WO2023140330A1 - Porous membrane, ion exchange membrane, water electrolysis device, and production method for porous membrane - Google Patents

Porous membrane, ion exchange membrane, water electrolysis device, and production method for porous membrane Download PDF

Info

Publication number
WO2023140330A1
WO2023140330A1 PCT/JP2023/001560 JP2023001560W WO2023140330A1 WO 2023140330 A1 WO2023140330 A1 WO 2023140330A1 JP 2023001560 W JP2023001560 W JP 2023001560W WO 2023140330 A1 WO2023140330 A1 WO 2023140330A1
Authority
WO
WIPO (PCT)
Prior art keywords
porous membrane
resin
membrane
ion
membrane according
Prior art date
Application number
PCT/JP2023/001560
Other languages
French (fr)
Japanese (ja)
Inventor
祐 三嶋
武範 磯村
まさみ 菅田
Original Assignee
株式会社トクヤマ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社トクヤマ filed Critical 株式会社トクヤマ
Publication of WO2023140330A1 publication Critical patent/WO2023140330A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/26Polyalkenes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/36After-treatment
    • C08J9/40Impregnation
    • C08J9/42Impregnation with macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B13/00Diaphragms; Spacing elements
    • C25B13/04Diaphragms; Spacing elements characterised by the material
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features

