WO2023142962A1 - 储液箱状态的检测方法及装置、存储介质及电子装置 - Google Patents

储液箱状态的检测方法及装置、存储介质及电子装置 Download PDF

Info

Publication number
WO2023142962A1
WO2023142962A1 PCT/CN2023/070870 CN2023070870W WO2023142962A1 WO 2023142962 A1 WO2023142962 A1 WO 2023142962A1 CN 2023070870 W CN2023070870 W CN 2023070870W WO 2023142962 A1 WO2023142962 A1 WO 2023142962A1
Authority
WO
WIPO (PCT)
Prior art keywords
pole piece
voltage
storage tank
liquid storage
medium
Prior art date
Application number
PCT/CN2023/070870
Other languages
English (en)
French (fr)
Inventor
王承冰
Original Assignee
追觅创新科技(苏州)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 追觅创新科技(苏州)有限公司 filed Critical 追觅创新科技(苏州)有限公司
Publication of WO2023142962A1 publication Critical patent/WO2023142962A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/40Parts or details of machines not provided for in groups A47L11/02 - A47L11/38, or not restricted to one of these groups, e.g. handles, arrangements of switches, skirts, buffers, levers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • G01F23/24Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of resistance of resistors due to contact with conductor fluid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means

Definitions

  • the present application relates to the field of smart home, in particular, to a method and device for detecting the state of a liquid storage tank, a storage medium and an electronic device.
  • the cleaning equipment is generally equipped with a liquid collection device (for example, a sewage bucket), and two electrode sheets are arranged in the liquid collection device.
  • the solution medium is in contact with each other, and through the penetration of the two pole pieces and the solution medium, a capacitive loop in the circuit is formed to detect various states of the sewage bucket.
  • the detection method of the solution medium in the related art has the problem that the electrode sheet is easily corroded due to the charge accumulation on the electrode sheet during the detection of the solution medium.
  • the purpose of this application is to provide a detection method and device, a storage medium, and an electronic device for the state of a liquid storage tank, to at least solve the problem of the detection method of the solution medium in the related art due to the presence of charges on the electrode sheets during the detection of the solution medium.
  • a method for detecting the state of a liquid storage tank including: inputting a positive charge to the first pole piece within the first time interval of the target time period, and inputting positive charges to the second pole piece Input negative charges, wherein, the first pole piece and the second pole piece are pole pieces arranged in the liquid storage tank of the cleaning equipment; through the first pole piece and the second pole piece, the Detect the medium state of the solution medium in the liquid storage tank to obtain the first medium state; within the second time interval of the target time period, input negative charges to the first pole piece, and input negative charges to the second pole piece
  • the dipole piece inputs positive charge, wherein, the second time interval and the first time interval are time intervals without overlap; through the first pole piece and the second pole piece to the solution medium
  • the medium state is detected to obtain the second medium state.
  • the inputting positive charge to the first pole piece and inputting negative charge to the second pole piece includes: Set to a high level, input positive charge to the first pole piece, and input negative charge to the second pole piece; input negative charge to the first pole piece, and input negative charge to the first pole piece, and Inputting positive charges to the second pole piece includes: inputting positive charges to the second pole piece by setting the voltage level of the second port connected to the second pole piece to a high level, and supplying the positive charge to the second pole piece. The first pole piece inputs negative charge.
  • the method also includes:
  • both the voltage level of the first port and the voltage level of the second port are set to low level, wherein the first port is the port connected to the first pole piece, and the second The port is a port connected to the second pole piece, and the closing time interval includes other time intervals in the target time period except the first time interval and the second time interval.
  • the detection of the medium state of the solution medium in the liquid storage tank through the first pole piece and the second pole piece to obtain the first medium state includes: detecting the The pole piece voltage between the first pole piece and the second pole piece is obtained to obtain the first pole piece voltage; when the first pole piece voltage is less than or equal to the first voltage threshold, determine the liquid storage tank The solution medium in the tank is in a full state, wherein the full state means that the liquid level of the solution medium in the liquid storage tank reaches the target liquid level; when the voltage of the first pole piece is greater than or equal to the second voltage threshold In the case of , it is determined that the solution medium in the liquid storage tank is not full, wherein the not full state means that the liquid level of the solution medium in the liquid storage tank has not reached the target liquid level.
  • detecting the medium state of the solution medium in the liquid storage tank through the first pole piece and the second pole piece to obtain the first medium state includes: detecting the second pole piece A pole piece voltage between a pole piece and the second pole piece is obtained to obtain a second pole piece voltage; a target dirt parameter corresponding to the second pole piece voltage is determined, wherein the target dirt parameter is used for Indicates the degree of contamination of the solution medium in the liquid storage tank, and the first medium state includes the target contamination parameter.
  • said method further includes: determining a target operating parameter corresponding to said target fouling parameter, wherein, The target operating parameter is an operating parameter of a preset component, and the preset component is a component on the cleaning device associated with the solution medium in the liquid storage tank; the preset component is controlled according to the target operating parameter to run.
  • the method further includes: in response to the acquired detection indication signal, inputting positive charges to one of the first pole piece and the second pole piece, and supplying positive charges to the other pole piece.
  • One pole piece inputs negative charges, wherein the detection indication signal is used to indicate the detection of the oxidation degree of the first pole piece and the second pole piece;
  • Pole piece voltage obtain the 3rd pole piece voltage, wherein, described 3rd pole piece voltage is used for representing the oxidation degree of described first pole piece and described second pole piece;
  • the cleaning device sends out prompt information, wherein the prompt information is used to prompt replacement of at least one pole piece among the first pole piece and the second pole piece.
  • a detection device for the state of the liquid storage tank including: a first input unit, configured to input positive Inputting negative charges to the charge and to the second pole piece, wherein the first pole piece and the second pole piece are pole pieces arranged in the liquid storage tank of the cleaning equipment; the first detection unit is used for The medium state of the solution medium in the liquid storage tank is detected by the first pole piece and the second pole piece to obtain the first medium state; the second input unit is used for In the second time interval, negative charges are input to the first pole piece, and positive charges are input to the second pole piece, wherein the second time interval does not overlap with the first time interval Time interval; a second detection unit, configured to detect the medium state of the solution medium through the first pole piece and the second pole piece to obtain a second medium state.
  • the first input unit includes: a first input module, configured to send the The first pole piece inputs positive charge, and inputs negative charge to the second pole piece;
  • the second input unit includes: a second input module, which is used to connect the second pole piece connected to the second pole piece.
  • the voltage level of the port is set to a high level, positive charge is input to the second pole piece, and negative charge is input to the first pole piece.
  • the device further includes: a setting unit, configured to set both the voltage level of the first port and the voltage level of the second port to a low level during the off time interval, wherein the The first port is the port connected to the first pole piece, the second port is the port connected to the second pole piece, and the closing time interval includes the target time period except the first time interval and other time intervals outside the second time interval.
  • a setting unit configured to set both the voltage level of the first port and the voltage level of the second port to a low level during the off time interval, wherein the The first port is the port connected to the first pole piece, the second port is the port connected to the second pole piece, and the closing time interval includes the target time period except the first time interval and other time intervals outside the second time interval.
  • the first detection unit includes: a first detection module, configured to detect the pole piece voltage between the first pole piece and the second pole piece, and obtain the first pole piece voltage ; a first determining module, configured to determine that the solution medium in the liquid storage tank is in a full state when the voltage of the first pole piece is less than or equal to a first voltage threshold, wherein the full state is It means that the liquid level of the solution medium in the liquid storage tank reaches the target liquid level; the second determination module is used to determine that the liquid storage tank The solution medium in the liquid storage tank is not full, wherein the not full state means that the liquid level of the solution medium in the liquid storage tank has not reached the target liquid level.
  • the first detection unit includes: a second detection module, configured to detect the pole piece voltage between the first pole piece and the second pole piece to obtain the second pole piece voltage ; a third determining module, configured to determine a target contamination parameter corresponding to the second electrode piece voltage, wherein the target contamination parameter is used to represent the degree of contamination of the solution medium in the liquid storage tank, and the The first media state includes the target soiling parameter.
  • the device further includes: a determination unit, configured to determine a target corresponding to the target contamination parameter after the determination of the target contamination parameter corresponding to the second pole piece voltage An operating parameter, wherein the target operating parameter is an operating parameter of a preset component, and the preset component is a component on the cleaning device associated with the solution medium in the liquid storage tank; the control unit is configured to The target operating parameters control the operation of the preset components.
  • the input unit is configured to, in response to the acquired detection indication signal, input positive charge to one pole piece of the first pole piece and the second pole piece, and input positive charge to the other pole piece
  • the pole piece inputs negative charges, wherein the detection indication signal is used to indicate the detection of the oxidation degree of the first pole piece and the second pole piece; the third detection unit is used to detect the first pole piece and the second pole piece The pole piece voltage between the second pole pieces is used to obtain the third pole piece voltage, wherein the third pole piece voltage is used to indicate the degree of oxidation of the first pole piece and the second pole piece; the prompt unit, It is used to send a reminder message through the cleaning device when the voltage of the third pole piece is greater than or equal to a third voltage threshold, wherein the reminder message is used to prompt replacement of the first pole piece and the second pole piece. At least one pole piece in the dipole piece.
  • a computer-readable storage medium is also provided, and a computer program is stored in the computer-readable storage medium, wherein the computer program is configured to execute the above-mentioned liquid storage method during operation.
  • the detection method of the state of the box is also provided.
  • an electronic device including a memory, a processor, and a computer program stored on the memory and operable on the processor, wherein the above-mentioned processor executes the above-mentioned A detection method for the state of the liquid storage tank.
  • different charges are input to the first pole piece and the second pole piece set in the liquid storage tank of the cleaning device in different time intervals of the target time period.
  • positive charge is input to the first pole piece
  • negative charge is input to the second pole piece
  • the first pole piece and the second pole piece are pole pieces arranged in the liquid storage tank of the cleaning device;
  • in the second time interval of the target time period input negative charges to the first pole piece , and input positive charges to the second pole piece, wherein, the second time interval and the first time interval are time intervals that do not overlap; the medium state of the solution medium is detected by the first pole piece and the second pole piece to obtain In the second medium state, due to the fact that in different time intervals of the target time period, charges of different polarities are alternately supplied to the first pole piece and the second pole piece arranged in the liquid storage tank, the first pole piece and
  • the charge accumulated on the second pole piece is neutralized, which can realize the purpose of reducing the charge accumulation on the pole piece, achieve the technical effect of slowing down the corrosion speed of the pole piece, and improving the service life of the pole piece, and then solve the problem of the liquid storage tank in the related art State detection method Due to the problem that the pole piece is easily corroded due to the accumulation of charges on the pole piece during the detection of the solution medium.
  • FIG. 1 is a schematic diagram of a hardware environment of an optional method for detecting the state of a liquid storage tank according to an embodiment of the present application
  • Fig. 2 is a schematic flowchart of an optional detection method for the state of a liquid storage tank according to an embodiment of the present application
  • Fig. 3 is a schematic diagram of an optional solution medium detection cycle according to an embodiment of the present application.
  • FIG. 4 is a schematic diagram of an optional detection method for the state of a liquid storage tank according to an embodiment of the present application
  • Fig. 5 is a schematic diagram of another optional detection method for the state of a liquid storage tank according to an embodiment of the present application.
  • Fig. 6 is a structural block diagram of an optional detection device for the state of a liquid storage tank according to an embodiment of the present application
  • Fig. 7 is a structural block diagram of an optional electronic device according to an embodiment of the present application.
  • a method for detecting the state of a liquid storage tank may be applied to a hardware environment composed of a terminal device 102 , a cleaning device 104 and a server 106 as shown in FIG. 1 .
  • the terminal device 102 can be connected to the cleaning device 104 and/or server 106 (for example, an Internet of Things platform or a cloud server) through the network, so as to control the cleaning device 104, for example, to bind with a cleaning robot Determine and configure the cleaning function of the cleaning device 104.
  • the cleaning device 104 may include a host and a base station (or dust collection station), and the host and the base station may be connected through a network to determine the current status of the peer (eg, battery status, working status, location information, etc.).
  • the foregoing network may include but not limited to at least one of the following: a wired network and a wireless network.
  • the above-mentioned wired network may include but not limited to at least one of the following: wide area network, metropolitan area network, local area network, and the above-mentioned wireless network may include but not limited to at least one of the following: WIFI (Wireless Fidelity, Wireless Fidelity), bluetooth, infrared.
