WO2023142826A1 - 一种信号处理装置 - Google Patents

一种信号处理装置 Download PDF

Info

Publication number
WO2023142826A1
WO2023142826A1 PCT/CN2022/141777 CN2022141777W WO2023142826A1 WO 2023142826 A1 WO2023142826 A1 WO 2023142826A1 CN 2022141777 W CN2022141777 W CN 2022141777W WO 2023142826 A1 WO2023142826 A1 WO 2023142826A1
Authority
WO
WIPO (PCT)
Prior art keywords
photodetector
photodetector unit
arrays
sub
subarrays
Prior art date
Application number
PCT/CN2022/141777
Other languages
English (en)
French (fr)
Inventor
梁栋
张嘉男
张军平
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023142826A1 publication Critical patent/WO2023142826A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/11Arrangements specific to free-space transmission, i.e. transmission through air or vacuum
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/66Non-coherent receivers, e.g. using direct detection
    • H04B10/69Electrical arrangements in the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/66Non-coherent receivers, e.g. using direct detection
    • H04B10/69Electrical arrangements in the receiver
    • H04B10/691Arrangements for optimizing the photodetector in the receiver

Definitions

  • the present application relates to the field of wireless technologies, and in particular to a signal processing device.
  • Wireless optical communication technology is one of the key fields in wireless communication technology. Among them, wireless optical communication technology has the advantages of large available bandwidth, small transmitting antenna, and anti-electromagnetic interference.
  • the industry and academia have corresponding system solutions for indoor short-distance and outdoor long-distance communication scenarios, and are actively carrying out system-level test demonstrations and key technology explorations.
  • the photoelectric conversion of the optical signal is generally carried out by the photodetector array in the signal receiver to obtain the electrical signal, so as to realize the communication.
  • optical signals such as visible light, near-infrared light, etc.
  • the optical signal received by the signal receiver may also carry positioning data or sensing data.
  • the photodetector array includes a plurality of photodetectors and electrical signal output ports corresponding to the plurality of photodetectors, so that the signal receiver obtains the electrical signal obtained by each photodetector.
  • the first aspect of the present application provides a signal processing device, which is applied in the field of optical signal processing, and the signal processing device can perform photoelectric conversion processing on an optical signal to obtain an electrical signal.
  • the optical signal can be used to carry various data, such as communication data, positioning data, and the like.
  • the device includes N photodetector unit sub-arrays, and M output ports respectively connected to the N photodetector unit sub-arrays; wherein, at least two of the N photodetector unit sub-arrays The photodetector unit sub-arrays are different, the number of photodetector units contained in at least one photodetector unit sub-array in the N photodetector unit sub-arrays is greater than or equal to 2, N is an integer greater than or equal to 2, and M is An integer less than or equal to N; the photodetector units in the N photodetector unit subarrays are used to perform photoelectric conversion processing on the optical signal to obtain the first electrical signal; the M output ports are used to output the first electrical signal Signal.
  • the number of photodetector unit subarrays is N
  • the number of output interfaces connected to the N photodetector unit subarrays is M
  • M is an integer less than or equal to N, That is, the number of output interfaces is less than or equal to the number of photodetector sub-arrays.
  • the number of photodetector units contained in at least one photodetector unit subarray among the N photodetector unit subarrays is greater than or equal to two.
  • the number of the output interfaces is smaller than the number of photodetectors, so that there is no need to provide a corresponding electrical signal output port for each photodetector, so that the complexity of the photodetector array is reduced.
  • the photodetector involved in the present application may include one or more of a photodiode (photodiode, PD), a PIN photodiode (PIN photodiode, PIN-PD), an avalanche photodiode (avalanche photodiode, APD) or multiple.
  • a photodiode photodiode, PD
  • PIN photodiode PIN photodiode
  • APD avalanche photodiode
  • M is an integer less than or equal to N.
  • the N photodetector unit subarrays correspond to M output ports one by one; when M is an integer less than N, in the N photodetector unit subarrays There are at least two sub-arrays of photodetector units corresponding to the same output port among the M output ports.
  • the difference between at least two photodetector unit subarrays in the N photodetector unit subarrays includes at least one of the following:
  • At least two photodetector unit subarrays in the N photodetector unit subarrays have different shapes; or,
  • At least two photodetector unit subarrays in the N photodetector unit subarrays have different areas; or,
  • At least two photodetector unit subarrays of the N photodetector unit subarrays contain different numbers of photodetector units; or,
  • the areas of the photosensitive surfaces of the photodetectors included in at least two photodetector unit subarrays of the N photodetector unit subarrays are different; or,
  • At least two photodetector unit subarrays of the N photodetector unit subarrays have different spacings (or sparseness) between photodetector units.
  • the shape, area, number of photodetector units included, and photosensitive photodetectors of the included photodetector unit sub-arrays of at least two photodetector unit sub-arrays At least one of the area of the faces and the pitch between the included photodetector cells is different. Since in practical applications, optical signals may not be evenly irradiated on the N sub-arrays of photodetector units, the sub-arrays of photodetector units can be flexibly configured according to application scenarios.
  • the photosensitive surfaces of the array composed of N sub-arrays of photodetector units are distributed axisymmetrically.
  • the photosensitive surface of the array composed of N photodetector unit sub-arrays is distributed axially symmetrically, so that the processing capability corresponding to the optical signal received by the signal processing device at a certain angle on one side of the axis is equal to The processing capability corresponding to the optical signal received by the signal processing device at the angle on the other side of the axis is the same or similar.
  • the photodetector unit includes a photodetector.
  • the photodetector unit includes a switch and a photodetector.
  • the photodetector unit includes a switch and a photodetector, so that the working mode of the photodetector can be configured through the switch, thereby, based on the scheduling strategy for the photodetectors contained in the N photodetector unit sub-arrays
  • the control can realize the application of high-precision Angle-of-Arrival (Angle-of-Arrival, AOA) estimation and/or positioning.
  • a switch is used to control the photodetector to be turned on or off.
  • the photodetector unit further includes an inductor and an impedance circuit.
  • the photodetector unit may also include an inductance and an impedance circuit in addition to a switch and a photodetector, so that a circuit unit is formed when the inductance is connected to the photodetector, and the output of the circuit unit
  • the impedance is related to the inductance and photodetector with relatively small reflections to ensure that the input and output impedance of the photodetector unit is close to the default input and output impedance.
  • the output impedance of the circuit unit is related to the inductance and impedance circuit, and can also have a relatively small reflection to ensure that the input and output impedance of the photodetector unit Close to the default input and output impedance.
  • the default input and output impedance may be 50 ohms (ohm), or other values, which are not limited here.
  • the switch is used to control the photodetector to be connected to the inductance and to control the impedance circuit to be disconnected from the inductance, or the switch is used to control the photodetector to be disconnected from the inductance and control the impedance circuit to be connected to the inductance Pass.
  • the device further includes a controller, the controller is used to control the photodetector to be connected to the inductance through the switch and to control the impedance circuit to be disconnected from the inductance; or, the controller is used to control the inductance through the switch The photodetector is disconnected from the inductance and the impedance circuit is controlled to be connected to the inductance.
  • the difference between the impedance of the photodetector and the impedance of the impedance circuit is smaller than a threshold.
  • the impedance of the photodetector is the same or similar to the impedance of the impedance circuit.
  • the input and output impedance produced by the photodetector unit when the inductance and the photodetector are connected, and the input and output impedance produced by the photodetector unit when the inductance and the impedance circuit are connected are the same or similar, so that During the switching process, ensure that the photodetector unit sub-array has constant or similar electrical characteristics.
  • the difference is zero.
  • the N photodetector unit sub-arrays are located on the same plane.
  • the N sub-arrays of photodetector units include K sub-arrays of photodetector units and P sub-arrays of photodetector units, and both K and P are greater than or An integer equal to 1, and the sum of the K and the P is less than or equal to the N; wherein, the projection of the photosensitive surface formed by the photodetectors in the K photodetector unit subarrays on the first plane is the same as the projection of the P The plane formed by the projection of the photosensitive surface formed by the photodetectors in the photodetector unit sub-array on the first plane is continuous.
  • the N photodetector unit subarrays at least include K photodetector unit subarrays and P photodetector unit subarrays, wherein the photodetectors in the K photodetector unit subarrays
  • the projection of the formed photosensitive surface on the first plane is continuous with the plane formed by the projection of the photosensitive surface formed by the photodetectors in the P sub-arrays of photodetector units on the first plane.
  • the photosensitive surface formed by the photodetectors in the K photodetector unit subarrays is complementary to the photosensitive surface formed by the photodetectors in the P photodetector unit subarrays.
  • different photodetector unit sub-arrays receive light signals together, and the photosensitive surfaces corresponding to different photodetector unit sub-arrays are complementary, so as to reduce blind areas between different photosensitive surfaces formed by different photodetector unit sub-arrays.
  • first plane is any plane.
  • the photodetector units in the K photodetector unit subarrays are located on the second plane, and the photodetector units in the P photodetector unit subarrays are located on the second plane.
  • the included angle between the second plane and the third plane is 90° to 150°.
  • the included angle between the second plane and the third plane is 90°.
  • the N photodetector unit subarrays further include Q photodetector unit subarrays, where Q is an integer greater than or equal to 1, and the K, the P And the sum of the Q is less than or equal to the N; wherein, the Q photodetector unit subarrays are located on multiple planes, the multiple planes are not coplanar with the second plane, and the multiple planes are not coplanar with the third plane The planes are coplanar.
  • the N photodetector unit sub-arrays may include Q photodetector unit sub-arrays in addition to K photodetector unit sub-arrays and P photodetector unit sub-arrays, wherein the The Q photodetector unit sub-arrays are located on multiple planes, the multiple planes are not coplanar with the second plane, and the multiple planes are not coplanar with the third plane.
  • the multiple planes where the Q photodetector unit sub-arrays are located can improve the detection effect.
  • the included angle between at least one of the multiple planes where the Q photodetector unit sub-arrays are located and the second plane is 120° to 150°. Further optionally, the included angle between any one of the multiple planes where the Q photodetector unit sub-arrays are located and the second plane is 120° to 150°.
  • the included angle between at least one of the multiple planes where the Q photodetector unit sub-arrays are located and the third plane is 120° to 150°. Further optionally, the angle between any one of the multiple planes where the Q photodetector unit sub-arrays are located and the third plane is 120° to 150°.
  • the projection of the photosensitive surface formed by the photodetectors in the K photodetector unit subarrays on a certain plane is the same as the photosensitive surface formed by the photodetectors in the Q photodetector unit subarrays.
  • the plane formed by the projection on the plane is continuous, that is, the photosensitive surface formed by the photodetectors in the K photodetector unit subarrays and the photosensitive surface formed by the photodetectors in the Q photodetector unit subarrays are Complementary.
  • the projection of the photosensitive surface formed by the photodetectors in the P photodetector unit subarrays on a certain plane is in the same plane as the photosensitive surface formed by the photodetectors in the Q photodetector unit subarrays.
  • the plane formed by the projection on is continuous, that is, the photosensitive surface formed by the photodetectors in the P photodetector unit subarrays is complementary to the photosensitive surface formed by the photodetectors in the Q photodetector unit subarrays. of.
  • the device further includes X photodetector unit sub-arrays;
  • the X photodetector unit sub-arrays are located outside the area where the N photodetector unit sub-arrays are located, and the photosensitive surface of the photodetectors in the X photodetector unit sub-arrays is larger than the N photodetector units The photosensitive surface of the photodetector in the subarray.
  • the X photodetector unit sub-arrays are located on multiple planes, and the multiple planes are not coplanar with the second plane, and the multiple planes are not coplanar with the third plane.
  • the included angle between at least one of the multiple planes where the X photodetector unit sub-arrays are located and the second plane is 150° to 180°. Further optionally, the angle between any one of the multiple planes where the X photodetector unit sub-arrays are located and the second plane is 150° to 180°.
  • the included angle between at least one of the multiple planes where the X photodetector unit sub-arrays are located and the third plane is 150° to 180°. Further optionally, the angle between any one of the multiple planes where the X photodetector unit sub-arrays are located and the third plane is 150° to 180°.
  • the device further includes a lens; the lens is used to process the received initial optical signal to obtain the optical signal, and output the optical signal to the N subarrays of photodetector units the light signal.
  • the device further includes a processor; the processor is connected to the M output ports, and is configured to receive the first electrical signal, and determine the first electrical signal based on the first electrical signal. Data carried by an electrical signal.
  • the data carried by the first electrical signal includes communication data and/or positioning data.
  • the device further includes an amplifier and a processor; one end of the amplifier is connected to the M output ports for receiving the first electrical signal, and the amplifier is used for An electrical signal is subjected to signal amplification processing to obtain a second electrical signal; the other end of the amplifier is connected to the processor for sending the second electrical signal to the processor; the processor is used for determining the second electrical signal based on the second electrical signal Data carried by the second electrical signal.
  • the data carried by the second electrical signal includes communication data and/or positioning data.
  • the area covered by the optical signal includes a target photodetector unit subarray in the N photodetector unit subarrays; the processor is further configured to control the target photodetector unit subarray; The number of photodetector units in the detector unit sub-array that performs photoelectric conversion processing on the optical signal is a variable value.
  • the processor can be used to control the number of photodetector units in the target photodetector unit sub-array that performs photoelectric conversion processing on the optical signal, so that based on the control of the number, it is also possible to realize the
  • the signal processing device controls the size of the signal receiving gain.
  • the control of the signal receiving sensitivity of the signal processing device is realized based on the control of the quantity.
  • the processor is further configured to, at the first moment, determine that the area covered by the optical signal includes the first photodetectors in the N photodetector unit subarrays unit subarray;
  • the processor is also used to sequentially control the photodetector units in the first photodetector unit sub-array to perform photoelectric conversion processing on the optical signal at different times after the first moment to obtain a third electrical signal.
  • the third electrical signal is used to determine the first azimuth angle of the light source generating the optical signal;
  • the processor is further configured to, at a second time after a different time after the first time, move the lens through a mobile device, and determine that the area covered by the optical signal includes the first of the N photodetector unit sub-arrays Two photodetector unit sub-arrays;
  • the processor is also used to sequentially control the photodetector units in the second photodetector unit sub-array to perform photoelectric conversion processing on the optical signal at different times after the second moment to obtain a fourth electrical signal.
  • the fourth electrical signal is used to determine the second azimuth angle of the light source that generates the optical signal;
  • the processor is also used to determine the distance between the light source of the light signal and the device based on the first azimuth angle and the second azimuth angle.
  • the processor can also adjust the lens (such as the position of the lens, the orientation of the lens, etc.), according to the corresponding electrical signal generated by the optical signal processed by the lens at different times, combined with the relevant parameters of the lens (such as focus position, the moving distance of the focus on the focal plane, etc.), and calculate the distance from the light source to the signal processing device to achieve high-precision AOA positioning.
  • the lens such as the position of the lens, the orientation of the lens, etc.
  • the relevant parameters of the lens such as focus position, the moving distance of the focus on the focal plane, etc.
  • the mobile device includes Micro-Electro-Mechanical Systems (MEMS).
  • MEMS Micro-Electro-Mechanical Systems
  • the processor is further configured to determine that the area covered by the optical signal includes the third photodetector unit subarray in the N photodetector unit subarrays; the processing The processor is also used to control the fourth photodetector unit sub-array adjacent to the third photodetector unit sub-array to receive the optical signal to obtain a fifth electrical signal; the processor is also used to, based on the fifth electrical signal A motion path of a light source of the light signal is determined.
  • the position where the light signal generated by the light source irradiates on the N sub-arrays of photodetector units may move correspondingly, and the processor can base on the position of the electrical signal generated by the movement.
  • the change realizes the moving path tracking of the light source.
  • the second aspect of the present application provides a signal processing device, including a plurality of arrays, at least one of the arrays includes N photodetectors as in the first aspect or any possible implementation of the first aspect detector unit sub-arrays, and M output ports respectively connected to the N photodetector unit sub-arrays.
  • At least one of the multiple arrays includes N photodetector unit sub-arrays as in the first aspect or any possible implementation of the first aspect, and is connected to the N photodetector unit sub-arrays respectively.
  • the at least one array also includes at least one of the lens, controller, amplifier, processor, etc. as shown in the first aspect above, and achieves corresponding technical effects, which will not be described here repeat.
  • any one of the plurality of arrays includes N sub-arrays of photodetector units as in the first aspect or in any possible implementation of the first aspect, and M output ports respectively connected to the N photodetector unit sub-arrays.
  • the photodetector unit sub-arrays contained in other arrays except the at least one array among the plurality of arrays are different from the first aspect or any one of the first aspect.
  • the third aspect of the present application provides a signal receiver, the signal receiver includes the signal processing device in the first aspect or any possible implementation manner of the first aspect, or, the signal receiver includes the second A signal processing device in any possible implementation manner of the aspect or the second aspect.
  • the fourth aspect of the present application provides a signal processing device, the signal processing device includes a light source (or transmitter, signal transmitter, optical signal transmitter, etc.), and any possible The signal processing means in the implementation of .
  • Fig. 1 is a schematic diagram of a wireless optical communication (optical wireless communication, OWC) receiver
  • Fig. 2 is another schematic diagram of the OWC receiver
  • Fig. 3 is a schematic diagram of the signal processing device provided by the present application.
