WO2023140326A1 - Method of forming single-crystal or directionally solidified three-dimensional formed objects - Google Patents

Method of forming single-crystal or directionally solidified three-dimensional formed objects Download PDF

Info

Publication number
WO2023140326A1
WO2023140326A1 PCT/JP2023/001529 JP2023001529W WO2023140326A1 WO 2023140326 A1 WO2023140326 A1 WO 2023140326A1 JP 2023001529 W JP2023001529 W JP 2023001529W WO 2023140326 A1 WO2023140326 A1 WO 2023140326A1
Authority
WO
WIPO (PCT)
Prior art keywords
crystal
forming
dimensional object
solidified
directionally solidified
Prior art date
Application number
PCT/JP2023/001529
Other languages
French (fr)
Japanese (ja)
Inventor
具教 北嶋
エドガード ジョディ デニス
誠 渡邊
貴由 中野
雄一郎 小泉
Original Assignee
国立研究開発法人物質・材料研究機構
国立大学法人大阪大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人物質・材料研究機構, 国立大学法人大阪大学 filed Critical 国立研究開発法人物質・材料研究機構
Publication of WO2023140326A1 publication Critical patent/WO2023140326A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • B22F10/366Scanning parameters, e.g. hatch distance or scanning strategy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/38Process control to achieve specific product aspects, e.g. surface smoothness, density, porosity or hollow structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/30Platforms or substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the present invention relates to a method of forming a three-dimensional object of a single crystal alloy or a directionally solidified alloy suitable for use in aircraft engine turbine blades and the like.
  • Ni-based superalloys are used as heat resistant materials for aircraft engine turbines. Ni-based superalloys are used under conditions of high temperature and high stress, but the grain boundaries formed during manufacturing are weak parts that hinder durability, and fractures occur starting at the grain boundaries, reducing fatigue life and creep life. A single crystal eliminates the grain boundaries and improves the strength. This single crystal is produced by casting, in which molten metal is poured into a mold and unidirectionally solidified (see Patent Document 1). Here, single crystals can be obtained because they solidify through passages that select only the growing grains in one direction, called the “selector” of the mold.
  • Non-Patent Documents 2 and 3 A technology for producing single crystals by 3D additive manufacturing without using seed crystals has recently been reported.
  • This is an electron beam method in which an electron beam is irradiated onto a powder bed in a vacuum to melt and solidify the powder (see Non-Patent Documents 2 and 3).
  • electron beam modeling equipment requires an expensive vacuum chamber, and the penetration rate of the equipment is low, and the size of the modeled body is also determined by the chamber size.
  • 3D additive manufacturing it is a device that irradiates a laser beam at a lower cost and is simpler.
  • the selective laser melting method in which a powder bed is melted and solidified to form a shape, has hitherto been unable to produce a single crystal.
  • Japanese Patent Laid-Open No. 7-247802 Japanese Patent Application Laid-Open No. 2004-183652
  • Japanese Patent Application Laid-Open No. 2015-189618 Japanese Patent Application Laid-Open No. 2017-66023 (A) EP-A-2565294 (A)
  • the objective of the present invention is to realize the production of single crystals of Ni-based superalloys by controlling the crystal growth direction after laser irradiation without using seed crystals, using a selective laser melting method that allows the use of equipment at a lower cost than the electron beam method in 3D additive manufacturing.
  • a method for manufacturing a single-crystal or directionally-solidified three-dimensional object according to the present invention is a method for manufacturing a single-crystal or directionally-solidified three-dimensional object using a metal powder additive manufacturing apparatus, forming a thin layer of powder material comprising metal particles; selectively irradiating the thin layer with a laser beam, the metal particles contained in the powder material obtain a planar molten pool shape, and crystal growth accompanying solidification forms a monocrystalline or unidirectionally solidified model layer; Repeating the forming of the thin layer and the formation of the model layer in this order a plurality of times to grow the single crystal or directionally solidified model layer by lamination.
  • the laser beam is a beam having a uniform intensity distribution in the irradiation plane or a difference in intensity distribution in the irradiation plane is within 10% of the maximum intensity.
  • the spot diameter of the laser beam is preferably 100 ⁇ m or more and 1000 ⁇ m or less. More preferably, it is 300 ⁇ m or more and 800 ⁇ m or less, and the optimum range is 500 ⁇ m or more and 700 ⁇ m or less.
  • the thin layer of the powder material has a thickness of 10 ⁇ m or more and 70 ⁇ m or less. More preferably, the thickness is 20 ⁇ m or more and 50 ⁇ m or less, and the optimum range is 30 ⁇ m or more and 40 ⁇ m or less.
  • D(50) of the particle size distribution of the powder material is 10 ⁇ m or more and 110 ⁇ m or less.
  • the planar molten pool shape preferably has a depth of 5 ⁇ m or more and 200 ⁇ m or less and a width of 100 ⁇ m or more and 1000 ⁇ m or less. More preferably, the depth is 10 ⁇ m to 100 ⁇ m and the width is 100 ⁇ m to 700 ⁇ m, and the optimum range is 15 ⁇ m to 70 ⁇ m and the width is 100 ⁇ m to 500 ⁇ m.
  • the aspect ratio of the planar molten pool shape is preferably 0.01 or more and 0.23 or less. More preferably, it should be 0.1 or more and 0.2 or less.
  • a substrate or a seed crystal having a desired crystal orientation or crystal structure may be installed as the substrate on which the thin layer of the powder material containing the metal particles is formed.
  • a substrate or seed crystal having a desired crystal orientation or crystal structure is not installed as the substrate on which the thin layer of the powder material containing the metal particles is formed.
  • the single crystal or directionally solidified three-dimensional object is preferably a turbine stator blade or a turbine rotor blade.
  • the metal particles are made of a metal material having a composition used for any of nickel, nickel-based superalloys, titanium alloys including ⁇ -type titanium alloys, and aluminum alloys.
  • the single-crystal or directionally-solidified three-dimensional object manufacturing method of the present invention a flat-top laser that can obtain a laser beam with a uniform intensity distribution in the irradiation surface is used. Therefore, a planar molten pool shape can be obtained for a thin layer of a powder material containing metal particles, and a single crystal or directionally solidified can be grown.
  • the single crystal or directionally solidified three-dimensional object shaping method of the present invention it is possible to manufacture without using seed crystals, and there is no need to prepare expensive seed crystals produced in a separate process. Even when a seed crystal is used for production, the process conditions for growing a single crystal or unidirectional solidification are preferable, so a three-dimensionally shaped object with a clean crystal structure can be obtained.
  • FIG. 1 is an overall functional block diagram showing an example of a metal powder 3D printer used for selective laser melting;
  • FIG. 4 is a flow chart illustrating an example of the operation of a metal powder 3D printer;
  • FIG. 2 is an explanatory diagram of the vertical in-plane intensity distribution in the apparatus of FIG. 1, showing a flat top type showing one embodiment of the present invention, and showing a perspective view.
  • FIG. 1 is an explanatory diagram of the vertical in-plane intensity distribution in the apparatus of FIG. 1, showing a flat top type showing one embodiment of the present invention, and showing the distribution from the upper surface side. It is an explanatory view of the vertical in-plane intensity distribution in the conventional apparatus, showing a Gaussian type, and showing a perspective view.
  • FIG. 4 is an explanatory diagram of a molten pool shape by a flat-top type laser showing an embodiment of the present invention
  • FIG. 5 is an explanatory diagram of a molten pool shape obtained by a conventional Gaussian laser as a comparative example.
  • 1 is a perspective view of a shaped sample shape showing an embodiment of the present invention
  • FIG. 4 is an explanatory diagram of the crystal orientation distribution of Comparative Example FT1; It is explanatory drawing of the crystal orientation distribution of comparative example FT2.
  • FIG. 4 is an explanatory diagram of the crystal orientation distribution of Comparative Example FT1; It is explanatory drawing of the crystal orientation distribution of comparative example FT2.
  • Example FT3 is an explanatory diagram of the crystal orientation distribution of Example FT3; It is an image (upper: surface perpendicular to the beam direction, lower: surface parallel to the beam direction) obtained by EBSD analysis of pure Ni samples of an example (FT6, single crystal alloy) and comparative examples (FT2, FT7) of the present invention fabricated by a flat-top laser. It is explanatory drawing of the crystal orientation distribution of comparative example FT2. It is explanatory drawing of the crystal orientation distribution of Example FT6. It is explanatory drawing of the crystal orientation distribution of comparative example FT7.
  • FIG. 4 is an explanatory diagram of the crystal orientation distribution of Comparative Example G1; FIG.
  • FIG. 10 is an explanatory diagram of the crystal orientation distribution of Comparative Example G2;
  • FIG. 10 is an explanatory diagram of the crystal orientation distribution of Comparative Example G8;
  • It is explanatory drawing of the molten pool shape by the flat top type laser of a comparative example (condition: FT2, FT4, FT5).
  • FIG. 4 is an explanatory diagram of a molten pool shape obtained by a flat-top type laser in one example of the present invention (condition: FT3, directionally solidified alloy).
  • FIG. 4 is an explanatory diagram of a molten pool shape obtained by a flat-top type laser according to an example of the present invention (conditions: FT6, single crystal alloy).
  • FIG. 10 is an explanatory diagram of a molten pool shape obtained by a Gaussian laser in a comparative example (condition: G1).
  • FIG. 10 is an explanatory diagram of a molten pool shape obtained by a Gaussian laser in a comparative example (condition: G2).
  • FIG. 10 is an explanatory diagram of a molten pool shape by a Gaussian laser in a comparative example (condition: G8).
  • FIG. 1 is an overall functional block diagram showing an embodiment of a metal powder 3D printer used for selective laser melting.
  • the lamination-molding apparatus 100 is a laser lamination-molding apparatus, for example.
  • the layered manufacturing apparatus 100 includes a laser device 110 , a galvanomirror 120 , a control device 130 and a chamber 200 .
  • the laser device 110 emits laser light.
  • Laser device 110 is, for example, a fiber laser, a CO 2 laser, or the like.
  • Laser device 110 may be provided with a lens system (not shown).
  • the lens system receives laser light from laser device 110 and focuses the laser light to form laser 112 .
  • the galvanomirror 120 performs irradiation operation of the laser 112 . That is, the galvanomirror 120 adjusts the position where the laser 112 is irradiated.
  • the chamber 200 includes a layer forming chamber 210, a modeling table 230, a powder supply chamber 220, and a recoater 250.
  • the inside of the chamber 200 is kept filled with an inert gas (argon, nitrogen, etc.) or kept in a vacuum state.
  • the layer forming chamber 210 has a housing shape with an opening at the upper end.
  • the modeling table 230 is housed in the layer forming chamber 210 and supported so as to be able to move up and down in the vertical direction (Z direction).
  • the modeling table 230 is moved up and down by a motor (not shown).
  • the powder supply chamber 220 is arranged next to the layer formation chamber 210 .
  • the powder supply chamber 220 has a housing-like shape, and includes a vertically movable piston 240 therein.
  • Metal powder particles 140 are layered on the piston 240 .
  • the metal powder particles 140 are the raw material for the modeled object.
  • a layer of the metal powder particles 140 is discharged from the upper opening of the layer forming chamber 210 by raising the piston 240 .
  • the metal powder particles 140 are, for example, metal powders of nickel-based superalloys, cobalt-based superalloys, and iron-based superalloys having high heat resistance.
  • ceramics such as Al 2 O 3 may be used together with the metal powder particles 140, or inorganic powder particles such as ceramic particles may be used alone.
  • the recoater 250 is arranged near the upper opening of the powder supply chamber 220 .
  • the recoater 250 is moved in a specific direction (horizontal direction) by a motor (not shown) and reciprocates between the powder supply chamber 220 and the layer forming chamber 210 .
  • the recoater 250 reciprocates in the X direction.
  • the recoater 250 horizontally moves the layer of the metal powder particles 140 discharged from the powder supply chamber 220 and supplies the layer to the layer forming chamber 210 .
  • a metal powder layer 260 made of the metal powder particles 140 is formed on the modeling table 230 by the metal powder particles 140 deposited on the modeling table 230 in the layer forming chamber 210 .
  • the metal powder particles 140 move in the horizontal direction, and the surface of the metal powder layer 260 is flattened.
  • the control device 130 includes a central processing unit (CPU) (not shown), a memory, and a storage device such as a hard disk drive (HDD).
  • the storage device stores well-known CAD (Computer Aided Design) applications and CAM (Computer Aided Manufacturing) applications.
  • the control device 130 uses a CAD application to create three-dimensional shape data of a modeled object to be manufactured.