  • WIFI Wireless Fidelity, Wireless Fidelity
  • the network used by the terminal device 102 to communicate with the cleaning device 104 and/or the base station 106 and the network used by the cleaning device 104 to communicate with the base station 106 may be the same or different.
  • the terminal device 102 is not limited to a PC, a mobile phone, a tablet computer, etc., and the server 106 may be a server of an Internet of Things platform.
  • the method for detecting the state of the liquid storage tank in the embodiment of the present application may be executed by the terminal device 102 , the cleaning device 104 or the server 106 alone, or may be jointly executed by at least two of the terminal device 102 , the cleaning device 104 and the server 106 .
  • the method for detecting the state of the liquid storage tank in the embodiment of the present application performed by the terminal device 102 or the cleaning device 104 may also be performed by a client installed on it.
  • FIG. 2 is a schematic flowchart of an optional detection method for the state of the liquid storage tank according to the embodiment of the present application, as shown in FIG. 2 As shown, the flow of the method may include the following steps:
  • Step S202 within the first time interval of the target time period, input positive charge to the first pole piece, and input negative charge to the second pole piece, wherein the first pole piece and the second pole piece are set to clean Pole piece in the reservoir of the device.
  • the method for detecting the state of the liquid storage tank in this embodiment may be applied to a scene where the state of the liquid storage tank is detected during the operation of the cleaning equipment.
  • the above-mentioned cleaning equipment can be a cleaning robot, for example, it can be an intelligent floor washing machine, a sweeping robot, an intelligent cleaning machine integrating suction, sweeping, and dragging, or other equipment with area cleaning functions. This is not limited.
  • the cleaning equipment can be equipped with a liquid storage tank, which is used to collect solution media such as clean water, sewage or cleaning liquid generated during the operation of the cleaning equipment.
  • a first pole piece and a second pole piece can be arranged in the liquid storage tank, and during the operation of the cleaning equipment, the solution medium (for example, sewage, cleaning, etc.) in the liquid storage tank can be treated by the first pole piece and the second pole piece liquid or other solution medium) for state detection to determine the medium state of the solution medium.
  • the above-mentioned first pole piece and second pole piece may be arranged at the bottom of the liquid storage tank, or at the top of the liquid storage tank, or at other positions of the liquid storage tank, which is not limited in this embodiment.
  • each pole piece pair may include two pole pieces.
  • one pole piece pair can be used each time, and multiple pole piece pairs can also be used at the same time.
  • the two pole pieces of each pole piece pair used can be respectively used as the first pole piece and the second pole piece to detect the medium state. The detection process of each pole piece pair is similar and will not be repeated here.
  • the detection period for detecting the medium state may be preconfigured, that is, a target time period, and the duration of the target time period may be set as required, for example, 5s, 10s, and so on.
  • the target time period may be divided into multiple time intervals, the multiple time intervals may include the first time interval, and the duration of the first time period may be half of the target time period.
  • the start time of the first time period may be the start time of the target time period, or other time, which is not limited in this embodiment.
  • the duration of the first time period can be set to be less than half of the target time period.
  • the duration of the first time period is A quarter of the duration of the target time period.
  • different charges can be fed into different pole pieces within the first time interval of the target time period.
  • positive charges can be input to the first pole piece, and Diode input negative charge.
  • pole piece P1 ie, the above-mentioned first pole piece
  • pole piece P2 ie, the above-mentioned second pole piece
  • step S204 the medium state of the solution medium in the liquid storage tank is detected through the first pole piece and the second pole piece to obtain a first medium state.
  • the medium state of the solution medium in the liquid storage tank can be detected through the first pole piece and the second pole piece, and The first medium state.
  • the medium state of the solution medium can be determined according to the pole piece voltage, pole piece current or pole piece resistance between the first pole piece and the second pole piece.
  • the medium state of the solution medium may include but not limited to at least one of the following: liquid level state, contamination parameter (contamination state).
  • the conduction states of the first pole piece and the second pole piece are different. If the liquid level does not reach the set level, the first pole piece and the second pole piece are not conducting, the resistance of the pole piece between the two is relatively large, the voltage of the pole piece is also large, and the current of the pole piece is small. If the liquid level reaches the set level, the first pole piece and the second pole piece are turned on, the pole piece resistance between the two is small, the pole piece voltage is also small, and the pole piece current is large. Therefore, the liquid level state of the solution medium can be detected through the first pole piece and the second pole piece.
  • a liquid storage tank also called sewage tank, sewage tank
  • the electrode sheets can be in contact with water and extend into the liquid storage tank.
  • a capacitive loop in the circuit is formed to detect various states of the liquid storage tank, for example, the solution medium is not full, the solution medium is full, etc.
  • the conductivity of the solution medium is different.
  • the electrode sheet resistance between the first pole piece and the second pole piece is different.
  • the pole piece There will also be differences between the plate voltage and the pole piece current. Therefore, the contamination parameters of the solution medium, such as the water quality in the liquid storage tank, can be detected through the first pole piece and the second pole piece.
  • the cleaning device may connect a resistor in parallel between the first pole piece and the second pole piece. Since the voltage of the parallel resistance is equal to the pole piece voltage between the first pole piece and the second pole piece, the pole piece voltage can be detected by detecting the voltage of the parallel connection resistance, and the solution medium can be determined based on the detected pole piece voltage. media status.
  • an ammeter can be connected in series on a certain branch of the first pole piece or the second pole piece, and the connection between the first pole piece and the second pole piece can be detected through the series ammeter.
  • the pole piece current, or, through the voltage on the parallel resistance and the detected pole piece current, the pole piece resistance between the first pole piece and the second pole piece can be determined, so that the pole piece current or the pole piece resistance can be determined Determine the medium state of the solution medium.
  • the intelligent floor washing machine can detect the state of sewage in the liquid storage tank through the pole piece P1 and the pole piece P2.
  • Step S206 within the second time interval of the target time period, input negative charge to the first pole piece, and input positive charge to the second pole piece, wherein the second time interval does not overlap with the first time interval time interval.
  • complementary charges can be input in different time intervals of the target time period. For example, in the second time interval of the target time period, negative charges can be input to the first pole piece, and negative charges can be input to the second pole piece.
  • the plate inputs positive charge to achieve charge balance and reduce the charge accumulation on the electrode plate, thereby slowing down the oxidation of the electrode plate.
  • the above-mentioned second time interval does not overlap with the first time interval.
  • the start time of the second time interval may be the end time of the first time interval.
  • the start time of the second time interval is located in the first time interval
  • the time difference between the end time of and the end time of the first time interval is the target time difference.
  • the scrubber may input negative charges to the pole piece P1 and positive charges to the pole piece P2 within the time period T2 (ie, the above-mentioned second time interval).
  • Step S208 detecting the medium state of the solution medium through the first pole piece and the second pole piece to obtain the second medium state.
  • the medium of the solution medium in the liquid storage tank can be adjusted by the first pole piece and the second pole piece.
  • the state is detected to obtain the second medium state.
  • the detection process is similar to the process of detecting the medium state of the solution medium in the liquid storage tank through the first pole piece and the second pole piece to obtain the first medium state. This embodiment This will not be repeated here.
  • inputting positive charge to the first pole piece and inputting negative charge to the second pole piece includes:
  • the first pole piece and the second pole piece can be connected to the control circuit through the first port and the second port, wherein the first pole piece is connected to the first port, and the second pole piece is connected to the second pole piece.
  • the ports are connected, and charge can be input to the first pole piece and the second pole piece through the first port and the second port respectively.
  • the control circuit can respectively set the first port and the second port to high level in different time intervals, so as to input positive charge to the corresponding pole piece and input negative charge to the other pole piece.
  • the first time interval by setting the voltage level of the first port to a high level, positive charge is input to the first pole piece, and negative charge is input to the second pole piece. After the end of the first time interval, it is possible to stop setting the voltage level of the first port to a high level, thereby stopping inputting positive charges to the first pole piece and inputting negative charges to the second pole piece.
  • input negative charge to the first pole piece, and input positive charge to the second pole piece including:
  • the scrubber can input positive charges to the pole piece P1 and negative charges to the pole piece P2 by setting the port connected to the pole piece P1 as high level.
  • the port connected to the pole piece P2 By setting the port connected to the pole piece P2 to a high level, positive charges are input to the pole piece P2, and negative charges are input to the pole piece P1.
  • the process of inputting charges to the pole piece can be simplified by controlling the input of complementary charges to the pole piece by changing the voltage level of the port connected to the pole piece.
  • the above method also includes:
  • both the voltage level of the first port and the voltage level of the second port are set to low level, wherein the first port is the port connected to the first pole piece, and the second port is connected to the second pole piece.
  • the closing time interval includes other time intervals in the target time interval except the first time interval and the second time interval.
  • the medium state of the solution medium can be detected in a short period of time in the target time period, and in other time intervals, the medium state of the solution medium is no longer detected, so as to Reduce waste of resources.
  • the other time intervals here may be closing time intervals other than the first time interval and the second time interval.
  • first pole piece and second pole piece can be connected to the control circuit through the first port and the second port. I won't go into details.
  • both the voltage level of the first port and the voltage level of the second port can be set to low level, so as to stop inputting charges to the first pole piece and the second pole piece.
  • the scrubber can set the port connected to the pole piece P1 and the pole piece P2 to a low level within the time periods T3, T4 and T5 (that is, the above-mentioned off time interval), so as to stop sending Pole piece P1 and pole piece P2 input charge.
  • the resource consumption of the medium state detection can be reduced, and the waste of resources can be reduced.
  • the medium state of the solution medium in the liquid storage tank is detected through the first pole piece and the second pole piece to obtain the first medium state, including:
  • the medium state of the solution medium detected by the first pole piece and the second pole piece may include the above-mentioned liquid level state.
  • the first pole piece and the second pole piece may be arranged in the liquid storage top of the box.
  • the pole piece voltage between the first pole piece and the second pole piece can be detected to obtain the first pole piece voltage, and the liquid level state of the solution medium can be determined through the first pole piece voltage.
  • the method of detecting the pole piece voltage is the same as or similar to that in the foregoing embodiments, or other ways of detecting the pole piece voltage may also be used, which is not limited in this embodiment.
  • the voltage of the first pole piece is less than or equal to the first voltage threshold, it can be determined that the first pole piece and the second pole piece are in a conduction state, and the liquid level of the solution medium reaches at least the point where the first pole piece and the second pole piece can be contacted.
  • the liquid level that is, the target liquid level, therefore, it can be determined that the solution medium in the liquid storage tank is in a full state.
  • the voltage of the first pole piece is greater than or equal to the second voltage threshold, it can be determined that the first pole piece and the second pole piece are in a non-conductive state, and the liquid level of the solution medium has not reached the target liquid level, and it can be determined that the solution in the storage tank The media is not full.
  • the liquid level state of the solution medium is detected by the pole piece voltage between the pole pieces, the volume of the solution medium in the liquid storage tank can be easily known, and it is convenient to process the liquid storage tank in time (for example, cleaning the liquid storage tank The solution medium in it), which can improve the user experience.
  • the medium state of the solution medium in the liquid storage tank is detected through the first pole piece and the second pole piece to obtain the first medium state, including:
  • the medium state of the solution medium detected by the first pole piece and the second pole piece may include the above-mentioned dirty parameters.
  • the first pole piece and the second pole piece may be arranged in the liquid storage bottom of the box.
  • a pair of pole pieces for detecting the liquid level of the solution medium that is, a first pair of pole pieces, may also be arranged on the top of the liquid storage tank, and the pair of pole pieces for detecting dirt parameters may be the second pair of pole pieces.
  • the pole piece voltage between the first pole piece and the second pole piece can be detected to obtain the second pole piece voltage, and the fouling parameter of the solution medium can be determined through the second pole piece voltage.
  • the method of detecting the pole piece voltage is the same as or similar to that in the foregoing embodiments, or other ways of detecting the pole piece voltage may also be used, which is not limited in this embodiment.
  • the degree of soiling of the solution medium can be expressed by the soiling parameter. Based on the conductivity characteristics of the solution medium at different degrees of contamination, the corresponding relationship between the pole piece voltage and the fouling parameter between the first pole piece and the second pole piece can be configured in advance. After the second pole piece voltage is detected, based on the corresponding relationship between the pole piece voltage and the dirt parameter, the dirt parameter matching the second pole piece voltage can be determined to obtain the target dirt parameter.
  • the first pole piece and the second pole piece may also be arranged at other positions than the bottom of the liquid storage tank, for example, the top.
  • the above-mentioned target dirty parameter is used to represent the dirty degree of the solution medium in the liquid storage tank.