  • Fig. 4 is a schematic diagram of the array pattern in the signal processing device provided by the present application.
  • Fig. 5 is a schematic diagram of the array pattern in the signal processing device provided by the present application.
  • Figure 6a is a schematic diagram of the array pattern in the signal processing device provided by the present application.
  • Figure 6b is a schematic diagram of the array pattern in the signal processing device provided by the present application.
  • Fig. 6c is a schematic diagram of the array pattern in the signal processing device provided by the present application.
  • Figure 6d is a schematic diagram of the array pattern in the signal processing device provided by the present application.
  • Figure 6e is a schematic diagram of the array pattern in the signal processing device provided by the present application.
  • Figure 6f is a schematic diagram of the array pattern in the signal processing device provided by the present application.
  • FIG. 7 is another schematic diagram of the signal processing device provided by the present application.
  • Fig. 8a is another schematic diagram of the signal processing device provided by the present application.
  • Fig. 8b is another schematic diagram of the signal processing device provided by the present application.
  • Fig. 9 is a schematic diagram of the photodetector unit in the signal processing device provided by the present application.
  • FIG. 10 is a schematic diagram of the circuit of the sub-array in the signal processing device provided by the present application.
  • Figure 11a is a schematic diagram of the workflow of the signal processing device provided by the present application.
  • Fig. 11b is another schematic diagram of the workflow of the signal processing device provided by the present application.
  • Fig. 11c is another schematic diagram of the workflow of the signal processing device provided by the present application.
  • Figure 11d is another schematic diagram of the workflow of the signal processing device provided by the present application.
  • Fig. 12 is another schematic diagram of the signal processing device provided by the present application.
  • Fig. 13a is another schematic diagram of the signal processing device provided by the present application.
  • Fig. 13b is another schematic diagram of the signal processing device provided by the present application.
  • FIG. 14 is another schematic diagram of the signal processing device provided by the present application.
  • FIG. 15 is another schematic diagram of the signal processing device provided by the present application.
  • At least one item (unit) of a, b, or c may represent: a, b, c; a and b; a and c; b and c; or a and b and c.
  • a, b, c can be single or multiple.
  • words such as “first” and “second” do not limit the number and order of execution, and words such as “first” and “second” do not necessarily limit the difference.
  • words such as “exemplary” or “for example” are used to mean an example, illustration or illustration. Any embodiment or design described in this application as “exemplary”, “for example” or “such as” is not to be construed as preferred or advantageous over other embodiments or designs. Rather, use of words such as “exemplary,” “for example,” or “such as” is intended to present related concepts in a specific manner.
  • Wireless optical communication technology is one of the key areas in wireless communication technology. Different from wireless communication systems in the 5-6 gigahertz (GHz), 60 GHz and terahertz (THz) frequency bands, wireless optical communication technology has a large available bandwidth and a transmitting antenna. Small, anti-electromagnetic interference and other advantages.
  • the industry and academia have corresponding system solutions for indoor short-distance and outdoor long-distance communication scenarios, and are actively carrying out system-level test demonstrations and key technology explorations.
  • the high-speed wireless optical communication system solution is mainly used in single-user point-to-point, single input single output (single input single output, SISO) communication scenarios.
  • SISO single input single output
  • the light source and photodetector in the current system have adopted broadband devices.
  • the active area of broadband photodetectors is small, and the diameter is on the order of microns (um).
  • the typical core hardware in a wireless optical communication (OWC) receiver for light positioning and perception is mainly a complementary metal-oxide-semiconductor (CMOS) photosensitive chip or a single photon avalanche Diode (single photon avalanche diode, SPAD) array, providing high resolution, superior imaging quality and high sensitivity.
  • CMOS complementary metal-oxide-semiconductor
  • SPAD single photon avalanche diode
  • FIG. 1 An implementation of an OWC receiver is shown in FIG. 1 , which includes a lens 1 and a broadband PD, as well as a lens 2 and a photosensitive chip. Among them, the optical signal emitted by the light source is shown by the arrow in Figure 1. One optical signal is projected on the broadband PD after passing through the lens 1 to realize data communication; the other optical signal is projected on the photosensitive chip after passing through the lens 2. for positioning and imaging.
  • FIG. 2 Another implementation of the OWC receiver is shown in FIG. 2 , which includes a lens and a PD array (or photosensitive chip). Among them, the optical signal emitted by the light source is shown by the arrow in Figure 2. The optical signal is projected on the PD array after passing through the lens, and the PD array realizes signal processing and positioning.
  • Typical PD array solutions are CMOS photosensitive chips, SPAD arrays, etc.
  • CMOS photosensitive chips and SPAD arrays need to be used, and the device frame rate or bandwidth is limited, which cannot meet the high-speed communication requirements.
  • the photodetector array formed by the photodetector there are a plurality of photodetectors and electrical signal output ports corresponding to the plurality of photodetectors one by one, so that the signal receiver can obtain the output signal obtained by each photodetector. electric signal.
  • the bandwidth of the large-scale PD array (CMOS photosensitive chip) in the current OWC receiver system is low, and the complexity of the broadband PD array is high and the scale is limited, which leads to the hardware compatibility of communication and positioning perception. This problem has not yet been solved.
  • the complexity of the photodetector array is high.
  • the present application provides a signal processing device, which is used to enable the signal processing device to have communication and location sensing functions, and to reduce the complexity of the photodetector array.
  • the signal processing device can be applied to wireless optical communication systems, and has unique advantages and competitiveness especially for scenarios that require real-time tracking and dynamic high-speed communication. It can judge the AoA and position of the peer OWC transmitter in real time, and adjust the transceiver The light beam ensures a stable and reliable communication link in high-speed motion scenes.
  • the signal processing device provided in the present application may be applied to communication, positioning, (light source) path tracking or other scenarios involved in the wireless optical signal processing process, which is not limited here.
  • FIG. 3 An implementation schematic diagram of the signal processing device provided by the present application is shown in Figure 3, including N photodetector unit sub-arrays, and M output ports connected to the N photodetector unit sub-arrays; wherein, the N At least two photodetector unit subarrays in the N photodetector unit subarrays are different, and at least one photodetector unit subarray in the N photodetector unit subarrays contains a number of photodetector units greater than or equal to 2 , N is an integer greater than or equal to 2, and M is an integer less than or equal to N; the photodetector units in the N photodetector unit subarrays are used to perform photoelectric conversion processing on optical signals to obtain the first electrical signal; The M output ports are used to output the first electrical signal.
  • the number of photodetector unit sub-arrays is N
  • the number of output interfaces connected to N photodetector unit sub-arrays is M
  • M is an integer less than or equal to N , that is, the number of output interfaces is less than or equal to the number of photodetector sub-arrays.
  • the number of photodetector units contained in at least one photodetector unit subarray among the N photodetector unit subarrays is greater than or equal to two.
  • the number of the output interfaces is smaller than the number of photodetectors, so that there is no need to provide corresponding electrical signal output ports for each photodetector, so that the complexity of the photodetector array is reduced.
  • the arrangement of photodetector units in different photodetector unit subarrays is more flexible.
  • the photodetector involved in the present application may include one or more of a photodiode (photodiode, PD), a PIN photodiode (PIN photodiode, PIN-PD), an avalanche photodiode (avalanche photodiode, APD) or multiple.
  • a photodiode photodiode, PD
  • PIN photodiode PIN photodiode
  • APD avalanche photodiode
  • subarray 1, subarray 2, subarray N-1, and subarray N are represented by circles, triangles, rhombuses, and hexagons respectively.
  • the geometric shape used may also be rectangle, trapezoid, barrel, ring, honeycomb or other regular or irregular figures, which are not limited here.
  • shape of the array formed by N sub-arrays is a parallelogram as an example for illustration. In practical applications, the shape of the array formed by N sub-arrays can also be rectangular or circular. Or other regular or irregular graphics, which are not limited here.
  • M is an integer less than or equal to N.
  • the N photodetector unit subarrays correspond to M output ports one by one; when M is an integer less than N, in the N photodetector unit subarrays There are at least two sub-arrays of photodetector units corresponding to the same output port among the M output ports.
  • the difference between at least two photodetector unit subarrays in the N photodetector unit subarrays includes at least one of the following:
  • At least two photodetector unit subarrays in the N photodetector unit subarrays have different shapes; or,
  • At least two photodetector unit subarrays in the N photodetector unit subarrays have different areas; or,
  • At least two photodetector unit subarrays of the N photodetector unit subarrays contain different numbers of photodetector units; or,
  • the areas of the photosensitive surfaces of the photodetectors included in at least two photodetector unit subarrays of the N photodetector unit subarrays are different; or,
  • At least two photodetector unit subarrays of the N photodetector unit subarrays have different spacings (or sparseness) between photodetector units.
  • a closed area formed by adjacent dotted lines may be regarded as a sub-array, and a solid point inside the closed area may represent a "photodetector unit".
  • N sub-arrays in FIG. 3 at least including “sub-array 1, sub-array 2, . . . sub-array 10” indicated in FIG. 4 as an example.
  • the areas corresponding to sub-array 3 and sub-array 4 are the same, the areas corresponding to sub-array 8 and sub-array 9 are the same, and the areas of other sub-arrays are different.
  • the optical signals projected on the N sub-arrays can be processed by lenses, the optical signals that are relatively parallel to the focal plane of the lens (or the included angle is small) are projected on the central area of the array shown in Figure 4, opposite to the focal plane of the lens
  • the non-parallel (or larger angle) optical signals are projected on the edge area of the array shown in Figure 4.
  • the area of the area near the center can be set to be smaller and the area of the area near the edge can be set to be larger , so as to achieve higher signal sensing sensitivity, so that the photodetector units are arranged at the same density to achieve higher average sensing precision.
  • the photosensitive surfaces of the array composed of N photodetector unit sub-arrays are distributed axially symmetrically.
  • the photosensitive surface of the array composed of N photodetector unit sub-arrays is symmetrically distributed on an axis, so that the processing capability corresponding to the optical signal received by the signal processing device at a certain angle on one side of the axis is equal to that of the signal
  • the processing capability corresponding to the optical signal received by the processing device at the angle on the other side of the axis is the same or similar.
  • FIG. 5 where the array pattern formed by N photodetector unit sub-arrays is still the pattern shown in FIG. 4 as an example.
  • Fig. 5 taking the axis in the vertical direction of the array as an example, "subarray 1" and “subarray 11", “subarray 2" and “subarray 22", “subarray 3" and “subarray 33", “sub-array 4" and “sub-array 44", “sub-array 5" and “sub-array 55", “sub-array 6" and “sub-array 66”, all are axisymmetric.
  • the array formed by the N sub-arrays can also be called an irregular array.
  • the irregular array formed by N sub-arrays mainly uses the spot pattern formed by the optical signal at different incident angles to design the scale and arrangement of the sub-arrays in the irregular array.
  • Specific implementations include but are not limited to different arrangements of photodetector units, regular arrangement of photodetector units, different electrical connections, arrays of photodetector units of different sizes, etc., which will be further exemplified below in conjunction with Figures 6a to 6f sexual description.
  • the pattern shown in Figure 6a the arrangement of irregular photodetector units (the spacing between photodetector units is different and the arrangement is irregular), the size of the photosensitive surface of the photodetector unit is the same, and all the photodetector units in the irregular array have no Arranged in a straight line, the specific arrangement is adapted to the shape and area of the sub-array area, and the size of the photosensitive surface of the photodetector unit is consistent.
  • the pattern shown in Figure 6c regular photodetector unit arrangement (photodetector unit spacing is the same, arranged neatly in rows and columns), photodetector unit electric field is connected to all the photoelectric detectors in the irregular (that is, ring pattern) irregular array
  • the detector units are arranged in an axisymmetric pattern in rows and columns, the size of the photosensitive surface of the photodetector units is the same, the distance between the photodetector units is consistent, and the size and shape of the sub-arrays are divided by the electrical network.
  • photodetector units regular arrangement of photodetector units (photodetector units have the same spacing and are arranged neatly in rows and columns), and photodetector unit electrical field connections are irregular (ie honeycomb pattern).
  • the irregular array has at least one of the following characteristics:
  • At least two photodetector unit sub-arrays are combined, and the photosensitive surface of the irregular array formed by the photodetector unit sub-arrays presents an axisymmetric distribution;
  • the photogenerated current of the photodetector unit subarray is output by an electrical signal interface, and the number of electrical signal interfaces is equal to the number of photodetector unit subarrays, and is less than the number of photodetector units in the irregular array; the scale of the photodetector unit subarray is larger than 1;
  • the photodetector unit sub-array in the irregular array comprises at least two array patterns or areas;
  • the photodetector unit sub-array in the irregular array comprises at least two array scales (wherein, the array scale refers to the number of photodetector units in the photodetector unit subarray), the photoelectric detectors positioned at the edge of the irregular array Detector unit sub-array size ⁇ 2;
  • the photodetector unit subarray in the irregular array the photodetector unit subarray scale that is positioned at the irregular array central region is small, the photodetector unit subarray scale near the edge of the array is large, namely farther away from the array central region, The size of the photodetector unit sub-array increases;
  • the selection of the irregular pattern can be adapted in combination with the optical characteristics of the lens, and the size, pattern or area of the photodetector unit subarray in the irregular array may not be unique.
  • the signal processing device may further include a lens.
  • the lens is used to receive the initial optical signal from the light source, after the optical signal is processed by the lens (such as focusing processing, refraction processing, etc.), the obtained optical signal is projected into the array formed by N sub-arrays to form a light spot, The array formed by the N sub-arrays performs photoelectric conversion of the data carried by the light spot into an electrical signal, and then outputs it through one or more ports of the M ports.
  • the main function of the lens is to focus the optical signal emitted by the light source, and project the focused light spot to an irregular array.
  • the specific implementation methods include but are not limited to convex lens, lens group, metasurface lens, etc.
  • the lens can optionally be configured with a MEMS structure for adjusting the specific position and inclination of the lens.
  • the signal processing apparatus may further include one or more processors.
  • the processor shown in Figure 8a can be connected to M ports, communicate with the M ports through the link where "signal 1" in Figure 8a is located, and receive output from one or more of the M ports The electrical signal is decoded to determine the data carried by the optical signal.
  • the signal processing device shown in FIG. 7 further includes a processor; the processor is connected to the M output ports, and is used to receive the first electrical signal, and determine the signal carried by the first electrical signal based on the first electrical signal. data.
  • the processor shown in Figure 8a can be connected to the array formed by N sub-arrays, through the photodetector unit in the array formed by the N sub-arrays through the link where "signal 2" in Figure 8a is located Communication is performed to control the working mode of the photodetector units in the array formed by N sub-arrays.
  • the processor shown in Figure 8a can be connected to the mobile device corresponding to the lens (i.e. MEMS), and communicate with the mobile device corresponding to the lens through the link where "signal 3" in Figure 8a is located, to control A mobile device corresponding to the lens to control the orientation of the lens.
  • MEMS mobile device corresponding to the lens
  • the "processor" shown in Figure 8a may include multiple parts, such as the "control unit” and “analog to digital converter (ADC), digital signal processing” shown in Figure 8b wait.
  • ADC analog to digital converter
  • the "control unit” can be connected to M ports through the "ADC, digital signal processing” module and the “amplifier” module in turn, so as to realize the implementation corresponding to "signal 1" in Figure 8a.
  • the signal processing device shown in Figure 8a also includes an amplifier and a processor; one end of the amplifier is connected to the M output ports for receiving the first electrical signal, and the amplifier is used for signal amplification processing of the first electrical signal , to obtain a second electrical signal; the other end of the amplifier is connected to the processor for sending the second electrical signal to the processor; the processor is used for determining the second electrical signal carried by the second electrical signal based on the second electrical signal data.
  • control unit can be connected to the photodetector units and MEMS in the array formed by N sub-arrays, respectively, to realize the corresponding implementations of "signal 2 and signal 3" in Figure 8a.
  • the photodetector unit in this application will be further introduced below.
  • the photodetector unit includes at least a photodetector, wherein the photodetector may include a photodiode (photodiode, PD), a PIN photodiode (PIN photodiode, PIN-PD), an avalanche photodiode (avalanche photo diode, APD) in one or more.
  • the photodetector may include a photodiode (photodiode, PD), a PIN photodiode (PIN photodiode, PIN-PD), an avalanche photodiode (avalanche photo diode, APD) in one or more.
  • the photodetector unit includes a switch and a photodetector.
  • the photodetector unit includes a switch and a photodetector, so that the working mode of the photodetector can be configured through the switch, thereby, based on the control of the scheduling strategy of the photodetectors contained in the N photodetector unit sub-arrays, Applications of high-precision Angle-of-Arrival (Angle-of-Arrival, AOA) estimation and/or positioning can be realized.
  • Angle-of-Arrival AOA
  • a switch is used to control the photodetector to be turned on or off. Therefore, based on the setting of the switch in the photodetector unit, it can be controlled to be turned on or off to realize switching of the working mode of the photodetector.
  • the number of photodetectors in the on-state in the subarray of the photodetector unit can be controlled by a switch in the photodetector unit, and the signal processing device can realize The control of the size of the signal receiving gain, based on the control of the number, can also realize the control of the signal receiving sensitivity of the signal processing device.
  • the photodetector polling control of the photodetector unit sub-array can be controlled through the switch in the photodetector unit, combined with the lens The control realizes the control of the incident angle of the light signal, and realizes the positioning or perception of the light source.
  • the photodetector polling control of the photodetector unit sub-array can be controlled through the switch in the photodetector unit, combined with the adjacent The optical signal received by the photodetector unit sub-array realizes the path tracking of the light source.
  • the photodetector unit further includes an inductor and an impedance circuit.
  • the photodetector unit may also include an inductance and an impedance circuit in addition to a switch and a photodetector, so that a circuit unit is formed when the inductance is connected to the photodetector, and the output impedance of the circuit unit is the same as