Definitions

  • the present invention relates to a porous membrane, an ion exchange membrane, a water electrolysis device, and a method for producing a porous membrane.
  • Porous membranes are used in a variety of applications. For example, it is used in various applications such as filtration membranes, air-permeable films, separators for capacitors, separators for lithium ion batteries and the like, and supports (base materials) for fuel cells.
  • an ion-exchange membrane in which a porous membrane is used as a support and the pores (voids) of the porous membrane are filled with an ion-exchange resin can be used as a membrane for a solid fuel cell, or a membrane for water electrolysis or alkaline water electrolysis depending on the ion-exchange resin to be filled.
  • porous membranes are used in a wide range of applications, from filtration and separation purposes to separator applications and even fuel cell applications.
  • porous membrane with high heat resistance and durability development is being carried out to use an olefin resin with a high melting point as a porous membrane.
  • a porous film made of polymethylpentene resin having a melting point of 200° C. or higher is underway (see Patent Document 1).
  • the porous membrane described in Patent Document 1 has excellent durability and can be suitably used as a separator for capacitors. Since the porous membrane made of this polymethylpentene resin is excellent in durability and heat resistance, it is thought that it can be used for applications other than separators for capacitors.
  • porous membranes are used in various applications. Among them, the following applications are attracting attention. In recent years, it is strongly desired to use hydrogen as an alternative to petroleum energy. Therefore, as a method for producing hydrogen, development of water electrolysis technology is being actively studied. Above all, the water electrolysis technology using an anion exchange membrane has the following merits.
  • the anion exchange membrane used in the water electrolysis technology may use a porous membrane as a support because of its good handling. Specifically, at least the pores (voids) of the porous membrane are filled with an anion exchange resin to form an anion exchange membrane.
  • porous membrane made of polymethylpentene resin described in Patent Document 1 can be sufficiently used as a support for such an ion-exchange resin (a support for forming an ion-exchange membrane by filling the pores of the ion-exchange resin with the ion-exchange resin).
  • the conventional porous membrane made of polymethylpentene resin is simply used as an anion exchange membrane as a support for an ion exchange resin, particularly as a support for an anion exchange resin.
  • an anion exchange membrane made of polymethylpentene resin with good durability and heat resistance and using a conventional porous membrane as a support is used for applications such as water electrolysis, it was found that there is room for improvement during repeated use. Specifically, during repeated use, the gas permeability (specifically, the hydrogen permeability) tends to increase, and the hydrogen extraction efficiency on the cathode side tends to decrease, leaving room for improvement.
  • an object of the present invention is to provide a porous membrane with excellent durability. Another object of the present invention is to provide a porous membrane that can be used repeatedly as a support for ion-exchange resins, particularly as a support for anion-exchange resins, even when used in techniques such as water electrolysis.
  • the present inventors have diligently studied in order to solve the above problems. As a result, the present inventors have found that a porous membrane made of a polyolefin resin having a specific porosity and having pores with a large BET specific surface area, that is, having relatively small pores can solve the above problems, and have completed the present invention below.
  • a porous film containing a polyolefin resin having a BET specific surface area of 40 m 2 /g or more as measured by a nitrogen adsorption method, and a porosity of 20% or more and 80% or less.
  • a method for producing a porous membrane comprising, in this order, the steps of heating a composition containing a polyolefin resin and a plasticizer to obtain a sheet-like first molded body, stretching the first molded body at a temperature lower than the melting point of the polyolefin resin in the range of 70° C. or more and 178° C. or less to obtain a second molded body, and removing the plasticizer from the second molded body.
  • the porous membrane of the present invention can be suitably used as an ion exchange membrane in which the pores are filled with an ion exchange resin.
  • the porous membrane of the present invention since it has specially controlled pores, when it is used as a support for ion-exchange resins in electrolysis applications, it can be used repeatedly.
  • an anion exchange resin membrane a porous membrane in which pores are filled with an anion exchange resin
  • the gas leakage rate hydrogen permeability
  • the porous membrane of the present invention contains a polyolefin resin, has a BET specific surface area of 40 m 2 /g or more as measured by a nitrogen adsorption method, and has a porosity of 20% or more and 80% or less. Since the BET specific surface area is relatively large and voids are present, the porous membrane of the present invention has many pores with small pore diameters. Therefore, it is considered that particularly excellent effects are exhibited when the ion exchange resin is filled. Although it is only an estimate, it can be considered as follows.
  • the porous membrane of the present invention has many relatively small pores (pores). Therefore, when the ion-exchange resin is filled in the pores (voids), it is considered that the expansion and contraction of the ion-exchange resin can be easily followed. Then, it is considered that gaps are less likely to occur between the pores and the ion exchange resin. As a result, it is considered that the increase in gas permeability can be suppressed during repeated use.
  • the porous membrane of the present invention can be suitably used as a support for ion-exchange resins, particularly as a support for anion-exchange resins used in water electrolysis.
  • porous membrane of the present invention will be described in detail below.
  • the porous membrane of the present invention contains an olefinic resin. Moreover, the porous membrane of the present invention preferably contains an olefinic resin as a main component. Furthermore, it is preferable that the porous membrane consists only of an olefin resin.
  • "containing as a main component” means that the polyolefin resin is preferably 50% by mass, more preferably 70% by mass or more, still more preferably 90% by mass or more, particularly preferably 95% by mass or more, and most preferably 99% by mass or more, based on the entire porous membrane (100% by mass). Olefin resins are excellent in mechanical strength, chemical stability, and chemical resistance.
  • Specific resins include homopolymers or copolymers of ⁇ -olefins such as ethylene, propylene, 1-butene, 1-pentene, 1-hexene, 3-methyl-1-butene, 4-methyl-1-pentene, and 5-methyl-1-heptene.
  • ⁇ -olefins such as ethylene, propylene, 1-butene, 1-pentene, 1-hexene, 3-methyl-1-butene, 4-methyl-1-pentene, and 5-methyl-1-heptene.
  • olefinic resins can be used without any limitation on the commercially available ones.
  • a single species can be used, or a mixture of multiple species can be used.
  • the porous membrane preferably contains polymethylpentene resin as the polyolefin resin.
  • the proportion of the polyolefin resin in the porous membrane can be measured by Fourier transform infrared spectroscopy (FT-IR).
  • the melting point of the polyolefin-based resin is not particularly limited, it is preferably within the following ranges in consideration of the heat resistance of the resulting porous membrane.
  • the temperature is preferably 100° C. or higher and 250° C. or lower, more preferably 110° C. or higher and 250° C. or lower, even more preferably 140° C. or higher and 250° C. or lower, and particularly preferably 180° C. or higher and 250° C. or lower.
  • the melting point of the polyolefin resin is one, the melting point of the resin itself should be checked.
  • the melting point of the polyolefin resin determined by a measurement method according to JIS K 7121 using a differential scanning calorimeter (DSC) may be adopted.
  • the melting point of the porous membrane itself is analyzed, the measurement should be performed after the porous membrane is once dissolved in order to eliminate the influence of orientation and the like.
  • the melting point referred to in the present invention refers to the peak top temperature of the heat of fusion measured under the above conditions.
  • the melting point of the crystalline polyolefin-based resin that is the main component may be used as a reference.
  • the porous membrane of the present invention satisfies the following physical properties.
  • the BET specific surface area determined by the nitrogen adsorption method is 40 m 2 /g or more, and the porosity is 20% or more and 80% or less. The measurement was performed by the method described in Examples.
  • the BET specific surface area is 40 m 2 /g or more, a large number of small pores are present, and excellent effects are exhibited. In particular, even when it is used as a support for an ion-exchange resin and is repeatedly used for water electrolysis, an increase in gas permeability can be suppressed. In order to exhibit this effect more and consider industrial productivity of the porous membrane, use as an ion-exchange membrane (use as a support), etc., the BET specific surface area is preferably within the following range. Specifically, the BET specific surface area is preferably 40 to 200 m 2 /g, more preferably 60 to 150 m 2 /g, even more preferably 60 to 90 m 2 /g. The BET specific surface area is a value measured by the method described in the examples below.
  • the porosity of the porous membrane is 20% or more and 80% or less. If it is less than 20%, the amount of resin that fills the voids is reduced, and the ionic conductivity is deteriorated when used for water electrolysis, which is not preferable. If it exceeds 80%, the volume change due to expansion/contraction of the ion-exchange resin is large, and the shape of the anion-exchange membrane cannot be maintained, which is not preferable.
  • the porosity is preferably 20% or more and 70% or less, more preferably 20% or more and 50% or less, even more preferably 20% or more and 40% or less, and particularly preferably 20% or more and 35% or less.
  • the porosity is preferably 20 to 35% in order to reduce the rate of change in hydrogen permeability (hydrogen permeability due to humidity cycles) repeatedly measured by changing the humidity while maintaining the ion conductivity and mechanical strength of the anion exchange membrane.
  • this porosity is the value measured by the method described in the following examples.
  • porous membrane has a BET specific surface area of 40 m 2 /g or more and a porosity of 20% or more and 80% or less.
  • it preferably satisfies the following physical properties.
  • the pore diameter having the maximum peak exists at 100 nm or less in the pore size distribution curve obtained by the nitrogen adsorption method.
  • the pores are more likely to follow shrinkage, swelling, etc. of the ion-exchange resin during repeated use, and it is thought that detachment of the ion-exchange resin from the pores can be reduced. And it is thought that diffusion of gas can be suppressed.
  • the maximum peak of the pore diameter is preferably 1 nm or more and 100 nm or less, more preferably 10 nm or more and 90 nm or less, further preferably 20 nm or more and 90 nm or less, and particularly preferably 20 nm or more and 75 nm or less.
  • the pore diameter having this maximum peak the pore volume (V) and the pore diameter (D) are determined by the BJH method described below. Then, the value (dV/dlogD) obtained by differentiating the pore volume (V) with the logarithm (logD) of the pore diameter (D) is plotted against the pore diameter (D) (pore diameter distribution curve). It can be obtained from (see FIG. 2).
  • the pores in the porous membrane satisfy the following requirements.
  • the total ratio of the pore volume of pores having a pore diameter of 100 nm or less is preferably 80% or more of the total pore volume. Satisfying such requirements means that there are many voids and small pores. Therefore, especially when used as a support for an ion-exchange membrane, it is thought that diffusion of gas during repeated use can be suppressed. In particular, it is possible to reduce the change in hydrogen permeability during repeated use with changing humidity.
  • the total pore volume ratio of pores having a pore diameter of 100 nm or less is more preferably 82% or more and 100% or less, more preferably 85% or more and 100% or less, and particularly preferably 90% or more and 100% or less.
  • this total ratio can be obtained from the integral curve of the pore volume (see FIG. 1).
  • the total percentage may be 80% or more, or 95% or more. The total percentage may be 100% or less, 99% or less, or 98% or less.
  • the average pore diameter is 80 nm or less.
  • This average pore diameter is more preferably 5 nm or more and 50 nm or less, further preferably 10 nm or more and 40 nm or less, in consideration of excellent effects and mechanical properties of the porous membrane itself.
  • the average pore diameter may be 15 nm or more and may be 30 nm or less.
  • the pore diameter having the maximum peak and the total ratio of the pore volume of the pores preferably satisfy the above ranges. If these requirements are satisfied, pore diameter peaks (protrusions on the graph) in the pore diameter distribution curve may exist other than the maximum peak. In this case, peaks other than the maximum peak are preferably present at pore diameters of 100 nm or less. (See Figure 2).
  • the pores as described above can be achieved by adjusting the manufacturing conditions of the porous membrane, which will be detailed below. Specifically, the type and molecular weight of the polyolefin resin to be used, and when a plasticizer is used, the amount and type of the plasticizer, film forming conditions for the film, specifically, magnification during stretching, temperature, etc. may be adjusted.
  • the film thickness of the porous membrane is not particularly limited.
  • the film thickness is preferably within the following range.
  • the film thickness is preferably 10 to 200 ⁇ m.
  • the thickness is preferably 15 to 170 ⁇ m.
  • the thickness of the porous membrane is more preferably 20 to 150 ⁇ m, particularly preferably 30 to 100 ⁇ m.
  • the porous membrane of the present invention preferably has the pores and the following mechanical strength.
  • the tensile modulus in the machine direction (machine direction (flow direction) MD in the case of extrusion molding) and the transverse direction (the width direction (TD) in the case of extrusion molding) is preferably 200 MPa or more, more preferably 300 MPa or more, and even more preferably 400 MPa or more. It is considered that the higher the tensile modulus, the better. However, considering the industrial production of the porous membrane, it is preferably 1500 MPa or less, more preferably 1400 MPa.
  • the lower limit of the tensile strength in both MD and TD is preferably 5 MPa or more, more preferably 8 MPa or more, and the upper limit is not particularly limited, but is preferably 100 MPa or less, more preferably 80 MPa or less, and still more preferably 70 MPa or less.
  • the lower limit of the elongation at break of the porous membrane is preferably 5% or more, more preferably 10% or more, and the upper limit is not particularly limited, but is preferably 400% or less, more preferably 150% or less.
  • these mechanical properties can be adjusted by adjusting the materials used, the mixing ratio of each material, and the film-forming conditions.
  • the porous membrane can be produced by a known method. Specifically, it is preferably produced by performing the following steps (i) to (iii).
  • Step First, an olefin resin and a plasticizer are kneaded to produce a composition containing them.
  • step forming the obtained composition into a sheet by a known method.
  • the composition is produced by a known method.
  • the olefin resin and the plasticizer may be melt-kneaded at a temperature equal to or higher than the melting points of the olefin resin and the plasticizer. If the kneading temperature is too high, the resin may be deteriorated. Therefore, the kneading temperature can be, for example, in the range of +10° C. to +50° C. of the melting point of the olefin resin.
  • the amount of the plasticizer to be used may be appropriately determined according to the properties of the intended porous membrane, but it is preferable to use 50 to 200 parts by mass, more preferably 60 to 140 parts by mass, more preferably 70 to 130 parts by mass, and particularly preferably 80 to 120 parts by mass, based on 100 parts by mass of the olefin resin.
  • the composition may also contain a crystal nucleating agent and the like.
  • the plasticizer when using a plasticizer, is not particularly limited as long as it can be sufficiently mixed with the polyolefin resin described above.
  • Specific examples include aliphatic carboxylic acid esters such as methyl stearate and butyl stearate, aromatic carboxylic acid esters such as diisononyl phthalate and bis-2-ethylhexyl phthalate, and aliphatic hydrocarbons such as liquid paraffin.
  • aromatic carboxylic acid esters are preferred. These can be used alone or in combination of multiple types.
  • the composition obtained in the (i) step is formed into a sheet by a known method.
  • the method of forming a sheet is not particularly limited, but film forming using an extruder equipped with a T-die, film forming using an inflation machine, sheet forming using press molding, or the like can be employed.
  • step (iii) a film containing a plasticizer is impregnated in a solvent that is a poor solvent for the olefin resin and a good solvent for the plasticizer, and the plasticizer is removed to form a porous film. It is also possible to prepare an unstretched sheet in step (ii), remove the plasticizer in step (iii), and then biaxially stretch the sheet.
  • the obtained porous membrane can be heat-treated (the porous membrane is left under a certain temperature range).
  • the method for producing the porous membrane is not particularly limited.
  • the porous membrane of the present invention that satisfies specific requirements may be produced by adjusting the types of materials to be used, their compounding ratios, their film-forming methods, and the like. That is, for example, when trying to produce a porous film having the same characteristics from sheets obtained using different film-forming machines, the characteristics (molecular weight, molecular weight distribution, etc.) of the olefin resin used, the blending amount of the plasticizer, the draw ratio, the draw temperature, etc. may be adjusted.
  • the sheet is preferable to stretch the sheet at a relatively low temperature in order to produce a porous membrane with a relatively small pore diameter, which is one of the characteristic features of the porous membrane of the present invention.
  • a plasticizer that is highly compatible with the olefin resin to be used is selected, and further, when stretching is performed, it is preferable to perform the step (ii).
  • the porous membrane can be produced by the above method.
  • the stretching conditions in step (ii) are preferably such that the temperature during stretching (the ambient temperature during stretching of the sheet) is lower than the melting point of the olefin resin by 70°C or more.
  • the stretching temperature is preferably 90° C. or more lower than the melting point of the olefin resin, further preferably 110° C. or more, and most preferably 140° C. or more.
  • the draw ratio is preferably 1.1 to 5 times in the longitudinal direction and 1.1 to 5 times in the transverse direction, more preferably 2 to 5 times in the longitudinal direction and 2 to 5 times in the transverse direction.
  • a sheet is formed by press molding, there is no vertical or horizontal direction, but it is preferable to stretch 1.1 to 5 times, preferably 2 to 5 times in a uniaxial direction (considered as stretching in the longitudinal direction), and 1.1 to 5 times, preferably 2 to 5 times in a direction perpendicular to the uniaxial direction (considered as stretching in the horizontal direction). It is considered that the stretching in the step (ii) can suppress the decrease in the BET specific surface area, that is, the expansion of the pore diameter can be suppressed.
  • a porous membrane satisfying the requirements of the present invention in terms of BET specific surface area and porosity can be easily produced.
  • the stretching temperature is preferably no lower than 178°C below the melting point of the olefin resin. In other words, it is preferable to set the stretching temperature to “the melting point of the olefin resin ⁇ 178° C.” or higher. Further, it is more preferable that the stretching temperature is set to “the melting point of the olefinic resin ⁇ 168° C.” or higher.
  • a plasticizer preferably an aromatic carboxylic acid ester, specifically diisononyl phthalate, etc.
  • a composition containing 60 to 140 parts by mass of a plasticizer more preferably to use a composition containing 70 to 130 parts by mass, and particularly preferably to use a composition containing 80 to 120 parts by mass, based on 100 parts by mass of 4-methylpentene-1 resin.
  • the composition is preferably melt-kneaded at a temperature equal to or higher than the melting point of the 4-methylpentene-1 resin to obtain a composition in which the plasticizer is uniformly dispersed.
  • a crystal nucleating agent or the like may be added to this composition, if necessary.
  • the composition obtained in the (i) step is formed into a sheet (to form a membrane/film) by a known method.
  • the thickness of the sheet is not particularly limited, but a sheet with a thickness of 30 to 500 ⁇ m is preferable.
  • the physical properties of this sheet are not particularly limited, it is preferable to adjust the diameter of the spherulites to 5 ⁇ m or less.
  • the above adjustment can be achieved by using a crystal nucleating agent or by adjusting film forming conditions.
  • the composition melted by heating to 220 to 250° C. is pressed at a pressure of 1 to 3 MPa and cooled at a temperature of 0 to 25° C. for 1 to 5 minutes.
  • the obtained sheet is preferably biaxially stretched within the above temperature range. It is preferable to draw in an atmosphere at a temperature lower than the melting point of the olefin resin by 70°C or more, and when 4-methylpentene-1 resin is used, it is preferably in an atmosphere at a temperature lower than the melting point of the olefin resin by 90°C or more, preferably 110°C or more.
  • the lower limit of the temperature during stretching is preferably 61° C. or higher, more preferably 71° C. or higher, and even more preferably 80° C. or higher.
  • the draw ratio may be appropriately determined so that the BET specific surface area and porosity of the obtained porous membrane satisfy the requirements of the present invention.
  • the press-molded material is preferably stretched under the above conditions.
  • the stretching temperature is preferably 169°C or lower, more preferably 149°C or lower, and even more preferably 129°C or lower.
  • a low stretching temperature tends to increase the mechanical strength of the porous membrane.
  • the stretching temperature is preferably 61° C. or higher, more preferably 71° C. or higher, still more preferably 80° C. or higher, particularly preferably 90° C. or higher, and most preferably 100° C. or higher.
  • the obtained sheet is preferably biaxially stretched within the above temperature range.
  • the draw ratio may be appropriately determined so that the BET specific surface area and porosity of the obtained porous membrane satisfy the requirements of the present invention.
  • the press-molded material is preferably stretched under the above conditions.
  • the stretching method may be any of biaxial stretching (simultaneous biaxial stretching, sequential biaxial stretching), but in order to create more fine pores, biaxial stretching at the above stretching ratio is preferred.
  • the present invention it is preferable to stretch under the above conditions before removing the plasticizer in the following step (iii). It is considered that pores having a small pore size can be efficiently formed because the film is stretched before the plasticizer is removed. That is, by stretching under the above conditions before removing the plasticizer, a porous film having a BET specific surface area of 40 m 2 /g or more and a porosity of 20% or more and 80% or less as determined by the nitrogen adsorption method can be effectively produced.
  • step (iii) the plasticizer is removed from the sheet obtained in step (ii).
  • the resulting membrane is contacted with a solvent, preferably impregnated with the solvent, to remove the plasticizer.
  • a solvent that is a poor solvent for the 4-methylpentene-1 resin and a good solvent for the plasticizer is not particularly limited, and known solvents such as those described in Patent Document 1 can be used.
  • Preferred solvents among them are Hydrocarbons such as n-hexane and cyclohexane, Fluorocarbons in which some or all of the hydrogens in hydrocarbons are substituted with fluorine, alcohols such as ethanol and isopropanol, Examples include ketones such as acetone and 2-butanone.
  • the temperature at which the solvent and the sheet are brought into contact is preferably 20 to 50°C.
  • a heat treatment can be performed to stabilize the porous membrane.
  • the temperature is preferably higher than the crystal dispersion temperature and lower than the melting point. Below the crystal dispersion temperature, crystal growth does not progress and does not lead to stabilization. Moreover, at high temperatures above the melting point, the pores are closed due to melting of the resin. However, in order to achieve stabilization, it is desirable to perform heat treatment at a temperature as high as possible.
  • the porous membrane is obtained by removing the plasticizer from the molded article formed in the form of a sheet to make the cast sheet porous.
  • the porous membrane can be a porous cast sheet.
  • This porous membrane is superior in planar smoothness as compared with a porous membrane using a nonwoven fabric or the like obtained by a spinning method. Therefore, in a membrane-electrode assembly in which an electrode catalyst is laminated on a porous membrane, which will be described later, the contact with the electrode catalyst is excellent.
  • the porous membrane of the present invention has excellent effects and porosity, it can be suitably used for conventional applications. Among these, it can be used particularly preferably as a support for ion exchange resins. Next, the use of the ion exchange resin as a support will be described.
  • the porous membrane obtained by the above method can be suitably used as a support for ion exchange resins.
  • the supported ion-exchange resin (type of ion-exchange group) may be appropriately determined according to the intended use.
  • the ion exchange resin may be either an anion exchange resin or a cation exchange resin. Among them, when it is used as a support for an anion exchange resin, it is preferable because it can be used for water electrolysis for producing hydrogen and anion exchange membrane type water electrolysis.
  • the method for supporting the ion-exchange resin is not particularly limited, but the following four methods can be mentioned.
  • a polymerizable composition containing an ion-exchange group-containing monomer (a solution of the polymerizable composition as necessary) is brought into contact with a porous membrane to fill the pores of the porous membrane with the polymerizable composition. After that, the polymerizable composition filled in the pores is polymerized. At this time, a polymerizable composition comprising only ion-exchange group-containing monomers can be used so as to obtain the desired ion-exchange membrane.
  • Polymerizable compositions containing ion-exchange group-containing monomers and optionally other monomers can also be used. Other monomers may include crosslinkers that are multifunctional such as divinylbenzene.
  • a polymerizable composition containing a monomer capable of introducing an ion-exchange group (a solution of the polymerizable composition if necessary) is brought into contact with the porous membrane, and the pores of the porous membrane are filled with the polymerizable composition.
  • the polymerizable composition is then polymerized. Thereafter, ion exchange groups are introduced into the resulting precursor polymer obtained by polymerizing a monomer into which ion exchange groups can be introduced.
  • a polymerizable composition containing a polymerizable monomer having a halogenoalkyl group e.g., chloromethylstyrene, bromomethylstyrene, iodomethylstyrene, chloroethylstyrene, bromoethylstyrene, bromobutylstyrene, etc.
  • a crosslinkable polymerizable monomer e.g., divinylbenzene, divinylbiphenyl, divinylnaphthalene, etc.
  • a polymerization initiator e.g., an organic peroxide such as benzoyl peroxide
  • the composition is polymerized and cured to prepare an ion-exchange membrane precursor filled with a resin having a halogenoalkyl group. Then, an ion-exchange membrane is formed by converting the halogenoalkyl groups into ion-exchange groups.
  • a polymerizable monomer having a halogenoalkyl group was exemplified, but for example, a precursor may be prepared using styrene or the like before the halogenoalkyl group is introduced, and the halogenoalkyl group may be introduced into it. After introducing the halogenoalkyl group, the same operations as described above may be carried out.
  • the method (1) or (2) it is preferable to adopt the method (1) or (2) in consideration of the productivity, the amount of ion exchange groups introduced, the insolubility of the ion exchange resin, and the like.
  • the solubility in water of the ion exchange resin is also a factor, but from the viewpoint of productivity, it is most preferable to adopt the method (2).
  • the ion-exchange resin to be introduced into the pores of the support is not particularly limited, but considering compatibility with the porous membrane, adhesion, etc., the resin portion excluding the ion-exchange groups is preferably composed of a crosslinked hydrocarbon-based polymer.
  • the hydrocarbon-based polymer refers to a polymer in which substantially no carbon-fluorine bonds are included and most of the bonds in the main chain and side chains constituting the polymer are composed of carbon-carbon bonds.
  • This hydrocarbon-based polymer may contain a small amount of other atoms such as oxygen, nitrogen, silicon, sulfur, boron and phosphorus between carbon-carbon bonds due to ether bonds, ester bonds, amide bonds, siloxane bonds and the like.
  • all the atoms bonded to the main chain and side chains do not need to be hydrogen atoms, and in small amounts may be substituted with other atoms such as chlorine, bromine, fluorine, and iodine, or substituents containing other atoms.
  • the amount of these elements other than carbon and hydrogen is preferably 40 mol % or less, preferably 10 mol % or less, of all elements constituting the resin (polymer) excluding ion exchange groups.
  • the anion-exchange group in the anion-exchange ion-exchange membrane (the anion-exchange group possessed by the anion-exchange resin filled in the pores of the porous membrane) is not particularly limited, but is preferably a quaternary ammonium base or a pyridinium base in consideration of ease of production and availability.
  • the counter ion of the anion exchange group is often obtained as a halide ion.
  • the anion-exchange membrane having halide ions as counter ions is preferably immersed in an excessive amount of alkaline aqueous solution to exchange the counter ions in OH ⁇ type or HCO 3 ⁇ type ion exchange.
  • the ion exchange method is not particularly limited, and for example, in the case of ion exchange to the OH ⁇ type, an anion exchange type ion exchange membrane having the halogen ion as a counter ion is immersed in an aqueous solution of sodium hydroxide or potassium hydroxide for 2 to 10 hours.
  • ion-exchanging to HCO 3 - type it may be performed by immersing in an aqueous solution of sodium hydrogencarbonate or potassium hydrogencarbonate.
  • the cation exchange group in the cation exchange type ion exchange membrane (the cation exchange group possessed by the cation exchange resin filled in the pores of the porous membrane) is not particularly limited, but considering the ease of production, availability, etc., the sulfonic acid type or carboxylic acid type is preferred.
  • the ion exchange membrane of the present invention can be produced by the above method. Among them, when it is made into an anion exchange type ion exchange membrane, it can be used as a membrane for water electrolysis capable of producing hydrogen.
  • the configuration of the water electrolysis device is as shown in FIG.
  • the water electrolysis device may be a water electrolysis device using water or a low-concentration alkaline aqueous solution, or an alkaline water electrolysis device using a high-concentration alkaline aqueous solution of 5% by mass or more.
  • a catalyst layer (anode 2 and cathode 3) in which a catalyst is dispersed in an anion exchange resin is arranged on the anion exchange membrane 1, and a gas diffusion layer 4 is provided on each.
  • a water supply port 6 for supplying water and an oxygen discharge port 7 for discharging oxygen are provided in the anode chamber 5 on the anode 2 side.
  • the cathode chamber 8 on the cathode 3 side is provided with a hydrogen discharge port 9 for discharging hydrogen.
  • Anion exchange membrane 1 , anode 2 , cathode 3 , gas diffusion layer 4 , anode chamber 5 and cathode chamber 8 are housed in, for example, housing 10 .
  • hydrogen can be produced by water electrolysis.
  • Such a water electrolysis cell comprises, for example, a housing 10 , an anion exchange membrane 1 housed within the housing 10 , and an anode chamber 5 and a cathode chamber 8 separated by the anion exchange membrane 1 .
  • the anion exchange membrane functions as a solid electrolyte membrane that transfers ions between the anode and cathode. Furthermore, it plays a role in suppressing mixing of oxygen gas generated at the anode and hydrogen gas generated at the cathode.
  • the gas permeability of the anion exchange membrane which is a diaphragm, is low. Furthermore, it is very important that the gas permeability does not increase due to deterioration or the like even in long-term use that involves starting and stopping in actual use.
  • the anion exchange membrane using the porous membrane of the present invention can suppress an increase in gas permeability (diffusion of gas) even during repeated use. Specifically, it is possible to suppress an increase in gas permeability even under conditions of repeated use as in the following examples.
  • the reason for this effect is considered to be that the porous membrane of the present invention has many relatively small pores. In other words, even when the amount of water in the water electrolysis device decreases or the water disappears in repeated use, the pores of the porous membrane are relatively small, so it is considered that the pores of the porous membrane easily follow the contraction of the anion exchange resin. Since the anion exchange resin has ion exchange groups, it tends to swell in the presence of water.
  • the anion exchange resin shrinks when the water is reduced (there is no more water). Therefore, it is considered that the shape conformability to the anion exchange resin is important during repeated use, and the porous membrane of the present invention has a large number of relatively small pores, so it is considered that the above effects are exhibited.
  • This curve was normalized by the total pore volume to calculate the total percentage of pore volume with pore diameters of 100 nm or less. Further, by differentiating the integrated curve of the pore volume V with the natural logarithm LogD of the pore diameter D, a pore diameter distribution curve (dV/dlogD) with respect to the pore diameter D was obtained.
  • F/S
  • the tensile strain ⁇ was obtained from the following equation from the initial length L0 of the parallel portion of the test piece and the increment ⁇ L of the length of the parallel portion.
  • ⁇ L/L 0
  • a stress-strain curve was drawn from the tensile stress ⁇ and the tensile strain ⁇ , and the slope of the linear region appearing immediately after the start of the test was obtained from the following formula to calculate the tensile elastic modulus E.
  • E ⁇ / ⁇
  • the tensile strength was taken as the maximum value of the tensile stress in the process from the start of the test to the fracture, and the value was read from the stress-strain curve.
  • a polymerizable monomer composition was obtained by mixing 95 parts by mass of chloromethylstyrene, 5 parts by mass of a styrene solution of 57% by mass-divinylbenzene, 5 parts by mass of a polymerization initiator (trade name: Perbutyl O), and 5 parts by mass of an epoxy compound (trade name: Epolite 40E). 400 g of the obtained polymerizable monomer composition was placed in a 500 ml glass container, and the porous membrane (20 cm ⁇ 20 cm) formed in Examples and Comparative Examples was immersed in the polymerizable monomer composition.
  • the porous membrane was taken out from the polymerizable monomer composition, and a 100 ⁇ m polyester film was laminated on both sides of the taken-out porous membrane as a release material.
  • the resulting laminate was heated at 80° C. for 5 hours under a nitrogen pressure of 0.3 MPa to polymerize the polymerizable monomer composition.
  • a film-like product obtained by polymerizing the polymerizable monomer composition was immersed in an aqueous solution containing 6% by mass of trimethylamine and 25% by mass of acetone at room temperature for 16 hours to aminate the polymerized portion of chloromethylstyrene and washed with pure water to obtain an anion exchange membrane.
  • anion exchange membrane was evaluated according to the following method. Methods for measuring various physical properties of anion exchange membranes will be described below in Examples and Comparative Examples.
  • the anion exchange membrane was immersed in a 0.5 mol ⁇ L -1 -NaCl aqueous solution for 10 hours or more to convert it to a chloride ion type. Then, the chloride ion-type anion exchange membrane was brought into contact with a 0.2 mol ⁇ L -1 -NaNO 3 aqueous solution to replace it with a nitrate ion-type.
  • liberated chloride ions were quantified by a potentiometric titrator (COMTITE-900, manufactured by Hiranuma Sangyo Co., Ltd.) using an aqueous solution of silver nitrate (the measured number of moles of chloride ions is defined as "A (mol)").
  • anion exchange membrane was immersed in a 0.5 mol/L-KHCO 3 aqueous solution for 10 hours or more to convert the counter ion to a bicarbonate type. Then, it was washed with pure water and dried at room temperature for 24 hours or more.
  • a 5 cm x 5 cm piece of the anion exchange membrane subjected to the above treatment was cut out and attached to a gas permeability measuring device (GTR Tech Co., Ltd., GTR-200XFTS) to measure the amount of hydrogen permeation.
  • GTR Tech Co., Ltd., GTR-200XFTS gas permeability measuring device
  • the measurement was carried out according to JIS K7126-2 (Plastic-Film and Sheet Gas Permeability Test Method-Part 2: Isobaric Method).
  • the specific measurement method is as follows. First, the anion exchange membrane was sandwiched between the cells of the device and installed in the device. A carrier gas (argon gas) was passed through one of the spaces partitioned by the anion exchange membrane under conditions of a temperature of 40° C., a relative humidity of 90% RH, and a flow rate of 30 mL/min. In the other space, hydrogen gas was passed as a test gas under conditions of a temperature of 40° C., a relative humidity of 90% RH, and a flow rate of 30 mL/min. This state was maintained for 1 hour so that the temperature of the entire cell was kept constant (40° C.).
  • a carrier gas argon gas
  • the amount of hydrogen permeated to the carrier gas side was detected with a gas chromatograph. Based on the results, the hydrogen permeability per test area of 9.62 cm 2 was calculated as the hydrogen permeability of the anion exchange membrane at 40°C and relative humidity of 90%.
  • Example 1 Manufacturing and evaluation of porous membrane> A porous membrane was produced according to the following method.
  • Step 50% by mass of poly-4-methylpentene-1 resin (TPX (registered trademark)-DX845 manufactured by Mitsui Chemicals, Inc., melting point 239°C) and 50% by mass of diisononyl phthalate (100 parts by mass of plasticizer per 100 parts by mass of olefin resin) were melt-kneaded at 250°C for 10 minutes using a twin-screw kneader to obtain a kneaded product (composition).
  • TPX poly-4-methylpentene-1 resin
  • DX845 diisononyl phthalate
  • Step Subsequently, the obtained sheet-like molding was subjected to simultaneous biaxial stretching by a tenter method at a stretching temperature of 80°C and a stretching ratio of 3 times in the longitudinal direction and 3 times in the lateral direction.
  • Step The obtained stretched film was immersed in acetone to extract and remove diisononyl phthalate, and then the adhering acetone was removed by drying to obtain a porous membrane.
  • the resulting porous membrane was evaluated for porosity, BET specific surface area by nitrogen gas adsorption measurement, total pore volume ratio of pores with a pore diameter of 100 nm or less, average pore diameter, maximum peak of pore diameter in the porous membrane, and tensile modulus, tensile strength, and elongation at break by tensile test. evaluated. Table 1 shows the results. In addition, the thickness of the obtained porous film was measured with a Mitutoyo Digimatic Indicator ID-H0530, and the results are also shown in Table 1.
  • anion-exchange membrane was produced using the obtained porous membrane as a support by the method described above.
  • the prepared anion exchange membrane was measured for anion exchange capacity, membrane resistance, hydrogen gas permeability at 40° C. relative humidity of 90% and 40° C. relative humidity of 20%, and the rate of change in hydrogen gas permeability due to humidity cycles. Table 1 shows the results.
  • Example 2 A porous membrane was produced and evaluated, and an anion exchange membrane using the same was produced and evaluated in the same manner as in Example 1, except that the stretching temperature was changed to 100°C. Table 1 shows the results.
  • FIG. 1 shows the integral curve ( ⁇ V vs. D) of the pore volume due to nitrogen adsorption of the obtained porous membrane.
  • FIG. 2 shows the pore size distribution curve (dV/dlogD) of the obtained porous membrane by nitrogen adsorption.
  • Example 3 A porous membrane was produced and evaluated, and an anion exchange membrane using the same was produced and evaluated in the same manner as in Example 1, except that the stretching temperature was changed to 120°C. Table 1 shows the results.
  • Example 4 A porous membrane was produced and evaluated, and an anion exchange membrane using the same was produced and evaluated in the same manner as in Example 1, except that the stretching temperature was changed to 140°C. Table 1 shows the results.
  • Example 5 A porous membrane was produced and evaluated in the same manner as in Example 1, except that the stretching temperature was changed to 90° C. and the stretching ratio was changed to 2 times in the vertical direction and 2 times in the horizontal direction. Table 1 shows the results.
  • Example 6 A porous membrane was produced and evaluated in the same manner as in Example 5, except that sequential biaxial stretching was performed by a tenter method at a draw ratio of 1.5 times in the longitudinal direction and 1.5 times in the lateral direction. Table 1 shows the results.
  • Example 7 A porous membrane was produced and evaluated in the same manner as in Example 6, except that the draw ratio was changed to 3.5 times in the vertical direction and 3.5 times in the horizontal direction. Table 1 shows the results.
  • Example 8 A porous membrane was produced and evaluated in the same manner as in Example 3, except that biaxial rolling was performed with heated rolls at a draw ratio of 2.2 times in the vertical direction and 2.2 times in the horizontal direction. Table 1 shows the results.
  • Example 9 A porous membrane was produced and evaluated in the same manner as in Example 8, and an anion exchange membrane was produced and evaluated using the same, except that the draw ratio was changed to 3 times in the vertical direction and 3 times in the horizontal direction. Table 1 shows the results.
  • Example 10 A porous membrane was produced and evaluated, and an anion exchange membrane was produced and evaluated using the same method as in Example 8, except that the draw ratio was changed to 4 times in the vertical direction and 4 times in the horizontal direction. Table 1 shows the results.
  • Example 11 The composition was melt-kneaded using a twin-screw kneader, extruded from a T-die onto a water-cooled cast drum to obtain a cast sheet, the stretching temperature was changed to 130 ° C., and the stretching ratio was 4.5 times in length and 4.5 times in width. Table 1 shows the results.
  • Example 12 A porous membrane was produced and evaluated in the same manner as in Example 11, except that the draw ratio was changed to 5.2 times in the vertical direction and 5.2 times in the horizontal direction. Table 1 shows the results.
  • Example 13 Poly 4-methylpentene-1 resin (TPX (registered trademark)-DX845 manufactured by Mitsui Chemicals, Inc., melting point 239° C.) 50% by mass, diisononyl phthalate 50% by mass (100 parts by mass of plasticizer per 100 parts by mass of olefin resin), 0.5% by mass of nucleating agent (NA-11 by ADEKA) added to the resin, and the stretching temperature was changed to 120° C., and the longitudinal stretching ratio was 4.5 times. , the width of 4.5 times, the preparation and evaluation of the porous membrane, and the preparation and evaluation of the anion exchange membrane using the same. Table 1 shows the results.
  • Example 14 A porous membrane was produced and evaluated, and an anion exchange membrane using the same was produced and evaluated in the same manner as in Example 13, except that the stretching temperature was changed to 130°C. Table 1 shows the results.
  • Comparative example 1 A porous membrane was formed in the same manner as in Example 1, except that the stretching temperature was changed to 60°C. However, the molding broke during stretching.
  • Comparative example 2 A porous membrane was formed in the same manner as in Example 1, except that the stretching temperature was changed to 170°C. However, the molding broke during stretching. Comparative example 3
  • the sheet-shaped molding produced in the step (ii) of Example 1 was immersed in acetone to extract and remove diisononyl phthalate as a plasticizer. Subsequently, the sheet obtained by removing the plasticizer was subjected to simultaneous biaxial stretching at a temperature of 160° C. at a draw ratio of 2 times in the longitudinal direction and 2 times in the transverse direction to produce a porous membrane.
  • the obtained porous membrane was evaluated in the same manner as in Example 1, and an anion exchange membrane was prepared and evaluated using the porous membrane.
  • the pore size was increased by stretching after the pore formation, and the BET specific surface area was greatly reduced. Moreover, the elongation at break deteriorated to 4%, and the porous membrane was easily broken.
  • the anion exchange membrane produced using the porous membrane was measured for the anion exchange capacity, the membrane resistance, the hydrogen gas permeability at 40 ° C. relative humidity of 90% and 40 ° C. relative humidity of 20%, and the rate of change in hydrogen gas permeability due to humidity cycles. Table 1 shows the results.