  • the target dirty parameter will also correspondingly larger.
  • the dirt parameter corresponding to the pole piece voltage may be determined.
  • the contamination parameter of the solution medium in the liquid storage tank is detected through the pole piece voltage between the pole pieces, and the degree of contamination of the solution medium in the liquid storage tank can be easily known, so that the cleaning process of the cleaning equipment Take control.
  • the above method further includes:
  • the contamination parameter of the solution medium can be used to determine whether to process the solution medium, for example, to clean the solution medium.
  • the dirt parameter of the solution medium can represent the cleanliness of the ground
  • the dirt parameter of the solution medium can also be used to control the operating parameters of the preset components for better cleaning.
  • the cleaning device can also determine the operating parameter of the preset component corresponding to the target dirty parameter, thereby obtaining the target operating parameter, and controlling the preset component to operate according to the target operating parameter.
  • the preset components here are the components associated with the solution medium in the liquid storage tank on the cleaning equipment, which may include but not limited to at least one of the following: a negative pressure generator (for example, a main motor), a water pump or other liquid storage parts, a distribution Fountain or other liquid spraying parts.
  • a negative pressure generator for example, a main motor
  • the target operating parameter can be the rotating speed of the negative pressure generator, thereby controlling the suction generated by the negative pressure
  • the target operating parameter may be the output volume of the liquid storage part (for example, the flow rate of the water pump).
  • the preset component and the operating parameters of the preset component are not limited. .
  • the operating parameters of the preset components are determined by the dirty parameters of the solution medium in the liquid storage tank, and the operating parameters of the preset components are controlled according to the determined operating parameters, which can improve the area cleaning ability of the cleaning equipment, and then Improve user experience.
  • the above method also includes:
  • the user can trigger the generation of a detection indication signal by operating the terminal device or the cleaning device itself, and the detection indication signal is used to indicate the detection of the oxidation degree of the first pole piece and the second pole piece.
  • the target solution medium can be injected into the liquid storage tank, for example, clear water, or other methods that can know the relationship between the degree of oxidation of the pole piece and the performance of the pole piece. Correspondence to the solution medium.
  • the cleaning device can input positive charge to one of the first pole piece and the second pole piece, and input negative charge to the other pole piece, and the first pole piece and the second pole piece
  • the pole piece voltage between the pole pieces is used to obtain the triode voltage
  • the obtained third pole piece voltage is used to indicate the degree of oxidation of the first pole piece and the second pole piece.
  • the cleaning equipment can also first determine whether it is less than or equal to the preset voltage threshold, if yes, it can be determined that the first pole piece and the second pole piece are turned on, otherwise, the first pole piece can be determined and the second pole piece are not conducting. In the case that it is determined that the first pole piece and the second pole piece are not conducting, the cleaning device may send out a first prompt message, so as to prompt to inject the target solution medium into the liquid storage tank.
  • the step of judging the degree of oxidation of the pole piece may be performed.
  • the cleaning device can determine whether the voltage of the third pole piece is greater than or equal to the third voltage threshold, and if so, it can be determined that the resistance of the pole piece between the first pole piece and the second pole piece is too high, and the degree of oxidation of the pole piece is too high.
  • a prompt message (second prompt message) may be issued by the cleaning device to prompt replacement of at least one of the first pole piece and the second pole piece.
  • the process of detecting the electrode current or the electrode resistance is similar to the process of detecting the electrode voltage. For example, fill the sewage bucket with clean water, and detect the oxidation degree of the electrode sheet through the change of the resistance value of the electrode sheet, which is convenient for users to replace in time.
  • a detection device for the state of the liquid storage tank for implementing the above detection method for the state of the liquid storage tank is also provided.
  • Fig. 6 is a structural block diagram of an optional detection device for the state of the liquid storage tank according to an embodiment of the present application. As shown in Fig. 6, the device may include:
  • the first input unit 602 is used to input positive charge to the first pole piece and input negative charge to the second pole piece within the first time interval of the target time period, wherein the first pole piece and the second pole piece
  • the sheet is a pole piece arranged in the liquid storage tank of the cleaning equipment
  • the first detection unit 604 is connected to the first input unit 602, and is used to detect the medium state of the solution medium in the liquid storage tank through the first pole piece and the second pole piece to obtain the first medium state;
  • the second input unit 606 is connected to the first detection unit 604, and is used for inputting negative charge to the first pole piece and positive charge to the second pole piece within the second time interval of the target time period, wherein, The second time interval and the first time interval are time intervals that do not overlap;
  • the second detection unit 608 is connected to the second input unit 606 and is used to detect the medium state of the solution medium through the first pole piece and the second pole piece to obtain the second medium state.
  • first input unit 602 in this embodiment can be used to perform the above step S202
  • first detection unit 604 in this embodiment can be used to perform the above step S204
  • second input unit in this embodiment 606 may be used to perform the above step S206
  • the second detection unit 608 in this embodiment may be used to perform the above step S208.
  • the first pole piece and the second pole piece are set at Clean the pole piece in the liquid storage tank of the equipment; detect the medium state of the solution medium in the liquid storage tank through the first pole piece and the second pole piece to obtain the first medium state; in the second time interval of the target time period Within, input negative charge to the first pole piece, and input positive charge to the second pole piece, wherein, the second time interval and the first time interval are time intervals that do not overlap; through the first pole piece and the second pole piece
  • the sheet detects the medium state of the solution medium to obtain the second medium state, which solves the problem that the electrode sheet is easily damaged due to the accumulation of charges on the electrode sheet during the detection of the solution medium in the detection method of the liquid storage tank state in the related art.
  • the problem of corrosion slows down the corrosion speed of the pole piece and improves the service life of the pole piece.
  • the first input unit includes: a first input module for inputting positive charge, and input negative charge to the second pole piece;
  • the second input unit includes: a second input module, which is used to set the voltage level of the second port connected to the second pole piece to a high level , input positive charge to the second pole piece, and input negative charge to the first pole piece.
  • the above-mentioned device also includes:
  • the setting unit is used to set both the voltage level of the first port and the voltage level of the second port to a low level during the closing time interval, wherein the first port is the port connected to the first pole piece, and the second port For the port connected to the second pole piece, the closing time interval includes other time intervals in the target time period except the first time interval and the second time interval.
  • the first detection unit includes:
  • the first detection module is used to detect the pole piece voltage between the first pole piece and the second pole piece to obtain the first pole piece voltage
  • the first determination module is configured to determine that the solution medium in the liquid storage tank is in a full state when the voltage of the first pole piece is less than or equal to the first voltage threshold, wherein the full state refers to the solution in the liquid storage tank The liquid level of the medium reaches the target liquid level;
  • the second determination module is used to determine that the solution medium in the liquid storage tank is not full when the voltage of the first pole piece is greater than or equal to the second voltage threshold, wherein the not full state refers to the solution in the liquid storage tank The liquid level of the medium has not reached the target level.
  • the first detection unit includes:
  • the second detection module is used to detect the pole piece voltage between the first pole piece and the second pole piece to obtain the second pole piece voltage
  • the third determination module is used to determine the target dirt parameter corresponding to the voltage of the second pole piece, wherein the target dirt parameter is used to indicate the degree of dirt of the solution medium in the liquid storage tank, and the first medium state includes the target dirt parameter.
  • the above-mentioned device also includes:
  • the determining unit is configured to determine a target operating parameter corresponding to the target dirty parameter after determining the target dirty parameter corresponding to the first pole piece voltage, wherein the target operating parameter is an operating parameter of a preset component, and the preset component is Cleaning the parts of the device associated with the solution medium in the tank;
  • the control unit is used to control the preset components to operate according to the target operating parameters.
  • the above-mentioned device also includes:
  • the input unit is configured to input positive charges to one of the first pole piece and the second pole piece and input negative charges to the other pole piece in response to the obtained detection indication signal, wherein the detection indication signal It is used to indicate the detection of the oxidation degree of the first pole piece and the second pole piece;
  • the third detection unit is used to detect the pole piece voltage between the first pole piece and the second pole piece to obtain the third pole piece voltage, wherein the third pole piece voltage is used to represent the first pole piece and the second pole piece the degree of oxidation;
  • the sending unit is configured to send a prompt message through the cleaning device when the voltage of the third pole piece is greater than or equal to the third voltage threshold, wherein the prompt message is used to prompt replacement of at least one of the first pole piece and the second pole piece pole piece.
  • the above modules can run in the hardware environment shown in FIG. 1 , and can be implemented by software or by hardware, wherein the hardware environment includes a network environment.
  • a storage medium is also provided.
  • the above-mentioned storage medium may be used to execute the program code of any one of the above-mentioned methods for detecting the state of the liquid storage tank in the embodiments of the present application.
  • the foregoing storage medium may be located on at least one network device among the plurality of network devices in the network shown in the foregoing embodiments.
  • the storage medium is configured to store program codes for performing the following steps:
  • the above-mentioned storage medium may include, but not limited to, various media capable of storing program codes such as USB flash drive, ROM, RAM, removable hard disk, magnetic disk, or optical disk.
  • an electronic device for implementing the above method for detecting the state of the liquid storage tank, and the electronic device may be a server, a terminal, or a combination thereof.
  • Fig. 7 is a structural block diagram of an optional electronic device according to an embodiment of the present application.
  • 704 and memory 706 complete mutual communication through communication bus 708, wherein,
  • the communication bus may be a PCI (Peripheral Component Interconnect, Peripheral Component Interconnect Standard) bus, or an EISA (Extended Industry Standard Architecture, Extended Industry Standard Architecture) bus, etc.
  • the communication bus can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is used in FIG. 7 , but it does not mean that there is only one bus or one type of bus.
  • the communication interface is used for communication between the electronic device and other devices.
  • the above-mentioned memory may include RAM, and may also include non-volatile memory (non-volatile memory), for example, at least one disk memory.
  • non-volatile memory non-volatile memory
  • the memory may also be at least one storage device located away from the aforementioned processor.
  • the memory 706 may include, but is not limited to, the first input unit 602 , the first detection unit 604 , the second input unit 606 and the second detection unit 608 in the detection device for the state of the liquid storage tank. In addition, it may also include but not limited to other module units in the above-mentioned detection device for the state of the liquid storage tank, which will not be described in detail in this example.
  • processor can be general-purpose processor, can include but not limited to: CPU (Central Processing Unit, central processing unit), NP (Network Processor, network processor) etc.; Can also be DSP (Digital Signal Processing, digital signal processor ), ASIC (Application Specific Integrated Circuit, application specific integrated circuit), FPGA (Field-Programmable Gate Array, field programmable gate array) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components.
  • CPU Central Processing Unit, central processing unit
  • NP Network Processor, network processor
  • DSP Digital Signal Processing, digital signal processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field-Programmable Gate Array, field programmable gate array
  • other programmable logic devices discrete gate or transistor logic devices, discrete hardware components.
  • the device implementing the operation control method of the above-mentioned cleaning device can be a terminal device, and the terminal device can be a smart phone (such as an Android phone, an iOS phone, etc.), Tablet PCs, PDAs, and mobile Internet devices (Mobile Internet Devices, MID), PAD and other terminal equipment.
  • FIG. 7 does not limit the structure of the above-mentioned electronic device.
  • the electronic device may also include more or fewer components (such as a network interface, a display device, etc.) than those shown in FIG. 7 , or have a different configuration from that shown in FIG. 7 .
  • the integrated units in the above embodiments are realized in the form of software function units and sold or used as independent products, they can be stored in the above computer-readable storage medium.
  • the technical solution of the present application is essentially or part of the contribution to the prior art, or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium.
  • Several instructions are included to make one or more computer devices (which may be personal computers, servers or network devices, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the disclosed client can be implemented in other ways.
  • the device embodiments described above are only illustrative, for example, the division of the units is only a logical function division, and there may be other division methods in actual implementation, for example, multiple units or components can be combined or can be Integrate into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of units or modules may be in electrical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place or distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution provided in this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units can be implemented in the form of hardware or in the form of software functional units.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Thermal Sciences (AREA)
  • Fluid Mechanics (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

