WO2023140324A1 - Collecting device, scanning ion conductance microscope provided with same, and collecting method - Google Patents

Collecting device, scanning ion conductance microscope provided with same, and collecting method Download PDF

Info

Publication number
WO2023140324A1
WO2023140324A1 PCT/JP2023/001520 JP2023001520W WO2023140324A1 WO 2023140324 A1 WO2023140324 A1 WO 2023140324A1 JP 2023001520 W JP2023001520 W JP 2023001520W WO 2023140324 A1 WO2023140324 A1 WO 2023140324A1
Authority
WO
WIPO (PCT)
Prior art keywords
pipette
reference electrode
pseudo reference
sample
tip
Prior art date
Application number
PCT/JP2023/001520
Other languages
French (fr)
Japanese (ja)
Inventor
大貴 井田
明哉 熊谷
Original Assignee
国立大学法人東北大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東北大学 filed Critical 国立大学法人東北大学
Publication of WO2023140324A1 publication Critical patent/WO2023140324A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • C12M1/26Inoculator or sampler
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • C12M1/42Apparatus for the treatment of microorganisms or enzymes with electrical or wave energy, e.g. magnetism, sonic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q60/00Particular types of SPM [Scanning Probe Microscopy] or microscopes; Essential components thereof
    • G01Q60/44SICM [Scanning Ion-Conductance Microscopy] or apparatus therefor, e.g. SICM probes