  • the inductor is associated with the photodetector and has relatively small reflection to ensure that the input and output impedance of the photodetector unit is close to the default input and output impedance.
  • the output impedance of the circuit unit is related to the inductance and impedance circuit, and can also have a relatively small reflection to ensure that the input and output impedance of the photodetector unit Close to the default input and output impedance.
  • the default input and output impedance may be 50 ohms (ohm), or other values, which are not limited here.
  • the difference between the impedance of the photodetector and the impedance of the impedance circuit is smaller than a threshold.
  • the difference between the impedance of the photodetector and the impedance of the impedance circuit is smaller than the threshold value, that is, the impedance of the photodetector is the same or similar to the impedance of the impedance circuit.
  • the input and output impedance produced by the photodetector unit when the inductance and the photodetector are connected, and the input and output impedance produced by the photodetector unit when the inductance and the impedance circuit are connected are the same or similar, so that During the switching process, ensure that the photodetector unit sub-array has constant or similar electrical characteristics.
  • the switch is used to control the photodetector to be connected to the inductance and to control the impedance circuit to be disconnected from the inductance, or the switch is used to control the photodetector to be disconnected from the inductance and control the impedance circuit to be connected to the inductance Pass.
  • the device further includes a controller, the controller is used to control the photodetector to be connected to the inductance through the switch and to control the impedance circuit to be disconnected from the inductance; or, the controller is used to control the inductance through the switch The photodetector is disconnected from the inductance and the impedance circuit is controlled to be connected to the inductance.
  • the "controller” may be the aforementioned “processor” in FIG. 8a or the “control unit” in FIG. 8b, and achieve corresponding technical effects, which will not be repeated here.
  • a single photodetector unit may include an inductor "denoted as L/2", a switch “denoted as Switch”, a photodetector “denoted as PD”, and an impedance circuit "denoted as C".
  • the subarray can be expressed as shown in Figure 10 Method to realize.
  • FIG. 10 in addition to including y photodetector units, other optional components may also be included.
  • FIG. 10 it also includes a “termination” located on the far left.
  • This "termination” can also be called an RF terminal.
  • FIG 10 it also includes the "RF load (RF load)" located on the far right, that is, the amplifier mentioned above, whose function is to convert the current signals generated by y photodetector units (that is, the “i 1 , i 2 ... i y-1 , i y ”) is used as the input of the amplifier, and the output after amplification is "i out " in the figure.
  • RF load RF load
  • the processor in the signal processing device can control the gain adjustment of the irregular array or the AoA estimation mode, and the processor can also control the working mode of the photodetector units in the sub-array . At the same time, optionally, the processor can also control the MEMS in azimuth and elevation.
  • the area covered by the optical signal includes a target photodetector unit subarray in the N photodetector unit subarrays; the processor is also used to control the target photodetector unit subarray to
  • the number of photodetector units to which the optical signal is subjected to photoelectric conversion processing is a variable value.
  • the processor can be used to control the number of photodetector units in the target photodetector unit sub-array that performs photoelectric conversion processing on the optical signal, so that the signal can also be realized based on the control of the number.
  • the signal receiving gain of the processing device is controlled.
  • the control of the signal receiving sensitivity of the signal processing device is realized based on the control of the quantity.
  • all the PDs in the sub-array 1 i.e. the sub-array of the target photodetector unit
  • all the PDs in the sub-array 1 can SNR, using the procedure shown in Table 1, adjust the receive gain of Subarray 1.
  • PD on is defined as the switch controls the PD branch to be connected and the impedance circuit is disconnected
  • PD off is defined as the switch controls the PD
  • the branch circuit is opened and the impedance circuit is closed.
  • switch_4 switch_3 switch_2 switch_1 Gain_1 PD on PD off PD off PD off Gain_2 PD on PD on PD off PD off Gain_3 PD on PD on PD on PD off Gain_4 PD on PD on PD on PD on PD on
  • the processor in the signal processing device is further configured to, at the first moment, determine that the area covered by the optical signal includes the first photodetector unit subarray in the N photodetector unit subarrays Array;
  • the processor is also used to sequentially control the photodetector units in the first photodetector unit sub-array to perform photoelectric conversion processing on the optical signal at different times after the first moment to obtain a third electrical signal.
  • the third electrical signal is used to determine the first azimuth angle of the light source generating the optical signal;
  • the processor is further configured to, at a second time after a different time after the first time, move the lens through a mobile device, and determine that the area covered by the optical signal includes the first of the N photodetector unit sub-arrays Two photodetector unit sub-arrays;
  • the processor is also used to sequentially control the photodetector units in the second photodetector unit sub-array to perform photoelectric conversion processing on the optical signal at different times after the second moment to obtain a fourth electrical signal.
  • the fourth electrical signal is used to determine the second azimuth angle of the light source that generates the optical signal;
  • the processor is also used to determine the distance between the light source of the light signal and the device based on the first azimuth angle and the second azimuth angle.
  • the area covered by the optical signal may include one or more photodetector unit subarrays in the N photodetector unit subarrays, and correspondingly, the photodetector unit corresponding to the first photodetector unit subarray
  • the number of sub-arrays can be one or more.
  • the number of photodetector unit sub-arrays corresponding to the second photodetector unit sub-array may also be one or more.
  • part or all of the area covered by the optical signal may still be located in the first photodetector unit sub-array, and correspondingly, the second photodetector unit sub-array
  • the included photodetector units may be a subset of the photodetector units included in the first photodetector unit sub-array; or, the photodetector units included in the second photodetector unit sub-array may be the same as the first
  • the photodetector units included in the photodetector unit subarray have the same part; or, the photodetector units included in the second photodetector unit subarray may be the same as the photodetector units included in the first photodetector unit subarray.
  • the detector unit is completely different.
  • the processor in the signal processing device can also adjust the lens (such as the position of the lens, the orientation of the lens, etc.), according to the corresponding electrical signal generated by the optical signal processed by the lens at different times, combined with the lens Relevant parameters (such as the focus position, the moving distance of the focus on the focal plane, etc.), calculate the distance from the light source to the signal processing device to achieve high-precision AOA positioning.
  • the lens such as the position of the lens, the orientation of the lens, etc.
  • the lens Relevant parameters such as the focus position, the moving distance of the focus on the focal plane, etc.
  • the photodetector units in the sub-array 2 i.e. the target photodetector unit sub-array
  • the photodetector unit that the light spot occupies is judged, (as shown in Figure 11b , assuming that the shape covered by the spot is a triangle, corresponding to PD_1, PD_2, PD_3 in the figure), combined with the optical path of the lens, reversely calculate the position ⁇ of the light source (high-precision AOA); after that, adjust the lens position (optionally, not Changing the distance between the lens and the array plane (translation or rotation), re-judging the sub-array occupied by the spot, and estimating the new orientation ⁇ ; finally, combining the lens, the moving distance of the focus on the focal plane, and the orientation to calculate the relative position of the light source to the receiver (such as distance, AOA, etc.).
  • sub-array 2 containing 4 photodetector units only one basic unit is in PD on mode at each moment, that is, polling of the basic units in the sub-array is turned on as shown in Table 2.
  • the specific basic unit covered by the light spot is judged; then, the AoA information of the light source is obtained in combination with the optical path of the lens.
  • the processor in the signal processing device is further configured to determine that the area covered by the optical signal includes the third photodetector unit subarray in the N photodetector unit subarrays; the processor is also for controlling the fourth photodetector unit sub-array adjacent to the third photodetector unit sub-array to receive the optical signal to obtain a fifth electrical signal; the processor is also used for determining the The movement path of the light source of the optical signal.
  • the position where the light signal generated by the light source irradiates on the N sub-arrays of photodetector units may move correspondingly, and the processor can realize the Path tracking of movement of light sources.
  • the photodetector units in sub-array 1 are turned on sequentially, and the photodetector units occupied by the spot are judged, such as PD_1, PD_2, and PD_3 in the figure; then, the photodetector units near PD_1, PD_2, and PD_3 It needs to be turned on (flashing according to a certain frequency), and it is judged in real time whether it is covered by a light spot, and the non-adjacent photodetector unit is closed; after that, after the light spot covers a new photodetector unit, the adjacent photodetector unit of the new photodetector unit needs to Turn on to realize the motion path tracking of the light source.
  • the light spot pattern formed after the optical signal passes through the lens divides the photodetector unit array into multiple sub-arrays, and one or more sub-arrays output an electrical signal, which can greatly reduce the electrical signal. Interface scale, while improving array receiver sensitivity.
  • the photodetector unit introduces a switch and an impedance circuit to ensure that the port impedance of the photodetector unit sub-array is consistent during the mode switching process, and the inductance in the photodetector unit avoids the linear addition of the capacitive impedance of multiple photodetector units , which can maintain the sub-array structure with good bandwidth.
  • the photodetector units in the sub-array can be controlled independently, which can further determine the incoming wave direction of the light source for AoA estimation, and support positioning and tracking and other scene applications.
  • the N photodetector unit sub-arrays are located on the same plane.
  • the N sub-arrays of photodetector units include K sub-arrays of photodetector units and P sub-arrays of photodetector units, and both K and P are greater than or equal to 1. Integer, and the sum of the K and the P is less than or equal to the N; wherein, the projection of the photosensitive surface formed by the photodetectors in the K photodetector unit subarrays on the first plane is the same as that of the P photodetectors The plane formed by the projection of the photosensitive surface formed by the photodetectors in the unit sub-array on the first plane is continuous.
  • the N photodetector unit subarrays at least include K photodetector unit subarrays and P photodetector unit subarrays, wherein the photodetectors in the K photodetector unit subarrays form
  • the projection of the photosensitive surface on the first plane is continuous with the plane formed by the projection of the photosensitive surface formed by the photodetectors in the P photodetector unit sub-arrays on the first plane.
  • the photosensitive surface formed by the photodetectors in the K photodetector unit subarrays is complementary to the photosensitive surface formed by the photodetectors in the P photodetector unit subarrays.
  • different photodetector unit sub-arrays receive light signals together, and the photosensitive surfaces corresponding to different photodetector unit sub-arrays are complementary, so as to reduce blind areas between different photosensitive surfaces formed by different photodetector unit sub-arrays.
  • first plane is any plane.
  • the photodetector units in the K photodetector unit subarrays are located on the second plane
  • the photodetector units in the P photodetector unit subarrays are located on the third plane
  • the second plane and The third plane is not coplanar.
  • the included angle between the second plane and the third plane is 90° to 150°.
  • the included angle between the second plane and the third plane is 90°.
  • FIG. 12 it is described by taking an included angle between the second plane and the third plane as 90° as an example.
  • K photodetector unit sub-arrays correspond to K ports, and K photodetector unit sub-arrays are located on a vertical plane;
  • P photodetector unit sub-arrays correspond to P port, and the P sub-arrays of photodetector units are located on the horizontal plane.
  • the obliquely placed half mirror divides the beam focused by the lens into two beams of reflection and transmission, which are received by two vertically placed irregular arrays.
  • two irregular arrays are used for optical signal reception and processing, wherein the two irregular arrays are placed perpendicular to each other, and the photosensitive surfaces of the two irregular arrays are complementary, that is, the photosensitive surfaces of the two irregular arrays are in a certain plane
  • the projection forms a continuous, complete photosensitive surface without blind spots.
  • the N photodetector unit subarrays further include Q photodetector unit subarrays, where Q is an integer greater than or equal to 1, and the K, the P, and the Q The sum of is less than or equal to the N; wherein, the Q photodetector unit sub-arrays are located on multiple planes, the multiple planes are not coplanar with the second plane, and the multiple planes are not coplanar with the third plane .
  • the N photodetector unit subarrays may also include Q photodetector unit subarrays, wherein the Q The photodetector unit sub-arrays are located on multiple planes, the multiple planes are not coplanar with the second plane, and the multiple planes are not coplanar with the third plane.
  • the multiple planes where the Q photodetector unit sub-arrays are located can improve the detection effect.
  • the included angle between at least one of the multiple planes where the Q photodetector unit sub-arrays are located and the second plane is 120° to 150°. Further optionally, the included angle between any one of the multiple planes where the Q photodetector unit sub-arrays are located and the second plane is 120° to 150°.
  • the included angle between at least one of the multiple planes where the Q photodetector unit sub-arrays are located and the third plane is 120° to 150°. Further optionally, the angle between any one of the multiple planes where the Q photodetector unit sub-arrays are located and the third plane is 120° to 150°.
  • the projection of the photosensitive surface formed by the photodetectors in the K photodetector unit subarrays on a certain plane is the same as the photosensitive surface formed by the photodetectors in the Q photodetector unit subarrays.
  • the plane formed by the projection on the plane is continuous, that is, the photosensitive surface formed by the photodetectors in the K photodetector unit subarrays and the photosensitive surface formed by the photodetectors in the Q photodetector unit subarrays are Complementary.
  • the projection of the photosensitive surface formed by the photodetectors in the P photodetector unit subarrays on a certain plane is in the same plane as the photosensitive surface formed by the photodetectors in the Q photodetector unit subarrays.
  • the plane formed by the projection on is continuous, that is, the photosensitive surface formed by the photodetectors in the P photodetector unit subarrays is complementary to the photosensitive surface formed by the photodetectors in the Q photodetector unit subarrays. of.
  • the angle between the second plane and the third plane is 90° as an example for illustration, and, in FIG. 13a, “K photodetectors Unit sub-array”, “P photodetector unit sub-arrays”, and “Q photodetector unit sub-arrays” are represented in darker gray scale.
  • the total number of PD sub-arrays is 2n as an example.
  • the side view of the implementation shown in FIG. 13a can also be represented by the method shown in FIG. 13b. In FIG.
  • the number of multiple planes where Q photodetector unit sub-arrays are located is three as an example, that is, respectively Denoted as "Q sub-arrays of photodetector units (1)", “Q sub-arrays of photodetector units (2)" and "Q sub-arrays of photodetector units (3)" in FIG. 13b.
  • the main difference is that the irregular array is a non-planar structure.
  • the detector unit sub-array is inclined inward at a certain angle. Therefore, while reducing the occurrence of photosensitive blind spots, when the incident angle of the light beam output by the light source is relatively large, since the Q photodetector unit sub-arrays are inclined to the inside, the number of photodetector units covered by the light spot is reduced, the detection effect is improved, and the AoA estimation accuracy at large angles of incidence.
  • the device further includes X photodetector unit sub-arrays
  • the X photodetector unit sub-arrays are located outside the area where the N photodetector unit sub-arrays are located, and the photosensitive surface of the photodetectors in the X photodetector unit sub-arrays is larger than the N photodetector units The photosensitive surface of the photodetector in the subarray.
  • the X photodetector units may be called a narrowband PD, and the subarray of N photodetector units may be called a broadband PD.
  • the X photodetector unit sub-arrays are located on multiple planes, and the multiple planes are not coplanar with the second plane, and the multiple planes are not coplanar with the third plane.
  • the included angle between at least one of the multiple planes where the X photodetector unit sub-arrays are located and the second plane is 150° to 180°. Further optionally, the angle between any one of the multiple planes where the X photodetector unit sub-arrays are located and the second plane is 150° to 180°.
  • the included angle between at least one of the multiple planes where the X photodetector unit sub-arrays are located and the third plane is 150° to 180°. Further optionally, the angle between any one of the multiple planes where the X photodetector unit sub-arrays are located and the third plane is 150° to 180°.
  • the difference from the previous embodiments is that a narrowband PD sub-array is arranged around the irregular array, such as the four trapezoidal parts in FIG. 14 , to expand the light-receiving area of the array. Therefore, through the peripheral narrow-band PD sub-array, the irregular array area is expanded, a larger range of lens movement is supported, the receiving range of the light spot is improved, and the AoA positioning accuracy under this structure is improved.
  • the present application also provides a signal processing device, including a plurality of arrays, at least one of the arrays includes N photodetector unit subunits in any possible implementation as shown in Fig. 3 to Fig. 14 array, and M output ports respectively connected to the N sub-arrays of photodetector units.
  • At least one of the plurality of arrays includes N photodetector unit sub-arrays as shown in Figures 3 to 14, and is connected to the M output ports of the N photodetector unit sub-arrays respectively.
  • the at least one array further includes at least one item of lens, controller, amplifier, processor, etc. as shown in the aforementioned first aspect, and achieves corresponding technical effects, which will not be described in detail here.
  • binocular configuration and its implementation process can be realized as shown in Figure 15.
  • the AOA correlation between sub-arrays can be reduced, and the positioning accuracy can be improved; and the implementation of the binocular configuration can widen the distance between the two irregular arrays, improve the positioning accuracy based on AoA, and the two complementary irregular arrays can reduce blind spots .
  • any one of the multiple arrays includes N photodetector unit sub-arrays as shown in Figures 3 to 14, and the N photodetector unit sub-arrays are connected to the N photodetector unit sub-arrays respectively.
  • M output ports are connected to the N photodetector unit sub-arrays respectively.
  • the photodetector unit sub-arrays contained in other arrays except the at least one array among the plurality of arrays are different from the first aspect or any possible implementation manner of the first aspect N photodetector unit sub-arrays in .
  • the present application also provides a signal receiver, which includes a signal processing device as shown in FIGS. 3 to 14 .
  • the present application also provides a signal processing device, which includes a light source (or called a transmitter, a signal transmitter, an optical signal transmitter, etc.), and a signal processing device as shown in FIG. 3 to FIG. 14 .
  • a light source or called a transmitter, a signal transmitter, an optical signal transmitter, etc.
  • a signal processing device as shown in FIG. 3 to FIG. 14 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Electromagnetism (AREA)
  • Signal Processing (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Optical Communication System (AREA)

Abstract

本申请提供了一种信号处理装置,该信号处理装置具备通信及定位感知功能,用于使得光电探测器阵列的复杂度得以降低。该装置包括N个光电探测器单元子阵,以及分别连接于该N个光电探测器单元子阵的M个输出端口;其中,该N个光电探测器单元子阵中的至少两个光电探测器单元子阵不同,该N个光电探测器单元子阵中的至少一个光电探测器单元子阵包含的光电探测器单元数量大于或等于2,N为大于或等于2的整数,M为小于或等于N的整数;该N个光电探测器单元子阵中的光电探测器单元用于将光信号进行光电转换处理,得到第一电信号;该M个输出端口用于输出该第一电信号。

Description

一种信号处理装置
本申请要求于2022年01月30日提交中国国家知识产权局,申请号为202210114343.5,发明名称为“一种信号处理装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线技术领域,尤其涉及一种信号处理装置。
背景技术
无线光通信技术是无线通信技术中的关键领域之一,其中,无线光通信技术具有可用带宽大、发射天线小、抗电磁干扰等优势。工业界、学术界在室内短距及室外远距通信等场景都有相应的系统方案,并积极开展系统级测试论证及关键技术探索。
目前,无线光通信的实现过程中,一般是通过信号接收机中的光电探测器阵列对光信号进行光电转换得到电信号,以实现通信。随着技术的发展,利用光信号(如:可见光、近红外光等)进行高精度定位和感知也是一种典型的应用场景,即该信号接收机所接收的光信号除了承载通信数据之外,该信号接收机所接收的光信号还可以承载定位数据或感知数据。在该光电探测器阵列中,包含有多个光电探测器以及与多个光电探测器一一对应的电信号输出端口,使得信号接收机获得每一个光电探测器得到的电信号。
然而,上述实现方式中,由于需要为每一个光电探测器一一设置相应的电信号输出端口,导致光电探测器阵列的复杂度高。
发明内容
本申请第一方面提供了一种信号处理装置,应用于光信号处理领域,该信号处理装置可以将光信号进行光电转换处理以得到电信号。其中,该光信号可以用于承载多种数据,例如通信数据、定位数据等。具体地,该装置包括N个光电探测器单元子阵,以及分别连接于该N个光电探测器单元子阵的M个输出端口;其中,该N个光电探测器单元子阵中的至少两个光电探测器单元子阵不同,该N个光电探测器单元子阵中的至少一个光电探测器单元子阵包含的光电探测器单元数量大于或等于2,N为大于或等于2的整数,M为小于或等于N的整数;该N个光电探测器单元子阵中的光电探测器单元用于将光信号进行光电转换处理,得到第一电信号;该M个输出端口用于输出该第一电信号。
基于上述技术方案,在该信号处理装置中,光电探测器单元子阵数量为N,连接于N个光电探测器单元子阵的输出接口的数量为M,且M为小于或等于N的整数,即输出接口的数量小于或等于光电探测器子阵的数量。此外,该N个光电探测器单元子阵中的至少一个光电探测器单元子阵包含的光电探测器单元数量大于或等于2。换言之,该输出接口的数量小于光电探测器的数量,从而,无需为每一个光电探测器一一设置相应的电信号输出端口,使得光电探测器阵列复杂度得以降低。
此外,由于该N个光电探测器单元子阵中的至少两个光电探测器单元子阵不同,使得 不同光电探测器单元子阵中的光电探测器单元的排布更为灵活。
需要说明的是,本申请所涉及的光电探测器可以包括光电二极管(photodiode,PD)、PIN光电二极管(PIN photodiode,PIN-PD)、雪崩光电二极管(avalanche photo diode,APD)中的一项或多项。
应理解,M为小于或等于N的整数。其中,在M为等于N的整数的情况下,N个光电探测器单元子阵与M个输出端口一一对应;在M为小于N的整数的情况下,N个光电探测器单元子阵中存在至少两个光电探测器单元子阵对应于M个输出端口中的同一个输出端口。
在第一方面的一种可能的实现方式中,该N个光电探测器单元子阵中的至少两个光电探测器单元子阵不同包括以下至少一项:
该N个光电探测器单元子阵中的至少两个光电探测器单元子阵的形状不同;或,
该N个光电探测器单元子阵中的至少两个光电探测器单元子阵的面积不同;或,
该N个光电探测器单元子阵中的至少两个光电探测器单元子阵包含的光电探测器单元数量不同;或,
该N个光电探测器单元子阵中的至少两个光电探测器单元子阵包含的光电探测器的感光面的面积不同;或,
该N个光电探测器单元子阵中的至少两个光电探测器单元子阵包含的光电探测器单元之间的间距(或稀疏程度)不同。
基于上述技术方案,在信号处理装置中的N个光电探测器单元子阵中,至少两个光电探测器单元子阵的形状、面积、包含的光电探测器单元数量、包含的光电探测器的感光面的面积、包含的光电探测器单元之间的间距中的至少一项是不同。由于在实际应用中,光信号可能不是均匀照射在N个光电探测器单元子阵中的,可以依据应用场景对光电探测器单元子阵进行灵活配置。
应理解,本申请涉及的“照射”也可以替换为聚焦、投射、覆盖等。
在第一方面的一种可能的实现方式中,该N个光电探测器单元子阵组成的阵列的感光面呈轴对称分布。
基于上述技术方案,该N个光电探测器单元子阵组成的阵列的感光面呈轴对称分布,使得该信号处理装置在该轴的一侧的某个角度所接收的光信号对应的处理能力与该信号处理装置在该轴的另一侧的该角度所接收的光信号对应的处理能力相同或相近。
在第一方面的一种可能的实现方式中,该光电探测器单元包括光电探测器。
在第一方面的一种可能的实现方式中,该光电探测器单元包括开关、光电探测器。
基于上述技术方案,光电探测器单元包括开关和光电探测器,使得光电探测器的工作模式可通过该开关配置,从而,基于对N个光电探测器单元子阵包含的光电探测器的调度策略的控制,可以实现高精度到达角度(Angle-of-Arrival,AOA)估计和/或定位的应用。
可选地,开关用于控制该光电探测器的接通或断开。
在第一方面的一种可能的实现方式中,该光电探测器单元还包括电感和阻抗电路。
基于上述技术方案,该光电探测器单元除了包括开关和光电探测器之外,还可以包括电感和阻抗电路,使得该电感与光电探测器接通的情况下形成一个电路单元,该电路单元 的输出阻抗与电感和光电探测器相关,具备比较小的反射,以确保该光电探测器单元的输入输出阻抗接近默认的输入输出阻抗。类似地,该电感与阻抗电路接通的情况下形成一个电路单元,该电路单元的输出阻抗与电感和阻抗电路相关,也能够具备比较小的反射,以确保该光电探测器单元的输入输出阻抗接近默认的输入输出阻抗。
可选地,该默认的输入输出阻抗可以为50欧姆(ohm),或者其它的取值,此处不做限定。
可选地,开关用于控制光电探测器与该电感接通并控制该阻抗电路与该电感断开,或,开关用于控制光电探测器与该电感断开并控制该阻抗电路与该电感接通。
进一步可选地,该装置还包括控制器,该控制器用于通过该开关控制光电探测器与该电感接通并控制该阻抗电路与该电感断开;或,该控制器用于通过该开关控制该光电探测器与该电感断开并控制该阻抗电路与该电感接通。
在第一方面的一种可能的实现方式中,该光电探测器的阻抗与该阻抗电路的阻抗的差值小于阈值。
基于上述技术方案,由于该光电探测器的阻抗与该阻抗电路的阻抗的差值小于阈值,即光电探测器的阻抗与该阻抗电路的阻抗相同或相近。使得该电感与光电探测器接通的情况下光电探测器单元所产生的输入输出阻抗,以及,该电感与阻抗电路接通的情况下光电探测器单元所产生的输入输出阻抗相同或相近,使得在开关切换过程中,确保光电探测器单元子阵具备恒定或相近的电特性。
可选地,该差值为0。
在第一方面的一种可能的实现方式中,该N个光电探测器单元子阵位于同一平面。
在第一方面的一种可能的实现方式中,该N个光电探测器单元子阵包括K个光电探测器单元子阵和P个光电探测器单元子阵,该K和该P均为大于或等于1的整数,且该K和该P的和小于或等于该N;其中,该K个光电探测器单元子阵中的光电探测器形成的感光面在第一平面上的投影与该P个光电探测器单元子阵中的光电探测器形成的感光面在该第一平面上的投影形成的平面是连续的。
基于上述技术方案,该N个光电探测器单元子阵至少包括K个光电探测器单元子阵和P个光电探测器单元子阵,其中,该K个光电探测器单元子阵中的光电探测器形成的感光面在第一平面上的投影与该P个光电探测器单元子阵中的光电探测器形成的感光面在该第一平面上的投影形成的平面是连续的。换言之,该K个光电探测器单元子阵中的光电探测器形成的感光面与该P个光电探测器单元子阵中的光电探测器形成的感光面是互补的。从而,使得不同光电探测器单元子阵共同接收光信号,且不同光电探测器单元子阵所对应的感光面互补,以减少不同光电探测器单元子阵所形成的不同感光面之间的盲区。
应理解,第一平面为任一平面。
在第一方面的一种可能的实现方式中,该K个光电探测器单元子阵中的光电探测器单元位于第二平面,该P个光电探测器单元子阵中的光电探测器单元位于第三平面,且该第二平面与该第三平面不共面。
可选地,该第二平面与该第三平面之间的夹角为90°到150°。
可选地,该第二平面与该第三平面之间的夹角为90°。
在第一方面的一种可能的实现方式中,该N个光电探测器单元子阵还包括Q个光电探测器单元子阵,其中,Q为大于或等于1的整数,且该K、该P以及该Q的和小于或等于该N;其中,该Q个光电探测器单元子阵位于多个平面,该多个平面不与该第二平面共面,且该多个平面不与该第三平面共面。
基于上述技术方案,N个光电探测器单元子阵除了包括K个光电探测器单元子阵和P个光电探测器单元子阵之外,还可以包括Q个光电探测器单元子阵,其中,该Q个光电探测器单元子阵位于多个平面,该多个平面不与该第二平面共面,且该多个平面不与该第三平面共面。使得Q个光电探测器单元子阵所在的多个平面能够改善探测效果。
可选地,Q个光电探测器单元子阵所在的多个平面中的至少一个平面与第二平面之间的夹角为120°到150°。进一步可选地,Q个光电探测器单元子阵所在的多个平面中的任意一个平面与第二平面之间的夹角为120°到150°。
可选地,Q个光电探测器单元子阵所在的多个平面中的至少一个平面与第三平面之间的夹角为120°到150°。进一步可选地,Q个光电探测器单元子阵所在的多个平面中的任意一个平面与第三平面之间的夹角为120°到150°。
可选地,该K个光电探测器单元子阵中的光电探测器形成的感光面在某个平面上的投影与该Q个光电探测器单元子阵中的光电探测器形成的感光面在该平面上的投影形成的平面是连续的,即该K个光电探测器单元子阵中的光电探测器形成的感光面与该Q个光电探测器单元子阵中的光电探测器形成的感光面是互补的。类似地,该P个光电探测器单元子阵中的光电探测器形成的感光面在某个平面上的投影与该Q个光电探测器单元子阵中的光电探测器形成的感光面在该平面上的投影形成的平面是连续的,即该P个光电探测器单元子阵中的光电探测器形成的感光面与该Q个光电探测器单元子阵中的光电探测器形成的感光面是互补的。
在第一方面的一种可能的实现方式中,该装置还包括X个光电探测器单元子阵;
该X个光电探测器单元子阵位于该N个光电探测器单元子阵所在区域之外,且该X个光电探测器单元子阵中的光电探测器的感光面大于该N个光电探测器单元子阵中的光电探测器的感光面。
可选地,X个光电探测器单元子阵位于多个平面,且该多个平面不与该第二平面共面,且该多个平面不与该第三平面共面。
可选地,X个光电探测器单元子阵所在的多个平面中的至少一个平面与第二平面之间的夹角为150°到180°。进一步可选地,X个光电探测器单元子阵所在的多个平面中的任意一个平面与第二平面之间的夹角为150°到180°。
可选地,X个光电探测器单元子阵所在的多个平面中的至少一个平面与第三平面之间的夹角为150°到180°。进一步可选地,X个光电探测器单元子阵所在的多个平面中的任意一个平面与第三平面之间的夹角为150°到180°。
在第一方面的一种可能的实现方式中,该装置还包括透镜;该透镜用于将所接收的初始光信号进行处理,得到该光信号,并向该N个光电探测器单元子阵输出该光信号。
在第一方面的一种可能的实现方式中,该装置还包括处理器;该处理器连接于该M个输出端口,用于接收该第一电信号,并基于该第一电信号确定该第一电信号所承载的数据。
可选地,该第一电信号所承载的数据包括通信数据和/或定位数据。
在第一方面的一种可能的实现方式中,该装置还包括放大器和处理器;该放大器的一端连接于该M个输出端口,用于接收该第一电信号,该放大器用于对该第一电信号进行信号放大处理,得到第二电信号;该放大器的另一端连接于该处理器,用于向该处理器发送该第二电信号;该处理器用于基于该第二电信号确定该第二电信号所承载的数据。
可选地,该第二电信号所承载的数据包括通信数据和/或定位数据。
在第一方面的一种可能的实现方式中,该光信号覆盖的区域包括该N个光电探测器单元子阵中的目标光电探测器单元子阵;该处理器还用于,控制该目标光电探测器单元子阵中对该光信号进行光电转换处理的光电探测器单元的数量为可变值。
基于上述技术方案,处理器可以用于控制该目标光电探测器单元子阵中对该光信号进行光电转换处理的光电探测器单元的数量,从而,基于对该数量的多少的控制还可以实现对该信号处理装置的信号接收增益大小的控制。此外,基于对该数量的多少的控制实现对该信号处理装置的信号接收灵敏度高低的控制。
在第一方面的一种可能的实现方式中,该处理器还用于,在第一时刻中,确定该光信号覆盖的区域包括该N个光电探测器单元子阵中的第一光电探测器单元子阵;
该处理器还用于,在第一时刻之后的不同时刻中,依次控制该第一光电探测器单元子阵中的光电探测器单元对该光信号进行光电转换处理,得到第三电信号,该第三电信号用于确定产生该光信号的光源的第一方位角;
该处理器还用于,在第一时刻之后的不同时刻之后的第二时刻中,通过移动装置移动该透镜,并确定该光信号覆盖的区域包括该N个光电探测器单元子阵中的第二光电探测器单元子阵;
该处理器还用于,在第二时刻之后的不同时刻中,依次控制该第二光电探测器单元子阵中的光电探测器单元对该光信号进行光电转换处理,得到第四电信号,该第四电信号用于确定产生该光信号的光源的第二方位角;
该处理器还用于基于该第一方位角和该第二方位角确定该光信号的光源与该装置之间的距离。
基于上述技术方案,处理器还可以通过对透镜(例如透镜的位置、透镜的朝向等)进行调整,依据在不同时刻下透镜所处理的光信号所产生的对应电信号,结合透镜相关参数(例如焦点位置、焦点在焦平面的移动距离等),推算光源至该信号处理装置的距离,以实现高精度AOA定位。
可选地,该移动装置包括微电机系统(Micro-Electro-Mechanical Systems,MEMS)。
在第一方面的一种可能的实现方式中,该处理器还用于,确定该光信号覆盖的区域包括该N个光电探测器单元子阵中的第三光电探测器单元子阵;该处理器还用于,控制与该第三光电探测器单元子阵邻近的第四光电探测器单元子阵接收该光信号,得到第五电信号;该处理器还用于,基于该第五电信号确定该光信号的光源的运动路径。
基于上述技术方案,光源在移动的过程中,光源所产生的光信号在N个光电探测器单元子阵上照射的位置可能会产生相应的移动,处理器可以依据该移动所产生的电信号的变化实现对光源的移动路径跟踪。
本申请第二方面提供了一种信号处理装置,包括多个阵列,该多个阵列中的至少一个阵列包括如第一方面或者第一方面的任意一种可能的实现方式中的N个光电探测器单元子阵,以及分别连接于该N个光电探测器单元子阵的M个输出端口。
应理解,该多个阵列中的至少一个阵列包括如第一方面或者第一方面的任意一种可能的实现方式中的N个光电探测器单元子阵,以及分别连接于该N个光电探测器单元子阵的M个输出端口之外,该至少一个阵列还包括如前述第一方面所示的透镜、控制器、放大器、处理器等至少一项,并实现相应的技术效果,此处不做赘述。
在第二方面的一种可能的实现方式中,该多个阵列中的任意一个阵列包括如第一方面或者第一方面的任意一种可能的实现方式中的N个光电探测器单元子阵,以及分别连接于该N个光电探测器单元子阵的M个输出端口。
在第二方面的一种可能的实现方式中,该多个阵列中除了该至少一个阵列之外的其他阵列所包含的光电探测器单元子阵不同于第一方面或者第一方面的任意一种可能的实现方式中的N个光电探测器单元子阵。
本申请第三方面提供了一种信号接收机,该信号接收机包括如第一方面或者第一方面的任意一种可能的实现方式中的信号处理装置,或,该信号接收机包括如第二方面或者第二方面的任意一种可能的实现方式中的信号处理装置。
本申请第四方面提供了一种信号处理设备,该信号处理设备包括光源(或称发射机、信号发射机、光信号发射机等),以及如第一方面或者第一方面的任意一种可能的实现方式中的信号处理装置。
其中,第二至第四方面及任一种可能实现方式所带来的技术效果可参见第一方面及任一种可能实现方式所带来的技术效果,此处不再赘述。
附图说明
图1为无线光通信(optical wireless communication,OWC)接收机的一个示意图;
图2为OWC接收机的另一个示意图;
图3为本申请提供的信号处理装置的一个示意图;
图4为本申请提供的信号处理装置中阵列图案的一个示意图;
图5为本申请提供的信号处理装置中阵列图案的一个示意图;
图6a为本申请提供的信号处理装置中阵列图案的一个示意图;
图6b为本申请提供的信号处理装置中阵列图案的一个示意图;
图6c为本申请提供的信号处理装置中阵列图案的一个示意图;
图6d为本申请提供的信号处理装置中阵列图案的一个示意图;
图6e为本申请提供的信号处理装置中阵列图案的一个示意图;
图6f为本申请提供的信号处理装置中阵列图案的一个示意图;
图7为本申请提供的信号处理装置的另一个示意图;
图8a为本申请提供的信号处理装置的另一个示意图;
图8b为本申请提供的信号处理装置的另一个示意图;
图9为本申请提供的信号处理装置中光电探测器单元的一个示意图;
图10为本申请提供的信号处理装置中子阵的电路的一个示意图;
图11a为本申请提供的信号处理装置的工作流程的一个示意图;
图11b为本申请提供的信号处理装置的工作流程的另一个示意图;
图11c为本申请提供的信号处理装置的工作流程的另一个示意图;
图11d为本申请提供的信号处理装置的工作流程的另一个示意图;
图12为本申请提供的信号处理装置的另一个示意图;
图13a为本申请提供的信号处理装置的另一个示意图;
图13b为本申请提供的信号处理装置的另一个示意图;
图14为本申请提供的信号处理装置的另一个示意图;
图15为本申请提供的信号处理装置的另一个示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。
在本申请的描述中,除非另有说明,“/”表示“或”的意思,例如,A/B可以表示A或B。本文中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。此外,“至少一个”是指一个或多个,“多个”是指两个或两个以上。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c;a和b;a和c;b和c;或a和b和c。其中a,b,c可以是单个,也可以是多个。
在本申请的描述中,“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。
本申请中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请中被描述为“示例性的”、“举例来说”或者“例如”的任何实施例或设计方案不应被解释为比其他实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”、“举例来说”或者“例如”等词旨在以具体方式呈现相关概念。
本申请中,除特殊说明外,各个实施例或实现方式之间相同或相似的部分可以互相参考。在本申请中各个实施例、以及各实施例中的各个实施方式/实施方法/实现方法中,如果没有特殊说明以及逻辑冲突,不同的实施例之间、以及各实施例中的各个实施方式/实施方法/实现方法之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例、以及各实施例中的各个实施方式/实施方法/实现方法中的技术特征根据其内在的逻辑关系可以 组合形成新的实施例、实施方式、实施方法或实现方法。以下所述的本申请实施方式并不构成对本申请保护范围的限定。
无线光通信技术是无线通信技术中的关键领域之一,区别于5~6吉赫兹(GHz)、60GHz以及太赫兹(THz)频段的无线通信系统,无线光通信技术具有可用带宽大、发射天线小、抗电磁干扰等优势。工业界、学术界在室内短距及室外远距通信等场景都有相应的系统方案,并积极开展系统级测试论证及关键技术探索。
高速无线光通信系统方案主要应用在单用户点对点、单输入单输出(single input single output,SISO)通信场景。为实现高速无线光通信,当前系统中的光源及光电探测器已经采用宽带器件,一般地,宽带光电探测器有效面积(active area)较小,直径为微米(um)量级。
另外,利用光波段(如:可见光、近红外等)进行高精度定位和感知也是一种典型的应用场景。尤其在未来下一代通信系统中,感知、定位甚至成像将成为一大新特性。当前已经有车载激光雷达、红外结构光、发光二极管(light-emitting diode,LED)阵列等多种商用硬件系统,应用在上述领域。其中,用于光定位和感知的无线光通信(optical wireless communication,OWC)接收机中典型的核心硬件,主要为互补金属氧化物半导体(complementary metal-oxide-semiconductor,CMOS)感光芯片或单光子雪崩二极管(single photon avalanche diode,SPAD)阵列,提供高分辨率、优越的成像质量和高灵敏度。下面将结合图1和图2对上述领域中所涉及的OWC接收机进行示例性描述。
一种OWC接收机的实现方式如图1所示,包括透镜1和宽带PD,以及透镜2和感光芯片。其中,光源所发出的光信号如图1的箭头所示,一路光信号经过透镜1之后投射在宽带PD上,用于实现数据通信;另一路光信号经过透镜2之后投射在感光芯片上,用于定位及成像。
在图1所示实现方式中,需要两套接收机系统分别实现定位感知及高速通信,系统复杂度高、小型化及提高集成度比较难,在成本上不具备优势。
另一种OWC接收机的实现方式如图2所示,包括透镜和PD阵列(或感光芯片)。其中,光源所发出的光信号如图2的箭头所示,光信号经过透镜之后投射在PD阵列,由PD阵列实现信号处理及定位,典型PD阵列方案为CMOS感光芯片、SPAD阵列等。
在图2所示实现方式中,需要采用CMOS感光芯片、SPAD阵列,器件帧率或带宽受限,不能够满足高速通信需求。
此外,无论是图1所示的宽带PD和感光芯片,还是图2所示PD阵列,均包含有数量较多的光电探测器,用于光电转换生成电信号。而在该光电探测器所形成的光电探测器阵列中,包含有多个光电探测器以及与多个光电探测器一一对应的电信号输出端口,使得信号接收机获得每一个光电探测器得到的电信号。
然而,当前OWC接收机系统中大规模PD阵列(CMOS感光芯片)带宽低,宽带PD阵列复杂度高规模受限,导致通信和定位感知无法硬件兼容这一问题尚未得到解决。此外,上述实现方式中,由于需要为每一个光电探测器一一设置相应的电信号输出端口,导致光电探测器阵列的复杂度高。
为此,本申请提供了一种信号处理装置,用于使能信号处理装置具备通信及定位感知功能,并且,使得光电探测器阵列的复杂度得以降低。
本申请提供的信号处理装置可以应用于无线光通信系统,尤其针对需要实时跟踪及动态高速通信的场景有独到的优势和竞争力,能够实时判断对端OWC发射机的AoA及位置,实时调整收发光束,保障在高速运动场景时的通信链路稳定可靠。
应理解,本申请所提供的信号处理装置可以应用于无线光信号处理过程所涉及的通信、定位、(光源)路径跟踪或者其它场景,此处不做限定。
本申请提供的信号处理装置的一个实现示意图如图3所示,包括N个光电探测器单元子阵,以及分别连接于该N个光电探测器单元子阵的M个输出端口;其中,该N个光电探测器单元子阵中的至少两个光电探测器单元子阵不同,该N个光电探测器单元子阵中的至少一个光电探测器单元子阵包含的光电探测器单元数量大于或等于2,N为大于或等于2的整数,M为小于或等于N的整数;该N个光电探测器单元子阵中的光电探测器单元用于将光信号进行光电转换处理,得到第一电信号;该M个输出端口用于输出该第一电信号。
具体地,在图3所示信号处理装置中,光电探测器单元子阵数量为N,连接于N个光电探测器单元子阵的输出接口的数量为M,且M为小于或等于N的整数,即输出接口的数量小于或等于光电探测器子阵的数量。此外,该N个光电探测器单元子阵中的至少一个光电探测器单元子阵包含的光电探测器单元数量大于或等于2。换言之,该输出接口的数量小于光电探测器的数量,从而,无需为每一个光电探测器一一设置相应的电信号输出端口,使得光电探测器阵列的复杂度得以降低。此外,由于该N个光电探测器单元子阵中的至少两个光电探测器单元子阵不同,使得不同光电探测器单元子阵中的光电探测器单元的排布更为灵活。
需要说明的是,本申请所涉及的光电探测器可以包括光电二极管(photodiode,PD)、PIN光电二极管(PIN photodiode,PIN-PD)、雪崩光电二极管(avalanche photo diode,APD)中的一项或多项。
应理解,图3及后文实现方式中,分别以圆形、三角形、菱形和六边形表示子阵1、子阵2、子阵N-1和子阵N,在实际应用中,不同子阵所采用的几何形状还可以是矩形、梯形、桶形、环形、蜂窝形或者是其他规则或不规则的图形,此处不做限定。此外,图3及后文实现方式中,以N个子阵所形成的阵列的形状为平行四边形为例进行说明,在实际应用中,N个子阵所形成的阵列的形状还可以为矩形、圆形或者是其他规则或不规则的图形,此处不做限定。
此外,M为小于或等于N的整数。其中,在M为等于N的整数的情况下,N个光电探测器单元子阵与M个输出端口一一对应;在M为小于N的整数的情况下,N个光电探测器单元子阵中存在至少两个光电探测器单元子阵对应于M个输出端口中的同一个输出端口。
下面将对N个子阵所形成的阵列的多种实现方式进行描述。
在前述图3所示实现方式中,该N个光电探测器单元子阵中的至少两个光电探测器单元子阵不同包括以下至少一项:
该N个光电探测器单元子阵中的至少两个光电探测器单元子阵的形状不同;或,
该N个光电探测器单元子阵中的至少两个光电探测器单元子阵的面积不同;或,
该N个光电探测器单元子阵中的至少两个光电探测器单元子阵包含的光电探测器单元数量不同;或,
该N个光电探测器单元子阵中的至少两个光电探测器单元子阵包含的光电探测器的感光面的面积不同;或,
该N个光电探测器单元子阵中的至少两个光电探测器单元子阵包含的光电探测器单元之间的间距(或稀疏程度)不同。
具体地,在信号处理装置中的N个光电探测器单元子阵中,至少两个光电探测器单元子阵的形状、面积、包含的光电探测器单元数量、包含的光电探测器的感光面的面积、包含的光电探测器单元之间的间距中的至少一项是不同。由于在实际应用中,光信号可能不是均匀照射在N个光电探测器单元子阵中的,可以依据应用场景对光电探测器单元子阵进行灵活配置。
应理解,本申请涉及的“照射”也可以替换为聚焦、投射、覆盖等。
以图4所示实现方式作为示例,相邻虚线所组成的闭合区域可以视为一个子阵,且该闭合区域内部的实心点可以表示“光电探测器单元”。以图3中N个子阵至少包括图4所指示的“子阵1,子阵2,...子阵10”为例。子阵3和子阵4对应的面积相同,子阵8和子阵9所对应的面积相同,而其它的子阵之间的面积均为不同的。由于投射在N个子阵上的光信号可以经过透镜处理,使得与透镜的焦平面相对平行(或者夹角较小)的光信号投射在图4所示阵列的中心区域,与透镜的焦平面相对不平行(或者夹角较大)的光信号投射在图4所示阵列的边缘区域,为此,可将靠近中心的区域的面积设置为较小而将靠近边缘的区域的面积设置为较大,以实现较高的信号感应的灵敏度,使得光电探测器单元在相同密度排布的情况下,实现较高的平均感知精度。
在一种可能的实现方式中,该N个光电探测器单元子阵组成的阵列的感光面呈轴对称分布。具体地,该N个光电探测器单元子阵组成的阵列的感光面呈轴对称分布,使得该信号处理装置在该轴的一侧的某个角度所接收的光信号对应的处理能力与该信号处理装置在该轴的另一侧的该角度所接收的光信号对应的处理能力相同或相近。
示例性的,请参阅图5,此处仍以N个光电探测器单元子阵所形成的阵列图案为图4所示图案为例。在图5中,以该阵列竖直方向上的轴线为例,“子阵1”与“子阵11”,“子阵2”与“子阵22”,“子阵3”与“子阵33”,“子阵4”与“子阵44”,“子阵5”与“子阵55”,“子阵6”与“子阵66”,均为轴对称的。
由上述实现过程可知,N个子阵中至少两个子阵是不同的,为此,N个子阵所形成的阵列也可以称为非规则阵列。其中,N个子阵所形成的非规则阵列主要是利用光信号在不同入射角度下形成的光斑图案,对非规则阵列中的子阵规模和排布方式进行设计。具体实现方式包括但不限于不同的光电探测器单元排布、规则的光电探测器单元排布不同的电连接、不同尺寸光电探测器单元形成的阵列等,下面将结合图6a至图6f进一步示例性描述。
如图6a所示图案:非规则的光电探测器单元排布(光电探测器单元间间距不同,排列无规律),光电探测器单元感光面大小一致,非规则阵列中的所有光电探测器单元没有排成 一条直线,具体排布适配子阵列区域的形状和面积,光电探测器单元感光面大小一致。
如图6b所示图案:规则的光电探测器单元排布(光电探测器单元间距相同,按照行列排列整齐),光电探测器单元电域连接非规则(即桶形图案)。
如图6c所示图案:规则的光电探测器单元排布(光电探测器单元间距相同,按照行列排列整齐),光电探测器单元电域连接非规则(即环形图案)非规则阵列中的所有光电探测器单元按行列排成轴对称图案,光电探测器单元感光面大小一致,光电探测器单元间间距一致,利用电网络划分子阵规模和形状。
如图6d所示图案:规则的光电探测器单元排布(光电探测器单元间距相同,按照行列排列整齐),光电探测器单元电域连接非规则(即蜂窝图案)。
如图6e所示图案:规则的光电探测器单元排布(光电探测器单元间距不同,按照行列排列整齐),光电探测器单元电域连接非规则(即矩形图案),采用不同尺寸光电探测器单元配合使用。
如图6f所示图案:规则的光电探测器单元排布(光电探测器单元间距不同,按照行列排列整齐),光电探测器单元电域连接非规则(即环形图案),采用不同尺寸光电探测器单元配合使用,非规则阵列中的所有光电探测器单元排成轴对称图案,中间区域子阵光电探测器单元感光面积大,光电探测器单元排解紧密,边缘区域子阵光电探测器单元感光面小,排列稀疏。
基于图6a至图6f所示实现方式,可以得出该非规则阵列具体如下至少一个特点:
a.至少两个光电探测器单元子阵列组合而成,光电探测器单元子阵列形成的所述非规则阵列感光面呈现轴对称分布;
b.光电探测器单元子阵列光生电流由一个电信号接口输出,电信号接口数量等于光电探测器单元子阵列数目,且小于非规则阵列中光电探测器单元数目;光电探测器单元子阵列规模大于1;
c.所述非规则阵列中的光电探测器单元子阵列,包含至少两种阵列图案或面积;
d.所述非规则阵列中的光电探测器单元子阵列,包含至少两种阵列规模(其中,阵列规模指光电探测器单元子阵列中光电探测器单元的数量),位于非规则阵列边缘的光电探测器单元子阵列规模≥2;
e.非规则阵列中的光电探测器单元子阵列,位于非规则阵列中心区域的光电探测器单元子阵列规模小,靠近阵列边缘的光电探测器单元子阵列规模大,即越远离阵列中心区域,光电探测器单元子阵列规模递增;
总之,非规则图案的选取可以结合透镜的光学特点进行适配,非规则阵列中光电探测器单元子阵列规模、图案或面积可以不唯一。
上面对图3所示信号处理装置中的N个子阵进行了描述,下面将结合更多的附图对该信号处理装置进一步介绍。
在一种可能的实现方式中,如图7所示,在图3所示实现方式的基础上,该信号处理装置还可以包括透镜。其中,该透镜用于接收来自光源的初始光信号,经过透镜对光信号 进行处理(例如聚焦处理、折射处理等)之后,所得到的光信号投射在N个子阵所形成的阵列中形成光斑,使得该N个子阵所形成的阵列对该光斑所承载的数据进行光电转换为电信号,再经过M个端口中的一个或多个端口进行输出。
可选地,透镜主要功能为对光源发出的光信号进行聚焦,并将聚焦形成的光斑投影至非规则阵列,具体实现方式包括但不限于凸透镜、透镜组、超表面透镜等。此外,该透镜可以可选配置MEMS结构,用于调整透镜的具体位置及倾角。
进一步地,如图8a所示,在图7所示实现方式的基础上,该信号处理装置还可以包括一个或多个处理器。
一种实现方式中,图8a所示处理器可以与M个端口相连接,通过图8a中“信号1”所在链路与M个端口进行通信,接收M个端口中的一个或多个端口输出的电信号,并对该电信号进行解码以确定光信号所承载的数据。换言之,图7所示信号处理装置还包括处理器;该处理器连接于该M个输出端口,用于接收该第一电信号,并基于该第一电信号确定该第一电信号所承载的数据。
另一种实现方式中,图8a所示处理器可以与N个子阵所形成的阵列相连接,通过图8a中“信号2”所在链路与N个子阵所形成的阵列中的光电探测器单元进行通信,用以控制N个子阵所形成的阵列中的光电探测器单元的工作模式。
另一种实现方式中,图8a所示处理器可以与透镜对应的移动装置(即MEMS)相连接,通过图8a中“信号3”所在链路与透镜对应的移动装置进行通信,用以控制与透镜对应的移动装置,以实现对透镜的方位控制。
作为一种可能的实现方式,图8a所示“处理器”可以包括多个部分,例如图8b所示“控制单元”以及“模数转换器(analog to digital converter,ADC)、数字信号处理”等。
如图8b所示,“控制单元”可以依次通过“ADC、数字信号处理”模块以及“放大器”模块连接至M个端口,用以实现图8a中“信号1”所对应的实现方式。换言之图8a所示信号处理装置还包括放大器和处理器;该放大器的一端连接于该M个输出端口,用于接收该第一电信号,该放大器用于对该第一电信号进行信号放大处理,得到第二电信号;该放大器的另一端连接于该处理器,用于向该处理器发送该第二电信号;该处理器用于基于该第二电信号确定该第二电信号所承载的数据。
如图8b所示,“控制单元”可以分别连接至N个子阵所形成的阵列中的光电探测器单元以及MEMS,用以分别实现图8a中“信号2和信号3”所对应的实现方式。
下面将对本申请中的光电探测器单元进一步介绍。
在一种可能的实现方式中,该光电探测器单元至少包括光电探测器,其中,光电探测器可以包括光电二极管(photodiode,PD)、PIN光电二极管(PIN photodiode,PIN-PD)、雪崩光电二极管(avalanche photo diode,APD)中的一项或多项。
可选地,该光电探测器单元包括开关、光电探测器。具体地,光电探测器单元包括开关和光电探测器,使得光电探测器的工作模式可通过该开关配置,从而,基于对N个光电 探测器单元子阵包含的光电探测器的调度策略的控制,可以实现高精度到达角度(Angle-of-Arrival,AOA)估计和/或定位的应用。
可选地,开关用于控制该光电探测器的接通或断开。从而,基于光电探测器单元中的开关的设置,可以控制接通或断开以实现光电探测器的工作模式的切换。
例如,在该信号处理装置用于通信场景的情况下,可以通过光电探测器单元中的开关控制光电探测器单元子阵中处于接通状态的光电探测器的数量,可以实现对该信号处理装置的信号接收增益大小的控制,基于对该数量的多少的控制也可以实现对该信号处理装置的信号接收灵敏度高低的控制。
又如,在该信号处理装置用于定位或感知场景的情况下,可以通过光电探测器单元中的开关对光电探测器单元子阵中的光电探测器轮询接通的控制,并结合透镜的控制实现对光信号的入射角度的控制,实现对光源的定位或感知。
又如,在该信号处理装置用于光源路径跟踪的场景的情况下,可以通过光电探测器单元中的开关对光电探测器单元子阵中的光电探测器轮询接通的控制,并结合邻近的光电探测器单元子阵所接收的光信号,实现对光源的路径跟踪。