一种储液箱状态的检测方法,包括:在目标时间周期的第一时间区间(T1)内,向第一极片(P1)输入正向电荷,以及向第二极片(P2)输入负向电荷,其中,第一极片(P1)和第二极片(P2)为设置在清洁设备的储液箱中的极片(S202);通过第一极片(P1)和第二极片(P2)对储液箱中的溶液介质的介质状态进行检测,得到第一介质状态(S204);在目标时间周期的第二时间区间(T2)内,向第一极片(P1)输入负向电荷,以及向第二极片(P2)输入正向电荷,其中,第二时间区间(T2)与第一时间区间(T1)为没有重叠的时间区间(S206);通过第一极片(P1)和第二极片(P2)对溶液介质的介质状态进行检测,得到第二介质状态(S208)。还提供一种储液箱状态的检测装置、存储介质及电子装置。

Description

储液箱状态的检测方法及装置、存储介质及电子装置
【优先权信息】
本申请要求2022年1月28日提交的、名称为“储液箱状态的检测方法及装置、存储介质及电子装置”的中国申请号为202210109397.2的优先权,全部内容通过引用结合在本文中。
【技术领域】
本申请涉及智能家居领域,具体而言,涉及一种储液箱状态的检测方法及装置、存储介质及电子装置。
【背景技术】
目前,在清洁设备上一般都会配置有液体收集装置(例如,污水桶),并且在液体收集装置内会设置两个电极片,两个电极片伸在污水桶内,可以与液体收集装置内的溶液介质相接触,通过两个极片和溶液介质的贯穿,形成电路中的电容回路,以检测污水桶的各个状态。
但是,由于电极片在通电时,电极片上会存在积累的电荷,从而使得与溶液介质中的部分带电的杂质会吸附电极片上,进而加快电极片的腐蚀。
由此可见,相关技术中的溶液介质的检测方法,由于在进行溶液介质检测的过程中存在电极片上的电荷积累导致的电极片易被腐蚀的问题。
【发明内容】
本申请的目的在于提供一种储液箱状态的检测方法及装置、存储介质及电子装置,以至少解决相关技术中的溶液介质的检测方法由于在进行溶液介质检测的过程中存在电极片上的电荷积累导致的电极片易被腐蚀的问题。
本申请的目的是通过以下技术方案实现:
根据本申请实施例的一个方面,提供了一种储液箱状态的检测方法,包括:在目标时间周期的第一时间区间内,向第一极片输入正向电荷,以 及向第二极片输入负向电荷,其中,所述第一极片和所述第二极片为设置在清洁设备的储液箱中的极片;通过所述第一极片和所述第二极片对所述储液箱中的溶液介质的介质状态进行检测,得到第一介质状态;在所述目标时间周期的第二时间区间内,向所述第一极片输入负向电荷,以及向所述第二极片输入正向电荷,其中,所述第二时间区间与所述第一时间区间为没有重叠的时间区间;通过所述第一极片和所述第二极片对所述溶液介质的介质状态进行检测,得到第二介质状态。
在一个示例性实施例中,所述向第一极片输入正向电荷,以及向第二极片输入负向电荷,包括:通过将与所述第一极片相连的第一端口的电压电平置为高电平,向所述第一极片输入正向电荷,并向所述第二极片输入负向电荷;所述向所述第一极片输入负向电荷,以及向所述第二极片输入正向电荷,包括:通过将与所述第二极片相连的第二端口的电压电平置为高电平,向所述第二极片输入正向电荷,并向所述第一极片输入负向电荷。
在一个示例性实施例中,所述方法还包括:
在关闭时间区间内,将第一端口的电压电平和第二端口的电压电平均置为低电平,其中,所述第一端口为与所述第一极片相连的端口,所述第二端口为与所述第二极片相连的端口,所述关闭时间区间包括所述目标时间周期中除了所述第一时间区间和所述第二时间区间外的其他时间区间。
在一个示例性实施例中所述通过所述第一极片和所述第二极片对所述储液箱中的溶液介质的介质状态进行检测,得到第一介质状态,包括:检测所述第一极片和所述第二极片之间的极片电压,得到第一极片电压;在所述第一极片电压小于或者等于第一电压阈值的情况下,确定所述储液箱中的溶液介质处于已满状态,其中,所述已满状态是指所述储液箱中的溶液介质的液位达到目标液位;在所述第一极片电压大于或者等于第二电压阈值的情况下,确定所述储液箱中的溶液介质处于未满状态,其中,所述未满状态是指所述储液箱中的溶液介质的液位未达到所述目标液位。
在一个示例性实施例中,通过所述第一极片和所述第二极片对所述储液箱中的溶液介质的介质状态进行检测,得到第一介质状态,包括:检测所述第一极片和所述第二极片之间的极片电压,得到第二极片电压;确定 与所述第二极片电压对应的目标脏污参数,其中,所述目标脏污参数用于表示所述储液箱内的溶液介质的脏污程度,所述第一介质状态包括所述目标脏污参数。
在一个示例性实施例中,在所述确定与所述第二极片电压对应的目标脏污参数之后,所述方法还包括:确定与所述目标脏污参数对应的目标运行参数,其中,所述目标运行参数是预设部件的运行参数,所述预设部件是所述清洁设备上与所述储液箱内的溶液介质关联的部件;按照所述目标运行参数控制所述预设部件进行运行。
在一个示例性实施例中,所述方法还包括:响应于获取到的检测指示信号,向所述第一极片和所述第二极片中的一个极片输入正向电荷,以及向另一个极片输入负向电荷,其中,所述检测指示信号用于指示对所述第一极片和第二极片的氧化程度进行检测;检测所述第一极片和第二极片之间的极片电压,得到第三极片电压,其中,所述第三极片电压用于表示所述第一极片和所述第二极片的氧化程度;在所述第三极片电压大于或者等于第三电压阈值的情况下,通过所述清洁设备发出提示信息,其中,所述提示信息用于提示更换所述第一极片和所述第二极片中的至少一个极片。
根据本申请实施例的另一个方面,还提供了一种储液箱状态的检测装置,包括:第一输入单元,用于在目标时间周期的第一时间区间内,向第一极片输入正向电荷,以及向第二极片输入负向电荷,其中,所述第一极片和所述第二极片为设置在清洁设备的储液箱中的极片;第一检测单元,用于通过所述第一极片和所述第二极片对所述储液箱中的溶液介质的介质状态进行检测,得到第一介质状态;第二输入单元,用于在所述目标时间周期的第二时间区间内,向所述第一极片输入负向电荷,以及向所述第二极片输入正向电荷,其中,所述第二时间区间与所述第一时间区间为没有重叠的时间区间;第二检测单元,用于通过所述第一极片和所述第二极片对所述溶液介质的介质状态进行检测,得到第二介质状态。
在一个示例性实施例中,所述第一输入单元包括:第一输入模块,用于通过将与所述第一极片相连的第一端口的电压电平置为高电平,向所述第一极片输入正向电荷,并向所述第二极片输入负向电荷;所述第二输入 单元包括:第二输入模块,用于通过将与所述第二极片相连的第二端口的电压电平置为高电平,向所述第二极片输入正向电荷,并向所述第一极片输入负向电荷。
在一个示例性实施例中,所述装置还包括:设置单元,用于在关闭时间区间内,将第一端口的电压电平和第二端口的电压电平均置为低电平,其中,所述第一端口为与所述第一极片相连的端口,所述第二端口为与所述第二极片相连的端口,所述关闭时间区间包括所述目标时间周期中除了所述第一时间区间和所述第二时间区间外的其他时间区间。
在一个示例性实施例中,所述第一检测单元包括:第一检测模块,用于检测所述第一极片和所述第二极片之间的极片电压,得到第一极片电压;第一确定模块,用于在所述第一极片电压小于或者等于第一电压阈值的情况下,确定所述储液箱中的溶液介质处于已满状态,其中,所述已满状态是指所述储液箱中的溶液介质的液位达到目标液位;第二确定模块,用于在所述第一极片电压大于或者等于第二电压阈值的情况下,确定所述储液箱中的溶液介质处于未满状态,其中,所述未满状态是指所述储液箱中的溶液介质的液位未达到所述目标液位。
在一个示例性实施例中,所述第一检测单元包括:第二检测模块,用于检测所述第一极片和所述第二极片之间的极片电压,得到第二极片电压;第三确定模块,用于确定与所述第二极片电压对应的目标脏污参数,其中,所述目标脏污参数用于表示所述储液箱内的溶液介质的脏污程度,所述第一介质状态包括所述目标脏污参数。
在一个示例性实施例中,所述装置还包括:确定单元,用于在所述确定与所述第二极片电压对应的目标脏污参数之后,确定与所述目标脏污参数对应的目标运行参数,其中,所述目标运行参数是预设部件的运行参数,所述预设部件是所述清洁设备上与所述储液箱内的溶液介质关联的部件;控制单元,用于按照所述目标运行参数控制所述预设部件进行运行。
在一个示例性实施例中,输入单元,用于响应于获取到的检测指示信号,向所述第一极片和所述第二极片中的一个极片输入正向电荷,以及向另一个极片输入负向电荷,其中,所述检测指示信号用于指示对所述第一极片 和第二极片的氧化程度进行检测;第三检测单元,用于检测所述第一极片和第二极片之间的极片电压,得到第三极片电压,其中,所述第三极片电压用于表示所述第一极片和所述第二极片的氧化程度;提示单元,用于在所述第三极片电压大于或者等于第三电压阈值的情况下,通过所述清洁设备发出提示信息,其中,所述提示信息用于提示更换所述第一极片和所述第二极片中的至少一个极片。
根据本申请实施例的又一方面,还提供了一种计算机可读的存储介质,该计算机可读的存储介质中存储有计算机程序,其中,该计算机程序被设置为运行时执行上述的储液箱状态的检测方法。
根据本申请实施例的又一方面,还提供了一种电子装置,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,其中,上述处理器通过计算机程序执行上述的储液箱状态的检测方法。
在本申请实施例中,采用在目标时间周期的不同时间区间,向清洁设备的储液箱中设置的第一极片和第二极片输入不同的电荷的方式,在目标时间周期的第一时间区间内,向第一极片输入正向电荷,以及向第二极片输入负向电荷,其中,第一极片和第二极片为设置在清洁设备的储液箱中的极片;通过第一极片和第二极片对储液箱中的溶液介质的介质状态进行检测,得到第一介质状态;在目标时间周期的第二时间区间内,向第一极片输入负向电荷,以及向第二极片输入正向电荷,其中,第二时间区间与第一时间区间为没有重叠的时间区间;通过第一极片和第二极片对溶液介质的介质状态进行检测,得到第二介质状态,由于在目标时间周期的不同时间区间内,交替的向设置于储液箱的第一极片和第二极片通入不同极性的电荷,可以实现将第一极片和第二极片上积累的电荷进行中和,可以实现减少极片上的电荷积累的目的,达到减缓极片的腐蚀速度、提高极片的使用寿命的技术效果,进而解决了相关技术中的储液箱状态的检测方法由于在进行溶液介质检测的过程中存在极片上的电荷积累导致的极片易被腐蚀的问题。
【附图说明】
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本申请的实施例,并与说明书一起用于解释本申请的原理。
