结果为在空闲态或去激活态测量的结果。
在一些实施例中,第一接收模块1401,还配置为接收所述网络设备发送的第二测量配置,所述第二测量配置用于所述终端设备在空闲态或去激活态进行测量。
在一些实施例中,第二测量配置包括:第二频率信息,所述第二频率信息指示至少一个第二频率,所述第二频率为在空闲态或去激活态的测量频率。
在一些实施例中,在所述第一测量配置不包括所述第一频率信息的情况下,所述终端设备在接入时进行测量使用的至少一个测量频率包括以下至少之一:
所述至少一个第二频率;
基于所述优先级信息从所述至少一个第二频率中选择的测量优先级高的第二频率;
基于所述至少一个第二频率中各第二频率的第一测量结果,从所述至少一个第二频率中选择的第一测量结果高的第二频率,所述第一测量结果为在空闲态或去激活态测量的结果;
从所述至少一个第二频率中选择的至少一个候选频率,所述候选频率基于所述第一门限确定;
基于所述优先级信息,从所述至少一个候选频率中选择的测量优先级高的候选频率;
基于所述至少一个候选频率中各候选频率的第一测量结果,从所述至少一个候选频率中选择的第一测量结果高的候选频率。
在一些实施例中,所述候选频率为第一测量结果高于或等于所述第一门限的第二频率。
在一些实施例中,所述波束信息包括至少一个第一指示信息,所述第一指示信息用于指示第一接收波束是否与第二接收波束相同,所述第一接收波束为所述终端设备接收或测量第三频率使用的波束,所述第二接收波束为所述终端设备在驻留或接入的小区的波束。
在一些实施例中,
在所述第三频率对应的第一指示信息指示第一接收波束与第二接收波束相同的情况下,接收或测量所述第三频率使用的波束为所述第二接收波束;或者,
在所述第三频率对应的第一指示信息指示第一接收波束与第二接收波束不相同的情况下,接收或测量所述第三频率使用的波束为在空闲态或去激活态测量所述第三频率时使用的接收波束。
在一些实施例中,所述第一测量结果包括:在空闲态或去激活态测量的多个小区的测量结果中,最高的测量结果。
在一些实施例中,装置1400还包括:
上报模块,配置为向所述网络设备上报测量结果,所述测量结果至少包括第二测量结果,所述第二测量结果包括所述终端设备在接入时对所述至少一个测量频率进行测量得到的测量结果。
在一些实施例中,所述测量结果还包括:第三测量结果,所述第三测量结果包括至少一个测量频率中各测量频率的第一测量结果。
在一些实施例中,所述第三测量结果用于确定所述第二测量结果是否用于CA/DC配置。
在一些实施例中,所述测量结果还包括:
第一测量频率的测量样本数,所述第一测量频率为所述至少一个测量频率中任一测量频率。
在一些实施例中,所述测量样本数用于确定所述第二测量结果中第一频率的测量结果是否用于CA/DC配置。
在一些实施例中,所述测量结果包括第一测量频率的测量样本数的条件包括:
所述第一测量频率的测量样本数大于或等于样本数阈值。
在一些实施例中,所述样本数阈值为:
所述终端设备预设的;或者,
所述网络设备配置的。
本申请实施例提供一种通信装置1500,应用于网络设备,如图15所示,通信装置1500包括:
发送模块1501,配置为向终端设备发送第一测量配置,所述第一测量配置用于所述终端设备在接入时进行测量。
在一些实施例中,所述第一测量配置包括以下信息至少之一:
第一频率信息,所述第一频率信息指示至少一个第一频率,所述第一频率为在接入时的测量频率;
优先级信息,所述优先级信息指示频率的测量优先级;
第一门限,所述第一门限为信号强度或信号质量的门限值;
波束信息,所述波束信息用于指示所述终端设备进行接收或测量时使用的接收波束。
在一些实施例中,在所述第一测量配置包括第一频率信息的情况下,所述终端设备在接入时进行测量使用的至少一个测量频率包括以下至少之一:
所述至少一个第一频率;
基于所述优先级信息,从所述至少一个第一频率中选择的测量优先级高的第一频率;
基于所述至少一个第一频率中各第一频率的第一测量结果,从所述至少一个第一频率中选择的第一测量结果高的第一频率,所述第一测量结果为在空闲态或去激活态测量的结果。
在一些实施例中,发送模块1501,还配置为向终端设备发送第二测量配置,所述第二测量配置用于所述终端设备在空闲态或去激活态进行测量。