在一种可能的实现方式中,该光电探测器单元还包括电感和阻抗电路。具体地,该光电探测器单元除了包括开关和光电探测器之外,还可以包括电感和阻抗电路,使得该电感与光电探测器接通的情况下形成一个电路单元,该电路单元的输出阻抗与电感和光电探测器相关,具备比较小的反射,以确保该光电探测器单元的输入输出阻抗接近默认的输入输出阻抗。类似地,该电感与阻抗电路接通的情况下形成一个电路单元,该电路单元的输出阻抗与电感和阻抗电路相关,也能够具备比较小的反射,以确保该光电探测器单元的输入输出阻抗接近默认的输入输出阻抗。
可选地,该默认的输入输出阻抗可以为50欧姆(ohm),或者其它的取值,此处不做限定。
可选地,该光电探测器的阻抗与该阻抗电路的阻抗的差值小于阈值。其中,由于该光电探测器的阻抗与该阻抗电路的阻抗的差值小于阈值,即光电探测器的阻抗与该阻抗电路的阻抗相同或相近。使得该电感与光电探测器接通的情况下光电探测器单元所产生的输入输出阻抗,以及,该电感与阻抗电路接通的情况下光电探测器单元所产生的输入输出阻抗相同或相近,使得在开关切换过程中,确保光电探测器单元子阵具备恒定或相近的电特性。
可选地,开关用于控制光电探测器与该电感接通并控制该阻抗电路与该电感断开,或,开关用于控制光电探测器与该电感断开并控制该阻抗电路与该电感接通。
进一步可选地,该装置还包括控制器,该控制器用于通过该开关控制光电探测器与该电感接通并控制该阻抗电路与该电感断开;或,该控制器用于通过该开关控制该光电探测器与该电感断开并控制该阻抗电路与该电感接通。其中,该“控制器”可以为前述图8a中的“处理器”或者图8b中的“控制单元”,并实现相应的技术效果,此处不做赘述。
示例性的,对于光电探测器单元的具体实现过程,可以通过图9所示方式实现。如图9所示,单个光电探测器单元可以包括电感“记为L/2”、开关“记为Switch”、光电探测器“记为PD”、阻抗电路“记为C”。其中,该光电探测器的阻抗与该阻抗电路的阻抗的差 值小于阈值,若该差值为0,如图9所示,可以记为“Z c=Z PD”。
以图9所示光电探测器单元的具体实现过程为例,N个子阵中的某一个子阵所包含的光电探测器单元的数量为y的情况下,该子阵可以表示为图10所示实现方式。
可选地,在图10中,除了包括y个光电探测器单元之外,还可以包括其它可选部件。
例如,如图10所示,还包括位于最左侧的“终端(termination)”,该“termination”也可以称为RF终端等,作用是用于吸收能量和防止RF信号从开放式或未使用的端口反射回来的元件,以便吸收入射到这些端口上的光生电流信号。
又如,如图10所示,还包括位于最右侧的“RF负载(RF load)”,即前文提及的放大器,作用是将y个光电探测器单元所产生的电流信号(即图中的“i 1,i 2...i y-1,i y”)作为该放大器的输入,经过放大处理后输出为图示中的“i out”。
上面介绍了本申请涉及的信号处理装置的组成部分,下面将对本申请提供的信号处理装置的工作流程进行示例性描述。
在一种可能的实现方式中,该信号处理装置中的处理器可以对非规则阵列增益调整或AoA估计模式进行控制,并且该处理器还可以对子阵中光电探测器单元的工作模式进行控制。同时,可选的,该处理器还可以对MEMS进行方位及俯仰的控制。
实现示例一、通信模式。
在该实现示例中,该光信号覆盖的区域包括该N个光电探测器单元子阵中的目标光电探测器单元子阵;该处理器还用于,控制该目标光电探测器单元子阵中对该光信号进行光电转换处理的光电探测器单元的数量为可变值。具体地,处理器可以用于控制该目标光电探测器单元子阵中对该光信号进行光电转换处理的光电探测器单元的数量,从而,基于对该数量的多少的控制还可以实现对该信号处理装置的信号接收增益大小的控制。此外,基于对该数量的多少的控制实现对该信号处理装置的信号接收灵敏度高低的控制。
如图11a所示实现示例,收到光斑的子阵1(即目标光电探测器单元子阵)中所有PD打开,进行高灵敏度接收;此后,子阵1中所有PD可以根据接收信号的功率及SNR,利用表1中所示的过程,调整子阵1的接收增益。
示例性的,以子阵1中包含有4个光电探测器单元为例,其中,PD1靠近放大器,PD on定义为开关控制PD支路接通且阻抗电路断开,PD off定义为开关控制PD支路断开且阻抗电路接通。
表1
  switch_4 switch_3 switch_2 switch_1
Gain_1 PD on PD off PD off PD off
Gain_2 PD on PD on PD off PD off
Gain_3 PD on PD on PD on PD off
Gain_4 PD on PD on PD on PD on
如表1所示,在最大增益时,4个开关均为PD on模式,增益调整过程中,根据增益 需求,优先将靠近放大器的子阵基本单元配置成PD off模式。可改善在增益调整过程中,子阵频率响应一致性。
实现示例二、AOA/定位模式。
在该实现示例中,该信号处理装置中的处理器还用于,在第一时刻中,确定该光信号覆盖的区域包括该N个光电探测器单元子阵中的第一光电探测器单元子阵;
该处理器还用于,在第一时刻之后的不同时刻中,依次控制该第一光电探测器单元子阵中的光电探测器单元对该光信号进行光电转换处理,得到第三电信号,该第三电信号用于确定产生该光信号的光源的第一方位角;
该处理器还用于,在第一时刻之后的不同时刻之后的第二时刻中,通过移动装置移动该透镜,并确定该光信号覆盖的区域包括该N个光电探测器单元子阵中的第二光电探测器单元子阵;
该处理器还用于,在第二时刻之后的不同时刻中,依次控制该第二光电探测器单元子阵中的光电探测器单元对该光信号进行光电转换处理,得到第四电信号,该第四电信号用于确定产生该光信号的光源的第二方位角;
该处理器还用于基于该第一方位角和该第二方位角确定该光信号的光源与该装置之间的距离。
需要说明的是,光信号覆盖的区域可以包括N个光电探测器单元子阵中的一个或多个光电探测器单元子阵,相应的,第一光电探测器单元子阵对应的光电探测器单元子阵的数量可以为一个或多个。类似地,第二光电探测器单元子阵对应的光电探测器单元子阵的数量也可以为一个或多个。
此外,在上述实现过程中,通过移动装置移动该透镜,该光信号覆盖的部分或全部区域也可能仍位于该第一光电探测器单元子阵,相应的,第二光电探测器单元子阵所包含的光电探测器单元有可能为第一光电探测器单元子阵所包含的光电探测器单元的子集;或者,第二光电探测器单元子阵所包含的光电探测器单元有可能与第一光电探测器单元子阵所包含的光电探测器单元存在相同的部分;或者,第二光电探测器单元子阵所包含的光电探测器单元有可能与第一光电探测器单元子阵所包含的光电探测器单元完全不同。
具体地,该信号处理装置中的处理器还可以通过对透镜(例如透镜的位置、透镜的朝向等)进行调整,依据在不同时刻下透镜所处理的光信号所产生的对应电信号,结合透镜相关参数(例如焦点位置、焦点在焦平面的移动距离等),推算光源至该信号处理装置的距离,以实现高精度AOA定位。
如图11b和图11c所示实现方式,收到光斑的子阵2(即目标光电探测器单元子阵)中的光电探测器单元依次打开,判断光斑占用的光电探测器单元,(如图11b中,假设光斑覆盖的形状为三角形,对应于图中的PD_1,PD_2,PD_3),结合透镜光路,逆向计算光源所处方位α(高精度AOA);此后,调整透镜位置(可选地,不改变透镜与阵列平面间距离平移或旋转),重新判断光斑占用的子阵,估算新的方位β;最后,结合透镜、焦点在焦平面的移动距离,以及方位推算光源至接收机的相对位置(例如距离、AOA等)。
可选地,以子阵2中包含有4个光电探测器单元为例,每个时刻仅有一个基本单元为PD on模式,即子阵内基本单元轮询打开如表2所示。根据每个基本单元输出的光生电流,判断光斑覆盖的具体基本单元;然后,结合透镜光路获得光源AoA信息。
表2
  switch_1 switch_2 switch_3 switch_4
PD_1 PD on PD off PD off PD off
PD_2 PD off PD on PD off PD off
PD_3 PD off PD off PD on PD off
PD_4 PD off PD off PD off PD on
实现示例三、跟踪模式。
在该实现示例中,该信号处理装置中的处理器还用于,确定该光信号覆盖的区域包括该N个光电探测器单元子阵中的第三光电探测器单元子阵;该处理器还用于,控制与该第三光电探测器单元子阵邻近的第四光电探测器单元子阵接收该光信号,得到第五电信号;该处理器还用于,基于该第五电信号确定该光信号的光源的运动路径。
具体地,光源在移动的过程中,光源所产生的光信号在N个光电探测器单元子阵上照射的位置可能会产生相应的移动,处理器可以依据该移动所产生的电信号的变化实现对光源的移动路径跟踪。
如图11d所示实现方式,子阵1中光电探测器单元依次打开,判断光斑占用的光电探测器单元,如图中PD_1,PD_2,PD_3;然后,PD_1,PD_2,PD_3附近的光电探测器单元需要打开(按照一定频率闪烁),实时判断是否被光斑覆盖,非邻近的光电探测器单元关闭;此后,光斑覆盖新的光电探测器单元后,新的光电探测器单元的邻近光电探测器单元需要打开,实现光源的运动路径跟踪。
基于前述图3至图11d所示技术方案,光信号经过透镜以后形成的光斑图案,对光电探测器单元阵列划分成多个子阵,一个或多个子阵输出一个电信号,可极大降低电信号接口规模,同时提高阵列接收机灵敏度。此外,光电探测器单元引入开关及阻抗电路,确保光电探测器单元子阵在模式切换过程中,端口阻抗一致,且光电探测器单元中电感避免多个光电探测器单元的容性阻抗线性相加,能够维持该子阵结构具备良好的带宽。子阵内光电探测器单元可独立控制,能够进一步确定光源的来波方向进行AoA估计,支持定位及跟踪等场景应用。
前述实施例中对信号处理装置的组成部分以及工作流程进行了介绍,下面将对信号处理装置所包含的N个光电探测器单元子阵的在空间上的排布进一步示例性描述。
在一种可能的实现方式中,该N个光电探测器单元子阵位于同一平面。
在另一种可能的实现方式中,该N个光电探测器单元子阵包括K个光电探测器单元子阵和P个光电探测器单元子阵,该K和该P均为大于或等于1的整数,且该K和该P的和小于或等于该N;其中,该K个光电探测器单元子阵中的光电探测器形成的感光面在第一 平面上的投影与该P个光电探测器单元子阵中的光电探测器形成的感光面在该第一平面上的投影形成的平面是连续的。
具体地,该N个光电探测器单元子阵至少包括K个光电探测器单元子阵和P个光电探测器单元子阵,其中,该K个光电探测器单元子阵中的光电探测器形成的感光面在第一平面上的投影与该P个光电探测器单元子阵中的光电探测器形成的感光面在该第一平面上的投影形成的平面是连续的。换言之,该K个光电探测器单元子阵中的光电探测器形成的感光面与该P个光电探测器单元子阵中的光电探测器形成的感光面是互补的。从而,使得不同光电探测器单元子阵共同接收光信号,且不同光电探测器单元子阵所对应的感光面互补,以减少不同光电探测器单元子阵所形成的不同感光面之间的盲区。
应理解,第一平面为任一平面。
可选地,该K个光电探测器单元子阵中的光电探测器单元位于第二平面,该P个光电探测器单元子阵中的光电探测器单元位于第三平面,且该第二平面与该第三平面不共面。
可选地,该第二平面与该第三平面之间的夹角为90°到150°。
可选地,该第二平面与该第三平面之间的夹角为90°。
示例性的,在图12中,以该第二平面与该第三平面之间的夹角为90°为例进行说明。如图12所示,此处假设K个光电探测器单元子阵对应于K个端口,且K个光电探测器单元子阵位于竖直平面上;P个光电探测器单元子阵对应于P个端口,且P个光电探测器单元子阵位于水平面上。倾斜放置的半透镜将透镜聚焦后的光束分成反射和透射两路光束,并由垂直放置的两个非规则阵列接收。从而,采用两个非规则阵列进行光信号接收及处理,其中两个非规则阵列相互垂直摆放,两个非规则阵列的感光面互补,即两个非规则阵列的感光面在某一个平面内的投影形成连续、完整、无盲区的感光面。
在另一种可能的实现方式中,该N个光电探测器单元子阵还包括Q个光电探测器单元子阵,其中,Q为大于或等于1的整数,且该K、该P以及该Q的和小于或等于该N;其中,该Q个光电探测器单元子阵位于多个平面,该多个平面不与该第二平面共面,且该多个平面不与该第三平面共面。
具体地,N个光电探测器单元子阵除了包括K个光电探测器单元子阵和P个光电探测器单元子阵之外,还可以包括Q个光电探测器单元子阵,其中,该Q个光电探测器单元子阵位于多个平面,该多个平面不与该第二平面共面,且该多个平面不与该第三平面共面。使得Q个光电探测器单元子阵所在的多个平面能够改善探测效果。
可选地,Q个光电探测器单元子阵所在的多个平面中的至少一个平面与第二平面之间的夹角为120°到150°。进一步可选地,Q个光电探测器单元子阵所在的多个平面中的任意一个平面与第二平面之间的夹角为120°到150°。
可选地,Q个光电探测器单元子阵所在的多个平面中的至少一个平面与第三平面之间的夹角为120°到150°。进一步可选地,Q个光电探测器单元子阵所在的多个平面中的任意一个平面与第三平面之间的夹角为120°到150°。
可选地,该K个光电探测器单元子阵中的光电探测器形成的感光面在某个平面上的投 影与该Q个光电探测器单元子阵中的光电探测器形成的感光面在该平面上的投影形成的平面是连续的,即该K个光电探测器单元子阵中的光电探测器形成的感光面与该Q个光电探测器单元子阵中的光电探测器形成的感光面是互补的。类似地,该P个光电探测器单元子阵中的光电探测器形成的感光面在某个平面上的投影与该Q个光电探测器单元子阵中的光电探测器形成的感光面在该平面上的投影形成的平面是连续的,即该P个光电探测器单元子阵中的光电探测器形成的感光面与该Q个光电探测器单元子阵中的光电探测器形成的感光面是互补的。
示例性的,在图13a中,以该第二平面与该第三平面之间的夹角为90°为例进行说明,并且,图13a中以较前的灰度表示“K个光电探测器单元子阵”,“P个光电探测器单元子阵”,以较深的灰度表示“Q个光电探测器单元子阵”。其中,图13a中以PD子阵数量总数为2n作为示例性说明。进一步地,图13a所示实现方式的侧视图还可以通过图13b所示方式表示,在图13b中,以Q个光电探测器单元子阵所在的多个平面数量为三个为例,即分别表示为图13b中的“Q个光电探测器单元子阵(1)”、“Q个光电探测器单元子阵(2)”和“Q个光电探测器单元子阵(3)”。
基于图13a和图13b所示实现方式可知,相比于图12中相互垂直的两个非规则阵列感光面互补的实现方式,主要区别点在于非规则阵列为非平面结构,图中Q个光电探测器单元子阵向内倾斜一定角度。从而,降低感光盲区的出现的同时,在光源输出的光束入射角度较大时,由于Q个光电探测器单元子阵向内部倾斜,减少光斑覆盖的光电探测器单数量,改善探测效果,能够提升大角度入射时AoA估计精度。
在另一种可能的实现方式中,该装置还包括X个光电探测器单元子阵;
该X个光电探测器单元子阵位于该N个光电探测器单元子阵所在区域之外,且该X个光电探测器单元子阵中的光电探测器的感光面大于该N个光电探测器单元子阵中的光电探测器的感光面。
可选地,由于该X个光电探测器单元子阵中的光电探测器的感光面大于该N个光电探测器单元子阵中的光电探测器的感光面,为此,X个光电探测器单元子阵可以称为窄带PD,该N个光电探测器单元子阵可以称为宽带PD。
可选地,X个光电探测器单元子阵位于多个平面,且该多个平面不与该第二平面共面,且该多个平面不与该第三平面共面。
可选地,X个光电探测器单元子阵所在的多个平面中的至少一个平面与第二平面之间的夹角为150°到180°。进一步可选地,X个光电探测器单元子阵所在的多个平面中的任意一个平面与第二平面之间的夹角为150°到180°。
可选地,X个光电探测器单元子阵所在的多个平面中的至少一个平面与第三平面之间的夹角为150°到180°。进一步可选地,X个光电探测器单元子阵所在的多个平面中的任意一个平面与第三平面之间的夹角为150°到180°。
示例性的,在图14中,与前述实施例不同的是,在非规则阵列的基础上外围配置窄带PD子阵列,如图14中的四个梯形部分,拓展阵列收光面积。从而,通过外围窄带PD子阵 列,拓展非规则阵列面积,支持较大范围的透镜移动,提升光斑接收范围,提升该结构下AoA定位精度。
本申请还提供了一种信号处理装置,包括多个阵列,该多个阵列中的至少一个阵列包括如图3至图14中的任意一种可能的实现方式中的N个光电探测器单元子阵,以及分别连接于该N个光电探测器单元子阵的M个输出端口。
应理解,该多个阵列中的至少一个阵列包括如图3至图14中的N个光电探测器单元子阵,以及分别连接于该N个光电探测器单元子阵的M个输出端口之外,该至少一个阵列还包括如前述第一方面所示的透镜、控制器、放大器、处理器等至少一项,并实现相应的技术效果,此处不做赘述。
示例性的,以“多个阵列”为两个阵列(均包括N个光电探测器单元子阵以及分别连接于该N个光电探测器单元子阵的M个输出端口)的实现方式为例,即双目配置,其实现过程可以如图15所示方式实现。从而,可以降低子阵间AOA的相关度,提高定位精度;并且双目配置的实现方式可以拉开两个非规则阵列间距离,提升基于AoA的定位精度,互补的两个非规则阵列减少盲区。
在一种可能的实现方式中,该多个阵列中的任意一个阵列包括如图3至图14中的N个光电探测器单元子阵,以及分别连接于该N个光电探测器单元子阵的M个输出端口。
在一种可能的实现方式中,该多个阵列中除了该至少一个阵列之外的其他阵列所包含的光电探测器单元子阵不同于第一方面或者第一方面的任意一种可能的实现方式中的N个光电探测器单元子阵。
本申请还提供了一种信号接收机,该信号接收机包括如图3至图14中的信号处理装置。
本申请还提供了一种信号处理设备,该信号处理设备包括光源(或称发射机、信号发射机、光信号发射机等),以及如图3至图14中的信号处理装置。
以上所述,以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (19)

  1. 一种信号处理装置,其特征在于,所述装置包括:
    N个光电探测器单元子阵,以及分别连接于所述N个光电探测器单元子阵的M个输出端口;其中,所述N个光电探测器单元子阵中的至少两个光电探测器单元子阵不同,所述N个光电探测器单元子阵中的至少一个光电探测器单元子阵包含的光电探测器单元数量大于或等于2,所述N为大于或等于2的整数,所述M为小于或等于所述N的整数;
    所述N个光电探测器单元子阵中的光电探测器单元用于将光信号进行光电转换处理,得到第一电信号;
    所述M个输出端口用于输出所述第一电信号。
  2. 根据权利要求1所述的装置,其特征在于,
    所述N个光电探测器单元子阵中的至少两个光电探测器单元子阵不同包括以下至少一项:
    所述N个光电探测器单元子阵中的至少两个光电探测器单元子阵的形状不同;或,
    所述N个光电探测器单元子阵中的至少两个光电探测器单元子阵的面积不同;或,
    所述N个光电探测器单元子阵中的至少两个光电探测器单元子阵包含的光电探测器单元数量不同;或,
    所述N个光电探测器单元子阵中的至少两个光电探测器单元子阵包含的光电探测器的感光面的面积不同;或,
    所述N个光电探测器单元子阵中的至少两个光电探测器单元子阵包含的光电探测器单元之间的间距不同。
  3. 根据权利要求1或2所述的装置,其特征在于,
    所述N个光电探测器单元子阵组成的阵列的感光面呈轴对称分布。
  4. 根据权利要求1至3任一项所述的装置,其特征在于,
    所述光电探测器单元包括开关、光电探测器。
  5. 根据权利要求4所述的装置,其特征在于,
    所述光电探测器单元还包括电感和阻抗电路。
  6. 根据权利要求5所述的装置,其特征在于,
    所述光电探测器的阻抗与所述阻抗电路的阻抗的差值小于阈值。
  7. 根据权利要求1至6任一项所述的装置,其特征在于,
    所述N个光电探测器单元子阵位于同一平面。
  8. 根据权利要求1至6任一项所述的装置,其特征在于,
    所述N个光电探测器单元子阵包括K个光电探测器单元子阵和P个光电探测器单元子阵,所述K和所述P均为大于或等于1的整数,且所述K和所述P的和小于或等于所述N;
    其中,所述K个光电探测器单元子阵中的光电探测器形成的感光面在第一平面上的投影与所述P个光电探测器单元子阵中的光电探测器形成的感光面在所述第一平面上的投影形成的平面是连续的。
  9. 根据权利要求8所述的装置,其特征在于,
    所述K个光电探测器单元子阵中的光电探测器单元位于第二平面,所述P个光电探测器单元子阵中的光电探测器单元位于第三平面,且所述第二平面与所述第三平面不共面。
  10. 根据权利要求9所述的装置,其特征在于,
    所述N个光电探测器单元子阵还包括Q个光电探测器单元子阵,其中,所述Q为大于或等于1的整数,且所述K、所述P以及所述Q的和小于或等于所述N;
    其中,所述Q个光电探测器单元子阵位于多个平面,所述多个平面不与所述第二平面共面,且所述多个平面不与所述第三平面共面。
  11. 根据权利要求1至10任一项所述的装置,其特征在于,
    所述装置还包括X个光电探测器单元子阵;
    所述X个光电探测器单元子阵位于所述N个光电探测器单元子阵所在区域之外,且所述X个光电探测器单元子阵中的光电探测器的感光面大于所述N个光电探测器单元子阵中的光电探测器的感光面。
  12. 根据权利要求1至11任一项所述的装置,所述装置还包括处理器;
    所述处理器连接于所述M个输出端口,用于接收所述第一电信号,并基于所述第一电信号确定所述第一电信号所承载的数据。
  13. 根据权利要求1至11任一项所述的装置,所述装置还包括放大器和处理器;
    所述放大器的一端连接于所述M个输出端口,用于接收所述第一电信号,所述放大器用于对所述第一电信号进行信号放大处理,得到第二电信号;
    所述放大器的另一端连接于所述处理器,用于向所述处理器发送所述第二电信号;
    所述处理器用于基于所述第二电信号确定所述第二电信号所承载的数据。
  14. 根据权利要求12或13所述的装置,所述光信号覆盖的区域包括所述N个光电探测器单元子阵中的目标光电探测器单元子阵;
    所述处理器还用于,控制所述目标光电探测器单元子阵中对所述光信号进行光电转换处理的光电探测器单元的数量为可变值。
  15. 根据权利要求12至14任一项所述的装置,
    所述处理器还用于,在第一时刻中,确定所述光信号覆盖的区域包括所述N个光电探测器单元子阵中的第一光电探测器单元子阵;
    所述处理器还用于,在第一时刻之后的不同时刻中,依次控制所述第一光电探测器单元子阵中的光电探测器单元对所述光信号进行光电转换处理,得到第三电信号,所述第三电信号用于确定产生所述光信号的光源的第一方位角;
    所述处理器还用于,在第一时刻之后的不同时刻之后的第二时刻中,通过移动装置移动所述透镜,并确定所述光信号覆盖的区域包括所述N个光电探测器单元子阵中的第二光电探测器单元子阵;
    所述处理器还用于,在第二时刻之后的不同时刻中,依次控制所述第二光电探测器单元子阵中的光电探测器单元对所述光信号进行光电转换处理,得到第四电信号,所述第四电信号用于确定产生所述光信号的光源的第二方位角;
    所述处理器还用于基于所述第一方位角和所述第二方位角确定所述光信号的光源与所述装置之间的距离。
  16. 根据权利要求12至15任一项所述的装置,
    所述处理器还用于,确定所述光信号覆盖的区域包括所述N个光电探测器单元子阵中的第三光电探测器单元子阵;
    所述处理器还用于,控制与所述第三光电探测器单元子阵邻近的第四光电探测器单元子阵接收所述光信号,得到第五电信号;
    所述处理器还用于,基于所述第五电信号确定所述光信号的光源的运动路径。
  17. 一种信号处理装置,其特征在于,包括多个阵列,所述多个阵列中的至少一个阵列包括如权利要求1至16任一项所述的N个光电探测器单元子阵,以及分别连接于所述N个光电探测器单元子阵的M个输出端口。
  18. 一种信号接收机,其特征在于,所述信号接收机包括如权利要求1至16任一项所述的信号处理装置,或,所述信号接收机包括如权利要求17所述的信号处理装置。
  19. 一种信号处理设备,其特征在于,所述信号处理设备包括光源;
    所述信号处理设备还包括如权利要求1至16任一项所述的信号处理装置,或,所述信号接收机包括如权利要求17所述的信号处理装置。
PCT/CN2022/141777 2022-01-30 2022-12-26 一种信号处理装置 WO2023142826A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210114343.5 2022-01-30
CN202210114343.5A CN116566499A (zh) 2022-01-30 2022-01-30 一种信号处理装置

Publications (1)

Publication Number Publication Date
WO2023142826A1 true WO2023142826A1 (zh) 2023-08-03

Family

ID=87470400

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/141777 WO2023142826A1 (zh) 2022-01-30 2022-12-26 一种信号处理装置

Country Status (2)

Country Link
CN (1) CN116566499A (zh)
WO (1) WO2023142826A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111198362A (zh) * 2018-11-19 2020-05-26 英飞凌科技股份有限公司 用于lidar接收器的具有交错的光电检测器阵列和模拟读出电路的多重检测器
CN113009548A (zh) * 2020-12-15 2021-06-22 深圳湾实验室 一种探测设备以及辐射方位测量方法
WO2021190260A1 (zh) * 2020-03-24 2021-09-30 上海禾赛科技股份有限公司 激光雷达的探测单元、激光雷达及其探测方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111198362A (zh) * 2018-11-19 2020-05-26 英飞凌科技股份有限公司 用于lidar接收器的具有交错的光电检测器阵列和模拟读出电路的多重检测器
WO2021190260A1 (zh) * 2020-03-24 2021-09-30 上海禾赛科技股份有限公司 激光雷达的探测单元、激光雷达及其探测方法
CN113009548A (zh) * 2020-12-15 2021-06-22 深圳湾实验室 一种探测设备以及辐射方位测量方法

Also Published As

Publication number Publication date
CN116566499A (zh) 2023-08-08

Similar Documents

Publication Publication Date Title
US11726205B2 (en) Light ranging device having an electronically scanned emitter array
JP6959316B2 (ja) 高速自由空間光通信
Hsu et al. Wireless communications for smart dust
EP1079550B1 (en) Space-division multiplex full-duplex local area network
CN107422336B (zh) 一种大视场大景深的变分辨率非扫描条纹管激光成像系统
Jungnickel et al. Electronic tracking for wireless infrared communications
EP3549274A1 (en) Retro-directive quasi-optical system
CN110838874B (zh) 一种支持高速多波束跟踪的移动光通信装置
WO2023142826A1 (zh) 一种信号处理装置
CN108828559B (zh) 激光雷达装置和激光雷达系统
WO2002067465A2 (en) Wireless infrared multi-spot diffusing communication system
CN112769480B (zh) 一种超大视场角的空间激光至光纤耦合装置及应用方法
Li et al. Design of non-imaging receiving system for large field of view lidar
Kirrbach et al. Introducing Advanced Freeform Optic Design to Li-Fi Technology.
CN212586558U (zh) 微脉冲偏振气溶胶激光雷达
CN111521993B (zh) 一种无源纳米天线阵列接收器及三维成像系统
Jivkova et al. Transceiver design concept for cellular and multispot diffusing regimes of transmission
CN211318165U (zh) 一种实现太赫兹透射和反射成像的一体化装置
US20030223764A1 (en) Receiver for diffused infrared wireless communications
CN111751828A (zh) 激光雷达系统
CN112532317A (zh) 基于多色可见光通信系统的光学天线
CN108833009A (zh) 多孔径空间光通信接收机及多孔径空间光通信系统
CN212694031U (zh) 激光雷达系统
CN116068532A (zh) 用于高光谱激光雷达的阵列选谱装置、系统及方法
CN116599599B (zh) 基于单光子探测技术的通信与跟踪一体化探测装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22923612

Country of ref document: EP

Kind code of ref document: A1