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,对于本领域普通技术人员而言,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是根据本申请实施例的一种可选的储液箱状态的检测方法的硬件环境的示意图;
图2是根据本申请实施例的一种可选的储液箱状态的检测方法的流程示意图;
图3是根据本申请实施例的一种可选的溶液介质检测周期的示意图;
图4是根据本申请实施例的一种可选的储液箱状态的检测方法的示意图;
图5是根据本申请实施例的另一种可选的储液箱状态的检测方法的示意图;
图6是根据本申请实施例的一种可选的储液箱状态的检测装置的结构框图;
图7是根据本申请实施例的一种可选的电子装置的结构框图。
【具体实施方式】
下文中将参考附图并结合实施例来详细说明本申请。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
需要说明的是,本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
根据本申请实施例的一个方面,提出了一种储液箱状态的检测方法。可选地,在本实施例中,上述储液箱状态的检测方法可以应用于如图1所示的由终端设备102、清洁设备104和服务器106所构成的硬件环境中。如图1所示,终端设备102可以通过网络与清洁设备104和/或服务器106 (例如,物联网平台或者云端服务器)进行连接,以对清洁设备104的进行控制,例如,与清洁机器人进行绑定、配置清洁设备104的清洁功能。清洁设备104可以包括主机和基站(或者称集尘站),主机和基站之间可以通过网络进行连接,以确定对端的当前状态(例如,电量状态、工作状态、位置信息等)。
上述网络可以包括但不限于以下至少之一:有线网络,无线网络。上述有线网络可以包括但不限于以下至少之一:广域网,城域网,局域网,上述无线网络可以包括但不限于以下至少之一:WIFI(Wireless Fidelity,无线保真),蓝牙,红外。终端设备102与清洁设备104和/或基站106进行通信所使用的网络与清洁设备104与基站106进行通信所使用的网络可以是相同的,也可以是不同的。终端设备102可以并不限定于为PC、手机、平板电脑等,服务器106可以是物联网平台的服务器。
本申请实施例的储液箱状态的检测方法可以由终端设备102、清洁设备104或者服务器106单独来执行,也可以由终端设备102、清洁设备104和服务器106中的至少两个共同执行。其中,终端设备102或者清洁设备104执行本申请实施例的储液箱状态的检测方法也可以是由安装在其上的客户端来执行。
以由清洁设备104来执行本实施例中的储液箱状态的检测方法为例,图2是根据本申请实施例的一种可选的储液箱状态的检测方法的流程示意图,如图2所示,该方法的流程可以包括以下步骤:
步骤S202,在目标时间周期的第一时间区间内,向第一极片输入正向电荷,以及向第二极片输入负向电荷,其中,第一极片和第二极片为设置在清洁设备的储液箱中的极片。
本实施例中的储液箱状态的检测方法可以应用于在清洁设备运行的过程中,对储液箱的状态进行检测的场景。上述清洁设备可以是清洁机器人,例如,可以是智能洗地机、扫拖机器人、集吸、扫、拖于一体的智能清扫机,还可以是其他具备区域清洁功能的设备,本实施例中对此不做限定。
清洁设备上可以配置有储液箱,用于收集清洁设备在运行过程中所产生的清水、污水或清洁液等溶液介质。储液箱内可以设置有第一极片和第 二极片,在清洁设备运行的过程中,可以通过第一极片和第二极片对储液箱内的溶液介质(例如,污水、清洁液或者其他的溶液介质)进行状态检测,确定溶液介质的介质状态。上述第一极片和第二极片可以设置在储液箱的底部,也可以是设置于储液箱的顶部,或者是储液箱的其他位置,本实施例中对此不做限定。
需要说明的是,在储液箱内设置一个或多个极片对,每个极片对可以包括两个极片。在进行介质状态检测时,每次可以使用一个极片对,也可以同时使用多个极片对。所使用的每个极片对的两个极片可以分别作为第一极片和第二极片进行介质状态检测,每个极片对检测的流程是类似的,在此不做赘述。
在本实施例中,可以预先配置进行介质状态检测的检测周期,即,目标时间周期,目标时间周期的时长可以按照需要进行设置,例如,5s、10s等。目标时间周期可以分为多个时间区间,多个时间区间可以包括第一时间区间,第一时间周期的时长可以是目标时间周期的一半。第一时间周期的起始时刻可以是目标时间周期的起始时刻,也可以是其他时刻,本实施例中对此不做限定。
考虑到介质状态一般不会在短时间内发生骤变,为了节省状态检测所消耗的资源,可以将第一时间周期的时长设置为小于目标时间周期的一半,例如,第一时间周期的时长为目标时间周期的时长的四分之一。
在清洁设备运行的过程中,可以在目标时间周期的第一时间区间内,向不同的极片中通入不同的电荷,可选地,可以向第一极片输入正向电荷,以及向第二极片输入负向电荷。
例如,洗地机的储液箱内可以设置有两个极片,极片P1(即,上述第一极片)和极片P2(即,上述第二极片)。如图3所示,在时间周期T1(即,上述第一时间周期)内,可以向极片P1输入正电荷,向极片P2输入负电荷。
步骤S204,通过第一极片和第二极片对储液箱中的溶液介质的介质状态进行检测,得到第一介质状态。
在本实施例中,在向第一极片和第二极片分别输入正负电荷之后,可以通过第一极片和第二极片对储液箱中的溶液介质的介质状态进行检测, 得到第一介质状态。溶液介质的介质状态可以是根据第一极片和第二极片之间的极片电压、极片电流或者极片电阻确定的。溶液介质的介质状态可以包括但不限于以下至少之一:液位状态,脏污参数(脏污状态)。
可选地,在不同的液位下,第一极片和第二极片的导通状态是不同的。如果液位未达到设定的液位,第一极片和第二极片未导通,两者之间的极片电阻较大,极片电压也较大,极片电流较小。如果液位达到设定的液位,第一极片和第二极片导通,两者之间的极片电阻较小,极片电压也较小,极片电流较大。因此,可以通过第一极片和第二极片检测溶液介质的液位状态。
例如,清洁设备内可以设置有一个储液箱(也称污水箱、污水桶),在储液箱的里面有两个电极片,电极片可以和水接触,伸到储液箱内。通过两个极片和溶液介质的贯穿,形成电路中的电容回路,从而检测储液箱的各个状态,比如,溶液介质未满、溶液介质已满等。
可选地,在不同脏污参数下,溶液介质的电导率是不同的,在导通的情况下,第一极片和第二极片之间的极片电阻是不同的,对应地,极片电压和极片电流也会存在区别,因此,可以通过第一极片和第二极片检测溶液介质的脏污参数,比如,储液箱内的水质。
可选地,如图4所示,清洁设备可以在第一极片和第二极片之间并联一个电阻。由于并联电阻的电压和第一极片与第二极片之间的极片电压相等,因此,可以通过检测并联电阻的电压来检测极片电压,并基于检测到的极片电压确定溶液介质的介质状态。
在另一个示例中,如图5所示,可以在第一极片或者第二极片的某一个支路上串联一个电流表,可以通过串联的电流表来检测第一极片和第二极片之间的极片电流,或者,通过并联电阻上的电压以及检测到的极片电流,可以确定第一极片和第二极片之间的极片电阻,从而可以根据极片电流或者极片电阻来确定溶液介质的介质状态。
例如,智能洗地机可以通过极片P1和极片P2对储液箱中的污水状态进行检测。
步骤S206,在目标时间周期的第二时间区间内,向第一极片输入负向 电荷,以及向第二极片输入正向电荷,其中,第二时间区间与第一时间区间为没有重叠的时间区间。
在进行介质状态检测的过程中,如果从一端定向的输入电荷,容易造成电荷在电极片上的积累,会加快电极片的腐蚀。在本实施例中,可以在目标时间周期的不同时间区间内输入互补的电荷,比如,在目标时间周期的第二时间区间内,可以向第一极片输入负向电荷,以及向第二极片输入正向电荷,从而达到电荷平衡,减少电极片上的电荷积累,从而减缓极片氧化。
上述的第二时间区间与第一时间区间没有重叠,例如,第二时间区间的起始时刻可以为第一时间区间的结束时刻,又例如,第二时间区间的起始时刻位于第一时间区间的结束时刻之后、且与第一时间区间的结束时刻之间的时间差为目标时间差。
例如,如图3所示,洗地机可以在时间周期T2内(即,上述第二时间区间),向极片P1输入负电荷,向极片P2输入正电荷。
步骤S208,通过第一极片和第二极片对溶液介质的介质状态进行检测,得到第二介质状态。
在本实施例中,在向第一极片输入负向电荷,以及向第二极片输入正向电荷之后,可以通过第一极片和第二极片对储液箱中的溶液介质的介质状态进行检测,得到第二介质状态,检测的过程与通过第一极片和第二极片对储液箱中的溶液介质的介质状态进行检测,得到第一介质状态的过程类似,本实施例中对此不再赘述。
通过上述步骤S202至步骤S208,在目标时间周期的第一时间区间内,向第一极片输入正向电荷,以及向第二极片输入负向电荷,其中,第一极片和第二极片为设置在清洁设备的储液箱中的极片;通过第一极片和第二极片对储液箱中的溶液介质的介质状态进行检测,得到第一介质状态;在目标时间周期的第二时间区间内,向第一极片输入负向电荷,以及向第二极片输入正向电荷,其中,第二时间区间与第一时间区间为没有重叠的时间区间;通过第一极片和第二极片对溶液介质的介质状态进行检测,得到第二介质状态,解决了相关技术中的储液箱状态的检测方法由于在进行溶 液介质检测的过程中存在电极片上的电荷积累导致的电极片易被腐蚀的问题,减缓了极片的腐蚀速度,提高了极片的使用寿命。
在一个示例性实施例中,向第一极片输入正向电荷,以及向第二极片输入负向电荷,包括:
S11,通过将与第一极片相连的第一端口的电压电平置为高电平,向第一极片输入正向电荷,并向第二极片输入负向电荷。
在本实施例中,上述第一极片和第二极片可以通过第一端口和第二端口与控制电路进行连接,其中,第一极片和第一端口相连,第二极片和第二端口相连,通过第一端口和第二端口可以分别向一极片和第二极片输入电荷。可选地,控制电路可以在不同的时间区间内将第一端口和第二端口分别置为高电平,从而向对应的极片输入正向电荷,以及向另一个极片输入负向电荷。
在第一时间区间内,可以通过将第一端口的电压电平置为高电平,向第一极片输入正向电荷,并向第二极片输入负向电荷。在第一时间区间结束之后,可以停止将第一端口的电压电平置为高电平,从而停止向第一极片输入正向电荷,以及向第二极片输入负向电荷。
对应地,向第一极片输入负向电荷,以及向第二极片输入正向电荷,包括:
S12,通过将与第二极片相连的第二端口的电压电平置为高电平,向第二极片输入正向电荷,并向第一极片输入负向电荷。
在第二时间区间内,可以通过将第二端口的电压电平置为高电平,向第二极片输入正向电荷,并向第一极片输入负向电荷。在第二时间区间结束之后,可以停止将第二端口的电压电平置为高电平,从而停止向第二极片输入正向电荷,以及向第一极片输入负向电荷。
例如,洗地机可以通过将与极片P1相连的端口置为高电平,向极片P1输入正电荷,向极片P2输入负电荷。通过将与极片P2相连的端口置为高电平,向极片P2输入正电荷,向极片P1输入负电荷。
通过本实施例,通过改变与极片相连的端口的电压电平,控制向极片输入互补电荷,可以简化向极片输入电荷的过程。
在一个示例性实施例中,上述方法还包括:
S21,在关闭时间区间内,将第一端口的电压电平和第二端口的电压电平均置为低电平,其中,第一端口为与第一极片相连的端口,第二端口为与第二极片相连的端口,关闭时间区间包括目标时间周期中除了第一时间区间和第二时间区间外的其他时间区间。
由于介质状态一般不会在短时间内发生骤变,因此,可以在目标时间周期的一小段时间内检测溶液介质的介质状态,而在其他时间区间内,不再检测溶液介质的介质状态,以减少对于资源的浪费。这里的其他时间区间可以为除了第一时间区间和第二时间区间以外的关闭时间区间。
可选地,上述第一极片和第二极片可以通过第一端口和第二端口与控制电路进行连接,连接的方式与控制向极片输入电荷的方式与前述实施例中类似,在此不做赘述。在本实施例中,在关闭时间区间内,可以将第一端口的电压电平和第二端口的电压电平均置为低电平,从而停止向第一极片和第二极片输入电荷。
例如,如图3所示,洗地机可以时间周期T3、T4以及T5内(即,上述关闭时间区间),将与极片P1和极片P2相连的端口置为低电平,从而停止向极片P1和极片P2输入电荷。
通过本实施例,通过在关闭时间区间时停止向极片输入电荷,可以降低介质状态检测对于资源的消耗,减少资源浪费。
在一个示例性实施例中,通过第一极片和第二极片对储液箱中的溶液介质的介质状态进行检测,得到第一介质状态,包括:
S31,检测第一极片和第二极片之间的极片电压,得到第一极片电压;
S32,在第一极片电压小于或者等于第一电压阈值的情况下,确定储液箱中的溶液介质处于已满状态,其中,已满状态是指储液箱中的溶液介质的液位达到目标液位;
S33,在第一极片电压大于或者等于第二电压阈值的情况下,确定储液箱中的溶液介质处于未满状态,其中,未满状态是指储液箱中的溶液介质的液位未达到目标液位。
在本实施例中,通过第一极片和第二极片检测的溶液介质的介质状态 可以包括上述的液位状态,在此情况下,第一极片和第二极片可以设置在储液箱的顶部。比如,可以检测第一极片和第二极片之间的极片电压,得到第一极片电压,并通过第一极片电压确定溶液介质的液位状态。检测极片电压的方式与前述实施例中的相同或者类似,或者,也可以采用其他检测极片电压的方式,本实施例中对此不做限定。
如果第一极片电压小于或者等于第一电压阈值,可以确定第一极片和第二极片处于导通状态,溶液介质的液位至少达到能够接触到第一极片和第二极片的液位,即,目标液位,因此,可以确定储液箱中的溶液介质处于已满状态。如果第一极片电压大于或者等于第二电压阈值,可以确定第一极片和第二极片处于未导通状态,溶液介质的液位未达到目标液位,可以确定储液箱中的溶液介质处于未满状态。
通过本实施例,通过极片之间的极片电压检测溶液介质的液位状态,可以方便获知储液箱内的溶液介质的体积,便于及时对储液箱进行处理(例如,清理储液箱内的溶液介质),可以提升用户的使用体验。
在一个示例性实施例中,通过第一极片和第二极片对储液箱中的溶液介质的介质状态进行检测,得到第一介质状态,包括:
S41,检测第一极片和第二极片之间的极片电压,得到第二极片电压;
S42,确定与第二极片电压对应的目标脏污参数,其中,目标脏污参数用于表示储液箱内的溶液介质的脏污程度,第一介质状态包括目标脏污参数。
在本实施例中,通过第一极片和第二极片检测的溶液介质的介质状态可以包括上述的脏污参数,在此情况下,第一极片和第二极片可以设置在储液箱的底部。此外,也可以在储液箱的顶部设置用于检测溶液介质液位状态的极片对,即,第一极片对,而检测脏污参数的极片对可以是第二极片对。
可选地,可以检测第一极片和第二极片之间的极片电压,得到第二极片电压,并通过第二极片电压确定溶液介质的脏污参数。检测极片电压的方式与前述实施例中的相同或者类似,或者,也可以采用其他检测极片电压的方式,本实施例中对此不做限定。
溶液介质的脏污程度可以通过脏污参数进行表示。基于溶液介质在不同脏污程度的导电特性,可以预先配置第一极片和第二极片之间的极片电压与脏污参数之间的对应关系。在检测到第二极片电压之后,可以基于极片电压与脏污参数之间的对应关系,确定与第二极片电压匹配的脏污参数,得到目标脏污参数。
可选地,第一极片和第二极片也可以设置在除了储液箱底部以外的其他位置,比如,顶部。在此情况下,在检测第一极片和第二极片之间的极片电压,得到第二极片电压之后,也可以先确定第二极片电压是否小于或者等于设定的电压阈值,在第二极片电压小于或者等于设定的电压阈值时,此时可以确定第一极片和第二极片导通,再执行确定与第二极片电压对应的脏污参数的步骤。
上述目标脏污参数用于表示储液箱内的溶液介质的脏污程度,当储液箱中的溶液介质的脏污程度越高时,即当溶液介质越脏时,目标脏污参数也会相应的越大。
例如,当洗地机的极片P1和极片P2之间的极片电压小于或者等于设定的电压阈值时,可以确定与极片电压对应的脏污参数。
通过本实施例,通过极片之间的极片电压对储液箱内溶液介质的脏污参数进行检测,可以方便获知储液箱内的溶液介质的脏污程度,以便对清洁设备的清洁过程进行控制。
在一个示例性实施例中,在确定与第一极片电压对应的目标脏污参数之后,上述方法还包括:
S51,确定与目标脏污参数对应的目标运行参数,其中,目标运行参数是预设部件的运行参数,预设部件是清洁设备上与储液箱内的溶液介质关联的部件;
S52,按照目标运行参数控制预设部件进行运行。
在本实施例中,溶液介质的脏污参数可以用于确定是否需要对溶液介质进行处理,例如,清理溶液介质。可选地,由于溶液介质的脏污参数可以表征出地面的清洁程度,因此,溶液介质的脏污参数也可以用于控制对预设部件的运行参数进行控制,以便更好的进行清洁。在得到目标脏污参 数之后,清洁设备还可以确定与目标脏污参数对应的、预设部件的运行参数,从而得到目标运行参数,并按照目标运行参数控制预设部件进行运行。
这里的预设部件是清洁设备上与储液箱内的溶液介质关联的部件,可以包括但不限于以下至少之一:负压发生器(例如,主电机),水泵或者其他储液件,分水器或者其他喷液件。对于不同的预设部件,确定的运行参数可以是不同的,例如,当预设部件包括负压发生器时,目标运行参数可以为负压发生器的转速,从而控制负压发生的吸力,又例如,当预设部件包括储液件时,目标运行参数可以为储液件的出液量(比如,水泵的流量),本实施例中对于预设部件以及预设部件的运行参数不做限定。
通过本实施例,通过储液箱内的溶液介质的脏污参数确定预设部件的运行参数,并按照确定出的运行参数控制预设部件的运行参数,可以提高清洁设备的区域清洁能力,进而提升用户的使用体验。
在一个示例性实施例中,上述方法还包括:
S61,响应于获取到的检测指示信号,向第一极片和第二极片中的一个极片输入正向电荷,以及向另一个极片输入负向电荷,其中,检测指示信号用于指示对第一极片和第二极片的氧化程度进行检测;
S62,检测第一极片和第二极片之间的极片电压,得到第三极片电压,其中,第三极片电压用于表示第一极片和第二极片的氧化程度;
S63,在第二极片电压大于或者等于第三电压阈值的情况下,通过清洁设备发出提示信息,其中,提示信息用于提示更换第一极片和第二极片中的至少一个极片。
第一极片和第二极片在使用的过程中,仍然会发生氧化。并且,由于需要长期与储液箱内的溶液介质接触,会发生一定程度的腐蚀。因此,第一极片和第二极片在使用一段时间之后,需要进行更换,以保证极片的使用性能。
为了检测极片的氧化程度,用户可以通过操作终端设备或者清洁设备本身触发生成检测指示信号,该检测指示信号用于指示对第一极片和第二极片的氧化程度进行检测。这里,为了对第一极片和第二极片的氧化程度进行检测,可以在储液箱内注入目标溶液介质,例如,清水,或者其他能 够获知极片的氧化程度与极片性能之间的对应关系的溶液介质。
获取到检测指示信号之后,清洁设备可以向第一极片和第二极片中的一个极片输入正向电荷,以及向另一个极片输入负向电荷,并将第一极片和第二极片之间的极片电压,得到三极片电压,得到的第三极片电压用于表示第一极片和第二极片的氧化程度。
需要说明的是,也可以检测第一极片或者第二极片的极片电流、或者检测极片电阻,通过检测到的极片电流或者极片电阻来确定第一极片和第二极片的氧化程度。
在获取到第三极片电压之后,清洁设备也可以首先确定是否小于或者等于预设的电压阈值,如果是,可以确定第一极片和第二极片导通,否则,确定第一极片和第二极片未导通。在确定第一极片和第二极片未导通的情况下,可以通过清洁设备发出第一提示信息,以提示在储液箱内注入目标溶液介质。在确定第一极片和第二极片导通的情况下,可以执行判断极片氧化程度的步骤。
清洁设备可以判断第三极片电压是否大于或者等于第三电压阈值,如果是,可以确定第一极片和第二极片之间的极片电阻过大,极片的氧化程度过高。在此情况下,可以通过清洁设备发出提示信息(第二提示信息),以于提示更换第一极片和第二极片中的至少一个极片。
需要说明的是,检测极片电流或者极片电阻与检测极片电压的过程都是类似的。例如,将污水桶中装入清水,通过极片电阻值的变化来检测电极片的氧化程度,方便用户及时更换。
通过本实施例,通过检测极片之间的极片电压(或者,极片电流、极片电阻等)确定极片的氧化程度,可以及时提醒用户更换极片,提高通过极片检测介质状态的准确性。
需要说明的是,对于前述的各方法实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本申请并不受所描述的动作顺序的限制,因为依据本申请,某些步骤可以采用其他顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作和模块并不一定是本申请所必须的。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到根据上述实施例的方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM(Read-Only Memory,只读存储器)/RAM(Random Access Memory,随机存取存储器)、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行本申请各个实施例所述的方法。
根据本申请实施例的另一个方面,还提供了一种用于实施上述储液箱状态的检测方法的储液箱状态的检测装置。图6是根据本申请实施例的一种可选的储液箱状态的检测装置的结构框图,如图6所示,该装置可以包括:
第一输入单元602,用于在目标时间周期的第一时间区间内,向第一极片输入正向电荷,以及向第二极片输入负向电荷,其中,第一极片和第二极片为设置在清洁设备的储液箱中的极片;
第一检测单元604,与第一输入单元602相连,用于通过第一极片和第二极片对储液箱中的溶液介质的介质状态进行检测,得到第一介质状态;
第二输入单元606,与第一检测单元604相连,用于在目标时间周期的第二时间区间内,向第一极片输入负向电荷,以及向第二极片输入正向电荷,其中,第二时间区间与第一时间区间为没有重叠的时间区间;
第二检测单元608,与第二输入单元606相连,用于通过第一极片和第二极片对溶液介质的介质状态进行检测,得到第二介质状态。
需要说明的是,该实施例中的第一输入单元602可以用于执行上述步骤S202,该实施例中的第一检测单元604可以用于执行上述步骤S204,该实施例中的第二输入单元606可以用于执行上述步骤S206,该实施例中的第二检测单元608可以用于执行上述步骤S208。
通过上述模块,在目标时间周期的第一时间区间内,向第一极片输入正向电荷,以及向第二极片输入负向电荷,其中,第一极片和第二极片为 设置在清洁设备的储液箱中的极片;通过第一极片和第二极片对储液箱中的溶液介质的介质状态进行检测,得到第一介质状态;在目标时间周期的第二时间区间内,向第一极片输入负向电荷,以及向第二极片输入正向电荷,其中,第二时间区间与第一时间区间为没有重叠的时间区间;通过第一极片和第二极片对溶液介质的介质状态进行检测,得到第二介质状态,解决了相关技术中的储液箱状态的检测方法由于在进行溶液介质检测的过程中存在电极片上的电荷积累导致的电极片易被腐蚀的问题,减缓了极片的腐蚀速度,提高了极片的使用寿命。
在一个示例性实施例中,第一输入单元,包括:第一输入模块,用于通过将与第一极片相连的第一端口的电压电平置为高电平,向第一极片输入正向电荷,并向第二极片输入负向电荷;第二输入单元,包括:第二输入模块,用于通过将与第二极片相连的第二端口的电压电平置为高电平,向第二极片输入正向电荷,并向第一极片输入负向电荷。
在一个示例性实施例中,上述装置还包括:
设置单元,用于在关闭时间区间内,将第一端口的电压电平和第二端口的电压电平均置为低电平,其中,第一端口为与第一极片相连的端口,第二端口为与第二极片相连的端口,关闭时间区间包括目标时间周期中除了第一时间区间和第二时间区间外的其他时间区间。
在一个示例性实施例中,第一检测单元,包括:
第一检测模块,用于检测第一极片和第二极片之间的极片电压,得到第一极片电压;
第一确定模块,用于在第一极片电压小于或者等于第一电压阈值的情况下,确定储液箱中的溶液介质处于已满状态,其中,已满状态是指储液箱中的溶液介质的液位达到目标液位;
第二确定模块,用于在第一极片电压大于或者等于第二电压阈值的情况下,确定储液箱中的溶液介质处于未满状态,其中,未满状态是指储液箱中的溶液介质的液位未达到目标液位。
在一个示例性实施例中,第一检测单元,包括:
第二检测模块,用于检测第一极片和第二极片之间的极片电压,得到 第二极片电压;
第三确定模块,用于确定与第二极片电压对应的目标脏污参数,其中,目标脏污参数用于表示储液箱内的溶液介质的脏污程度,第一介质状态包括目标脏污参数。
在一个示例性实施例中,上述装置还包括:
确定单元,用于在确定与第一极片电压对应的目标脏污参数之后,确定与目标脏污参数对应的目标运行参数,其中,目标运行参数是预设部件的运行参数,预设部件是清洁设备上与储液箱内的溶液介质关联的部件;
控制单元,用于按照目标运行参数控制预设部件进行运行。
在一个示例性实施例中,上述装置还包括:
输入单元,用于响应于获取到的检测指示信号,向第一极片和第二极片中的一个极片输入正向电荷,以及向另一个极片输入负向电荷,其中,检测指示信号用于指示对第一极片和第二极片的氧化程度进行检测;
第三检测单元,用于检测第一极片和第二极片之间的极片电压,得到第三极片电压,其中,第三极片电压用于表示第一极片和第二极片的氧化程度;
发出单元,用于在第三极片电压大于或者等于第三电压阈值的情况下,通过清洁设备发出提示信息,其中,提示信息用于提示更换第一极片和第二极片中的至少一个极片。
此处需要说明的是,上述模块与对应的步骤所实现的示例和应用场景相同,但不限于上述实施例所公开的内容。需要说明的是,上述模块作为装置的一部分可以运行在如图1所示的硬件环境中,可以通过软件实现,也可以通过硬件实现,其中,硬件环境包括网络环境。
根据本申请实施例的又一个方面,还提供了一种存储介质。可选地,在本实施例中,上述存储介质可以用于执行本申请实施例中上述任一项储液箱状态的检测方法的程序代码。
可选地,在本实施例中,上述存储介质可以位于上述实施例所示的网络中的多个网络设备中的至少一个网络设备上。
可选地,在本实施例中,存储介质被设置为存储用于执行以下步骤的程序代码:
S1,在目标时间周期的第一时间区间内,向第一极片输入正向电荷,以及向第二极片输入负向电荷,其中,第一极片和第二极片为设置在清洁设备的储液箱中的极片;
S2,通过第一极片和第二极片对储液箱中的溶液介质的介质状态进行检测,得到第一介质状态;
S3,在目标时间周期的第二时间区间内,向第一极片输入负向电荷,以及向第二极片输入正向电荷,其中,第二时间区间与第一时间区间为没有重叠的时间区间;
S4,通过第一极片和第二极片对溶液介质的介质状态进行检测,得到第二介质状态。
可选地,本实施例中的具体示例可以参考上述实施例中所描述的示例,本实施例中对此不再赘述。
可选地,在本实施例中,上述存储介质可以包括但不限于:U盘、ROM、RAM、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
根据本申请实施例的又一个方面,还提供了一种用于实施上述储液箱状态的检测方法的电子装置,该电子装置可以是服务器、终端、或者其组合。
图7是根据本申请实施例的一种可选的电子装置的结构框图,如图7所示,包括处理器702、通信接口704、存储器706和通信总线708,其中,处理器702、通信接口704和存储器706通过通信总线708完成相互间的通信,其中,
存储器706,用于存储计算机程序;
处理器702,用于执行存储器706上所存放的计算机程序时,实现如下步骤:
S1,在目标时间周期的第一时间区间内,向第一极片输入正向电荷,以及向第二极片输入负向电荷,其中,第一极片和第二极片为设置在清洁 设备的储液箱中的极片;
S2,通过第一极片和第二极片对储液箱中的溶液介质的介质状态进行检测,得到第一介质状态;
S3,在目标时间周期的第二时间区间内,向第一极片输入负向电荷,以及向第二极片输入正向电荷,其中,第二时间区间与第一时间区间为没有重叠的时间区间;
S4,通过第一极片和第二极片对溶液介质的介质状态进行检测,得到第二介质状态。
可选地,在本实施例中,通信总线可以是PCI(Peripheral Component Interconnect,外设部件互连标准)总线、或EISA(Extended Industry Standard Architecture,扩展工业标准结构)总线等。该通信总线可以分为地址总线、数据总线、控制总线等。为便于表示,图7中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。通信接口用于上述电子装置与其他设备之间的通信。
上述的存储器可以包括RAM,也可以包括非易失性存储器(non-volatile memory),例如,至少一个磁盘存储器。可选地,存储器还可以是至少一个位于远离前述处理器的存储装置。
作为一种示例,上述存储器706中可以但不限于包括上述储液箱状态的检测装置中的第一输入单元602、第一检测单元604、第二输入单元606以及第二检测单元608。此外,还可以包括但不限于上述储液箱状态的检测装置中的其他模块单元,本示例中不再赘述。
上述处理器可以是通用处理器,可以包含但不限于:CPU(Central Processing Unit,中央处理器)、NP(Network Processor,网络处理器)等;还可以是DSP(Digital Signal Processing,数字信号处理器)、ASIC(Application Specific Integrated Circuit,专用集成电路)、FPGA(Field-Programmable Gate Array,现场可编程门阵列)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。
可选地,本实施例中的具体示例可以参考上述实施例中所描述的示例,本实施例在此不再赘述。
本领域普通技术人员可以理解,图7所示的结构仅为示意,实施上述洁设备的运行控制方法的设备可以是终端设备,该终端设备可以是智能手机(如Android手机、iOS手机等)、平板电脑、掌上电脑以及移动互联网设备(Mobile Internet Devices,MID)、PAD等终端设备。图7其并不对上述电子装置的结构造成限定。例如,电子装置还可包括比图7中所示更多或者更少的组件(如网络接口、显示装置等),或者具有与图7所示的不同的配置。
本领域普通技术人员可以理解上述实施例的各种方法中的全部或部分步骤是可以通过程序来指令终端设备相关的硬件来完成,该程序可以存储于一计算机可读存储介质中,存储介质可以包括:闪存盘、ROM、RAM、磁盘或光盘等。
上述本申请实施例序号仅仅为了描述,不代表实施例的优劣。
上述实施例中的集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在上述计算机可读取的存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在存储介质中,包括若干指令用以使得一台或多台计算机设备(可为个人计算机、服务器或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。
在本申请的上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
在本申请所提供的几个实施例中,应该理解到,所揭露的客户端,可通过其它的方式实现。其中,以上所描述的装置实施例仅仅是示意性的,例如所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,单元或模块的间接耦合或通信连接,可以是电性或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的, 作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例中所提供的方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
以上所述仅是本申请的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本申请的保护范围。

Claims (20)

  1. 一种储液箱状态的检测方法,其特征在于,包括:
    在目标时间周期的第一时间区间内,向第一极片输入正向电荷,以及向第二极片输入负向电荷,其中,所述第一极片和所述第二极片为设置在清洁设备的储液箱中的极片;
    通过所述第一极片和所述第二极片对所述储液箱中的溶液介质的介质状态进行检测,得到第一介质状态;
    在所述目标时间周期的第二时间区间内,向所述第一极片输入负向电荷,以及向所述第二极片输入正向电荷,其中,所述第二时间区间与所述第一时间区间为没有重叠的时间区间;
    通过所述第一极片和所述第二极片对所述溶液介质的介质状态进行检测,得到第二介质状态。
  2. 根据权利要求1所述的方法,其特征在于,所述向第一极片输入正向电荷,以及向第二极片输入负向电荷,包括:
    通过将与所述第一极片相连的第一端口的电压电平置为高电平,向所述第一极片输入正向电荷,并向所述第二极片输入负向电荷。
  3. 根据权利要求1所述的方法,其特征在于,所述向所述第一极片输入负向电荷,以及向所述第二极片输入正向电荷,包括:
    通过将与所述第二极片相连的第二端口的电压电平置为高电平,向所述第二极片输入正向电荷,并向所述第一极片输入负向电荷。
  4. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    在关闭时间区间内,将第一端口的电压电平和第二端口的电压电平均置为低电平,其中,所述第一端口为与所述第一极片相连的端口,所述第二端口为与所述第二极片相连的端口,所述关闭时间区间包括所述目标时间周期中除了所述第一时间区间和所述第二时间区间外的其他时间区间。
  5. 根据权利要求1所述的方法,其特征在于,所述通过所述第一极片和所述第二极片对所述储液箱中的溶液介质的介质状态进行检测,得到第一介质状态,包括:
    检测所述第一极片和所述第二极片之间的极片电压,得到第一极片电压;
    在所述第一极片电压小于或者等于第一电压阈值的情况下,确定所述储液箱中的溶液介质处于已满状态,其中,所述已满状态是指所述储液箱中的溶液介质的液位达到目标液位;
    在所述第一极片电压大于或者等于第二电压阈值的情况下,确定所述储液箱中的溶液介质处于未满状态,其中,所述未满状态是指所述储液箱中的溶液介质的液位未达到所述目标液位。
  6. 根据权利要求1所述的方法,其特征在于,所述通过所述第一极片和所述第二极片对所述储液箱中的溶液介质的介质状态进行检测,得到第一介质状态,包括:
    检测所述第一极片和所述第二极片之间的极片电压,得到第二极片电压;
    确定与所述第二极片电压对应的目标脏污参数,其中,所述目标脏污参数用于表示所述储液箱内的溶液介质的脏污程度,所述第一介质状态包括所述目标脏污参数。
  7. 根据权利要求6所述的方法,其特征在于,在所述确定与所述第二极片电压对应的目标脏污参数之后,所述方法还包括:
    确定与所述目标脏污参数对应的目标运行参数,其中,所述目标运行参数是预设部件的运行参数,所述预设部件是所述清洁设备上与所述储液箱内的溶液介质关联的部件;
    按照所述目标运行参数控制所述预设部件进行运行。
  8. 根据权利要求1至7中任一项所述的方法,其特征在于,所述方法还包括:
    响应于获取到的检测指示信号,向所述第一极片和所述第二极片中的一个极片输入正向电荷,以及向另一个极片输入负向电荷,其中,所述检测指示信号用于指示对所述第一极片和第二极片的氧化程度进行检测;
    检测所述第一极片和所述第二极片之间的极片电压,得到第三极片电压,其中,所述第三极片电压用于表示所述第一极片和所述第二极片的氧化程度。
  9. 根据权利要求8所述的方法,其特征在于,所述方法还包括:
    在所述第三极片电压大于或者等于第三电压阈值的情况下,通过所述清洁设备发出提示信息,其中,所述提示信息用于提示更换所述第一极片和所述第二极片中的至少一个极片。
  10. 一种储液箱状态的检测装置,其特征在于,包括:
    第一输入单元,用于在目标时间周期的第一时间区间内,向第一极片输入正向电荷,以及向第二极片输入负向电荷,其中,所述第一极片和所述第二极片为设置在清洁设备的储液箱中的极片;
    第一检测单元,用于通过所述第一极片和所述第二极片对所述储液箱中的溶液介质的介质状态进行检测,得到第一介质状态;
    第二输入单元,用于在所述目标时间周期的第二时间区间内,向所述第一极片输入负向电荷,以及向所述第二极片输入正向电荷,其中,所述第二时间区间与所述第一时间区间为没有重叠的时间区间;
    第二检测单元,用于通过所述第一极片和所述第二极片对所述溶液介质的介质状态进行检测,得到第二介质状态。
  11. 根据权利要求10所述储液箱状态的检测装置,其特征在于,所述第一输入单元,包括:
    第一输入模块,用于通过将与第一极片相连的第一端口的电压电平置为高电平,向第一极片输入正向电荷,并向第二极片输入负向电荷。
  12. 根据权利要求10所述储液箱状态的检测装置,其特征在于,所述第二输入单元,包括:
    第二输入模块,用于通过将与第二极片相连的第二端口的电压电平置为高电平,向第二极片输入正向电荷,并向第一极片输入负向电荷。
  13. 根据权利要求10所述储液箱状态的检测装置,其特征在于,所述检测装置还包括:
    设置单元,用于在关闭时间区间内,将第一端口的电压电平和第二端口的电压电平均置为低电平,其中,第一端口为与第一极片相连的端口,第二端口为与第二极片相连的端口,关闭时间区间包括目标时间周期中除了第一时间区间和第二时间区间外的其他时间区间。
  14. 根据权利要求10所述储液箱状态的检测装置,其特征在于,所述第一检测单元,包括:
    第一检测模块,用于检测第一极片和第二极片之间的极片电压,得到第一极片电压;
    第一确定模块,用于在第一极片电压小于或者等于第一电压阈值的情况下,确定储液箱中的溶液介质处于已满状态,其中,已满状态是指储液箱中的溶液介质的液位达到目标液位;
    第二确定模块,用于在第一极片电压大于或者等于第二电压阈值的情况下,确定储液箱中的溶液介质处于未满状态,其中,未满状态是指储液箱中的溶液介质的液位未达到目标液位。
  15. 根据权利要求10所述储液箱状态的检测装置,其特征在于,所述第一检测单元,包括:
    第二检测模块,用于检测第一极片和第二极片之间的极片电压,得到第二极片电压;
    第三确定模块,用于确定与第二极片电压对应的目标脏污参数,其中,目标脏污参数用于表示储液箱内的溶液介质的脏污程度,第一介质状态包括目标脏污参数。
  16. 根据权利要求15所述储液箱状态的检测装置,其特征在于,所述检测装置还包括:
    确定单元,用于在确定与第一极片电压对应的目标脏污参数之后,确定与目标脏污参数对应的目标运行参数,其中,目标运行参数是预设部件的运行参数,预设部件是清洁设备上与储液箱内的溶液介质关联的部件;和
    控制单元,用于按照目标运行参数控制预设部件进行运行。
  17. 根据权利要求10所述储液箱状态的检测装置,其特征在于,所述检测装置还包括:
    输入单元,用于响应于获取到的检测指示信号,向第一极片和第二极片中的一个极片输入正向电荷,以及向另一个极片输入负向电荷,其中,检测指示信号用于指示对第一极片和第二极片的氧化程度进行检测;
    第三检测单元,用于检测第一极片和第二极片之间的极片电压,得到第三极片电压,其中,第三极片电压用于表示第一极片和第二极片的氧化程度。
  18. 根据权利要求17所述储液箱状态的检测装置,其特征在于,所述检测装置还包括:
    发出单元,用于在第三极片电压大于或者等于第三电压阈值的情况下,通过清洁设备发出提示信息,其中,提示信息用于提示更换第一极片和第二极片中的至少一个极片。
  19. 一种计算机可读的存储介质,其特征在于,所述计算机可读的存储介质包括存储的程序,其中,所述程序运行时执行权利要求1中所述的方法。
  20. 一种电子装置,包括存储器和处理器,其特征在于,所述存储器中存储有计算机程序,所述处理器被设置为通过所述计算机程序执行权利要求1中所述的方法。
PCT/CN2023/070870 2022-01-28 2023-01-06 储液箱状态的检测方法及装置、存储介质及电子装置 WO2023142962A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210109397.2A CN116558602A (zh) 2022-01-28 2022-01-28 储液箱状态的检测方法及装置、存储介质及电子装置
CN202210109397.2 2022-01-28

Publications (1)

Publication Number Publication Date
WO2023142962A1 true WO2023142962A1 (zh) 2023-08-03

Family

ID=87470589

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/070870 WO2023142962A1 (zh) 2022-01-28 2023-01-06 储液箱状态的检测方法及装置、存储介质及电子装置

Country Status (2)

Country Link
CN (1) CN116558602A (zh)
WO (1) WO2023142962A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1396440A (zh) * 2001-07-13 2003-02-12 三星电子株式会社 水位传感器
CN2638041Y (zh) * 2003-07-22 2004-09-01 刘印同 不腐蚀电极的电接点液位计
CN101995283A (zh) * 2009-08-12 2011-03-30 中国船舶重工集团公司第七一九研究所 时分复用多通道的电接点液位检测电路
JP2016180698A (ja) * 2015-03-24 2016-10-13 株式会社コロナ 水検知電極回路、及び給湯器
CN106441501A (zh) * 2016-09-05 2017-02-22 海尔优家智能科技(北京)有限公司 一种水满检测电路
CN208568025U (zh) * 2018-07-14 2019-03-01 广州奥格智能科技有限公司 一种新型电极式电子水尺
CN112469319A (zh) * 2018-06-22 2021-03-09 必胜公司 表面清洁设备
CN214667122U (zh) * 2021-02-25 2021-11-09 四维生态科技(杭州)有限公司 一种营养液监测装置及种植机

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1396440A (zh) * 2001-07-13 2003-02-12 三星电子株式会社 水位传感器
CN2638041Y (zh) * 2003-07-22 2004-09-01 刘印同 不腐蚀电极的电接点液位计
CN101995283A (zh) * 2009-08-12 2011-03-30 中国船舶重工集团公司第七一九研究所 时分复用多通道的电接点液位检测电路
JP2016180698A (ja) * 2015-03-24 2016-10-13 株式会社コロナ 水検知電極回路、及び給湯器
CN106441501A (zh) * 2016-09-05 2017-02-22 海尔优家智能科技(北京)有限公司 一种水满检测电路
CN112469319A (zh) * 2018-06-22 2021-03-09 必胜公司 表面清洁设备
CN208568025U (zh) * 2018-07-14 2019-03-01 广州奥格智能科技有限公司 一种新型电极式电子水尺
CN214667122U (zh) * 2021-02-25 2021-11-09 四维生态科技(杭州)有限公司 一种营养液监测装置及种植机

Also Published As

Publication number Publication date
CN116558602A (zh) 2023-08-08

Similar Documents

Publication Publication Date Title
CN107491049B (zh) 一种多设备协同作业方法和协同作业装置
WO2023051227A1 (zh) 清洁设备的控制方法及装置
CN111181804B (zh) 智能设备离线状态自动检测方法、装置、电子设备及介质
WO2019019644A1 (zh) 推送服务器分配方法、装置、计算机设备和存储介质
CN108650155B (zh) 一种家电设备的控制方法、装置及系统
CN104380769A (zh) 一种信息提醒的方法、装置及电子终端
CN110377141A (zh) 应用处理方法、装置、电子设备以及存储介质
CN111366546B (zh) 清洁度检测方法、清洁设备及存储介质
WO2023142962A1 (zh) 储液箱状态的检测方法及装置、存储介质及电子装置
CN103152200A (zh) 虚拟机迁移方法、交换机、网络管理设备和网络系统
CN112087354A (zh) 通信协议的测试方法、装置、电子设备以及存储介质
CN103561089B (zh) 虚拟机桌面登录方法、装置及系统
WO2023131161A1 (zh) 清洁设备的运行控制方法及装置、存储介质及电子装置
CN105549844A (zh) 一种图片或信息置顶方法、装置及移动终端
CN104750238A (zh) 一种基于多终端协同的手势识别方法、设备及系统
CN104695167B (zh) 洗衣机中的泡沫消除方法及洗衣机
WO2023131246A1 (zh) 清洁设备的控制方法及装置、存储介质及电子装置
WO2023231911A9 (zh) 双洗机的运行控制方法、电器及双洗机
CN103297514A (zh) 基于云架构的虚拟机管理平台及管理方法
CN105155209A (zh) 一种洗衣机漂洗控制方法
CN115363476A (zh) 一种具有可拆卸配件的设备、识别方法和装置
CN115399697A (zh) 清洁设备的自清洁方法和装置、存储介质及电子装置
CN203301534U (zh) 基于云架构的虚拟机管理平台
TWI760951B (zh) 運算資源配置和管理方法及代理伺服器
CN107103707B (zh) 一种自助洗涤设备信息交互方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23745847

Country of ref document: EP

Kind code of ref document: A1