WO2023140573A1 - Electrode manufacturing method - Google Patents
Electrode manufacturing method Download PDFInfo
- Publication number
- WO2023140573A1 WO2023140573A1 PCT/KR2023/000702 KR2023000702W WO2023140573A1 WO 2023140573 A1 WO2023140573 A1 WO 2023140573A1 KR 2023000702 W KR2023000702 W KR 2023000702W WO 2023140573 A1 WO2023140573 A1 WO 2023140573A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- electrode
- metal
- oxide
- substrate
- light source
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 45
- 229910052751 metal Inorganic materials 0.000 claims abstract description 96
- 239000002184 metal Substances 0.000 claims abstract description 96
- 239000000758 substrate Substances 0.000 claims abstract description 81
- 229910044991 metal oxide Inorganic materials 0.000 claims abstract description 56
- 150000004706 metal oxides Chemical class 0.000 claims abstract description 56
- 239000002243 precursor Substances 0.000 claims abstract description 43
- 239000002086 nanomaterial Substances 0.000 claims abstract description 29
- 239000000463 material Substances 0.000 claims abstract description 10
- 238000000034 method Methods 0.000 claims description 53
- 229910052744 lithium Inorganic materials 0.000 claims description 38
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims description 34
- 239000010949 copper Substances 0.000 claims description 27
- AMWRITDGCCNYAT-UHFFFAOYSA-L hydroxy(oxo)manganese;manganese Chemical compound [Mn].O[Mn]=O.O[Mn]=O AMWRITDGCCNYAT-UHFFFAOYSA-L 0.000 claims description 26
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 21
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 claims description 19
- 239000005751 Copper oxide Substances 0.000 claims description 18
- 229910000431 copper oxide Inorganic materials 0.000 claims description 18
- 150000001298 alcohols Chemical class 0.000 claims description 16
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 15
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 13
- 229910000480 nickel oxide Inorganic materials 0.000 claims description 13
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 claims description 12
- 229910052802 copper Inorganic materials 0.000 claims description 11
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 claims description 9
- 238000000576 coating method Methods 0.000 claims description 9
- AEJIMXVJZFYIHN-UHFFFAOYSA-N copper;dihydrate Chemical compound O.O.[Cu] AEJIMXVJZFYIHN-UHFFFAOYSA-N 0.000 claims description 9
- 229910001416 lithium ion Inorganic materials 0.000 claims description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 9
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims description 8
- ROOXNKNUYICQNP-UHFFFAOYSA-N ammonium persulfate Chemical compound [NH4+].[NH4+].[O-]S(=O)(=O)OOS([O-])(=O)=O ROOXNKNUYICQNP-UHFFFAOYSA-N 0.000 claims description 8
- 239000011248 coating agent Substances 0.000 claims description 8
- UBEWDCMIDFGDOO-UHFFFAOYSA-N cobalt(2+);cobalt(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[Co+2].[Co+3].[Co+3] UBEWDCMIDFGDOO-UHFFFAOYSA-N 0.000 claims description 8
- 239000011572 manganese Substances 0.000 claims description 8
- 239000012299 nitrogen atmosphere Substances 0.000 claims description 8
- GNRSAWUEBMWBQH-UHFFFAOYSA-N oxonickel Chemical compound [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 claims description 8
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 claims description 8
- 229910001887 tin oxide Inorganic materials 0.000 claims description 8
- 239000010936 titanium Substances 0.000 claims description 8
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium(II) oxide Chemical compound [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 claims description 8
- 229910021503 Cobalt(II) hydroxide Inorganic materials 0.000 claims description 7
- 238000006243 chemical reaction Methods 0.000 claims description 7
- 238000010924 continuous production Methods 0.000 claims description 6
- ASKVAEGIVYSGNY-UHFFFAOYSA-L cobalt(ii) hydroxide Chemical compound [OH-].[OH-].[Co+2] ASKVAEGIVYSGNY-UHFFFAOYSA-L 0.000 claims description 5
- PMQJYWORJJEMQC-UHFFFAOYSA-N manganese;dihydrate Chemical compound O.O.[Mn] PMQJYWORJJEMQC-UHFFFAOYSA-N 0.000 claims description 5
- 239000007769 metal material Substances 0.000 claims description 5
- BFDHFSHZJLFAMC-UHFFFAOYSA-L nickel(ii) hydroxide Chemical compound [OH-].[OH-].[Ni+2] BFDHFSHZJLFAMC-UHFFFAOYSA-L 0.000 claims description 5
- CVNKFOIOZXAFBO-UHFFFAOYSA-J tin(4+);tetrahydroxide Chemical compound [OH-].[OH-].[OH-].[OH-].[Sn+4] CVNKFOIOZXAFBO-UHFFFAOYSA-J 0.000 claims description 5
- LLZRNZOLAXHGLL-UHFFFAOYSA-J titanic acid Chemical compound O[Ti](O)(O)O LLZRNZOLAXHGLL-UHFFFAOYSA-J 0.000 claims description 5
- 239000011701 zinc Substances 0.000 claims description 5
- UGZADUVQMDAIAO-UHFFFAOYSA-L zinc hydroxide Chemical compound [OH-].[OH-].[Zn+2] UGZADUVQMDAIAO-UHFFFAOYSA-L 0.000 claims description 5
- 229910021511 zinc hydroxide Inorganic materials 0.000 claims description 5
- 229940007718 zinc hydroxide Drugs 0.000 claims description 5
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 claims description 4
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 4
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 4
- 229910001870 ammonium persulfate Inorganic materials 0.000 claims description 4
- 229910017052 cobalt Inorganic materials 0.000 claims description 4
- 239000010941 cobalt Substances 0.000 claims description 4
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 4
- 239000008367 deionised water Substances 0.000 claims description 4
- 229910021641 deionized water Inorganic materials 0.000 claims description 4
- 229910052748 manganese Inorganic materials 0.000 claims description 4
- 239000002073 nanorod Substances 0.000 claims description 4
- 229910052759 nickel Inorganic materials 0.000 claims description 4
- 238000011084 recovery Methods 0.000 claims description 4
- JBQYATWDVHIOAR-UHFFFAOYSA-N tellanylidenegermanium Chemical compound [Te]=[Ge] JBQYATWDVHIOAR-UHFFFAOYSA-N 0.000 claims description 4
- 229910052719 titanium Inorganic materials 0.000 claims description 4
- 238000007756 gravure coating Methods 0.000 claims description 3
- 239000002060 nanoflake Substances 0.000 claims description 3
- 239000002057 nanoflower Substances 0.000 claims description 3
- 239000002105 nanoparticle Substances 0.000 claims description 3
- 239000002074 nanoribbon Substances 0.000 claims description 3
- 238000004528 spin coating Methods 0.000 claims description 3
- 238000005507 spraying Methods 0.000 claims description 3
- 238000004070 electrodeposition Methods 0.000 abstract description 3
- 238000007600 charging Methods 0.000 description 12
- 210000001787 dendrite Anatomy 0.000 description 11
- 238000007599 discharging Methods 0.000 description 11
- 238000010586 diagram Methods 0.000 description 6
- 239000007772 electrode material Substances 0.000 description 6
- 229910016411 CuxO Inorganic materials 0.000 description 5
- 239000000126 substance Substances 0.000 description 3
- JJLJMEJHUUYSSY-UHFFFAOYSA-L Copper hydroxide Chemical compound [OH-].[OH-].[Cu+2] JJLJMEJHUUYSSY-UHFFFAOYSA-L 0.000 description 2
- 239000005750 Copper hydroxide Substances 0.000 description 2
- 239000012298 atmosphere Substances 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 239000011889 copper foil Substances 0.000 description 2
- 229910001956 copper hydroxide Inorganic materials 0.000 description 2
- 230000001351 cycling effect Effects 0.000 description 2
- 230000004907 flux Effects 0.000 description 2
- 230000014509 gene expression Effects 0.000 description 2
- 230000001939 inductive effect Effects 0.000 description 2
- 230000001788 irregular Effects 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- 229910021509 tin(II) hydroxide Inorganic materials 0.000 description 2
- 229910006854 SnOx Inorganic materials 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003252 repetitive effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/139—Processes of manufacture
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/134—Electrodes based on metals, Si or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to a method for manufacturing an electrode, and more particularly, in the manufacture of an electrode used in a high-capacity battery, a surface light source is used to induce lithium affinity, a large specific surface area, and a uniform flux of a material to inhibit metal dendrite growth. It relates to a method for manufacturing an electrode capable of securing cycle stability of a battery.
- the electrode 1 is a process diagram showing a method of manufacturing an electrode according to the prior art, and is a diagram showing the behavior according to the manufacturing and charging and discharging of a lithium metal electrode in a copper foil according to the prior art.
- the electrode 1 is manufactured by electrodepositing, for example, lithium as the electrode material 20 on the substrate 10 .
- the protrusions 21 of the lithium metal negative electrode protrude in a dendrite shape and grow (dendrite growth) occurs.
- the protrusion 21 that grows in this way reduces the life or capacity of the metal battery, causes a device short circuit, and causes a thermal explosion problem of the battery.
- a technique for manufacturing a negative electrode of a lithium ion battery discloses applying a process of exposing a metal catalyst to a high-temperature environment for growth.
- an object of the present invention is to provide a method for manufacturing an electrode capable of securing cycle stability of a battery by suppressing dendrite growth of metal by inducing lithium affinity, a large specific surface area, and a uniform flux of a material using a surface light source in the manufacture of an electrode used in a high-capacity battery.
- a method for manufacturing an electrode according to an embodiment for realizing the object of the present invention described above includes forming a metal precursor on a substrate in a nanostructured form (step S100), applying a surface light source having a predetermined area to convert the metal precursor into a nanostructured metal oxide or metal (step S200), and forming an electrode by electrodepositing a material for an electrode onto a substrate on which the nanostructured metal oxide or metal is formed (step S300).
- the surface light source may be a flash light that is instantaneously provided to the entire area of the substrate on which the metal precursor is formed.
- the substrate is continuously provided, and the surface light source may be a flash light that is instantaneously provided in units of a predetermined area with respect to the continuously provided substrate.
- the substrate is continuously supplied by a supply roll, and after the electrode is formed, the substrate is continuously recovered by a recovery roll, so that a roll-to-roll continuous process may be performed.
- the surface light source may be provided in the air at room temperature.
- a nitrogen atmosphere is provided to the metal precursor formed in the nanostructure form, and the surface light source may be provided in the nitrogen atmosphere.
- a chemical reaction may be induced by immersing the substrate including a metal material in a solution of ammonium persulfate and sodium hydroxide (NaOH) in deionized water.
- the step S200 may include applying the surface light source to the nanostructured metal precursor, changing the metal precursor into a nanostructured metal oxide, further applying the surface light source to the metal oxide, and changing the metal oxide into a nanostructured metal.
- the step S200 may include changing the metal precursor into a nanostructured metal oxide, coating the substrate on which the metal oxide is formed with an alcohol derivative, applying the surface light source to the substrate coated with the alcohol derivative, and changing the metal oxide into a nanostructured metal.
- the alcohol derivative in the step of coating the alcohol derivative, may be coated with any one of blade coating, spray coating, spin coating, and micro-gravure coating.
- the alcohol derivative may be ethylene glycol.
- the metal precursor may be any one of copper hydroxide (Cu(OH) 2 ), tin hydroxide (Sn(OH) 2 ), zinc hydroxide (Zn(OH) 2 ), nickel hydroxide (NiOH), manganese hydroxide (Mn(OH) 2 ), cobalt hydroxide (Co(OH) 2 ), and titanium hydroxide (Ti(OH) 4 ).
- the metal oxide is copper oxide (Cu x O), nickel oxide (Ni 2 O), titanium oxide (TiO), zinc oxide (ZnO), tin oxide (SnO X ), manganese oxide (MnO 2 ), and cobalt oxide (Co 3 O 4 ), and the metal is any one of copper (Cu), nickel (Ni), titanium (Ti), zinc (Zn), tin (Sn), and manganese. It may be any one of (Mn) and cobalt (Co).
- the nanostructure may be any one of a nano-rod, a nano-particle, a nano-flake, a nano-ribbon, and a nano-flower.
- the material for the electrode may be lithium (lithium).
- the electrode may be a negative electrode of a lithium ion battery.
- the electrode may be an electrode for a photoelectrochemical (PEC)-based water splitting device.
- PEC photoelectrochemical
- the metal oxide or metal in the nanostructure form by providing a surface light source having a predetermined area to the substrate in an area unit, it is possible to form the metal oxide or metal integrally in a unit area unit, thereby improving the convenience of the process.