  • the control device 130 further uses the CAM application to create processing condition data based on the three-dimensional data.
  • a plurality of modeled object parts formed by the laser 112 are layered to form a modeled object.
  • the processing condition data includes processing conditions for forming each modeled object portion. In other words, the processing condition data is created for each molded object portion.
  • the control device 130 controls the laser device 110, the lens system and the galvanomirror 120 based on the processing condition data to adjust the output of the laser 112, scanning speed, scanning interval and irradiation position.
  • FIG. 2 is a flow chart explaining an example of the operation of the metal powder 3D printer.
  • the object to be molded is manufactured in the following steps according to the flow chart shown in FIG.
  • a vacuum pump is used to evacuate the chamber 200 .
  • inert gas argon, nitrogen, etc.
  • the inside of the chamber 200 may be replaced while flowing an inert gas without drawing a vacuum, and the modeling table 230 in the layer forming chamber 210 may be preheated.
  • a metal powder layer 260 which is a thin layer of powder material containing metal particles, is formed (S100).
  • the metal particles may be a metal material having a composition used for any of nickel, nickel-based superalloys, titanium alloys, including beta-titanium alloys, or aluminum alloys.
  • the content of metal particles contained in the powder material may be 70% by mass or more, 90% by mass or more, or 100% by mass.
  • the thin layer is selectively irradiated with laser light (for example, flat top laser light).
  • the metal particles contained in the powder material heated by the irradiation of the laser light are sintered or melt-bonded.
  • a model layer made of sintered or melt-bonded metal particles is formed (S110).
  • the step of forming the thin layer and the step of forming the modeled object layer are repeated in this order multiple times to stack the modeled object layer (S120).
  • the number of repetitions may be, for example, 2 or more, 2 to 30,000, 10 to 5,000, or 100 to 1,500.
  • To selectively irradiate a laser beam means to irradiate a laser beam only to a cross-sectional area of a three-dimensional molded object in the spread metal powder layer. That is, it means irradiating a predetermined region (region intended to form a three-dimensional object) of the metal powder layer with a laser beam. In this way, the desired shape of the three-dimensional object is obtained (S140).
  • FIG. 3A and 3B are explanatory diagrams of the vertical in-plane intensity distribution in the apparatus of FIG. 1, showing a flat top type showing an embodiment of the present invention.
  • FIG. 3A is a perspective view showing the temperature distribution
  • FIG. 3B shows the temperature distribution from the top side.
  • the flat-top type has a truncated cone shape with a generally flat top surface, and the laser beam is not perfectly focused, but is generally evenly converged within the range of the top surface of the truncated cone.
  • the hatch width h ( ⁇ m) corresponds to the spacing of the laser scans, while the truncated cone top represents the spread of the laser light in the aperture area and has a diameter of, for example, 500 ⁇ m to 700 ⁇ m.
  • the frustoconical top may have a diameter of 30 ⁇ m to 3 mm, and may have a diameter of 200 ⁇ m to 1 mm.
  • a homogenizer is used in the flat-top laser beam so that the beam has a uniform intensity distribution in the irradiation surface.
  • the accuracy of the homogenizer is such that the difference in intensity distribution within the irradiation surface is preferably within 10% of the maximum intensity, more preferably within 1%.
  • Types of homogenizers include fly-eye type, DOE (diffractive optical element) type, light pipe type, and fiber type.
  • the wavelengths of laser light are, for example, 795 nm, 808 nm, 915 nm, 940 nm and 980 nm.
  • the focal length depends on the beam size, but is for example 50 mm to 3000 mm. There are various beam shapes such as square, circle, hexagon, and rectangle.
  • the beam size has a minimum diameter of ⁇ 0.1 mm and a maximum diameter of ⁇ 1 mm, for example.
  • the laser light output is, for example, about 10 kW and can be adjusted.
  • FIG. 3C to 3D are explanatory diagrams of the vertical in-plane intensity distribution in the conventional apparatus, showing a Gaussian type.
  • FIG. 3C is a perspective view
  • FIG. 3D shows the distribution from the top side.
  • the Gaussian type has a bell-shaped temperature distribution shape, which is similar to a laser beam condensed at one point with some degree of aberration.
  • the hatch width h ( ⁇ m) corresponds to the spacing of the laser scans, while the truncated cone top represents the spread of the laser light in the aperture area and has a diameter of, for example, 80 ⁇ m to 100 ⁇ m.
  • the energy density of flat-top laser light may be 0.1 J/mm 3 to 5000 J/mm 3 , 1 J/mm 3 to 400 J/mm 3 , or 10 J/mm 3 to 100 J/mm 3 .
  • a flat molten pool shape can be obtained by heating the thin layer under appropriate conditions.
  • the molten pool is a region formed in the heated portion of the thin layer as a result of the thin layer being heated, melted, and solidified by the laser beam.
  • the weld pool can be identified by analyzing a cross-section of the sample, for example with EBSD.
  • the molten pool can be distinguished from the non-melted pool by the difference in crystal structure.
  • the aspect ratio of the weld pool shape can be obtained from the weld pool center depth/weld pool width.
  • a flat molten pool shape means, for example, one having an aspect ratio of 0.23 or less.
  • the aspect ratio may be 0.01 or more.
  • FIG. 4A is an explanatory diagram of the molten pool shape by a flat-top laser, showing one embodiment of the present invention.
  • a plate made of pure Ni is melted instead of metal powder particles, and the laser output is 900 W and the scanning speed is 500 mm/s.
  • the plate material, which is a pure Ni sample, was melted with a width of 341.49 ⁇ m and an average penetration depth of 30.5 ⁇ m.
  • FIG. 4B is an explanatory diagram of a molten pool shape by a conventional Gaussian laser as a comparative example.
  • a plate made of pure Ni is melted instead of metal powder particles, and the laser output is 200 W and the scanning speed is 600 mm/s.
  • the pure Ni sample plate material was melted with a width of 122.78 ⁇ m and a maximum penetration depth of 91.73 ⁇ m.
  • conventionally used lasers have a laser spot diameter of about 80 ⁇ m and have a Gaussian intensity distribution in the vertical plane. In this case, the shape of the molten pool also becomes Gaussian, and the crystal growth direction during solidification deviates greatly from the beam irradiation direction.
  • Ni-based superalloys are used under conditions of high temperature and high stress, but the grain boundaries formed during manufacturing are weak parts that hinder durability, and fractures occur starting at the grain boundaries, reducing fatigue life and creep life.
  • FIG. 5 is a perspective view of a modeled sample shape showing an embodiment of the present invention, showing a perspective view of a cylindrical body and its coordinate system.
  • the shape of the modeled sample is a cylindrical body with a height H of 30 mm and a diameter D of 12 mm.
  • the coordinate system of the modeled sample is a three-dimensional coordinate system, which is an XYZ orthogonal coordinate system.
  • a pure Ni sample was used as the material to be shaped.
  • the powder grain size of the pure Ni sample is D(10) of 24.6 ⁇ m, D(50) of 35.1 ⁇ m, and D(90) of 51.8 ⁇ m.
  • the thickness of the powder layer laid in each layer during molding is 30 ⁇ m.
  • Table 1 shows the laser output P (W), scanning speed v (mm/s), and hatch width h ( ⁇ m) as powder molding parameters of the flat top type laser.
  • FIGS. 6A to 6D are explanatory diagrams of the crystal orientation distribution of the entire pure Ni sample formed by melting and solidifying the powder bed with a flat-top laser showing one embodiment of the present invention
  • FT3 is a directionally solidified alloy
  • FT1 and 2 are comparative examples.
  • the crystal orientation distribution is determined, for example, by EBSD (electron back scattering diffraction) analysis.
  • EBSD analysis is to measure the orientation of a minute region based on the Kikuchi line diffraction pattern obtained by electron beam backscattering in a scanning electron microscope (SEM).
  • SEM scanning electron microscope
  • the laser output is 600 W and the energy density is 61.16 J/mm 3 in FT3, 400 W and 40.77 J/mm 3 in FT1, and 500 W and 50.96 J/mm 3 in FT2.
  • FT3 has an irregular grain boundary shape such as a circular cross section with an average grain size of 50 to 200 ⁇ m or an oval cross section on a plane perpendicular to the beam direction, and an average length of 1000 ⁇ m or more on a plane parallel to the beam direction.
  • the crystal orientation distribution map with (001), (101), and (111) vertices there are many crystal grains close to the (101) orientation.
  • the size of a dot indicates the ratio of crystal grains of that orientation.
  • the 001 orientation is dominant in FT1
  • the 101 orientation is dominant in FT2
  • large points and small points are distributed, indicating a polycrystalline state.
  • FT6 is a single crystal alloy
  • FT2 and 7 are comparative examples.
  • the scanning speed is 143 mm/s and the energy density is 43.07 J/mm 3 in FT6, 150 mm/s, 50.96 J/mm 3 in FT2, and 143 mm/s, 36.04 J/mm 3 in FT7.
  • FT6 is a single crystal with no black solid line indicating large-angle grain boundaries.
  • crystal orientation distribution map with (001), (101), and (111) vertices it shows that there is one crystal grain in which the (001) orientation is dominant.
  • FT7 Although the (001) orientation is dominant in FT7, many large points and small points are seen in the crystal orientation distribution map with vertices (001), (101), and (111), indicating a polycrystalline state.
  • FT2 is the same as FT2 in FIG. 6A.
  • FIGS. 8A to 8D are explanatory diagrams of the crystal orientation distribution of the entire pure Ni sample shaped by a flat-top type laser showing one example of the present invention, and FT2, 4, and 5 are comparative examples.
  • the hatch width is 100 ⁇ m and the energy density is 50.96 J/mm 3 in FT2, 140 ⁇ m and 33.98 J/mm 3 in FT4, and 200 ⁇ m and 25.48 J/mm 3 in FT5.
  • the crystal orientation distribution map with (001), (101), and (111) vertices many large points and small points are seen in a wide range, indicating a polycrystalline state.
  • Table 2 shows laser output P (W), scanning speed v (mm/s), and hatch width h ( ⁇ m) as shaping parameters of a conventional Gaussian laser.
  • FIGS. 9A to 9D are explanatory diagrams of the crystal orientation distribution of the entire pure Ni sample formed by melting and solidifying the powder bed with a Gaussian laser showing a comparative example of the present invention, and G1, 2, and 8 are comparative examples.
  • unmelted black regions can be seen, and crystal grains of various orientations are present.
  • crystal orientation distribution map with vertices at (001), (101), and (111) large points and small points are distributed over a wide range, indicating a polycrystalline state.
  • FIGS. 10A to 10F are explanatory diagrams of the shapes of molten pools in which pure Ni plate material is melted instead of metal powder particles.
  • a cross section of the sample was analyzed by EBSD and the resulting image is shown.
  • the boundary defined by a series of white dots inside the sample indicates the boundary between the molten pool and the non-melted pool.
  • the area where the central depth of the molten pool and the width of the molten pool are indicated is the molten pool.
  • the central depth of the molten pool is 24.5 ⁇ m
  • the width is 386.2 ⁇ m
  • the aspect ratio is 0.06.
  • G1 melted by the Gaussian laser of the comparative example has a central depth of the molten pool of 24.5 ⁇ m, a width of 69.9 ⁇ m, and an aspect ratio of 0.35;
  • G2 has a central depth of the molten pool of 37.0 ⁇ m, a width of 80.9 ⁇ m, and an aspect ratio of 0.46; All of G1, G2 and G8 had an aspect of 0.24 or more.
  • Table 3 shows the large-angle grain boundary length of each pure Ni sample measured by a flat-top laser showing an example of the present invention.
  • the molding conditions for each pure Ni sample FT1 to FT7 are the same as in Table 1.
  • the large angle grain boundary length is 5 cm/mm 2 .
  • the large-angle grain boundary length is 0 cm/mm 2 .
  • FT1, 2, 4, 5, and 7, which are comparative examples, are polycrystalline alloys, and the large-angle grain boundary length is in the range of 1 to 5 cm/mm 2 .
  • Table 4 shows the large-angle grain boundary length of a pure Ni sample by a conventional Gaussian laser as a comparative example.
  • the molding conditions for each of the pure Ni samples G1 to G7 are the same as in Table 2.
  • conventional Gaussian lasers, as comparative examples, all of them are polycrystalline alloys, and the large-angle grain boundary length is in the range of 6 to 27 cm/mm 2 .
  • the present invention is not limited to this, and the substrate or seed crystal having the desired crystal orientation and crystal structure may be installed.
  • the metal particles are pure nickel samples, but the present invention is not limited to this, and may be nickel-based superalloys, titanium alloys including ⁇ -type titanium alloys, or aluminum alloys.
  • the manufacturing method of the single crystal or unidirectionally solidified three-dimensional object of the present invention since it is manufactured using a metal powder additive manufacturing apparatus, it is possible to manufacture a Ni-based single crystal superalloy model at a low cost. There is a possibility that the use of Ni-based single crystal superalloys will spread not only to aircraft but also to other applications such as automobiles.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Powder Metallurgy (AREA)

Abstract

The present invention is a method of manufacturing a single-crystal or directionally solidified three-dimensional formed object utilizing a metal-powder additive-forming device (100). The method includes the metal-powder additive-forming device (100): forming a thin layer (260) of powder material containing metal particles (140); selectively irradiating the thin layer (260) with a laser beam (112) so that the metal particles (140) contained in the powder material yield a planar molten-pool form, and by crystal growth accompanying solidification, forming a single-crystal or directionally solidified formed-object layer; and repeating the forming of the thin layer (260) and the forming of the formed-object layer in that order multiple times, to additively-grow the single-crystal or directionally solidified formed-object layers.

Description

単結晶または一方向凝固の立体造形物の造形方法Single crystal or unidirectionally solidified three-dimensional object molding method
 本発明は航空機エンジン用のタービン翼等に用いて好適な単結晶合金または一方向凝固合金の立体造形物の造形方法に関する。
 本願は、2022年1月20日に、日本に出願された特願2022-007463号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a method of forming a three-dimensional object of a single crystal alloy or a directionally solidified alloy suitable for use in aircraft engine turbine blades and the like.
This application claims priority based on Japanese Patent Application No. 2022-007463 filed in Japan on January 20, 2022, the content of which is incorporated herein.
 Ni基超合金は航空機エンジンタービンの耐熱材料として使用されている。Ni基超合金は高温高応力の条件下で使用されるが、製造時に形成される結晶粒界は耐久性を阻害する弱い部分であり、結晶粒界を起点として破壊が起こるため、疲労寿命やクリープ寿命を低下させる。
 この結晶粒界をなくし、強度を向上させたのが単結晶である。この単結晶は鋳造で、溶湯が鋳型に流し込まれ、一方向凝固により作られる(特許文献1参照)。ここでは、鋳型の「セレクター」と呼ばれる成長する一方向の結晶粒のみを選択する通路を通って凝固するため、単結晶を得ることができる。
 しかし、「セレクター」を有する鋳型を用いるタービン翼の製造では、大きな真空チャンバ内で製造され、製造工程が複雑で生産性は高くなく、高価であるという課題がある。このような複雑で大掛かりな工程で製造されたNi基単結晶超合金の部品は高価ということもあり、実機に搭載された後のメンテナンスでこの単結晶部品を補修する技術の開発も進んでいる(特許文献2参照)。しかし、この補修技術は単結晶合金部品を製造するための技術ではないという課題がある。
Ni-based superalloys are used as heat resistant materials for aircraft engine turbines. Ni-based superalloys are used under conditions of high temperature and high stress, but the grain boundaries formed during manufacturing are weak parts that hinder durability, and fractures occur starting at the grain boundaries, reducing fatigue life and creep life.
A single crystal eliminates the grain boundaries and improves the strength. This single crystal is produced by casting, in which molten metal is poured into a mold and unidirectionally solidified (see Patent Document 1). Here, single crystals can be obtained because they solidify through passages that select only the growing grains in one direction, called the “selector” of the mold.
However, the manufacturing of turbine blades using a mold having a "selector" has the problem that it is manufactured in a large vacuum chamber, the manufacturing process is complicated, the productivity is not high, and the cost is high. Ni-based single-crystal superalloy parts manufactured by such a complicated and large-scale process are expensive, and the development of techniques for repairing these single-crystal parts by maintenance after being mounted on an actual machine is also progressing (see Patent Document 2). However, there is a problem that this repair technique is not a technique for manufacturing single crystal alloy parts.
 近年は複雑形状の部品を製造できる3次元積層造形の技術が進み、3次元積層造形でNi基超合金部材を造形する技術が開発されている。ここでは種結晶や結晶方位がそろったあらかじめ用意された基材の上に粉末を敷いて、その粉末をその種となる基材の上でビーム照射により溶融して結晶成長させることで、基材と同じ単結晶や結晶がそろった材料を得る技術が報告されている(特許文献3~5、非特許文献1参照)。しかし、ここでは高価で別プロセスでの作製に手間がかかる種結晶を準備する必要がある。  In recent years, the technology of 3D additive manufacturing, which can manufacture parts with complex shapes, has progressed, and the technology to shape Ni-based superalloy members by 3D additive manufacturing has been developed. Here, a technique has been reported in which a powder is laid on a seed crystal or a base material prepared in advance with a uniform crystal orientation, and the powder is melted on the seed base material by beam irradiation to cause crystal growth, thereby obtaining a material having the same single crystal or crystal as the base material (see Patent Documents 3 to 5 and Non-Patent Document 1). However, in this case, it is necessary to prepare seed crystals that are expensive and laborious to prepare in a separate process.
 3次元積層造形で種結晶を使わずに単結晶を作製する技術が最近報告された。これは真空内で電子ビームを粉末床に照射し、粉末を溶融して凝固させる電子ビーム方式による造形である(非特許文献2、3参照)。この技術により、3次元積層造形で種結晶を使わずに、単結晶を造形することが可能となったが、電子ビーム方式の造形装置は、高価な真空チャンバが必要であり、装置の普及率は低く、造形体のサイズもそのチャンバサイズにより上限が定まる。 A technology for producing single crystals by 3D additive manufacturing without using seed crystals has recently been reported. This is an electron beam method in which an electron beam is irradiated onto a powder bed in a vacuum to melt and solidify the powder (see Non-Patent Documents 2 and 3). With this technology, it has become possible to form a single crystal without using a seed crystal in 3D additive manufacturing, but electron beam modeling equipment requires an expensive vacuum chamber, and the penetration rate of the equipment is low, and the size of the modeled body is also determined by the chamber size.
 一方で、3D積層造形では、より安価でレーザビームを照射する装置であり、より簡便なものとなる。粉末床を溶融凝固して造形する選択的レーザ溶融法ではこれまで単結晶を作製することができないという課題があった。 On the other hand, in 3D additive manufacturing, it is a device that irradiates a laser beam at a lower cost and is simpler. The selective laser melting method, in which a powder bed is melted and solidified to form a shape, has hitherto been unable to produce a single crystal.
日本国特開平7-247802号公報(A)Japanese Patent Laid-Open No. 7-247802 (A) 日本国特開2004-183652号公報(A)Japanese Patent Application Laid-Open No. 2004-183652 (A) 日本国特開2015-189618号公報(A)Japanese Patent Application Laid-Open No. 2015-189618 (A) 日本国特開2017-66023号公報(A)Japanese Patent Application Laid-Open No. 2017-66023 (A) 欧州特許出願公開第2565294号明細書(A)EP-A-2565294 (A)
 本発明は、3D積層造形において、電子ビーム方式よりも安価に装置を利用できる選択的レーザ溶融法で、種結晶を使わなくても、レーザ照射後の結晶成長方向を制御してNi基超合金の単結晶作製を実現することを課題とする。 The objective of the present invention is to realize the production of single crystals of Ni-based superalloys by controlling the crystal growth direction after laser irradiation without using seed crystals, using a selective laser melting method that allows the use of equipment at a lower cost than the electron beam method in 3D additive manufacturing.
[1]本発明の単結晶または一方向凝固の立体造形物の造形方法は、金属粉末積層造形装置を用いて単結晶または一方向凝固の立体造形物を製造する方法であって、
 金属粒子を含む粉末材料の薄層を形成することと、
 前記薄層にレーザ光を選択的に照射して、前記粉末材料に含まれる金属粒子が平面状の溶融池形状を得て、凝固に伴う結晶成長で、単結晶または一方向凝固の造形物層を形成することと、
 前記薄層を形成することと前記造形物層を形成することとをこの順に複数回繰り返し、前記単結晶または一方向凝固の造形物層を積層成長させることと、を含むものである。
[1] A method for manufacturing a single-crystal or directionally-solidified three-dimensional object according to the present invention is a method for manufacturing a single-crystal or directionally-solidified three-dimensional object using a metal powder additive manufacturing apparatus,
forming a thin layer of powder material comprising metal particles;
selectively irradiating the thin layer with a laser beam, the metal particles contained in the powder material obtain a planar molten pool shape, and crystal growth accompanying solidification forms a monocrystalline or unidirectionally solidified model layer;
Repeating the forming of the thin layer and the formation of the model layer in this order a plurality of times to grow the single crystal or directionally solidified model layer by lamination.
[2]本発明の単結晶または一方向凝固の立体造形物の造形方法[1]において、好ましくは、前記レーザ光は、照射面内の強度分布が一様なビームまたは照射面内の強度分布差が最大強度に対して10%以内であるとよい。
[3]本発明の単結晶または一方向凝固の立体造形物の造形方法[1]または[2]において、好ましくは、前記レーザ光のスポット直径が100μm以上1000μm以下であるとよい。さらに好ましくは、300μm以上800μm以下であるとよく、最適な範囲としては500μm以上700μm以下であるとよい。
[4]本発明の単結晶または一方向凝固の立体造形物の造形方法[1]乃至[3]において、好ましくは、前記粉末材料の薄層の厚さが10μm以上70μm以下であるとよい。さらに好ましくは、20μm以上50μm以下であるとよく、最適な範囲としては30μm以上40μm以下であるとよい。
[5]本発明の単結晶または一方向凝固の立体造形物の造形方法[1]乃至[3]において、好ましくは、前記粉末材料の粒径分布のD(50)が10μm以上110μm以下であるとよい。さらに好ましくは、25μm以上80μm以下であるとよく、最適な範囲としては30μm以上40μm以下であるとよい。
[6]本発明の単結晶または一方向凝固の立体造形物の造形方法[1]乃至[5]において、好ましくは、前記平面状の溶融池形状は、深さが5μm以上200μm以下で、幅が100μm以上1000μm以下であるとよい。さらに好ましくは、深さが10μm以上100μm以下で、幅が100μm以上700μm以下であるとよく、最適な範囲としては深さが15μm以上70μm以下で、幅が100μm以上500μm以下であるとよい。
[7]本発明の単結晶または一方向凝固の立体造形物の造形方法[1]乃至[6]において、好ましくは、前記平面状の溶融池形状のアスペクト比(溶融池中央深さ/溶融池幅)が、0.01以上0.23以下であるとよい。さらに好ましくは、0.1以上0.2以下であるとよい。
[2] In the manufacturing method [1] of a single crystal or directionally solidified three-dimensional object of the present invention, preferably, the laser beam is a beam having a uniform intensity distribution in the irradiation plane or a difference in intensity distribution in the irradiation plane is within 10% of the maximum intensity.
[3] In the method [1] or [2] of the single crystal or directionally solidified three-dimensional object of the present invention, the spot diameter of the laser beam is preferably 100 μm or more and 1000 μm or less. More preferably, it is 300 μm or more and 800 μm or less, and the optimum range is 500 μm or more and 700 μm or less.
[4] In the methods [1] to [3] of single crystal or directionally solidified three-dimensional objects of the present invention, preferably, the thin layer of the powder material has a thickness of 10 μm or more and 70 μm or less. More preferably, the thickness is 20 μm or more and 50 μm or less, and the optimum range is 30 μm or more and 40 μm or less.
[5] In the methods [1] to [3] of the single crystal or unidirectionally solidified three-dimensional object of the present invention, it is preferable that D(50) of the particle size distribution of the powder material is 10 μm or more and 110 μm or less. More preferably, it is 25 μm or more and 80 μm or less, and the optimum range is 30 μm or more and 40 μm or less.
[6] In the method [1] to [5] of the single crystal or unidirectionally solidified three-dimensional object of the present invention, the planar molten pool shape preferably has a depth of 5 μm or more and 200 μm or less and a width of 100 μm or more and 1000 μm or less. More preferably, the depth is 10 μm to 100 μm and the width is 100 μm to 700 μm, and the optimum range is 15 μm to 70 μm and the width is 100 μm to 500 μm.
[7] In the methods [1] to [6] of the single crystal or unidirectionally solidified three-dimensional object of the present invention, the aspect ratio of the planar molten pool shape (depth at the center of the molten pool/width of the molten pool) is preferably 0.01 or more and 0.23 or less. More preferably, it should be 0.1 or more and 0.2 or less.
[8]本発明の単結晶または一方向凝固の立体造形物の造形方法[1]乃至[7]において、好ましくは、前記金属粒子を含む粉末材料の薄層が形成される基材として、所望の結晶方位や結晶構造を有する基材または種結晶が設置されてもよい。
[9]本発明の単結晶または一方向凝固の立体造形物の造形方法[1]乃至[8]において、好ましくは、前記金属粒子を含む粉末材料の薄層が形成される基材として、所望の結晶方位や結晶構造を有する基材または種結晶が設置されていないとよい。
[10]本発明の単結晶または一方向凝固の立体造形物の造形方法[1]乃至[9]において、好ましくは、前記レーザ光に代えて、電子ビームを用いてもよい。
[11]本発明の単結晶または一方向凝固の立体造形物の造形方法[1]乃至[10]において、好ましくは前記単結晶または一方向凝固の立体造形物は、タービン静翼、又はタービン動翼であるとよい。
[12]本発明の単結晶または一方向凝固の立体造形物の造形方法[1]乃至[11]において、好ましくは、前記金属粒子は、ニッケル、ニッケル基超合金、β型チタン合金を含むチタン合金、またはアルミニウム合金の何れかに用いられる組成を有する金属材料からなるとよい。
[8] In the methods [1] to [7] of single-crystal or directionally solidified three-dimensional objects of the present invention, preferably, as the substrate on which the thin layer of the powder material containing the metal particles is formed, a substrate or a seed crystal having a desired crystal orientation or crystal structure may be installed.
[9] In the methods [1] to [8] of forming a single crystal or unidirectionally solidified three-dimensional object of the present invention, it is preferable that a substrate or seed crystal having a desired crystal orientation or crystal structure is not installed as the substrate on which the thin layer of the powder material containing the metal particles is formed.
[10] In the methods [1] to [9] of single-crystal or directionally solidified three-dimensional objects of the present invention, preferably, an electron beam may be used in place of the laser beam.
[11] In the method [1] to [10] of a single crystal or directionally solidified three-dimensional object of the present invention, the single crystal or directionally solidified three-dimensional object is preferably a turbine stator blade or a turbine rotor blade.
[12] In the method [1] to [11] for forming a single crystal or directionally solidified three-dimensional object of the present invention, preferably, the metal particles are made of a metal material having a composition used for any of nickel, nickel-based superalloys, titanium alloys including β-type titanium alloys, and aluminum alloys.
 本発明の単結晶または一方向凝固の立体造形物の造形方法によれば、照射面内の強度分布が一様なレーザ光が得られるフラットトップ型レーザを用いているので、金属粒子を含む粉末材料の薄層に対して、平面状の溶融池形状を得ることができ、単結晶または一方向凝固を成長させることができる。
 本発明の単結晶または一方向凝固の立体造形物の造形方法によれば、種結晶を用いないで製造することも可能となり、別プロセスで作製する高額な種結晶を準備しなくてもよくなる。種結晶を用いて製造する場合でも、単結晶または一方向凝固を成長させるプロセス条件として好ましいものなので、綺麗な結晶構造の立体造形物が得られる。
According to the single-crystal or directionally-solidified three-dimensional object manufacturing method of the present invention, a flat-top laser that can obtain a laser beam with a uniform intensity distribution in the irradiation surface is used. Therefore, a planar molten pool shape can be obtained for a thin layer of a powder material containing metal particles, and a single crystal or directionally solidified can be grown.
According to the single crystal or directionally solidified three-dimensional object shaping method of the present invention, it is possible to manufacture without using seed crystals, and there is no need to prepare expensive seed crystals produced in a separate process. Even when a seed crystal is used for production, the process conditions for growing a single crystal or unidirectional solidification are preferable, so a three-dimensionally shaped object with a clean crystal structure can be obtained.
選択的レーザ溶融法に用いる金属粉末3Dプリンタの一実施例を示す、全体の機能ブロック図である。1 is an overall functional block diagram showing an example of a metal powder 3D printer used for selective laser melting; FIG. 金属粉末3Dプリンタの動作の一例を説明するフローチャートである。4 is a flow chart illustrating an example of the operation of a metal powder 3D printer; 図1の装置における垂直面内強度分布の説明図で、本発明の一実施例を示すフラットトップ型を示しており、斜視図を示している。FIG. 2 is an explanatory diagram of the vertical in-plane intensity distribution in the apparatus of FIG. 1, showing a flat top type showing one embodiment of the present invention, and showing a perspective view. 図1の装置における垂直面内強度分布の説明図で、本発明の一実施例を示すフラットトップ型を示しており、上面側からの分布を示している。FIG. 1 is an explanatory diagram of the vertical in-plane intensity distribution in the apparatus of FIG. 1, showing a flat top type showing one embodiment of the present invention, and showing the distribution from the upper surface side. 従来装置における垂直面内強度分布の説明図で、ガウシアン型を示しており、斜視図を示している。It is an explanatory view of the vertical in-plane intensity distribution in the conventional apparatus, showing a Gaussian type, and showing a perspective view. 従来装置における垂直面内強度分布の説明図で、ガウシアン型を示しており、上面側からの分布を示している。It is an explanatory diagram of the vertical in-plane intensity distribution in the conventional apparatus, showing a Gaussian type, and showing the distribution from the upper surface side. 本発明の一実施例を示すフラットトップ型レーザによる溶融池形状の説明図である。FIG. 4 is an explanatory diagram of a molten pool shape by a flat-top type laser showing an embodiment of the present invention; 比較例である従来型のガウシアン型レーザによる溶融池形状の説明図である。FIG. 5 is an explanatory diagram of a molten pool shape obtained by a conventional Gaussian laser as a comparative example. 本発明の一実施形態を示す、造形試料形状の斜視図である。1 is a perspective view of a shaped sample shape showing an embodiment of the present invention; FIG. フラットトップ型レーザにより造形した本発明の一実施例(FT3、一方向凝固合金)及び比較例(FT1、FT2)の純Ni試料のEBSD分析で得られた画像(上段:ビーム方向に垂直な面、下段:ビーム方向に平行な面)である。It is an image obtained by EBSD analysis of pure Ni samples of an example (FT3, directionally solidified alloy) of the present invention and comparative examples (FT1, FT2) shaped by a flat-top laser (upper: surface perpendicular to the beam direction, lower: surface parallel to the beam direction). 比較例FT1の結晶方位分布の説明図である。FIG. 4 is an explanatory diagram of the crystal orientation distribution of Comparative Example FT1; 比較例FT2の結晶方位分布の説明図である。It is explanatory drawing of the crystal orientation distribution of comparative example FT2. 実施例FT3の結晶方位分布の説明図である。FIG. 4 is an explanatory diagram of the crystal orientation distribution of Example FT3; フラットトップ型レーザにより造形した本発明の一実施例(FT6、単結晶合金)及び比較例(FT2、FT7)の純Ni試料のEBSD分析で得られた画像(上段:ビーム方向に垂直な面、下段:ビーム方向に平行な面)である。It is an image (upper: surface perpendicular to the beam direction, lower: surface parallel to the beam direction) obtained by EBSD analysis of pure Ni samples of an example (FT6, single crystal alloy) and comparative examples (FT2, FT7) of the present invention fabricated by a flat-top laser. 比較例FT2の結晶方位分布の説明図である。It is explanatory drawing of the crystal orientation distribution of comparative example FT2. 実施例FT6の結晶方位分布の説明図である。It is explanatory drawing of the crystal orientation distribution of Example FT6. 比較例FT7の結晶方位分布の説明図である。It is explanatory drawing of the crystal orientation distribution of comparative example FT7. フラットトップ型レーザにより造形した比較例(FT2、FT4及びFT5)の純Ni試料のEBSD分析で得られた画像(上段:ビーム方向に垂直な面、下段:ビーム方向に平行な面)である。It is an image obtained by EBSD analysis of pure Ni samples of comparative examples (FT2, FT4 and FT5) formed by a flat-top laser (upper: plane perpendicular to the beam direction, lower: plane parallel to the beam direction). 比較例FT2の結晶方位分布の説明図である。It is explanatory drawing of the crystal orientation distribution of comparative example FT2. 比較例FT4の結晶方位分布の説明図である。It is explanatory drawing of the crystal orientation distribution of comparative example FT4. 比較例FT5の結晶方位分布の説明図である。It is explanatory drawing of the crystal orientation distribution of comparative example FT5. ガウシアン型レーザにより造形した比較例(G1、G2及びG8)の純Ni試料のEBSD分析で得られた画像(上段:ビーム方向に垂直な面、下段:ビーム方向に平行な面)である。It is an image obtained by EBSD analysis of pure Ni samples of comparative examples (G1, G2 and G8) shaped by a Gaussian laser (upper: surface perpendicular to the beam direction, lower: surface parallel to the beam direction). 比較例G1の結晶方位分布の説明図である。FIG. 4 is an explanatory diagram of the crystal orientation distribution of Comparative Example G1; 比較例G2の結晶方位分布の説明図である。FIG. 10 is an explanatory diagram of the crystal orientation distribution of Comparative Example G2; 比較例G8の結晶方位分布の説明図である。FIG. 10 is an explanatory diagram of the crystal orientation distribution of Comparative Example G8; 比較例(条件:FT2、FT4、FT5)のフラットトップ型レーザによる溶融池形状の説明図である。It is explanatory drawing of the molten pool shape by the flat top type laser of a comparative example (condition: FT2, FT4, FT5). 本発明の一実施例(条件:FT3、一方向凝固合金)のフラットトップ型レーザによる溶融池形状の説明図である。FIG. 4 is an explanatory diagram of a molten pool shape obtained by a flat-top type laser in one example of the present invention (condition: FT3, directionally solidified alloy). 本発明の一実施例(条件:FT6、単結晶合金)のフラットトップ型レーザによる溶融池形状の説明図である。FIG. 4 is an explanatory diagram of a molten pool shape obtained by a flat-top type laser according to an example of the present invention (conditions: FT6, single crystal alloy). 比較例(条件:G1)のガウシアン型レーザーによる溶融池形状の説明図である。FIG. 10 is an explanatory diagram of a molten pool shape obtained by a Gaussian laser in a comparative example (condition: G1). 比較例(条件:G2)のガウシアン型レーザーによる溶融池形状の説明図である。FIG. 10 is an explanatory diagram of a molten pool shape obtained by a Gaussian laser in a comparative example (condition: G2). 比較例(条件:G8)のガウシアン型レーザーによる溶融池形状の説明図である。FIG. 10 is an explanatory diagram of a molten pool shape by a Gaussian laser in a comparative example (condition: G8).
 以下、図面を用いて本発明を説明する。
 本発明に用いられる金属粉末積層造形装置には、例えば、ドイツ連邦共和国、リューベック(Lubeck)市に所在するSLMソリューション社製のSLM280を用いることができる。
 [レーザ金属粉末積層造形装置の概要]
 図1は、選択的レーザ溶融法に用いる金属粉末3Dプリンタの一実施例を示す、全体機能ブロック図である。図1を参照して、積層造形装置100は、例えば、レーザ積層造形装置である。積層造形装置100は、レーザ装置110と、ガルバノミラー120と、制御装置130と、チャンバ200とを備える。
The present invention will be described below with reference to the drawings.
For example, SLM280 manufactured by SLM Solution Co., Ltd. located in Lubeck, Federal Republic of Germany can be used as the metal powder additive manufacturing apparatus used in the present invention.
[Overview of Laser Metal Powder Additive Manufacturing Equipment]
FIG. 1 is an overall functional block diagram showing an embodiment of a metal powder 3D printer used for selective laser melting. With reference to FIG. 1, the lamination-molding apparatus 100 is a laser lamination-molding apparatus, for example. The layered manufacturing apparatus 100 includes a laser device 110 , a galvanomirror 120 , a control device 130 and a chamber 200 .
 レーザ装置110は、レーザ光を出射する。レーザ装置110はたとえば、ファイバーレーザやCOレーザ等である。レーザ装置110には、レンズ系(図示せず)を設けてもよい。レンズ系は、レーザ装置110からレーザ光を受け、レーザ光を収束してレーザ112を形成する。ガルバノミラー120は、レーザ112の照射操作を行う。つまり、ガルバノミラー120により、レーザ112が照射される位置が調整される。 The laser device 110 emits laser light. Laser device 110 is, for example, a fiber laser, a CO 2 laser, or the like. Laser device 110 may be provided with a lens system (not shown). The lens system receives laser light from laser device 110 and focuses the laser light to form laser 112 . The galvanomirror 120 performs irradiation operation of the laser 112 . That is, the galvanomirror 120 adjusts the position where the laser 112 is irradiated.
 チャンバ200は、層形成室210と、造形テーブル230と、粉末供給室220と、リコータ250とを備える。レーザ112の照射操作の際に、金属粉末粒子140が酸化されるのを防止するため、チャンバ200内は不活性ガス(アルゴン、窒素等)を充填された状態を維持するか、或いは真空状態に維持される。 The chamber 200 includes a layer forming chamber 210, a modeling table 230, a powder supply chamber 220, and a recoater 250. In order to prevent the metal powder particles 140 from being oxidized during the irradiation operation of the laser 112, the inside of the chamber 200 is kept filled with an inert gas (argon, nitrogen, etc.) or kept in a vacuum state.
 層形成室210は、上端に開口を有する筐体状である。造形テーブル230は、層形成室210に収納され、上下方向(Z方向)に昇降可能に支持される。造形テーブル230は、図示しないモータにより昇降する。 The layer forming chamber 210 has a housing shape with an opening at the upper end. The modeling table 230 is housed in the layer forming chamber 210 and supported so as to be able to move up and down in the vertical direction (Z direction). The modeling table 230 is moved up and down by a motor (not shown).
 粉末供給室220は、層形成室210の隣に配置される。粉末供給室220は筐体状であり、上下方向に昇降可能なピストン240を内部に備える。ピストン240上には、金属粉末粒子140が積層されている。金属粉末粒子140は、造形物の原料となる。ピストン240が上昇することにより、層形成室210の上部開口から金属粉末粒子140の層が排出される。金属粉末粒子140は、例えば、耐熱性の高いニッケル基超合金、コバルト基超合金、鉄基超合金の金属粉末で、商品名として、例えばハステロイがある。なお、金属粉末粒子140に代えて、Al等に代表されるセラミックスを金属粉末粒子140と共に用いてもよく、またセラミックス粒子のような無機粉末粒子を単体で用いてもよい。 The powder supply chamber 220 is arranged next to the layer formation chamber 210 . The powder supply chamber 220 has a housing-like shape, and includes a vertically movable piston 240 therein. Metal powder particles 140 are layered on the piston 240 . The metal powder particles 140 are the raw material for the modeled object. A layer of the metal powder particles 140 is discharged from the upper opening of the layer forming chamber 210 by raising the piston 240 . The metal powder particles 140 are, for example, metal powders of nickel-based superalloys, cobalt-based superalloys, and iron-based superalloys having high heat resistance. Instead of the metal powder particles 140, ceramics such as Al 2 O 3 may be used together with the metal powder particles 140, or inorganic powder particles such as ceramic particles may be used alone.
 リコータ250は、粉末供給室220の上部開口の近傍に配置される。リコータ250は、図示しないモータにより特定方向(水平方向)に移動し、粉末供給室220及び層形成室210の間を往復する。図1では、リコータ250は、X方向に往復移動する。
 リコータ250は、X方向に移動することにより、粉末供給室220から排出された金属粉末粒子140の層を水平方向に移動させて層形成室210に供給する。層形成室210の造形テーブル230上に堆積された金属粉末粒子140により、造形テーブル230上に金属粉末粒子140からなる金属粉末層260が形成される。リコータ250がX方向に移動することにより、金属粉末粒子140が水平方向に移動し、金属粉末層260の表面を平坦に整える。
The recoater 250 is arranged near the upper opening of the powder supply chamber 220 . The recoater 250 is moved in a specific direction (horizontal direction) by a motor (not shown) and reciprocates between the powder supply chamber 220 and the layer forming chamber 210 . In FIG. 1, the recoater 250 reciprocates in the X direction.
By moving in the X direction, the recoater 250 horizontally moves the layer of the metal powder particles 140 discharged from the powder supply chamber 220 and supplies the layer to the layer forming chamber 210 . A metal powder layer 260 made of the metal powder particles 140 is formed on the modeling table 230 by the metal powder particles 140 deposited on the modeling table 230 in the layer forming chamber 210 . By moving the recoater 250 in the X direction, the metal powder particles 140 move in the horizontal direction, and the surface of the metal powder layer 260 is flattened.
 制御装置130は、図示しない中央演算処理装置(CPU)と、メモリと、ハードディスクドライブ(HDD)等の記憶装置とを備える。記憶装置には、周知のCAD(Computer Aided Design)アプリケーションとCAM(Computer Aided Manufacturing)アプリケーションとが格納される。制御装置130は、CADアプリケーションを利用して、製造したい造形物の3次元形状データを作成する。 The control device 130 includes a central processing unit (CPU) (not shown), a memory, and a storage device such as a hard disk drive (HDD). The storage device stores well-known CAD (Computer Aided Design) applications and CAM (Computer Aided Manufacturing) applications. The control device 130 uses a CAD application to create three-dimensional shape data of a modeled object to be manufactured.
 制御装置130はさらに、CAMアプリケーションを利用して、3次元データに基づいて、加工条件データを作成する。積層造形法では、レーザ112により形成される複数の造形物部が積層されて造形物が形成される。加工条件データは、各造形物部が形成されるときの加工条件を含む。つまり、加工条件データは、各造形物部ごとに作成される。制御装置130は、加工条件データに基づいてレーザ装置110、レンズ系及びガルバノミラー120を制御して、レーザ112の出力、走査速度、走査間隔及び照射位置を調整する。 The control device 130 further uses the CAM application to create processing condition data based on the three-dimensional data. In the layered manufacturing method, a plurality of modeled object parts formed by the laser 112 are layered to form a modeled object. The processing condition data includes processing conditions for forming each modeled object portion. In other words, the processing condition data is created for each molded object portion. The control device 130 controls the laser device 110, the lens system and the galvanomirror 120 based on the processing condition data to adjust the output of the laser 112, scanning speed, scanning interval and irradiation position.
 [製造プロセスの詳細]
 図2は、金属粉末3Dプリンタの動作の一例を説明するフローチャートである。金属粉末積層造形装置では、造形物対象物を図2に示すようなフローチャートに従い、次の工程で製造する。
 金属粉末積層造形装置の事前準備工程として、真空ポンプを用いて、チャンバ200を真空に引く。チャンバ200内が真空になった後、チャンバ200内に不活性ガス(アルゴン、窒素等)を供給する。なお、真空に引かなくても、不活性ガスを流しながらチャンバ200内を置換してもよく、また、層形成室210の造形テーブル230は予熱されていてもよい。
[Details of manufacturing process]
FIG. 2 is a flow chart explaining an example of the operation of the metal powder 3D printer. In the metal powder additive manufacturing apparatus, the object to be molded is manufactured in the following steps according to the flow chart shown in FIG.
As a preparatory step for the metal powder additive manufacturing apparatus, a vacuum pump is used to evacuate the chamber 200 . After the chamber 200 is evacuated, inert gas (argon, nitrogen, etc.) is supplied into the chamber 200 . It should be noted that the inside of the chamber 200 may be replaced while flowing an inert gas without drawing a vacuum, and the modeling table 230 in the layer forming chamber 210 may be preheated.
 次に、金属粒子を含む粉末材料の薄層である金属粉末層260を形成する(S100)。
 前記金属粒子は、ニッケル、ニッケル基超合金、β型チタン合金を含むチタン合金、またはアルミニウム合金の何れかに用いられる組成を有する金属材料であってもよい。粉末材料に含まれる金属粒子の含有率は70質量%以上であってもよく、90質量%以上であってもよく、100質量%であってもよい。
 次に、前記薄層にレーザ光(例えば、フラットトップ型レーザ光)を選択的に照射する。レーザ光の照射により加熱された前記粉末材料に含まれる金属粒子は、焼結または溶融結合する。その結果、焼結または溶融結合された金属粒子からなる造形物層が形成される(S110)。前記薄層を形成する工程と前記造形物層を形成する工程とをこの順に複数回繰り返し、前記造形物層を積層する(S120)。
 繰り返しの回数は、例えば2回以上であってもよく、2回~30000回であってもよく、10回~5000回であってもよく、100回~1500回であってもよい。
 レーザ光を選択的に照射するとは、敷かれた金属粉末層において、立体造形物の断面形状の領域のみにレーザ光を照射することを意味する。すなわち、金属粉末層の所定の領域(立体造形物の形成を意図する領域)にレーザー光を照射することを意味する。
 このようにして、目的とする立体造形物の形状を得る(S140)。
Next, a metal powder layer 260, which is a thin layer of powder material containing metal particles, is formed (S100).
The metal particles may be a metal material having a composition used for any of nickel, nickel-based superalloys, titanium alloys, including beta-titanium alloys, or aluminum alloys. The content of metal particles contained in the powder material may be 70% by mass or more, 90% by mass or more, or 100% by mass.
Next, the thin layer is selectively irradiated with laser light (for example, flat top laser light). The metal particles contained in the powder material heated by the irradiation of the laser light are sintered or melt-bonded. As a result, a model layer made of sintered or melt-bonded metal particles is formed (S110). The step of forming the thin layer and the step of forming the modeled object layer are repeated in this order multiple times to stack the modeled object layer (S120).
The number of repetitions may be, for example, 2 or more, 2 to 30,000, 10 to 5,000, or 100 to 1,500.
To selectively irradiate a laser beam means to irradiate a laser beam only to a cross-sectional area of a three-dimensional molded object in the spread metal powder layer. That is, it means irradiating a predetermined region (region intended to form a three-dimensional object) of the metal powder layer with a laser beam.
In this way, the desired shape of the three-dimensional object is obtained (S140).
 図3A~図3Bは、図1の装置における垂直面内強度分布の説明図であり、本発明の一実施例を示すフラットトップ型を示す。図3Aは温度分布を示す斜視図、図3Bは上面側からの温度分布を示している。フラットトップ型では、頂面が概ね平らな円錐台形状をしており、レーザ光が完璧に集光されるのではなく、円錐台頂面の範囲で概ね均等に収束された光束になっている。ハッチ幅h(μm)はレーザ走査の間隔に対応するのに対して、円錐台頂面は、レーザ光の絞り領域での広がりを表すものであり、例えば500μmから700μmの直径を有している。円錐台頂面は、30μm~3mmの直径を有してもよく、200μm~1mmの直径を有してもよい。
 フラットトップ型のレーザ光では、照射面内の強度分布が一様なビームとなるように、ホモジナイザーが用いられる。ホモジナイザーの精度は、照射面内の強度分布差が最大強度に対して10%以内となるのが好ましく、さらに好ましくは1%以内の均一性を有するとよい。ホモジナイザーの種類には、フライアイ型、DOE(回折光学素子)型、ライトパイプ型、ファイバー型がある。レーザ光の波長は、例えば795nm、808nm、915nm、940nm、980nmである。焦点距離は、ビームサイズに依存するが、例えば50mm~3000mmである。ビーム形状は、正方形、円形、六角形、長方形等、各種のものがある。ビームサイズは、例えば最小値の径がΦ0.1mmで、最大値の径がΦ1mmである。レーザ光出力は、例えば10kW程度であり、調整可能である。
3A and 3B are explanatory diagrams of the vertical in-plane intensity distribution in the apparatus of FIG. 1, showing a flat top type showing an embodiment of the present invention. FIG. 3A is a perspective view showing the temperature distribution, and FIG. 3B shows the temperature distribution from the top side. The flat-top type has a truncated cone shape with a generally flat top surface, and the laser beam is not perfectly focused, but is generally evenly converged within the range of the top surface of the truncated cone. The hatch width h (μm) corresponds to the spacing of the laser scans, while the truncated cone top represents the spread of the laser light in the aperture area and has a diameter of, for example, 500 μm to 700 μm. The frustoconical top may have a diameter of 30 μm to 3 mm, and may have a diameter of 200 μm to 1 mm.
A homogenizer is used in the flat-top laser beam so that the beam has a uniform intensity distribution in the irradiation surface. The accuracy of the homogenizer is such that the difference in intensity distribution within the irradiation surface is preferably within 10% of the maximum intensity, more preferably within 1%. Types of homogenizers include fly-eye type, DOE (diffractive optical element) type, light pipe type, and fiber type. The wavelengths of laser light are, for example, 795 nm, 808 nm, 915 nm, 940 nm and 980 nm. The focal length depends on the beam size, but is for example 50 mm to 3000 mm. There are various beam shapes such as square, circle, hexagon, and rectangle. The beam size has a minimum diameter of Φ0.1 mm and a maximum diameter of Φ1 mm, for example. The laser light output is, for example, about 10 kW and can be adjusted.
 図3C~図3Dは、従来装置における垂直面内強度分布の説明図で、ガウシアン型を示す。図3Cは斜視図、図3Dは上面側からの分布を示している。ガウシアン型では、釣り鐘型の温度分布形状をしており、レーザ光がある程度の収差を伴いながら一点で集光されるのに近い形状をしている。ハッチ幅h(μm)はレーザ走査の間隔に対応するのに対して、円錐台頂面は、レーザ光の絞り領域での広がりを表すものであり、例えば80μmから100μmの直径を有している。 3C to 3D are explanatory diagrams of the vertical in-plane intensity distribution in the conventional apparatus, showing a Gaussian type. FIG. 3C is a perspective view, and FIG. 3D shows the distribution from the top side. The Gaussian type has a bell-shaped temperature distribution shape, which is similar to a laser beam condensed at one point with some degree of aberration. The hatch width h (μm) corresponds to the spacing of the laser scans, while the truncated cone top represents the spread of the laser light in the aperture area and has a diameter of, for example, 80 μm to 100 μm.
 フラットトップ型レーザ光のエネルギー密度は0.1J/mm~5000J/mmであってもよく、1J/mm~400J/mmであってもよく、10J/mm~100J/mmであってもよい。 The energy density of flat-top laser light may be 0.1 J/mm 3 to 5000 J/mm 3 , 1 J/mm 3 to 400 J/mm 3 , or 10 J/mm 3 to 100 J/mm 3 .
 適切な条件で薄層を加熱すると平面状の溶融池形状を得ることができる。溶融池は、レーザ光により薄層が加熱・溶融・固化した結果、薄層の被加熱部に形成される領域である。
 溶融池は試料の断面を、例えばEBSDで分析することで特定することができる。溶融池は結晶組織の違いから溶融池でない部分と区別することができる。
A flat molten pool shape can be obtained by heating the thin layer under appropriate conditions. The molten pool is a region formed in the heated portion of the thin layer as a result of the thin layer being heated, melted, and solidified by the laser beam.
The weld pool can be identified by analyzing a cross-section of the sample, for example with EBSD. The molten pool can be distinguished from the non-melted pool by the difference in crystal structure.
 溶融池形状のアスペクト比は、溶融池中央深さ/溶融池幅から得ることができる。
 溶融池形状のうち、平坦状の溶融池形状とは、例えば、そのアスペクト比が0.23以下のものをいう。特に限定されないが、アスペクト比は0.01以上であってもよい。
The aspect ratio of the weld pool shape can be obtained from the weld pool center depth/weld pool width.
Among the molten pool shapes, a flat molten pool shape means, for example, one having an aspect ratio of 0.23 or less. Although not particularly limited, the aspect ratio may be 0.01 or more.
 図4Aは、本発明の一実施例を示すフラットトップ型レーザによる溶融池形状の説明図である。この実施例では、金属粉末粒子に代えて純Ni製の板材を溶融したもので、レーザ出力が900W、走査速度が500mm/sとなっている。純Ni試料である板材は、幅341.49μm、溶け込み深さ深さの平均値が30.5μmで溶融させた。 FIG. 4A is an explanatory diagram of the molten pool shape by a flat-top laser, showing one embodiment of the present invention. In this embodiment, a plate made of pure Ni is melted instead of metal powder particles, and the laser output is 900 W and the scanning speed is 500 mm/s. The plate material, which is a pure Ni sample, was melted with a width of 341.49 μm and an average penetration depth of 30.5 μm.
 図4Bは、比較例である従来型のガウシアン型レーザによる溶融池形状の説明図である。この比較例では、金属粉末粒子に代えて純Ni製の板材を溶融したもので、レーザ出力が200W、走査速度が600mm/sとなっている。純Ni試料である板材は、幅122.78μm、溶け込み深さの最大値が91.73μmで溶融させた。
 一般的に言って、従来使用されてきたレーザは、レーザのスポット径が80μm程度であり、垂直面内強度分布がガウシアン状となる。この場合、溶融池形状もガウシアンとなり、凝固時の結晶成長方向がビーム照射方向から大きくずれてしまう。その場合、成長する結晶の凝固フロントがぶつかり、その界面に結晶粒界を形成する。また、このときの熱収縮時の熱ひずみにより導入される転位が結晶粒界の形成を促進する。
 Ni基超合金は高温高応力の条件下で使用されるが、製造時に形成される結晶粒界は耐久性を阻害する弱い部分であり、結晶粒界を起点として破壊が起こるため、疲労寿命やクリープ寿命を低下させる。
FIG. 4B is an explanatory diagram of a molten pool shape by a conventional Gaussian laser as a comparative example. In this comparative example, a plate made of pure Ni is melted instead of metal powder particles, and the laser output is 200 W and the scanning speed is 600 mm/s. The pure Ni sample plate material was melted with a width of 122.78 μm and a maximum penetration depth of 91.73 μm.
Generally speaking, conventionally used lasers have a laser spot diameter of about 80 μm and have a Gaussian intensity distribution in the vertical plane. In this case, the shape of the molten pool also becomes Gaussian, and the crystal growth direction during solidification deviates greatly from the beam irradiation direction. In that case, solidification fronts of growing crystals collide and form grain boundaries at their interfaces. Also, dislocations introduced by thermal strain during thermal contraction promote the formation of grain boundaries.
Ni-based superalloys are used under conditions of high temperature and high stress, but the grain boundaries formed during manufacturing are weak parts that hinder durability, and fractures occur starting at the grain boundaries, reducing fatigue life and creep life.
 図5は、本発明の一実施形態を示す造形試料形状の斜視図で、円柱体の斜視図及びその座標系を表している。造形試料形状は、円柱体で高さHが30mm、直径Dが12mmとなっている。造形試料の座標系は三次元座標系で、XYZの直交座標系になっている。
 造形対象材料は純Ni試料を用いた。純Ni試料の粉末粒度は、D(10)が24.6μm、D(50)が35.1μm、D(90)が51.8μmである。造形時に各層で敷く粉末層の厚さは30μmである。
FIG. 5 is a perspective view of a modeled sample shape showing an embodiment of the present invention, showing a perspective view of a cylindrical body and its coordinate system. The shape of the modeled sample is a cylindrical body with a height H of 30 mm and a diameter D of 12 mm. The coordinate system of the modeled sample is a three-dimensional coordinate system, which is an XYZ orthogonal coordinate system.
A pure Ni sample was used as the material to be shaped. The powder grain size of the pure Ni sample is D(10) of 24.6 μm, D(50) of 35.1 μm, and D(90) of 51.8 μm. The thickness of the powder layer laid in each layer during molding is 30 μm.
 表1はフラットトップ型レーザの粉末造形パラメータとして、レーザ出力P(W)、走査速度v(mm/s)、ハッチ幅h(μm)を示している。
Figure JPOXMLDOC01-appb-T000001
Table 1 shows the laser output P (W), scanning speed v (mm/s), and hatch width h (μm) as powder molding parameters of the flat top type laser.
Figure JPOXMLDOC01-appb-T000001
 図6A~図6Dは、本発明の一実施例を示すフラットトップ型レーザにより粉末床を溶融凝固して造形した純Ni試料全体の結晶方位分布の説明図で、FT3は一方向凝固合金、FT1、2は比較例を示している。ここで、結晶方位分布は、例えばEBSD(electron back scattering diffraction)分析により行われるものである。EBSD分析は走査電子顕微鏡(scanning electron microscope: SEM)の中で、電子線後方散乱により得られる菊池線回折図形をもとに微小領域の方位測定を行なうものである。FT3ではレーザ出力が600W、エネルギー密度が61.16J/mmであり、FT1では400W、40.77J/mm、FT2では500W、50.96J/mmである。 6A to 6D are explanatory diagrams of the crystal orientation distribution of the entire pure Ni sample formed by melting and solidifying the powder bed with a flat-top laser showing one embodiment of the present invention, FT3 is a directionally solidified alloy, and FT1 and 2 are comparative examples. Here, the crystal orientation distribution is determined, for example, by EBSD (electron back scattering diffraction) analysis. EBSD analysis is to measure the orientation of a minute region based on the Kikuchi line diffraction pattern obtained by electron beam backscattering in a scanning electron microscope (SEM). The laser output is 600 W and the energy density is 61.16 J/mm 3 in FT3, 400 W and 40.77 J/mm 3 in FT1, and 500 W and 50.96 J/mm 3 in FT2.
 図中、FT3では、ビーム方向に垂直な面では平均粒径50~200μmの円形断面や卵型断面等の不定形な結晶粒界の形状を有しており、ビーム方向に平行な面では平均長さ1000μm以上の一方向凝固合金に特有な結晶粒径を示している。また(001)、(101)、(111)を頂点とする結晶方位分布図において、(101)方位に近い結晶粒が多く存在している。ここで点のサイズはその方位の結晶粒が占める割合を示している。
 これに対して、(001)、(101)、(111)を頂点とする結晶方位分布図において、ビーム方向に垂直な面では、FT1では001方位が優勢になっており、FT2では101方位が優勢であるが、大きい点、小さい点が分布しており多結晶状態を示している。
In the figure, FT3 has an irregular grain boundary shape such as a circular cross section with an average grain size of 50 to 200 μm or an oval cross section on a plane perpendicular to the beam direction, and an average length of 1000 μm or more on a plane parallel to the beam direction. In addition, in the crystal orientation distribution map with (001), (101), and (111) vertices, there are many crystal grains close to the (101) orientation. Here, the size of a dot indicates the ratio of crystal grains of that orientation.
On the other hand, in the crystal orientation distribution map with vertexes (001), (101), and (111), on the plane perpendicular to the beam direction, the 001 orientation is dominant in FT1, and the 101 orientation is dominant in FT2, but large points and small points are distributed, indicating a polycrystalline state.
 図7A~図7Dは、本発明の一実施例を示すフラットトップ型レーザにより造形した純Ni試料全体の結晶方位分布の説明図で、FT6は単結晶合金、FT2、7は比較例である。FT6では走査速度が143mm/s、エネルギー密度が43.07J/mm、FT2では150mm/s、50.96J/mm、FT7では143mm/s、36.04J/mmである。
 図中、FT6では、大角粒界を示す黒い実線が観察されず、単結晶になっている。また(001)、(101)、(111)を頂点とする結晶方位分布図において、(001)方位が優勢な結晶粒が一つ存在していることを示す。
 なお、FT7では(001)方位が優勢であるが、(001)、(101)、(111)を頂点とする結晶方位分布図において、大きい点と小さい点が多数見られ、多結晶状態を示している。FT2は、図6AのFT2と同じである。
7A to 7D are explanatory diagrams of the crystal orientation distribution of the entire pure Ni sample shaped by a flat-top laser showing one embodiment of the present invention, FT6 is a single crystal alloy, and FT2 and 7 are comparative examples. The scanning speed is 143 mm/s and the energy density is 43.07 J/mm 3 in FT6, 150 mm/s, 50.96 J/mm 3 in FT2, and 143 mm/s, 36.04 J/mm 3 in FT7.
In the figure, FT6 is a single crystal with no black solid line indicating large-angle grain boundaries. In addition, in the crystal orientation distribution map with (001), (101), and (111) vertices, it shows that there is one crystal grain in which the (001) orientation is dominant.
Although the (001) orientation is dominant in FT7, many large points and small points are seen in the crystal orientation distribution map with vertices (001), (101), and (111), indicating a polycrystalline state. FT2 is the same as FT2 in FIG. 6A.
 図8A~図8Dは、本発明の一実施例を示すフラットトップ型レーザにより造形した純Ni試料全体の結晶方位分布の説明図で、FT2、4、5は比較例である。FT2ではハッチ幅が100μm、エネルギー密度が50.96J/mm、FT4では140μm、33.98J/mm、FT5では200μm、25.48J/mmである。
 (001)、(101)、(111)を頂点とする結晶方位分布図において、多くの大きい点と小さい点が広範囲で見られ、多結晶状態を示している。
8A to 8D are explanatory diagrams of the crystal orientation distribution of the entire pure Ni sample shaped by a flat-top type laser showing one example of the present invention, and FT2, 4, and 5 are comparative examples. The hatch width is 100 μm and the energy density is 50.96 J/mm 3 in FT2, 140 μm and 33.98 J/mm 3 in FT4, and 200 μm and 25.48 J/mm 3 in FT5.
In the crystal orientation distribution map with (001), (101), and (111) vertices, many large points and small points are seen in a wide range, indicating a polycrystalline state.
 表2は従来型のガウシアン型レーザの造形パラメータとして、レーザ出力P(W)、走査速度v(mm/s)、ハッチ幅h(μm)を示している。
Figure JPOXMLDOC01-appb-T000002
Table 2 shows laser output P (W), scanning speed v (mm/s), and hatch width h (μm) as shaping parameters of a conventional Gaussian laser.
Figure JPOXMLDOC01-appb-T000002
 図9A~図9Dは、本発明の比較例を示すガウシアン型レーザにより粉末床を溶融凝固して造形した純Ni試料全体の結晶方位分布の説明図で、G1、2、8は比較例を示している。
 図中、未溶融の黒い領域が見られ、様々な方位の結晶粒が存在している。(001)、(101)、(111)を頂点とする結晶方位分布図において、大きい点、小さい点が広範囲に分布しており、多結晶状態である。
9A to 9D are explanatory diagrams of the crystal orientation distribution of the entire pure Ni sample formed by melting and solidifying the powder bed with a Gaussian laser showing a comparative example of the present invention, and G1, 2, and 8 are comparative examples.
In the figure, unmelted black regions can be seen, and crystal grains of various orientations are present. In the crystal orientation distribution map with vertices at (001), (101), and (111), large points and small points are distributed over a wide range, indicating a polycrystalline state.
 図10A~図10Fは金属粉末粒子に代えて純Ni製の板材を溶融した溶融池形状の説明図である。試料の断面をEBSDで分析し、得られた画像を示している。試料内部の連続した白いドットで規定されている境界線は、溶融池と非溶融池との境界線を示す。溶融池中央深さ及び溶融池幅が示されている領域が溶融池である。図10Cのフラットトップ型レーザで溶融したFT6の単結晶合金の条件では溶融池中央深さが20.0μm、幅が143.7μmであり、溶融池中央深さ/溶融池幅のアスペクト比が0.18である。図10Bのフラットトップ型レーザで溶融したFT3の一方向凝固合金の条件では溶融池中央深さが68.8μm、幅が489.0μmであり、アスペクト比が0.14である。比較例のFT2、FT4、FT5では溶融池中央深さが24.5μm、幅が386.2μmであり、アスペクト比が0.06である。比較例のガウシアン型レーザで溶融したG1は溶融池中央深さが24.5μm、幅が69.9μmであり、アスペクト比が0.35であり、G2は溶融池中央深さが37.0μm、幅が80.9μmであり、アスペクト比が0.46、G8は溶融池中央深さが14.9μm、幅が63.1μmであり、アスペクト比が0.24である。G1、G2、G8はいずれもアスペクトは0.24以上であった。 FIGS. 10A to 10F are explanatory diagrams of the shapes of molten pools in which pure Ni plate material is melted instead of metal powder particles. A cross section of the sample was analyzed by EBSD and the resulting image is shown. The boundary defined by a series of white dots inside the sample indicates the boundary between the molten pool and the non-melted pool. The area where the central depth of the molten pool and the width of the molten pool are indicated is the molten pool. Under the conditions of the single crystal alloy of FT6 melted by the flat-top type laser in FIG. Under the conditions of the unidirectionally solidified FT3 alloy melted by the flat-top type laser in FIG. In FT2, FT4, and FT5 of comparative examples, the central depth of the molten pool is 24.5 μm, the width is 386.2 μm, and the aspect ratio is 0.06. G1 melted by the Gaussian laser of the comparative example has a central depth of the molten pool of 24.5 μm, a width of 69.9 μm, and an aspect ratio of 0.35; G2 has a central depth of the molten pool of 37.0 μm, a width of 80.9 μm, and an aspect ratio of 0.46; All of G1, G2 and G8 had an aspect of 0.24 or more.
 表3は、本発明の一実施例を示すフラットトップ型レーザによる各純Ni試料の大角粒界長さを示す。各純Ni試料FT1~7の造形条件は、表1と同じである。
 FT3の一方向凝固合金では、大角粒界長さは5cm/mmになっている。FT6の単結晶合金では、大角粒界長さは0cm/mmになっている。比較例であるFT1、2、4、5、7では、多結晶合金となっており、大角粒界長さは1~5cm/mmの範囲になっている。
Figure JPOXMLDOC01-appb-T000003
Table 3 shows the large-angle grain boundary length of each pure Ni sample measured by a flat-top laser showing an example of the present invention. The molding conditions for each pure Ni sample FT1 to FT7 are the same as in Table 1.
In the directionally solidified alloy of FT3, the large angle grain boundary length is 5 cm/mm 2 . In the FT6 single crystal alloy, the large-angle grain boundary length is 0 cm/mm 2 . FT1, 2, 4, 5, and 7, which are comparative examples, are polycrystalline alloys, and the large-angle grain boundary length is in the range of 1 to 5 cm/mm 2 .
Figure JPOXMLDOC01-appb-T000003
 表4は、比較例である従来型のガウシアン型レーザによる純Ni試料の大角粒界長さを示す。各純Ni試料G1~G7の造形条件は表2と同じである。従来型のガウシアン型レーザでは、比較例として、何れも多結晶合金となっており、大角粒界長さは6~27cm/mmの範囲になっている。
Figure JPOXMLDOC01-appb-T000004
Table 4 shows the large-angle grain boundary length of a pure Ni sample by a conventional Gaussian laser as a comparative example. The molding conditions for each of the pure Ni samples G1 to G7 are the same as in Table 2. In conventional Gaussian lasers, as comparative examples, all of them are polycrystalline alloys, and the large-angle grain boundary length is in the range of 6 to 27 cm/mm 2 .
Figure JPOXMLDOC01-appb-T000004
 なお、上記の実施形態においては、所望の結晶方位や結晶構造を有する基材または種結晶が設置されてない場合を示したが、本発明はこれに限定されるものではなく、所望の結晶方位や結晶構造を有する基材または種結晶が設置されていてもよい。
 また、上記の実施形態においては、金属粒子として、純ニッケル試料の場合を示したが、本発明はこれに限定されるものではなく、ニッケル基超合金、β型チタン合金を含むチタン合金、またはアルミニウム合金でもよい。
In the above embodiment, the case where the substrate or seed crystal having the desired crystal orientation and crystal structure is not installed is shown, but the present invention is not limited to this, and the substrate or seed crystal having the desired crystal orientation and crystal structure may be installed.
In the above embodiment, the metal particles are pure nickel samples, but the present invention is not limited to this, and may be nickel-based superalloys, titanium alloys including β-type titanium alloys, or aluminum alloys.
 本発明の単結晶または一方向凝固の立体造形物の造形方法によれば、金属粉末積層造形装置を用いて製造しているので、Ni基単結晶超合金の造形体が安価で手頃に製造可能になる。Ni基単結晶超合金の利用が、航空機のみならず、自動車等の他の用途へも広がっていく可能性がある。 According to the manufacturing method of the single crystal or unidirectionally solidified three-dimensional object of the present invention, since it is manufactured using a metal powder additive manufacturing apparatus, it is possible to manufacture a Ni-based single crystal superalloy model at a low cost. There is a possibility that the use of Ni-based single crystal superalloys will spread not only to aircraft but also to other applications such as automobiles.
 10  純Ni試料
 100  積層造形装置
 110  レーザ装置
 112  レーザ
 120  ガルバノミラー
 130  制御装置
 140  金属粉末粒子
 200  チャンバ
 210  層形成室
 220  粉末供給室
 230  造形テーブル
 250  リコータ
 260  金属粉末層
REFERENCE SIGNS LIST 10 pure Ni sample 100 layered manufacturing device 110 laser device 112 laser 120 galvanomirror 130 control device 140 metal powder particles 200 chamber 210 layer forming chamber 220 powder supply chamber 230 molding table 250 recoater 260 metal powder layer

Claims (12)

  1.  金属粉末積層造形装置を用いて単結晶または一方向凝固の立体造形物を製造する方法であって、
     金属粒子を含む粉末材料の薄層を形成することと、
     前記薄層にレーザ光を選択的に照射して、前記粉末材料に含まれる金属粒子が平面状の溶融池形状を得て、凝固に伴う結晶成長で、単結晶または一方向凝固の造形物層を形成することと、
     前記薄層を形成することと前記造形物層を形成することとをこの順に複数回繰り返し、前記単結晶または一方向凝固の造形物層を積層成長させることと、
     を含む単結晶または一方向凝固の立体造形物の造形方法。
    A method for manufacturing a single crystal or directionally solidified three-dimensional object using a metal powder additive manufacturing apparatus,
    forming a thin layer of powder material comprising metal particles;
    selectively irradiating the thin layer with a laser beam, the metal particles contained in the powder material obtain a planar molten pool shape, and crystal growth accompanying solidification forms a monocrystalline or unidirectionally solidified model layer;
    Repeating the steps of forming the thin layer and forming the model layer in this order a plurality of times to grow the single crystal or directionally solidified model layer by stacking;
    A method for forming a single crystal or unidirectionally solidified three-dimensional object comprising:
  2.  前記レーザ光は、照射面内の強度分布が一様なビームまたは照射面内の強度分布差が最大強度に対して10%以内である請求項1に記載の単結晶または一方向凝固の立体造形物の造形方法。 The method of manufacturing a single crystal or directionally solidified three-dimensional object according to claim 1, wherein the laser beam has a uniform intensity distribution within the irradiation surface or a difference in intensity distribution within the irradiation surface within 10% of the maximum intensity.
  3.  前記レーザ光のスポット直径が100μm以上1000μm以下である請求項1または2に記載の単結晶または一方向凝固の立体造形物の造形方法。 The method for forming a single-crystal or directionally solidified three-dimensional object according to claim 1 or 2, wherein the spot diameter of the laser beam is 100 µm or more and 1000 µm or less.
  4.  前記粉末材料の薄層の厚さが10μm以上70μm以下である請求項1乃至3の何れかに記載の単結晶または一方向凝固の立体造形物の造形方法。 The method for forming a single crystal or directionally solidified three-dimensional object according to any one of claims 1 to 3, wherein the thin layer of the powder material has a thickness of 10 µm or more and 70 µm or less.
  5.  前記前記粉末材料の粒径分布のD(50)が10μm以上110μm以下である請求項1乃至4の何れかに記載の単結晶または一方向凝固の立体造形物の造形方法。 The single-crystal or directionally solidified three-dimensional object modeling method according to any one of claims 1 to 4, wherein D(50) of the particle size distribution of the powder material is 10 µm or more and 110 µm or less.
  6.  前記平面状の溶融池形状は、深さが10μm以上100μm以下で、幅が80μm以上400μm以下である請求項1乃至5の何れかに記載の単結晶または一方向凝固の立体造形物の造形方法。 6. The method for forming a single-crystal or unidirectionally solidified three-dimensional object according to any one of claims 1 to 5, wherein the planar molten pool shape has a depth of 10 µm or more and 100 µm or less and a width of 80 µm or more and 400 µm or less.
  7.  前記平面状の溶融池形状のアスペクト比(溶融池中央深さ/溶融池幅)は、0.01以上0.23以下である請求項1乃至6の何れかに記載の単結晶または一方向凝固の立体造形物の造形方法。 The method for forming a single-crystal or unidirectionally solidified three-dimensional object according to any one of claims 1 to 6, wherein the planar molten pool has an aspect ratio (depth at the center of the molten pool/width of the molten pool) of 0.01 or more and 0.23 or less.
  8.  前記金属粒子を含む粉末材料の薄層が形成される基材として、所望の結晶方位や結晶構造を有する基材または種結晶が設置される請求項1乃至7の何れかに記載の単結晶または一方向凝固の立体造形物の造形方法。 The method for forming a single crystal or directionally solidified three-dimensional object according to any one of claims 1 to 7, wherein a base material or a seed crystal having a desired crystal orientation and crystal structure is provided as the base material on which the thin layer of the powder material containing the metal particles is formed.
  9.  前記金属粒子を含む粉末材料の薄層が形成される基材として、所望の結晶方位や結晶構造を有する基材または種結晶が設置されてない請求項1乃至7の何れかに記載の単結晶または一方向凝固の立体造形物の造形方法。 The method for forming a single crystal or directionally solidified three-dimensional object according to any one of claims 1 to 7, wherein a substrate having a desired crystal orientation and crystal structure or a seed crystal is not installed as a substrate on which the thin layer of the powder material containing the metal particles is formed.
  10.  前記レーザ光に代えて、電子ビームを用いる請求項1乃至9の何れか1項に記載の単結晶または一方向凝固の立体造形物の造形方法。 The method for forming a single crystal or directionally solidified three-dimensional object according to any one of claims 1 to 9, wherein an electron beam is used instead of the laser beam.
  11.  前記単結晶または一方向凝固の立体造形物は、タービン静翼、又はタービン動翼である請求項1乃至10の何れか1項に記載の単結晶または一方向凝固の立体造形物の造形方法。 The method for forming a single-crystal or directionally-solidified three-dimensional object according to any one of claims 1 to 10, wherein the single-crystal or directionally-solidified three-dimensional object is a turbine stator blade or a turbine rotor blade.
  12.  前記金属粒子は、ニッケル、ニッケル基超合金、β型チタンを含むチタン合金、またはアルミニウム合金の何れかに用いられる組成を有する金属材料からなる請求項1乃至11の何れか1項に記載の単結晶または一方向凝固の立体造形物の造形方法。 The method for forming a single crystal or directionally solidified three-dimensional object according to any one of claims 1 to 11, wherein the metal particles are made of a metal material having a composition used in any one of nickel, a nickel-based superalloy, a titanium alloy containing β-type titanium, or an aluminum alloy.
PCT/JP2023/001529 2022-01-20 2023-01-19 Method of forming single-crystal or directionally solidified three-dimensional formed objects WO2023140326A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022007463 2022-01-20
JP2022-007463 2022-01-20

Publications (1)

Publication Number Publication Date
WO2023140326A1 true WO2023140326A1 (en) 2023-07-27

Family

ID=87348317

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/001529 WO2023140326A1 (en) 2022-01-20 2023-01-19 Method of forming single-crystal or directionally solidified three-dimensional formed objects

Country Status (1)

Country Link
WO (1) WO2023140326A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130064706A1 (en) * 2009-12-04 2013-03-14 Slm Solutions Gmbh Optical irradiation unit for a plant for producing workpieces by irradiation of powder layers with laser radiation
JP2015189618A (en) * 2014-03-28 2015-11-02 国立大学法人大阪大学 Method of manufacturing monocrystal
JP2016516888A (en) * 2013-02-27 2016-06-09 エスエルエム ソルーションズ グループ アーゲー Workpiece manufacturing apparatus and manufacturing method with adjusted fine structure
JP2017148866A (en) * 2016-02-03 2017-08-31 ゼネラル・エレクトリック・カンパニイ Method for control of solidification in laser powder bed fusion additive manufacturing using diode laser fiber array
JP2018115090A (en) * 2017-01-19 2018-07-26 国立大学法人大阪大学 Laminate molding method of three-dimensional molding
WO2018211594A1 (en) * 2017-05-16 2018-11-22 Dmg森精機株式会社 Additional-processing head and processing machinery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130064706A1 (en) * 2009-12-04 2013-03-14 Slm Solutions Gmbh Optical irradiation unit for a plant for producing workpieces by irradiation of powder layers with laser radiation
JP2016516888A (en) * 2013-02-27 2016-06-09 エスエルエム ソルーションズ グループ アーゲー Workpiece manufacturing apparatus and manufacturing method with adjusted fine structure
JP2015189618A (en) * 2014-03-28 2015-11-02 国立大学法人大阪大学 Method of manufacturing monocrystal
JP2017148866A (en) * 2016-02-03 2017-08-31 ゼネラル・エレクトリック・カンパニイ Method for control of solidification in laser powder bed fusion additive manufacturing using diode laser fiber array
JP2018115090A (en) * 2017-01-19 2018-07-26 国立大学法人大阪大学 Laminate molding method of three-dimensional molding
WO2018211594A1 (en) * 2017-05-16 2018-11-22 Dmg森精機株式会社 Additional-processing head and processing machinery

Similar Documents

Publication Publication Date Title
JP3444723B2 (en) Containerless mold manufacturing method for metal parts made of single crystal
JP6200969B2 (en) Workpiece manufacturing apparatus and manufacturing method with adjusted fine structure
JP6344004B2 (en) Method for producing single crystal
EP2751304B1 (en) Manufacturing a component of single crystal or directionally solidified material
CA3042143C (en) Method, use and apparatus for producing a single-crystalline work piece
CN107790717A (en) A kind of quasi-continuous lasing metal 3D printing method for realizing the regulation and control of nickel-base alloy crystallographic texture
EP3459654B1 (en) Method and apparatus for producing a single-crystalline workpiece
JP2014169500A (en) Method for manufacturing hybrid component
JP7257014B2 (en) Laminated manufacturing method for 3D objects
US20230182207A1 (en) Additive manufacturing methods and apparatus for forming objects from a nickel-based superalloy in a layer-by-layer manner
KR20150008486A (en) Repair of directionally solidified alloys
US20220134433A1 (en) Additive manufacture
WO2017104705A1 (en) Manufacturing method for structural member containing intermetallic compound
Kulkarni Additive manufacturing of nickel based superalloy
EP3441162A1 (en) Method of additively manufacturing a structure on a pre-existing component out of the powder bed
WO2023140326A1 (en) Method of forming single-crystal or directionally solidified three-dimensional formed objects
Menon et al. Microstructure of IN738LC Fabricated Using Laser Powder Bed Fusion Additive Manufacturing
JP2023031963A (en) Production method of three-dimensional molded object
US11865641B1 (en) Additively manufactured single-crystal metallic components, and methods for producing the same
RU2810141C1 (en) Method for manufacturing product from nickel alloys with controlled variable structure
Giordimaina Physical verification of the melt pool in laser-bed fusion
CN113714515B (en) Cathode material and preparation method and device thereof
CN114959332A (en) Control method for grain orientation distribution of additive manufacturing Inconel 939 nickel-based high-temperature alloy
Kirka Process-Structure Relationships in Fusion Metals Additive Manufacturing
RU2574536C2 (en) Production of metal component by additive laser process

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23743319

Country of ref document: EP

Kind code of ref document: A1