Abstract

Provided are: a porous membrane that has excellent durability, and is suitable as a support for an ion exchange resin; and a porous membrane and an anion exchange membrane that are capable of inhibiting a change in hydrogen gas permeability over time during repetitive use thereof in water electrolysis. The porous membrane contains a polyolefin resin, and has a porosity of 20-80% and a BET specific surface area of at least 40 m2/g as calculated by a nitrogen adsorption method. This ion exchange membrane is obtained by filling pores of the porous membrane with an ion exchange resin.

Description

多孔質膜、イオン交換膜、水電解装置、及び多孔質膜の製造方法Porous membrane, ion exchange membrane, water electrolysis device, and method for producing porous membrane
 本発明は、多孔質膜、イオン交換膜、水電解装置、及び多孔質膜の製造方法に関する。 The present invention relates to a porous membrane, an ion exchange membrane, a water electrolysis device, and a method for producing a porous membrane.
 多孔質膜は、様々な用途で使用されている。例えば、ろ過膜、通気性フィルム、コンデンサー用セパレーター、リチウムイオン電池等のセパレーター、燃料電池の支持体(母材)等、様々な用途に使用されている。  Porous membranes are used in a variety of applications. For example, it is used in various applications such as filtration membranes, air-permeable films, separators for capacitors, separators for lithium ion batteries and the like, and supports (base materials) for fuel cells.
 前記の用途の中でも、多孔質膜を支持体とし、該多孔質膜の細孔(空隙)にイオン交換樹脂を充填したイオン交換膜は、充填するイオン交換樹脂によって、固体燃料電池用の膜、又は水電解用、若しくはアルカリ水電解用の膜に使用することができる。 Among the above applications, an ion-exchange membrane in which a porous membrane is used as a support and the pores (voids) of the porous membrane are filled with an ion-exchange resin can be used as a membrane for a solid fuel cell, or a membrane for water electrolysis or alkaline water electrolysis depending on the ion-exchange resin to be filled.
 以上の通り、多孔質膜は、ろ過・分別を目的としたものから、セパレーター用途、さらには、燃料電池用途まで幅広く利用されている。 As described above, porous membranes are used in a wide range of applications, from filtration and separation purposes to separator applications and even fuel cell applications.
 耐熱性・耐久性の高い多孔質膜として、融点等の高いオレフィン系樹脂を多孔質膜とする開発が行われている。例えば、融点が200℃以上であるポリメチルペンテン樹脂からなる多孔質膜の開発が進められている(特許文献1参照)。特許文献1に記載された多孔質膜は、コンデンサー用セパレーターとして好適に使用できる、耐久性の優れたものである。このポリメチルペンテン樹脂からなる多孔質膜は、耐久性・耐熱性に優れるため、コンデンサー用セパレーター以外の用途でも使用可能であると考えられる。  As a porous membrane with high heat resistance and durability, development is being carried out to use an olefin resin with a high melting point as a porous membrane. For example, development of a porous film made of polymethylpentene resin having a melting point of 200° C. or higher is underway (see Patent Document 1). The porous membrane described in Patent Document 1 has excellent durability and can be suitably used as a separator for capacitors. Since the porous membrane made of this polymethylpentene resin is excellent in durability and heat resistance, it is thought that it can be used for applications other than separators for capacitors.
特開2004-224915号公報JP 2004-224915 A
 前記の通り、多孔質膜は、様々な用途で使用されている。その中でも、以下の用途が注目されている。近年、石油エネルギーに代わるものとして、水素を利用することが強く望まれている。そのため、水素の製造方法として、水電解技術の開発が盛んに検討されている。中でも、陰イオン交換膜を用いた水電解技術においては、以下のメリットがある。 As mentioned above, porous membranes are used in various applications. Among them, the following applications are attracting attention. In recent years, it is strongly desired to use hydrogen as an alternative to petroleum energy. Therefore, as a method for producing hydrogen, development of water electrolysis technology is being actively studied. Above all, the water electrolysis technology using an anion exchange membrane has the following merits.
 陰イオン交換膜を用いた水電解技術では、反応場がアルカリ性となる。そのため、該水電解の技術では、安価な非貴金属触媒を利用できる。その他、使用する部材にステンレス鋼などの安価な金属が利用できる。このような技術においては、カソード側で水を消費しながら水素を取り出す仕様となる。 In water electrolysis technology using anion exchange membranes, the reaction field becomes alkaline. Therefore, in the water electrolysis technology, inexpensive non-precious metal catalysts can be used. In addition, inexpensive metals such as stainless steel can be used for the members to be used. In such technology, the specifications are such that hydrogen is taken out while consuming water on the cathode side.
 該水電解の技術において使用される陰イオン交換膜は、ハンドリング性の良さから、多孔質膜を支持体とすることがある。具体的には、少なくとも該多孔質膜の細孔(空隙部)に陰イオン交換樹脂を充填して陰イオン交換膜とする方法である。 The anion exchange membrane used in the water electrolysis technology may use a porous membrane as a support because of its good handling. Specifically, at least the pores (voids) of the porous membrane are filled with an anion exchange resin to form an anion exchange membrane.
 前記特許文献1に記載されたポリメチルペンテン樹脂からなる多孔質膜は、このようなイオン交換樹脂の支持体(その孔にイオン交換樹脂を充填してイオン交換膜とするための支持体)としても、十分に使用できることが想定される。 It is assumed that the porous membrane made of polymethylpentene resin described in Patent Document 1 can be sufficiently used as a support for such an ion-exchange resin (a support for forming an ion-exchange membrane by filling the pores of the ion-exchange resin with the ion-exchange resin).
 しかしながら、本発明者等の検討によれば、ポリメチルペンテン樹脂からなる、従来技術の多孔質膜を単にイオン交換樹脂の支持体、特に、陰イオン交換樹脂の支持体として陰イオン交換膜とした場合には、以下の点で改善の余地があることが分かった。つまり、耐久性・耐熱性の良好なポリメチルペンテン樹脂からなる、従来技術の多孔質膜を支持体とする陰イオン交換膜を水電解等の用途に用いた場合には、繰返し使用時に改善の余地があることが分かった。具体的には、繰返し使用時において、ガスの透過度(具体的には水素の透過度)が高くなり、カソード側での水素取出し効率が低下する傾向にあり、改善の余地があった。 However, according to the studies of the present inventors, it was found that there is room for improvement in the following points when the conventional porous membrane made of polymethylpentene resin is simply used as an anion exchange membrane as a support for an ion exchange resin, particularly as a support for an anion exchange resin. In other words, when an anion exchange membrane made of polymethylpentene resin with good durability and heat resistance and using a conventional porous membrane as a support is used for applications such as water electrolysis, it was found that there is room for improvement during repeated use. Specifically, during repeated use, the gas permeability (specifically, the hydrogen permeability) tends to increase, and the hydrogen extraction efficiency on the cathode side tends to decrease, leaving room for improvement.
 したがって、本発明の目的は、耐久性に優れた多孔質膜を提供することにある。そして、イオン交換樹脂の支持体、特に、陰イオン交換樹脂の支持体として使用し、水電解等の技術に用いた場合であっても、繰返し使用が可能な多孔質膜を提供することにある。 Therefore, an object of the present invention is to provide a porous membrane with excellent durability. Another object of the present invention is to provide a porous membrane that can be used repeatedly as a support for ion-exchange resins, particularly as a support for anion-exchange resins, even when used in techniques such as water electrolysis.
 本発明者等は、上記課題を解決するため、鋭意検討を行った。その結果、特定の空隙率を有し、BET比表面積が大きい細孔を有する、すなわち、比較的小さな細孔を有する、ポリオレフィン系樹脂からなる多孔質膜が上記課題を解決できることを見出し、以下の本発明を完成するに至った。 The present inventors have diligently studied in order to solve the above problems. As a result, the present inventors have found that a porous membrane made of a polyolefin resin having a specific porosity and having pores with a large BET specific surface area, that is, having relatively small pores can solve the above problems, and have completed the present invention below.
[1] ポリオレフィン系樹脂を含み、窒素吸着法によるBET比表面積が40m/g以上であり、空隙率が20%以上80%以下である多孔質膜。
[2] 窒素吸着法による細孔径分布曲線において、最大ピークを有する細孔直径が100nm以下に存在する、[1]に記載の多孔質膜。
[1] A porous film containing a polyolefin resin, having a BET specific surface area of 40 m 2 /g or more as measured by a nitrogen adsorption method, and a porosity of 20% or more and 80% or less.
[2] The porous membrane according to [1], wherein the pore diameter having the maximum peak is present at 100 nm or less in the pore size distribution curve obtained by the nitrogen adsorption method.
[3] 窒素吸着法による細孔径分布曲線において、100nm以下の直径を有する細孔の細孔容積の合計割合が、全細孔容積の80%以上を占める、[1]又は[2]に記載の多孔質膜。
[4] 窒素吸着法による平均細孔直径が80nm以下である、[1]乃至[3]の何れかに記載の多孔質膜。
[3] The porous membrane according to [1] or [2], wherein the total pore volume of pores having a diameter of 100 nm or less accounts for 80% or more of the total pore volume in the pore size distribution curve obtained by the nitrogen adsorption method.
[4] The porous membrane according to any one of [1] to [3], which has an average pore diameter of 80 nm or less as determined by a nitrogen adsorption method.
[5] 前記ポリオレフィン系樹脂が、ポリメチルペンテン樹脂およびポリプロピレン系樹脂からなる群より選ばれる少なくとも1種の樹脂を含む、[1]乃至[4]の何れかに記載の多孔質膜。
[6] 厚みが10~200μmである、[1]乃至[5]の何れかに記載の多孔質膜。
[5] The porous membrane according to any one of [1] to [4], wherein the polyolefin resin contains at least one resin selected from the group consisting of polymethylpentene resin and polypropylene resin.
[6] The porous membrane according to any one of [1] to [5], which has a thickness of 10 to 200 μm.
[7] 前記多孔質膜中において、前記ポリメチルペンテン樹脂が占める割合が、95質量%以上である、[5]に記載の多孔質膜。
[8] [1]乃至[7]の何れかに記載の多孔質膜と、前記多孔質膜の細孔に充填されたイオン交換樹脂とを含む、イオン交換膜。
[7] The porous membrane according to [5], wherein the polymethylpentene resin accounts for 95% by mass or more in the porous membrane.
[8] An ion-exchange membrane comprising the porous membrane according to any one of [1] to [7] and an ion-exchange resin filled in the pores of the porous membrane.
[9] 前記イオン交換樹脂が陰イオン交換樹脂である、[8]に記載のイオン交換膜。
[10] [8]又は[9]に記載のイオン交換膜を備える、水電解装置。
[9] The ion exchange membrane according to [8], wherein the ion exchange resin is an anion exchange resin.
[10] A water electrolysis device comprising the ion exchange membrane according to [8] or [9].
[11] ポリオレフィン樹脂及び可塑剤を含む組成物を加熱して、シート状の第1成型体を得る工程、前記第1成型体を、前記ポリオレフィン樹脂の融点よりも70℃以上178℃以下の範囲内で低い温度で延伸して第2成形体を得る工程、前記第2成形体から前記可塑剤を除去する工程、をこの順で含む多孔質膜の製造方法。
[12] 前記第2成形体を得る工程が、前記第1成形体を、2倍以上の縦方向の延伸倍率及び2倍以上の横方向の延伸倍率で2軸延伸して前記第2成形体を得る工程である、[11]に記載の多孔質膜の製造方法。
[11] A method for producing a porous membrane comprising, in this order, the steps of heating a composition containing a polyolefin resin and a plasticizer to obtain a sheet-like first molded body, stretching the first molded body at a temperature lower than the melting point of the polyolefin resin in the range of 70° C. or more and 178° C. or less to obtain a second molded body, and removing the plasticizer from the second molded body.
[12] The method for producing a porous membrane according to [11], wherein the step of obtaining the second molded body is a step of biaxially stretching the first molded body at a longitudinal draw ratio of 2 or more and a lateral draw ratio of 2 or more to obtain the second molded body.
 本発明によれば、耐久性に優れた多孔質膜を得ることができる。加えて、本発明の多孔質膜は、イオン交換樹脂をその細孔に充填したイオン交換膜として好適に使用できる。特に、特別に制御した細孔を有するため、イオン交換樹脂の支持体として電解用途に使用した場合、繰返し使用が良好となる。その中でも、陰イオン交換樹脂膜(細孔に陰イオン交換樹脂が充填された多孔質膜)を水電解に使用した場合には、繰返し使用した場合であっても、ガスの漏洩割合(水素の透過度)を抑制できる。 According to the present invention, a porous membrane with excellent durability can be obtained. In addition, the porous membrane of the present invention can be suitably used as an ion exchange membrane in which the pores are filled with an ion exchange resin. In particular, since it has specially controlled pores, when it is used as a support for ion-exchange resins in electrolysis applications, it can be used repeatedly. Among them, when an anion exchange resin membrane (a porous membrane in which pores are filled with an anion exchange resin) is used for water electrolysis, the gas leakage rate (hydrogen permeability) can be suppressed even when used repeatedly.
実施例2で得られた多孔質膜の窒素吸着による細孔容積の積分曲線(ΣV vs.D)。An integral curve (ΣV vs. D) of the pore volume due to nitrogen adsorption of the porous membrane obtained in Example 2. 実施例2で得られた多孔質膜の窒素吸着による細孔径分布曲線(dV/dlogD)。Pore size distribution curve (dV/dlogD) by nitrogen adsorption of the porous membrane obtained in Example 2. 多孔質膜の細孔に陰イオン交換樹脂が充填された陰イオン交換膜を使用した水電解装置の概略図。Schematic diagram of a water electrolysis device using an anion exchange membrane in which the pores of the porous membrane are filled with an anion exchange resin.
 本発明の多孔質膜は、ポリオレフィン系樹脂を含み、窒素吸着法によるBET比表面積が40m/g以上であり、空隙率が20%以上80%以下である。BET比表面積が比較的大きく、空隙を有することから、本発明の多孔質膜は、細孔直径の小さな細孔を多く有することを指す。そのため、イオン交換樹脂を充填した場合に、特に優れた効果を発揮するものと考えている。あくまでも推定であるが、以下の通りに考えられる。 The porous membrane of the present invention contains a polyolefin resin, has a BET specific surface area of 40 m 2 /g or more as measured by a nitrogen adsorption method, and has a porosity of 20% or more and 80% or less. Since the BET specific surface area is relatively large and voids are present, the porous membrane of the present invention has many pores with small pore diameters. Therefore, it is considered that particularly excellent effects are exhibited when the ion exchange resin is filled. Although it is only an estimate, it can be considered as follows.
 つまり、本発明の多孔質膜は、比較的小さな孔(細孔)を多く有する。そのため、イオン交換樹脂がその細孔(空隙部)に充填された場合、イオン交換樹脂の膨張及び収縮に追随し易くなるものと考えられる。そして、細孔とイオン交換樹脂との間に隙間が生じ難くなるものと考えられる。その結果、繰返し使用時において、ガスの透過度が高くなるのを抑制できると考えられる。 In other words, the porous membrane of the present invention has many relatively small pores (pores). Therefore, when the ion-exchange resin is filled in the pores (voids), it is considered that the expansion and contraction of the ion-exchange resin can be easily followed. Then, it is considered that gaps are less likely to occur between the pores and the ion exchange resin. As a result, it is considered that the increase in gas permeability can be suppressed during repeated use.
 次に、陰イオン交換樹脂を充填し、得られた陰イオン交換膜を水電解に利用した場合の例で説明する。陰イオン交換膜を使用した水電解においては、カソード側で水を消費しながら水素を取り出す構造となる。多孔質膜に充填された陰イオン交換樹脂は、通常、水に膨潤し易い。そのため、膜に対して十分に水が供給される場合には、陰イオン交換樹脂が膨潤して、多孔質膜の細孔と十分に密着すると考えられる。しかしながら、繰返しの使用時において、水の量が十分でなくなったり、一度乾燥した状態になると、膨潤していた陰イオン交換樹脂は収縮するものと考えられる。この際、多孔質膜の細孔(直径)が比較的大きいと、陰イオン交換樹脂の収縮に追随できなくなると考えられる。その結果、陰イオン交換樹脂と膜との界面において剥離が発生し、ガスの透過度が高くなるのではないかと推定される。特に、陰イオン交換膜を使用した水電解では、水素を系外に取り出す。そのため、繰返し使用においても、陰イオン交換膜のガス透過度は変化しない(変化しても抑制される)ことが好ましい。本発明の多孔質膜は、比較的小さな細孔を多数有するため、陰イオン交換樹脂の膨張・収縮に追随することができる。そして、ガス透過度(水素透過度)が高くなることを抑制できると考えられる。そのため、本発明の多孔質膜は、イオン交換樹脂の支持体、特に、水電解に使用する、陰イオン交換樹脂の支持体として好適に使用できる。 Next, an example of filling an anion exchange resin and using the resulting anion exchange membrane for water electrolysis will be described. In water electrolysis using an anion exchange membrane, the structure is such that hydrogen is extracted while consuming water on the cathode side. The anion exchange resin packed in the porous membrane is usually easily swollen with water. Therefore, it is considered that when sufficient water is supplied to the membrane, the anion exchange resin swells and sufficiently adheres to the pores of the porous membrane. However, during repeated use, if the amount of water becomes insufficient or if the resin becomes dry, the swollen anion exchange resin will shrink. At this time, if the pores (diameter) of the porous membrane are relatively large, it is considered that the shrinkage of the anion exchange resin cannot be followed. As a result, it is presumed that separation occurs at the interface between the anion exchange resin and the membrane, increasing the gas permeability. In particular, in water electrolysis using an anion exchange membrane, hydrogen is taken out of the system. Therefore, it is preferable that the gas permeability of the anion exchange membrane does not change (even if it changes, it is suppressed) even after repeated use. Since the porous membrane of the present invention has a large number of relatively small pores, it can follow the expansion and contraction of the anion exchange resin. And it is thought that it can suppress that a gas permeability (hydrogen permeability) becomes high. Therefore, the porous membrane of the present invention can be suitably used as a support for ion-exchange resins, particularly as a support for anion-exchange resins used in water electrolysis.
 以下、本発明の多孔質膜について詳細に説明する。 The porous membrane of the present invention will be described in detail below.
 なお、本明細書においては特に断らない限り、数値x及びyを用いた「x~y」という表記は「x以上y以下」を意味するものとする。かかる表記において数値yのみに単位を付した場合には、当該単位が数値xにも適用されるものとする。 In this specification, unless otherwise specified, the notation "x to y" using numerical values x and y means "x or more and y or less". In such notation, when only the numerical value y is given a unit, the unit is also applied to the numerical value x.
 <オレフィン系樹脂>
 本発明の多孔質膜は、オレフィン系樹脂を含む。また、本発明の多孔質膜は、オレフィン系樹脂を主成分として含むことが好ましい。さらに、多孔質膜は、オレフィン樹脂のみからなることが好ましい。
 ここで、「主成分として含む」とは、多孔質膜全体を基準(100質量%)として、ポリオレフィン系樹脂を、好ましくは50質量%、より好ましくは70質量%以上、さらに好ましくは90質量%以上、特に好ましくは95質量%以上、最も好ましくは99質量%以上であることを意味する。
 オレフィン系樹脂は、機械的強度、化学的安定性、耐薬品性に優れる。具体的な樹脂としては、エチレン、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、3-メチル-1-ブテン、4-メチル-1-ペンテン、5-メチル-1-ヘプテン等のα-オレフィンの単独重合体または共重合体が例示できる。これらオレフィン系樹脂は、市販のものを何ら制限することなく使用することができる。単独種で使用することもできるし、複数種の混合物を使用することもできる。これらの中でも、耐熱性が高いという点から、プロピレンの単独重合体、およびプロピレンを主成分とするプロピレンとエチレンとの共重合体から選ばれるポリプロピレン系樹脂、又は、ポリ4-メチルペンテン-1樹脂、およびポリ3-メチルペンタン-1樹脂から選ばれるポリメチルペンテン樹脂であることが好ましい。
 多孔質膜は、耐熱性の観点から、ポリオレフィン系樹脂として、ポリメチルペンテン樹脂を含むことが好ましい。多孔質膜においてポリオレフィン系樹脂が占める割合は、フーリエ変換赤外分光法(FT-IR)により測定できる。
<Olefin resin>
The porous membrane of the present invention contains an olefinic resin. Moreover, the porous membrane of the present invention preferably contains an olefinic resin as a main component. Furthermore, it is preferable that the porous membrane consists only of an olefin resin.
Here, "containing as a main component" means that the polyolefin resin is preferably 50% by mass, more preferably 70% by mass or more, still more preferably 90% by mass or more, particularly preferably 95% by mass or more, and most preferably 99% by mass or more, based on the entire porous membrane (100% by mass).
Olefin resins are excellent in mechanical strength, chemical stability, and chemical resistance. Specific resins include homopolymers or copolymers of α-olefins such as ethylene, propylene, 1-butene, 1-pentene, 1-hexene, 3-methyl-1-butene, 4-methyl-1-pentene, and 5-methyl-1-heptene. These olefinic resins can be used without any limitation on the commercially available ones. A single species can be used, or a mixture of multiple species can be used. Among these, from the viewpoint of high heat resistance, polypropylene resins selected from propylene homopolymers and copolymers of propylene and ethylene containing propylene as a main component, or poly4-methylpentene-1 resins, and polymethylpentene resins selected from poly3-methylpentane-1 resins are preferable.
From the viewpoint of heat resistance, the porous membrane preferably contains polymethylpentene resin as the polyolefin resin. The proportion of the polyolefin resin in the porous membrane can be measured by Fourier transform infrared spectroscopy (FT-IR).
 前記ポリオレフィン系樹脂の融点は、特に制限されるものではが、得られる多孔質膜の耐熱性等を考慮すると、以下の範囲であることが好ましい。具体的には、100℃以上250℃以下であることが好ましく、110℃以上250℃以下であることがより好ましく、140℃以上250℃以下であることがさらに好ましく、180℃以上250℃以下であることが特に好ましい。 Although the melting point of the polyolefin-based resin is not particularly limited, it is preferably within the following ranges in consideration of the heat resistance of the resulting porous membrane. Specifically, the temperature is preferably 100° C. or higher and 250° C. or lower, more preferably 110° C. or higher and 250° C. or lower, even more preferably 140° C. or higher and 250° C. or lower, and particularly preferably 180° C. or higher and 250° C. or lower.
 なお、ポリオレフィン系樹脂の融点は、1種の場合には、その樹脂そのものの融点を確認すればよい。複数種類の樹脂を混合して使用する場合には、示差走査熱量計(DSC)により、JIS K 7121に準じた測定方法で求めたポリオレフィン系樹脂の融点を採用すればよい。多孔質膜そのものから融点を分析する場合、配向等の影響をなくすため、該多孔質膜を一旦溶解させたものを測定すればよい。本発明で言う融点は、前記条件で測定した融解熱のピークトップの温度を指す。複数種類の樹脂を使用し、複数のピークが存在する場合には、主成分となる(最も配合割合が多い)結晶性のポリオレフィン系樹脂の融点を基準とするとすればよい。 If the melting point of the polyolefin resin is one, the melting point of the resin itself should be checked. When a mixture of multiple types of resins is used, the melting point of the polyolefin resin determined by a measurement method according to JIS K 7121 using a differential scanning calorimeter (DSC) may be adopted. When the melting point of the porous membrane itself is analyzed, the measurement should be performed after the porous membrane is once dissolved in order to eliminate the influence of orientation and the like. The melting point referred to in the present invention refers to the peak top temperature of the heat of fusion measured under the above conditions. When multiple types of resins are used and multiple peaks are present, the melting point of the crystalline polyolefin-based resin that is the main component (the one with the highest compounding ratio) may be used as a reference.
 <多孔質膜の特性>
 本発明の多孔質膜は、以下の物性を満足するものである。窒素吸着法により求めたBET比表面積が40m/g以上であり、空隙率が20%以上80%以下である。測定は実施例に記載の方法で行った。
<Characteristics of porous membrane>
The porous membrane of the present invention satisfies the following physical properties. The BET specific surface area determined by the nitrogen adsorption method is 40 m 2 /g or more, and the porosity is 20% or more and 80% or less. The measurement was performed by the method described in Examples.
 BET比表面積が40m/g以上であることにより、小さな孔を数多く有することとなるため、優れた効果を発揮する。特に、イオン交換樹脂の支持体に使用した場合であって、水電解用に繰返し使用した場合であっても、ガス透過度の増加を抑制できる。この効果をより発揮し、工業的な多孔質膜の生産性、およびイオン交換膜としての使用(支持体としての使用)等を考慮すると、BET比表面積は、以下の範囲であることが好ましい。具体的には、BET比表面積は、40~200m/gであることが好ましく、60~150m/gであることがより好ましく、60~90m/gであることがさらに好ましい。なお、このBET比表面積は、下記の実施例に記載の方法で測定した値である。 When the BET specific surface area is 40 m 2 /g or more, a large number of small pores are present, and excellent effects are exhibited. In particular, even when it is used as a support for an ion-exchange resin and is repeatedly used for water electrolysis, an increase in gas permeability can be suppressed. In order to exhibit this effect more and consider industrial productivity of the porous membrane, use as an ion-exchange membrane (use as a support), etc., the BET specific surface area is preferably within the following range. Specifically, the BET specific surface area is preferably 40 to 200 m 2 /g, more preferably 60 to 150 m 2 /g, even more preferably 60 to 90 m 2 /g. The BET specific surface area is a value measured by the method described in the examples below.
 本発明において、多孔質膜の空隙率は20%以上80%以下である。20%未満である場合には、空隙に充填される樹脂が減少し、水電解用途に用いた際のイオン伝導性が悪化するため、好ましくない。80%を超える場合には、イオン交換樹脂の膨張・収縮による体積変化が大きく、陰イオン交換膜の形状を保持できなくなるため、好ましくない。イオン伝導性、陰イオン交換膜の機械的強度等を考慮すると、該空隙率は、20%以上70%以下であることが好ましく、20%以上50%以下であることがより好ましく、20%以上40%以下であることがさらに好ましく、20%以上35%以下が特に好ましい。特に、イオン伝導性、陰イオン交換膜の機械的強度維持しつつ、湿度を変化させて繰返し測定した水素透過度(湿度サイクルによる水素透過度)の変化率を小さくするためには、空隙率は20~35%とすることが好ましい。なお、この空隙率は、下記の実施例に記載の方法で測定した値である。 In the present invention, the porosity of the porous membrane is 20% or more and 80% or less. If it is less than 20%, the amount of resin that fills the voids is reduced, and the ionic conductivity is deteriorated when used for water electrolysis, which is not preferable. If it exceeds 80%, the volume change due to expansion/contraction of the ion-exchange resin is large, and the shape of the anion-exchange membrane cannot be maintained, which is not preferable. Considering the ionic conductivity, the mechanical strength of the anion exchange membrane, etc., the porosity is preferably 20% or more and 70% or less, more preferably 20% or more and 50% or less, even more preferably 20% or more and 40% or less, and particularly preferably 20% or more and 35% or less. In particular, the porosity is preferably 20 to 35% in order to reduce the rate of change in hydrogen permeability (hydrogen permeability due to humidity cycles) repeatedly measured by changing the humidity while maintaining the ion conductivity and mechanical strength of the anion exchange membrane. In addition, this porosity is the value measured by the method described in the following examples.
 本発明において、多孔質膜は、BET比表面積が40m/g以上であり、空隙率が20%以上80%以下であれば、その他の物性は特に制限されるものではない。ただし、本発明の多孔質膜が特に優れた効果を発揮するためには、以下の物性を満足することが好ましい。 In the present invention, other physical properties are not particularly limited as long as the porous membrane has a BET specific surface area of 40 m 2 /g or more and a porosity of 20% or more and 80% or less. However, in order for the porous membrane of the present invention to exhibit particularly excellent effects, it preferably satisfies the following physical properties.
 すなわち、多孔質膜において、窒素吸着法による細孔径分布曲線において、最大ピークを有する細孔直径が100nm以下に存在することが好ましい。この場合、比較的小さな細孔を有するため、優れた効果を発揮する。特に、イオン交換膜の支持体として使用した場合、繰返し使用時におけるイオン交換樹脂の収縮・膨潤等に細孔がより追随し易くなり、細孔からのイオン交換樹脂の脱離をより少なくできると考えられる。そして、ガスの拡散を抑制できると考えられる。そのため、このような効果を発揮し、さらに、多孔質膜自体の工業的な生産性を考慮すると、細孔直径の最大ピークは、1nm以上100nm以下に存在することが好ましく、10nm以上90nm以下に存在することがより好ましく、20nm以上90nm以下に存在することがさらに好ましく、20nm以上75nm以下に存在することが特に好ましい。なお、この最大ピークを有する細孔直径は、下記に記載するBJH法で細孔容積(V)と細孔直径(D)とを求める。そして、細孔容積(V)を細孔直径(D)の対数(logD)で微分した値(dV/dlogD)を細孔直径(D)に対してプロットした曲線(細孔径分布曲線)から求めることができる(図2参照)。 That is, in the porous membrane, it is preferable that the pore diameter having the maximum peak exists at 100 nm or less in the pore size distribution curve obtained by the nitrogen adsorption method. In this case, since it has relatively small pores, an excellent effect is exhibited. In particular, when used as a support for an ion-exchange membrane, the pores are more likely to follow shrinkage, swelling, etc. of the ion-exchange resin during repeated use, and it is thought that detachment of the ion-exchange resin from the pores can be reduced. And it is thought that diffusion of gas can be suppressed. Therefore, considering the industrial productivity of the porous membrane itself, the maximum peak of the pore diameter is preferably 1 nm or more and 100 nm or less, more preferably 10 nm or more and 90 nm or less, further preferably 20 nm or more and 90 nm or less, and particularly preferably 20 nm or more and 75 nm or less. As for the pore diameter having this maximum peak, the pore volume (V) and the pore diameter (D) are determined by the BJH method described below. Then, the value (dV/dlogD) obtained by differentiating the pore volume (V) with the logarithm (logD) of the pore diameter (D) is plotted against the pore diameter (D) (pore diameter distribution curve). It can be obtained from (see FIG. 2).
 また、多孔質膜における細孔は、以下の要件を満足することがさらに好ましい。具体的には、細孔直径が100nm以下である細孔の細孔容積の合計割合が、全細孔容積の80%以上となることが好ましい。このような要件を満足することは、空隙が多く、細孔が小さいものが多数存在していることを指す。そのため、特に、イオン交換膜の支持体として使用した場合、繰返し使用時のガスの拡散を抑制できると考えられる。特に、湿度を変化させて繰返し使用する際の水素透過度の変化を少なくすることができる。そのため、細孔直径が100nm以下である細孔の細孔容積の合計割合は、前記効果と、多孔質膜自体の機械的物性を考慮すると、82%以上100%以下であることがより好ましく、85%以上100%以下であることがさらに好ましく、90%以上100%以下であることが特に好ましい。なお、この合計割合は、細孔容積の積分曲線から求めることができる(図1参照)。さらに、上記合計割合は、80%以上であってもよく、95%以上であってもよい。上記合計割合は、100%以下であってもよく、99%以下であってもよく、98%以下であってもよい。 In addition, it is more preferable that the pores in the porous membrane satisfy the following requirements. Specifically, the total ratio of the pore volume of pores having a pore diameter of 100 nm or less is preferably 80% or more of the total pore volume. Satisfying such requirements means that there are many voids and small pores. Therefore, especially when used as a support for an ion-exchange membrane, it is thought that diffusion of gas during repeated use can be suppressed. In particular, it is possible to reduce the change in hydrogen permeability during repeated use with changing humidity. Therefore, considering the above effect and the mechanical properties of the porous membrane itself, the total pore volume ratio of pores having a pore diameter of 100 nm or less is more preferably 82% or more and 100% or less, more preferably 85% or more and 100% or less, and particularly preferably 90% or more and 100% or less. In addition, this total ratio can be obtained from the integral curve of the pore volume (see FIG. 1). Furthermore, the total percentage may be 80% or more, or 95% or more. The total percentage may be 100% or less, 99% or less, or 98% or less.
 さらに、多孔質膜がより優れた効果を発揮するためには、平均細孔直径が80nm以下となることが好ましい。この平均細孔直径は、優れた効果、および多孔質膜自体の機械的物性を考慮すると、5nm以上50nm以下であることがより好ましく、10nm以上40nm以下となることがさらに好ましい。平均細孔直径は、15nm以上であってもよく、30nm以下であってもよい。 Furthermore, in order for the porous membrane to exhibit more excellent effects, it is preferable that the average pore diameter is 80 nm or less. This average pore diameter is more preferably 5 nm or more and 50 nm or less, further preferably 10 nm or more and 40 nm or less, in consideration of excellent effects and mechanical properties of the porous membrane itself. The average pore diameter may be 15 nm or more and may be 30 nm or less.
 なお、本発明の多孔質膜は、前記最大ピークを有する細孔直径、および前記細孔の細孔容積の合計割合が前記範囲を満足することが好ましい。これら要件を満足する場合には、細孔径分布曲線における細孔直径のピーク(グラフ上の凸部)は、最大ピーク以外にも存在してもよい。この場合、最大ピーク以外のピークは、細孔直径100nm以下に存在することが好ましい。(図2参照)。 In the porous membrane of the present invention, the pore diameter having the maximum peak and the total ratio of the pore volume of the pores preferably satisfy the above ranges. If these requirements are satisfied, pore diameter peaks (protrusions on the graph) in the pore diameter distribution curve may exist other than the maximum peak. In this case, peaks other than the maximum peak are preferably present at pore diameters of 100 nm or less. (See Figure 2).
 以上のような細孔は、下記に詳述する多孔質膜の製造条件を調整することにより達成できる。具体的には、使用するポリオレフィン系樹脂の種類、分子量、可塑剤を使用する場合には、その可塑剤の量、種類、膜の製膜条件、具体的には、延伸時の倍率、温度等を調整すればよい。 The pores as described above can be achieved by adjusting the manufacturing conditions of the porous membrane, which will be detailed below. Specifically, the type and molecular weight of the polyolefin resin to be used, and when a plasticizer is used, the amount and type of the plasticizer, film forming conditions for the film, specifically, magnification during stretching, temperature, etc. may be adjusted.
 本発明において、多孔質膜の膜厚は、特に制限されるものではない。ただし、イオン交換膜の支持体として好適は性能を発揮するためには、以下の範囲の膜厚であることが好ましい。具体的には、該膜厚は、10~200μmであることが好ましい。また、膜抵抗のより小さい膜を得る観点等から15~170μmであることが好ましい。その中でも、イオン交換樹脂の支持体として使用する場合には、イオン交換容量等を十分に確保するために、十分な厚みが必要となる。そのため、強度等との機械的な物性バランスとを考慮すると、多孔質膜の膜厚は、20~150μmとすることがさらに好ましく、30~100μmとすることが特に好ましい。 In the present invention, the film thickness of the porous membrane is not particularly limited. However, in order to exhibit suitable performance as a support for an ion-exchange membrane, the film thickness is preferably within the following range. Specifically, the film thickness is preferably 10 to 200 μm. Also, from the viewpoint of obtaining a film with a smaller film resistance, the thickness is preferably 15 to 170 μm. In particular, when used as a support for an ion exchange resin, a sufficient thickness is required in order to sufficiently secure the ion exchange capacity and the like. Therefore, considering the balance between strength and mechanical properties, the thickness of the porous membrane is more preferably 20 to 150 μm, particularly preferably 30 to 100 μm.
 この他、本発明の多孔質膜は、前記細孔を有し、以下の機械強度を有することが好ましい。具体的には、縦方向(押出成形の場合、機械方向(流れ方向)MD)、および横方向(押出成形の場合、幅方向、TD)の引張弾性率が200MPa以上であることが好ましく、300MPa以上であることがより好ましく、400MPa以上がさらに好ましい。引張弾性率は、高ければ高いほどよいと考えられるが、多孔質膜の工業的な生産を考慮すると、1500MPa以下であることが好ましく、1400MPaであることがより好ましい。また、引張強度は、MD、TD共に、下限が、好ましくは5MPa以上、より好ましくは8MPa以上であり、上限は特に限定されないが、好ましくは100MPa以下、より好ましくは80MPa以下であり、さらに好ましくは70MPa以下である。その他、多孔質膜の破断伸びは、下限が、好ましくは5%以上、より好ましくは10%以上であり、上限は特に限定されないが、好ましくは400%以下、より好ましくは150%以下である。 In addition, the porous membrane of the present invention preferably has the pores and the following mechanical strength. Specifically, the tensile modulus in the machine direction (machine direction (flow direction) MD in the case of extrusion molding) and the transverse direction (the width direction (TD) in the case of extrusion molding) is preferably 200 MPa or more, more preferably 300 MPa or more, and even more preferably 400 MPa or more. It is considered that the higher the tensile modulus, the better. However, considering the industrial production of the porous membrane, it is preferably 1500 MPa or less, more preferably 1400 MPa. In addition, the lower limit of the tensile strength in both MD and TD is preferably 5 MPa or more, more preferably 8 MPa or more, and the upper limit is not particularly limited, but is preferably 100 MPa or less, more preferably 80 MPa or less, and still more preferably 70 MPa or less. In addition, the lower limit of the elongation at break of the porous membrane is preferably 5% or more, more preferably 10% or more, and the upper limit is not particularly limited, but is preferably 400% or less, more preferably 150% or less.
 これらの機械物性も細孔と同じく、使用する材料、各材料の配合割合、製膜条件により調整できる。 As with pores, these mechanical properties can be adjusted by adjusting the materials used, the mixing ratio of each material, and the film-forming conditions.
 <多孔質膜の製造方法>
 本発明において、多孔質膜は、公知の方法で製造できる。具体的には以下の(i)~(iii)工程を実施することにより、製造することが好ましい。
<Method for producing porous membrane>
In the present invention, the porous membrane can be produced by a known method. Specifically, it is preferably produced by performing the following steps (i) to (iii).
 (i)工程;先ず、オレフィン系樹脂と可塑剤と混錬して、これらを含む組成物を製造する。 (i) Step; First, an olefin resin and a plasticizer are kneaded to produce a composition containing them.
 (ii)工程;得られた組成物を公知の方法によりシート化する。 (ii) step; forming the obtained composition into a sheet by a known method.
 (iii)工程;シート化したものから可塑剤を除去する。 (iii) Step; Remove the plasticizer from the sheet.
 (i)工程においては、公知の方法で組成物を製造する。具体的には、オレフィン系樹脂及び可塑剤の融点以上の温度において、オレフィン系樹脂と可塑剤とを溶融混練すればよい。混練温度が高すぎると樹脂の劣化を招く恐れがあるため、例えばオレフィン系樹脂の融点+10℃~+50℃の範囲で実施することができる。可塑剤の使用量は、目的とする多孔質膜の特性によって適宜決定すればよいが、オレフィン系樹脂100質量部に対して、可塑剤を50~200質量部使用することが好ましく、60~140質量部使用することがより好ましく、70~130質量部使用することがさらに好ましく、80~120質量部使用することが特に好ましい。該組成物には、その他、結晶核剤等を含ませることもできる。 In the (i) step, the composition is produced by a known method. Specifically, the olefin resin and the plasticizer may be melt-kneaded at a temperature equal to or higher than the melting points of the olefin resin and the plasticizer. If the kneading temperature is too high, the resin may be deteriorated. Therefore, the kneading temperature can be, for example, in the range of +10° C. to +50° C. of the melting point of the olefin resin. The amount of the plasticizer to be used may be appropriately determined according to the properties of the intended porous membrane, but it is preferable to use 50 to 200 parts by mass, more preferably 60 to 140 parts by mass, more preferably 70 to 130 parts by mass, and particularly preferably 80 to 120 parts by mass, based on 100 parts by mass of the olefin resin. The composition may also contain a crystal nucleating agent and the like.
 本発明において、可塑剤を使用する場合、その可塑剤は、特に制限されるものではなく、上記したポリオレフィン系樹脂と十分に混合できるものであればよい。具体的には、ステアリン酸メチル、ステアリン酸ブチルなどの脂肪族カルボン酸エステル、フタル酸ジイソノニル、フタル酸ビス-2-エチルヘキシルなどの芳香族カルボン酸エステル、流動パラフィン等の脂肪族炭化水素等が挙げられる。中でも、芳香族カルボン酸エステルが好ましい。これらは、単独でも、複数種類を混合して使用することができる。 In the present invention, when using a plasticizer, the plasticizer is not particularly limited as long as it can be sufficiently mixed with the polyolefin resin described above. Specific examples include aliphatic carboxylic acid esters such as methyl stearate and butyl stearate, aromatic carboxylic acid esters such as diisononyl phthalate and bis-2-ethylhexyl phthalate, and aliphatic hydrocarbons such as liquid paraffin. Among them, aromatic carboxylic acid esters are preferred. These can be used alone or in combination of multiple types.
 (ii)工程においては、(i)工程で得られた組成物を、公知の方法でシート化する。シート化する方法としては、特に制限されるものではないかが、Tダイを備えた押出機による製膜、インフレ機を用いた製膜、プレス成形等を用いたシート化を採用することができる。 In the (ii) step, the composition obtained in the (i) step is formed into a sheet by a known method. The method of forming a sheet is not particularly limited, but film forming using an extruder equipped with a T-die, film forming using an inflation machine, sheet forming using press molding, or the like can be employed.
 (iii)工程においては、オレフィン系樹脂には貧溶媒であり、可塑剤には良溶媒となる溶媒中に、可塑剤を含む膜を含侵させて、可塑剤を除去することにより、多孔質膜とする。なお、(ii)工程で未延伸のシートを準備し、(iii)工程で可塑剤を除去した後、2軸延伸することもできる。 In the step (iii), a film containing a plasticizer is impregnated in a solvent that is a poor solvent for the olefin resin and a good solvent for the plasticizer, and the plasticizer is removed to form a porous film. It is also possible to prepare an unstretched sheet in step (ii), remove the plasticizer in step (iii), and then biaxially stretch the sheet.
 (iV)(iii)工程の後は、得られた多孔質膜を熱処理する(一定の温度範囲下に多孔質膜を放置する)こともできる。 After the (iv) (iii) step, the obtained porous membrane can be heat-treated (the porous membrane is left under a certain temperature range).
 本発明において、多孔質膜の製造方法は、特に制限されるものではない。具体的には、使用する材料の種類、配合割合、およびその製膜方法等を調整して、特定の要件を満足する本発明の多孔質膜を製造すればよい。すなわち、例えば、異なる製膜機を使用して得られたシート化したものから、同じ特性を有する多孔質膜を製造しようとする場合には、使用するオレフィン系樹脂の特性(分子量、分子量分布等)、可塑剤の配合量、延伸倍率、延伸温度等を調整してやればよい。そのような条件の違いの中でも、本発明の多孔質膜の特徴的な部分の1つである、細孔直径が比較的小さいものを製造するためには、比較的低温下でシートを延伸することが好ましい。また、この際、使用するオレフィン系樹脂と相溶性が高い可塑剤を選択し、さらに、延伸を行う場合には、(ii)工程で実施することが好ましい
 基本的には、以上の方法により、多孔質膜を製造できる。次に、好適なオレフィン系樹脂であるポリメチルペンテン樹脂、特に、4-メチルペンテン-1樹脂を使用した場合の例について説明する。
In the present invention, the method for producing the porous membrane is not particularly limited. Specifically, the porous membrane of the present invention that satisfies specific requirements may be produced by adjusting the types of materials to be used, their compounding ratios, their film-forming methods, and the like. That is, for example, when trying to produce a porous film having the same characteristics from sheets obtained using different film-forming machines, the characteristics (molecular weight, molecular weight distribution, etc.) of the olefin resin used, the blending amount of the plasticizer, the draw ratio, the draw temperature, etc. may be adjusted. Among such differences in conditions, it is preferable to stretch the sheet at a relatively low temperature in order to produce a porous membrane with a relatively small pore diameter, which is one of the characteristic features of the porous membrane of the present invention. In this case, a plasticizer that is highly compatible with the olefin resin to be used is selected, and further, when stretching is performed, it is preferable to perform the step (ii). Basically, the porous membrane can be produced by the above method. Next, an example of using polymethylpentene resin, particularly 4-methylpentene-1 resin, which is a suitable olefinic resin, will be described.
 中でも、(ii)工程でシート化する際に、可塑剤を含むシートを製造し、得られたシートを延伸して延伸フィルムを得、最後に可塑剤を除去する(iii)工程を行うことが好ましい。この場合、(ii)工程での延伸条件は、延伸時の温度(シートを延伸する際の雰囲気温度)は、オレフィン系樹脂の融点よりも70℃以上低い温度とすることが好ましい。延伸温度は、オレフィン系樹脂の融点よりも90℃以上低いことがより好ましく、110℃以上低いことがさらに好ましく、140℃以上低いことが最も好ましい。
 延伸倍率は、縦方向に1.1~5倍、横方向に1.1~5倍とすることが好ましいく、さらには、縦方向に2~5倍、横方向に2~5倍とすることが好ましい。プレス成形によりシート化した場合には、縦横方向が存在しないが、1軸方向に1.1~5倍、好ましくは2~5倍(縦方向の延伸と見なす)、その1軸方向と垂直な方向(横方向の延伸と見なす)に1.1~5倍、好ましくは2~5倍延伸することが好ましい。(ii)工程で延伸を行うことでBET比表面積の減少を抑制できる、つまり、細孔直径の拡大するのを抑制できると考えられる。その結果、BET比表面積、および空隙率が本発明の要件を満足する多孔質膜を容易に製造できる。また、ポリオレフィン系樹脂を延伸する際、結晶分散温度から融点までの温度域で延伸を行うことが一般的であるが、より低温で延伸することにより、樹脂分子鎖の配向を制御し、機械的特性を向上することができる。つまり、比較的に小さな細孔を多数有する多孔質膜を製造するためには、可塑剤を含むフィルムを比較的低い延伸温度で延伸することが好ましい。一方、延伸温度が過剰に低いと、シートの柔軟性が低く、十分に延伸できない恐れがある。延伸温度は、オレフィン樹脂の融点よりも178℃以上低くないことが好ましい。つまり、延伸温度を「オレフィン系樹脂の融点-178℃」以上とすることが好ましい。また、延伸温度は、「オレフィン系樹脂の融点-168℃」以上とすることがより好ましい。
Among them, when forming a sheet in step (ii), it is preferable to produce a sheet containing a plasticizer, stretch the obtained sheet to obtain a stretched film, and finally remove the plasticizer in step (iii). In this case, the stretching conditions in step (ii) are preferably such that the temperature during stretching (the ambient temperature during stretching of the sheet) is lower than the melting point of the olefin resin by 70°C or more. The stretching temperature is preferably 90° C. or more lower than the melting point of the olefin resin, further preferably 110° C. or more, and most preferably 140° C. or more.
The draw ratio is preferably 1.1 to 5 times in the longitudinal direction and 1.1 to 5 times in the transverse direction, more preferably 2 to 5 times in the longitudinal direction and 2 to 5 times in the transverse direction. When a sheet is formed by press molding, there is no vertical or horizontal direction, but it is preferable to stretch 1.1 to 5 times, preferably 2 to 5 times in a uniaxial direction (considered as stretching in the longitudinal direction), and 1.1 to 5 times, preferably 2 to 5 times in a direction perpendicular to the uniaxial direction (considered as stretching in the horizontal direction). It is considered that the stretching in the step (ii) can suppress the decrease in the BET specific surface area, that is, the expansion of the pore diameter can be suppressed. As a result, a porous membrane satisfying the requirements of the present invention in terms of BET specific surface area and porosity can be easily produced. In addition, when stretching a polyolefin resin, it is common to stretch in a temperature range from the crystal dispersion temperature to the melting point, but by stretching at a lower temperature, the orientation of the resin molecular chain can be controlled and the mechanical properties can be improved. That is, in order to produce a porous membrane having a large number of relatively small pores, it is preferable to stretch the plasticizer-containing film at a relatively low stretching temperature. On the other hand, if the stretching temperature is excessively low, the sheet may have low flexibility and may not be sufficiently stretched. The stretching temperature is preferably no lower than 178°C below the melting point of the olefin resin. In other words, it is preferable to set the stretching temperature to “the melting point of the olefin resin −178° C.” or higher. Further, it is more preferable that the stretching temperature is set to “the melting point of the olefinic resin −168° C.” or higher.
 <4-メチルペンテン-1樹脂を使用した場合の好適な製造例>
 (i)工程において、4-メチルペンテン-1樹脂(例えば、融点239℃の樹脂)100質量部に対して、可塑剤(好適には、芳香族カルボン酸エステル、具体的にはフタル酸ジイソノニル等)を50~200質量部含む組成物を使用することが好ましい。比較的低い温度で延伸し、かつ、本発明の要件を満足する多孔質膜(比較的小さな細孔を有する多孔質膜)を容易に製造するためには、4-メチルペンテン-1樹脂100質量部に対して、可塑剤を60~140質量部含む組成物を使用することがより好ましく、70~130質量部含む組成物を使用することがさらに好ましく、80~120質量部含む組成物を使用することが特に好ましい。該組成物は、4-メチルペンテン-1樹脂の融点以上の温度で溶融混練して、可塑剤が均一に分散した組成物を得ることが好ましい。この組成物には、必要に応じて、結晶核剤等を配合することもできる。
<Preferred production example when using 4-methylpentene-1 resin>
In the step (i), it is preferable to use a composition containing 50 to 200 parts by mass of a plasticizer (preferably an aromatic carboxylic acid ester, specifically diisononyl phthalate, etc.) per 100 parts by mass of a 4-methylpentene-1 resin (for example, a resin having a melting point of 239°C). In order to stretch at a relatively low temperature and easily produce a porous membrane (a porous membrane having relatively small pores) that satisfies the requirements of the present invention, it is more preferable to use a composition containing 60 to 140 parts by mass of a plasticizer, more preferably to use a composition containing 70 to 130 parts by mass, and particularly preferably to use a composition containing 80 to 120 parts by mass, based on 100 parts by mass of 4-methylpentene-1 resin. The composition is preferably melt-kneaded at a temperature equal to or higher than the melting point of the 4-methylpentene-1 resin to obtain a composition in which the plasticizer is uniformly dispersed. A crystal nucleating agent or the like may be added to this composition, if necessary.
 (ii)工程においては、先ずは、公知の方法により、前記(i)工程で得られた組成物を公知の方法によりシート化する(膜・フィルムにする)。シートの厚みは、特に制限されるものではないが、30~500μmの厚みのシートとすることが好ましい。また、このシートの物性は特に制限されるものではないが、球晶の直径が5μm以下となるように調整することが好ましい。上記調整は、結晶核剤を使用したり、製膜条件を調整することで達成できる。例えば、プレス成形をする場合には、220~250℃に加熱して溶融させた組成物を1~3MPaの圧力でプレスし、0~25℃の温度で1~5分間冷却処理することが好ましい。 In the (ii) step, first, the composition obtained in the (i) step is formed into a sheet (to form a membrane/film) by a known method. The thickness of the sheet is not particularly limited, but a sheet with a thickness of 30 to 500 μm is preferable. Although the physical properties of this sheet are not particularly limited, it is preferable to adjust the diameter of the spherulites to 5 μm or less. The above adjustment can be achieved by using a crystal nucleating agent or by adjusting film forming conditions. For example, in the case of press molding, it is preferred that the composition melted by heating to 220 to 250° C. is pressed at a pressure of 1 to 3 MPa and cooled at a temperature of 0 to 25° C. for 1 to 5 minutes.
 そして、得られたシートは、上記温度範囲で2軸延伸することが好ましい。オレフィン系樹脂の融点よりも70℃以上低い温度雰囲気下で延伸することが好ましく、4-メチルペンテン-1樹脂を使用した場合には、オレフィン系樹脂の融点よりも90℃以上低い温度雰囲気下であることが好ましく、110℃以上低い温度雰囲気下で延伸することが好ましい。延伸時の温度の下限値は、好ましくは61℃以上、より好ましくは71℃以上、さらに好ましくは80℃以上である。
 また、延伸倍率は、得られる多孔質膜のBET比表面積、および空隙率が本発明の要件を満足するように適宜決定すればよいが、前記の通り、延伸倍率が縦1.1~5倍、横1.1~5倍で延伸することが好ましく、縦横共に2~5倍延伸することがより好ましく、2~4倍延伸することがさらに好ましい。特に、プレス成形したものは、上記条件で延伸することが好ましい。
The obtained sheet is preferably biaxially stretched within the above temperature range. It is preferable to draw in an atmosphere at a temperature lower than the melting point of the olefin resin by 70°C or more, and when 4-methylpentene-1 resin is used, it is preferably in an atmosphere at a temperature lower than the melting point of the olefin resin by 90°C or more, preferably 110°C or more. The lower limit of the temperature during stretching is preferably 61° C. or higher, more preferably 71° C. or higher, and even more preferably 80° C. or higher.
In addition, the draw ratio may be appropriately determined so that the BET specific surface area and porosity of the obtained porous membrane satisfy the requirements of the present invention. In particular, the press-molded material is preferably stretched under the above conditions.
 オレフィン樹脂として4-メチルペンテン-1樹脂を用いた場合、延伸温度は、169℃以下であること好ましく、149℃以下であることがより好ましく、129℃以下であることが更に好ましい。延伸温度が低いと、多孔質膜の機械的強度が高まる傾向にある。一方、延伸温度が低すぎると、十分に延伸が行えず、延伸時に成型体に破断が生じる恐れがある。延伸温度は、61℃以上であること好ましく、71℃以上であることがより好ましく、80℃以上であることが更に好ましく、90℃以上であることが特に好ましく、100℃以上であることが最も好ましい。 When 4-methylpentene-1 resin is used as the olefin resin, the stretching temperature is preferably 169°C or lower, more preferably 149°C or lower, and even more preferably 129°C or lower. A low stretching temperature tends to increase the mechanical strength of the porous membrane. On the other hand, if the stretching temperature is too low, sufficient stretching may not be performed, and the molded body may break during stretching. The stretching temperature is preferably 61° C. or higher, more preferably 71° C. or higher, still more preferably 80° C. or higher, particularly preferably 90° C. or higher, and most preferably 100° C. or higher.
 そして、得られたシートは、上記温度範囲で2軸延伸することが好ましい。特に、80~120℃の温度範囲で2軸延伸することが好ましい。また、延伸倍率は、得られる多孔質膜のBET比表面積、および空隙率が本発明の要件を満足するように適宜決定すればよいが、前記の通り、延伸倍率が縦1.1~5倍、横1.1~5倍で延伸することが好ましく、縦横共に2~5倍延伸することがより好ましく、2~4倍延伸することがさらに好ましい。特に、プレス成形したものは、上記条件で延伸することが好ましい。 The obtained sheet is preferably biaxially stretched within the above temperature range. In particular, it is preferable to biaxially stretch the film in a temperature range of 80 to 120°C. In addition, the draw ratio may be appropriately determined so that the BET specific surface area and porosity of the obtained porous membrane satisfy the requirements of the present invention. In particular, the press-molded material is preferably stretched under the above conditions.
 延伸方法は、2軸延伸(同時2軸延伸、逐次2軸延伸)のいずれであってもよいが、中でも、微細な細孔をより多く作るためには、前記延伸倍率で2軸延伸することが好ましい。 The stretching method may be any of biaxial stretching (simultaneous biaxial stretching, sequential biaxial stretching), but in order to create more fine pores, biaxial stretching at the above stretching ratio is preferred.
 本発明においては、下記の(iii)工程で可塑剤を除去する前に、上記条件で延伸することが好ましい。可塑剤除去前に延伸するため、細孔径の小さい孔を効率よく形成できるものと考えられる。つまり、可塑剤を除去する前に、上記条件で延伸することにより、窒素吸着法により求めたBET比表面積が40m/g以上であり、空隙率が20%以上80%以下である多孔質膜を効果的に製造できる。 In the present invention, it is preferable to stretch under the above conditions before removing the plasticizer in the following step (iii). It is considered that pores having a small pore size can be efficiently formed because the film is stretched before the plasticizer is removed. That is, by stretching under the above conditions before removing the plasticizer, a porous film having a BET specific surface area of 40 m 2 /g or more and a porosity of 20% or more and 80% or less as determined by the nitrogen adsorption method can be effectively produced.
 (iii)工程では、(ii)工程で得られたシートから可塑剤を除去する。得られた膜を溶媒と接触させて、好ましくは溶媒に含侵させて、可塑剤を除去する。4-メチルペンテン-1樹脂に対して貧溶媒であり、可塑剤に対して良溶媒となる溶媒は、特に制限されるものではなく、公知の溶媒、例えば、特許文献1に記載の溶媒を使用できる。その中でも好適な溶媒としては、
n-ヘキサンやシクロヘキサン等の炭化水素類、
炭化水素類の一部もしくはすべての水素がフッ素に置換したフルオロカーボン類、
エタノールやイソプロパノールなどのアルコール類、
アセトンや2-ブタノン等のケトン類が挙げられる。
In step (iii), the plasticizer is removed from the sheet obtained in step (ii). The resulting membrane is contacted with a solvent, preferably impregnated with the solvent, to remove the plasticizer. A solvent that is a poor solvent for the 4-methylpentene-1 resin and a good solvent for the plasticizer is not particularly limited, and known solvents such as those described in Patent Document 1 can be used. Preferred solvents among them are
Hydrocarbons such as n-hexane and cyclohexane,
Fluorocarbons in which some or all of the hydrogens in hydrocarbons are substituted with fluorine,
alcohols such as ethanol and isopropanol,
Examples include ketones such as acetone and 2-butanone.
 また、該溶媒とシートとを接触させる際の温度は、20~50℃であることが好ましい。 The temperature at which the solvent and the sheet are brought into contact is preferably 20 to 50°C.
 可塑剤を除去した後は、多孔質膜を安定化させるため、熱処理を行うことができる。温度は結晶分散温度より高く、融点より低い温度で行うことが好ましい。結晶分散高温以下では結晶成長が進まず安定化に繋がらない。また、融点以上の高温では樹脂の融解により細孔が閉塞してしまう。ただし、安定化を図るには、可能な限り高い温度での熱処理を行うことが望ましい。
 上記のとおり、多孔質膜は、シート状に形成された成形体から可塑剤を除去して、キャストシートを多孔質化させることにより得られる。この多孔質膜は、多孔質化キャストシートであり得る。この多孔質膜は、紡糸法により得られる不織布等を用いた多孔質膜と比較して、平面の平滑性に優れる。そのため、後述する多孔質膜に電極触媒を積層させた膜電極構造体において、電極触媒との接触性に優れる。
After removing the plasticizer, a heat treatment can be performed to stabilize the porous membrane. The temperature is preferably higher than the crystal dispersion temperature and lower than the melting point. Below the crystal dispersion temperature, crystal growth does not progress and does not lead to stabilization. Moreover, at high temperatures above the melting point, the pores are closed due to melting of the resin. However, in order to achieve stabilization, it is desirable to perform heat treatment at a temperature as high as possible.
As described above, the porous membrane is obtained by removing the plasticizer from the molded article formed in the form of a sheet to make the cast sheet porous. The porous membrane can be a porous cast sheet. This porous membrane is superior in planar smoothness as compared with a porous membrane using a nonwoven fabric or the like obtained by a spinning method. Therefore, in a membrane-electrode assembly in which an electrode catalyst is laminated on a porous membrane, which will be described later, the contact with the electrode catalyst is excellent.
 本発明の多孔質膜は、優れた効果、空隙率を有するため、従来の用途に好適に使用できる。その中でも、イオン交換樹脂の支持体として、特に好適に使用できる。次に、イオン交換樹脂の支持体としての使用について説明する。 Because the porous membrane of the present invention has excellent effects and porosity, it can be suitably used for conventional applications. Among these, it can be used particularly preferably as a support for ion exchange resins. Next, the use of the ion exchange resin as a support will be described.
 <イオン交換樹脂の支持体>
 上記方法で得られた多孔質膜は、イオン交換樹脂の支持体として好適に使用できる。支持するイオン交換樹脂(イオン交換基の種類)は、目的とする用途に応じて、適宜決定すればよい。該イオン交換樹脂は、陰イオン交換樹脂、陽イオン交換樹脂のいずれであってもよい。中でも、陰イオン交換樹脂の支持体とする場合には、水素を製造するための水電解、陰イオン交換膜型水電解用途に使用できるため好ましい。
<Support for ion exchange resin>
The porous membrane obtained by the above method can be suitably used as a support for ion exchange resins. The supported ion-exchange resin (type of ion-exchange group) may be appropriately determined according to the intended use. The ion exchange resin may be either an anion exchange resin or a cation exchange resin. Among them, when it is used as a support for an anion exchange resin, it is preferable because it can be used for water electrolysis for producing hydrogen and anion exchange membrane type water electrolysis.
 イオン交換樹脂を支持する方法は、特に制限されるものではないが、以下の4通りの方法が挙げられる。 The method for supporting the ion-exchange resin is not particularly limited, but the following four methods can be mentioned.
 (1)イオン交換基含有モノマーを含む重合性組成物(必要に応じて該重合性組成物の溶液)と、多孔質膜とを接触させて、該多孔質膜の細孔に重合性組成物を充填させる。その後、細孔に充填した重合性組成物を重合する。この時、目的とするイオン交換膜とするように、イオン交換基含有モノマーのみからなる重合性組成物を使用できる。イオン交換基含有モノマー、および必要に応じて配合される他のモノマーを含む重合性組成物を使用することもできる。他のモノマーには、ジビニルベンゼンのような多官能である、架橋剤が含まれていてもよい。 (1) A polymerizable composition containing an ion-exchange group-containing monomer (a solution of the polymerizable composition as necessary) is brought into contact with a porous membrane to fill the pores of the porous membrane with the polymerizable composition. After that, the polymerizable composition filled in the pores is polymerized. At this time, a polymerizable composition comprising only ion-exchange group-containing monomers can be used so as to obtain the desired ion-exchange membrane. Polymerizable compositions containing ion-exchange group-containing monomers and optionally other monomers can also be used. Other monomers may include crosslinkers that are multifunctional such as divinylbenzene.
 (2)イオン交換基を導入できるモノマーを含む重合性組成物(必要に応じて該重合組成物の溶液)と多孔質膜とを接触させ、該多孔質膜の細孔に該重合性組成物を充填する。次いで、該重合性組成物を重合する。その後、得られた、イオン交換基を導入できるモノマーが重合した前駆体ポリマーにイオン交換基を導入する。 (2) A polymerizable composition containing a monomer capable of introducing an ion-exchange group (a solution of the polymerizable composition if necessary) is brought into contact with the porous membrane, and the pores of the porous membrane are filled with the polymerizable composition. The polymerizable composition is then polymerized. Thereafter, ion exchange groups are introduced into the resulting precursor polymer obtained by polymerizing a monomer into which ion exchange groups can be introduced.
 より詳細に説明すると、以下の通りである。先ず、ハロゲノアルキル基を有する重合性単量体(例えば、クロロメチルスチレン、ブロモメチルスチレン、ヨードメチルスチレン、クロロエチルスチレン、ブロモエチルスチレン、ブロモブチルスチレン等)、必要に応じて、架橋性重合性単量体(例えば、ジビニルベンゼン、ジビニルビフェニル、ジビニルナフタレンなど)、および有効量の重合開始剤(例えば、過酸化ベンゾイル等の有機化酸化物)を含む重合性組成物を前記ポリオレフィン系樹脂を含む多孔質膜と接触させる。そして、該多孔質膜の空隙部に該重合性組成物を充填させた後、重合硬化させて、ハロゲノアルキル基を有する樹脂が充填された、イオン交換膜の前駆体を準備する。次いで、ハロゲノアルキル基をイオン交換基に変換することにより、イオン交換膜とする。 A more detailed explanation is as follows. First, a polymerizable composition containing a polymerizable monomer having a halogenoalkyl group (e.g., chloromethylstyrene, bromomethylstyrene, iodomethylstyrene, chloroethylstyrene, bromoethylstyrene, bromobutylstyrene, etc.), optionally a crosslinkable polymerizable monomer (e.g., divinylbenzene, divinylbiphenyl, divinylnaphthalene, etc.), and an effective amount of a polymerization initiator (e.g., an organic peroxide such as benzoyl peroxide) is brought into contact with the porous membrane containing the polyolefin resin. Then, after filling the pores of the porous membrane with the polymerizable composition, the composition is polymerized and cured to prepare an ion-exchange membrane precursor filled with a resin having a halogenoalkyl group. Then, an ion-exchange membrane is formed by converting the halogenoalkyl groups into ion-exchange groups.
 なお、この方法では、ハロゲノアルキル基を有する重合性単量体を例示したが、例えば、スチレン等を用いてハロゲノアルキル基を導入する前の、前駆体の前駆体を準備し、それにハロゲノアルキル基を導入することもできる。ハロゲノアルキル基を導入した以降は、前記と同様の操作を実施すればよい。 In this method, a polymerizable monomer having a halogenoalkyl group was exemplified, but for example, a precursor may be prepared using styrene or the like before the halogenoalkyl group is introduced, and the halogenoalkyl group may be introduced into it. After introducing the halogenoalkyl group, the same operations as described above may be carried out.
 (3)イオン交換基含有モノマーを含む重合性組成物を重合する。得られた重合体を含むイオン交換基含有重合体の溶液と多孔質膜とを接触させることにより、イオン交換樹脂(該重合体)を少なくとも細孔に充填したイオン交換膜とする。該重合性組成物には、架橋剤を含む他のモノマーを配合することもできるが、架橋度が高くなりすぎると、イオン交換基含有重合体の溶解度が低下する傾向にあるため、注意を要する。 (3) polymerizing a polymerizable composition containing an ion-exchange group-containing monomer; An ion-exchange membrane in which at least the pores are filled with the ion-exchange resin (the polymer) is obtained by contacting the solution of the ion-exchange group-containing polymer containing the obtained polymer with the porous membrane. Other monomers containing a cross-linking agent can be added to the polymerizable composition, but if the degree of cross-linking is too high, the solubility of the ion-exchange group-containing polymer tends to decrease, so caution is required.
 (4)イオン交換基を導入できるモノマーを含む重合性組成物を重合する。得られた重合体の溶液と多孔質膜とを接触させ、該多孔質膜の細孔に該重合体(イオン交換基を導入できるモノマーが重合した前駆体ポリマー)を充填する。その後、前駆体ポリマーにイオン交換基を導入する。この方法においても、該重合性組成物には、架橋剤を含む他のモノマーを配合することもできるが、架橋度が高くなりすぎると、前駆体ポリマーの溶解度が低下する傾向にあるため、注意を要する。 (4) polymerizing a polymerizable composition containing a monomer capable of introducing an ion exchange group; A solution of the obtained polymer is brought into contact with the porous membrane, and the pores of the porous membrane are filled with the polymer (precursor polymer obtained by polymerizing a monomer capable of introducing an ion-exchange group). After that, ion exchange groups are introduced into the precursor polymer. Also in this method, other monomers containing a cross-linking agent can be added to the polymerizable composition, but if the degree of cross-linking is too high, the solubility of the precursor polymer tends to decrease, so caution is required.
 以上の方法の中でも、生産性、イオン交換基の導入量、およびイオン交換樹脂の不溶性等を考慮すると、(1)、又は(2)の方法を採用することが好ましい。つまり、重合性単量体のモノマー組成物を一旦、多孔質膜に含侵させた後、重合し、必要に応じて、イオン交換基を導入する方法を採用することが好ましい。この中でも、イオン交換樹脂の水に対する溶解性もあるが、生産性を考慮すると、(2)の方法を採用することが最も好ましい。 Among the above methods, it is preferable to adopt the method (1) or (2) in consideration of the productivity, the amount of ion exchange groups introduced, the insolubility of the ion exchange resin, and the like. In other words, it is preferable to adopt a method of once impregnating a porous membrane with a monomer composition of polymerizable monomers, polymerizing it, and introducing ion-exchange groups as necessary. Among these methods, the solubility in water of the ion exchange resin is also a factor, but from the viewpoint of productivity, it is most preferable to adopt the method (2).
 上記支持体の細孔に導入するイオン交換樹脂は、特に制限されるものではないが、多孔質膜との馴染み、密着性等を考慮すると、イオン交換基を除く樹脂部分が、架橋された炭化水素系重合体で構成されることが好ましい。ここで炭化水素系重合体とは、実質的に炭素-フッ素結合を含まず、重合体を構成する主鎖及び側鎖の結合の大部分が、炭素-炭素結合で構成されている重合体を指す。この炭化水素系重合体には、炭素-炭素結合の合間に、エーテル結合、エステル結合、アミド結合、シロキサン結合等により酸素、窒素、珪素、硫黄、ホウ素、リン等の他の原子が少量含まれていてもよい。また、上記主鎖及び側鎖に結合する原子は、全てが水素原子である必要はなく、少量であれば塩素、臭素、フッ素、ヨウ素等の他の原子、又は他の原子を含む置換基により置換されていてもよい。これら炭素と水素以外の元素の量は、イオン交換基を除いた樹脂(重合体)を構成する全元素中40モル%以下、好適には10モル%以下であることが好ましい。 The ion-exchange resin to be introduced into the pores of the support is not particularly limited, but considering compatibility with the porous membrane, adhesion, etc., the resin portion excluding the ion-exchange groups is preferably composed of a crosslinked hydrocarbon-based polymer. Here, the hydrocarbon-based polymer refers to a polymer in which substantially no carbon-fluorine bonds are included and most of the bonds in the main chain and side chains constituting the polymer are composed of carbon-carbon bonds. This hydrocarbon-based polymer may contain a small amount of other atoms such as oxygen, nitrogen, silicon, sulfur, boron and phosphorus between carbon-carbon bonds due to ether bonds, ester bonds, amide bonds, siloxane bonds and the like. In addition, all the atoms bonded to the main chain and side chains do not need to be hydrogen atoms, and in small amounts may be substituted with other atoms such as chlorine, bromine, fluorine, and iodine, or substituents containing other atoms. The amount of these elements other than carbon and hydrogen is preferably 40 mol % or less, preferably 10 mol % or less, of all elements constituting the resin (polymer) excluding ion exchange groups.
 陰イオン交換型イオン交換膜における陰イオン交換基(多孔質膜の空隙部に充填する陰イオン交換樹脂が有する陰イオン交換基)は、特に制限されるものではないが、製造の容易さ、入手の容易さ等を考慮すると4級アンモニウム塩基やピリジニウム塩基であることが好ましい。 The anion-exchange group in the anion-exchange ion-exchange membrane (the anion-exchange group possessed by the anion-exchange resin filled in the pores of the porous membrane) is not particularly limited, but is preferably a quaternary ammonium base or a pyridinium base in consideration of ease of production and availability.
 なお、前記陰イオン交換樹脂膜は、上記の製造方法で製造した場合、陰イオン交換基の対イオンがハロゲン化物イオンとして得られる場合が多い。この場合、該ハロゲン化物イオンを対イオンとする陰イオン交換型イオン交換膜は、過剰量のアルカリ水溶液中に浸漬するなどして、対イオンをOH型もしくはHCO 型イオン交換させることが好ましい。該イオン交換方法には特別な制限はなく、公知の方法、例えば、OH-型にイオン交換する場合には水酸化ナトリウム、水酸化カリウムの水溶液に前記ハロゲンイオンを対イオンとする陰イオン交換型イオン交換膜を、2~10時間浸漬して行えばよい。同様にHCO 型にイオン交換する場合には炭酸水素ナトリウム、炭酸水素カリウムの水溶液に浸漬して行えばよい。 When the anion exchange resin membrane is produced by the above production method, the counter ion of the anion exchange group is often obtained as a halide ion. In this case, the anion-exchange membrane having halide ions as counter ions is preferably immersed in an excessive amount of alkaline aqueous solution to exchange the counter ions in OH type or HCO 3 type ion exchange. The ion exchange method is not particularly limited, and for example, in the case of ion exchange to the OH type, an anion exchange type ion exchange membrane having the halogen ion as a counter ion is immersed in an aqueous solution of sodium hydroxide or potassium hydroxide for 2 to 10 hours. Similarly, in the case of ion-exchanging to HCO 3 - type, it may be performed by immersing in an aqueous solution of sodium hydrogencarbonate or potassium hydrogencarbonate.
 陽イオン交換型イオン交換膜における陽イオン交換基(多孔質膜の空隙部に充填する陽イオン交換樹脂が有する陽イオン交換基)は、特に制限されるものではないが、製造の容易さ、入手の容易さ等を考慮するとスルホン酸型やカルボン酸型であることが好ましい。 The cation exchange group in the cation exchange type ion exchange membrane (the cation exchange group possessed by the cation exchange resin filled in the pores of the porous membrane) is not particularly limited, but considering the ease of production, availability, etc., the sulfonic acid type or carboxylic acid type is preferred.
 <陰イオン交換膜を使用した水電解>
 本発明のイオン交換膜は上記方法により製造できる。中でも、陰イオン交換型イオン交換膜とした場合に、水素を製造できる水電解用の膜として使用できる。水電解装置の構成は、図3に示す通りである。水電解装置は、水若しくは低濃度のアルカリ水溶液を用いる水電解装置であってもよく、5質量%以上の高濃度アルカリ水溶液を用いるアルカリ水電解装置であってもよい。
<Water electrolysis using anion exchange membrane>
The ion exchange membrane of the present invention can be produced by the above method. Among them, when it is made into an anion exchange type ion exchange membrane, it can be used as a membrane for water electrolysis capable of producing hydrogen. The configuration of the water electrolysis device is as shown in FIG. The water electrolysis device may be a water electrolysis device using water or a low-concentration alkaline aqueous solution, or an alkaline water electrolysis device using a high-concentration alkaline aqueous solution of 5% by mass or more.
 具体的には、陰イオン交換膜1に、陰イオン交換樹脂に触媒が分散した触媒層(アノード2、およびカソード3)を配置し、それぞれガス拡散層4を設ける。そして、アノード2側の陽極室5には、水を供給する水供給口6、酸素を排出する酸素排出口7を設ける。さらには、カソード3側の陰極室8には、水素を排出する水素排出口9を設ける。陰イオン交換膜1、アノード2、カソード3、ガス拡散層4、陽極室5、及び陰極室8、例えば、筐体10の中に収められる。以上のような構成とすることにより、水電解により水素を製造できる。このような水電解セルは、例えば、筐体10と、筐体10内に収められた陰イオン交換膜1と、陰イオン交換膜1により隔てられた陽極室5及び陰極室8とを備える。 Specifically, a catalyst layer (anode 2 and cathode 3) in which a catalyst is dispersed in an anion exchange resin is arranged on the anion exchange membrane 1, and a gas diffusion layer 4 is provided on each. A water supply port 6 for supplying water and an oxygen discharge port 7 for discharging oxygen are provided in the anode chamber 5 on the anode 2 side. Furthermore, the cathode chamber 8 on the cathode 3 side is provided with a hydrogen discharge port 9 for discharging hydrogen. Anion exchange membrane 1 , anode 2 , cathode 3 , gas diffusion layer 4 , anode chamber 5 and cathode chamber 8 are housed in, for example, housing 10 . With the configuration as described above, hydrogen can be produced by water electrolysis. Such a water electrolysis cell comprises, for example, a housing 10 , an anion exchange membrane 1 housed within the housing 10 , and an anode chamber 5 and a cathode chamber 8 separated by the anion exchange membrane 1 .
 上記のような水電解セルにおいて、陰イオン交換膜は、アノードとカソード間でイオンを伝達する固体電解質膜として機能する。さらには、アノードで発生する酸素ガスと、カソードで発生する水素ガスの混合を抑制するため役割を持つ。水電解の技術においては、水素ガスがカソードからアノードに多量に透過した場合、アノードの酸素ガスと急激に反応することにより、爆発する等の危険がある。そのため、隔膜である陰イオン交換膜のガス透過性が低いことが好ましい。さらには、実使用における起動停止を伴う長期間の使用においても、劣化等によってガス透過度が高くならないことが非常に重要である。 In the water electrolysis cell as described above, the anion exchange membrane functions as a solid electrolyte membrane that transfers ions between the anode and cathode. Furthermore, it plays a role in suppressing mixing of oxygen gas generated at the anode and hydrogen gas generated at the cathode. In the technique of water electrolysis, when a large amount of hydrogen gas permeates from the cathode to the anode, there is a risk of explosion due to rapid reaction with oxygen gas in the anode. Therefore, it is preferable that the gas permeability of the anion exchange membrane, which is a diaphragm, is low. Furthermore, it is very important that the gas permeability does not increase due to deterioration or the like even in long-term use that involves starting and stopping in actual use.
 本発明の多孔質膜を使用した陰イオン交換膜は、繰返し使用時においても、ガス透過性(ガスが拡散すること)の増加を抑制できる。具体的には、下記の実施例のような繰返し使用条件であっても、ガスの透過性増大を抑制できる。この効果は、本発明の多孔質膜が比較的小さい細孔を多く有していることが理由であると考えられる。つまり、繰返し使用において、水電解装置内に水の量が少なくなる場合、或いは水が存在しなくなった場合であっても、多孔質膜の細孔が比較的小さいため、陰イオン交換樹脂の収縮に多孔質膜の細孔が追随し易いものと考えられる。陰イオン交換樹脂はイオン交換基を有するため、水が存在すると膨潤する傾向にある。これに対して、水が少なくなる(水が存在しなくなる)と、陰イオン交換樹脂は収縮するものと考えられる。そのため、繰返し使用時において、陰イオン交換樹脂への形状追随性が重要になるものと考えられ、本発明の多孔質膜は、比較的小さな細孔を数多く有しているため、上記効果が発揮されるものと考えられる。 The anion exchange membrane using the porous membrane of the present invention can suppress an increase in gas permeability (diffusion of gas) even during repeated use. Specifically, it is possible to suppress an increase in gas permeability even under conditions of repeated use as in the following examples. The reason for this effect is considered to be that the porous membrane of the present invention has many relatively small pores. In other words, even when the amount of water in the water electrolysis device decreases or the water disappears in repeated use, the pores of the porous membrane are relatively small, so it is considered that the pores of the porous membrane easily follow the contraction of the anion exchange resin. Since the anion exchange resin has ion exchange groups, it tends to swell in the presence of water. On the other hand, it is thought that the anion exchange resin shrinks when the water is reduced (there is no more water). Therefore, it is considered that the shape conformability to the anion exchange resin is important during repeated use, and the porous membrane of the present invention has a large number of relatively small pores, so it is considered that the above effects are exhibited.
 以下、実施例を挙げて本発明を詳細に説明するが、本発明はこれらの実施例によって制限されるものではない。 The present invention will be described in detail below with reference to examples, but the present invention is not limited by these examples.
 以下の方法により、実施例、比較例で使用した多孔質膜の特性、およびそれらの多孔質膜を用いた陰イオン交換膜の特性に関して評価を行った。 The following methods were used to evaluate the properties of the porous membranes used in Examples and Comparative Examples, and the properties of anion exchange membranes using these porous membranes.
 <多孔質膜の評価>
 1.BET比表面積、多孔質膜における最大ピークを有する細孔直径、細孔直径が100nm以下である細孔の細孔容積の合計割合、平均細孔直径
 マイクロトラックベル社製BelSorp Mini IIを用いて、窒素分圧1×10-3から0.999までの窒素吸着等温線を得た。吸着等温線をBET法によって解析を行い、比表面積(m/g)及び平均細孔直径(nm)を求めた。また、吸着等温線をBJH法によって解析を行い、細孔直径D(nm)に対する細孔体積(cm/g)の積分曲線を得た。この曲線を総細孔体積で規格化し、細孔直径が100nm以下である細孔容積の合計割合を算出した。また、細孔容積Vの積分曲線を細孔直径Dの自然対数LogDで微分することにより、細孔直径Dに対する細孔径分布曲線(dV/dlogD)を得た。
<Evaluation of porous membrane>
1. BET specific surface area, pore diameter having the maximum peak in the porous membrane, total ratio of pore volume of pores having a pore diameter of 100 nm or less, average pore diameter Using BelSorp Mini II manufactured by Microtrack Bell, a nitrogen adsorption isotherm was obtained from a nitrogen partial pressure of 1 × 10 -3 to 0.999. The adsorption isotherm was analyzed by the BET method to determine the specific surface area (m 2 /g) and average pore diameter (nm). Also, the adsorption isotherm was analyzed by the BJH method to obtain an integral curve of pore volume (cm 3 /g) versus pore diameter D (nm). This curve was normalized by the total pore volume to calculate the total percentage of pore volume with pore diameters of 100 nm or less. Further, by differentiating the integrated curve of the pore volume V with the natural logarithm LogD of the pore diameter D, a pore diameter distribution curve (dV/dlogD) with respect to the pore diameter D was obtained.
 2.空隙率
 多孔質膜の体積V(cm)と質量M(g)を測定し、次式を用いて空隙率Pを計算した。
なお、式中のρは樹脂の密度(g/cm)である。
P=100×(1-M/(ρ×V))。
2. Porosity The volume V (cm 3 ) and mass M (g) of the porous membrane were measured, and the porosity P was calculated using the following formula.
Note that ρ in the formula is the density of the resin (g/cm 3 ).
P=100×(1−M/(ρ×V)).
 3.オレフィン系樹脂の融点の確認
 リガク社製示差走査熱量測定(DSC)装置ThermoPlusEVOを用い、窒素雰囲気中で室温から330℃まで10℃/Minにて昇温した。得られたDSC曲線より吸熱ピークのピークトップ温度を読み取り、オレフィン系樹脂の融点とした。
3. Confirmation of Melting Point of Olefin Resin Using a differential scanning calorimeter (DSC) ThermoPlus EVO manufactured by Rigaku Corporation, the temperature was raised from room temperature to 330° C. at 10° C./min in a nitrogen atmosphere. The peak top temperature of the endothermic peak was read from the obtained DSC curve and taken as the melting point of the olefin resin.
 4.多孔質膜の機械的物性の測定
 多孔質膜を1cm×5cmの短冊状に切断した後、SHIMADZU製オートグラフAGS-Xを用い、室温において引張速度5mm/Minにて引張試験を実施した。チャック間距離は3cmとした。得られた応力―歪曲線より、試験開始直後に表れる直線領域の傾きより引張弾性率を算出した。
具体的には、試験力F、試験片の初期断面積Sより、引張応力σを以下の式で求めた。
σ = F/S
また、試験片の初期平行部長さLと平行部長さの増加分ΔLより、引張歪εを次式から求めた。
ε = ΔL/L
引張応力σ及び引張歪εより応力―歪曲線を描き、その試験開始直後に表れる直線領域の傾きを以下の式から求め、引張弾性率Eを算出した。
E = Δσ/Δε
また、引張強度は、試験開始から破断に至る過程における引張応力の最大値とし、応力-歪曲線よりその値を読み取った。破断伸びは試験片の初期長さLと破断までの平行部長さの増加分ΔLMaxを用いて、以下の式で求めた。
破断伸び =100×(ΔLMax/L
4. Measurement of Mechanical Properties of Porous Membrane After cutting the porous membrane into strips of 1 cm×5 cm, a tensile test was performed at room temperature at a tensile speed of 5 mm/min using Autograph AGS-X manufactured by SHIMADZU. The distance between chucks was set to 3 cm. From the obtained stress-strain curve, the tensile modulus was calculated from the slope of the linear region appearing immediately after the start of the test.
Specifically, from the test force F and the initial cross-sectional area S of the test piece, the tensile stress σ was determined by the following formula.
σ = F/S
Further, the tensile strain ε was obtained from the following equation from the initial length L0 of the parallel portion of the test piece and the increment ΔL of the length of the parallel portion.
ε = ΔL/L 0
A stress-strain curve was drawn from the tensile stress σ and the tensile strain ε, and the slope of the linear region appearing immediately after the start of the test was obtained from the following formula to calculate the tensile elastic modulus E.
E = Δσ/Δε
Further, the tensile strength was taken as the maximum value of the tensile stress in the process from the start of the test to the fracture, and the value was read from the stress-strain curve. The elongation at break was determined by the following formula using the initial length L0 of the test piece and the increment ΔL Max of the length of the parallel portion until breakage.
Elongation at break = 100 x (ΔL Max /L 0 )
 <陰イオン交換膜の製造>
 クロロメチルスチレン 95質量部、57質量%-ジビニルベンゼンのスチレン溶液 5質量部、重合開始剤(商品名:パーブチルO) 5質量部、エポキシ化合物(商品名:エポライト40E) 5質量部を混合して重合性単量体組成物を得た。得られた重合性単量体組成物400gを500mlのガラス容器に入れ、実施例・比較例で製膜した多孔質膜(20cm×20cm)を該重合性単量体組成物中に浸漬した。
<Production of anion exchange membrane>
A polymerizable monomer composition was obtained by mixing 95 parts by mass of chloromethylstyrene, 5 parts by mass of a styrene solution of 57% by mass-divinylbenzene, 5 parts by mass of a polymerization initiator (trade name: Perbutyl O), and 5 parts by mass of an epoxy compound (trade name: Epolite 40E). 400 g of the obtained polymerizable monomer composition was placed in a 500 ml glass container, and the porous membrane (20 cm×20 cm) formed in Examples and Comparative Examples was immersed in the polymerizable monomer composition.
 続いて、該多孔質膜を該重合性単量体組成物中から取り出し、取り出した該多孔質膜の両側に、100μmのポリエステルフィルムを剥離材として積層した。得られた積層体を、0.3MPaの窒素加圧下、80℃で5時間加熱し、該重合性単量体組成物を重合した。 Subsequently, the porous membrane was taken out from the polymerizable monomer composition, and a 100 μm polyester film was laminated on both sides of the taken-out porous membrane as a release material. The resulting laminate was heated at 80° C. for 5 hours under a nitrogen pressure of 0.3 MPa to polymerize the polymerizable monomer composition.
 該重合性単量体組成物を重合して得られた膜状物を、6質量%のトリメチルアミンと25質量%のアセトンを含む水溶液中に室温で16時間浸漬して、クロロメチルスチレン重合部分をアミノ化し、純水で洗浄して陰イオン交換膜を得た。 A film-like product obtained by polymerizing the polymerizable monomer composition was immersed in an aqueous solution containing 6% by mass of trimethylamine and 25% by mass of acetone at room temperature for 16 hours to aminate the polymerized portion of chloromethylstyrene and washed with pure water to obtain an anion exchange membrane.
 <陰イオン交換膜の評価>
 以下の方法に従い、製造した陰イオン交換膜の評価を実施した。なお、実施例、比較例において陰イオン交換膜の各種物性の測定方法を以下に説明する。
<Evaluation of anion exchange membrane>
The produced anion exchange membrane was evaluated according to the following method. Methods for measuring various physical properties of anion exchange membranes will be described below in Examples and Comparative Examples.
 i)陰イオン交換容量および含水率
 先ず、陰イオン交換膜を0.5mol・L-1-NaCl水溶液に10時間以上浸漬し、塩化物イオン型とした。次いで、塩化物イオン型とした陰イオン交換膜を、0.2mol・L-1-NaNO水溶液と接触させることにより、硝酸イオン型に置換した。この時、遊離した塩化物イオンを、硝酸銀水溶液を用いて電位差滴定装置(COMTITE-900、平沼産業株式会社製)で定量した(測定した塩化物イオンのモル数を「A(mol)」とする。)。
i) Anion Exchange Capacity and Moisture Content First, the anion exchange membrane was immersed in a 0.5 mol·L -1 -NaCl aqueous solution for 10 hours or more to convert it to a chloride ion type. Then, the chloride ion-type anion exchange membrane was brought into contact with a 0.2 mol·L -1 -NaNO 3 aqueous solution to replace it with a nitrate ion-type. At this time, liberated chloride ions were quantified by a potentiometric titrator (COMTITE-900, manufactured by Hiranuma Sangyo Co., Ltd.) using an aqueous solution of silver nitrate (the measured number of moles of chloride ions is defined as "A (mol)").
 次に、同じ陰イオン交換膜を0.5mol・L-1-NaCl水溶液に25℃下で4時間以上浸漬し、イオン交換水で十分水洗した。その後、膜を取り出しティッシュペーパー等で表面の水分を拭き取り湿潤時の重さ(「W(g)」)を測定した。さらに膜を60℃で5時間減圧乾燥させその重量を測定した(「D(g)」)。上記測定値に基づいて、陰イオン交換容量および含水率を次式により求めた。
イオン交換容量([mmol・g-1-乾燥重量])=A×1000/D
含水率([%])=100×(W-D)/D
Next, the same anion exchange membrane was immersed in a 0.5 mol·L −1 -NaCl aqueous solution at 25° C. for 4 hours or longer, and thoroughly washed with ion-exchanged water. Thereafter, the film was taken out and wiped off with tissue paper or the like, and the wet weight ("W (g)") was measured. Furthermore, the membrane was dried under reduced pressure at 60° C. for 5 hours and its weight was measured (“D (g)”). Based on the above measured values, the anion exchange capacity and water content were determined by the following equations.
Ion exchange capacity ([mmol g -1 - dry weight]) = A x 1000/D
Moisture content ([%]) = 100 × (WD) / D
 ii)膜抵抗測定
 陰イオン交換膜を0.5mol/L-KHCO水溶液に10時間以上浸漬し、対イオンを重炭酸型とした後、純水で洗浄して室温で24時間以上乾燥した。
ii) Measurement of Membrane Resistance The anion exchange membrane was immersed in a 0.5 mol/L-KHCO 3 aqueous solution for 10 hours or longer to change the counter ion to the bicarbonate type, then washed with pure water and dried at room temperature for 24 hours or longer.
 白金電極を備えた2室セルの中央に、前記処理後の陰イオン交換膜を置いた。該陰イオン交換膜の両側に、0.5mol・L-1-KHCO水溶液を満たした。そして、交流ブリッジ(周波数1000サイクル/秒)により、25℃における電極間の抵抗を測定した(測定した抵抗を「a(Ω・cm)」とする)。同様にして陰イオン交換膜を設置せずに電極間の抵抗を測定した(測定した抵抗値を「b(Ω・cm)」とする)。上記測定に基づいて、膜抵抗を次式により求めた。
膜抵抗([Ω・cm])=(a-b)
The treated anion exchange membrane was placed in the center of a two-compartment cell with platinum electrodes. Both sides of the anion exchange membrane were filled with 0.5 mol·L -1 -KHCO 3 aqueous solution. Then, the resistance between the electrodes at 25° C. was measured using an AC bridge (frequency: 1000 cycles/second) (the measured resistance is defined as “a (Ω·cm 2 )”). Similarly, the resistance between the electrodes was measured without installing the anion exchange membrane (the measured resistance value is defined as "b (Ω·cm 2 )"). Based on the above measurements, the membrane resistance was determined by the following equation.
Membrane resistance ([Ω·cm 2 ]) = (ab)
 iii)水素ガス透過度
 陰イオン交換膜を0.5mol/L-KHCO水溶液に10時間以上浸漬し、対イオンを重炭酸型とした。その後、純水で洗浄して室温で24時間以上乾燥した。
iii) Hydrogen Gas Permeability The anion exchange membrane was immersed in a 0.5 mol/L-KHCO 3 aqueous solution for 10 hours or more to convert the counter ion to a bicarbonate type. Then, it was washed with pure water and dried at room temperature for 24 hours or more.
 前記処理を行った陰イオン交換膜を5cm×5cmに切り出してガス透過率測定装置(GTRテック(株)製、GTR-200XFTS)に取り付け、水素透過量の測定を行った。基本的には、JIS K7126-2(プラスチック-フィルム及びシート ガス透過度試験方法-第2部:等圧法)に従い測定を実施した。 A 5 cm x 5 cm piece of the anion exchange membrane subjected to the above treatment was cut out and attached to a gas permeability measuring device (GTR Tech Co., Ltd., GTR-200XFTS) to measure the amount of hydrogen permeation. Basically, the measurement was carried out according to JIS K7126-2 (Plastic-Film and Sheet Gas Permeability Test Method-Part 2: Isobaric Method).
 具体的な測定方法は、以下の通りである。始めに、該陰イオン交換膜を該装置のセルに挟み込み、該装置に設置した。該陰イオン交換膜で仕切られた一方の空間に、キャリアガス(アルゴンガス)を、温度40℃、相対湿度90%RH、流量30mL/minの条件で流した。また、他方の空間に、試験ガスとして水素ガスを、温度40℃、相対湿度90%RH、流量30mL/minの条件で流した。セル全体の温度が一定(40℃)となるように、この状態で1時間保持した。 The specific measurement method is as follows. First, the anion exchange membrane was sandwiched between the cells of the device and installed in the device. A carrier gas (argon gas) was passed through one of the spaces partitioned by the anion exchange membrane under conditions of a temperature of 40° C., a relative humidity of 90% RH, and a flow rate of 30 mL/min. In the other space, hydrogen gas was passed as a test gas under conditions of a temperature of 40° C., a relative humidity of 90% RH, and a flow rate of 30 mL/min. This state was maintained for 1 hour so that the temperature of the entire cell was kept constant (40° C.).
 その後、サンプリング時間(「t(s)」)において、キャリアガス側に透過した水素量をガスクロマトグラフで検知した。その結果に基づいて、試験面積9.62cm当たりの水素透過度を算出し、該陰イオン交換膜の40℃、相対湿度90%の条件における水素透過度とした。 After that, at the sampling time (“t(s)”), the amount of hydrogen permeated to the carrier gas side was detected with a gas chromatograph. Based on the results, the hydrogen permeability per test area of 9.62 cm 2 was calculated as the hydrogen permeability of the anion exchange membrane at 40°C and relative humidity of 90%.
 その後、キャリアガスおよび試験ガスを、それぞれ、流量30mL/min、40℃、相対湿度20%に切替えて、セル全体の温度が一定(40℃)となるように、1時間保持した後に同様の測定を行い、40℃、相対湿度20%の条件における水素透過度とした。
 なお、水素透過度は、以下の式に基づいて算出した値である。
水素透過度[cc/m・24hr・atm]=(273/T)×(1/A)×B×(1/t)
T :測定温度(K)
A :透過面積(cm
B :透過ガス量(μL)
t :サンプリング時間(s)
After that, the carrier gas and the test gas were each switched to a flow rate of 30 mL/min, 40° C., and a relative humidity of 20%, and the temperature of the entire cell was kept constant (40° C.) for 1 hour. Then, the same measurement was performed, and the hydrogen permeability under the conditions of 40° C. and a relative humidity of 20% was obtained.
The hydrogen permeability is a value calculated based on the following formula.
Hydrogen permeability [cc/m 2 · 24hr · atm] = (273/T) x (1/A) x B x (1/t)
T: Measured temperature (K)
A: Transmission area (cm 2 )
B: Amount of permeated gas (μL)
t: Sampling time (s)
 iV)湿度サイクルによる水素透過度の変化
 iii)に記載した方法に従い、40℃における、相対湿度90%と20%との水素ガス透過性測定を繰り返し実施した。相対湿度90%と20%の間で湿度サイクルを実施した(湿度変更を繰り返し実施した)状態における水素透過度の変化を評価した。表には、40℃、相対湿度20%における水素透過度の1回目の値に対する、30回目の値を変化率(%)として記載した(100%に近い方が、水素透過度が低いことを指す。)。
iv) Changes in Hydrogen Permeability with Humidity Cycling According to the method described in iii), hydrogen gas permeability measurements were repeated at 40° C. and relative humidity of 90% and 20%. Changes in hydrogen permeability were evaluated under conditions of humidity cycling between 90% and 20% relative humidity (repeated humidity changes). In the table, the change rate (%) of the 30th value to the 1st value of the hydrogen permeability at 40° C. and 20% relative humidity is shown (the closer to 100%, the lower the hydrogen permeability).
 実施例1
 <多孔質膜の製造・評価>
 以下の方法に従い、多孔質膜を製造した。
Example 1
<Manufacturing and evaluation of porous membrane>
A porous membrane was produced according to the following method.
 (i)工程;ポリ4-メチルペンテン-1樹脂(三井化学(株)製TPX(登録商標)-DX845、融点239℃)50質量%、フタル酸ジイソノニル50質量%(オレフィン系樹脂100質量部に対して、可塑剤100質量部)を、2軸混練機を使用して、250℃で10分間、溶融混錬して混錬物(組成物)を得た。 (i) Step; 50% by mass of poly-4-methylpentene-1 resin (TPX (registered trademark)-DX845 manufactured by Mitsui Chemicals, Inc., melting point 239°C) and 50% by mass of diisononyl phthalate (100 parts by mass of plasticizer per 100 parts by mass of olefin resin) were melt-kneaded at 250°C for 10 minutes using a twin-screw kneader to obtain a kneaded product (composition).
 (ii)工程;得られた混錬物(組成物)を240℃に加熱した圧縮成形機を使用してシート状にプレスし、続いて0℃の氷水中に導入し冷却固化させ、厚み0.21mm(210μm)のシート状の成型体を得た。 (ii) Step: The resulting kneaded material (composition) was pressed into a sheet using a compression molding machine heated to 240°C, and then introduced into ice water at 0°C to cool and solidify to obtain a sheet-like molded body with a thickness of 0.21 mm (210 µm).
 (iii)工程;次いで、得られたシート状の成型体を、延伸温度80℃にて縦3倍、横3倍の延伸倍率にてテンター方式での同時2軸延伸を行った。
 (iv)工程;得られた延伸フィルムをアセトン中に浸漬してフタル酸ジイソノニルを抽出除去した後、付着したアセトンを乾燥除去して多孔質膜を得た。
(iii) Step; Subsequently, the obtained sheet-like molding was subjected to simultaneous biaxial stretching by a tenter method at a stretching temperature of 80°C and a stretching ratio of 3 times in the longitudinal direction and 3 times in the lateral direction.
(iv) Step: The obtained stretched film was immersed in acetone to extract and remove diisononyl phthalate, and then the adhering acetone was removed by drying to obtain a porous membrane.
 得られた多孔質膜を上記方法に従い、空隙率と、窒素ガス吸着測定よりBET比表面積、細孔直径が100nm以下である細孔の細孔容積の合計割合、平均細孔直径、多孔質膜における細孔直径の最大ピークと、引張試験より引張弾性率、引張強度、破断伸びを評価した。評価した。その結果を表1に示す。
 また、得られた多孔質膜の厚みはMitutoyo製デジマチックインジケータID-H0530により測定し、その結果も表1に示した。
The resulting porous membrane was evaluated for porosity, BET specific surface area by nitrogen gas adsorption measurement, total pore volume ratio of pores with a pore diameter of 100 nm or less, average pore diameter, maximum peak of pore diameter in the porous membrane, and tensile modulus, tensile strength, and elongation at break by tensile test. evaluated. Table 1 shows the results.
In addition, the thickness of the obtained porous film was measured with a Mitutoyo Digimatic Indicator ID-H0530, and the results are also shown in Table 1.
 <陰イオン交換膜の製造・評価>
 次いで、前記の方法により、得られた多孔質膜を支持体として陰イオン交換膜を作製した。作製した陰イオン交換膜は前記した方法により、陰イオン交換容量、膜抵抗、40℃相対湿度90%、および、40℃相対湿度20%における水素ガス透過度、湿度サイクルによる水素ガス透過度の変化率を測定した。結果を表1に示した。
<Production and evaluation of anion exchange membrane>
Next, an anion-exchange membrane was produced using the obtained porous membrane as a support by the method described above. The prepared anion exchange membrane was measured for anion exchange capacity, membrane resistance, hydrogen gas permeability at 40° C. relative humidity of 90% and 40° C. relative humidity of 20%, and the rate of change in hydrogen gas permeability due to humidity cycles. Table 1 shows the results.
 実施例2
 延伸温度を100℃に変更したこと以外は、実施例1と同様の方法に従い、多孔質膜の作製・評価、およびそれを用いた陰イオン交換膜の作製・評価を行った。結果を表1に示す。
 図1に得られた多孔質膜の窒素吸着による細孔容積の積分曲線(ΣV vs.D)を示す。また、図2に、得られた多孔質膜の窒素吸着による細孔径分布曲線(dV/dlogD)を示す。
Example 2
A porous membrane was produced and evaluated, and an anion exchange membrane using the same was produced and evaluated in the same manner as in Example 1, except that the stretching temperature was changed to 100°C. Table 1 shows the results.
FIG. 1 shows the integral curve (ΣV vs. D) of the pore volume due to nitrogen adsorption of the obtained porous membrane. In addition, FIG. 2 shows the pore size distribution curve (dV/dlogD) of the obtained porous membrane by nitrogen adsorption.
 実施例3
 延伸温度を120℃に変更したこと以外は、実施例1と同様の方法に従い、多孔質膜の作製・評価、およびそれを用いた陰イオン交換膜の作製・評価を行った。結果を表1に示す。
Example 3
A porous membrane was produced and evaluated, and an anion exchange membrane using the same was produced and evaluated in the same manner as in Example 1, except that the stretching temperature was changed to 120°C. Table 1 shows the results.
 実施例4
 延伸温度を140℃に変更したこと以外は、実施例1と同様の方法に従い、多孔質膜の作製・評価、およびそれを用いた陰イオン交換膜の作製・評価を行った。結果を表1に示す。
Example 4
A porous membrane was produced and evaluated, and an anion exchange membrane using the same was produced and evaluated in the same manner as in Example 1, except that the stretching temperature was changed to 140°C. Table 1 shows the results.
 実施例5
 延伸温度を90℃に変更したこと、及び、延伸倍率を縦2倍、横2倍に変更したこと以外は、実施例1と同様の方法に従い、多孔質膜の作製・評価、およびそれを用いた陰イオン交換膜の作製・評価を行った。結果を表1に示す。
Example 5
A porous membrane was produced and evaluated in the same manner as in Example 1, except that the stretching temperature was changed to 90° C. and the stretching ratio was changed to 2 times in the vertical direction and 2 times in the horizontal direction. Table 1 shows the results.
 実施例6
 縦1.5倍、横1.5倍の延伸倍率にてテンター方式での逐次2軸延伸を行ったこと以外は、実施例5と同様の方法に従い、多孔質膜の作製・評価、およびそれを用いた陰イオン交換膜の作製・評価を行った。結果を表1に示す。
Example 6
A porous membrane was produced and evaluated in the same manner as in Example 5, except that sequential biaxial stretching was performed by a tenter method at a draw ratio of 1.5 times in the longitudinal direction and 1.5 times in the lateral direction. Table 1 shows the results.
 実施例7
 延伸倍率を縦3.5倍、横3.5倍の変更したこと以外は、実施例6と同様の方法に従い、多孔質膜の作製・評価、およびそれを用いた陰イオン交換膜の作製・評価を行った。結果を表1に示す。
Example 7
A porous membrane was produced and evaluated in the same manner as in Example 6, except that the draw ratio was changed to 3.5 times in the vertical direction and 3.5 times in the horizontal direction. Table 1 shows the results.
 実施例8
 縦2.2倍、横2.2倍の延伸倍率にて加熱ロールによる2軸圧延を行ったこと以外は、実施例3と同様の方法に従い、多孔質膜の作製・評価、およびそれを用いた陰イオン交換膜の作製・評価を行った。結果を表1に示す。
Example 8
A porous membrane was produced and evaluated in the same manner as in Example 3, except that biaxial rolling was performed with heated rolls at a draw ratio of 2.2 times in the vertical direction and 2.2 times in the horizontal direction. Table 1 shows the results.
 実施例9
 延伸倍率を縦3倍、横3倍に変更したこと以外は、実施例8と同様の方法に従い、多孔質膜の作製・評価、およびそれを用いた陰イオン交換膜の作製・評価を行った。結果を表1に示す。
Example 9
A porous membrane was produced and evaluated in the same manner as in Example 8, and an anion exchange membrane was produced and evaluated using the same, except that the draw ratio was changed to 3 times in the vertical direction and 3 times in the horizontal direction. Table 1 shows the results.
 実施例10
 延伸倍率を縦4倍、横4倍に変更したこと以外は、実施例8と同様の方法に従い、多孔質膜の作製・評価、およびそれを用いた陰イオン交換膜の作製・評価を行った。結果を表1に示す。
Example 10
A porous membrane was produced and evaluated, and an anion exchange membrane was produced and evaluated using the same method as in Example 8, except that the draw ratio was changed to 4 times in the vertical direction and 4 times in the horizontal direction. Table 1 shows the results.
 実施例11
 2軸混錬機を使用して組成物を溶融混錬し、Tダイから水冷キャストドラムに押出し、キャストシートを得たこと、延伸温度130℃に変更したこと、及び、延伸倍率を縦4.5倍、横4.5倍に変更したこと以外は、実施例1と同様の方法に従い、多孔質膜の作製・評価、およびそれを用いた陰イオン交換膜の作製・評価を行った。結果を表1に示す。
Example 11
The composition was melt-kneaded using a twin-screw kneader, extruded from a T-die onto a water-cooled cast drum to obtain a cast sheet, the stretching temperature was changed to 130 ° C., and the stretching ratio was 4.5 times in length and 4.5 times in width. Table 1 shows the results.
 実施例12
 延伸倍率を縦5.2倍、横5.2倍に変更したこと以外は、実施例11と同様の方法に従い、多孔質膜の作製・評価、およびそれを用いた陰イオン交換膜の作製・評価を行った。結果を表1に示す。
Example 12
A porous membrane was produced and evaluated in the same manner as in Example 11, except that the draw ratio was changed to 5.2 times in the vertical direction and 5.2 times in the horizontal direction. Table 1 shows the results.
 実施例13
 ポリ4-メチルペンテン-1樹脂(三井化学(株)製TPX(登録商標)-DX845、融点239℃)50質量%、フタル酸ジイソノニル50質量%(オレフィン系樹脂100質量部に対して、可塑剤100質量部)、核剤(ADEKA製NA-11)を樹脂に対して0.5質量%添加した組成物を用いたこと、及び延伸温度を120℃に変更し、延伸倍率を縦4.5倍、横4.5倍として多孔質膜の作製・評価、およびそれを用いた陰イオン交換膜の作製・評価を行った。結果を表1に示す。
Example 13
Poly 4-methylpentene-1 resin (TPX (registered trademark)-DX845 manufactured by Mitsui Chemicals, Inc., melting point 239° C.) 50% by mass, diisononyl phthalate 50% by mass (100 parts by mass of plasticizer per 100 parts by mass of olefin resin), 0.5% by mass of nucleating agent (NA-11 by ADEKA) added to the resin, and the stretching temperature was changed to 120° C., and the longitudinal stretching ratio was 4.5 times. , the width of 4.5 times, the preparation and evaluation of the porous membrane, and the preparation and evaluation of the anion exchange membrane using the same. Table 1 shows the results.
 実施例14
 延伸温度を130℃に変更したこと以外は、実施例13と同様の方法に従い、多孔質膜の作製・評価、およびそれを用いた陰イオン交換膜の作製・評価を行った。結果を表1に示す。
Example 14
A porous membrane was produced and evaluated, and an anion exchange membrane using the same was produced and evaluated in the same manner as in Example 13, except that the stretching temperature was changed to 130°C. Table 1 shows the results.
 比較例1
 延伸温度を60℃に変更したこと以外は、実施例1と同様の方法に従い、多孔質膜を形成した。しかし、延伸中に成型体は破断した。
 比較例2
 延伸温度を170℃に変更したこと以外は、実施例1と同様の方法に従い、多孔質膜を形成した。しかし、延伸中に成型体は破断した。
 比較例3
 実施例1の(ii)工程にて作製したシート状の成型体をアセトンに浸漬させ、可塑剤であるフタル酸ジイソノニルを抽出除去した。次いで、可塑剤を除去して得られたシートを160℃の温度で縦2倍、横2倍の延伸倍率にて同時2軸延伸を行い、多孔質膜を製造した。得られた多孔質膜は、実施例1と同様の方法により、多孔質膜の評価、およびそれを用いた陰イオン交換膜の作製・評価を行った。
 細孔形成後に延伸を行うことにより細孔径が大きくなり、BET比表面積が大きく低下した。また破断伸びが4%まで悪化し、破れやすい多孔質膜となった。
 また、多孔質膜を用いて作製した陰イオン交換膜は、前記方法に従い、陰イオン交換容量、膜抵抗、40℃相対湿度90%および40℃相対湿度20%における水素ガス透過度、湿度サイクルによる水素ガス透過度の変化率を測定した。結果を表1に示す。
Comparative example 1
A porous membrane was formed in the same manner as in Example 1, except that the stretching temperature was changed to 60°C. However, the molding broke during stretching.
Comparative example 2
A porous membrane was formed in the same manner as in Example 1, except that the stretching temperature was changed to 170°C. However, the molding broke during stretching.
Comparative example 3
The sheet-shaped molding produced in the step (ii) of Example 1 was immersed in acetone to extract and remove diisononyl phthalate as a plasticizer. Subsequently, the sheet obtained by removing the plasticizer was subjected to simultaneous biaxial stretching at a temperature of 160° C. at a draw ratio of 2 times in the longitudinal direction and 2 times in the transverse direction to produce a porous membrane. The obtained porous membrane was evaluated in the same manner as in Example 1, and an anion exchange membrane was prepared and evaluated using the porous membrane.
The pore size was increased by stretching after the pore formation, and the BET specific surface area was greatly reduced. Moreover, the elongation at break deteriorated to 4%, and the porous membrane was easily broken.
In addition, the anion exchange membrane produced using the porous membrane was measured for the anion exchange capacity, the membrane resistance, the hydrogen gas permeability at 40 ° C. relative humidity of 90% and 40 ° C. relative humidity of 20%, and the rate of change in hydrogen gas permeability due to humidity cycles. Table 1 shows the results.
1 陰イオン交換膜
2 アノード
3 カソード
4 ガス拡散層
5 陽極室
6 水供給口
7 酸素排出口
8 陰極室
9 水素排出口
10 筐体
Reference Signs List 1 Anion exchange membrane 2 Anode 3 Cathode 4 Gas diffusion layer 5 Anode chamber 6 Water supply port 7 Oxygen outlet 8 Cathode chamber 9 Hydrogen outlet 10 Housing

Claims (12)

  1.  ポリオレフィン系樹脂を含み、窒素吸着法によるBET比表面積が40m/g以上であり、空隙率が20%以上80%以下である多孔質膜。 A porous film containing a polyolefin resin, having a BET specific surface area of 40 m 2 /g or more as determined by a nitrogen adsorption method, and a porosity of 20% or more and 80% or less.
  2.  窒素吸着法による細孔径分布曲線において、最大ピークを有する細孔直径が100nm以下に存在する、請求項1に記載の多孔質膜。 The porous membrane according to claim 1, wherein the pore diameter having the maximum peak exists at 100 nm or less in the pore size distribution curve obtained by the nitrogen adsorption method.
  3.  窒素吸着法による細孔径分布曲線において、100nm以下の直径を有する細孔の細孔容積の合計割合が、全細孔容積の80%以上を占める、請求項1又は2に記載の多孔質膜。 The porous membrane according to claim 1 or 2, wherein the total pore volume of pores having a diameter of 100 nm or less accounts for 80% or more of the total pore volume in the pore size distribution curve obtained by the nitrogen adsorption method.
  4.  窒素吸着法による平均細孔直径が80nm以下である、請求項1または2に記載の多孔質膜。 The porous membrane according to claim 1 or 2, having an average pore diameter of 80 nm or less by a nitrogen adsorption method.
  5.  前記ポリオレフィン系樹脂が、ポリメチルペンテン樹脂およびポリプロピレン系樹脂からなる群より選ばれる少なくとも1種の樹脂を含む、請求項1または2に記載の多孔質膜。 The porous membrane according to claim 1 or 2, wherein the polyolefin resin contains at least one resin selected from the group consisting of polymethylpentene resin and polypropylene resin.
  6.  厚みが10~200μmである、請求項1または2に記載の多孔質膜。 The porous membrane according to claim 1 or 2, which has a thickness of 10 to 200 μm.
  7.  前記多孔質膜中において、前記ポリメチルペンテン樹脂が占める割合が、95質量%以上である、請求項5に記載の多孔質膜。 The porous membrane according to claim 5, wherein the polymethylpentene resin accounts for 95% by mass or more in the porous membrane.
  8.  請求項1または2に記載の多孔質膜と、
     前記多孔質膜の細孔に充填されたイオン交換樹脂と
    を含む、イオン交換膜。
    A porous membrane according to claim 1 or 2;
    and an ion exchange resin filled in the pores of the porous membrane.
  9.  前記イオン交換樹脂が陰イオン交換樹脂である、請求項8に記載のイオン交換膜。 The ion exchange membrane according to claim 8, wherein the ion exchange resin is an anion exchange resin.
  10.  請求項8に記載のイオン交換膜を備える、水電解装置。 A water electrolysis device comprising the ion exchange membrane according to claim 8.
  11.  ポリオレフィン樹脂及び可塑剤を含む組成物を加熱して、シート状の第1成型体を得る工程、
     前記第1成型体を、前記ポリオレフィン樹脂の融点よりも70℃以上178℃以下の範囲内で低い温度で延伸して第2成形体を得る工程、
     前記第2成形体から前記可塑剤を除去する工程、
    をこの順で含む多孔質膜の製造方法。
    a step of heating a composition containing a polyolefin resin and a plasticizer to obtain a sheet-like first molded body;
    obtaining a second molded body by stretching the first molded body at a temperature lower than the melting point of the polyolefin resin in the range of 70° C. or more and 178° C. or less;
    removing the plasticizer from the second compact;
    in this order.
  12.  前記第2成形体を得る工程が、前記第1成形体を、2倍以上の縦方向の延伸倍率及び2倍以上の横方向の延伸倍率で2軸延伸して前記第2成形体を得る工程である、請求項11に記載の多孔質膜の製造方法。 The method for producing a porous membrane according to claim 11, wherein the step of obtaining the second molded body is a step of biaxially stretching the first molded body at a longitudinal draw ratio of 2 or more and a horizontal draw ratio of 2 or more to obtain the second molded body.
PCT/JP2023/001560 2022-01-20 2023-01-19 Porous membrane, ion exchange membrane, water electrolysis device, and production method for porous membrane WO2023140330A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022007461 2022-01-20
JP2022-007461 2022-01-20

Publications (1)

Publication Number Publication Date
WO2023140330A1 true WO2023140330A1 (en) 2023-07-27

Family

ID=87348322

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/001560 WO2023140330A1 (en) 2022-01-20 2023-01-19 Porous membrane, ion exchange membrane, water electrolysis device, and production method for porous membrane

Country Status (1)

Country Link
WO (1) WO2023140330A1 (en)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5120594A (en) * 1989-11-20 1992-06-09 Minnesota Mining And Manufacturing Company Microporous polyolefin shaped articles with patterned surface areas of different porosity
JPH05247253A (en) * 1991-12-27 1993-09-24 W R Grace & Co Porous film of monolayer structure
JPH1017693A (en) * 1996-07-03 1998-01-20 Kureha Chem Ind Co Ltd Manufacture of poly olefin porous membrane
JP2003049014A (en) * 2001-08-07 2003-02-21 Mitsubishi Plastics Ind Ltd Cover material
JP2004317721A (en) * 2003-04-15 2004-11-11 Asahi Kasei Chemicals Corp Fine porosity plastic film for liquid crystal storage and its manufacturing method
US20050087487A1 (en) * 2003-10-21 2005-04-28 Hideshi Sakamoto Porous polyolefin membrane
WO2007023918A1 (en) * 2005-08-25 2007-03-01 Tonen Chemical Corporation Polyethylene multilayer microporous membrane, battery separator using same, and battery
JP2010235707A (en) * 2009-03-30 2010-10-21 Asahi Kasei E-Materials Corp Method for producing polyolefin microporous film
JP2012530802A (en) * 2009-06-19 2012-12-06 東レバッテリーセパレータフィルム株式会社 Microporous membranes, methods for producing such membranes, and use of such membranes as battery separator films
JP2016188374A (en) * 2016-05-23 2016-11-04 旭化成株式会社 Method for producing polyolefin microporous film, battery separator, and nonaqueous electrolyte secondary battery
JP2018154834A (en) * 2018-03-22 2018-10-04 旭化成株式会社 Method for producing polyolefin microporous film, battery separator, and nonaqueous electrolyte secondary battery
JP2021174656A (en) * 2020-04-23 2021-11-01 有限会社ケー・イー・イー Polyolefin-based microporous film and manufacturing method thereof
JP2022013879A (en) * 2020-07-02 2022-01-18 東レ株式会社 Polyethylene microporous film-wound body and method of producing the same

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5120594A (en) * 1989-11-20 1992-06-09 Minnesota Mining And Manufacturing Company Microporous polyolefin shaped articles with patterned surface areas of different porosity
JPH05247253A (en) * 1991-12-27 1993-09-24 W R Grace & Co Porous film of monolayer structure
JPH1017693A (en) * 1996-07-03 1998-01-20 Kureha Chem Ind Co Ltd Manufacture of poly olefin porous membrane
JP2003049014A (en) * 2001-08-07 2003-02-21 Mitsubishi Plastics Ind Ltd Cover material
JP2004317721A (en) * 2003-04-15 2004-11-11 Asahi Kasei Chemicals Corp Fine porosity plastic film for liquid crystal storage and its manufacturing method
US20050087487A1 (en) * 2003-10-21 2005-04-28 Hideshi Sakamoto Porous polyolefin membrane
WO2007023918A1 (en) * 2005-08-25 2007-03-01 Tonen Chemical Corporation Polyethylene multilayer microporous membrane, battery separator using same, and battery
JP2010235707A (en) * 2009-03-30 2010-10-21 Asahi Kasei E-Materials Corp Method for producing polyolefin microporous film
JP2012530802A (en) * 2009-06-19 2012-12-06 東レバッテリーセパレータフィルム株式会社 Microporous membranes, methods for producing such membranes, and use of such membranes as battery separator films
JP2016188374A (en) * 2016-05-23 2016-11-04 旭化成株式会社 Method for producing polyolefin microporous film, battery separator, and nonaqueous electrolyte secondary battery
JP2018154834A (en) * 2018-03-22 2018-10-04 旭化成株式会社 Method for producing polyolefin microporous film, battery separator, and nonaqueous electrolyte secondary battery
JP2021174656A (en) * 2020-04-23 2021-11-01 有限会社ケー・イー・イー Polyolefin-based microporous film and manufacturing method thereof
JP2022013879A (en) * 2020-07-02 2022-01-18 東レ株式会社 Polyethylene microporous film-wound body and method of producing the same

Similar Documents

Publication Publication Date Title
JP5797778B2 (en) Redox flow secondary battery and electrolyte membrane for redox flow secondary battery
Sakakibara et al. Fabrication of surface skinless membranes of epoxy resin-based mesoporous monoliths toward advanced separators for lithium ion batteries
JP4121846B2 (en) Polyolefin microporous membrane and production method and use thereof
KR101309962B1 (en) Polyolefin micro-porous membrane and lithium ion secondary battery separator
JP5536872B2 (en) Microporous membranes, methods for producing such membranes, and use of such membranes as battery separator films
RU2432372C2 (en) Method of producing microporous polyolefin membranes and microporous membranes
JP6680206B2 (en) Polyolefin microporous membrane, battery separator and battery
JPH0768377B2 (en) Electrolyte thin film
Gloukhovski et al. Understanding methods of preparation and characterization of pore-filling polymer composites for proton exchange membranes: a beginner’s guide
JP6988881B2 (en) Separator for secondary batteries containing polyethylene microporous membrane
WO2005114763A1 (en) Shutdown separators with improved properties
JP6328355B1 (en) Electrolyte membrane and method for producing the same
JP6895570B2 (en) Polyolefin microporous membrane and method for producing polyolefin microporous membrane
US20140335396A1 (en) Microporous Membrane
JP2002284918A (en) Polyolefin microporous film, method for producing the same and use thereof
KR101705563B1 (en) Ion-exchange membrane for water treatment and manufacturing method the same
WO2021033735A1 (en) Polyolefin microporous film, layered body, and battery
KR101875812B1 (en) An ion-exchange membrane and porous substrate for water treatment and manufacturing method of it
EP3173148B1 (en) Ion exchange membrane and method for producing same
EP3950305A1 (en) Separator for power storage device
KR20080029428A (en) Method of manufacturing polyolefin microporous films
WO2023140330A1 (en) Porous membrane, ion exchange membrane, water electrolysis device, and production method for porous membrane
KR20230063283A (en) Polyolefin microporous membrane and manufacturing method thereof
JP4672992B2 (en) Solid polymer electrolyte composite membrane, solid electrolyte composite membrane / electrode assembly, and fuel cell using the same
WO2016002227A1 (en) Liquid fuel cell partitioning membrane and membrane-electrode-assembly provided with same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23741971

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023575298

Country of ref document: JP