- the surface light source can be provided in the air at room temperature, the process of forming the metal oxide or metal can be further simplified. Furthermore, since a continuous process can be performed by providing a surface light source as flash light to continuously provided substrates, the efficiency of electrode production can be improved and mass production can be possible. That is, by applying a roll-to-roll continuous production process, the efficiency of electrode production can be improved.
- the electrode manufactured by the electrode manufacturing method can be used as a negative electrode of a lithium ion battery or an electrode for a photoelectrochemical (PEC)-based water splitting device, and can have various usability.
- PEC photoelectrochemical
- FIG. 1 is a process chart showing a manufacturing method of an electrode according to the prior art.
- FIG. 2 is a flowchart illustrating a method of manufacturing an electrode according to an embodiment of the present invention.
- Figure 3 is a schematic diagram showing a manufacturing method of the electrode of Figure 2.
- FIG. 4 is a flowchart illustrating an example of a step of changing the metal precursor of FIG. 2 into a metal oxide or metal in a nanostructured form.
- 5A to 5C are process diagrams showing the step of changing to the metal of FIG. 4 .
- FIG. 6A is an image showing copper hydroxide in a nanostructured form as a metal precursor
- FIG. 6B is an image showing copper oxide in a changed nanostructured form.
- FIG. 7 is a flowchart illustrating another example of a step of changing the metal precursor of FIG. 2 into a nanostructured metal oxide or metal.
- 8a to 8c are process charts showing the step of changing to the metal of FIG. 7 .
- FIG. 9a is an image showing copper oxide in a nanostructured form
- FIG. 9b is an image showing copper in a changed nanostructured form.
- FIG. 10 is a graph showing a change in charge capacity when charging and discharging are repeated for a lithium electrode without a nanostructured form, a lithium electrode formed with copper oxide in a nanostructured form according to the present embodiments, and a lithium electrode formed with copper in a nanostructured form.
- FIG. 2 is a flowchart illustrating a method of manufacturing an electrode according to an embodiment of the present invention.
- Figure 3 is a schematic diagram showing a manufacturing method of the electrode of Figure 2.
- a metal precursor is formed in a nanostructured form on the substrate 10 (step S100).
- the nanostructure may include various structures such as, for example, nano-rods, nano-particles, nano-flakes, nano-ribbons, nano-flowers, and the like.
- the nanostructure is described as having a nanorod shape.
- the substrate 10 may be a variety of flexible or stretchable substrates, and may be, for example, a metal foil such as copper.
- the substrate 10 although it is shown as having a plate shape having a certain area through FIG. 3 and the drawings to be described later, it is flexible or stretchable, so it is easy to deform, and furthermore, it can be continuously supplied in a roll-to-roll manner.
- a supply roll continuously provided in a state in which the substrate 10 is wound, and an electrode formed after all processes described later are completed.
- a recovery roll for recovering again may be provided.
- a plurality of control rolls may be provided between the supply roll and the recovery roll to realize continuous supply of the substrate 10 .
- the substrate shown in the drawing may be only a partial area where a predetermined process is performed on the substrate 10 continuously supplied.
- the metal precursor (50, see FIG. 5A) may be, for example, copper hydroxide (Cu(OH) 2 ), tin hydroxide (Sn(OH) 2 ), zinc hydroxide (Zn(OH) 2 ), nickel hydroxide (NiOH), manganese hydroxide (Mn(OH) 2 ), cobalt hydroxide (Co(OH)) 2 ), titanium hydroxide (Ti(OH) 4 ).
- the metal precursor 50 may be manufactured to have a nanostructured shape by inducing a chemical reaction by immersing the substrate 10 having a metal material in a predetermined solution.
- the substrate 10 is a copper foil as described above
- the substrate 10 is immersed in a solution of ammonium persulfate and sodium hydroxide (NaOH) in deionized water to induce a chemical reaction.
- copper hydroxide (Cu(OH) 2 ) having a nanostructured shape as a metal precursor is formed.
- the solution may be, for example, a mixture of 2.5 M sodium hydroxide and 0.13 M ammonium persulfate in 50 mL of deionized water, and the chemical reaction may be described by the following chemical formula.
- metal precursors of various metal materials may be formed through the same process for other metal materials.
- step S200 Thereafter, by applying a surface light source 110 (FIG. 5B) to the substrate 10, the metal precursor is changed into a metal oxide or metal in a nanostructured form (step S200).
- the metal precursor formed on the substrate 10 is changed into a metal oxide or a metal, and this process will be described in more detail through drawings to be described later.
- the surface light source 110 provides light having an area substantially equal to the area of the substrate 10 to be processed with respect to the substrate 10 having a predetermined area.
- the surface light source 110 may be instantaneously provided flash light.
- the surface light source 110 is light that is provided with the same light energy for the entire area of the single substrate that needs a metal oxide or metal conversion process (at this time, the area that needs to be treated may be the same as the entire area of the substrate or may be a smaller area than the substrate).
- the surface light source 110 is a light that is simultaneously supplied with the same light energy to the entire area requiring metal oxide or metal conversion treatment among the continuously supplied substrates.
- the surface light source may be periodically provided in the form of flash light to a predetermined area, and the substrate may be intermittently supplied by a predetermined distance to match the supply period of the surface light source. Accordingly, the substrate receives flash light in units of a predetermined area.
- the surface light source 110 is provided in a room temperature standby state, and accordingly, the above-described treatment process for the substrate 10 may also be performed in a room temperature standby state.
- a nitrogen atmosphere is provided to the metal precursor formed in the nanostructure form, and the surface light source 110 may be provided in the nitrogen atmosphere. That is, after the metal precursor is formed in the nanostructured form on the substrate 10, the metal precursor formed in the nanostructured form is placed in a chamber or a predetermined space provided with a nitrogen atmosphere, and the surface light source 110 is provided to the chamber or the space.
- the surface light source 110 may be provided in a nitrogen atmosphere.
- the electrode 2 is formed by electrodepositing the electrode material 30 to the substrate 10 on which the metal oxide or metal in the nanostructure form is formed (step S300).
- lithium may be used as the electrode material 30, and the electrode material is not necessarily limited to lithium. That is, the material for the electrode may be replaced with various materials depending on the use of the electrode to be finally manufactured. However, hereinafter, for convenience of explanation, it will be described that lithium is used as the electrode material 30 .
- the lithium 30 electrode 2 is formed on the substrate 10, and the metal oxide 60 or metal 70 having a nanostructured shape is formed inside the lithium 30 electrode.
- the surface portion 31 of the lithium 30 is formed with a relatively uniform shape, and thus the uniform shape of the surface portion 31 is maintained even when charging and discharging are performed.
- step S200 the step of forming the metal oxide 60 or the metal 70
- FIG. 4 is a flowchart illustrating an example of a step of changing the metal precursor of FIG. 2 into a metal oxide or metal in a nanostructured form.
- 5A to 5C are process diagrams showing the step of changing to the metal of FIG. 4 .
- 6A is an image showing copper hydroxide in a nanostructured form as a metal precursor
- FIG. 6B is an image showing copper oxide in a changed nanostructured form.
- step S200 first, the surface light source 110 is applied to the metal precursor 50 having a nanostructure form and formed on the substrate 10 (step S210).
- the surface light source 110 is as described above, and the surface light source 110 may be provided through a separate light source unit 100 .
- the metal precursor 50 is changed into a nanostructured metal oxide 60 (step S211).
- the metal precursor 50 is, for example, copper hydroxide (Cu(OH) 2 ), tin hydroxide (Sn(OH) 2 ), zinc hydroxide (Zn (OH) 2 ), nickel hydroxide (NiOH), manganese hydroxide (Mn(OH) 2 ), cobalt hydroxide (Co(OH) 2 ), titanium hydroxide (Ti(OH) 4 )
- copper hydroxide (Cu (OH) 2 ) is copper oxide (Cu x O)
- tin hydroxide (Sn(OH) 2 ) is tin oxide (SnO X )
- zinc hydroxide (Zn (OH) 2 ) zinc oxide (ZnO)
- nickel hydroxide (NiOH) nickel oxide (Ni 2 O)
- manganese hydroxide (Mn(OH) 2 ) is manganese oxide (MnO 2 )
- cobalt hydroxide (Co(OH) 2 ) is cobalt oxide
- copper hydroxide (Cu(OH) 2 ) as the metal precursor 50 formed on the substrate 10 has nanostructures of various lengths, shapes, and arrangements. It is a state formed on the substrate 10.
- copper oxide (Cu x O) is formed by being oxidized and changed to a dark color as a whole according to the provision of the light source.
- the shape of the nanostructured copper hydroxide (Cu(OH) 2 ) changes to have a more irregular shape than the shape of the nanostructured copper hydroxide (Cu(OH) 2 ).
- the nanostructures also have a shape in which some parts are intertwined or intersected with each other.
- the electrode 2 may be directly formed by performing the process of electrodepositing lithium (step S300).
- the surface light source 110 may be additionally applied to the metal oxide 60 having a nanostructure form and formed on the substrate 10 (step S212).
- the metal oxide 60 is changed into a metal 70 in a nanostructured form (step S223).
- the metal oxide 60 is, for example, copper oxide (Cu x O), nickel oxide (Ni 2 O), titanium oxide (TiO), zinc oxide (ZnO), tin oxide (SnO) X ), manganese oxide (MnO 2 ), cobalt oxide (Co 3 O 4 ), if any, the copper oxide (Cu x O) is copper (Cu), nickel oxide (Ni 2 O) is nickel (Ni), titanium oxide (TiO) is titanium (Ti), zinc oxide (ZnO) is zinc (Zn), tin oxide (SnO) X ) is tin (Sn), manganese oxide (MnO 2 ) is manganese (Mn), cobalt oxide (Co 3 O 4 ) is changed to cobalt (Co).
- step S300 the process of electrodepositing lithium is performed to form the electrode 2.
- FIG. 7 is a flowchart illustrating another example of a step of changing the metal precursor of FIG. 2 into a nanostructured metal oxide or metal.
- 8a to 8c are process charts showing the step of changing to the metal of FIG. 7 .
- FIG. 9a is an image showing copper oxide in a nanostructured form
- FIG. 9b is an image showing copper in a changed nanostructured form.
- step S200 first, the metal precursor 50 having a nanostructured form and formed on the substrate 10 is converted into a metal oxide 60 having a nanostructured form (step S220).
- a laser light or other light may be applied to the metal precursor 50 in addition to a surface light source, and a predetermined temperature or heat may be provided.
- step S221 the metal oxide 60 formed on the substrate 10 is coated with an alcohol derivative 80 (step S221).
- the alcohol derivative 80 is uniformly coated on the metal oxide 60 formed on the substrate 10 while having a nanostructured shape.
- the metal oxide 60 may be, for example, any one of copper oxide (Cu x O), nickel oxide (Ni 2 O), titanium oxide (TiO), zinc oxide (ZnO), tin oxide (SnO X ), manganese oxide (MnO 2 ), and cobalt oxide (Co 3 O 4 ), and the alcohol derivative 80 may be ethylene glycol.
- various coating processes may be applied to the process of coating the alcohol derivative 80, and for example, any one of blade coating, spray coating, spin coating, and micro-gravure coating may be applied.
- the surface light source 110 is applied to the metal oxide 60 having a nanostructured form coated with the alcohol derivative 80 (step S222), The surface light source 110 is applied, and the metal oxide 60 is formed on the substrate 10 by changing into a metal 70 having a nanostructured form (step S223).
- the surface light source 110 is as described above, and the surface light source 110 may be provided through a separate light source unit 100 .
- the metal oxide 60 is, for example, copper oxide (Cu x O), nickel oxide (Ni 2 O), titanium oxide (TiO), zinc oxide (ZnO), tin oxide (SnO) X ), manganese oxide (MnO 2 ), cobalt oxide (Co 3 O 4 ), if any, the copper oxide (Cu x O) is copper (Cu), nickel oxide (Ni 2 O) is nickel (Ni), titanium oxide (TiO) is titanium (Ti), zinc oxide (ZnO) is zinc (Zn), tin oxide (SnO) X ) is tin (Sn), manganese oxide (MnO 2 ) is manganese (Mn), cobalt oxide (Co 3 O 4 ) is changed to cobalt (Co).
- copper oxide (Cu x O) as the metal oxide 60 formed on the substrate 10 is a state in which nanostructures are formed on the substrate 10 in various lengths, shapes, and arrangements.
- copper (Cu) is formed according to the provision of the light source.
- the shape of the nanostructured shape is changed or distorted in more various ways than that of copper oxide (Cu x O) of the nanostructured shape. It changes to have an irregular shape.
- the nanostructured shapes have shapes that intertwine or intersect with each other.
- nanostructured shapes have intertwined or crossed shapes, when lithium is electrodeposited, the affinity with lithium is improved and the electrodeposition with lithium 30 can be performed more uniformly. Accordingly, a uniform surface portion is formed even during the charging and discharging process of lithium 30, so that separate protrusions protrude in the form of branches and grow (dendrite growth) does not occur.
- step S300 a process of electrodepositing lithium is performed to form the electrode 2.
- the electrode 2 formed as described above may be, for example, a negative electrode of a lithium ion battery.
- the electrode 2 may be used as an electrode for a photoelectrochemical (PEC)-based water splitting device.
- PEC photoelectrochemical
- FIG. 10 is a graph showing a change in charge capacity when charging and discharging are repeated for a lithium electrode without a nanostructured form, a lithium electrode formed with copper oxide in a nanostructured form according to the present embodiments, and a lithium electrode formed with copper in a nanostructured form.
- the metal oxide or metal in the nanostructure form by providing a surface light source having a predetermined area to the substrate in an area unit, it is possible to form the metal oxide or metal integrally in a unit area unit, thereby improving the convenience of the process.
- the surface light source can be provided in the air at room temperature, the process of forming the metal oxide or metal can be further simplified. Furthermore, since a continuous process can be performed by providing a surface light source as flash light to continuously provided substrates, the efficiency of electrode production can be improved and mass production can be possible. That is, by applying a roll-to-roll continuous production process, the efficiency of electrode production can be improved.
- the electrode manufactured by the electrode manufacturing method can be used as a negative electrode of a lithium ion battery or an electrode for a photoelectrochemical (PEC)-based water splitting device, and can have various usability.
- PEC photoelectrochemical
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
An electrode manufacturing method comprises the steps of: forming a metal precursor in a nanostructure form on a substrate (step S100); applying a surface light source having a predetermined area to change the metal precursor into a metal oxide or metal in a nanostructure form (step S200); and electrodepositing a material for an electrode on the substrate with the metal oxide or metal in a nanostructure form, thereby forming an electrode (step S300). Therefore, uniform electrodeposition of the material for an electrode can be induced to improve the lifespan and capacity of a battery.
Description
본 발명은 전극 제조방법에 관한 것으로, 더욱 상세하게는 고용량 배터리에 사용되는 전극의 제조에 있어, 면광원을 이용하여 리튬 친화성, 넓은 비표면적, 재료의 균일 선속(flux)을 유도하여 금속의 수지상 성장을 억제하여 배터리의 사이클 안정성을 확보할 수 있는 전극 제조방법에 관한 것이다.The present invention relates to a method for manufacturing an electrode, and more particularly, in the manufacture of an electrode used in a high-capacity battery, a surface light source is used to induce lithium affinity, a large specific surface area, and a uniform flux of a material to inhibit metal dendrite growth. It relates to a method for manufacturing an electrode capable of securing cycle stability of a battery.
도 1은 종래기술에 의한 전극의 제조방법을 도시한 공정도로서, 종래기술에 의한 구리 호일에서의 리튬 금속 전극의 제조 및 충방전에 따른 거동에 대하여 도시한 도면이다. 도 1에 도시된 바와 같이, 종래 기술에서의 배터리용 제조방법에서는, 기판(10) 상에 전극용 재료(20)로서 예를 들어 리튬을 전착하여 전극(1)을 제조한다. 1 is a process diagram showing a method of manufacturing an electrode according to the prior art, and is a diagram showing the behavior according to the manufacturing and charging and discharging of a lithium metal electrode in a copper foil according to the prior art. As shown in FIG. 1 , in the battery manufacturing method in the prior art, the electrode 1 is manufactured by electrodepositing, for example, lithium as the electrode material 20 on the substrate 10 .
그러나, 이렇게 제조된 전극(1)의 경우, 반복적인 충방전 사이클(cycling)이 수행됨에 따라, 리튬 금속 음극은 돌기부(21)가 수지상 형상으로 돌출되며 자라나는 현상(dendrite growth)이 발생한다. 이렇게 자라나는 돌기부(21)는 금속 배터리의 수명이나 용량을 감소시키며, 소자 단락(short)을 야기하고 배터리 열폭발 문제를 야기한다. However, in the case of the electrode 1 manufactured in this way, as repeated charging and discharging cycles are performed, the protrusions 21 of the lithium metal negative electrode protrude in a dendrite shape and grow (dendrite growth) occurs. The protrusion 21 that grows in this way reduces the life or capacity of the metal battery, causes a device short circuit, and causes a thermal explosion problem of the battery.
이에, 이러한 충방전 사이클 과정에서의 리튬 금속의 돌기 형태의 성장을 최소화하기 위해, 기판 상에 금속을 성장시키는 공정이 개발되고 있다. Accordingly, in order to minimize the growth of metal protrusions during the charge/discharge cycle process, a process of growing a metal on a substrate has been developed.
예를 들어, 일본국 공개특허 제2020-502723호의 경우, 리튬이온 배터리의 음극 제작에 관한 기술로, 금속 촉매의 성장을 위해 고온 환경에 노출시키는 공정을 적용하는 것을 개시한다. For example, in the case of Japanese Patent Laid-Open No. 2020-502723, a technique for manufacturing a negative electrode of a lithium ion battery discloses applying a process of exposing a metal catalyst to a high-temperature environment for growth.
즉, 금속 촉매의 성장을 통한 음극 제조에 있어, 오븐이나 핫플레이트 등을 이용하여 진공 또는 환원 분위기의 고온 환경에 장시간 노출시키는 화학적 변화 공정이 적용되어 왔는데, 이러한 화학적 변화 공정의 경우, 시간과 비용이 증가하거나, 고온에서 특정 가스 분위기를 제어해야 하는 어려운 공정이 수반되어야 하며, 이에 따라 공정 조건의 유지가 어려운 한계가 있다. That is, in the manufacture of a negative electrode through the growth of a metal catalyst, a chemical change process in which an oven or a hot plate is used to expose to a high-temperature environment in a vacuum or reducing atmosphere for a long time has been applied. In the case of such a chemical change process, time and cost increase, or a difficult process of controlling a specific gas atmosphere at a high temperature must be accompanied, and thus there is a limit in maintaining process conditions.
관련 선행기술문헌으로는 일본국 공개특허 제2020-502723호가 있다. As a related prior art document, there is Japanese Patent Laid-Open No. 2020-502723.
이에, 본 발명의 기술적 과제는 이러한 점에서 착안된 것으로 본 발명의 목적은 고용량 배터리에 사용되는 전극의 제조에 있어, 면광원을 이용하여 리튬 친화성, 넓은 비표면적, 재료의 균일 선속(flux)을 유도하여 금속의 수지상 성장을 억제하여 배터리의 사이클 안정성을 확보할 수 있는 전극 제조방법을 제공하는 것이다. Accordingly, the technical problem of the present invention has been focused on this point, and an object of the present invention is to provide a method for manufacturing an electrode capable of securing cycle stability of a battery by suppressing dendrite growth of metal by inducing lithium affinity, a large specific surface area, and a uniform flux of a material using a surface light source in the manufacture of an electrode used in a high-capacity battery.
상기한 본 발명의 목적을 실현하기 위한 일 실시예에 의한 전극의 제조방법은, 기판 상에 금속 전구체를 나노구조 형태로 형성하는 단계(단계 S100), 소정 면적을 가지는 면광원을 인가하여, 상기 금속 전구체를 나노구조 형태의 산화금속 또는 금속으로 변화하는 단계(단계 S200), 및 상기 나노구조 형태의 산화금속 또는 금속이 형성된 기판으로 전극용 재료를 전착하여 전극을 형성하는 단계(단계 S300)를 포함한다. A method for manufacturing an electrode according to an embodiment for realizing the object of the present invention described above includes forming a metal precursor on a substrate in a nanostructured form (step S100), applying a surface light source having a predetermined area to convert the metal precursor into a nanostructured metal oxide or metal (step S200), and forming an electrode by electrodepositing a material for an electrode onto a substrate on which the nanostructured metal oxide or metal is formed (step S300).
일 실시예에서, 상기 면광원은, 상기 금속 전구체가 형성된 기판의 면적 전체에 대하여 순간적으로 제공되는 플래쉬(flash) 광일 수 있다. In one embodiment, the surface light source may be a flash light that is instantaneously provided to the entire area of the substrate on which the metal precursor is formed.
일 실시예에서, 상기 기판은 연속으로 제공되며, 상기 면광원은, 연속으로 제공되는 기판에 대하여 일정 면적 단위로 순간적으로 제공되는 플래쉬(flash) 광일 수 있다. In one embodiment, the substrate is continuously provided, and the surface light source may be a flash light that is instantaneously provided in units of a predetermined area with respect to the continuously provided substrate.
일 실시예에서, 상기 기판은 공급롤에 의해 연속으로 공급되고, 상기 전극이 형성된 이후, 회수롤에 의해 연속으로 회수되어, 롤투롤(roll-to-roll) 연속 공정으로 수행될 수 있다. In one embodiment, the substrate is continuously supplied by a supply roll, and after the electrode is formed, the substrate is continuously recovered by a recovery roll, so that a roll-to-roll continuous process may be performed.
일 실시예에서, 상기 면광원은 실온의 대기 중에서 제공될 수 있다. In one embodiment, the surface light source may be provided in the air at room temperature.
일 실시예에서, 상기 나노구조 형태로 형성된 금속 전구체에 질소 분위기를 제공하며, 상기 면광원은 상기 질소 분위기에서 제공될 수 있다. In one embodiment, a nitrogen atmosphere is provided to the metal precursor formed in the nanostructure form, and the surface light source may be provided in the nitrogen atmosphere.
일 실시예에서, 상기 단계 S100에서, 금속 재질을 포함하는 상기 기판을 탈이온수에 과황산암모늄(Ammonium Persulfate)과 수산화나트륨(NaOH)을 섞은 용액에 담가 화학반응을 유도할 수 있다. In one embodiment, in the step S100, a chemical reaction may be induced by immersing the substrate including a metal material in a solution of ammonium persulfate and sodium hydroxide (NaOH) in deionized water.
일 실시예에서, 상기 단계 S200은, 상기 나노구조 형태의 금속 전구체에 상기 면광원을 인가하는 단계, 상기 금속 전구체가 나노구조 형태의 산화금속으로 변화되는 단계, 상기 산화금속에 상기 면광원을 추가로 인가하는 단계, 및 상기 산화금속이 나노구조 형태의 금속으로 변화되는 단계를 포함할 수 있다. In one embodiment, the step S200 may include applying the surface light source to the nanostructured metal precursor, changing the metal precursor into a nanostructured metal oxide, further applying the surface light source to the metal oxide, and changing the metal oxide into a nanostructured metal.
일 실시예에서, 상기 단계 S200은, 상기 금속 전구체가 나노구조 형태의 산화금속으로 변화되는 단계, 상기 산화금속이 형성된 기판으로 알코올 유도체를 코팅하는 단계, 상기 알코올 유도체가 코팅된 기판으로 상기 면광원을 인가하는 단계, 및 상기 산화금속이 나노구조 형태의 금속으로 변화하는 단계를 포함할 수 있다. In one embodiment, the step S200 may include changing the metal precursor into a nanostructured metal oxide, coating the substrate on which the metal oxide is formed with an alcohol derivative, applying the surface light source to the substrate coated with the alcohol derivative, and changing the metal oxide into a nanostructured metal.
일 실시예에서, 상기 알코올 유도체를 코팅하는 단계는, 상기 알코올 유도체를 블레이드 코팅(blade coating), 스프레이 코팅(spray coating), 스핀 코팅(spin coating), 마이크로 그라비아 코팅(micro-gravure coating) 중 어느 하나로 코팅할 수 있다. In one embodiment, in the step of coating the alcohol derivative, the alcohol derivative may be coated with any one of blade coating, spray coating, spin coating, and micro-gravure coating.
일 실시예에서, 상기 알코올 유도체는, 에틸렌 글리콜(ethylene glycol)일 수 있다. In one embodiment, the alcohol derivative may be ethylene glycol.
일 실시예에서, 상기 금속 전구체는, 수산화구리(Cu(OH)2), 수산화주석(Sn(OH)2), 수산화아연(Zn(OH)2), 수산화니켈(NiOH), 수산화망간(Mn(OH)2), 수산화코발트(Co(OH)2), 수산화티타늄(Ti(OH)4) 중 어느 하나일 수 있다. In one embodiment, the metal precursor may be any one of copper hydroxide (Cu(OH) 2 ), tin hydroxide (Sn(OH) 2 ), zinc hydroxide (Zn(OH) 2 ), nickel hydroxide (NiOH), manganese hydroxide (Mn(OH) 2 ), cobalt hydroxide (Co(OH) 2 ), and titanium hydroxide (Ti(OH) 4 ).
일 실시예에서, 상기 산화금속은 산화구리(CuxO), 산화니켈(Ni2O), 산화티타늄(TiO), 산화아연(ZnO), 산화주석(SnOX), 산화망간(MnO2), 산화코발트(Co3O4) 중 어느 하나이고, 상기 금속은 구리(Cu), 니켈(Ni), 티타늄(Ti), 아연(Zn), 주석(Sn), 망간(Mn), 코발트(Co) 중 어느 하나일 수 있다. In one embodiment, the metal oxide is copper oxide (Cu x O), nickel oxide (Ni 2 O), titanium oxide (TiO), zinc oxide (ZnO), tin oxide (SnO X ), manganese oxide (MnO 2 ), and cobalt oxide (Co 3 O 4 ), and the metal is any one of copper (Cu), nickel (Ni), titanium (Ti), zinc (Zn), tin (Sn), and manganese. It may be any one of (Mn) and cobalt (Co).
일 실시예에서, 상기 나노 구조는, 나노로드(nano-rod), 나노 입자(nano-particle), 나노 플레이크(nano-flake), 나노 리본(nano-ribbon), 나노 플라워(nano-flower) 중 어느 하나일 수 있다. In an embodiment, the nanostructure may be any one of a nano-rod, a nano-particle, a nano-flake, a nano-ribbon, and a nano-flower.
일 실시예에서, 상기 전극용 재료는 리튬(lithium)일 수 있다. In one embodiment, the material for the electrode may be lithium (lithium).
일 실시예에서, 상기 전극은, 리튬 이온 배터리(lithium ion battery)의 음극일 수 있다. In one embodiment, the electrode may be a negative electrode of a lithium ion battery.
일 실시예에서, 상기 전극은, PEC(photoelectrochemical) 기반의 물분해(water splitting) 소자용 전극일 수 있다. In one embodiment, the electrode may be an electrode for a photoelectrochemical (PEC)-based water splitting device.
본 발명의 실시예들에 의하면, 기판 상에 나노구조 형태를 가지는 금속이나 산화금속을 형성한 상태에서, 전극의 충방전 과정에서의 리튬이온으로부터 리튬 금속의 돌기부가 수지상 형태로 돌출되며 자라나는 현상(dendrite growth)을 최소화할 수 있다. 그리하여, 배터리의 용량을 증가시키며 안정적인 충방전 상태를 유지할 수 있다. According to embodiments of the present invention, in a state in which metal or metal oxide having a nanostructured form is formed on a substrate, protrusions of lithium metal protrude from lithium ions in the charging and discharging process of the electrode and grow in the form of dendrites. Dendrite growth can be minimized. Thus, it is possible to increase the capacity of the battery and maintain a stable charge/discharge state.
이 경우, 상기 나노구조 형태의 산화금속이나 금속을 형성함에 있어, 소정 면적을 가지는 면광원을 면적 단위로 기판으로 제공함으로써, 단위 면적 단위에서 일체로 산화금속이나 금속의 형성이 가능하여 공정의 편의성이 향상된다. In this case, in forming the metal oxide or metal in the nanostructure form, by providing a surface light source having a predetermined area to the substrate in an area unit, it is possible to form the metal oxide or metal integrally in a unit area unit, thereby improving the convenience of the process.
특히, 면광원을 실온의 대기 중에서 제공할 수 있으므로, 상기 산화금속이나 금속의 형성 공정을 보다 단순화할 수 있다. 나아가, 연속적으로 제공되는 기판에 대하여 면광원을 플래쉬 광으로 제공하여 연속 공정을 수행할 수 있으므로, 전극 생산의 효율성을 향상시키며 대량 생산이 가능할 수 있다. 즉, 롤투롤 연속 생산 공정을 적용함으로써, 전극 생산의 효율성을 향상시킬 수 있다. In particular, since the surface light source can be provided in the air at room temperature, the process of forming the metal oxide or metal can be further simplified. Furthermore, since a continuous process can be performed by providing a surface light source as flash light to continuously provided substrates, the efficiency of electrode production can be improved and mass production can be possible. That is, by applying a roll-to-roll continuous production process, the efficiency of electrode production can be improved.
나아가, 상기 전극의 제조방법으로 제조된 전극은, 리튬 이온 배터리(lithium ion battery)의 음극 또는, PEC(photoelectrochemical) 기반의 물분해(water splitting) 소자용 전극으로 사용될 수 있어, 다양한 사용성을 가질 수 있다. Furthermore, the electrode manufactured by the electrode manufacturing method can be used as a negative electrode of a lithium ion battery or an electrode for a photoelectrochemical (PEC)-based water splitting device, and can have various usability.
도 1은 종래기술에 의한 전극의 제조방법을 도시한 공정도이다. 1 is a process chart showing a manufacturing method of an electrode according to the prior art.
도 2는 본 발명의 일 실시예에 의한 전극의 제조방법을 도시한 흐름도이다. 2 is a flowchart illustrating a method of manufacturing an electrode according to an embodiment of the present invention.
도 3은 도 2의 전극의 제조방법을 도시한 모식도이다. Figure 3 is a schematic diagram showing a manufacturing method of the electrode of Figure 2.
도 4는 도 2의 금속 전구체를 나노구조 형태의 산화금속 또는 금속으로 변화하는 단계의 일 예를 도시한 흐름도이다. FIG. 4 is a flowchart illustrating an example of a step of changing the metal precursor of FIG. 2 into a metal oxide or metal in a nanostructured form.
도 5a 내지 도 5c는 도 4의 금속으로 변화하는 단계를 도시한 공정도들이다. 5A to 5C are process diagrams showing the step of changing to the metal of FIG. 4 .
도 6a는 금속 전구체로서 나노구조 형태의 수산화구리를 도시한 이미지이며, 도 6b는 변화된 나노구조 형태의 산화구리를 도시한 이미지이다. 6A is an image showing copper hydroxide in a nanostructured form as a metal precursor, and FIG. 6B is an image showing copper oxide in a changed nanostructured form.
도 7은 도 2의 금속 전구체를 나노구조 형태의 산화금속 또는 금속으로 변화하는 단계의 다른 예를 도시한 흐름도이다. FIG. 7 is a flowchart illustrating another example of a step of changing the metal precursor of FIG. 2 into a nanostructured metal oxide or metal.
도 8a 내지 도 8c는 도 7의 금속으로 변화하는 단계를 도시한 공정도들이다. 8a to 8c are process charts showing the step of changing to the metal of FIG. 7 .
도 9a는 나노구조 형태의 산화구리를 도시한 이미지이며, 도 9b는 변화된 나노구조 형태의 구리를 도시한 이미지이다. FIG. 9a is an image showing copper oxide in a nanostructured form, and FIG. 9b is an image showing copper in a changed nanostructured form.
도 10은 나노구조 형태가 형성되지 않은 리튬 전극, 본 실시예들에 의한 나노구조 형태의 산화구리가 형성된 리튬 전극, 및 나노구조 형태의 구리가 형성된 리튬 전극에 대하여, 충방전을 반복하는 경우의 충전 용량의 변화를 도시한 그래프이다. 10 is a graph showing a change in charge capacity when charging and discharging are repeated for a lithium electrode without a nanostructured form, a lithium electrode formed with copper oxide in a nanostructured form according to the present embodiments, and a lithium electrode formed with copper in a nanostructured form.
<부호의 설명><Description of codes>
2 : 전극 10 : 기판2: electrode 10: substrate
20, 30 : 전극용 재료 21 : 돌기부20, 30: electrode material 21: protrusion
31 : 표면부 50 : 금속 전구체31: surface portion 50: metal precursor
60 : 산화금속 70 : 금속60: metal oxide 70: metal
80 : 알코올 유도체 100 : 광원유닛80: alcohol derivative 100: light source unit
110 : 면광원 110: surface light source
본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는 바, 실시예들을 본문에 상세하게 설명하고자 한다. 그러나 이는 본 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 각 도면을 설명하면서 유사한 참조부호를 유사한 구성요소에 대해 사용하였다. 제1, 제2 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안 된다. Since the present invention can be applied with various changes and can have various forms, embodiments will be described in detail in the text. However, this is not intended to limit the present invention to a specific form disclosed, and should be understood to include all modifications, equivalents, and substitutes included in the spirit and scope of the present invention. Like reference numerals have been used for like elements throughout the description of each figure. Terms such as first and second may be used to describe various components, but the components should not be limited by the terms.
상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 본 출원에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. These terms are only used for the purpose of distinguishing one component from another. Terms used in this application are only used to describe specific embodiments, and are not intended to limit the present invention. Singular expressions include plural expressions unless the context clearly dictates otherwise.
본 출원에서, "포함하다" 또는 "이루어진다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다. In this application, the terms "comprise" or "consisting of" are intended to designate that the features, numbers, steps, operations, components, parts, or combinations thereof described in the specification exist, but it should be understood that the presence or addition of one or more other features or numbers, steps, operations, components, parts, or combinations thereof is not precluded.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥 상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.Unless defined otherwise, all terms used herein, including technical or scientific terms, have the same meaning as commonly understood by one of ordinary skill in the art to which the present invention belongs. Terms such as those defined in commonly used dictionaries should be interpreted as having a meaning consistent with the meaning in the context of the related art, and are not interpreted in an ideal or excessively formal meaning unless explicitly defined in the present application.
이하, 첨부한 도면들을 참조하여, 본 발명의 바람직한 실시예를 보다 상세하게 설명하고자 한다.Hereinafter, with reference to the accompanying drawings, preferred embodiments of the present invention will be described in more detail.
도 2는 본 발명의 일 실시예에 의한 전극의 제조방법을 도시한 흐름도이다. 도 3은 도 2의 전극의 제조방법을 도시한 모식도이다. 2 is a flowchart illustrating a method of manufacturing an electrode according to an embodiment of the present invention. Figure 3 is a schematic diagram showing a manufacturing method of the electrode of Figure 2.
도 2 및 도 3을 참조하면, 본 실시예에 의한 전극의 제조방법에서는, 우선, 기판(10) 상에 금속 전구체를 나노구조 형태로 형성한다(단계 S100). Referring to FIGS. 2 and 3 , in the method of manufacturing an electrode according to this embodiment, first, a metal precursor is formed in a nanostructured form on the substrate 10 (step S100).
이 경우, 상기 나노구조는 예를 들어, 나노로드(nano-rod), 나노 입자(nano-particle), 나노 플레이크(nano-flake), 나노 리본(nano-ribbon), 나노 플라워(nano-flower) 등과 같이 다양한 구조를 포함할 수 있다. 다만, 이하에서는 설명의 편의상 상기 나노구조가 나노로드의 형상을 가지는 것으로 설명한다. In this case, the nanostructure may include various structures such as, for example, nano-rods, nano-particles, nano-flakes, nano-ribbons, nano-flowers, and the like. However, hereinafter, for convenience of description, the nanostructure is described as having a nanorod shape.
이 경우, 상기 기판(10)은 다양한 유연성(flexible) 또는 신축성(stretchable) 기판일 수 있으며, 예를 들어, 구리와 같은 금속재질의 포일(foil)일 수도 있다. In this case, the substrate 10 may be a variety of flexible or stretchable substrates, and may be, for example, a metal foil such as copper.
특히, 상기 기판(10)의 경우, 도 3 및 후술되는 도면을 통해서는 일정 면적을 가지는 플레이트 형상을 가지는 것으로 도시하였으나, 유연성 또는 신축성을 가지므로 변형이 용이한 것은 물론이고, 나아가, 롤투롤(Roll-to-Roll) 방식으로 연속적으로 공급될 수도 있다. In particular, in the case of the substrate 10, although it is shown as having a plate shape having a certain area through FIG. 3 and the drawings to be described later, it is flexible or stretchable, so it is easy to deform, and furthermore, it can be continuously supplied in a roll-to-roll manner.
상기 롤투롤 방식으로 상기 기판(10)이 연속으로 공급되는 경우, 도시하지는 않았으나, 상기 기판(10)을 권선한 상태에서, 연속으로 제공하는 공급롤과, 후술되는 모든 공정이 종료되어 형성되는 전극을 다시 회수하는 회수롤이 구비될 수 있다. 나아가, 상기 공급롤과 회수롤 사이에는 상기 기판(10)의 연속 제공을 구현하기 위한 복수의 제어롤들도 구비될 수 있다. When the substrate 10 is continuously supplied in the roll-to-roll method, although not shown, a supply roll continuously provided in a state in which the substrate 10 is wound, and an electrode formed after all processes described later are completed. A recovery roll for recovering again may be provided. Furthermore, a plurality of control rolls may be provided between the supply roll and the recovery roll to realize continuous supply of the substrate 10 .
이와 같이, 롤투롤 방식으로 상기 전극의 제조방법이 구현되는 경우, 도면을 통해 도시되는 기판은 연속적으로 공급되는 기판(10)에서 소정의 공정이 수행되는 일부 면적만이 도시된 것일 수 있다. In this way, when the method of manufacturing the electrode is implemented in a roll-to-roll method, the substrate shown in the drawing may be only a partial area where a predetermined process is performed on the substrate 10 continuously supplied.
상기 기판(10) 상에 금속 전구체를 나노구조의 형상을 가지도록 형성함에 있어, 상기 금속 전구체(50, 도 5a 참조)는, 예를 들어, 수산화구리(Cu(OH)2), 수산화주석(Sn(OH)2), 수산화아연(Zn(OH)2), 수산화니켈(NiOH), 수산화망간(Mn(OH)2), 수산화코발트(Co(OH)2), 수산화티타늄(Ti(OH)4) 중 어느 하나일 수 있다. In forming the metal precursor on the substrate 10 to have a nanostructured shape, the metal precursor (50, see FIG. 5A) may be, for example, copper hydroxide (Cu(OH) 2 ), tin hydroxide (Sn(OH) 2 ), zinc hydroxide (Zn(OH) 2 ), nickel hydroxide (NiOH), manganese hydroxide (Mn(OH) 2 ), cobalt hydroxide (Co(OH)) 2 ), titanium hydroxide (Ti(OH) 4 ).
이 경우, 상기 금속 전구체(50)는 금속 재질을 가지는 상기 기판(10)을 소정의 용액에 담가 화학적 반응을 유도하여 나노구조 형상을 가지도록 제조될 수 있다. In this case, the metal precursor 50 may be manufactured to have a nanostructured shape by inducing a chemical reaction by immersing the substrate 10 having a metal material in a predetermined solution.
예를 들어, 상기 기판(10)이 앞서 설명한 바와 같이 구리재질의 포일인 경우, 상기 기판(10)을 탈이온수에 과황산암모늄(Ammonium Persulfate)과 수산화나트륨(NaOH)을 섞은 용액에 담가, 화학적 반응을 유도할 수 있다. 그리하여, 금속 전구체로서 나노구조 형상을 가지는 수산화구리(Cu(OH)2)가 형성된다. For example, when the substrate 10 is a copper foil as described above, the substrate 10 is immersed in a solution of ammonium persulfate and sodium hydroxide (NaOH) in deionized water to induce a chemical reaction. Thus, copper hydroxide (Cu(OH) 2 ) having a nanostructured shape as a metal precursor is formed.
이 때, 상기 용액은, 예를 들어, 50mL의 탈이온수에 2.5M의 수산화나트륨과 0.13M의 과황산암모늄을 혼합할 수 있으며, 상기 화학적 반응은 하기 화학식으로 설명될 수 있다. At this time, the solution may be, for example, a mixture of 2.5 M sodium hydroxide and 0.13 M ammonium persulfate in 50 mL of deionized water, and the chemical reaction may be described by the following chemical formula.
나아가, 여타의 금속 재질에 대하여도 동일한 공정을 통해 다양한 금속 재질의 금속 전구체를 형성할 수 있다. Furthermore, metal precursors of various metal materials may be formed through the same process for other metal materials.
이 후, 상기 기판(10)에 면광원(110, 도 5b)을 인가하여, 상기 금속 전구체를 나노구조 형태의 산화금속 또는 금속으로 변화한다(단계 S200). Thereafter, by applying a surface light source 110 (FIG. 5B) to the substrate 10, the metal precursor is changed into a metal oxide or metal in a nanostructured form (step S200).
즉, 상기 기판(10) 상에 형성된 상기 금속 전구체는, 산화금속 또는 금속으로 변화하게 되는데, 이러한 공정에 대하여는 후술되는 도면을 통해 보다 상세하게 설명한다. That is, the metal precursor formed on the substrate 10 is changed into a metal oxide or a metal, and this process will be described in more detail through drawings to be described later.
한편, 상기 면광원(110)은 소정 면적을 가지는 기판(10)에 대하여, 처리 대상이 되는 상기 기판(10)의 면적과 실질적으로 동일한 면적을 가지는 광이 제공되는 것으로, 상기 면광원(110)은 예를 들어, 순간적으로 제공되는 플래쉬(flash) 광일 수 있다. On the other hand, the surface light source 110 provides light having an area substantially equal to the area of the substrate 10 to be processed with respect to the substrate 10 having a predetermined area. For example, the surface light source 110 may be instantaneously provided flash light.
즉, 상기 기판(10)이 예를 들어 사각형 형상을 가지는 단일 기판이라면, 상기 면광원(110)은 상기 단일 기판에 대하여, 산화금속 또는 금속으로의 변화 처리가 필요한 면적 전체에 대하여(이 때, 처리가 필요한 면적은 기판 전체의 면적과 동일할 수도 있으며, 기판 보다 작은 면적일 수도 있음), 동시에 동일한 광 에너지로 제공되는 광이다. That is, if the substrate 10 is a single substrate having, for example, a rectangular shape, the surface light source 110 is light that is provided with the same light energy for the entire area of the single substrate that needs a metal oxide or metal conversion process (at this time, the area that needs to be treated may be the same as the entire area of the substrate or may be a smaller area than the substrate).
이와 달리, 상기 기판(10)이 예를 들어 연속적으로 공급되는 기판이라면, 상기 면광원(110)은 연속 공급되는 기판 중, 산화금속 또는 금속으로의 변화 처리가 필요한 면적 전체에 대하여, 동시에 동일한 광 에너지로 제공되는 광이다. In contrast, if the substrate 10 is, for example, a continuously supplied substrate, the surface light source 110 is a light that is simultaneously supplied with the same light energy to the entire area requiring metal oxide or metal conversion treatment among the continuously supplied substrates.
그리하여, 연속적으로 공급되는 기판에 대하여는, 소정 면적으로 면광원이 플래쉬 광 형태로 주기적으로 제공되고, 상기 면광원의 제공 주기에 부합하도록 기판이 일정 거리만큼 단속적으로 공급될 수 있다. 이에, 상기 기판은 일정 면적 단위로 플래쉬 광을 제공받게 된다. Thus, with respect to the substrate continuously supplied, the surface light source may be periodically provided in the form of flash light to a predetermined area, and the substrate may be intermittently supplied by a predetermined distance to match the supply period of the surface light source. Accordingly, the substrate receives flash light in units of a predetermined area.
한편, 본 실시예에서, 상기 면광원(110)은 실온의 대기 상태에서 제공되는 것으로, 이에 따라 상기 기판(10)에 대한 전술된 처리 공정 역시 실온의 대기 상태에서 수행될 수 있다. Meanwhile, in this embodiment, the surface light source 110 is provided in a room temperature standby state, and accordingly, the above-described treatment process for the substrate 10 may also be performed in a room temperature standby state.
이와 달리, 실시예에 따라, 상기 나노구조 형태로 형성된 금속 전구체에 질소 분위기를 제공하며, 상기 면광원(110)은 상기 질소 분위기에서 제공될 수 있다. 즉, 상기 기판(10)에 나노구조 형태로 금속 전구체가 형성된 후, 질소 분위기가 제공되는 챔버 또는 소정의 공간으로 상기 나노구조 형태로 형성된 금속 전구체를 위치시키고, 상기 면광원(110)을 상기 챔버 또는 상기 공간으로 제공할 수 있다. Alternatively, according to an embodiment, a nitrogen atmosphere is provided to the metal precursor formed in the nanostructure form, and the surface light source 110 may be provided in the nitrogen atmosphere. That is, after the metal precursor is formed in the nanostructured form on the substrate 10, the metal precursor formed in the nanostructured form is placed in a chamber or a predetermined space provided with a nitrogen atmosphere, and the surface light source 110 is provided to the chamber or the space.
그리하여, 상기 면광원(110)은 질소 분위기에서 제공될 수도 있다. Thus, the surface light source 110 may be provided in a nitrogen atmosphere.
이상과 같이, 상기 기판(10) 상에 산화금속 또는 금속이 형성되면, 상기 나노구조 형태의 산화금속 또는 금속이 형성된 기판(10)으로 전극용 재료(30)를 전착하여 전극(2)을 형성한다(단계 S300). As described above, when the metal oxide or metal is formed on the substrate 10, the electrode 2 is formed by electrodepositing the electrode material 30 to the substrate 10 on which the metal oxide or metal in the nanostructure form is formed (step S300).
이 경우, 상기 전극용 재료(30)로는 리튬(lithium)이 사용될 수 있으며, 반드시 전극용 재료가 리튬으로 제한되는 것은 아니다. 즉, 상기 전극용 재료는, 최종적으로 제작되는 전극의 사용에 따라 다양한 재료로 대체될 수 있다. 다만, 이하에서는 설명의 편의상 리튬을 전극용 재료(30)로 사용하는 것으로 설명한다. In this case, lithium may be used as the electrode material 30, and the electrode material is not necessarily limited to lithium. That is, the material for the electrode may be replaced with various materials depending on the use of the electrode to be finally manufactured. However, hereinafter, for convenience of explanation, it will be described that lithium is used as the electrode material 30 .
그리하여, 도 3에 도시된 바와 같이, 상기 기판(10) 상에는 리튬(30) 전극(2)이 형성되되, 상기 리튬(30) 전극의 내부에는 나노구조 형상을 가지는 산화금속(60) 또는 금속(70)이 형성된 상태가 된다. Thus, as shown in FIG. 3, the lithium 30 electrode 2 is formed on the substrate 10, and the metal oxide 60 or metal 70 having a nanostructured shape is formed inside the lithium 30 electrode.
이에, 상기 전극(2)이 반복적인 충방전이 수행되는 경우(cycling)라 하더라도, 리튬(30) 이온으로부터 별도의 돌기부가 가지 형태로 돌출되며 자라나는 현상(dendrite growth)은 발생하지 않는다. Accordingly, even when the electrode 2 is subjected to repeated charging and discharging (cycling), dendrite growth does not occur by protruding from the lithium 30 ions in the form of branches.
이는, 상기 리튬(30)의 표면부(31)가 상대적으로 균일한 형상을 가지면서 형성되므로, 충방전이 수행되더라도 상기 균일한 형상의 표면부(31)가 유지되기 때문이다. This is because the surface portion 31 of the lithium 30 is formed with a relatively uniform shape, and thus the uniform shape of the surface portion 31 is maintained even when charging and discharging are performed.
따라서, 반복적인 충반전이 수행되더라도, 쇼트(short)가 야기되지 않으며, 배터리의 수명이나 용량이 감소하는 문제는 최소화된다. Therefore, even if repetitive charging and discharging is performed, a short is not caused, and a problem of reducing the lifespan or capacity of the battery is minimized.
이하에서는, 상기 산화금속(60) 또는 금속(70)을 형성하는 단계(단계 S200)를 보다 상세히 설명한다. Hereinafter, the step of forming the metal oxide 60 or the metal 70 (step S200) will be described in detail.
도 4는 도 2의 금속 전구체를 나노구조 형태의 산화금속 또는 금속으로 변화하는 단계의 일 예를 도시한 흐름도이다. 도 5a 내지 도 5c는 도 4의 금속으로 변화하는 단계를 도시한 공정도들이다. 도 6a는 금속 전구체로서 나노구조 형태의 수산화구리를 도시한 이미지이며, 도 6b는 변화된 나노구조 형태의 산화구리를 도시한 이미지이다. FIG. 4 is a flowchart illustrating an example of a step of changing the metal precursor of FIG. 2 into a metal oxide or metal in a nanostructured form. 5A to 5C are process diagrams showing the step of changing to the metal of FIG. 4 . 6A is an image showing copper hydroxide in a nanostructured form as a metal precursor, and FIG. 6B is an image showing copper oxide in a changed nanostructured form.
도 4, 도 5a 및 도 5b를 참조하면, 상기 단계 S200에서는, 우선, 나노구조 형태를 가지며 상기 기판(10) 상에 형성되는 상기 금속 전구체(50)에 상기 면광원(110)을 인가한다(단계 S210). 4, 5a and 5b, in step S200, first, the surface light source 110 is applied to the metal precursor 50 having a nanostructure form and formed on the substrate 10 (step S210).
이 경우, 상기 면광원(110)에 대하여는 앞서 설명한 바와 같으며, 상기 면광원(110)은 별도의 광원유닛(100)을 통해 제공될 수 있다. In this case, the surface light source 110 is as described above, and the surface light source 110 may be provided through a separate light source unit 100 .
이상과 같이, 상기 면광원(110)이 인가되면, 상기 금속 전구체(50)는 나노구조 형태의 산화금속(60)으로 변화한다(단계 S211). As described above, when the surface light source 110 is applied, the metal precursor 50 is changed into a nanostructured metal oxide 60 (step S211).
앞서 설명한 바와 같이, 상기 금속 전구체(50)가 예를 들어, 수산화구리(Cu(OH)2), 수산화주석(Sn(OH)2), 수산화아연(Zn(OH)2), 수산화니켈(NiOH), 수산화망간(Mn(OH)2), 수산화코발트(Co(OH)2), 수산화티타늄(Ti(OH)4) 중 어느 하나라면, 상기 면광원의 제공에 따라, 수산화구리(Cu(OH)2)는 산화구리(CuxO)로, 수산화주석(Sn(OH)2)은 산화주석(SnOX)으로, 수산화아연(Zn(OH)2)은 산화아연(ZnO)으로, 수산화니켈(NiOH)은 산화니켈(Ni2O)로, 수산화망간(Mn(OH)2)은 산화망간(MnO2)으로, 수산화코발트(Co(OH)2)는 산화코발트(Co3O4)로, 수산화티타늄(Ti(OH)4)은 산화티타늄(TiO)으로 변화한다. As described above, the metal precursor 50 is, for example, copper hydroxide (Cu(OH)2), tin hydroxide (Sn(OH)2), zinc hydroxide (Zn (OH)2), nickel hydroxide (NiOH), manganese hydroxide (Mn(OH)2), cobalt hydroxide (Co(OH)2), titanium hydroxide (Ti(OH)4) If any of them, according to the provision of the surface light source, copper hydroxide (Cu (OH)2) is copper oxide (CuxO), tin hydroxide (Sn(OH)2) is tin oxide (SnOX), as zinc hydroxide (Zn (OH)2) is zinc oxide (ZnO), and nickel hydroxide (NiOH) is nickel oxide (Ni2O), manganese hydroxide (Mn(OH)2) is manganese oxide (MnO2), cobalt hydroxide (Co(OH)2) is cobalt oxide (Co3O4), titanium hydroxide (Ti(OH)4) is converted to titanium oxide (TiO).
즉, 도 6a를 참조하면, 예를 들어, 상기 기판(10) 상에 형성된 금속 전구체(50)로서 수산화구리(Cu(OH)2)는, 나노구조가 다양한 길이, 형상 및 배열로 상기 기판(10) 상에 형성된 상태이다. That is, referring to FIG. 6A, for example, copper hydroxide (Cu(OH) 2 ) as the metal precursor 50 formed on the substrate 10 has nanostructures of various lengths, shapes, and arrangements. It is a state formed on the substrate 10.
이에, 상기 면광원(110)이 제공되면, 광원의 제공에 따라 산화되어 전체적으로 어두운 색으로 변화하여 산화구리(CuxO)가 형성된다. 또한, 상기 산화구리(CuxO)의 경우, 나노구조 형상을 가지지만, 나노구조의 형상이 보다 다양하게 변화되거나 왜곡되는 등 그 형태가 상기 나노구조 형상의 수산화구리(Cu(OH)2)의 형태보다 더 불규칙한 형상을 가지도록 변화한다. Accordingly, when the surface light source 110 is provided, copper oxide (Cu x O) is formed by being oxidized and changed to a dark color as a whole according to the provision of the light source. In addition, in the case of the copper oxide (Cu x O), although it has a nanostructured shape, the shape of the nanostructured copper hydroxide (Cu(OH) 2 ) changes to have a more irregular shape than the shape of the nanostructured copper hydroxide (Cu(OH) 2 ).
나아가, 상기 나노구조들은 일부가 서로 얽히거나 교차되는 형상도 가지게 된다. Furthermore, the nanostructures also have a shape in which some parts are intertwined or intersected with each other.
한편, 앞서 설명한 바와 같이, 상기 기판(10) 상에 산화금속이 형성된 상태에서도, 상기 리튬을 전착하는 공정(단계 S300)을 수행하여, 바로 전극(2)을 형성할 수도 있다. Meanwhile, as described above, even in a state where metal oxide is formed on the substrate 10, the electrode 2 may be directly formed by performing the process of electrodepositing lithium (step S300).
즉, 상기와 같이, 나노구조 형상들이 서로 얽히거나 교차되는 형상을 가진 상태에서, 리튬이 전착되는 경우, 리튬과의 친화성이 향상되어 상기 리튬(30)과의 전착이 보다 균일하게 수행될 수 있으며, 이에 따라 리튬(30)의 충방전 과정에서도 균일한 표면부를 형성하여 별도의 돌기부가 가지 형태로 돌출되며 자라나는 현상(dendrite growth)은 발생하지 않게 된다. That is, as described above, when lithium is electrodeposited in a state in which the nanostructure shapes are intertwined or intersected with each other, the affinity with lithium is improved and the electrodeposition with lithium 30 can be performed more uniformly. Accordingly, a uniform surface portion is formed even during the charging and discharging process of lithium 30, so that separate protrusions protrude in the form of branches and grow (dendrite growth) does not occur.
이와 달리, 도 4 및 도 5c에 도시된 바와 같이, 나노구조 형태를 가지며 상기 기판(10) 상에 형성되는 상기 산화금속(60)에 상기 면광원(110)을 추가로 인가할 수 있다(단계 S212). Alternatively, as shown in FIGS. 4 and 5C , the surface light source 110 may be additionally applied to the metal oxide 60 having a nanostructure form and formed on the substrate 10 (step S212).
그리하여, 상기 면광원(110)이 추가로 인가되면, 상기 산화금속(60)은 나노구조 형태의 금속(70)으로 변화한다(단계 S223). Thus, when the surface light source 110 is additionally applied, the metal oxide 60 is changed into a metal 70 in a nanostructured form (step S223).
앞서 설명한 바와 같이, 상기 산화금속(60)이 예를 들어, 산화구리(CuxO), 산화니켈(Ni2O), 산화티타늄(TiO), 산화아연(ZnO), 산화주석(SnOX), 산화망간(MnO2), 산화코발트(Co3O4) 중 어느 하나라면, 상기 산화구리(CuxO)는 구리(Cu)로, 산화니켈(Ni2O)은 니켈(Ni)로, 산화티타늄(TiO)은 티타늄(Ti)으로, 산화아연(ZnO)은 아연(Zn)으로, 산화주석(SnOX)은 주석(Sn)으로, 산화망간(MnO2)은 망간(Mn)으로, 산화코발트(Co3O4)는 코발트(Co)로 변화한다. As described above, the metal oxide 60 is, for example, copper oxide (CuxO), nickel oxide (Ni2O), titanium oxide (TiO), zinc oxide (ZnO), tin oxide (SnO)X), manganese oxide (MnO2), cobalt oxide (Co3O4), if any, the copper oxide (CuxO) is copper (Cu), nickel oxide (Ni2O) is nickel (Ni), titanium oxide (TiO) is titanium (Ti), zinc oxide (ZnO) is zinc (Zn), tin oxide (SnO)X) is tin (Sn), manganese oxide (MnO2) is manganese (Mn), cobalt oxide (Co3O4) is changed to cobalt (Co).
이 경우, 상기 면광원(110)의 추가 제공에 따라, 상기 기판(10) 상에 형성되는 금속의 실제 이미지에 대하여는 도 9b를 참조하여 후술한다. In this case, an actual image of the metal formed on the substrate 10 according to the additional provision of the surface light source 110 will be described later with reference to FIG. 9B.
나아가, 이상과 같이, 상기 기판(10) 상에 나노구조 형태를 가지는 금속(70)이 형성된 후, 상기 리튬을 전착하는 공정(단계 S300)을 수행하여, 상기 전극(2)을 형성하게 된다. Furthermore, as described above, after the metal 70 having a nanostructured form is formed on the substrate 10, the process of electrodepositing lithium (step S300) is performed to form the electrode 2.
한편, 상기 단계 S200의 다른 예에 대하여 설명하면 하기와 같다. Meanwhile, another example of the step S200 will be described as follows.
도 7은 도 2의 금속 전구체를 나노구조 형태의 산화금속 또는 금속으로 변화하는 단계의 다른 예를 도시한 흐름도이다. 도 8a 내지 도 8c는 도 7의 금속으로 변화하는 단계를 도시한 공정도들이다. 도 9a는 나노구조 형태의 산화구리를 도시한 이미지이며, 도 9b는 변화된 나노구조 형태의 구리를 도시한 이미지이다. FIG. 7 is a flowchart illustrating another example of a step of changing the metal precursor of FIG. 2 into a nanostructured metal oxide or metal. 8a to 8c are process charts showing the step of changing to the metal of FIG. 7 . FIG. 9a is an image showing copper oxide in a nanostructured form, and FIG. 9b is an image showing copper in a changed nanostructured form.
즉, 도 7 및 도 8a를 참조하면, 상기 단계 S200에서는, 우선, 나노구조 형태를 가지며 상기 기판(10) 상에 형성되는 상기 금속 전구체(50)를 나노구조 형태를 가지는 산화금속(60)으로 변화시킨다(단계 S220). That is, referring to FIGS. 7 and 8A, in step S200, first, the metal precursor 50 having a nanostructured form and formed on the substrate 10 is converted into a metal oxide 60 having a nanostructured form (step S220).
이 경우, 상기 금속 전구체(50)를 상기 산화금속(60)으로 변화시키는 방법으로는, 앞서 설명한 상기 면광원(110)을 제공하는 방법 외에도 다른 공정이 적용될 수 있다. In this case, as a method of changing the metal precursor 50 into the metal oxide 60, a process other than the method of providing the surface light source 110 described above may be applied.
예를 들어, 상기 금속 전구체(50) 상에 면광원 외에, 레이저 광이나 여타의 광을 인가할 수 있으며, 소정의 온도나 열을 제공할 수도 있다. For example, a laser light or other light may be applied to the metal precursor 50 in addition to a surface light source, and a predetermined temperature or heat may be provided.
이 후, 도 7 및 도 8b를 참조하면, 상기 기판(10) 상에 형성된 상기 산화금속(60)에 알코올 유도체(80)를 코팅한다(단계 S221). Then, referring to FIGS. 7 and 8B , the metal oxide 60 formed on the substrate 10 is coated with an alcohol derivative 80 (step S221).
즉, 나노구조 형상을 가지면서 상기 기판(10) 상에 형성된 산화금속(60)에 상기 알코올 유도체(80)를 균일하게 코팅한다. That is, the alcohol derivative 80 is uniformly coated on the metal oxide 60 formed on the substrate 10 while having a nanostructured shape.
이 경우, 상기 산화금속(60)은, 예를 들어, 산화구리(CuxO), 산화니켈(Ni2O), 산화티타늄(TiO), 산화아연(ZnO), 산화주석(SnOX), 산화망간(MnO2), 산화코발트(Co3O4) 중 어느 하나일 수 있으며, 상기 알코올 유도체(80)는 에틸렌 글리콜(ethylene glycol)일 수 있다. In this case, the metal oxide 60 may be, for example, any one of copper oxide (Cu x O), nickel oxide (Ni 2 O), titanium oxide (TiO), zinc oxide (ZnO), tin oxide (SnO X ), manganese oxide (MnO 2 ), and cobalt oxide (Co 3 O 4 ), and the alcohol derivative 80 may be ethylene glycol.
또한, 상기 알코올 유도체(80)를 코팅하는 공정은, 다양한 코팅 공정이 적용될 수 있으며, 예를 들어, 블레이드 코팅(blade coating), 스프레이 코팅(spray coating), 스핀 코팅(spin coating), 마이크로 그라비아 코팅(micro-gravure coating) 중 어느 하나의 코팅 공정이 적용될 수 있다. In addition, various coating processes may be applied to the process of coating the alcohol derivative 80, and for example, any one of blade coating, spray coating, spin coating, and micro-gravure coating may be applied.
이 후, 도 7 및 도 8c를 참조하면, 상기 알코올 유도체(80)가 코팅된 나노구조 형태를 가지는 상기 산화금속(60)에 상기 면광원(110)을 인가하고(단계 S222), 이렇게 면광원(110)이 인가되어, 상기 기판(10) 상에는 상기 산화금속(60)이 나노구조 형태를 가지는 금속(70)으로 변화되어 형성된다(단계 S223). After that, referring to FIGS. 7 and 8C, the surface light source 110 is applied to the metal oxide 60 having a nanostructured form coated with the alcohol derivative 80 (step S222), The surface light source 110 is applied, and the metal oxide 60 is formed on the substrate 10 by changing into a metal 70 having a nanostructured form (step S223).
이 경우, 상기 면광원(110)에 대하여는 앞서 설명한 바와 같으며, 상기 면광원(110)은 별도의 광원유닛(100)을 통해 제공될 수 있다. In this case, the surface light source 110 is as described above, and the surface light source 110 may be provided through a separate light source unit 100 .
앞서 설명한 바와 같이, 상기 산화금속(60)이 예를 들어, 산화구리(CuxO), 산화니켈(Ni2O), 산화티타늄(TiO), 산화아연(ZnO), 산화주석(SnOX), 산화망간(MnO2), 산화코발트(Co3O4) 중 어느 하나라면, 상기 산화구리(CuxO)는 구리(Cu)로, 산화니켈(Ni2O)은 니켈(Ni)로, 산화티타늄(TiO)은 티타늄(Ti)으로, 산화아연(ZnO)은 아연(Zn)으로, 산화주석(SnOX)은 주석(Sn)으로, 산화망간(MnO2)은 망간(Mn)으로, 산화코발트(Co3O4)는 코발트(Co)로 변화한다. As described above, the metal oxide 60 is, for example, copper oxide (CuxO), nickel oxide (Ni2O), titanium oxide (TiO), zinc oxide (ZnO), tin oxide (SnO)X), manganese oxide (MnO2), cobalt oxide (Co3O4), if any, the copper oxide (CuxO) is copper (Cu), nickel oxide (Ni2O) is nickel (Ni), titanium oxide (TiO) is titanium (Ti), zinc oxide (ZnO) is zinc (Zn), tin oxide (SnO)X) is tin (Sn), manganese oxide (MnO2) is manganese (Mn), cobalt oxide (Co3O4) is changed to cobalt (Co).
즉, 도 9a를 참조하면, 예를 들어, 상기 기판(10) 상에 형성된 산화금속(60)으로서 산화구리(CuxO)는, 도 6b를 참조하여 설명한 바와 같이, 나노구조가 다양한 길이, 형상 및 배열로 상기 기판(10) 상에 형성된 상태이다. That is, referring to FIG. 9A, for example, copper oxide (Cu x O) as the metal oxide 60 formed on the substrate 10, as described with reference to FIG. 6B, is a state in which nanostructures are formed on the substrate 10 in various lengths, shapes, and arrangements.
이에, 상기 면광원(110)이 제공되면, 광원의 제공에 따라 구리(Cu)가 형성된다. 또한, 상기 구리(Cu)의 경우, 나노구조 형상을 가지지만, 나노구조의 형상이 더 다양하게 변화되거나 왜곡되는 등 그 형태가 상기 나노구조 형상의 산화구리(CuxO)의 형태보다 더 불규칙한 형상을 가지도록 변화한다. 나아가, 상기 나노구조 형상들은 서로 얽히거나 교차되는 형상을 가지게 된다. Accordingly, when the surface light source 110 is provided, copper (Cu) is formed according to the provision of the light source. In addition, in the case of the copper (Cu), although it has a nanostructured shape, the shape of the nanostructured shape is changed or distorted in more various ways than that of copper oxide (Cu x O) of the nanostructured shape. It changes to have an irregular shape. Furthermore, the nanostructured shapes have shapes that intertwine or intersect with each other.
이와 같은 나노구조 형상들이 서로 얽히거나 교차되는 형상을 가짐에 따라, 리튬이 전착되는 경우, 리튬과의 친화성이 향상되어 상기 리튬(30)과의 전착이 보다 균일하게 수행될 수 있으며, 이에 따라 리튬(30)의 충방전 과정에서도 균일한 표면부를 형성하여 별도의 돌기부가 가지 형태로 돌출되며 자라나는 현상(dendrite growth)은 발생하지 않게 된다. As these nanostructured shapes have intertwined or crossed shapes, when lithium is electrodeposited, the affinity with lithium is improved and the electrodeposition with lithium 30 can be performed more uniformly. Accordingly, a uniform surface portion is formed even during the charging and discharging process of lithium 30, so that separate protrusions protrude in the form of branches and grow (dendrite growth) does not occur.
즉, 상기 기판(10) 상에 나노구조 형태를 가지는 금속(70)이 형성된 후, 상기 리튬을 전착하는 공정(단계 S300)을 수행하여, 상기 전극(2)을 형성하게 된다. That is, after the metal 70 having a nanostructured form is formed on the substrate 10, a process of electrodepositing lithium (step S300) is performed to form the electrode 2.
이상과 같이 형성된 상기 전극(2)은, 예를 들어, 리튬 이온 배터리(lithium ion battery)의 음극일 수 있다. 이와 달리, 상기 전극(2)은 PEC(photoelectrochemical) 기반의 물분해(water splitting) 소자용 전극으로 사용될 수도 있다. The electrode 2 formed as described above may be, for example, a negative electrode of a lithium ion battery. Alternatively, the electrode 2 may be used as an electrode for a photoelectrochemical (PEC)-based water splitting device.
다만, 이하에서는 상기 전극(2)이 리튬 이온 배터리의 음극으로 사용되는 경우에 대하여 충전 용량의 변화를 고찰하였다. However, in the following, a change in charge capacity was considered when the electrode 2 is used as a negative electrode of a lithium ion battery.
도 10은 나노구조 형태가 형성되지 않은 리튬 전극, 본 실시예들에 의한 나노구조 형태의 산화구리가 형성된 리튬 전극, 및 나노구조 형태의 구리가 형성된 리튬 전극에 대하여, 충방전을 반복하는 경우의 충전 용량의 변화를 도시한 그래프이다. 10 is a graph showing a change in charge capacity when charging and discharging are repeated for a lithium electrode without a nanostructured form, a lithium electrode formed with copper oxide in a nanostructured form according to the present embodiments, and a lithium electrode formed with copper in a nanostructured form.
즉, 도 10에 도시된 바와 같이, 나노구조(NR) 형태가 아닌 금속(Cu)이 형성된 기판 상에 리튬을 전착하여 전극을 형성한 경우(Li-Cu Foil)는 반복적인 충방전이 수행됨에 따라(cycling), 충전 용량이 급감하는 것을 확인할 수 있다. That is, as shown in FIG. 10, in the case where an electrode is formed by electrodepositing lithium on a substrate on which a metal (Cu) is formed rather than a nanostructure (NR) form (Li-Cu Foil), it can be confirmed that the charging capacity rapidly decreases as cycles are performed.
반면, 본 실시예에서와 같이, 나노구조(NR) 형태를 가지는 산화금속(CuO)이 형성된 기판 또는 나노구조(NR) 형태를 가지는 금속(Cu)이 형성된 기판 상에 리튬을 전착하여 전극을 형성한 경우(Li-CuO NR, Li-Cu NR)에는, 반복적인 충방전이 수행되더라도(cycling), 상대적으로 충전 용량이 일정하게 유지되는 것을 확인할 수 있다. On the other hand, as in the present embodiment, in the case where an electrode is formed by electrodepositing lithium on a substrate on which a metal oxide (CuO) having a nanostructure (NR) form is formed or a substrate on which a metal (Cu) having a nanostructure (NR) form is formed (Li—CuO NR, Li—Cu NR), it can be seen that the charge capacity is maintained relatively constant even if cycling is performed repeatedly.
특히, 나노구조(NR) 형태를 가지는 금속(Cu)이 형성된 기판 상에 리튬을 전착하여 전극을 형성한 경우(Li-Cu NR)에는, 상기 충전 용량의 균일성이 유지되는 구간이 더욱 증가함을 확인할 수 있다. In particular, when an electrode is formed by electrodepositing lithium on a substrate on which a metal (Cu) having a nanostructure (NR) form is formed (Li-Cu NR), the period in which the uniformity of the charge capacity is maintained is further increased. It can be confirmed.
상기와 같은 본 발명의 실시예들에 의하면, 기판 상에 나노구조 형태를 가지는 금속이나 산화금속을 형성한 상태에서, 전극의 충방전 과정에서의 리튬이온으로부터 리튬 금속의 돌기부가 수지상 형태로 돌출되며 자라나는 현상(dendrite growth)을 최소화할 수 있다. 그리하여, 배터리의 용량을 증가시키며 안정적인 충방전 상태를 유지할 수 있다. According to the embodiments of the present invention as described above, in a state in which a metal or metal oxide having a nanostructured form is formed on a substrate, protrusions of lithium metal protrude in the form of dendrites from lithium ions during the charging and discharging process of the electrode. Dendrite growth can be minimized. Thus, it is possible to increase the capacity of the battery and maintain a stable charge/discharge state.
이 경우, 상기 나노구조 형태의 산화금속이나 금속을 형성함에 있어, 소정 면적을 가지는 면광원을 면적 단위로 기판으로 제공함으로써, 단위 면적 단위에서 일체로 산화금속이나 금속의 형성이 가능하여 공정의 편의성이 향상된다. In this case, in forming the metal oxide or metal in the nanostructure form, by providing a surface light source having a predetermined area to the substrate in an area unit, it is possible to form the metal oxide or metal integrally in a unit area unit, thereby improving the convenience of the process.
특히, 면광원을 실온의 대기 중에서 제공할 수 있으므로, 상기 산화금속이나 금속의 형성 공정을 보다 단순화할 수 있다. 나아가, 연속적으로 제공되는 기판에 대하여 면광원을 플래쉬 광으로 제공하여 연속 공정을 수행할 수 있으므로, 전극 생산의 효율성을 향상시키며 대량 생산이 가능할 수 있다. 즉, 롤투롤 연속 생산 공정을 적용함으로써, 전극 생산의 효율성을 향상시킬 수 있다. In particular, since the surface light source can be provided in the air at room temperature, the process of forming the metal oxide or metal can be further simplified. Furthermore, since a continuous process can be performed by providing a surface light source as flash light to continuously provided substrates, the efficiency of electrode production can be improved and mass production can be possible. That is, by applying a roll-to-roll continuous production process, the efficiency of electrode production can be improved.
나아가, 상기 전극의 제조방법으로 제조된 전극은, 리튬 이온 배터리(lithium ion battery)의 음극 또는, PEC(photoelectrochemical) 기반의 물분해(water splitting) 소자용 전극으로 사용될 수 있어, 다양한 사용성을 가질 수 있다. Furthermore, the electrode manufactured by the electrode manufacturing method can be used as a negative electrode of a lithium ion battery or an electrode for a photoelectrochemical (PEC)-based water splitting device, and can have various usability.
상기에서는 본 발명의 바람직한 실시예를 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 하기의 특허 청구 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.Although the above has been described with reference to preferred embodiments of the present invention, those skilled in the art can variously modify and change the present invention without departing from the spirit and scope of the present invention described in the claims below. It will be understood that it can be changed.
Claims (17)
- 기판 상에 금속 전구체를 나노구조 형태로 형성하는 단계(단계 S100); Forming a metal precursor on a substrate in the form of a nanostructure (step S100);소정 면적을 가지는 면광원을 인가하여, 상기 금속 전구체를 나노구조 형태의 산화금속 또는 금속으로 변화하는 단계(단계 S200); 및Applying a surface light source having a predetermined area to change the metal precursor into a nanostructured metal oxide or metal (step S200); and상기 나노구조 형태의 산화금속 또는 금속이 형성된 기판으로 전극용 재료를 전착하여 전극을 형성하는 단계(단계 S300)를 포함하는 전극의 제조방법. A method of manufacturing an electrode comprising forming an electrode by electrodepositing a material for an electrode onto a substrate on which the nanostructured metal oxide or metal is formed (step S300).
- 제1항에 있어서, 상기 면광원은, The method of claim 1, wherein the surface light source,상기 금속 전구체가 형성된 기판의 면적 전체에 대하여 순간적으로 제공되는 플래쉬(flash) 광인 것을 특징으로 하는 전극의 제조방법. A method of manufacturing an electrode, characterized in that the flash light is instantaneously provided to the entire area of the substrate on which the metal precursor is formed.
- 제1항에 있어서, According to claim 1,상기 기판은 연속으로 제공되며, The substrate is provided continuously,상기 면광원은, 연속으로 제공되는 기판에 대하여 일정 면적 단위로 순간적으로 제공되는 플래쉬(flash) 광인 것을 특징으로 하는 전극의 제조방법. The surface light source is a method of manufacturing an electrode, characterized in that the flash light is instantaneously provided in units of a predetermined area with respect to the continuously provided substrate.
- 제3항에 있어서, According to claim 3,상기 기판은 공급롤에 의해 연속으로 공급되고, The substrate is continuously supplied by a supply roll,상기 전극이 형성된 이후, 회수롤에 의해 연속으로 회수되어, After the electrode is formed, it is continuously recovered by a recovery roll,롤투롤(roll-to-roll) 연속 공정으로 수행되는 것을 특징으로 하는 전극의 제조방법. Method for producing an electrode, characterized in that carried out in a roll-to-roll continuous process.
- 제1항에 있어서, According to claim 1,상기 면광원은 실온의 대기 중에서 제공되는 것을 특징으로 하는 전극의 제조방법. The surface light source is a method of manufacturing an electrode, characterized in that provided in the air at room temperature.
- 제1항에 있어서, According to claim 1,상기 나노구조 형태로 형성된 금속 전구체에 질소 분위기를 제공하며, 상기 면광원은 상기 질소 분위기에서 제공되는 것을 특징으로 하는 전극의 제조방법. A method of manufacturing an electrode, characterized in that a nitrogen atmosphere is provided to the metal precursor formed in the nanostructure form, and the surface light source is provided in the nitrogen atmosphere.
- 제1항에 있어서, 상기 단계 S100에서, The method of claim 1, wherein in the step S100,금속 재질을 포함하는 상기 기판을 탈이온수에 과황산암모늄(Ammonium Persulfate)과 수산화나트륨(NaOH)을 섞은 용액에 담가 화학반응을 유도하는 것을 특징으로 하는 전극의 제조방법. A method for producing an electrode, characterized in that the substrate comprising a metal material is immersed in a solution of ammonium persulfate and sodium hydroxide (NaOH) in deionized water to induce a chemical reaction.
- 제1항에 있어서, 상기 단계 S200은, The method of claim 1, wherein the step S200,상기 나노구조 형태의 금속 전구체에 상기 면광원을 인가하는 단계; applying the surface light source to the nanostructured metal precursor;상기 금속 전구체가 나노구조 형태의 산화금속으로 변화되는 단계; converting the metal precursor into a nanostructured metal oxide;상기 산화금속에 상기 면광원을 추가로 인가하는 단계; 및additionally applying the planar light source to the metal oxide; and상기 산화금속이 나노구조 형태의 금속으로 변화되는 단계를 포함하는 것을 특징으로 하는 전극의 제조방법. The method of manufacturing an electrode comprising the step of changing the metal oxide into a metal in a nanostructured form.
- 제1항에 있어서, 상기 단계 S200은, The method of claim 1, wherein the step S200,상기 금속 전구체가 나노구조 형태의 산화금속으로 변화되는 단계; converting the metal precursor into a nanostructured metal oxide;상기 산화금속이 형성된 기판으로 알코올 유도체를 코팅하는 단계; coating an alcohol derivative on the substrate on which the metal oxide is formed;상기 알코올 유도체가 코팅된 기판으로 상기 면광원을 인가하는 단계; 및applying the surface light source to the substrate coated with the alcohol derivative; and상기 산화금속이 나노구조 형태의 금속으로 변화하는 단계를 포함하는 것을 특징으로 하는 전극의 제조방법. The method of manufacturing an electrode comprising the step of changing the metal oxide into a metal in a nanostructured form.
- 제9항에 있어서, 상기 알코올 유도체를 코팅하는 단계는, The method of claim 9, wherein the step of coating the alcohol derivative,상기 알코올 유도체를 블레이드 코팅(blade coating), 스프레이 코팅(spray coating), 스핀 코팅(spin coating), 마이크로 그라비아 코팅(micro-gravure coating) 중 어느 하나로 코팅하는 것을 특징으로 하는 전극의 제조방법. Method for producing an electrode, characterized in that the alcohol derivative is coated with any one of blade coating, spray coating, spin coating, and micro-gravure coating.
- 제9항에 있어서, 상기 알코올 유도체는, The method of claim 9, wherein the alcohol derivative,에틸렌 글리콜(ethylene glycol)인 것을 특징으로 하는 전극의 제조방법. Method for producing an electrode, characterized in that the ethylene glycol (ethylene glycol).
- 제1항에 있어서, 상기 금속 전구체는, The method of claim 1, wherein the metal precursor,수산화구리(Cu(OH)2), 수산화주석(Sn(OH)2), 수산화아연(Zn(OH)2), 수산화니켈(NiOH), 수산화망간(Mn(OH)2), 수산화코발트(Co(OH)2), 수산화티타늄(Ti(OH)4) 중 어느 하나인 것을 특징으로 하는 전극의 제조방법. Copper hydroxide (Cu(OH) 2 ), tin hydroxide (Sn(OH) 2 ), zinc hydroxide (Zn(OH) 2 ), nickel hydroxide (NiOH), manganese hydroxide (Mn(OH) 2 ), cobalt hydroxide (Co(OH) 2 ), a method for producing an electrode, characterized in that any one of titanium hydroxide (Ti(OH) 4 ).
- 제1항에 있어서, According to claim 1,상기 산화금속은 산화구리(CuxO), 산화니켈(Ni2O), 산화티타늄(TiO), 산화아연(ZnO), 산화주석(SnOX), 산화망간(MnO2), 산화코발트(Co3O4) 중 어느 하나이고, The metal oxide is any one of copper oxide (Cu x O), nickel oxide (Ni 2 O), titanium oxide (TiO), zinc oxide (ZnO), tin oxide (SnO X ), manganese oxide (MnO 2 ), and cobalt oxide (Co 3 O 4 ),상기 금속은 구리(Cu), 니켈(Ni), 티타늄(Ti), 아연(Zn), 주석(Sn), 망간(Mn), 코발트(Co) 중 어느 하나인 것을 특징으로 하는 전극의 제조방법. The metal is a method of manufacturing an electrode, characterized in that any one of copper (Cu), nickel (Ni), titanium (Ti), zinc (Zn), tin (Sn), manganese (Mn), cobalt (Co).
- 제1항에 있어서, 상기 나노 구조는, The method of claim 1, wherein the nanostructure,나노로드(nano-rod), 나노 입자(nano-particle), 나노 플레이크(nano-flake), 나노 리본(nano-ribbon), 나노 플라워(nano-flower) 중 어느 하나인 것을 특징으로 하는 전극의 제조방법. A method of manufacturing an electrode, characterized in that it is any one of nano-rod, nano-particle, nano-flake, nano-ribbon, and nano-flower.
- 제1항에 있어서, 상기 전극용 재료는The method of claim 1, wherein the material for the electrode리튬(lithium)인 것을 특징으로 하는 전극의 제조방법. Method for producing an electrode, characterized in that lithium (lithium).
- 제1항에 있어서, 상기 전극은, The method of claim 1, wherein the electrode,리튬 이온 배터리(lithium ion battery)의 음극인 것을 특징으로 하는 전극의 제조방법. A method of manufacturing an electrode, characterized in that it is a negative electrode of a lithium ion battery.
- 제1항에 있어서, 상기 전극은, The method of claim 1, wherein the electrode,PEC(photoelectrochemical) 기반의 물분해(water splitting) 소자용 전극인 것을 특징으로 하는 전극의 제조방법. A method for manufacturing an electrode, characterized in that it is an electrode for a photoelectrochemical (PEC)-based water splitting device.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2022-0007241 | 2022-01-18 | ||
KR1020220007241A KR20230111424A (en) | 2022-01-18 | 2022-01-18 | Method for manufacturing an electrode of a battery |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023140573A1 true WO2023140573A1 (en) | 2023-07-27 |
Family
ID=87348950
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2023/000702 WO2023140573A1 (en) | 2022-01-18 | 2023-01-13 | Electrode manufacturing method |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR20230111424A (en) |
WO (1) | WO2023140573A1 (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20170053218A (en) * | 2015-11-05 | 2017-05-16 | 서울대학교산학협력단 | Electrode manufacture method through the photo-thermo-chemical reduction of the conductive nanowires |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9997784B2 (en) | 2016-10-06 | 2018-06-12 | Nanotek Instruments, Inc. | Lithium ion battery anode containing silicon nanowires grown in situ in pores of graphene foam and production process |
-
2022
- 2022-01-18 KR KR1020220007241A patent/KR20230111424A/en not_active Application Discontinuation
-
2023
- 2023-01-13 WO PCT/KR2023/000702 patent/WO2023140573A1/en unknown
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20170053218A (en) * | 2015-11-05 | 2017-05-16 | 서울대학교산학협력단 | Electrode manufacture method through the photo-thermo-chemical reduction of the conductive nanowires |
Non-Patent Citations (4)
Title |
---|
CHEN XUBIN, SASTRE JORDI, ARIBIA ABDESSALEM, GILSHTEIN EVGENIIA, ROMANYUK YAROSLAV E.: "Flash Lamp Annealing Enables Thin-Film Solid-State Batteries on Aluminum Foil", ACS APPLIED ENERGY MATERIALS, vol. 4, no. 6, 28 June 2021 (2021-06-28), pages 5408 - 5414, XP093079571, ISSN: 2574-0962, DOI: 10.1021/acsaem.1c01283 * |
CHIANG CHIA-YING, SHIN YOON, EHRMAN SHERYL: "Li Doped CuO Film Electrodes for Photoelectrochemical Cells", JOURNAL OF THE ELECTROCHEMICAL SOCIETY, vol. 159, no. 2, 1 January 2011 (2011-01-01), pages B227 - B231, XP093079573, ISSN: 0013-4651, DOI: 10.1149/2.081202jes * |
FAN QINGLU; LIN KAIJI; YANG SHAODIAN; GUAN SHOUJIE; CHEN JINBIAO; FENG SHUAI; LIU JUN; LIU LIYING; LI JIE; SHI ZHICONG: "Constructing effective TiO2 nano-coating for high-voltage Ni-rich cathode materials for lithium ion batteries by precise kinetic control", JOURNAL OF POWER SOURCES, vol. 477, 21 August 2020 (2020-08-21), AMSTERDAM, NL, pages 1 - 10, XP086303595, ISSN: 0378-7753, DOI: 10.1016/j.jpowsour.2020.228745 * |
WEI LEI, LI LI, ZHAO TENG, ZHANG NANXIANG, ZHAO YUANYUAN, WU FENG, CHEN RENJIE: "MOF-derived lithiophilic CuO nanorod arrays for stable lithium metal anodes", NANOSCALE, vol. 12, no. 17, 7 May 2020 (2020-05-07), United Kingdom , pages 9416 - 9422, XP093079570, ISSN: 2040-3364, DOI: 10.1039/D0NR01091J * |
Also Published As
Publication number | Publication date |
---|---|
KR20230111424A (en) | 2023-07-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018186561A1 (en) | Pre-lithiation apparatus, method for manufacturing negative electrode part using same, and negative electrode part | |
WO2014193203A1 (en) | Anode active material for lithium cell and method for manufacturing same | |
WO2018070847A1 (en) | Negative electrode for lithium ion secondary battery, and method for producing same | |
WO2019182364A1 (en) | Separator having a coating layer of lithium-containing composite, lithium secondary battery comprising same, and method for manufacturing same secondary battery | |
WO2015041450A1 (en) | Porous silicon-based anode active material, and lithium secondary battery containing same | |
WO2015084036A1 (en) | Porous silicon-based anode active material and method for preparing same, and lithium secondary battery including same | |
WO2017213462A1 (en) | Positive electrode active material for sodium secondary battery, and method for preparing same | |
WO2016175426A1 (en) | Surface treatment method for lithium cobalt oxide, and lithium secondary battery comprising same | |
WO2016093411A1 (en) | Positive electrode for lithium-air battery, method for manufacturing same, and lithium-air battery comprising same | |
WO2016148441A1 (en) | Lithium metal oxide, and negative electrode active material for lithium secondary battery having same, and manufaturing method therefor | |
WO2019013557A2 (en) | Negative electrode for lithium secondary battery, lithium secondary battery comprising same, and method for manufacturing same | |
WO2013168853A1 (en) | Method for producing silicon-based negative electrode active material, negative electrode active material for lithium secondary battery, and lithium secondary battery containing same | |
WO2017171294A1 (en) | Method for manufacturing electrode | |
WO2023140573A1 (en) | Electrode manufacturing method | |
WO2018062844A2 (en) | Lithium secondary battery negative electrode including protection layer made of conductive fabric, and lithium secondary battery including same | |
WO2019009560A1 (en) | Electrode and lithium secondary battery comprising same | |
WO2016013724A1 (en) | Electrode, battery, and method for manufacturing electrode | |
WO2014084636A1 (en) | Anode active material comprising porous silicon oxide-carbon material complex and method for preparing same | |
WO2020235802A1 (en) | Method for isolating lithium precursor, and system for isolating lithium precursor | |
WO2019143135A1 (en) | Composite material including selenium, method of fabricating the same, lithium ion and lithium selenium secondary batteries including the same, and lithium ion capacitor including the same | |
WO2019147084A1 (en) | Method for manufacturing lithium secondary battery anode | |
WO2017023032A2 (en) | Chalcogenide-carbon nanofiber and preparation method therefor | |
WO2023063677A1 (en) | Method for recovering lithium precursor from lithium secondary battery | |
WO2016088923A1 (en) | Anode for metal-air battery, manufacturing method therefor and metal-air battery comprising same | |
WO2021071048A1 (en) | Battery electrode comprising lithium-coated metallic material, and method for manufacturing same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23743421 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |