WO2023142380A1 - 一种车载人体信息获取方法、装置及车辆 - Google Patents

一种车载人体信息获取方法、装置及车辆 Download PDF

Info

Publication number
WO2023142380A1
WO2023142380A1 PCT/CN2022/103032 CN2022103032W WO2023142380A1 WO 2023142380 A1 WO2023142380 A1 WO 2023142380A1 CN 2022103032 W CN2022103032 W CN 2022103032W WO 2023142380 A1 WO2023142380 A1 WO 2023142380A1
Authority
WO
WIPO (PCT)
Prior art keywords
human
heartbeat
information
interval information
time axis
Prior art date
Application number
PCT/CN2022/103032
Other languages
English (en)
French (fr)
Inventor
毕圆浩
丁逢
张栋
姜长坤
陈鹤文
Original Assignee
中国第一汽车股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国第一汽车股份有限公司 filed Critical 中国第一汽车股份有限公司
Publication of WO2023142380A1 publication Critical patent/WO2023142380A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/0205Simultaneously evaluating both cardiovascular conditions and different types of body conditions, e.g. heart and respiratory condition
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/02438Detecting, measuring or recording pulse rate or heart rate with portable devices, e.g. worn by the patient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/02444Details of sensor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/08Detecting, measuring or recording devices for evaluating the respiratory organs
    • A61B5/0816Measuring devices for examining respiratory frequency
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6887Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient mounted on external non-worn devices, e.g. non-medical devices
    • A61B5/6893Cars
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/725Details of waveform analysis using specific filters therefor, e.g. Kalman or adaptive filters

Definitions

  • the present application relates to the technical field of vehicle-mounted vital signs acquisition, and in particular to a vehicle-mounted human body information acquisition method, a vehicle-mounted human body information acquisition device, and a vehicle.
  • a single UWB heart rate detection system is usually used for detection, but the detection error of a single UWB heart rate detection system is relatively large, and only the heart rate or the estimated value of the heart rate can be obtained, and the heartbeat interval cannot be obtained.
  • the object of the present invention is to provide a vehicle-mounted human body information acquisition method to at least solve one of the above technical problems.
  • One aspect of the present invention provides a method for acquiring vehicle body information
  • the vehicle-mounted human body information acquisition method includes:
  • the slow time axis human heartbeat interval information and the fast time axis human heartbeat interval information are obtained;
  • the vehicle-mounted human body information further includes human breathing interval information
  • the vehicle-mounted human body information acquisition method further includes:
  • the slow time axis human respiration interval information and the fast time axis human respiration interval information are obtained;
  • Respiration interval information is acquired according to the aligned respiration interval information and the respiration interval information of the human body of the three-axis sensor.
  • the acquisition of UWB human heartbeat information transmitted by UWB includes:
  • the UWB human heartbeat raw data matrix is filtered, so as to obtain the filtered human body heartbeat data matrix as UWB human heartbeat information.
  • the acquiring the slow time axis human heartbeat interval information and the fast time axis human heartbeat interval information according to the UWB human body heartbeat information includes:
  • the fast time axis human heartbeat interval information is acquired according to the fast time axis human heartbeat information.
  • the slow time axis human heartbeat interval information includes a sequence number and the slow time axis human heartbeat interval corresponding to the sequence number;
  • the fast time axis human heartbeat interval information includes a sequence number and the fast time axis human heartbeat interval corresponding to the sequence number;
  • the generating aligned heartbeat interval information according to the slow time axis human heartbeat interval information and the fast time axis human heartbeat interval information includes:
  • the three-axis sensor human heartbeat interval information includes a serial number and the three-axis sensor human heartbeat interval corresponding to the serial number;
  • the acquiring heartbeat interval information according to the aligned heartbeat interval information and the three-axis sensor human body heartbeat interval information includes:
  • the aligned heartbeat interval information and the human heartbeat interval information of the three-axis sensor are fused to obtain the heartbeat interval information.
  • the fusing the aligned heartbeat interval information and the three-axis sensor human body heartbeat interval information, so as to obtain the heartbeat interval information includes:
  • the heartbeat interval information is obtained through the weighted calculation formula of the heartbeat interval and the weight value.
  • the acquiring breathing interval information according to the aligned breathing interval information and the triaxial sensor human breathing interval information includes:
  • the respiratory interval information is obtained through the respiratory interval weighted calculation formula and the weight value.
  • the present application also provides a vehicle-mounted human body information acquisition device, the vehicle-mounted human body information acquisition device includes:
  • UWB human body heartbeat information acquisition module the UWB human body heartbeat information acquisition module is used to acquire UWB human body heartbeat information transmitted by UWB;
  • a three-axis sensor human heartbeat information acquisition module the three-axis sensor human heartbeat information acquisition module is used to acquire the three-axis sensor human heartbeat interval information transmitted by the three-axis acceleration sensor of the seat belt;
  • Slow time axis human heartbeat information acquisition module the slow time axis human heartbeat information acquisition module is used to acquire slow time axis human heartbeat interval information according to the UWB human heartbeat information;
  • Fast time axis human body heartbeat information acquisition module the fast time axis human body heartbeat information acquisition module is used to obtain fast time axis human heartbeat interval information according to the UWB human body heartbeat information;
  • Aligned heartbeat information acquisition module the aligned heartbeat information acquisition module is used to generate aligned heartbeat interval information according to the slow time axis human heartbeat interval information and fast time axis human heartbeat interval information;
  • a heartbeat interval information acquisition module the heartbeat interval information acquisition module is used to acquire heartbeat interval information according to the aligned heartbeat interval information and the three-axis sensor human body heartbeat interval information.
  • the present application also provides a vehicle, the vehicle comprising:
  • a seat belt three-axis acceleration sensor the seat belt three-axis acceleration sensor is installed on the seat belt, when the occupant wears a seat belt, the seat belt three-axis acceleration sensor is located at the chest of the occupant, It is used to obtain the occupant's three-axis sensor human heartbeat information and three-axis sensor human breathing information;
  • the UWB radar is located on the seat, and the UWB radar is used to obtain the UWB human body heartbeat information and UWB human breathing information of the occupant when the occupant is on the seat;
  • a vehicle-mounted human body information acquisition device is the vehicle-mounted human body information acquisition device as claimed in claim 9 .
  • This application combines ultra-wideband pulse radar (UWB) and acceleration sensor to collect the user's physiological signal to estimate the user's heart rate and respiratory rate, reduce the detection error caused by a single sensor, and improve the accuracy of heart rate detection in the vehicle scene; the application proposes Combining strategies, on the one hand, through the cross-correlation of multiple signals on the fast time axis, the matrix is obtained to extract physiological signals, and then combined with the signals extracted from the slow time axis to improve the accuracy of UWB detection.
  • UWB ultra-wideband pulse radar
  • the heartbeat signal and breathing signal obtained by the two sensors complement each other, and the accuracy of the detection results is improved through a combination of strategies; in addition, UWB is located on the driver's seat, which reduces the number of other things in the car compared to placing it in front of the driver. Personnel interference.
  • FIG. 1 is a schematic flowchart of a method for acquiring vehicle body information according to an embodiment of the present application.
  • FIG. 2 is a schematic diagram of electronic equipment used to implement the method for obtaining vehicle body information shown in FIG. 1 .
  • Fig. 3 is a system diagram of a vehicle-mounted human body information acquisition device according to an embodiment of the present application.
  • FIG. 1 is a schematic flowchart of a method for acquiring vehicle body information according to an embodiment of the present application.
  • the vehicle-mounted human body information includes human body heartbeat interval information and human body breathing interval information.
  • the vehicle-mounted human body information acquisition method as shown in Figure 1 includes:
  • Step 1 Obtain the UWB human heartbeat information transmitted by UWB and the three-axis sensor human heartbeat interval information transmitted by the three-axis acceleration sensor of the seat belt;
  • Step 2 Obtain the human heartbeat interval information on the slow time axis and the human heartbeat interval information on the fast time axis according to the UWB human heartbeat information;
  • Step 3 generate aligned heartbeat interval information according to the slow time axis human heartbeat interval information and the fast time axis human heartbeat interval information;
  • Step 4 Obtain heartbeat interval information according to the aligned heartbeat interval information and the three-axis sensor human heartbeat interval information.
  • the vehicle body information acquisition method further includes:
  • the slow time axis human respiration interval information and the fast time axis human respiration interval information are obtained;
  • Respiration interval information is acquired according to the aligned respiration interval information and the respiration interval information of the human body of the three-axis sensor.
  • This application combines ultra-wideband pulse radar (UWB) and acceleration sensor to collect the user's physiological signal to estimate the user's heart rate and respiratory rate, reduce the detection error caused by a single sensor, and improve the accuracy of heart rate detection in the vehicle scene; the application proposes Combining strategies, on the one hand, through the cross-correlation of multiple signals on the fast time axis, the matrix is obtained to extract physiological signals, and then combined with the signals extracted from the slow time axis to improve the accuracy of UWB detection.
  • UWB ultra-wideband pulse radar
  • the heartbeat signal and breathing signal obtained by the two sensors complement each other, and the accuracy of the detection results is improved through a combination of strategies; in addition, UWB is located on the driver's seat, which reduces the number of other things in the car compared to placing it in front of the driver. Personnel interference.
  • the acquisition of UWB human body heartbeat information transmitted by UWB includes:
  • the UWB human heartbeat raw data matrix is filtered, so as to obtain the filtered human body heartbeat data matrix as UWB human heartbeat information.
  • the adjacent echo signals with a time length of 10s to form a matrix (it can be understood that the time length can be changed according to your own needs, such as 12 seconds, 15 seconds, etc.), and select a low-pass with a cutoff frequency of 4Hz Filters remove noise.
  • the acquisition of UWB human breathing information transmitted by UWB includes:
  • the UWB human respiration raw data matrix is filtered, so as to obtain the filtered human respiration data matrix as UWB human respiration information.
  • adjacent echo signals with a time length of 10s are used to form a matrix (it can be understood that the time length can be changed according to one's own needs).
  • obtaining the slow time axis human heartbeat interval information and the fast time axis human heartbeat interval information according to the UWB human body heartbeat information includes:
  • the fast time axis human heartbeat interval information is acquired according to the fast time axis human heartbeat information.
  • the denoised human heartbeat data matrix is processed separately along the slow time axis and the fast time axis.
  • the slow time signal is delinearized, and then the respiratory signal is obtained through a band-pass filter of 0.1-0.8 Hz, and the human heartbeat information of the slow time axis is obtained through a band-pass filter of 0.8-4 Hz.
  • acquiring slow time axis human breathing interval information and fast time axis human breathing interval information according to UWB human breathing information includes:
  • the fast time axis human respiration interval information is acquired according to the fast time axis human respiration information.
  • the slow time axis human heartbeat interval information includes a serial number and the slow time axis human heartbeat interval corresponding to the serial number;
  • the fast time axis human heartbeat interval information includes a sequence number and the fast time axis human heartbeat interval corresponding to the sequence number.
  • the slow time axis human breathing interval information includes a serial number and the slow time axis human breathing interval corresponding to the serial number. It can be understood that each serial number forms an interval sequence;
  • the fast time axis human breathing interval information includes a sequence number and the fast time axis human breathing interval corresponding to the sequence number. It can be understood that each sequence number forms an interval sequence.
  • generating the aligned heartbeat interval information according to the human heartbeat interval information on the slow time axis and the human heartbeat interval information on the fast time axis includes:
  • the slow time axis human heartbeat interval information includes the following data:
  • the fast time axis human heartbeat interval information includes the following data:
  • the alignment heartbeat interval time and the serial number form an alignment heartbeat interval information, that is, the alignment heartbeat interval information is as follows:
  • generating the aligned breathing interval information according to the human breathing interval information on the slow time axis and the human breathing interval information on the fast time axis includes:
  • the slow time axis human breathing interval information includes the following data:
  • the fast time axis human breathing interval information includes the following data:
  • the aligned breathing interval time and the serial number form an aligned breathing interval information, that is, the aligned breathing interval information is as follows:
  • the three-axis sensor human body heartbeat interval information transmitted by the seat belt three-axis acceleration sensor and the three-axis sensor human respiratory interval information transmitted by the seat belt three-axis acceleration sensor are acquired in the following manner:
  • the heartbeat signals of the three directions of the three-axis acceleration sensor are fused by principal component analysis to obtain the human heartbeat information of the three-axis sensor.
  • the respiratory interval is obtained by obtaining the peak interval of the human respiratory information of the triaxial sensor, and the human heartbeat information of the triaxial sensor is processed by template matching.
  • the processed peak position represents the heartbeat position, and the peak interval is the heartbeat interval.
  • the heartbeat interval information of the human body of the three-axis sensor transmitted by the three-axis acceleration sensor of the seat belt and the breathing interval information of the human body of the three-axis sensor transmitted by the three-axis acceleration sensor of the seat belt can be obtained.
  • the three-axis sensor human body heartbeat interval information includes a serial number and the three-axis sensor human heartbeat interval corresponding to the serial number;
  • Obtaining the heartbeat interval information according to the aligned heartbeat interval information and the human body heartbeat interval information of the three-axis sensor includes:
  • the aligned heartbeat interval information and the human heartbeat interval information of the three-axis sensor are fused to obtain the heartbeat interval information.
  • the three-axis sensor human body breathing interval information includes a sequence number and the corresponding three-axis sensor human body breathing interval time;
  • Obtaining the breathing interval information according to the aligned breathing interval information and the human breathing interval information of the triaxial sensor includes:
  • the aligned breathing interval information and the human breathing interval information of the three-axis sensor are fused to obtain the breathing interval information.
  • the heartbeat interval obtained by the UWB and the three-axis acceleration sensor of the seat belt is synchronously aligned
  • the breathing interval obtained by the UWB and the three-axis acceleration sensor of the seat belt is synchronously aligned.
  • the heartbeat interval information obtained by fusing the aligned heartbeat interval information and the three-axis sensor human body heartbeat interval information includes:
  • the heartbeat interval information is obtained through the weighted calculation formula of the heartbeat interval and the weight value.
  • obtaining the respiratory interval information according to the aligned respiratory interval information and the human respiratory interval information of the three-axis sensor includes:
  • the respiratory interval information is obtained through the respiratory interval weighted calculation formula and the weight value.
  • the weights of the interval sequences of two kinds of heartbeats within 10s are calculated.
  • obtaining the respiratory interval information according to the aligned respiratory interval information and the human respiratory interval information of the three-axis sensor includes:
  • the respiratory interval information is obtained through the respiratory interval weighted calculation formula and the weight value.
  • the weight calculation method of the aligned breathing interval information or the aligned heartbeat interval information is as follows:
  • W UWB ( ⁇ UWB /avg UWB )
  • ⁇ UWB is the standard deviation of the interval sequence of the aligned heartbeat interval information or the standard deviation of the interval sequence of the aligned breathing interval information.
  • the interval sequence refers to the distance between each peak and its adjacent peaks when there are multiple peaks.
  • the serial number between time periods for example, there are 4 peaks in total, namely, A wave peak, B wave peak, C wave peak and D wave peak, then the time period between A wave peak and B wave peak is sequence 1, and between B wave peak and C wave peak
  • the time period of is sequence 2
  • the time period between peak C and peak D is sequence 3
  • avg UWB is the average number of aligned heartbeat interval information or the average number of aligned breathing interval information.
  • the weight is a 1 ; when W UWB is 0.1-0.2, the weight is a 2 ; when W UWB is greater than 0.2, the weight is a 3 .
  • the specific value of the weight can be calibrated by methods such as experiments or index simulation.
  • the W acceleration can also use the same formula as the W UWB above.
  • the weight is b 1 ; when the W acceleration is 0.1-0.2, the weight is b 2 ; when the W acceleration is greater than 0.2, The weight is b 3 .
  • weighted calculation of the combined interval taking the heartbeat interval as an example, taking the first heartbeat interval in the interval sequence of two heartbeat intervals (aligned heartbeat interval information and three-axis sensor human heartbeat interval information) as an example, for the interval sequence sequence
  • the calculation method of the combined heartbeat interval information is as follows:
  • the RR 1 heartbeat is the first heartbeat interval in the UWB heartbeat interval sequence (aligned heartbeat interval information) (that is, the aligned heartbeat interval information corresponding to the serial number 1)
  • the ai heartbeat is the weight calculated according to the UWB heartbeat interval sequence ( That is, the weight calculated by the above W UWB );
  • RR 2 heartbeat is the first heartbeat interval in the acceleration heartbeat interval sequence (three-axis sensor human heartbeat information) (that is, the corresponding three-axis sensor human heartbeat interval information with serial number 1)
  • b i heartbeat is the weight calculated according to the acceleration heartbeat interval sequence (that is, the weight calculated by the above-mentioned W UWB ).
  • the weighted calculation of the combined interval taking the breathing interval as an example, taking the first breathing interval in the two breathing interval sequences (aligned breathing information and the human breathing information of the three-axis sensor) as an example, combining each interval of the interval sequence,
  • the calculation method of the combined breathing interval is as follows:
  • RR 1 breath is the first breath interval in the UWB breath interval sequence
  • a i breath is the weight calculated according to the breath interval sequence
  • RR 2 breath is the first breath interval in the acceleration breath interval sequence
  • b i breath is based on Acceleration weight for calculation of breath interval sequences.
  • the present application also provides a vehicle-mounted human body information acquisition device, which includes a UWB human body heartbeat information acquisition module 101, a three-axis sensor human body heartbeat information acquisition module 102, and a slow time axis human body heartbeat information acquisition module.
  • a vehicle-mounted human body information acquisition device which includes a UWB human body heartbeat information acquisition module 101, a three-axis sensor human body heartbeat information acquisition module 102, and a slow time axis human body heartbeat information acquisition module.
  • the UWB human body heartbeat information acquisition module is used to acquire UWB human body heartbeat information transmitted by UWB; three-axis sensor human body
  • the heartbeat information acquisition module is used to acquire the three-axis sensor human heartbeat interval information transmitted by the three-axis acceleration sensor of the seat belt;
  • the slow time axis human heartbeat information acquisition module is used to acquire the slow time axis human heartbeat interval information according to the UWB human heartbeat information;
  • the time axis human heartbeat information acquisition module is used to acquire the fast time axis human heartbeat interval information according to the UWB human body heartbeat information;
  • the alignment heartbeat information acquisition module is used to obtain the human body heartbeat interval information on the slow time axis and the fast time axis human heartbeat interval information Generate aligned heartbeat interval information;
  • the heartbeat interval information acquisition module is used to acquire heartbeat interval information according to the aligned heart
  • the present application also provides a vehicle, the vehicle includes a seat belt, a three-axis acceleration sensor for the seat belt, a UWB radar, and a vehicle-mounted human body information acquisition device, the three-axis acceleration sensor for the seat belt is installed on the seat belt, and When the occupant wears a seat belt, the three-axis acceleration sensor of the seat belt is located at the chest position of the occupant, and is used to obtain the human heartbeat information of the occupant's three-axis sensor and the human body breathing information of the three-axis sensor; the UWB radar is located on the seat, The UWB radar is used to obtain the occupant's UWB human body heartbeat information and UWB human respiration information when the occupant is on the seat; the vehicle-mounted human body information acquisition device is the above-mentioned vehicle-mounted human body information acquisition device.
  • the processed heartbeat and breathing intervals can be saved by the data storage module, and then played back by calling the saved data through the host computer; it can also be connected to the vehicle or mobile phone through the wireless module, which can display the heartbeat signal in real time, extract heart rate.
  • the power management module uses a rechargeable battery to power the device, displays the current power level through the indicator light, and reminds the user to replace the battery or charge when the power is insufficient.
  • the present application also provides an electronic device, which includes a memory, a processor, and a computer program stored in the memory and capable of running on the processor.
  • the processor executes the computer program, the above method for acquiring human body information on a vehicle is realized.
  • the present application also provides a computer-readable storage medium, where a computer program is stored in the computer-readable storage medium, and when the computer program is executed by a processor, the above method for acquiring human body information on a vehicle can be realized.
  • Fig. 2 is an exemplary structural diagram of an electronic device capable of implementing a method for acquiring vehicle-mounted human body information according to an embodiment of the present application.
  • the electronic device includes an input device 501 , an input interface 502 , a central processing unit 503 , a memory 504 , an output interface 505 and an output device 506 .
  • the input interface 502, the central processing unit 503, the memory 504 and the output interface 505 are connected to each other through the bus 507, and the input device 501 and the output device 506 are respectively connected to the bus 507 through the input interface 502 and the output interface 505, and then connected to other components of the electronic device. Component connections.
  • the input device 504 receives input information from the outside, and transmits the input information to the central processing unit 503 through the input interface 502; the central processing unit 503 processes the input information based on computer-executable instructions stored in the memory 504 to generate output information, temporarily or permanently store the output information in the memory 504, and then transmit the output information to the output device 506 through the output interface 505; the output device 506 outputs the output information to the outside of the electronic device for the user to use.
  • the electronic device shown in FIG. 2 can also be implemented as including: a memory storing computer-executable instructions; and one or more processors, which can Realize the vehicle-mounted human body information acquisition method described in conjunction with FIG. 1 .
  • the electronic device shown in FIG. 2 may be implemented to include: a memory 504 configured to store executable program code; one or more processors 503 configured to run the executable code stored in the memory 504.
  • the program code is used to execute the method for obtaining vehicle-mounted human body information in the above-mentioned embodiment.
  • a computing device includes one or more processors (CPUs), input/output interfaces, network interfaces, and memory.
  • processors CPUs
  • input/output interfaces network interfaces
  • memory volatile and non-volatile memory
  • Memory may include non-permanent storage in computer readable media, in the form of random access memory (RAM) and/or nonvolatile memory such as read-only memory (ROM) or flash RAM. Memory is an example of computer readable media.
  • RAM random access memory
  • ROM read-only memory
  • flash RAM flash random access memory
  • Computer-readable media include both permanent and non-permanent, removable and non-removable media, which may be implemented by any method or technology for storage of information.
  • Information may be computer readable instructions, data structures, modules of a program, or other data.
  • Examples of computer storage media include, but are not limited to, phase change memory (PRAM), static random access memory (SRAM), dynamic random access memory (DRAM), other types of random access memory (RAM), read only memory (ROM), electrically erasable programmable read-only memory (EEPROM), flash memory or other memory technology, compact disc read-only memory (CD-ROM), data versatile disc (DVD) or other optical storage, A magnetic tape cartridge, tape disk storage or other magnetic storage device, or any other non-transmission medium, that may be used to store information that can be accessed by a computing device.
  • PRAM phase change memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • RAM random access memory
  • ROM read only memory
  • EEPROM electrically erasable programmable read-only
  • the embodiments of the present application may be provided as methods, systems or computer program products. Accordingly, the present application can take the form of an entirely hardware embodiment, an entirely software embodiment or an embodiment combining software and hardware aspects. Furthermore, the present application may take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.
  • a computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • each block in the flowchart or block diagram may represent a module, program segment, or part of code that includes one or more Executable instructions.
  • the functions noted in the block may occur out of the order noted in the figures. For example, two blocks identified in succession may, in fact, be executed substantially concurrently, or they may sometimes be executed in the reverse order, depending upon the functionality involved.
  • each block in the block diagrams and/or flowchart illustrations, and combinations of blocks in the block diagrams and/or overall flowchart illustrations can be implemented by a dedicated hardware-based system that performs the specified functions or operations. implemented, or may be implemented by a combination of special purpose hardware and computer instructions.
  • the processor referred to in this embodiment may be a central processing unit (Central Processing Unit, CPU), and may also be other general-purpose processors, digital signal processors (Digital Signal Processor, DSP), application specific integrated circuits (Application Specific Integrated Circuit , ASIC), off-the-shelf programmable gate array (Field-Programmable Gate Array, FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • a general-purpose processor may be a microprocessor, or the processor may be any conventional processor, or the like.
  • the memory can be used to store computer programs and/or modules, and the processor realizes various functions of the device/terminal device by running or executing the computer programs and/or modules stored in the memory and calling the data stored in the memory.
  • the memory can mainly include a program storage area and a data storage area, wherein the program storage area can store an operating system, at least one application program required by a function (such as a sound playback function, an image playback function, etc.); The data created by the use (such as audio data, phone book, etc.) and so on.
  • the memory can include high-speed random access memory, and can also include non-volatile memory, such as hard disk, internal memory, plug-in hard disk, smart memory card (Smart Media Card, SMC), secure digital (Secure Digital, SD) card , flash card (Flash Card), at least one magnetic disk storage device, flash memory device, or other volatile solid-state storage device.
  • non-volatile memory such as hard disk, internal memory, plug-in hard disk, smart memory card (Smart Media Card, SMC), secure digital (Secure Digital, SD) card , flash card (Flash Card), at least one magnetic disk storage device, flash memory device, or other volatile solid-state storage device.
  • the integrated module/unit of the device/terminal device is implemented in the form of a software function unit and sold or used as an independent product, it can be stored in a computer-readable storage medium.
  • the present invention realizes all or part of the processes in the methods of the above-mentioned embodiments, and can also be completed by instructing related hardware through computer programs, and the computer programs can be stored in a computer-readable storage medium.
  • the computer program includes computer program code, and the computer program code may be in the form of source code, object code, executable file or some intermediate form.
  • the computer readable medium may include: any entity or device capable of carrying computer program code, recording medium, U disk, removable hard disk, magnetic disk, optical disk, computer memory, read-only memory (ROM, Read-Only Memory), random access Memory (RAM, Random Access Memory), electrical carrier signal, telecommunication signal and software distribution medium, etc. It should be noted that the content contained in the computer readable medium can be appropriately increased or decreased according to the requirements of legislation and patent practice in the jurisdiction.
  • ROM Read-Only Memory
  • RAM Random Access Memory
  • electrical carrier signal telecommunication signal and software distribution medium, etc.
  • the embodiments of the present application may be provided as methods, systems or computer program products. Accordingly, the present application can take the form of an entirely hardware embodiment, an entirely software embodiment or an embodiment combining software and hardware aspects. Furthermore, the present application may take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.
  • a computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Surgery (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Physics & Mathematics (AREA)
  • Physiology (AREA)
  • Cardiology (AREA)
  • Pulmonology (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Psychiatry (AREA)
  • Signal Processing (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

本申请公开了一种车载人体信息获取方法、装置及车辆。所述车载人体信息获取方法包括:获取UWB传递的UWB人体心跳信息以及安全带三轴加速度传感器传递的三轴传感器人体心跳间隔信息;根据所述UWB人体心跳信息获取慢时间轴人体心跳间隔信息以及快时间轴人体心跳间隔信息;根据所述慢时间轴人体心跳间隔信息以及快时间轴人体心跳间隔信息生成对齐心跳间隔信息;根据所述对齐心跳间隔信息以及所述三轴传感器人体心跳间隔信息获取心跳间隔信息。本申请能够降低单一传感器导致的检测误差,提高车载场景下心率检测的准确度的效果;本申请将两种传感器获得心跳信号和呼吸信号互为补充,通过结合策略提升检测结果的准确性。

Description

一种车载人体信息获取方法、装置及车辆 技术领域
本申请涉及车载生命体征获取技术领域,具体涉及一种车载人体信息获取方法、车载人体信息获取装置以及车辆。
背景技术
随着汽车成为人们日常代步工具,人们使用汽车的频率和时间越来越多。驾驶员疲劳驾驶或突发疾病或导致交通事故发生的频率也越来越高,对驾驶员的生理参数(例如心率、呼吸频率)进行实时监测是十分有必要的。
现有技术中,生理信号采集装置大多都是通过佩戴或者短时间接触的方式进行生理信号采集,由于车内环境复杂,用户在车辆驾驶过程中的动作可能导致传感器与用户不完全接触,从而使心率检测结果不准确,无法反映用户的实际生理心率变化。
现有技术中,通常采用单一UWB心率检测系统进行检测,但是,单一UWB心率检测系统的检测误差较大,且只能得到心率或者心率的估计值,均不能得到心跳间隔。
因此,希望有一种技术方案来解决或至少减轻现有技术的上述不足。
发明内容
本发明的目的在于提供一种车载人体信息获取方法来至少解决上述的一个技术问题。
本发明的一个方面,提供一种车载人体信息获取方法,
所述车载人体信息获取方法包括:
获取UWB传递的UWB人体心跳信息以及安全带三轴加速度传感器传递的三轴传感器人体心跳间隔信息;
根据所述UWB人体心跳信息获取慢时间轴人体心跳间隔信息以及快时间轴人体心跳间隔信息;
根据所述慢时间轴人体心跳间隔信息以及快时间轴人体心跳间隔信息生成对齐心跳间隔信息;
根据所述对齐心跳间隔信息以及所述三轴传感器人体心跳间隔信息获取心跳间隔信息。
可选地,所述车载人体信息进一步包括人体呼吸间隔信息,所述车载人体信息获取方法进一步包括:
获取UWB传递的UWB人体呼吸信息以及安全带三轴加速度传感器传递的三轴传感器人体呼吸间隔信息;
根据所述UWB人体呼吸信息获取获取慢时间轴人体呼吸间隔信息以及快时间轴人体呼吸间隔信息;
根据所述慢时间轴人体呼吸间隔信息以及快时间轴人体呼吸间隔信息生成对齐呼吸间隔信息;
根据所述对齐呼吸间隔信息以及三轴传感器人体呼吸间隔信息获取呼吸间隔信息。
可选地,所述获取UWB传递的UWB人体心跳信息包括:
获取UWB传递的UWB人体心跳原始数据矩阵;
对所述UWB人体心跳原始数据矩阵进行滤波,从而获取滤波后的人体心跳数据矩阵作为UWB人体心跳信息。
可选地,所述根据所述根据所述UWB人体心跳信息获取慢时间轴人体心跳间隔信息以及快时间轴人体心跳间隔信息包括:
分解所述人体心跳信息,从而获取慢时间轴人体心跳信息以及快时间轴人体心跳信息;
根据所述慢时间轴人体心跳信息获取慢时间轴人体心跳间隔信息;
根据所述快时间轴人体心跳信息获取快时间轴人体心跳间隔信息。
可选地,所述慢时间轴人体心跳间隔信息包括序号以及该序号对应的慢时间轴人体心跳间隔时间;
所述快时间轴人体心跳间隔信息包括序号以及该序号对应的快时间轴人体心跳间隔时间;
所述根据所述慢时间轴人体心跳间隔信息以及快时间轴人体心跳间隔信息生成对齐心跳间隔信息包括:
将每两个具有相同序号的慢时间轴人体心跳间隔时间与快时间轴人体心跳间隔时间相加并取平均值,从而形成一个对齐心跳间隔时间,所述对齐心跳间隔时间与该序号组成一个对齐心跳间隔信息。
可选地,所述三轴传感器人体心跳间隔信息包括序号以及该序号对应的三轴传感器人体心跳间隔时间;
所述根据所述对齐心跳间隔信息以及所述三轴传感器人体心跳间隔信息获取心跳间隔信息包括:
将所述对齐心跳间隔信息与所述三轴传感器人体心跳间隔信息进行对齐;
融合所述对齐后的心跳间隔信息以及三轴传感器人体心跳间隔信息,从而获取心跳间隔信息。
可选地,所述融合所述对齐后的心跳间隔信息以及三轴传感器人体心跳间隔信息,从而获取心跳间隔信息包括:
分别获取对齐后的心跳间隔信息的权重值以及三轴传感器人体心跳间隔信息的权重值;
通过心跳间隔加权计算公式以及所述权重值获取心跳间隔信息。
可选地,所述根据所述对齐呼吸间隔信息以及三轴传感器人体呼吸间隔信息获取呼吸间隔信息包括:
分别获取对齐呼吸间隔信息的权重值以及三轴传感器人体呼吸间隔信息的权重值;
通过呼吸间隔加权计算公式以及所述权重值获取呼吸间隔信息。
本申请还提供了一种车载人体信息获取装置,所述车载人体信息获取装置包括:
UWB人体心跳信息获取模块,所述UWB人体心跳信息获取模块用于获取UWB传递的UWB人体心跳信息;
三轴传感器人体心跳信息获取模块,所述三轴传感器人体心跳信息获取模块用于获取安全带三轴加速度传感器传递的三轴传感器人体心跳间隔信息;
慢时间轴人体心跳信息获取模块,所述慢时间轴人体心跳信息获取模块用于根据所述UWB人体心跳信息获取慢时间轴人体心跳间隔信息;
快时间轴人体心跳信息获取模块,所述快时间轴人体心跳信息获取模块 用于根据所述UWB人体心跳信息获取快时间轴人体心跳间隔信息;
对齐心跳信息获取模块,所述对齐心跳信息获取模块用于根据所述慢时间轴人体心跳间隔信息以及快时间轴人体心跳间隔信息生成对齐心跳间隔信息;
心跳间隔信息获取模块,所述心跳间隔信息获取模块用于根据所述对齐心跳间隔信息以及所述三轴传感器人体心跳间隔信息获取心跳间隔信息。
本申请还提供了一种车辆,所述车辆包括:
安全带;
安全带三轴加速度传感器,所述安全带三轴加速度传感器安装在所述安全带上,在所述乘坐者佩戴安全带时,所述安全带三轴加速度传感器位于所述乘坐者胸前位置,用于获取乘坐者的三轴传感器人体心跳信息以及三轴传感器人体呼吸信息;
UWB雷达,所述UWB雷达位于座椅上,所述UWB雷达用于在乘坐者位于座椅上时获取所述乘坐者的UWB人体心跳信息以及UWB人体呼吸信息;
车载人体信息获取装置,所述车载人体信息获取装置为如权利要求9所述的车载人体信息获取装置。
有益效果
本申请通过结合超带宽脉冲雷达(UWB)、加速度传感器采集用户的生理信号估计用户的心率和呼吸频率,降低单一传感器导致的检测误差,提高车载场景下心率检测的准确度的效果;本申请提出结合策略,一方面通过快时间轴多个信号的互相关后得到矩阵提取生理信号,然后和慢时间轴提取的信号结合,提高UWB检测的准确性。另一方面将两种传感器获得心跳信号和呼吸信号互为补充,通过结合策略提升检测结果的准确性;此外,UWB位于驾驶员座椅上,相较于放置驾驶员面前,减少了车内其他人员干扰。
附图说明
图1是本申请一实施例的车载人体信息获取方法的流程示意图。
图2是用于实现图1所示的车载人体信息获取方法的电子设备示意图。
图3是本申请一实施例的车载人体信息获取装置的系统示意图。
具体实施方式
为使本申请实施的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行更加详细的描述。在附图中,自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。所描述的实施例是本申请一部分实施例,而不是全部的实施例。下面通过参考附图描述的实施例是示例性的,旨在用于解释本申请,而不能理解为对本申请的限制。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。下面结合附图对本申请的实施例进行详细说明。
图1是本申请一实施例的车载人体信息获取方法的流程示意图。
在本实施例中,车载人体信息包括人体心跳间隔信息以及人体呼吸间隔信息。
如图1所示的车载人体信息获取方法包括:
步骤1:获取UWB传递的UWB人体心跳信息以及安全带三轴加速度传感器传递的三轴传感器人体心跳间隔信息;
步骤2:根据所述UWB人体心跳信息获取慢时间轴人体心跳间隔信息以及快时间轴人体心跳间隔信息;
步骤3:根据所述慢时间轴人体心跳间隔信息以及快时间轴人体心跳间隔信息生成对齐心跳间隔信息;
步骤4:根据所述对齐心跳间隔信息以及所述三轴传感器人体心跳间隔信息获取心跳间隔信息。
在本实施例中,车载人体信息获取方法进一步包括:
获取UWB传递的UWB人体呼吸信息以及安全带三轴加速度传感器传递的三轴传感器人体呼吸间隔信息;
根据所述UWB人体呼吸信息获取获取慢时间轴人体呼吸间隔信息以及快时间轴人体呼吸间隔信息;
根据所述慢时间轴人体呼吸间隔信息以及快时间轴人体呼吸间隔信息生成对齐呼吸间隔信息;
根据所述对齐呼吸间隔信息以及三轴传感器人体呼吸间隔信息获取呼吸间隔信息。
本申请通过结合超带宽脉冲雷达(UWB)、加速度传感器采集用户的生理信号估计用户的心率和呼吸频率,降低单一传感器导致的检测误差,提高车载场景下心率检测的准确度的效果;本申请提出结合策略,一方面通过快 时间轴多个信号的互相关后得到矩阵提取生理信号,然后和慢时间轴提取的信号结合,提高UWB检测的准确性。另一方面将两种传感器获得心跳信号和呼吸信号互为补充,通过结合策略提升检测结果的准确性;此外,UWB位于驾驶员座椅上,相较于放置驾驶员面前,减少了车内其他人员干扰。
在本实施例中,所述获取UWB传递的UWB人体心跳信息包括:
获取UWB传递的UWB人体心跳原始数据矩阵;
对所述UWB人体心跳原始数据矩阵进行滤波,从而获取滤波后的人体心跳数据矩阵作为UWB人体心跳信息。
举例来说,取时间长度10s相邻的回波信号构成矩阵(可以理解的是,该时间长度可以根据自身需求而改变,例如,12秒、15秒等),选择截止频率为4Hz的低通滤波器去除噪声。
在本实施例中,所述获取UWB传递的UWB人体呼吸信息包括:
获取UWB传递的UWB人体呼吸原始数据矩阵;
对所述UWB人体呼吸原始数据矩阵进行滤波,从而获取滤波后的人体呼吸数据矩阵作为UWB人体呼吸信息。
举例来说,取时间长度10s相邻的回波信号构成矩阵(可以理解的是,该时间长度可以根据自身需求而改)。
在本实施例中,根据UWB人体心跳信息获取慢时间轴人体心跳间隔信息以及快时间轴人体心跳间隔信息包括:
分解所述人体心跳信息,从而获取慢时间轴人体心跳信息以及快时间轴人体心跳信息;
根据所述慢时间轴人体心跳信息获取慢时间轴人体心跳间隔信息;
根据所述快时间轴人体心跳信息获取快时间轴人体心跳间隔信息。
举例来说,对去噪后的人体心跳数据矩阵沿慢时间轴和快时间轴分别处理。对慢时间信号去线性化,然后通过0.1-0.8Hz的带通滤波得到呼吸信号,通过0.8-4Hz的带通滤波得到慢时间轴人体心跳信息。
将快时间信号矩阵的第一行数据以其余行数据做互相关,将互相关后生理信号去线性化,然后通过0.1-0.8Hz的带通滤波得到呼吸信号,通过0.8-4Hz的带通滤波得到快时间轴人体心跳信息。
在本实施例中,根据UWB人体呼吸信息获取慢时间轴人体呼吸间隔信息以及快时间轴人体呼吸间隔信息包括:
分解所述人体呼吸信息,从而获取慢时间轴人体呼吸信息以及快时间轴人体呼吸信息;
根据慢时间轴人体呼吸信息获取慢时间轴人体呼吸间隔信息;
根据快时间轴人体呼吸信息获取快时间轴人体呼吸间隔信息。
在本实施例中,慢时间轴人体心跳间隔信息包括序号以及该序号对应的慢时间轴人体心跳间隔时间;
快时间轴人体心跳间隔信息包括序号以及该序号对应的快时间轴人体心跳间隔时间。在本实施例中,慢时间轴人体呼吸间隔信息包括序号以及该序号对应的慢时间轴人体呼吸间隔时间,可以理解的是,各个序号组成间隔序列;
快时间轴人体呼吸间隔信息包括序号以及该序号对应的快时间轴人体呼吸间隔时间,可以理解的是,各个序号组成间隔序列。
在本实施例中,根据慢时间轴人体心跳间隔信息以及快时间轴人体心跳间隔信息生成对齐心跳间隔信息包括:
将每两个具有相同序号的慢时间轴人体心跳间隔时间与快时间轴人体心跳间隔时间相加并取平均值,从而形成一个对齐心跳间隔时间,对齐心跳间隔时间与该序号组成一个对齐心跳间隔信息。
例如,慢时间轴人体心跳间隔信息包括如下数据:
Figure PCTCN2022103032-appb-000001
例如,快时间轴人体心跳间隔信息包括如下数据:
Figure PCTCN2022103032-appb-000002
将每两个具有相同序号的慢时间轴人体心跳间隔时间与快时间轴人体心跳间隔时间相加并取平均值,从而形成一个对齐心跳间隔时间,对齐心跳间隔时间与该序号组成一个对齐心跳间隔信息具体为:
将序号1的慢时间轴人体心跳间隔信息的慢时间轴人体心跳间隔时间的0.5秒与快时间轴人体心跳间隔时间的0.6秒相加并取平均值,即0.55秒。
将序号2的慢时间轴人体心跳间隔信息的慢时间轴人体心跳间隔时间的 0.6秒与快时间轴人体心跳间隔时间的0.7秒相加并取平均值,即0.56秒。
对齐心跳间隔时间与该序号组成一个对齐心跳间隔信息,即对齐心跳间隔信息如下:
Figure PCTCN2022103032-appb-000003
在本实施例中,根据慢时间轴人体呼吸间隔信息以及快时间轴人体呼吸间隔信息生成对齐呼吸间隔信息包括:
将每两个具有相同序号的慢时间轴人体呼吸间隔时间与快时间轴人体呼吸间隔时间相加并取平均值,从而形成一个对齐呼吸间隔时间,对齐呼吸间隔时间与该序号组成一个对齐呼吸间隔信息。
例如,慢时间轴人体呼吸间隔信息包括如下数据:
Figure PCTCN2022103032-appb-000004
例如,快时间轴人体呼吸间隔信息包括如下数据:
Figure PCTCN2022103032-appb-000005
将每两个具有相同序号的慢时间轴人体呼吸间隔时间与快时间轴人体呼吸间隔时间相加并取平均值,从而形成一个对齐呼吸间隔时间,对齐呼吸间隔时间与该序号组成一个对齐呼吸间隔信息具体为:
将序号1的慢时间轴人体呼吸间隔信息的慢时间轴人体呼吸间隔时间的0.5秒与快时间轴人体呼吸间隔时间的0.6秒相加并取平均值,即0.55秒。
将序号2的慢时间轴人体呼吸间隔信息的慢时间轴人体呼吸间隔时间的0.6秒与快时间轴人体呼吸间隔时间的0.7秒相加并取平均值,即0.56秒。
对齐呼吸间隔时间与该序号组成一个对齐呼吸间隔信息,即对齐呼吸间隔信息如下:
序号 1 2
快时间轴人体呼吸间隔 0.55秒 0.56秒
时间    
在本实施例中,安全带三轴加速度传感器传递的三轴传感器人体心跳间隔信息以及安全带三轴加速度传感器传递的三轴传感器人体呼吸间隔信息采用如下方式获取:
取时间长度10s的三轴加速度传感器传递的信号对其去线性化,然后通过0.1-0.8Hz的带通滤波得到人体呼吸信息或人体心跳信息,通过0.8-4Hz的带通滤波得到人体呼吸信息或人体心跳信息;
使用主成分分析将三轴加速度传感器的三个方向的呼吸信号进行融合从而获取到三轴传感器人体呼吸信息;
使用主成分分析将三轴加速度传感器的三个方向的心跳信号进行融合从而获取到三轴传感器人体心跳信息。
对三轴传感器人体呼吸信息获取波峰间隔得到呼吸间隔,对三轴传感器人体心跳信息以模板匹配的方法处理,处理后的波峰位置表示心跳位置,波峰间隔就是心跳间隔。
采用上述方法即可以获取到安全带三轴加速度传感器传递的三轴传感器人体心跳间隔信息以及安全带三轴加速度传感器传递的三轴传感器人体呼吸间隔信息。
在本实施例中,三轴传感器人体心跳间隔信息包括序号以及该序号对应的三轴传感器人体心跳间隔时间;
根据对齐心跳间隔信息以及所述三轴传感器人体心跳间隔信息获取心跳间隔信息包括:
将对齐心跳间隔信息与所述三轴传感器人体心跳间隔信息进行对齐;
融合对齐后的心跳间隔信息以及三轴传感器人体心跳间隔信息,从而获取心跳间隔信息。
在本实施例中,三轴传感器人体呼吸间隔信息包括序号以及该序号对应的三轴传感器人体呼吸间隔时间;
根据对齐呼吸间隔信息以及所述三轴传感器人体呼吸间隔信息获取呼吸间隔信息包括:
将对齐呼吸间隔信息与所述三轴传感器人体呼吸间隔信息进行对齐;
融合对齐后的呼吸间隔信息以及三轴传感器人体呼吸间隔信息,从而获取呼吸间隔信息。
具体而言,将UWB以及安全带三轴加速度传感器获得的心跳间隔进行同步对齐,将UWB以及安全带三轴加速度传感器获得的呼吸间隔进行同步对齐。
可以理解的是,对齐方法与上述的对齐方向相同,在此不再赘述。
在本实施例中,融合对齐后的心跳间隔信息以及三轴传感器人体心跳间隔信息,从而获取心跳间隔信息包括:
分别获取对齐后的心跳间隔信息的权重值以及三轴传感器人体心跳间隔信息的权重值;
通过心跳间隔加权计算公式以及所述权重值获取心跳间隔信息。
在本实施例中,根据对齐呼吸间隔信息以及三轴传感器人体呼吸间隔信息获取呼吸间隔信息包括:
分别获取对齐呼吸间隔信息的权重值以及三轴传感器人体呼吸间隔信息的权重值;
通过呼吸间隔加权计算公式以及所述权重值获取呼吸间隔信息。
举例来说,首先,计算10s内两种心跳(对齐后的对齐心跳间隔信息以及三轴传感器人体心跳信息)间隔序列的权重。
在本实施例中,根据对齐呼吸间隔信息以及三轴传感器人体呼吸间隔信息获取呼吸间隔信息包括:
分别获取对齐呼吸间隔信息的权重值以及三轴传感器人体呼吸间隔信息的权重值;
通过呼吸间隔加权计算公式以及所述权重值获取呼吸间隔信息。
以UWB为例,其对齐后的呼吸间隔信息或对齐后的心跳间隔信息的权重计算方法如下:
W UWB=(σ UWB/avg UWB)
其中,σ UWB为对齐后的心跳间隔信息的间隔序列的标准差或对齐呼吸间隔信息的间隔序列的标准差,间隔序列是指有多个波峰时,每个波峰与其相邻的波峰之间的时间段之间的序号,例如,一共有4个波峰,即A波峰、B波峰、C波峰以及D波峰,则A波峰与B波峰之间的时间段为序列1,B波峰与C波峰之间的时间段为序列2,C波峰与D波峰之间的时间段位序列 3,avg UWB为对齐后的心跳间隔信息的平均数或对齐呼吸间隔信息的平均数。
W UWB为0-0.1时,权重为a 1;W UWB为0.1-0.2时,权重为a 2;W UWB大于0.2时,权重为a 3。权重的具体值可以通过试验或者指标仿真等方法标定得出。
以同样的方法,W 加速度也可以采用与上述W UWB相同的公式,W 加速度为0-0.1时,权重为b 1;W 加速度为0.1-0.2时,权重为b 2;W 加速度大于0.2时,权重为b 3
最后,加权计算结合后的间隔,以心跳间隔为例,以两种心跳间隔(对齐心跳间隔信息以及三轴传感器人体心跳间隔信息)间隔序列中第一个心跳间隔为例,对间隔序序列的每个间隔结合,结合后的心跳间隔信息计算方法如下:
RR 结合=(a i*RR 1+b i*RR 2)/(a i+b i)
其中,RR 1心跳为UWB心跳间隔序列(对齐心跳间隔信息)中第一个心跳间隔(即序号为1的所对应的对齐心跳间隔信息),a i心跳为根据UWB心跳间隔序列计算的权重(即上述W UWB所计算得到的权重);RR 2心跳为加速度心跳间隔序列(三轴传感器人体心跳信息)中第一个心跳间隔(即序号为1的所对应的三轴传感器人体心跳间隔信息),b i心跳为根据加速度心跳间隔序列计算的权重(即上述W UWB所计算得到的权重)。
最后,加权计算结合后的间隔,以呼吸间隔为例,以两种呼吸间隔序列(对齐呼吸信息以及三轴传感器人体呼吸信息)中第一个呼吸间隔为例,对间隔序列每个间隔结合,结合后的呼吸间隔计算方法如下:
RR 结合=(a i*RR 1+b i*RR 2)/(a i+b i)
其中,RR 1呼吸为UWB呼吸间隔序列中第一个呼吸间隔,a i呼吸为根据呼吸间隔序列计算的权重;RR 2呼吸为加速度呼吸间隔序列中第一个呼吸间隔,b i呼 为根据加速度呼吸间隔序列计算的权重。
参见图3,本申请还提供了一种车载人体信息获取装置,所述车载人体信息获取装置包括UWB人体心跳信息获取模块101、三轴传感器人体心跳信息获取模块102、慢时间轴人体心跳信息获取模块103、快时间轴人体心跳信息获取模块104、对齐心跳信息获取模块105、心跳间隔信息获取模块106,其中,UWB人体心跳信息获取模块用于获取UWB传递的UWB人体心跳信息;三轴传感器人体心跳信息获取模块用于获取安全带三轴加速度传感器传递的三轴传感器人体心跳间隔信息;慢时间轴人体心跳信息获取模块用于根据所述UWB人体心跳信息获取慢时间轴人体心跳间隔信息;快时间轴人体心跳信息获取模块用于根据所述UWB人体心跳信息获取快时间轴人体心 跳间隔信息;对齐心跳信息获取模块用于根据所述慢时间轴人体心跳间隔信息以及快时间轴人体心跳间隔信息生成对齐心跳间隔信息;心跳间隔信息获取模块用于根据所述对齐心跳间隔信息以及三轴传感器人体心跳间隔信息获取心跳间隔信息。
本申请还提供了一种车辆,所述车辆包括安全带、安全带三轴加速度传感器、UWB雷达以及车载人体信息获取装置,安全带三轴加速度传感器安装在所述安全带上,在所述乘坐者佩戴安全带时,所述安全带三轴加速度传感器位于所述乘坐者胸前位置,用于获取乘坐者的三轴传感器人体心跳信息以及三轴传感器人体呼吸信息;UWB雷达位于座椅上,UWB雷达用于在乘坐者位于座椅上时获取所述乘坐者的UWB人体心跳信息以及UWB人体呼吸信息;车载人体信息获取装置为如上所述的车载人体信息获取装置。
在本实施例中,处理后的心跳和呼吸间隔可以通过数据储存模块保存,再通过上位机调用保存的数据进行回放;也可通过无线模块与车机或者手机相连,可以实时显示心跳信号、提取的心率。电源管理模块使用可充电电池给装置供电,通过指示灯显示当前电量,当电量不足提醒使用者更换电池或者充电。
需要说明的是,前述对方法实施例的解释说明也适用于本实施例的装置,此处不再赘述。
本申请还提供了一种电子设备,该电子设备包括存储器、处理器以及存储在存储器中并能够在处理器上运行的计算机程序,处理器执行计算机程序时实现如上的车载人体信息获取方法。
本申请还提供了一种计算机可读存储介质,计算机可读存储介质存储有计算机程序,计算机程序被处理器执行时能够实现如上的车载人体信息获取方法。
图2是能够实现根据本申请一个实施例提供的车载人体信息获取方法的电子设备的示例性结构图。
如图2所示,电子设备包括输入设备501、输入接口502、中央处理器503、存储器504、输出接口505以及输出设备506。其中,输入接口502、中央处理器503、存储器504以及输出接口505通过总线507相互连接,输入设备501和输出设备506分别通过输入接口502和输出接口505与总线507连接,进而与电子设备的其他组件连接。具体地,输入设备504接收来自外部的输入信息,并通过输入接口502将输入信息传送到中央处理器503;中央处理器503基于存储器504中存储的计算机可执行指令对输入信息进行处理以生成输出信息,将输出信息临时或者永久地存储在存储器504中,然后通过输出接口505将输出信息传送到输出设备506;输出设备506将输出信息输出到电子设备的外部供用户使用。
也就是说,图2所示的电子设备也可以被实现为包括:存储有计算机可执行指令的存储器;以及一个或多个处理器,该一个或多个处理器在执行计算机可执行指令时可以实现结合图1描述的车载人体信息获取方法。
在一个实施例中,图2所示的电子设备可以被实现为包括:存储器504,被配置为存储可执行程序代码;一个或多个处理器503,被配置为运行存储器504中存储的可执行程序代码,以执行上述实施例中的车载人体信息获取方法。
在一个典型的配置中,计算设备包括一个或多个处理器(CPU)、输入/输出接口、网络接口和内存。
内存可能包括计算机可读介质中的非永久性存储器,随机存取存储器(RAM)和/或非易失性内存等形式,如只读存储器(ROM)或闪存(flash RAM)。内存是计算机可读介质的示例。
计算机可读介质包括永久性和非永久性、可移动和非可移动,媒体可以由任何方法或技术来实现信息存储。信息可以是计算机可读指令、数据结构、程序的模块或其他数据。计算机的存储介质的例子包括,但不限于相变内存(PRAM)、静态随机存取存储器(SRAM)、动态随机存取存储器(DRAM)、其他类型的随机存取存储器(RAM)、只读存储器(ROM)、电可擦除可编程只读存储器(EEPROM)、快闪记忆体或其他内存技术、只读光盘只读存储器(CD-ROM)、数据多功能光盘(DVD)或其他光学存储、磁盒式磁带、磁带磁盘存储或其他磁性存储设备或任何其他非传输介质,可用于存储可以被计算设备访问的信息。
本领域技术人员应明白,本申请的实施例可提供为方法、系统或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
此外,显然“包括”一词不排除其他单元或步骤。装置权利要求中陈述的多个单元、模块或装置也可以由一个单元或总装置通过软件或硬件来实现。
附图中的流程图和框图,图示了按照本申请各种实施例的系统、方法和计算机程序产品的可能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序段、或代码的一部分,模块、程序段、或代码的一部分包括一个或多个用于实现规定的逻辑功能的可执行指令。也应当注意,在有些作为替换的实现中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个接连地标识的方框实际上可以基本并行地执行,他们有时也可以按相反的顺序执行,这依所涉及的功能而定。也要注意的是,框图和/或流程图中的每个方框、以及框图和/或总流程图中的方框的组合,可以用执行规定的功能或操作的专用的基于硬件的系统来实现,或者可以用专用硬件与计算机指令的组合来实现。
在本实施例中所称处理器可以是中央处理单元(Central Processing Unit,CPU),还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
存储器可用于存储计算机程序和/或模块,处理器通过运行或执行存储在存储器内的计算机程序和/或模块,以及调用存储在存储器内的数据,实现装置/终端设备的各种功能。存储器可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序(比如声音播放功能、图像播放功能等)等;存储数据区可存储根据手机的使用所创建的数据(比如音频数据、电话本等)等。此外,存储器可以包括高速随机存取存储器,还可以包括非易失性存储器,例如硬盘、内存、插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card)、至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
在本实施例中,装置/终端设备集成的模块/单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明实现上述实施例方法中的全部或部分流程,也可以通过计算机程序来指令相关的硬件来完成,的计算机程序可存储于一计算机可读存储介质中,该计算机程序在被处理器执行时,可实现上述各个方法实施例的步骤。其中,计算机程序包括计算机程序代码,计算机程序代码可以为源代码形式、对象代码形式、可执行文件或某些中间形式等。计算机可读介质可以包括:能够携带计算机程序代码的任何实体或装置、记录介质、U盘、移动硬盘、磁碟、光盘、计算机存储器、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、电载波信号、电信信号以及软件分发介质等。需要说明的是,计算机可读介质包含的内容可以根据司法管辖区内立法和专利实践的要求进行适当的增减。本申请虽然以较佳实施例公开如上,但其实并不是用来限定本申请,任何本领域技术人员在不脱离本申请的精神和范围内,都可以做出可能的变动和修改,因此,本申请的保护范围应当以本申请权利要求所界定的范围为准。
本领域技术人员应明白,本申请的实施例可提供为方法、系统或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
此外,显然“包括”一词不排除其他单元或步骤。装置权利要求中陈述的多个单元、模块或装置也可以由一个单元或总装置通过软件或硬件来实现。
虽然,上文中已经用一般性说明及具体实施方案对本发明作了详尽的描述,但在本发明基础上,可以对之作一些修改或改进,这对本领域技术人员而言是显而易见的。因此,在不偏离本发明精神的基础上所做的这些修改或改进,均属于本发明要求保护的范围。

Claims (10)

  1. 一种车载人体信息获取方法,所述车载人体信息包括人体心跳间隔信息,其特征在于,所述车载人体信息获取方法包括:
    获取UWB传递的UWB人体心跳信息以及安全带三轴加速度传感器传递的三轴传感器人体心跳间隔信息;
    根据所述UWB人体心跳信息获取慢时间轴人体心跳间隔信息以及快时间轴人体心跳间隔信息;
    根据所述慢时间轴人体心跳间隔信息以及快时间轴人体心跳间隔信息生成对齐心跳间隔信息;
    根据所述对齐心跳间隔信息以及所述三轴传感器人体心跳间隔信息获取心跳间隔信息。
  2. 如权利要求1所述的车载人体信息获取方法,所述车载人体信息进一步包括人体呼吸间隔信息,其特征在于,所述车载人体信息获取方法进一步包括:
    获取UWB传递的UWB人体呼吸信息以及安全带三轴加速度传感器传递的三轴传感器人体呼吸间隔信息;
    根据所述UWB人体呼吸信息获取获取慢时间轴人体呼吸间隔信息以及快时间轴人体呼吸间隔信息;
    根据所述慢时间轴人体呼吸间隔信息以及快时间轴人体呼吸间隔信息生成对齐呼吸间隔信息;
    根据所述对齐呼吸间隔信息以及三轴传感器人体呼吸间隔信息获取呼吸间隔信息。
  3. 如权利要求2所述的车载人体信息获取方法,其特征在于,所述获取UWB传递的UWB人体心跳信息包括:
    获取UWB传递的UWB人体心跳原始数据矩阵;
    对所述UWB人体心跳原始数据矩阵进行滤波,从而获取滤波后的人体心跳数据矩阵作为UWB人体心跳信息。
  4. 如权利要求3所述的车载人体信息获取方法,其特征在于,所述根据所述UWB人体心跳信息获取慢时间轴人体心跳间隔信息以及快时间轴人体心跳间隔信息包括:
    分解所述人体心跳信息,从而获取慢时间轴人体心跳信息以及快时间轴人体心跳信息;
    根据所述慢时间轴人体心跳信息获取慢时间轴人体心跳间隔信息;
    根据所述快时间轴人体心跳信息获取快时间轴人体心跳间隔信息。
  5. 如权利要求4所述的车载人体信息获取方法,其特征在于,
    所述慢时间轴人体心跳间隔信息包括序号以及该序号对应的慢时间轴人体心跳间隔时间;
    所述快时间轴人体心跳间隔信息包括序号以及该序号对应的快时间轴人体心跳间隔时间;
    所述根据所述慢时间轴人体心跳间隔信息以及快时间轴人体心跳间隔信息生成对齐心跳间隔信息包括:
    将每两个具有相同序号的慢时间轴人体心跳间隔时间与快时间轴人体心跳间隔时间相加并取平均值,从而形成一个对齐心跳间隔时间,所述对齐心跳间隔时间与该序号组成一个对齐心跳间隔信息。
  6. 如权利要求5所述的车载人体信息获取方法,其特征在于,
    所述三轴传感器人体心跳间隔信息包括序号以及该序号对应的三轴传感器人体心跳间隔时间;
    所述根据所述对齐心跳间隔信息以及所述三轴传感器人体心跳间隔信息获取心跳间隔信息包括:
    将所述对齐心跳间隔信息与所述三轴传感器人体心跳间隔信息进行对齐;
    融合所述对齐后的对齐心跳间隔信息以及三轴传感器人体心跳间隔信息,从而获取心跳间隔信息。
  7. 如权利要求6所述的车载人体信息获取方法,其特征在于,所述融合所述对齐后的对齐心跳间隔信息以及三轴传感器人体心跳间隔信息,从而获取心跳间隔信息包括:
    分别获取对齐后的对齐心跳间隔信息的权重值以及三轴传感器人体心跳间隔信息的权重值;
    通过心跳间隔加权计算公式以及所述权重值获取心跳间隔信息。
  8. 如权利要求2所述的车载人体信息获取方法,其特征在于,所述根据所述对齐呼吸间隔信息以及三轴传感器人体呼吸间隔信息获取呼吸间隔信息包括:
    分别获取对齐呼吸间隔信息的权重值以及三轴传感器人体呼吸间隔信息的权重值;
    通过呼吸间隔加权计算公式以及所述权重值获取呼吸间隔信息。
  9. 一种车载人体信息获取装置,其特征在于,所述车载人体信息获取装置包括:
    UWB人体心跳信息获取模块,所述UWB人体心跳信息获取模块用于获取UWB传递的UWB人体心跳信息;
    三轴传感器人体心跳信息获取模块,所述三轴传感器人体心跳信息获取模块用于获取安全带三轴加速度传感器传递的三轴传感器人体心跳间隔信息;
    慢时间轴人体心跳信息获取模块,所述慢时间轴人体心跳信息获取模块用于根据所述UWB人体心跳信息获取慢时间轴人体心跳间隔信息;
    快时间轴人体心跳信息获取模块,所述快时间轴人体心跳信息获取模块用于根据所述UWB人体心跳信息获取快时间轴人体心跳间隔信息;
    对齐心跳信息获取模块,所述对齐心跳信息获取模块用于根据所述慢时间轴人体心跳间隔信息以及快时间轴人体心跳间隔信息生成对齐心跳间隔信息;
    心跳间隔信息获取模块,所述心跳间隔信息获取模块用于根据所述对齐心跳间隔信息以及所述三轴传感器人体心跳间隔信息获取心跳间隔信息。
  10. 一种车辆,其特征在于,所述车辆包括:
    安全带;
    安全带三轴加速度传感器,所述安全带三轴加速度传感器安装在所述安全带上,在所述乘坐者佩戴安全带时,所述安全带三轴加速度传感器位于所 述乘坐者胸前位置,用于获取乘坐者的三轴传感器人体心跳信息以及三轴传感器人体呼吸信息;
    UWB雷达,所述UWB雷达位于座椅上,所述UWB雷达用于在乘坐者位于座椅上时获取所述乘坐者的UWB人体心跳信息以及UWB人体呼吸信息;
    车载人体信息获取装置,所述车载人体信息获取装置为如权利要求9所述的车载人体信息获取装置。
PCT/CN2022/103032 2022-01-28 2022-06-30 一种车载人体信息获取方法、装置及车辆 WO2023142380A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210103967.7 2022-01-28
CN202210103967.7A CN114601432A (zh) 2022-01-28 2022-01-28 一种车载人体信息获取方法、装置及车辆

Publications (1)

Publication Number Publication Date
WO2023142380A1 true WO2023142380A1 (zh) 2023-08-03

Family

ID=81859892

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/103032 WO2023142380A1 (zh) 2022-01-28 2022-06-30 一种车载人体信息获取方法、装置及车辆

Country Status (2)

Country Link
CN (1) CN114601432A (zh)
WO (1) WO2023142380A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114601432A (zh) * 2022-01-28 2022-06-10 中国第一汽车股份有限公司 一种车载人体信息获取方法、装置及车辆

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015116473A (ja) * 2013-12-18 2015-06-25 現代自動車株式会社 心拍測定装置、心拍測定方法及び運転者モニタリングシステム
KR20170055352A (ko) * 2015-11-11 2017-05-19 주식회사 이에스피 임펄스 초광대역 레이더를 이용한 차량 운전자 생체 신호 측정 경보 시스템
CN108888249A (zh) * 2018-06-07 2018-11-27 北京邮电大学 一种非接触式车内多人生命体征监测的方法及装置
CN109875529A (zh) * 2019-01-23 2019-06-14 北京邮电大学 一种基于超宽带雷达的生命体征检测方法及系统
CN110879388A (zh) * 2019-10-24 2020-03-13 中国人民解放军第四军医大学 基于ir-uwb生物雷达信号的人与动物非接触探测区分方法
CN112137601A (zh) * 2020-09-23 2020-12-29 中国第一汽车股份有限公司 信号处理方法、装置、车辆及存储介质
CN112674738A (zh) * 2020-12-07 2021-04-20 北京清雷科技有限公司 呼吸心跳信号的检测方法及装置
CN113273978A (zh) * 2021-05-21 2021-08-20 电子科技大学 一种基于超宽带雷达的人体呼吸和心跳频率的检测方法
CN114601432A (zh) * 2022-01-28 2022-06-10 中国第一汽车股份有限公司 一种车载人体信息获取方法、装置及车辆

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080071177A1 (en) * 2005-04-28 2008-03-20 Pioneer Corporation Bioinformation Sensor
CN102323575B (zh) * 2011-07-16 2013-04-03 西安电子科技大学 Pd雷达在微弱信号检测过程中的距离走动校正方法
WO2018224612A1 (en) * 2017-06-07 2018-12-13 Iee International Electronics & Engineering S.A. Radar-based passenger classification and monitoring
CN111856452B (zh) * 2020-05-21 2022-09-20 重庆邮电大学 基于omp的静态人体心跳和呼吸信号分离重构方法
CN111965642A (zh) * 2020-07-08 2020-11-20 西安电子科技大学 一种基于高超声速平台的前斜视多通道sar-gmti杂波抑制方法
CN213787376U (zh) * 2020-10-26 2021-07-27 江西农业大学 一种微型可穿戴多普勒雷达心跳检测仪
CN113786177B (zh) * 2021-08-24 2023-03-03 煤炭科学研究总院有限公司 生命体征信息提取方法、装置及电子设备
CN113729677B (zh) * 2021-10-12 2023-08-01 九州云合(山东)智能科技有限公司 一种智能生命体征监护方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015116473A (ja) * 2013-12-18 2015-06-25 現代自動車株式会社 心拍測定装置、心拍測定方法及び運転者モニタリングシステム
KR20170055352A (ko) * 2015-11-11 2017-05-19 주식회사 이에스피 임펄스 초광대역 레이더를 이용한 차량 운전자 생체 신호 측정 경보 시스템
CN108888249A (zh) * 2018-06-07 2018-11-27 北京邮电大学 一种非接触式车内多人生命体征监测的方法及装置
CN109875529A (zh) * 2019-01-23 2019-06-14 北京邮电大学 一种基于超宽带雷达的生命体征检测方法及系统
CN110879388A (zh) * 2019-10-24 2020-03-13 中国人民解放军第四军医大学 基于ir-uwb生物雷达信号的人与动物非接触探测区分方法
CN112137601A (zh) * 2020-09-23 2020-12-29 中国第一汽车股份有限公司 信号处理方法、装置、车辆及存储介质
CN112674738A (zh) * 2020-12-07 2021-04-20 北京清雷科技有限公司 呼吸心跳信号的检测方法及装置
CN113273978A (zh) * 2021-05-21 2021-08-20 电子科技大学 一种基于超宽带雷达的人体呼吸和心跳频率的检测方法
CN114601432A (zh) * 2022-01-28 2022-06-10 中国第一汽车股份有限公司 一种车载人体信息获取方法、装置及车辆

Also Published As

Publication number Publication date
CN114601432A (zh) 2022-06-10

Similar Documents

Publication Publication Date Title
CN110001652B (zh) 驾驶员状态的监测方法、装置及终端设备
Lee et al. A smartphone-based driver safety monitoring system using data fusion
EP3895605A1 (en) Methods and systems for determining abnormal cardiac activity
CN103956028B (zh) 一种汽车多元驾驶安全防护方法
US20130211229A1 (en) Method and system for modeling and processing fmri image data using a bag-of-words approach
WO2021017329A1 (zh) 一种检测驾驶员分心的方法及装置
US20190299999A1 (en) Drowsiness Detection and Intervention System and Method
WO2023142380A1 (zh) 一种车载人体信息获取方法、装置及车辆
US20140358025A1 (en) System and apparatus for seizure detection from EEG signals
CN105209126A (zh) 处理用于呼吸检测的阻抗信号
Arakawa A review of heartbeat detection systems for automotive applications
CN104434312B (zh) 监护设备及其生理参数处理方法与系统
Ma et al. Real time drowsiness detection based on lateral distance using wavelet transform and neural network
WO2024040797A1 (zh) 基于脑电数据的自闭症评估装置、方法、终端设备和介质
Chen et al. A remote electrocardiogram monitoring system with good swiftness and high reliablility
Raeiatibanadkooki et al. Real time processing and transferring ECG signal by a mobile phone
CN105125202A (zh) 一种基于低噪声放大器的心电监护系统
TWI568414B (zh) Respiratory signal acquisition method and its fetching device
CN114435373B (zh) 疲劳驾驶检测方法、装置、计算机设备和存储介质
US20220211283A1 (en) Methods for blood pressure calibration selection and modeling methods thereof
CN115299943A (zh) 一种情绪监测方法及其装置
CN113925482A (zh) 心率计算方法、可穿戴电子设备和存储介质
CN115719515A (zh) 轻量化的三维头部姿态估计方法、存储介质和终端
Aktaruzzaman et al. Parametric estimation of sample entropy for physical activity recognition
CN112972892A (zh) 植入式闭环系统基于线长算法自动检测癫痫的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22923188

Country of ref document: EP

Kind code of ref document: A1