在一些实施例中,第二测量配置包括:第二频率信息,所述第二频率信息指示至少一个第二频率,所述第二频率为在空闲态或去激活态的测量频率。
在一些实施例中,在所述第一测量配置不包括所述第一频率信息的情况下,所述终端设备在接入时进行测量使用的至少一个测量频率包括以下至少之一:
所述至少一个第二频率;
基于所述优先级信息从所述至少一个第二频率中选择的测量优先级高的第二频率;
基于所述至少一个第二频率中各第二频率的第一测量结果,从所述至少一个第二频率中选择的第一测量结果高的第二频率,所述第一测量结果为在空闲态或去激活态测量的结果;
从所述至少一个第二频率中选择的至少一个候选频率,所述候选频率基于所述第一门限确定;
基于所述优先级信息,从所述至少一个候选频率中选择的测量优先级高的候选频率;
基于所述候选频率的第一测量结果,从所述至少一个候选频率中选择的第一测量结果高的候选频率;
基于所述至少一个候选频率中各候选频率的第一测量结果,从所述至少一个候选频率中选择的第一测量结果高的候选频。
在一些实施例中,所述候选频率为第一测量结果高于或等于所述第一门限的第二频率。
在一些实施例中,所述波束信息包括至少一个第一指示信息,所述第一指示信息用于第一接收波束是否与第二接收波束相同,所述第一接收波束为所述终端设备接收或测量第三频率使用的波束,所述第二接收波束为所述终端设备在驻留或接入的小区的波束。
在一些实施例中,
在所述第三频率对应的第一指示信息指示第一接收波束与第二接收波束相同的情况下,接收或测量所述第三频率使用的波束为所述第二接收波束;或者,
在所述第三频率对应的第一指示信息指示第一接收波束与第二接收波束不相同的情况下,接收或测量所述第三频率使用的波束为在空闲态或去激活态测量所述第三频率时使用的接收波束。
在一些实施例中,所述第一测量结果包括:在空闲态或去激活态测量的多个小区的测量结果中,最高的测量结果。
在一些实施例中,装置1500还包括:
第二接收模块,配置为接收所述网络设备上报的测量结果,所述测量结果至少包括第二测量结果,所述第二测量结果包括所述终端设备在接入时对所述至少一个测量频率进行测量得到的测量结果。
在一些实施例中,所述测量结果还包括:第三测量结果,所述第三测量结果包括至少一个测量频率中各测量频率的第一测量结果。
在一些实施例中,所述第三测量结果用于确定所述第二测量结果是否用于CA/DC配置。
在一些实施例中,所述测量结果还包括:
第一测量频率的测量样本数,所述第一测量频率为所述至少一个测量频率中任一测量频率。
在一些实施例中,所述测量样本数用于确定所述第二测量结果中第一频率的测量结果是否用于CA/DC配置。
在一些实施例中,所述测量结果包括第一测量频率的测量样本数的条件包括:
所述第一测量频率的测量样本数大于或等于样本数阈值。
在一些实施例中,所述样本数阈值为:
所述终端设备预设的;或者,
所述网络设备配置的。
以上装置实施例的描述,与上述方法实施例的描述是类似的,具有同方法实施例相似的有益效果。对于本申请装置实施例中未披露的技术细节,请参照本申请方法实施例的描述而理解。
需要说明的是,本申请实施例中,如果以软件功能模块的形式实现上述的通信方法,并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请实施例的技术方案本质上或者说对相关技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机、服务器、或者网络设备等)执行本申请各个实施例所述方法的全部或部分。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read Only Memory,ROM)、磁碟或者光盘等各种可以存储程序代码的介质。这样,本申请实施例不限制于任何特定的硬件和软件结合。
对应地,本申请实施例提供一种电子设备,包括存储器和处理器,所述存储器存储有可在处理器上运行的计算机程序,所述处理器执行所述程序时实现上述实施例中提供的通信方法中的步骤。
对应地,本申请实施例提供一种存储介质,也就是计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现上述实施例中提供的通信方法。
这里需要指出的是:以上存储介质和设备实施例的描述,与上述方法实施例的描述是类似的,具有同方法实施例相似的有益效果。对于本申请存储介质和设备实施例中未披露的技术细节,请参照本申请方法实施例的描述而理解。
需要说明的是,图16为本申请实施例通信设备(终端设备或网络设备)的一种硬件实体示意图,如图16所示,所述电子设备1600包括:一个处理器1601、至少一个通信总线1602、用户接口1603、至少一个外部通信接口1604和存储器1605。其中,通信总线1602配置为实现这些组件之间的连接通信。其中,用户接口1603可以包括显示屏,外部通信接口1604可以包括标准的有线接口和无线接口。
存储器1605配置为存储由处理器1601可执行的指令和应用,还可以缓存待处理器1601以及电子设备中各模块待处理或已经处理的数据(例如,图像数据、音频数据、语音通信数据和视频通信数据),可以通过闪存(FLASH)或随机访问存储器(Random Access Memory,RAM)实现。
应理解,说明书通篇中提到的“一个实施例”或“一实施例”意味着与实施例有关的特定特征、结构或特性包括在本申请的至少一个实施例中。因此,在整个说明书各处出现的“在一个实施例中”或“在一些实施例中”未必一定指相同的实施例。此外,这些特定的特征、结构或特性可以任意适合的方式结合在一个或多个实施例中。应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。上述本申请实施例序号仅仅为了描述,不代表实施例的优劣。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。
在本申请所提供的几个实施例中,应该理解到,所揭露的设备和方法,可以通过其它的方式实现。以上所描述的设备实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,如:多个单元或组件可以结合,或可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的各组成部分相互之间的耦合、或直接耦合、或通信连接可以是通过一些接口,设备或单元的间接耦合或通信连接,可以是电性的、机械的或其它形式的。
上述作为分离部件说明的单元可以是、或也可以不是物理上分开的,作为单元显示的部件可以是、或也可以不是物理单元;既可以位于一个地方,也可以分布到多个网络单元上;可以根据实际 的需要选择其中的部分或全部单元来实现本实施例方案的目的。
另外,在本申请各实施例中的各功能单元可以全部集成在一个处理单元中,也可以是各单元分别单独作为一个单元,也可以两个或两个以上单元集成在一个单元中;上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
本领域普通技术人员可以理解:实现上述方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成,前述的程序可以存储于计算机可读取存储介质中,该程序在执行时,执行包括上述方法实施例的步骤;而前述的存储介质包括:移动存储设备、只读存储器(Read Only Memory,ROM)、磁碟或者光盘等各种可以存储程序代码的介质。
或者,本申请上述集成的单元如果以软件功能模块的形式实现并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请实施例的技术方案本质上或者说对相关技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机、服务器、或者网络设备等)执行本申请各个实施例所述方法的全部或部分。而前述的存储介质包括:移动存储设备、ROM、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述是本申请的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请所述原理的前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本申请的保护范围。

Claims (38)

  1. 一种通信方法,所述方法包括:
    终端设备接收网络设备配置的第一测量配置,所述第一测量配置用于所述终端设备在接入时进行测量。
  2. 根据权利要求1所述的方法,其中,所述第一测量配置包括以下信息至少之一:
    第一频率信息,所述第一频率信息指示至少一个第一频率,所述第一频率为在接入时的测量频率;
    优先级信息,所述优先级信息指示频率的测量优先级;
    第一门限,所述第一门限为信号强度或信号质量的门限值;
    波束信息,所述波束信息用于指示所述终端设备进行接收或测量时使用的波束。
  3. 根据权利要求2所述的方法,其中,在所述第一测量配置包括第一频率信息的情况下,所述终端设备在接入时进行测量使用的至少一个测量频率包括以下至少之一:
    所述至少一个第一频率;
    基于所述优先级信息,从所述至少一个第一频率中选择的测量优先级高的第一频率;
    基于所述至少一个第一频率中各第一频率的第一测量结果,从所述至少一个第一频率中选择的第一测量结果高的第一频率,所述第一测量结果为在空闲态或去激活态测量的结果。
  4. 根据权利要求2或3所述的方法,其中,所述方法还包括:
    所述终端设备接收所述网络设备发送的第二测量配置,所述第二测量配置用于所述终端设备在空闲态或去激活态进行测量。
  5. 根据权利要求4所述的方法,其中,第二测量配置包括:第二频率信息,所述第二频率信息指示至少一个第二频率,所述第二频率为在空闲态或去激活态的测量频率。
  6. 根据权利要求5所述的方法,其中,在所述第一测量配置不包括所述第一频率信息的情况下,所述终端设备在接入时进行测量使用的至少一个测量频率包括以下至少之一:
    所述至少一个第二频率;
    基于所述优先级信息从所述至少一个第二频率中选择的测量优先级高的第二频率;
    基于所述至少一个第二频率中各第二频率的第一测量结果,从所述至少一个第二频率中选择的第一测量结果高的第二频率,所述第一测量结果为在空闲态或去激活态测量的结果;
    从所述至少一个第二频率中选择的至少一个候选频率,所述候选频率基于所述第一门限确定;
    基于所述优先级信息,从所述至少一个候选频率中选择的测量优先级高的候选频率;
    基于所述至少一个候选频率中各候选频率的第一测量结果,从所述至少一个候选频率中选择的第一测量结果高的候选频率。
  7. 根据权利要求6所述的方法,其中,所述候选频率为第一测量结果高于或等于所述第一门限的第二频率。
  8. 根据权利要求2至7中任一项所述的方法,其中,所述波束信息包括至少一个第一指示信息,所述第一指示信息用于指示第一接收波束是否与第二接收波束相同,所述第一接收波束为所述终端设备接收或测量第三频率使用的波束,所述第二接收波束为所述终端设备在驻留或接入的小区的波束。
  9. 根据权利要求8所述的方法,其中,
    在所述第三频率对应的第一指示信息指示第一接收波束与第二接收波束相同的情况下,接收或测量所述第三频率使用的波束为所述第二接收波束;或者,
    在所述第三频率对应的第一指示信息指示第一接收波束与第二接收波束不相同的情况下,接收或测量所述第三频率使用的波束为在空闲态或去激活态测量所述第三频率时使用的接收波束。
  10. 根据权利要求3至7中任一项所述的方法,其中,所述第一测量结果包括:在空闲态或去激活态测量的多个小区的测量结果中,最高的测量结果。
  11. 根据权利要求3至7中任一项所述的方法,其中,所述方法还包括:
    所述终端设备向所述网络设备上报测量结果,所述测量结果至少包括第二测量结果,所述 第二测量结果包括所述终端设备在接入时对所述至少一个测量频率进行测量得到的测量结果。
  12. 根据权利要求11所述的方法,其中,所述测量结果还包括:第三测量结果,所述第三测量结果包括至少一个测量频率中各测量频率的第一测量结果。
  13. 根据权利要求12所述的方法,其中,所述第三测量结果用于确定所述第二测量结果是否用于CA/DC配置。
  14. 根据权利要求11至13中任一项所述的方法,其中,所述测量结果还包括:
    第一测量频率的测量样本数,所述第一测量频率为所述至少一个测量频率中任一测量频率。
  15. 根据权利要求14所述的方法,其中,所述测量样本数用于确定所述第二测量结果中第一频率的测量结果是否用于CA/DC配置。
  16. 根据权利要求14或15所述的方法,其中,所述测量结果包括第一测量频率的测量样本数的条件包括:
    所述第一测量频率的测量样本数大于或等于样本数阈值。
  17. 根据权利要求16所述的方法,其中,所述样本数阈值为:
    所述终端设备预设的;或者,
    所述网络设备配置的。
  18. 一种通信方法,所述方法包括:
    网络设备向终端设备发送第一测量配置,所述第一测量配置用于所述终端设备在接入时进行测量。
  19. 根据权利要求18所述的方法,其中,所述第一测量配置包括以下信息至少之一:
    第一频率信息,所述第一频率信息指示至少一个第一频率,所述第一频率为在接入时的测量频率;
    优先级信息,所述优先级信息指示频率的测量优先级;
    第一门限,所述第一门限为信号强度或信号质量的门限值;
    波束信息,所述波束信息用于指示所述终端设备进行接收或测量时使用的接收波束。
  20. 根据权利要求19所述的方法,其中,在所述第一测量配置包括第一频率信息的情况下,所述终端设备在接入时进行测量使用的至少一个测量频率包括以下至少之一:
    所述至少一个第一频率;
    基于所述优先级信息,从所述至少一个第一频率中选择的测量优先级高的第一频率;
    基于所述至少一个第一频率中各第一频率的第一测量结果,从所述至少一个第一频率中选择的第一测量结果高的第一频率,所述第一测量结果为在空闲态或去激活态测量的结果。
  21. 根据权利要求19或20所述的方法,其中,所述方法还包括:
    所述网络设备向所述终端设备发送第二测量配置,所述第二测量配置用于所述终端设备在空闲态或去激活态进行测量。
  22. 根据权利要求21所述的方法,其中,第二测量配置包括:第二频率信息,所述第二频率信息指示至少一个第二频率,所述第二频率为在空闲态或去激活态的测量频率。
  23. 根据权利要求22所述的方法,其中,在所述第一测量配置不包括所述第一频率信息的情况下,所述终端设备在接入时进行测量使用的至少一个测量频率包括以下至少之一:
    所述至少一个第二频率;
    基于所述优先级信息从所述至少一个第二频率中选择的测量优先级高的第二频率;
    基于所述至少一个第二频率中各第二频率的第一测量结果,从所述至少一个第二频率中选择的第一测量结果高的第二频率,所述第一测量结果为在空闲态或去激活态测量的结果;
    从所述至少一个第二频率中选择的至少一个候选频率,所述候选频率基于所述第一门限确定;
    基于所述优先级信息,从所述至少一个候选频率中选择的测量优先级高的候选频率;
    基于所述至少一个候选频率中各候选频率的第一测量结果,从所述至少一个候选频率中选择的第一测量结果高的候选频。
  24. 根据权利要求23所述的方法,其中,所述候选频率为第一测量结果高于或等于所述第一门限的第二频率。
  25. 根据权利要求19至24中任一项所述的方法,其中,所述波束信息包括至少一个第一指示信息,所述第一指示信息用于第一接收波束是否与第二接收波束相同,所述第一接收波束为所述终端接收或测量第三频率使用的波束,所述第二接收波束为所述终端设备在驻留或接入的小 区的波束。
  26. 根据权利要求25所述的方法,其中,
    在所述第三频率对应的第一指示信息指示第一接收波束与第二接收波束相同的情况下,接收或测量所述第三频率使用的接收波束为所述第二接收波束;或者,
    在所述第三频率对应的第一指示信息指示第一接收波束与第二接收波束不相同的情况下,接收或测量所述第三频率使用的波束为在空闲态或去激活态测量所述第三频率时使用的接收波束。
  27. 根据权利要求20至24中任一项所述的方法,其中,所述第一测量结果包括:在空闲态或去激活态测量的多个小区的测量结果中,最高的测量结果。
  28. 根据权利要求20至24中任一项所述的方法,其中,所述方法还包括:
    所述网络设备接收所述终端设备上报的测量结果,所述测量结果至少包括第二测量结果,所述第二测量结果包括所述终端设备在接入时对所述至少一个测量频率进行测量得到的测量结果。
  29. 根据权利要求28所述的方法,其中,所述测量结果还包括:第三测量结果,所述第三测量结果包括至少一个测量频率中各测量频率的第一测量结果。
  30. 根据权利要求29所述的方法,其中,所述第三测量结果用于确定所述第二测量结果是否用于CA/DC配置。
  31. 根据权利要求28至30中任一项所述的方法,其中,所述测量结果还包括:
    第一测量频率的测量样本数,所述第一测量频率为所述至少一个测量频率中任一测量频率。
  32. 根据权利要求31所述的方法,其中,所述测量样本数用于确定所述第二测量结果中第一频率的测量结果是否用于CA/DC配置。
  33. 根据权利要求31或32所述的方法,其中,所述测量结果包括第一测量频率的测量样本数的条件包括:
    所述第一测量频率的测量样本数大于或等于样本数阈值。
  34. 根据权利要求33所述的方法,其中,所述样本数阈值为:
    所述终端设备预设的;或者,
    所述网络设备配置的。
  35. 一种通信装置,应用于终端设备,所述装置包括:
    第一接收模块,配置为接收网络设备配置的第一测量配置,所述第一测量配置用于所述终端设备在接入时进行测量。
  36. 一种通信装置,应用于网络设备,所述装置包括:
    发送模块,配置为向终端设备发送第一测量配置,所述第一测量配置用于所述终端设备在接入时进行测量。
  37. 一种通信设备,所述通信设备包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述计算机程序时,实现权利要求1至17任一项所述通信方法中的步骤,或实现权利要求18至34任一项所述通信方法中的步骤。
  38. 一种存储介质,其上存储有计算机程序,该计算机程序被处理器执行时,实现权利要求1至17任一项所述通信方法,或实现权利要求18至34任一项所述通信方法。
PCT/CN2023/072167 2022-01-27 2023-01-13 一种通信方法、装置、设备及存储介质 WO2023143143A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210103067.2A CN116567703A (zh) 2022-01-27 2022-01-27 一种通信方法、装置、设备及存储介质
CN202210103067.2 2022-01-27

Publications (1)

Publication Number Publication Date
WO2023143143A1 true WO2023143143A1 (zh) 2023-08-03

Family

ID=87470497

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/072167 WO2023143143A1 (zh) 2022-01-27 2023-01-13 一种通信方法、装置、设备及存储介质

Country Status (2)

Country Link
CN (1) CN116567703A (zh)
WO (1) WO2023143143A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101959230A (zh) * 2009-07-14 2011-01-26 中兴通讯股份有限公司 一种实现随机接入测量的配置管理方法及系统
CN110720230A (zh) * 2017-06-15 2020-01-21 Oppo广东移动通信有限公司 测量间隔配置方法、装置、设备、终端及系统
CN112806049A (zh) * 2019-02-13 2021-05-14 Oppo广东移动通信有限公司 无线资源管理测量方法、系统、终端设备及存储介质
US20210227417A1 (en) * 2019-01-28 2021-07-22 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Wireless communication method, terminal device and network device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101959230A (zh) * 2009-07-14 2011-01-26 中兴通讯股份有限公司 一种实现随机接入测量的配置管理方法及系统
CN110720230A (zh) * 2017-06-15 2020-01-21 Oppo广东移动通信有限公司 测量间隔配置方法、装置、设备、终端及系统
US20210227417A1 (en) * 2019-01-28 2021-07-22 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Wireless communication method, terminal device and network device
CN112806049A (zh) * 2019-02-13 2021-05-14 Oppo广东移动通信有限公司 无线资源管理测量方法、系统、终端设备及存储介质

Also Published As

Publication number Publication date
CN116567703A (zh) 2023-08-08

Similar Documents

Publication Publication Date Title
EP3494726B1 (en) Information indication method and terminal device
US20200221378A1 (en) Active Scanning Enhancements for Multi-Band and Multi-Basic Service Set Discovery
US20230069252A1 (en) Communication Method and Communication Apparatus
CN111885681B (zh) 智能核心网络选择
TW202008841A (zh) 會話管理方法、終端設備和網路設備
WO2024045693A9 (zh) 基于异网漫游的接入方法和装置
US11696118B2 (en) System and methods for network control of 5G operation mode
WO2024045693A1 (zh) 基于异网漫游的接入方法和装置
US20220248268A1 (en) Method for relay transmission, relay user equipment, and remote user equipment
CN114745755B (zh) 一种通信方法、基站、终端及存储介质
EP4068657A1 (en) Sidelink relay pathloss estimation in wireless communication
WO2022238226A1 (en) Method and ue for accessing slice-specific rach resources pool
CN111194072B (zh) 多波束场景下监听寻呼的方法及装置
WO2016002332A1 (ja) 装置、方法及びプログラム
WO2023143143A1 (zh) 一种通信方法、装置、设备及存储介质
US11711868B2 (en) System and method for radio frequency band selection for new radio standalone and non-standalone services
US20230389051A1 (en) Methods for inter-ue resource coordination mechanism
CN110831225A (zh) 一种传输信号的方法和装置
US20160029424A1 (en) Direct device-to-device communications radio technology selection
WO2022126641A1 (zh) 无线通信方法、终端设备、第一接入网设备以及网元
CN113454929A (zh) 信息处理方法及装置、通信设备及存储介质
CN114143854A (zh) 一种通信方法及设备
US20230077850A1 (en) Wireless communication method and device
WO2023227090A1 (zh) 用于辅小区组的小区更新方法及装置、存储介质
EP4307739A1 (en) Transmission method, terminal device, network device, and communication system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23746025

Country of ref document: EP

Kind code of ref document: A1