Definitions

  • the present invention relates to a collection device, a scanning ion conductance microscope equipped with the same, and a collection method.
  • a scanning probe microscope uses a sharp tip (probe) instead of a lens, and when the probe is brought close to the sample, it acquires physical information and chemical responses generated by the interaction between the sample and the probe as signals.
  • This microscope is widely used as a microscope capable of obtaining image information of the surface of a sample by scanning the surface of the sample with a probe while feeding back the above-described signals.
  • a scanning ion conductance microscope which is one of scanning probe microscopes, uses a glass pipette electrode as a probe and utilizes changes in ion current generated between it and a pseudo-reference electrode placed in an electrolytic solution in which the sample is immersed. Scanning ion conductance microscopes are suitable for observation of soft biological samples in liquid, and are said to be promising for observation of various biological samples.
  • FIG. 9 is an explanatory diagram showing the operating principle of a scanning ion conductance microscope, in which a glass pipette 101 filled with an electrolyte solution and equipped with a first pseudo reference electrode 100 is immersed in the electrolyte solution 102.
  • the second pseudo reference electrode 103 is immersed in the electrolyte solution 102 , and the glass pipette 101 is scanned while the first pseudo reference electrode 100 and the second pseudo reference electrode 103 are connected to the current measuring device 104 and the voltage source 105 .
  • a voltage is applied between the first pseudo reference electrode 100 and the second pseudo reference electrode 103, an ion current is generated at the tip of the pipette, and the resulting ion current can be obtained.
  • the ion current at the tip of the pipette is blocked from a certain point when the glass pipette 101 is very close to the biological sample 106, and the ion current decreases.
  • a typical cell size is about several tens of ⁇ m, and the volume is on the order of pL (pL; picoliters: 10 ⁇ 12 L).
  • These cells contain higher-order structures such as organelles, and the cells function by working in concert with each other.
  • Higher-order structures are composed of nucleic acids, proteins, lipids, and the like, and are approximately ⁇ m to nm in size and fL to aL in volume (fL: femtoliter: 10 ⁇ 15 L, aL: attoliter: 10 ⁇ 18 L).
  • the inventor of the present invention has arrived at the present invention as a result of researching a technology that can control the maximum collection amount and maintain reproducibility and accuracy in nanoglass pipettes that are applied to scanning ion conductance microscopes and the like, even with pipettes that have various opening diameters, shapes, and chemical modifications.
  • the object of the recovery device of the present invention is to provide a technology that enables precise suction and ejection at a minute level, which could not be achieved with conventional voltage control technology, while using a nanoglass pipette with a tip opening diameter on the order of several tens of nm to several ⁇ m.
  • Another object of the present invention is to provide a recovery device and a recovery method capable of increasing the maximum suction volume and discharge volume or restricting the recovery volume of pipettes that can be used in the prior art, thereby enabling highly accurate liquid volume control.
  • An object of the present invention is to provide a scanning ion conductance microscope equipped with the above-described nanoglass pipette that enables precise suction and discharge at a minute level without being affected by the aperture diameter, which has not been possible in the past.
  • a recovery device comprises a pipette having a liquid suction port at its tip, a first pseudo reference electrode inserted into the pipette, a second pseudo reference electrode immersed in the electrolytic solution into which the pipette is inserted, a voltage source connected to the first pseudo reference electrode and the second pseudo reference electrode, a current measuring device, and a pump connected to the proximal end of the pipette to apply negative or positive pressure to the inside of the pipette.
  • the pump is connected to the base end of the pipette through a pipe, a joint member is incorporated in the pipe, and the first pseudo reference electrode is electrically connected to the pipe and the joint member, and is connected to a current measuring instrument through external wiring.
  • a current measuring device is incorporated in wiring connecting the voltage source, the first pseudo reference electrode, and the second pseudo reference electrode.
  • a pressure gauge is connected to the pipe connecting the pump and the pipette.
  • the inner diameter of the suction port of the pipette is on the order of nm to ⁇ m.
  • a scanning ion conductance microscope according to the present invention is characterized by comprising the collection device according to any one of (1) to (5), wherein the pipette is supported by a triaxial stage.
  • the scanning ion conductance microscope according to the present invention is characterized in that the three-axis stage has a three-axis primary stage capable of movement with a range of motion on the order of mm and an accuracy on the order of ⁇ m, and a three-axis secondary stage capable of movement with a range of motion on the order of ⁇ m and an accuracy on the order of nm.
  • the recovery method according to the present invention uses a pipette having an inlet at its tip, a first pseudo reference electrode inserted inside the pipette, a pump that applies pressure such as hydraulic pressure to the inside of the pipette, and a second pseudo reference electrode. is controlled to suck the electrolyte solution or the sample contained in the electrolyte solution into the pipette. Further, in the recovery method of the present invention, it is also possible to discharge the solution sucked into the pipette, and it is also possible to discharge an aqueous solution or a sample contained in the aqueous solution into the electrolyte solution.
  • a pipette having a suction port at its tip and an inner diameter of the suction port on the order of nm to ⁇ m.
  • a sample is immersed in the electrolyte solution, and the sample or a part of the sample is sucked with the pipette together with the electrolyte solution.
  • the collection device while using a pipette whose tip suction port diameter is on the order of nanometers, in addition to conventional voltage control technology, by applying pressure from a hydraulic pump or the like to the pipette, it is possible to aspirate and discharge a volume of liquid that could not be achieved with conventional voltage control technology alone.
  • a pipette whose tip suction port has a diameter on the order of ⁇ m it is possible to accurately control the suction and discharge of minute-level liquids, which could not be achieved with conventional techniques.
  • the tip of the pipette can be scanned with respect to the sample in the electrolyte solution by the three-axis stage while generating an ionic current by applying a voltage between the first pseudo reference electrode in the pipette and the second pseudo reference electrode immersed in the electrolyte solution.
  • an ionic current by applying a voltage between the first pseudo reference electrode in the pipette and the second pseudo reference electrode immersed in the electrolyte solution.
  • pressure is applied to the pipette, a voltage is applied between the first pseudo-reference electrode and the second pseudo-reference electrode of the pipette immersed in the electrolyte solution, and the voltage is controlled while applying pressure, so that the electrolyte solution can be sucked into the pipette. Also, by adjusting the voltage, the electrolyte solution can be discharged from the pipette. Since not only voltage control but also pressure is used, more electrolyte solution can be sucked into the pipette than before, and more minute amounts of electrolyte solution can be aspirated and collected more accurately than before.
  • FIG. 1 is a configuration diagram showing a recovery device according to a first embodiment of the present invention
  • FIG. It is an overall schematic diagram showing the relationship between the three-axis stage, the nanoglass pipette, and the sample provided in the same scanning ion conductance microscope. It is a partially enlarged view showing the relationship between the three-axis stage provided in the same scanning ion conductance microscope, the nanoglass pipette, and the sample, and is a schematic diagram of the pipette sticking into the cell.
  • 10 is a graph showing normalized current values generated according to the pipette-sample distance in the same scanning ion conductance microscope.
  • FIG. 10 is a graph of applied voltage and current value in a state in which different pressures are applied by hydraulic pressure to the nanopipette provided in the same scanning ion conductance microscope.
  • FIG. It is explanatory drawing which shows each part size of the nanopipette provided in the same scanning ion conductance microscope.
  • 4 is a graph showing the relationship between oil pressure and recovery amount when a glass pipette with an inlet diameter of 700 nm is used.
  • 4 is a graph showing the relationship between oil pressure and recovery amount when a glass pipette with an inlet diameter of 100 nm is used.
  • 4 is a graph showing the relationship between oil pressure and recovery amount when a glass pipette with an inlet diameter of 70 nm is used.
  • FIG. 4 is an explanatory diagram showing a measurement concept of a scanning ion conductance microscope;
  • a first embodiment of the present invention will be described in detail below with reference to the accompanying drawings.
  • characteristic portions are enlarged for convenience in order to make the characteristics easier to understand.
  • the glass pipette 1 has a tapered tip portion 1A, and has an inlet 1a at the tip of the tip portion 1A.
  • the diameter of the suction port 1a is, for example, about 10 nm to 1000 nm. More specifically, the diameter of the suction port 1a can be formed in the range of about 30 nm to several ⁇ m.
  • a central portion 1B and a rear end portion (base end portion) 1C of the glass pipette 1, excluding the tip portion 1A, are formed in a tubular shape having the same outer diameter as that of the raw material capillary.
  • the glass pipette 1 is supported vertically downward by a support member (not shown) in a state in which the tip portion 1A is immersed in an electrolytic solution S contained in a container 7 such as a petri dish.
  • the diameter of the suction port of the glass pipette 1 described above is merely an example, and is not limited to the range described above.
  • a capillary tube made of borosilicate glass (borosilicate glass) or quartz glass is pulled by a laser puller to reduce the inner diameter of the tip to the diameter described above.
  • the glass pipette 1 may be made of other materials such as resins and ceramics as long as the material can form the above diameter.
  • a tubular metal joint member (screw joint) 11 is connected to the rear end (base end) of the glass pipette 1 via a first pipe (first pressure pipe) 10 such as a flexible resin pipe.
  • the joint member 11 has a first connection portion (first tube joint) 12 formed on one end thereof, a second connection portion (second tube joint) 13 formed on the other end side, and a first pipe 10 is connected to the first connection portion 12.
  • a pump 6 is connected to a second connecting portion 13 of the joint member 11 via a second pipe (second pressure pipe) 14 such as a flexible resin pipe.
  • a T-shaped joint 15 is incorporated in the middle of the second pipe 14 , and a pressure measuring device (pressure gauge) 17 is connected to the T-shaped joint 15 via a third pipe (third pressure pipe) 16 .
  • a pressure measuring device 17 makes it possible to measure the pressure exerted by the pump 6 inside the glass pipette 1 .
  • the first pseudo reference electrode 2 has its lower end located in the central portion 1B of the glass pipette 1 and is arranged so as to pass through the first pipe 10. The upper end of the first pseudo reference electrode 2 is electrically connected to the inner wall of the joint member 11.
  • a first wiring 18 connected to the voltage source 5 is connected to the peripheral wall of the joint member 11 .
  • a (micro)current measuring device 19 is incorporated in the first wiring 18 between the voltage source 5 and the joint member 11 .
  • a second wiring 20 is connected to the pole of the voltage source 5 opposite to the pole to which the first wiring 18 is connected, the second wiring 20 is connected to the second pseudo reference electrode 3, and the lower end side of the second pseudo reference electrode 3 is immersed in the electrolyte solution S.
  • a necessary voltage can be applied between the first pseudo reference electrode 2 and the second pseudo reference electrode 3 from the voltage source 5 .
  • An Ag/AgTPBCl electrode can be used for the first pseudo reference electrode 2 and a silver-silver chloride electrode can be used for the second pseudo reference electrode 3 .
  • ion current can be generated.
  • a sample 22 such as a biological sample is contained in the electrolyte solution S, and the glass pipette 1 is brought close to the sample 22 using a three-axis stage, which will be described later, the ion current flowing through the tip of the glass pipette is blocked from a certain point when the tip 1A of the glass pipette 1 approaches the sample 22, and the ion current is reduced.
  • the surface shape of the sample 22 can be measured by controlling the movement of the tip of the glass pipette using the phenomenon that the ion current decreases due to the proximity between the tip of the glass pipette and the sample 22 as an indicator.
  • a manual 3-axis stage 27 is mounted on an inverted microscope 26 placed on an anti-vibration table 25 shown in FIG. 2A.
  • the Y-axis can be defined to intersect the X-axis at a 90° angle
  • the Z-axis can be defined as an axis intersecting the x-axis and the Y-axis at a 90° angle.
  • a Z coarse movement actuator 28 is provided supported by a manual 3-axis stage 27 .
  • the Z coarse movement actuator 28 has a maximum movable range of ten and several millimeters, and is a driving device capable of controlling movement in the Z direction in units of ⁇ m.
  • a Z piezo stage 29 is provided supported by a Z coarse motion actuator 28 .
  • the Z piezo stage 29 is a driving device that has a maximum movable range of several micrometers and can control movement in the Z direction with a resolution of 1 nm or less.
  • an XY coarse actuator 30 having a maximum movable range of several tens of millimeters and capable of controlling movement in the XY direction in units of several tens of nanometers
  • an XY piezo stage 31 having a maximum movable range of several tens of micrometers and using piezoelectric elements that can be controlled with a resolution of 1 nm or less are installed.
  • a minute current measuring instrument 19 capable of detecting and recording the ion current that can be obtained from the glass pipette 1 is installed via a first wiring 18, and has an electromagnetic shield 33 capable of shielding the minute current measuring instrument 19 including the glass pipette 1 and the first pseudo reference electrode from electromagnetic noise from the outside.
  • the XY coarse movement actuator 30 and the XY piezo stage 31 have an opening in the central part, and an accommodation part 34 is formed in which the bottom surface of the sample is the focal length of the inverted microscope.
  • the glass pipette 1 can approach or separate from the sample 22 accommodated in the container 7 along the X-axis direction, the Y-axis direction, and the Z-axis direction.
  • an objective lens 35 that functions as an inverted microscope 26 to obtain an enlarged image of a sample is installed near the housing portion 34 .
  • FIG. 2A only the container 7 and the glass pipette 1 are drawn on the XY piezo stage 31, but in the same way as the structure shown in FIG.
  • the scanning ion conductance microscope K configured as shown in FIGS. 1, 2A, and 2B uses a Z piezo stage 29, a Z coarse motion actuator 28, an XY piezo stage 31, and an XY coarse motion actuator 30, so that the tip of the glass pipette 1 can be moved to any position in the X-axis direction, the Y-axis direction, and the Z-axis direction within the electrolyte solution S contained in the container 7.
  • the XY coarse motion actuator 30 and Z coarse motion actuator 28 constitute a three-axis primary stage
  • the XY piezo stage 31 and Z piezo stage 29 constitute a three-axis secondary stage.
  • the position where the ion current has decreased by a specified amount is estimated to be very close to the surface of the sample 22, then the tip of the glass pipette 1 is slightly separated from the surface of the sample 22, the glass pipette 1 is moved slightly (several tens of nm level) in the horizontal direction of the surface of the sample 22, and the tip of the glass pipette 1 is brought closer to the surface of the sample 22 again at that position.
  • the glass pipette 1 can be moved by minute distances on the order of ⁇ m or nm by using the three-axis primary stage and the three-axis secondary stage. Moreover, the observation image of the surface of the sample 22 can be obtained by scanning the tip of the glass pipette 1 without contacting the surface of the sample 22 . Therefore, even if the sample 22 is a fine biological sample such as a cell, an observation image of the sample surface can be acquired without damaging the sample 22 .
  • FIG. 3 is a graph showing an example of a state in which the ion current is inhibited according to the distance between the tip of the glass pipette 1 and the sample 22.
  • the horizontal axis indicates the distance between the pipette and the sample
  • the normalized current value indicated on the vertical axis indicates the normalized value of the current value measured by the minute current measuring device 19 .
  • the ion current is measured while the tip of the glass pipette 1 is brought close to the surface of the sample 22. For example, as shown in FIG.
  • the surface shape of the sample 22 can be grasped.
  • the resolving power non-invasive, high spatial resolution
  • suction and discharge are performed by applying hydraulic pressure to the pipette 1, but instead of hydraulic pressure, air pressure may be used to control suction and discharge by applying air pressure. Also, instead of hydraulic pressure, other fluid may be used to control suction and discharge using means such as applying fluid pressure.
  • the graph in FIG. 4 shows the relationship between the voltage (V) applied between the first pseudo reference electrode 2 and the second pseudo reference electrode 3 and the current (nA) measured when the pressure (5.5 kPa, 7.5 kPa, 9.5 kPa) applied by the pump 6 is adjusted using a glass pipette 1 having an inlet 1a with an inner diameter of 70 nm. Since the electrical resistance of the pipette decreases according to the amount of solution collected, it is possible to roughly estimate the amount collected from the current value and voltage. With the configuration shown in FIGS. 1, 2A, and 2B, this pipette can collect tens of thousands to hundreds of fL of electrolyte solution at the tip of the glass pipette. As shown in FIG.
  • the current history during inhalation (indicated by arrow e1 ) and the current history during ejection (indicated by arrow e2 ) are slightly different, but generally exhibit linearity.
  • the increase in pressure reduces the current value and improves the linearity. Since the voltage can be controlled in sub-mV units, the recovery amount can be controlled at the aL level.
  • the amount of liquid sucked from the suction port 1a of the glass pipette 1 is maximized in the range of about 0 to 0.2 V, but when the potential is shifted from that potential to the positive side or the negative side, the liquid is discharged from the suction port 1a.
  • This phenomenon is attributed to the change in tension at the liquid-liquid interface on the tip side of the glass pipette 1 due to the action of the voltage. Therefore, the maximum recovery/discharge amount is determined by the shape of the pipette, and the recovery amount can be controlled by applying a voltage of approximately -1 V or more to 1 V or less.
  • the glass pipette 1 can be used as an electrochemical syringe. For example, as shown in FIG. 1, by inserting the glass pipette 1 into the sample 22 and controlling the voltage, part of the biological sample can be sucked into the glass pipette 1 and recovered. Further, by extracting the glass pipette 1 from the sample 22 and moving it to another place and then performing voltage control again, it is possible to eject a part of the previously sucked sample 22 from the tip of the glass pipette 1 .
  • the tip diameter R 0 when the tip diameter R 0 is small, the rate at which ⁇ shown in formula (2) increases during suction increases, and when the angle of the tip changes, the recovery amount deviates greatly from the linearity as in the research results of Anumita Saha-Shah et al.
  • the tip portion 1A tends to be short, and it is difficult to achieve both a long tip portion 1A and a small tip diameter R0 .
  • FIG. 6 shows the recovery amount of liquid that can be sucked into the glass pipette by performing the above-described voltage control while applying pressure (kPa) applied from the pump 6 when using a glass pipette having a diameter of 700 nm in the examples described later.
  • FIG. 7 shows the amount of liquid that can be sucked into the glass pipette by controlling the voltage as described above while applying pressure (kPa) applied from the pump 6 when using a glass pipette with a diameter of 100 nm.
  • FIG. 8 shows the recovery amount of the liquid that can be sucked into the glass pipette by performing the voltage control described above while applying pressure (kPa) applied from the pump 6 when using a glass pipette with a diameter of 70 nm.
  • FIGS. 6 to 8 show, in the recovery device A shown in FIG. 1, a nanopipette with an inlet diameter set to 70 to 700 nm is used, and by controlling the pressure applied from the pump 6 to the glass pipette 1 and performing the voltage control described above, the maximum volume of liquid recovered, which was determined by the shape of the pipette in the electrochemical syringe and could not be changed in the prior art, was found to be precisely controlled in the recovery device A between several tens of fL to 100,000 fL. . That is, by controlling the voltage while applying pressure to the inside of the glass pipette 1 by the pump 6, the liquid can be sucked and discharged within the ranges shown in FIGS. Since 1 nL corresponds to 1000000 (1 ⁇ 10 6 ) fL, the recovery amount of 100000 on the vertical axis in FIG. 7 corresponds to 0.1 nL.
  • An organic electrolyte solution (specific solution name: 10 mM tetrahexylammonium tetrakis(4-chlorophenyl)borate (THATPBCl), 1.2-dichloroethane solution) was filled in a pipette using the collection device A having the configuration shown in FIG.
  • THATPBCl tetrahexylammonium tetrakis(4-chlorophenyl)borate
  • 1.2-dichloroethane solution was filled in a pipette using the collection device A having the configuration shown in FIG.
  • a glass pipet with a inpettal of 700 nm in the tip + 5 kpa, + 7 kPa, + 9 kPa, + 15 kPa, + 17 kPa
  • the voltage applied between the electrode 2 and the second pseudo reference electrode 3 was sweeped within the range of -0.5 to 0 V and the amount of solution recovered by the glass pipet was measured.
  • the amount of solution recovered was obtained by observing the tip of the glass pipette from the lateral direction with an optical microscope, observing the liquid surface of the electrolyte solution aspirated with the glass pipette, approximating the shape of the tip of the glass pipette to a cone, and calculating the amount of recovery according to the position of the liquid surface by calculating the volume of the cone.
  • the above results are shown in FIG.
  • FIG. 6 by adjusting the pressure applied from the pump to the glass pipette and controlling the voltage, the maximum recovery amount could be adjusted within the range of 9.7 ⁇ 10 1 fL to 6.5 ⁇ 10 4 fL.
  • the pressure applied from the pump 6 to the glass pipette is adjusted to -15 kPa, -10 kPa, -5 kPa, 0 kPa, +2.5 kPa, +5 kPa, +7.5 kPa, +10 kPa, and the voltage applied from the voltage source 5 between the first pseudo reference electrode 2 and the second pseudo reference electrode 3 is set to -0.5 to 0 V at each pressure.
  • the recovery amount of the electrolyte solution was measured when aspirated by The above results are shown in FIG. As shown in FIG. 7, by adjusting the pressure applied from the pump to the glass pipette and controlling the voltage, it was possible to adjust the recovery amount within the range of 6.8 ⁇ 10 1 fL to 2.7 ⁇ 10 3 fL.
  • the pressure applied from the pump 6 to the glass pipette from negative pressure to positive pressure was adjusted to -7.5 kPa, -5 kPa, 0 kPa, +5 kPa, and the voltage applied from the voltage source 5 between the first pseudo reference electrode 2 and the second pseudo reference electrode 3 was set to -0.5 to 0 V at each pressure.
  • the above results are shown in FIG.
  • FIG. 8 by adjusting the pressure applied from the pump to the glass pipette and controlling the voltage, it was possible to adjust the recovery amount within the range of 5.2 ⁇ 10 2 fL to 3.7 ⁇ 10 3 fL.
  • the recovery amount can be accurately controlled and recovered over a wide range.
  • the electrolyte solution collected in the glass pipette can be discharged by adjusting the voltage applied between the first pseudo reference electrode 2 and the second pseudo reference electrode 3, the collection device A having the configuration shown in the figure can be used for discharging the solution. In this case, it is possible to increase the intake and discharge amounts compared to the conventional voltage control only, and to provide a technique capable of accurately controlling the intake and discharge amounts assuming that the intake and discharge are performed in a fine range.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • General Health & Medical Sciences (AREA)
  • Sustainable Development (AREA)
  • Medicinal Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

A collecting device (A) of the present invention is characterized by comprising a pipet (1) having a suction port (1a) at the distal end, a first pseudo reference electrode (2) inserted into the pipet (1), a second pseudo reference electrode (3) immersed into an electrolytic solution (S) where the pipet (1) is inserted, a voltage source (5) connected to the first pseudo reference electrode (2) and the second pseudo reference electrode (3), and a pump (6) connected to the proximal end side of the pipet (1) to apply a pressure into the pipet (1).

Description

回収装置及びそれを備えた走査型イオンコンダクタンス顕微鏡と回収方法Recovery device, scanning ion conductance microscope equipped with the same, and recovery method
 本発明は、回収装置及びそれを備えた走査型イオンコンダクタンス顕微鏡と回収方法に関する。
 本願は、2022年1月21日に、日本に出願された特願2022-007949号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a collection device, a scanning ion conductance microscope equipped with the same, and a collection method.
This application claims priority based on Japanese Patent Application No. 2022-007949 filed in Japan on January 21, 2022, the content of which is incorporated herein.
 走査型プローブ顕微鏡は、レンズの代わりに鋭い探針(プローブ)を使用し、探針を試料に近接させた際に試料と探針の相互作用で生じる物理情報や化学的応答を信号として取得する。この顕微鏡は、上述の信号をフィードバックとしながら探針で試料表面を走査することにより、試料表面の画像情報を得ることができる顕微鏡として広く用いられている。
 走査型プローブ顕微鏡の一つである走査型イオンコンダクタンス顕微鏡(SICM)は、ガラスピペット電極を探針として使用し、試料を浸した電解質液中に留置した疑似参照電極との間に生じるイオン電流の変化を利用し、試料表面の立体形状を画像化する顕微鏡である。走査型イオンコンダクタンス顕微鏡は、軟らかい生物試料の液中観察に好適であり、様々な生物試料の観察に有望であると云われている。
A scanning probe microscope uses a sharp tip (probe) instead of a lens, and when the probe is brought close to the sample, it acquires physical information and chemical responses generated by the interaction between the sample and the probe as signals. This microscope is widely used as a microscope capable of obtaining image information of the surface of a sample by scanning the surface of the sample with a probe while feeding back the above-described signals.
A scanning ion conductance microscope (SICM), which is one of scanning probe microscopes, uses a glass pipette electrode as a probe and utilizes changes in ion current generated between it and a pseudo-reference electrode placed in an electrolytic solution in which the sample is immersed. Scanning ion conductance microscopes are suitable for observation of soft biological samples in liquid, and are said to be promising for observation of various biological samples.
 図9は、走査型イオンコンダクタンス顕微鏡の動作原理を示す説明図であり、内部に電解質溶液を充填し、第1の疑似参照電極100を備えたガラスピペット101を電解質溶液102中に浸漬している。電解質溶液102に第2の疑似参照電極103を浸漬し、第1の疑似参照電極100と第2の疑似参照電極103を電流計測器104と電圧源105に接続した状態でガラスピペット101を走査する。第1の疑似参照電極100と第2の疑似参照電極103の間に電圧を印加すると、ピペット先端にイオン流が発生し、それに起因するイオン電流を取得できる。
 電解質溶液102内に生体試料106を設置した場合、前記電圧を印加したままガラスピペット101を生体試料106に接近させると、ガラスピペット101が生体試料106のごく近傍に近接したある時点からピペット先端のイオン流が遮蔽され、イオン電流が減少する。
 このようにガラスピペット101と生体試料106の近接によってイオン電流が変化する現象を指標としてガラスピペット101の動きを制御することで、生体試料表面の形状を測定することができる。
FIG. 9 is an explanatory diagram showing the operating principle of a scanning ion conductance microscope, in which a glass pipette 101 filled with an electrolyte solution and equipped with a first pseudo reference electrode 100 is immersed in the electrolyte solution 102. The second pseudo reference electrode 103 is immersed in the electrolyte solution 102 , and the glass pipette 101 is scanned while the first pseudo reference electrode 100 and the second pseudo reference electrode 103 are connected to the current measuring device 104 and the voltage source 105 . When a voltage is applied between the first pseudo reference electrode 100 and the second pseudo reference electrode 103, an ion current is generated at the tip of the pipette, and the resulting ion current can be obtained.
When the biological sample 106 is placed in the electrolyte solution 102, when the glass pipette 101 is brought close to the biological sample 106 while the voltage is applied, the ion current at the tip of the pipette is blocked from a certain point when the glass pipette 101 is very close to the biological sample 106, and the ion current decreases.
By controlling the movement of the glass pipette 101 using the phenomenon in which the ion current changes due to the proximity of the glass pipette 101 and the biological sample 106 as an index, the shape of the surface of the biological sample can be measured.
 この種の走査型イオンコンダクタンス顕微鏡の一例として、以下の特許文献1に記載されているナノピペット装置を備えた顕微鏡が知られている。 As an example of this type of scanning ion conductance microscope, a microscope equipped with a nanopipette device described in Patent Document 1 below is known.
日本国特表2016-512436号公報Japanese special table 2016-512436
 一般的な細胞の大きさはおよそ数十μm程度であり、体積にしてpL(pL;ピコリットル:10-12L)オーダーである。この細胞の内部にオルガネラなどの高次構造体が含まれており、それらが協調して働くことで細胞が機能している。高次構造体は核酸やたんぱく質、脂質などから構成されており、大きさはμm~nm程度で体積はおおむねfL~aLスケール(fL;フェムトリットル:10-15L、aL;アトリットル:10-18L)である。これまで、細胞の中に直接物質を導入したり、高次構造体などの内容物を微量で回収したりするための技術が開発されてきた。この様な技術には、より高精度かつ高空間分解能、より多い最大回収量が求められており、近年はオルガネラなどを回収できるレベルの高精度回収技術が求められている。 A typical cell size is about several tens of μm, and the volume is on the order of pL (pL; picoliters: 10 −12 L). These cells contain higher-order structures such as organelles, and the cells function by working in concert with each other. Higher-order structures are composed of nucleic acids, proteins, lipids, and the like, and are approximately μm to nm in size and fL to aL in volume (fL: femtoliter: 10 −15 L, aL: attoliter: 10 −18 L). Until now, techniques have been developed for directly introducing substances into cells and for recovering minute amounts of contents such as higher-order structures. Such techniques are required to have higher accuracy, higher spatial resolution, and a larger maximum recovery amount.
 前述の走査型イオンコンダクタンス顕微鏡において、先端開口径がnmオーダーのナノガラスピペットを用い、有機電解液を充填して第1の疑似参照電極100と第2の疑似参照電極103の間に印加する電圧を制御することにより、ナノガラスピペット先端の吸入口から、液-液界面の張力変化を利用して水溶液相の吸入と吐出ができることが知られている。この場合の吸入量や吐出量として、aLレベルの精度で吸入と吐出が制御可能であると云われている。また、最大回収量はピペットの先端開口径に依存し、再現性が担保可能な回収量の最大はおおむね数pLオーダーである。 In the scanning ion conductance microscope described above, it is known that by using a nanoglass pipette with a nanometer-order tip opening diameter, filling it with an organic electrolyte, and controlling the voltage applied between the first pseudo reference electrode 100 and the second pseudo reference electrode 103, it is possible to inhale and eject an aqueous phase from the tip of the nanoglass pipette using the change in tension at the liquid-liquid interface. In this case, it is said that the suction and discharge can be controlled with an accuracy of aL level. In addition, the maximum recovery amount depends on the tip opening diameter of the pipette, and the maximum recovery amount that can ensure reproducibility is generally on the order of several pL.
 前述の電圧制御による吸入量の調整技術においては、より微小量の液体を再現性高く、精度良く吸入できることが望まれているが、これらはピペットの先端開口径や形状に大きく依存し、どのようなピペットでも液体吸入量を精度よく制御できる技術は現状では提供されていない。たとえば、上述の従来技術では、吸入量を増加しようとしてガラスピペット吸入口の口径を数μmなどのように大きくすると、回収領域の空間分解能の低下や流量制御の精度が悪化するだけでなく液体の制御自体が困難になる。一方で、先端開口径を50nm未満にすると、最大回収量が100fLを下回り、ほとんど溶液を回収・吐出できなくなる。
 本発明者は、走査型イオンコンダクタンス顕微鏡などに適用されるナノガラスピペットにおいて、様々な開口径・形状・化学修飾を施されたピペットでも、最大回収量を制御し、再現性と精度を保持したまま吸入と吐出ができる技術について研究した結果、本願発明に到達した。
In the above-mentioned technique for adjusting the amount of liquid to be sucked by voltage control, it is desired to be able to aspirate a very small amount of liquid with high reproducibility and accuracy. However, these greatly depend on the tip opening diameter and shape of the pipette, and there is currently no technology that can accurately control the amount of liquid to be sucked with any pipette. For example, in the conventional technology described above, if the diameter of the glass pipette suction port is increased to several μm in order to increase the suction volume, not only will the spatial resolution of the collection region decrease and the flow rate control accuracy will deteriorate, but the control of the liquid itself will become difficult. On the other hand, if the tip opening diameter is less than 50 nm, the maximum recovery amount falls below 100 fL, and almost no solution can be recovered and discharged.
The inventor of the present invention has arrived at the present invention as a result of researching a technology that can control the maximum collection amount and maintain reproducibility and accuracy in nanoglass pipettes that are applied to scanning ion conductance microscopes and the like, even with pipettes that have various opening diameters, shapes, and chemical modifications.
 本願発明の回収装置は、先端開口径が数十nm~数μmオーダーのナノガラスピペットを用いながら、従来の電圧制御技術ではなし得なかった微小レベルにおける精密な吸入と吐出ができるようにした技術の提供を目的とする。また、従来技術で使用可能なピペットであるならば、最大吸入量と吐出量の増加あるいは回収量を制限してさらに高精度での液量操作が可能な回収装置と回収方法の提供を目的とする。
 本願発明は、従来ではなし得なかった、開口径に左右されないで微小レベルにおける精密な吸引と吐出ができるようにした上述のナノガラスピペットを備えた走査型イオンコンダクタンス顕微鏡の提供を目的とする。
The object of the recovery device of the present invention is to provide a technology that enables precise suction and ejection at a minute level, which could not be achieved with conventional voltage control technology, while using a nanoglass pipette with a tip opening diameter on the order of several tens of nm to several μm. Another object of the present invention is to provide a recovery device and a recovery method capable of increasing the maximum suction volume and discharge volume or restricting the recovery volume of pipettes that can be used in the prior art, thereby enabling highly accurate liquid volume control.
An object of the present invention is to provide a scanning ion conductance microscope equipped with the above-described nanoglass pipette that enables precise suction and discharge at a minute level without being affected by the aperture diameter, which has not been possible in the past.
(1)本発明に係る回収装置は、先端に液体の吸入口を有するピペットと、該ピペットの内部に挿入される第1の疑似参照電極と、前記ピペットが挿入される電解質溶液内に浸漬される第2の疑似参照電極と、前記第1の疑似参照電極と前記第2の疑似参照電極とに接続される電圧源と、電流計測器と、前記ピペットの基端部側に接続されて前記ピペットの内部に陰圧あるいは陽圧を印加するポンプを備えたことを特徴とする。
(2)本発明に係る回収装置においては、前記ピペットの基端部に配管を介し前記ポンプが接続され、前記配管の途中に継手部材が組み込まれ、前記第1の疑似参照電極が前記配管と前記継手部材と導通し、外部配線により電流計測器に接続されたことが好ましい。
(3)本発明に係る回収装置においては、前記電圧源と前記第1の疑似参照電極と前記第2の疑似参照電極を接続した配線に電流計測器が組み込まれたことが好ましい。
(1) A recovery device according to the present invention comprises a pipette having a liquid suction port at its tip, a first pseudo reference electrode inserted into the pipette, a second pseudo reference electrode immersed in the electrolytic solution into which the pipette is inserted, a voltage source connected to the first pseudo reference electrode and the second pseudo reference electrode, a current measuring device, and a pump connected to the proximal end of the pipette to apply negative or positive pressure to the inside of the pipette. characterized by
(2) In the recovery device according to the present invention, it is preferable that the pump is connected to the base end of the pipette through a pipe, a joint member is incorporated in the pipe, and the first pseudo reference electrode is electrically connected to the pipe and the joint member, and is connected to a current measuring instrument through external wiring.
(3) In the recovery device according to the present invention, it is preferable that a current measuring device is incorporated in wiring connecting the voltage source, the first pseudo reference electrode, and the second pseudo reference electrode.
(4)本発明に係る回収装置においては、前記ポンプと前記ピペットを接続した配管に圧力計が接続されたことが好ましい。
(5)本発明に係る回収装置においては、前記ピペットの前記吸入口の内径がnmオーダー~μmオーダーであることが好ましい。
(4) In the recovery device according to the present invention, it is preferable that a pressure gauge is connected to the pipe connecting the pump and the pipette.
(5) In the collecting device according to the present invention, it is preferable that the inner diameter of the suction port of the pipette is on the order of nm to μm.
(6)本発明に係る走査型イオンコンダクタンス顕微鏡は、(1)~(5)のいずれかに記載の回収装置を備え、前記ピペットが3軸ステージに支持されたことを特徴とする。
(7)本発明に係る走査型イオンコンダクタンス顕微鏡は、前記3軸ステージが、可動域がmmオーダー・精度がμmオーダーの移動を可能とする3軸1次ステージと、可動域がμmオーダー・精度がnmオーダーの移動を可能とする3軸2次ステージを有することを特徴とする。
(6) A scanning ion conductance microscope according to the present invention is characterized by comprising the collection device according to any one of (1) to (5), wherein the pipette is supported by a triaxial stage.
(7) The scanning ion conductance microscope according to the present invention is characterized in that the three-axis stage has a three-axis primary stage capable of movement with a range of motion on the order of mm and an accuracy on the order of μm, and a three-axis secondary stage capable of movement with a range of motion on the order of μm and an accuracy on the order of nm.
(8)本発明に係る回収方法は、先端に吸入口を有するピペットと、前記ピペットの内部に挿入される第1の疑似参照電極と、前記ピペットの内部に油圧などの圧力を印加するポンプと、第2の疑似参照電極を用い、電解質溶液に前記ピペットの先端側と前記第2の疑似参照電極を浸漬し、前記ピペット内に前記ポンプにより圧力を印加した状態で前記第1の疑似参照電極と前記第2の疑似参照電極間に印加する電圧を制御することにより、前記ピペット内に前記電解質溶液あるいは前記電解質溶液内に収容された試料を吸入することを特徴とする。
 また、本発明の回収方法において、前記ピペット内に吸引した溶液を吐出することも可能であり、前記電解質溶液中に水溶液あるいは水溶液内に収容された試料を吐出することも可能となる。
(8) The recovery method according to the present invention uses a pipette having an inlet at its tip, a first pseudo reference electrode inserted inside the pipette, a pump that applies pressure such as hydraulic pressure to the inside of the pipette, and a second pseudo reference electrode. is controlled to suck the electrolyte solution or the sample contained in the electrolyte solution into the pipette.
Further, in the recovery method of the present invention, it is also possible to discharge the solution sucked into the pipette, and it is also possible to discharge an aqueous solution or a sample contained in the aqueous solution into the electrolyte solution.
(9)本発明に係る回収方法において、前記ピペットとして、先端に吸入口を有し、該吸入口の内径がnmオーダー~μmオーダーであるピペットを用いることが好ましい。
(10)本発明に係る回収方法において、前記電解質溶液に試料を浸漬し、該試料または該試料の一部を前記ピペットで前記電解質溶液とともに吸引することが好ましい。
(9) In the recovery method according to the present invention, it is preferable to use a pipette having a suction port at its tip and an inner diameter of the suction port on the order of nm to μm.
(10) In the recovery method according to the present invention, preferably, a sample is immersed in the electrolyte solution, and the sample or a part of the sample is sucked with the pipette together with the electrolyte solution.
 本発明に係る回収装置によれば、先端吸入口の口径がnmオーダーのピペットを用いながら、従来の電圧制御技術に加え、油圧ポンプなどによる圧力をピペットに作用させることで、従来の電圧制御技術のみではなし得なかった量の液体などの吸引と吐出ができる。また、先端吸入口の口径がμmオーダーのピペットを用いながら、従来技術ではなし得なかった微小レベルの液体などの吸入と吐出を精度良く制御しつつ実施することができる。 According to the collection device according to the present invention, while using a pipette whose tip suction port diameter is on the order of nanometers, in addition to conventional voltage control technology, by applying pressure from a hydraulic pump or the like to the pipette, it is possible to aspirate and discharge a volume of liquid that could not be achieved with conventional voltage control technology alone. In addition, while using a pipette whose tip suction port has a diameter on the order of μm, it is possible to accurately control the suction and discharge of minute-level liquids, which could not be achieved with conventional techniques.
 本発明に係る走査型イオンコンダクタンス顕微鏡は、ピペット内の第1の疑似参照電極と電解質溶液中に浸漬した第2の疑似参照電極の間に電圧を印加することでイオン電流を発生させつつ、3軸ステージによりピペットの先端を電解質溶液中の試料に対し走査できる。イオン電流を観察し、イオン電流が減少することでピペットの先端が試料表面に接近したことを認識できるので、イオン電流を計測しつつ試料表面に沿ってピペットの先端を走査することにより、試料表面の画像情報を得ることができる。
 また、生体試料の場合、ピペットの先端を生体試料に挿入し、ピペット内に圧力を印加しながら第1の疑似参照電極と第2の疑似参照電極間の電圧を制御することで、生体試料の一部をピペット内に吸入し、吸入した生体試料の一部を必要に応じてピペットの先端から吐出できる。この場合、従来の電圧制御技術ではなし得なかった微小レベルで正確に試料の採取が可能となり、試料吐出も可能となる。なお、有機電解液を充填し圧力を印加した状態でもイオン電流は検出でき、イオン電流の減少からピペットの試料表面への近接を感知でき、イオン電流を計測しつつ表面に沿ってピペット先端を走査することで、表面形状を取得できる。
In the scanning ion conductance microscope according to the present invention, the tip of the pipette can be scanned with respect to the sample in the electrolyte solution by the three-axis stage while generating an ionic current by applying a voltage between the first pseudo reference electrode in the pipette and the second pseudo reference electrode immersed in the electrolyte solution. When the ion current is observed and the ion current decreases, it can be recognized that the tip of the pipette has approached the sample surface. Therefore, by scanning the tip of the pipette along the sample surface while measuring the ion current, image information of the sample surface can be obtained.
In the case of a biological sample, by inserting the tip of the pipette into the biological sample and controlling the voltage between the first pseudo reference electrode and the second pseudo reference electrode while applying pressure to the inside of the pipette, part of the biological sample can be sucked into the pipette and part of the sucked biological sample can be ejected from the tip of the pipette as needed. In this case, it becomes possible to collect a sample accurately at a minute level, which could not be achieved by the conventional voltage control technique, and also to discharge the sample. The ionic current can be detected even when the sample is filled with an organic electrolyte and pressure is applied, and the proximity of the pipette to the sample surface can be detected from the decrease in the ionic current. By scanning the tip of the pipette along the surface while measuring the ionic current, the surface shape can be obtained.
 本発明に係る回収方法は、ピペットに圧力を印加し、電解質溶液中に浸漬したピペットの第1の疑似参照電極と第2の疑似参照電極の間に電圧を印加し、圧力を印加しながら前記電圧を制御することで、ピペット内に電解質溶液を吸入できる。また、前記電圧の調整により、ピペットから電解質溶液を吐出することもできる。電圧の制御のみではなく、圧力も利用しているのでピペットに従来よりも多くの電解質溶液を吸入することができ、また、従来よりも微少量の電解質溶液を正確に吸引し、回収することができる。 In the recovery method according to the present invention, pressure is applied to the pipette, a voltage is applied between the first pseudo-reference electrode and the second pseudo-reference electrode of the pipette immersed in the electrolyte solution, and the voltage is controlled while applying pressure, so that the electrolyte solution can be sucked into the pipette. Also, by adjusting the voltage, the electrolyte solution can be discharged from the pipette. Since not only voltage control but also pressure is used, more electrolyte solution can be sucked into the pipette than before, and more minute amounts of electrolyte solution can be aspirated and collected more accurately than before.
本発明に係る第1実施形態の回収装置を示す構成図である。1 is a configuration diagram showing a recovery device according to a first embodiment of the present invention; FIG. 同走査型イオンコンダクタンス顕微鏡に設けられている3軸ステージとナノガラスピペットと試料の関係を示す全体概要図である。It is an overall schematic diagram showing the relationship between the three-axis stage, the nanoglass pipette, and the sample provided in the same scanning ion conductance microscope. 同走査型イオンコンダクタンス顕微鏡に設けられている3軸ステージとナノガラスピペットと試料の関係を示す部分拡大図であり、細胞内へのピペット刺突の模式図である。It is a partially enlarged view showing the relationship between the three-axis stage provided in the same scanning ion conductance microscope, the nanoglass pipette, and the sample, and is a schematic diagram of the pipette sticking into the cell. 同走査型イオンコンダクタンス顕微鏡においてピペット-試料間距離に応じて生じる規格化電流値を示すグラフである。10 is a graph showing normalized current values generated according to the pipette-sample distance in the same scanning ion conductance microscope. 同走査型イオンコンダクタンス顕微鏡に設けられるナノピペットにおいて、油圧により異なる圧力を作用させた状態における印加電圧と電流値のグラフである。FIG. 10 is a graph of applied voltage and current value in a state in which different pressures are applied by hydraulic pressure to the nanopipette provided in the same scanning ion conductance microscope. FIG. 同走査型イオンコンダクタンス顕微鏡に設けられるナノピペットの各部サイズについて示す説明図である。It is explanatory drawing which shows each part size of the nanopipette provided in the same scanning ion conductance microscope. 吸入口の口径700nmのガラスピペットを用いた場合に油圧と回収量との関係を示すグラフである。4 is a graph showing the relationship between oil pressure and recovery amount when a glass pipette with an inlet diameter of 700 nm is used. 吸入口の口径100nmのガラスピペットを用いた場合に油圧と回収量との関係を示すグラフである。4 is a graph showing the relationship between oil pressure and recovery amount when a glass pipette with an inlet diameter of 100 nm is used. 吸入口の口径70nmのガラスピペットを用いた場合に油圧と回収量との関係を示すグラフである。4 is a graph showing the relationship between oil pressure and recovery amount when a glass pipette with an inlet diameter of 70 nm is used. 走査型イオンコンダクタンス顕微鏡の測定概念を示す説明図である。FIG. 4 is an explanatory diagram showing a measurement concept of a scanning ion conductance microscope;
 以下、添付図面に基づき、本発明の第1実施形態について詳細に説明する。なお、以下の説明で用いる図面は、特徴をわかりやすくするために、便宜上特徴となる部分を拡大して示している場合がある。
 図1に示す第1実施形態の回収装置Aは、ガラスピペット(ピペット)1と、その内部に収容された第1の疑似参照電極2と、ガラスピペット1の外部に設置された第2の疑似参照電極3と、第1の疑似参照電極2及び第2の疑似参照電極3に接続された電圧源5と、ガラスピペット1に接続されたポンプ6を主体として構成されている。
A first embodiment of the present invention will be described in detail below with reference to the accompanying drawings. In addition, in the drawings used in the following description, in some cases, characteristic portions are enlarged for convenience in order to make the characteristics easier to understand.
A recovery device A of the first embodiment shown in FIG.
 ガラスピペット1は、先細り形状とされた先端部1Aを有し、先端部1Aの先端に吸入口1aを有する。吸入口1aの口径は、一例として、10nm~1000nm程度に形成されている。より具体的に吸入口1aの口径は30nm~数μm程度の範囲に形成できる。ガラスピペット1の先端部1Aを除く中央部1Bと後端部(基端部)1Cは、原料となるキャピラリと同じ外径の筒状に形成されている。ガラスピペット1は、シャーレなどの容器7に収容された電解質溶液Sに先端部1Aを浸漬させた状態で図示略の支持部材により鉛直下向きに支持されている。なお、上述したガラスピペット1の吸入口の口径は一つの例であって、前述の範囲に限定されるものではない。
 ガラスピペット1は、例えば、ボロシリケートガラス(ホウケイ酸ガラス)、あるいは、石英ガラスなどからなるキャピラリ管をレーザープラーで引いて先端内径を上述の径に絞ったものを採用できる。なお、ガラスピペット1は、上述の口径を形成できる材料であれば樹脂やセラミックスなど、他の材料から構成されていても良い。
The glass pipette 1 has a tapered tip portion 1A, and has an inlet 1a at the tip of the tip portion 1A. The diameter of the suction port 1a is, for example, about 10 nm to 1000 nm. More specifically, the diameter of the suction port 1a can be formed in the range of about 30 nm to several μm. A central portion 1B and a rear end portion (base end portion) 1C of the glass pipette 1, excluding the tip portion 1A, are formed in a tubular shape having the same outer diameter as that of the raw material capillary. The glass pipette 1 is supported vertically downward by a support member (not shown) in a state in which the tip portion 1A is immersed in an electrolytic solution S contained in a container 7 such as a petri dish. The diameter of the suction port of the glass pipette 1 described above is merely an example, and is not limited to the range described above.
As the glass pipette 1, for example, a capillary tube made of borosilicate glass (borosilicate glass) or quartz glass is pulled by a laser puller to reduce the inner diameter of the tip to the diameter described above. It should be noted that the glass pipette 1 may be made of other materials such as resins and ceramics as long as the material can form the above diameter.
 ガラスピペット1の後端部(基端部)には、撓曲性を有する樹脂パイプなどの第1配管(第1圧力配管)10を介し筒状の金属製の継手部材(ネジ継手)11が接続されている。継手部材11は、その一端側に第1接続部(第1チューブ継手)12が形成され、他端側に第2接続部(第2チューブ継手)13が形成され、第1接続部12に第1配管10が接続されている。継手部材11の第2接続部13に撓曲性を有する樹脂パイプなどの第2配管(第2圧力配管)14を介しポンプ6が接続されている。また、第2配管14の途中部分にT型継手15が組み込まれ、T型継手15に第3配管(第3圧力配管)16を介し圧力測定装置(圧力計)17が接続されている。圧力測定装置17により、ポンプ6がガラスピペット1内に作用させた圧力を計測することができる。 A tubular metal joint member (screw joint) 11 is connected to the rear end (base end) of the glass pipette 1 via a first pipe (first pressure pipe) 10 such as a flexible resin pipe. The joint member 11 has a first connection portion (first tube joint) 12 formed on one end thereof, a second connection portion (second tube joint) 13 formed on the other end side, and a first pipe 10 is connected to the first connection portion 12. A pump 6 is connected to a second connecting portion 13 of the joint member 11 via a second pipe (second pressure pipe) 14 such as a flexible resin pipe. A T-shaped joint 15 is incorporated in the middle of the second pipe 14 , and a pressure measuring device (pressure gauge) 17 is connected to the T-shaped joint 15 via a third pipe (third pressure pipe) 16 . A pressure measuring device 17 makes it possible to measure the pressure exerted by the pump 6 inside the glass pipette 1 .
 第1の疑似参照電極2は、下端側をガラスピペット1の中央部1Bに位置させるとともに、第1配管10を通過するように配置され、第1の疑似参照電極2の上端側は継手部材11の内壁に電気的に接続されている。
 前記継手部材11の周壁に前記電圧源5に接続された第1配線18が接続されている。電圧源5と継手部材11の間の第1配線18には、(微小)電流計測器19が組み込まれている。
 電圧源5において第1配線18が接続された側の極と反対側の極には、第2配線20が接続され、第2配線20は第2の疑似参照電極3に接続され、第2の疑似参照電極3の下端側が電解質溶液Sに浸漬されている。以上の配線構造により、電圧源5から第1の疑似参照電極2と第2の疑似参照電極3の間に必要な電圧を印加できるように構成されている。第1の疑似参照電極2にはAg/AgTPBCl電極、第2の疑似参照電極3には銀塩化銀電極を用いることができる。
The first pseudo reference electrode 2 has its lower end located in the central portion 1B of the glass pipette 1 and is arranged so as to pass through the first pipe 10. The upper end of the first pseudo reference electrode 2 is electrically connected to the inner wall of the joint member 11.
A first wiring 18 connected to the voltage source 5 is connected to the peripheral wall of the joint member 11 . A (micro)current measuring device 19 is incorporated in the first wiring 18 between the voltage source 5 and the joint member 11 .
A second wiring 20 is connected to the pole of the voltage source 5 opposite to the pole to which the first wiring 18 is connected, the second wiring 20 is connected to the second pseudo reference electrode 3, and the lower end side of the second pseudo reference electrode 3 is immersed in the electrolyte solution S. With the wiring structure described above, a necessary voltage can be applied between the first pseudo reference electrode 2 and the second pseudo reference electrode 3 from the voltage source 5 . An Ag/AgTPBCl electrode can be used for the first pseudo reference electrode 2 and a silver-silver chloride electrode can be used for the second pseudo reference electrode 3 .
 図1に示す構成では、電圧源5から第1の疑似参照電極2と第2の疑似参照電極3の間に電圧を印加すると、イオン電流を発生できる。電解質溶液S内に生体試料などの試料22を収容し、ガラスピペット1を後述する3軸ステージを用いて試料22に接近させると、ガラスピペット1の先端部1Aが試料22に近接したある時点からガラスピペット先端を流れるイオン流が遮蔽され、イオン電流が減少する。このようにガラスピペット先端と試料22の間の近接によってイオン電流が減少する現象を指標として、ガラスピペット先端の動きを制御することで、試料22の表面形状を測定することができる。 In the configuration shown in FIG. 1, when a voltage is applied between the first pseudo reference electrode 2 and the second pseudo reference electrode 3 from the voltage source 5, ion current can be generated. When a sample 22 such as a biological sample is contained in the electrolyte solution S, and the glass pipette 1 is brought close to the sample 22 using a three-axis stage, which will be described later, the ion current flowing through the tip of the glass pipette is blocked from a certain point when the tip 1A of the glass pipette 1 approaches the sample 22, and the ion current is reduced. Thus, the surface shape of the sample 22 can be measured by controlling the movement of the tip of the glass pipette using the phenomenon that the ion current decreases due to the proximity between the tip of the glass pipette and the sample 22 as an indicator.
 以上説明した原理を利用した第1実施形態の走査型イオンコンダクタンス顕微鏡Kについて図2A、2Bを基に以下に説明する。
 図2Aに示す除震台25の上に設置した倒立顕微鏡26上に、mm単位で水平面内のX軸方向とY軸方向の移動を可能とするとともに、mm単位で上下Z軸方向の移動を可能とする手動3軸ステージ27が取り付けられている。X軸に対しY軸は90°の角度で交差し、Z軸はx軸とY軸に対し90°の角度で公差する軸であると定義できる。
The scanning ion conductance microscope K of the first embodiment using the principle described above will be described below with reference to FIGS. 2A and 2B.
A manual 3-axis stage 27 is mounted on an inverted microscope 26 placed on an anti-vibration table 25 shown in FIG. 2A. The Y-axis can be defined to intersect the X-axis at a 90° angle, and the Z-axis can be defined as an axis intersecting the x-axis and the Y-axis at a 90° angle.
 手動3軸ステージ27に支持されてZ粗動アクチュエータ28が設けられている。このZ粗動アクチュエータ28は、最大可動域が十数mmレベルであり、μm単位でZ方向の移動を制御可能な駆動装置である。Z粗動アクチュエータ28に支持されて、Zピエゾステージ29が設けられている。Zピエゾステージ29は、最大可動域が数μmレベルであり、1nm以下の分解能でZ方向の移動を制御可能な駆動装置である。
 倒立顕微鏡26上には、最大可動域が十数mmレベルであり、数十nm単位でXY方向の移動を制御可能なXY粗動アクチュエータ30と、その上に最大可動域が数十μmレベルであり、1nm以下の分解能で制御可能なピエゾ素子を利用したXYピエゾステージ31が設置されている。
 また、以上の制御装置近傍にガラスピペット1から取得できるイオン電流を検出・収録できる微小電流計測器19が第1配線18を介し設置されており、ガラスピペット1、第1の疑似参照電極を含む微小電流計測器19を外部からの電磁ノイズから遮蔽できる電磁シールド33を有する。
A Z coarse movement actuator 28 is provided supported by a manual 3-axis stage 27 . The Z coarse movement actuator 28 has a maximum movable range of ten and several millimeters, and is a driving device capable of controlling movement in the Z direction in units of μm. A Z piezo stage 29 is provided supported by a Z coarse motion actuator 28 . The Z piezo stage 29 is a driving device that has a maximum movable range of several micrometers and can control movement in the Z direction with a resolution of 1 nm or less.
On the inverted microscope 26, an XY coarse actuator 30 having a maximum movable range of several tens of millimeters and capable of controlling movement in the XY direction in units of several tens of nanometers, and an XY piezo stage 31 having a maximum movable range of several tens of micrometers and using piezoelectric elements that can be controlled with a resolution of 1 nm or less are installed.
In the vicinity of the control device described above, a minute current measuring instrument 19 capable of detecting and recording the ion current that can be obtained from the glass pipette 1 is installed via a first wiring 18, and has an electromagnetic shield 33 capable of shielding the minute current measuring instrument 19 including the glass pipette 1 and the first pseudo reference electrode from electromagnetic noise from the outside.
 XY粗動アクチュエータ30ならびにXYピエゾステージ31の中央部は開口部を有し、試料底面が倒立顕微鏡の焦点距離となる収容部34が形成されており、その内部に細胞培養ディシュなどの容器7が設置され、Zピエゾステージ29に取付具32によりガラスピペット1が支持されている。
 上述のZピエゾステージ29とXYピエゾステージ31を走査することで、ガラスピペット1は容器7に収容されている試料22に対し、X軸方向とY軸方向とZ軸方向に沿って接近するか離間できるように構成されている。
The XY coarse movement actuator 30 and the XY piezo stage 31 have an opening in the central part, and an accommodation part 34 is formed in which the bottom surface of the sample is the focal length of the inverted microscope.
By scanning the Z piezo stage 29 and the XY piezo stage 31, the glass pipette 1 can approach or separate from the sample 22 accommodated in the container 7 along the X-axis direction, the Y-axis direction, and the Z-axis direction.
 また、収容部34に対し、倒立顕微鏡26として試料拡大画像などを取得するための機能を奏する対物レンズ35が近傍に設置されている。
 なお、図2AではXYピエゾステージ31の上に容器7とガラスピペット1のみを描いているが、図1に示す構造と同じように第2の疑似参照電極3と電圧源5と継手部材11が設置され、これらが第1配線18と第2配線20により接続された構造が採用されているが、図2Aではこれらの記載は略している。
In addition, an objective lens 35 that functions as an inverted microscope 26 to obtain an enlarged image of a sample is installed near the housing portion 34 .
In FIG. 2A, only the container 7 and the glass pipette 1 are drawn on the XY piezo stage 31, but in the same way as the structure shown in FIG.
 図1、図2A、図2Bに示す構成の走査型イオンコンダクタンス顕微鏡Kは、Zピエゾステージ29、Z粗動アクチュエータ28、XYピエゾステージ31、XY粗動アクチュエータ30を利用することにより、ガラスピペット1の先端を容器7に収容されている電解質溶液S内でX軸方向とY軸方向とZ軸方向の任意の位置に移動することができる。
 XY粗動アクチュエータ30とZ粗動アクチュエータ28により3軸1次ステージが構成され、XYピエゾステージ31とZピエゾステージ29により3軸2次ステージが構成されている。
 図1に示す構成を基に先に基本概念を説明した場合と同様に、電圧源5から第1の疑似参照電極2と第2の疑似参照電極3の間に電圧を印加すると、イオン電流が発生する。
 電解質溶液S内に生体試料などの試料22を収容し、ガラスピペット1を試料22に接近させると、ガラスピペット1の吸入口(開口部)1aが試料22に近接したある時点からガラスピペット先端が遮蔽され、イオン電流が減少する。このようにガラスピペット先端と試料22の間の距離によってイオン電流が減少する現象を指標として、ガラスピペットの動きを制御することで、試料22の表面形状をガラスピペット1で走査しながら測定することができる。
 例えば、イオン電流が規定量減少した位置を試料22の表面のごく近傍と推定し、次に試料22の表面からガラスピペット1の先端を少し離し、試料22の表面の水平方向にガラスピペット1を若干(数十nmレベル)移動させ、その位置で再度ガラスピペット1の先端を試料22の表面に接近させるという走査を繰り返す。
The scanning ion conductance microscope K configured as shown in FIGS. 1, 2A, and 2B uses a Z piezo stage 29, a Z coarse motion actuator 28, an XY piezo stage 31, and an XY coarse motion actuator 30, so that the tip of the glass pipette 1 can be moved to any position in the X-axis direction, the Y-axis direction, and the Z-axis direction within the electrolyte solution S contained in the container 7.
The XY coarse motion actuator 30 and Z coarse motion actuator 28 constitute a three-axis primary stage, and the XY piezo stage 31 and Z piezo stage 29 constitute a three-axis secondary stage.
As in the case where the basic concept was explained above based on the configuration shown in FIG. 1, when a voltage is applied between the first pseudo reference electrode 2 and the second pseudo reference electrode 3 from the voltage source 5, an ion current is generated.
When a sample 22 such as a biological sample is placed in the electrolyte solution S and the glass pipette 1 is brought close to the sample 22, the tip of the glass pipette is shielded from a certain point when the inlet (opening) 1a of the glass pipette 1 approaches the sample 22, and the ion current is reduced. By controlling the movement of the glass pipette using the phenomenon that the ion current decreases depending on the distance between the tip of the glass pipette and the sample 22 as described above, the surface shape of the sample 22 can be measured while scanning with the glass pipette 1.
For example, the position where the ion current has decreased by a specified amount is estimated to be very close to the surface of the sample 22, then the tip of the glass pipette 1 is slightly separated from the surface of the sample 22, the glass pipette 1 is moved slightly (several tens of nm level) in the horizontal direction of the surface of the sample 22, and the tip of the glass pipette 1 is brought closer to the surface of the sample 22 again at that position.
 ガラスピペット1は、3軸1次ステージと3軸2次ステージを利用することにより、μmオーダーあるいはnmオーダーの微細距離移動可能となる。また、ガラスピペット1の先端を試料22の表面に接触させることなく走査し、試料22の表面の観察画像を取得できる。
 このため、試料22が細胞等の微細な生体試料であっても、試料22を傷めることなく試料表面の観察画像を取得できる。
The glass pipette 1 can be moved by minute distances on the order of μm or nm by using the three-axis primary stage and the three-axis secondary stage. Moreover, the observation image of the surface of the sample 22 can be obtained by scanning the tip of the glass pipette 1 without contacting the surface of the sample 22 .
Therefore, even if the sample 22 is a fine biological sample such as a cell, an observation image of the sample surface can be acquired without damaging the sample 22 .
 図3は、ガラスピペット1の先端と試料22の距離に応じイオン電流が阻害される状態の一例を示すグラフである。図3において横軸にピペット-試料間距離を表示し、縦軸に示す規格化電流値は微小電流計測器19が測定した電流値を規格化した値を示す。
 ガラスピペット1の先端を試料22の表面に接近させつつイオン電流を計測し、例えば、図3に示すように0.3%程度イオン電流の電流値が低下した位置でガラスピペット1を停止させ、この位置を試料22の表面位置として記憶し、この後、Zピエゾステージ29、XYピエゾステージ31を利用しながら試料22の表面に沿ってガラスピペット1を走査する。
FIG. 3 is a graph showing an example of a state in which the ion current is inhibited according to the distance between the tip of the glass pipette 1 and the sample 22. In FIG. In FIG. 3, the horizontal axis indicates the distance between the pipette and the sample, and the normalized current value indicated on the vertical axis indicates the normalized value of the current value measured by the minute current measuring device 19 .
The ion current is measured while the tip of the glass pipette 1 is brought close to the surface of the sample 22. For example, as shown in FIG.
 以上の走査を試料22の表面に対し繰り返すことで、試料22の表面形状を把握することができる。本発明者らの走査型イオンコンダクタンス顕微鏡において、試料に接触せずに測定できる分解能(非侵襲・高空間分解能)はピペット形状にもよるがおおむね30nm程度であるので、本実施形態の走査型イオンコンダクタンス顕微鏡Kであっても同等の分解能を得ることができる。
 ところで、上述の例では、ピペット1に対し油圧を印加することで吸入と吐出を行ったが、油圧に替えて空気圧を利用し、空気圧を印加することで吸入と吐出を制御しても良い。また、油圧に替えて他の流体を利用し、流体圧を印加するなどの手段を用いて吸入と吐出を制御しても良い。
By repeating the above scanning for the surface of the sample 22, the surface shape of the sample 22 can be grasped. In the scanning ion conductance microscope of the present inventors, the resolving power (non-invasive, high spatial resolution) that can be measured without contacting the sample is approximately 30 nm, although it depends on the shape of the pipette. Therefore, even with the scanning ion conductance microscope K of the present embodiment, an equivalent resolving power can be obtained.
By the way, in the above example, suction and discharge are performed by applying hydraulic pressure to the pipette 1, but instead of hydraulic pressure, air pressure may be used to control suction and discharge by applying air pressure. Also, instead of hydraulic pressure, other fluid may be used to control suction and discharge using means such as applying fluid pressure.
 次に、ガラスピペット1を用いた液体の吸入と吐出について説明する。
 図1、図2A、図2Bに示す構成において、ピペット内部に有機電解液を充填し、ポンプ6からの圧力を作用させていない状態において電圧源5から第1の疑似参照電極2と第2の疑似参照電極3の間に電圧を印加した場合、印加電圧と電流値の制御によりガラスピペット1に液体を吸入し、必要に応じて吸入した液体を吐出することができる。
Next, liquid suction and discharge using the glass pipette 1 will be described.
In the configuration shown in FIGS. 1, 2A, and 2B, when a voltage is applied between the first pseudo reference electrode 2 and the second pseudo reference electrode 3 from the voltage source 5 in a state in which the pipette is filled with an organic electrolyte and the pressure from the pump 6 is not applied, the liquid can be sucked into the glass pipette 1 by controlling the applied voltage and the current value, and the sucked liquid can be discharged as necessary.
 図4のグラフは、内径を70nmとした吸入口1aを有するガラスピペット1を用い、第1の疑似参照電極2と第2の疑似参照電極3の間に加える電圧(V)とポンプ6によって加えられた圧力(5.5kPa、7.5kPa、9.5kPa)を調整した場合、計測された電流(nA)との関係を示す。ピペットの電気抵抗は、溶液の回収量に応じて低下するため、電流値と電圧からだいたいの回収量を推定することが可能である。
 図1、図2A、図2Bに示す構成を採用すると、このピペットでは数万~数百fLの電解質溶液をガラスピペットの先端部に回収できる。なお、図4に示すように、電圧を上げ下げすると、吸入時の電流履歴(矢印eで示す)と吐出時の電流履歴(矢印eで示す)が若干異なるが、概ね線形性を示す。また、圧力の増大によって電流値が減少し、線形性が改善しているが、これは最大回収量を制限でき、電圧変化に対する流量の応答性が向上していることを示している。電圧はサブmV単位で制御できるため、回収量はaLレベルで制御可能である。
The graph in FIG. 4 shows the relationship between the voltage (V) applied between the first pseudo reference electrode 2 and the second pseudo reference electrode 3 and the current (nA) measured when the pressure (5.5 kPa, 7.5 kPa, 9.5 kPa) applied by the pump 6 is adjusted using a glass pipette 1 having an inlet 1a with an inner diameter of 70 nm. Since the electrical resistance of the pipette decreases according to the amount of solution collected, it is possible to roughly estimate the amount collected from the current value and voltage.
With the configuration shown in FIGS. 1, 2A, and 2B, this pipette can collect tens of thousands to hundreds of fL of electrolyte solution at the tip of the glass pipette. As shown in FIG. 4, when the voltage is increased or decreased, the current history during inhalation (indicated by arrow e1 ) and the current history during ejection (indicated by arrow e2 ) are slightly different, but generally exhibit linearity. In addition, the increase in pressure reduces the current value and improves the linearity. Since the voltage can be controlled in sub-mV units, the recovery amount can be controlled at the aL level.
 例えば一例として、0~0.2V程度の範囲でガラスピペット1の吸入口1aからの液体吸引量が極大となる点があるが、その電位からプラス側でもマイナス側でも電位をずらすと液体が吸入口1aから吐出される。
 この現象は、電圧の作用によりガラスピペット1の先端側の液-液界面における張力の変化を生じることが要因とされている。このため、最大回収・吐出量はピペット形状によって決まっており、おおむね―1V以上から1V以下の電圧を加えることで回収量を制御することができる。
For example, there is a point where the amount of liquid sucked from the suction port 1a of the glass pipette 1 is maximized in the range of about 0 to 0.2 V, but when the potential is shifted from that potential to the positive side or the negative side, the liquid is discharged from the suction port 1a.
This phenomenon is attributed to the change in tension at the liquid-liquid interface on the tip side of the glass pipette 1 due to the action of the voltage. Therefore, the maximum recovery/discharge amount is determined by the shape of the pipette, and the recovery amount can be controlled by applying a voltage of approximately -1 V or more to 1 V or less.
 上述の電圧制御を行うことでガラスピペット1は電気化学シリンジとして利用することができる。例えば、図1に示すように試料22に対しガラスピペット1を挿入し、電圧制御することで生体試料の一部をガラスピペット1の内部に吸入し、回収することができる。
 また、ガラスピペット1を試料22から抜き出して別の場所に移動させ、再度、電圧制御することで先に吸入した試料22の一部をガラスピペット1の先端から吐出することができる。
By performing the voltage control described above, the glass pipette 1 can be used as an electrochemical syringe. For example, as shown in FIG. 1, by inserting the glass pipette 1 into the sample 22 and controlling the voltage, part of the biological sample can be sucked into the glass pipette 1 and recovered.
Further, by extracting the glass pipette 1 from the sample 22 and moving it to another place and then performing voltage control again, it is possible to eject a part of the previously sucked sample 22 from the tip of the glass pipette 1 .
 ピペットを用いて液体を吸入する場合、以下の(1)式と(2)式に関する関係を有する。
 図5に示すガラスピペット1において、先端吸入口の半径(R:m)、先端から距離L(m)だけガラスピペット1の長さ方向に離間した位置での内径をRとする。また、質量流量をW(g/s)、圧力損失をΔP(Pa)、流体の密度をρ(g/m)、流体の粘度をμ(Pa・s)、R(m)とRの比率をλとする。半径Rは例えば、30nmなどの値が代入される。
When a pipette is used to aspirate a liquid, there is a relationship regarding the following equations (1) and (2).
In the glass pipette 1 shown in FIG. 5, the radius of the tip inlet (R 0 : m) and the inner diameter at a position separated from the tip by a distance L (m) in the longitudinal direction of the glass pipette 1 are defined as RL . Let W (g/s) be the mass flow rate, ΔP (Pa) be the pressure loss, ρ (g/m 3 ) be the density of the fluid, μ (Pa·s) be the viscosity of the fluid, and λ be the ratio between R L (m) and R 0 . A value such as 30 nm is substituted for the radius R0 .
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 なお、前記(1)式、(2)式は、以下の文献の記載に基づいている。
Anumita Saha-Shah 他著、Chemical Science、「Nanopipettes: probes for local sample analysis Issue 6」、First published 13 Apr. 2015, 頁3334-3341
 また、Anumita Saha-Shahらの上述の文献による研究結果によれば、ガラスピペットのRを150nmとし、先端部1Aが短いガラスピペットと、Rを250nmとし、先端部1Aが長いガラスピペットを用いて、空気圧から溶液を吸入した場合の圧力対回収量(Volume:nL)の計測を行っている。
The formulas (1) and (2) are based on the description in the following literature.
Anumita Saha-Shah et al., Chemical Science, "Nanopipettes: probes for local sample analysis Issue 6", First published 13 Apr. 2015, pp.3334-3341
In addition, according to the research results of the above-mentioned literature by Anumita Saha-Shah et al., a glass pipette with R 0 of 150 nm and a short tip 1A and a glass pipette with R 0 of 250 nm and a long tip 1A are used to measure the pressure vs. recovery amount (Volume: nL) when a solution is sucked from air pressure.
 Anumita Saha-Shahらの研究結果では、ガラスピペットの先端吸入口のRを250nmから150nmのように小さくすると、回収量を維持するには大きな圧力が必要となる事が示されている。(1)式からも先端吸入口の半径Rに関し、流量がR に比例することが明らかであり、ガラスナノピペット1を圧力で制御しようとしても、流量調整が容易ではないことが分かる。
 また、先端径Rが小さい場合、(2)式で示すλが吸引中に大きくなる比率が高まり、先端部の角度が変化するとAnumita Saha-Shahらの研究結果のように、回収量が線形から大きく外れることとなる。なお、先端径Rが小さいものでは先端部1Aは短くなる傾向にあり、長い先端部1Aと小さい先端径Rを両立することはむずかしい。
The results of Anumita Saha-Shah et al. show that as the R 0 of the tip inlet of a glass pipette is reduced, such as from 250 nm to 150 nm, higher pressures are required to maintain recovery. It is clear from equation (1) that the flow rate is proportional to R 04 with respect to the radius R 0 of the tip suction port, and it can be seen that it is not easy to adjust the flow rate even if the glass nanopipette 1 is controlled by pressure.
Also, when the tip diameter R 0 is small, the rate at which λ shown in formula (2) increases during suction increases, and when the angle of the tip changes, the recovery amount deviates greatly from the linearity as in the research results of Anumita Saha-Shah et al. In addition, when the tip diameter R0 is small, the tip portion 1A tends to be short, and it is difficult to achieve both a long tip portion 1A and a small tip diameter R0 .
 これに対し、電気化学シリンジに加えて図1に示すポンプ6を追加した回収装置Aでは、電気化学シリンジ単体あるいは圧力のみによって回収する系と比較して、遙かに精密に吸入量と突出量を調整でき、様々なピペットを使用できる。
 例えば、図6は後述の実施例において、700nmの口径を有するガラスピペットを用いた場合にポンプ6から印加する圧力(kPa)を加えつつ、上述の電圧制御を行うことでガラスピペットに吸入できた液体の回収量を示す。
On the other hand, in the collection device A, in which the pump 6 shown in FIG. 1 is added in addition to the electrochemical syringe, compared with the collection system using only the electrochemical syringe or pressure alone, it is possible to adjust the suction amount and the ejection amount much more precisely, and various pipettes can be used.
For example, FIG. 6 shows the recovery amount of liquid that can be sucked into the glass pipette by performing the above-described voltage control while applying pressure (kPa) applied from the pump 6 when using a glass pipette having a diameter of 700 nm in the examples described later.
 図7は、同様に100nmの口径を有するガラスピペットを用いた場合にポンプ6から印加する圧力(kPa)を加えつつ、上述の電圧制御を行うことでガラスピペットに吸入できた液体の回収量を示す。
 図8は70nmの口径を有するガラスピペットを用いた場合にポンプ6から印加する圧力(kPa)を加えつつ、前述の電圧制御を行うことでガラスピペットに吸入できた液体の回収量を示す。
FIG. 7 shows the amount of liquid that can be sucked into the glass pipette by controlling the voltage as described above while applying pressure (kPa) applied from the pump 6 when using a glass pipette with a diameter of 100 nm.
FIG. 8 shows the recovery amount of the liquid that can be sucked into the glass pipette by performing the voltage control described above while applying pressure (kPa) applied from the pump 6 when using a glass pipette with a diameter of 70 nm.
 図6~図8に示す結果が示す通り、図1に示す回収装置Aでは、吸入口の口径を70~700nmに設定したナノピペットを用い、ポンプ6からガラスピペット1に印加する圧力の制御と、上述の電圧制御を行うことで、従来技術では、電気化学シリンジではピペット形状で決定され、変化させることが不可能であった液体の最大回収量を、回収装置Aでは、数10fL~10万fLの間で精密に制御できることが分かった。即ち、ポンプ6によりガラスピペット1の内部に圧力を印加しながら、電圧制御することにより、図6~図8に示す範囲の液体吸入と液体吐出ができる。
 なお、1nLは1000000(1×10)fLに相当するので、図7の縦軸の回収量100000が0.1nLに相当する。
As the results shown in FIGS. 6 to 8 show, in the recovery device A shown in FIG. 1, a nanopipette with an inlet diameter set to 70 to 700 nm is used, and by controlling the pressure applied from the pump 6 to the glass pipette 1 and performing the voltage control described above, the maximum volume of liquid recovered, which was determined by the shape of the pipette in the electrochemical syringe and could not be changed in the prior art, was found to be precisely controlled in the recovery device A between several tens of fL to 100,000 fL. . That is, by controlling the voltage while applying pressure to the inside of the glass pipette 1 by the pump 6, the liquid can be sucked and discharged within the ranges shown in FIGS.
Since 1 nL corresponds to 1000000 (1×10 6 ) fL, the recovery amount of 100000 on the vertical axis in FIG. 7 corresponds to 0.1 nL.
 図2Aに示す構成の回収装置Aを用い、ピペットの中に有機電解質溶液(具体溶液名:10mMテトラヘキシルアンモニウムテトラキス(4―クロロフェニル)ボレート(THATPBCl)、1.2―ジクロロエタン溶液)を充填して容器7に収容されている電解液の吸入試験を行った。
 先端に口径700nmの吸入口を有するガラスピペットを用い、圧力ポンプ6からガラスピペットに対し+5kPa、+7kPa、+9kPa、+12kPa、+15kPa、+17kPaと印加する圧力を調整し、各圧力において電圧源5から第1の疑似参照電極2と第2の疑似参照電極3間に加える電圧を-0.5~0Vの範囲で掃引してガラスピペットにより吸引した溶液回収量を測定した。
An organic electrolyte solution (specific solution name: 10 mM tetrahexylammonium tetrakis(4-chlorophenyl)borate (THATPBCl), 1.2-dichloroethane solution) was filled in a pipette using the collection device A having the configuration shown in FIG.
Using a glass pipet with a inpettal of 700 nm in the tip, + 5 kpa, + 7 kPa, + 9 kPa, + 15 kPa, + 17 kPa, the pressure to be applied to glass pipet 6 to glass pipettes, and see voltage source 5 to 1 pseudo -sources in each pressure. The voltage applied between the electrode 2 and the second pseudo reference electrode 3 was sweeped within the range of -0.5 to 0 V and the amount of solution recovered by the glass pipet was measured.
 溶液回収量は、ガラスピペットの先端部を横方向から光学顕微鏡により観察し、ガラスピペットで吸引した電解質溶液の液面を観察し、ガラスピペットの先端形状を円錐形に近似し、液面の位置に応じた回収量を円錐形の体積を求める計算手法により求めた。以上の結果を図6に示す。
 図6に示すように、ポンプからガラスピペットに印加する圧力を調整するとともに、電圧を制御することにより、9.7×10fL~6.5×10fLの範囲で最大回収量を調整することができた。
The amount of solution recovered was obtained by observing the tip of the glass pipette from the lateral direction with an optical microscope, observing the liquid surface of the electrolyte solution aspirated with the glass pipette, approximating the shape of the tip of the glass pipette to a cone, and calculating the amount of recovery according to the position of the liquid surface by calculating the volume of the cone. The above results are shown in FIG.
As shown in FIG. 6, by adjusting the pressure applied from the pump to the glass pipette and controlling the voltage, the maximum recovery amount could be adjusted within the range of 9.7×10 1 fL to 6.5×10 4 fL.
 次に、先端に口径100nmの吸入口を有するガラスピペットを用い、ポンプ6からガラスピペットに対し-15kPa、-10kPa、-5kPa、0kPa、+2.5kPa、+5kPa、+7.5kPa、+10kPaと印加する圧力を調整し、各圧力において電圧源5から第1の疑似参照電極2と第2の疑似参照電極3間に加える電圧を-0.5~0Vに設定してガラスピペットにより吸引した場合の電解質溶液回収量を測定した。以上の結果を図7に示す。
 図7に示すように、ポンプからガラスピペットに印加する圧力を調整するとともに、電圧を制御することにより、6.8×10fL~2.7×10fLの範囲で回収量を調整することができた。
Next, using a glass pipette having an inlet with a diameter of 100 nm at the tip, the pressure applied from the pump 6 to the glass pipette is adjusted to -15 kPa, -10 kPa, -5 kPa, 0 kPa, +2.5 kPa, +5 kPa, +7.5 kPa, +10 kPa, and the voltage applied from the voltage source 5 between the first pseudo reference electrode 2 and the second pseudo reference electrode 3 is set to -0.5 to 0 V at each pressure. The recovery amount of the electrolyte solution was measured when aspirated by The above results are shown in FIG.
As shown in FIG. 7, by adjusting the pressure applied from the pump to the glass pipette and controlling the voltage, it was possible to adjust the recovery amount within the range of 6.8×10 1 fL to 2.7×10 3 fL.
 次に、先端に口径70nmの吸入口を有するガラスピペットを用い、ポンプ6からガラスピペットに対し-7.5kPa、-5kPa、0kPa、+5kPaと陰圧から陽圧に渡る圧力を印加する圧力を調整し、各圧力において電圧源5から第1の疑似参照電極2と第2の疑似参照電極3間に加える電圧を-0.5~0Vに設定してガラスピペットにより吸引した場合の電解質溶液回収量を測定した。以上の結果を図8に示す。
 図8に示すように、ポンプからガラスピペットに印加する圧力を調整するとともに、電圧を制御することにより、5.2×10fL~3.7×10fLの範囲で回収量を調整することができた。
Next, using a glass pipette having an inlet with a diameter of 70 nm at the tip, the pressure applied from the pump 6 to the glass pipette from negative pressure to positive pressure was adjusted to -7.5 kPa, -5 kPa, 0 kPa, +5 kPa, and the voltage applied from the voltage source 5 between the first pseudo reference electrode 2 and the second pseudo reference electrode 3 was set to -0.5 to 0 V at each pressure. The above results are shown in FIG.
As shown in FIG. 8, by adjusting the pressure applied from the pump to the glass pipette and controlling the voltage, it was possible to adjust the recovery amount within the range of 5.2×10 2 fL to 3.7×10 3 fL.
 以上説明の通り、ガラスピペットの内部に圧力を印加するとともに、第1の疑似参照電極2と第2の疑似参照電極3間に加える電圧を調整することで、広い範囲の回収量を正確に制御しつつ回収できることが判明した。
 また、ガラスピペットに回収した電解質溶液は、第1の疑似参照電極2と第2の疑似参照電極3間に加える電圧を調整することでも吐出できるので、図に示す構成の回収装置Aを用いることで、溶液の吐出に利用することができる。
 その場合、従来の電圧制御のみを行っていた場合に比べ、吸入量と吐出量を増加できるとともに、微細レンジの吸入と吐出を行ったとして、正確な吸入量と吐出量の制御ができる技術を提供できる。
As described above, by applying pressure to the inside of the glass pipette and adjusting the voltage applied between the first pseudo reference electrode 2 and the second pseudo reference electrode 3, it was found that the recovery amount can be accurately controlled and recovered over a wide range.
In addition, since the electrolyte solution collected in the glass pipette can be discharged by adjusting the voltage applied between the first pseudo reference electrode 2 and the second pseudo reference electrode 3, the collection device A having the configuration shown in the figure can be used for discharging the solution.
In this case, it is possible to increase the intake and discharge amounts compared to the conventional voltage control only, and to provide a technique capable of accurately controlling the intake and discharge amounts assuming that the intake and discharge are performed in a fine range.
 A  回収装置
 K  走査型イオンコンダクタンス顕微鏡(走査型電気プローブ顕微鏡)
 S  電解質溶液
 1  ガラスピペット
 1A  先端部
 1a  吸入口
 2  第1の疑似参照電極
 3  第2の疑似参照電極
 5  電圧源
 6  ポンプ
 7  容器
 10  第1配管(第1配管)
 14  第2配管(第2配管)
 17  圧力測定装置(圧力計)
 18  第1配線
 19  (微小)電流計測器
 20  第2配線
 22  (生体)試料
 26  倒立顕微鏡
 27  手動3軸ステージ
 28  Z粗動アクチュエータ
 29  Zピエゾステージ
 30  XY粗動アクチュエータ
 31  XYピエゾステージ
 33  電磁シールド
A recovery device K scanning ion conductance microscope (scanning electric probe microscope)
S Electrolyte solution 1 Glass pipette 1A Tip 1a Suction port 2 First pseudo reference electrode 3 Second pseudo reference electrode 5 Voltage source 6 Pump 7 Container 10 First pipe (first pipe)
14 second pipe (second pipe)
17 Pressure measuring device (manometer)
18 first wiring 19 (micro) current measuring instrument 20 second wiring 22 (biological) sample 26 inverted microscope 27 manual 3-axis stage 28 Z coarse actuator 29 Z piezo stage 30 XY coarse actuator 31 XY piezo stage 33 electromagnetic shield

Claims (10)

  1.  先端に液体の吸入口を有するピペットと、該ピペットの内部に挿入される第1の疑似参照電極と、前記ピペットが挿入される電解質溶液内に浸漬される第2の疑似参照電極と、前記第1の疑似参照電極と前記第2の疑似参照電極とに接続される電圧源と、電流計測器と、前記ピペットの基端部側に接続されて前記ピペットの内部に陰圧あるいは陽圧を印加するポンプを備えたことを特徴とする回収装置。 A recovery device comprising a pipette having a liquid suction port at its tip, a first pseudo reference electrode inserted into the pipette, a second pseudo reference electrode immersed in the electrolyte solution into which the pipette is inserted, a voltage source connected to the first pseudo reference electrode and the second pseudo reference electrode, a current measuring device, and a pump connected to the proximal end of the pipette to apply negative or positive pressure to the inside of the pipette.
  2.  前記ピペットの基端部に配管を介し前記ポンプが接続され、前記配管の途中に継手部材が組み込まれ、前記第1の疑似参照電極が前記配管と前記継手部材と導通し、外部配線により電流計測器に接続されたことを特徴とする請求項1に記載の回収装置。 The collection device according to claim 1, characterized in that the pump is connected to the proximal end of the pipette through a pipe, a joint member is incorporated in the middle of the pipe, the first pseudo reference electrode is electrically connected to the pipe and the joint member, and is connected to an electric current measuring instrument by external wiring.
  3.  前記電圧源と前記第1の疑似参照電極と前記第2の疑似参照電極を接続した配線に電流計測器が組み込まれたことを特徴とする請求項1または請求項2に記載の回収装置。 3. The recovery device according to claim 1 or 2, wherein a current measuring device is incorporated in wiring connecting the voltage source, the first pseudo reference electrode, and the second pseudo reference electrode.
  4.  前記ポンプと前記ピペットを接続した前記配管に圧力計が接続されたことを特徴とする請求項1~請求項3のいずれか一項に記載の回収装置。 The recovery device according to any one of claims 1 to 3, characterized in that a pressure gauge is connected to the pipe connecting the pump and the pipette.
  5.  前記ピペットの前記吸入口の内径がnmオーダー~μmオーダーであることを特徴とする請求項1~請求項4のいずれか一項に記載の回収装置。 The recovery device according to any one of claims 1 to 4, characterized in that the inner diameter of the suction port of the pipette is on the order of nm to μm.
  6.  請求項1~請求項5のいずれか一項に記載の回収装置を備え、前記ピペットが3軸ステージに支持されたことを特徴とする走査型イオンコンダクタンス顕微鏡。 A scanning ion conductance microscope comprising the recovery device according to any one of claims 1 to 5, wherein the pipette is supported by a triaxial stage.
  7.  前記3軸ステージが、可動域がmmオーダー・精度がμmオーダーの移動を可能とする3軸1次ステージと、可動域がμmオーダー・精度がnmオーダーの移動を可能とする3軸2次ステージを有することを特徴とする請求項6に記載の走査型イオンコンダクタンス顕微鏡。 The scanning ion conductance microscope according to claim 6, characterized in that the three-axis stage has a three-axis primary stage that enables movement with a range of motion on the order of mm and an accuracy on the order of µm, and a three-axis secondary stage that enables movement on a range of motion on the order of µm and an accuracy on the order of nm.
  8.  先端に吸入口を有するピペットと、前記ピペットの内部に挿入される第1の疑似参照電極と、前記ピペットの内部に圧力を印加するポンプと、第2の疑似参照電極を用い、
     電解質溶液に前記ピペットの先端側と第2の疑似参照電極を浸漬し、前記ピペット内に前記ポンプにより圧力を印加した状態で前記第1の疑似参照電極と前記第2の疑似参照電極に印加する電圧を制御することにより、前記ピペット内に前記電解質溶液あるいは前記電解質溶液内に収容された試料を吸入することを特徴とする回収方法。
    Using a pipette having an inlet at the tip, a first pseudo reference electrode inserted inside the pipette, a pump that applies pressure inside the pipette, and a second pseudo reference electrode,
    A recovery method comprising: immersing the tip side of the pipette and the second pseudo reference electrode in the electrolyte solution; and controlling the voltage applied to the first pseudo reference electrode and the second pseudo reference electrode in a state in which pressure is applied to the inside of the pipette by the pump, thereby aspirating the electrolyte solution or a sample contained in the electrolyte solution into the pipette.
  9.  前記ピペットとして、先端に吸入口を有し、該吸入口の内径がnmオーダー~nmオーダーであるピペットを用いることを特徴とする請求項8に記載の回収方法。 The recovery method according to claim 8, wherein the pipette has an inlet at its tip and the inner diameter of the inlet is on the order of nm to nm.
  10.  前記電解質溶液に試料を浸漬し、該試料または該試料の一部を前記ピペットで前記電解質溶液とともに吸引することを特徴とする請求項8または請求項9に記載の回収方法。 The recovery method according to claim 8 or 9, characterized in that the sample is immersed in the electrolyte solution, and the sample or part of the sample is sucked with the pipette together with the electrolyte solution.
PCT/JP2023/001520 2022-01-21 2023-01-19 Collecting device, scanning ion conductance microscope provided with same, and collecting method WO2023140324A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022007949A JP2023106932A (en) 2022-01-21 2022-01-21 Collecting device, scanning ion conductance microscope provided with the same, and collecting method
JP2022-007949 2022-01-21

Publications (1)

Publication Number Publication Date
WO2023140324A1 true WO2023140324A1 (en) 2023-07-27

Family

ID=87348270

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/001520 WO2023140324A1 (en) 2022-01-21 2023-01-19 Collecting device, scanning ion conductance microscope provided with same, and collecting method

Country Status (2)

Country Link
JP (1) JP2023106932A (en)
WO (1) WO2023140324A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012010664A (en) * 2010-07-02 2012-01-19 Kanagawa Acad Of Sci & Technol Device for analyzing cell
JP2014513924A (en) * 2011-03-03 2014-06-19 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア Nanopipette device for cell manipulation
JP2016512436A (en) * 2013-03-14 2016-04-28 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア Nanopipette apparatus and method for intracellular analysis
JP2018153142A (en) * 2017-03-17 2018-10-04 セイコーインスツル株式会社 Nanopipette
JP2019535245A (en) * 2016-10-19 2019-12-12 ジェネラル オートメーション ラボ テクノロジーズ インコーポレイテッド High-throughput microbiology-applied high-resolution system, kit, device, and microorganism and other screening methods
JP2021018147A (en) * 2019-07-19 2021-02-15 国立大学法人金沢大学 Scanning ion conductance microscope enabling operand measurement

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012010664A (en) * 2010-07-02 2012-01-19 Kanagawa Acad Of Sci & Technol Device for analyzing cell
JP2014513924A (en) * 2011-03-03 2014-06-19 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア Nanopipette device for cell manipulation
JP2016512436A (en) * 2013-03-14 2016-04-28 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア Nanopipette apparatus and method for intracellular analysis
JP2019535245A (en) * 2016-10-19 2019-12-12 ジェネラル オートメーション ラボ テクノロジーズ インコーポレイテッド High-throughput microbiology-applied high-resolution system, kit, device, and microorganism and other screening methods
JP2018153142A (en) * 2017-03-17 2018-10-04 セイコーインスツル株式会社 Nanopipette
JP2021018147A (en) * 2019-07-19 2021-02-15 国立大学法人金沢大学 Scanning ion conductance microscope enabling operand measurement

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
IDA HIROKI, TAKAHASHI YASUFUMI, KUMATANI AKICHIKA, SHIKU HITOSHI, MURAYAMA TOMO, HIROSE HISAAKI, FUTAKI SHIROH, MATSUE TOMOKAZU: "Nanoscale Visualization of Morphological Alteration of Live-Cell Membranes by the Interaction with Oligoarginine Cell-Penetrating Peptides", ANALYTICAL CHEMISTRY, AMERICAN CHEMICAL SOCIETY, US, vol. 93, no. 13, 6 April 2021 (2021-04-06), US , pages 5383 - 5393, XP093079439, ISSN: 0003-2700, DOI: 10.1021/acs.analchem.0c04097 *
IDA, HIROKI: "1S02e-02: Direct recovery and evaluation of endogenous particulates using nanopipettes", ANNUAL MEETING OF THE JAPANESE BIOCHEMICAL SOCIETY; NOVEMBER 3, 2021 - NOVEMBER 5, 2021, JAPANESE BIOCHEMICAL SOCIETY, JP, vol. 94, 1 January 2021 (2021-01-01) - 5 November 2021 (2021-11-05), JP, pages 1S02e - 02, XP009548009 *
IMURA FUMITO, KUROIWA HIROYUKI, NAKADA AKIRA, KOSAKA KOUJI, KUBOTA HIROSHI: "Attoliter Control of Microliquid", JAPANESE JOURNAL OF APPLIED PHYSICS, JAPAN SOCIETY OF APPLIED PHYSICS, JP, vol. 46, no. 11, 1 November 2007 (2007-11-01), JP , pages 7519 - 7523, XP093079435, ISSN: 0021-4922, DOI: 10.1143/JJAP.46.7519 *

Also Published As

Publication number Publication date
JP2023106932A (en) 2023-08-02

Similar Documents

Publication Publication Date Title
US7870616B2 (en) Probe arrangement
CN110763752B (en) Single cell extraction electrospray mass spectrometry system and method
US4924091A (en) Scanning ion conductance microscope
US9255245B2 (en) Sample probes and methods for sampling intracellular material
ES2624930T3 (en) Instrumented pipette tip
US11311872B2 (en) Pipetting device comprising a fluid volume sensor and fluid processing system
WO2007109323A2 (en) Piezoresistive cantilever based nanoflow and viscosity sensor for microchannels
JP4373427B2 (en) Electrical dripping monitoring
US10910749B2 (en) Tip connector for fluidic and electrical connection
US9201058B2 (en) Apparatus and method for sensing a time varying ionic current in an electrolytic system
US20120019270A1 (en) Microfabricated pipette and method of manufacture
WO2023140324A1 (en) Collecting device, scanning ion conductance microscope provided with same, and collecting method
JP2008275481A (en) Device and method for analyzing biomolecule function structure
Tognoni et al. Characterization of tip size and geometry of the pipettes used in scanning ion conductance microscopy
JP5950280B2 (en) Method for spatially manipulating a micro object and apparatus for carrying out said method
JP2003125750A (en) Micropipette, injection apparatus and method of microinjection
US20050017173A1 (en) Individually addressable nanoelectrode array
JP4645912B2 (en) Biological sample manipulation method
CN102211754B (en) AFM (Atomic Force Microscopy)-based processing method of nanometer channel
Chen et al. Gauging surface charge distribution of live cell membrane by ionic current change using scanning ion conductance microscopy
US8907684B2 (en) Nanofluidic channel with embedded transverse nanoelectrodes and method of fabrication for same
WO2018110052A1 (en) Dispensing device and dispensing method
JP2008157783A (en) Sampling pipe for trace amount of sample
Chu et al. A micromachined Kelvin probe with integrated actuator for microfluidic and solid-state applications
WO2005001459A2 (en) Micromachined probe apparatus and methods for making and using same to characterize liquid in a fluidic channel and map embedded charge in a sample on a substrate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23743317

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE