WO2023140316A1 - Adhesive composition and adhesive sheet - Google Patents

Adhesive composition and adhesive sheet Download PDF

Info

Publication number
WO2023140316A1
WO2023140316A1 PCT/JP2023/001479 JP2023001479W WO2023140316A1 WO 2023140316 A1 WO2023140316 A1 WO 2023140316A1 JP 2023001479 W JP2023001479 W JP 2023001479W WO 2023140316 A1 WO2023140316 A1 WO 2023140316A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
pressure
sensitive adhesive
polyester
less
Prior art date
Application number
PCT/JP2023/001479
Other languages
French (fr)
Japanese (ja)
Inventor
大介 川西
理仁 丹羽
翔希 藤井
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Publication of WO2023140316A1 publication Critical patent/WO2023140316A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/06Non-macromolecular additives organic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/08Macromolecular additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J167/00Adhesives based on polyesters obtained by reactions forming a carboxylic ester link in the main chain; Adhesives based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • C09J7/38Pressure-sensitive adhesives [PSA]

Definitions

  • the present invention relates to an adhesive composition and an adhesive sheet.
  • This application claims priority based on Japanese Patent Application No. 2022-8141 filed on January 21, 2022, the entire contents of which are incorporated herein by reference.
  • pressure-sensitive adhesives exhibit a soft solid (viscoelastic) state in a temperature range near room temperature, and have the property of easily adhering to adherends under pressure.
  • pressure-sensitive adhesives are typically in the form of pressure-sensitive adhesive sheets containing a layer of the pressure-sensitive adhesive in various industrial fields such as home appliances, automobiles, various machines, electrical equipment, and electronic devices.
  • various adhesives such as acrylic adhesives, rubber adhesives, polyester adhesives, etc. are used according to the purpose of use, the place of use, required properties, and the like.
  • Patent Documents 1 to 3 are cited as documents disclosing prior art regarding polyester pressure-sensitive adhesives.
  • Adhesive sheets are preferably used, for example, for fixing members in mobile electronic devices such as mobile phones, smartphones, and tablet computers.
  • a thin-layer adhesive is preferably used in view of the demands for lighter weight, smaller size, thinner thickness, higher functionality, and the like of the above-mentioned portable electronic devices.
  • adhesive sheets for mobile electronic devices those using an acrylic adhesive with an acrylic polymer as a base polymer are the mainstream, and in addition, for example, a synthetic rubber adhesive with a rubber block copolymer such as a styrene-butadiene block copolymer as a base polymer can be used.
  • Polyester-based adhesives are excellent in various properties such as chemical resistance, water resistance, durability, and optical properties (transparency), and can exhibit adhesive properties equal to or higher than those of acrylic adhesives and synthetic rubber-based adhesives, so they are expected to be used as adhesives for mobile electronic devices.
  • the polyester-based pressure-sensitive adhesive can be synthesized using biomass materials, so it has the advantage of being able to reduce dependence on fossil resource-based materials (for example, Patent Documents 1 and 2).
  • polyester-based polymers used in polyester-based adhesives have a lower molecular weight than acrylic polymers and the like, so adhesive compositions containing polyester-based polymers tend to have low viscosities. Therefore, when forming a thin polyester-based pressure-sensitive adhesive, problems such as repelling tend to occur due to its low viscosity.
  • the pressure-sensitive adhesive composition is usually diluted with a solvent or the like. However, if a low-viscosity pressure-sensitive adhesive composition is diluted, the viscosity of the pressure-sensitive adhesive composition will further decrease, and problems such as repelling will easily occur after coating.
  • the pressure-sensitive adhesive composition For thin coating, the pressure-sensitive adhesive composition must have an appropriate viscosity even after dilution. Further, for example, if the solid content concentration is increased in order to increase the viscosity of the polyester-based pressure-sensitive adhesive composition, the crosslinking reaction may proceed before the pressure-sensitive adhesive layer is formed, and a sufficient pot life cannot be obtained. Therefore, in order to obtain a thin polyester-based pressure-sensitive adhesive with good quality, the actual situation is that there are restrictions on the selection of a pressure-sensitive adhesive sheet manufacturing machine, the adjustment of the viscosity of the pressure-sensitive adhesive composition, and the like.
  • a tackifying resin it is considered essential to add a tackifying resin to the polyester-based adhesive in order to obtain sufficient adhesive properties for mobile electronic device applications, where the adhesive area tends to be limited.
  • the addition of a tackifying resin further reduces the viscosity of the adhesive composition. Under these circumstances, it tends to be more difficult in terms of industrial production to achieve both adhesive properties required for use in portable electronic devices and the ability to form a thin adhesive layer. It would be useful from the viewpoint of industrial production if a thin polyester-based pressure-sensitive adhesive having good quality could be obtained by using a commonly used pressure-sensitive adhesive sheet manufacturing machine, reducing process restrictions and loads such as viscosity adjustment, and devising the components contained in the pressure-sensitive adhesive composition.
  • the present invention was created in view of the above circumstances, and aims to provide a pressure-sensitive adhesive composition containing a polyester-based polymer and a cross-linking agent, and containing a predetermined amount or more of a tackifying resin, based on the components contained in the pressure-sensitive adhesive composition, which facilitates the formation of a thin pressure-sensitive adhesive of good quality.
  • Another related object is to provide a pressure-sensitive adhesive sheet having a pressure-sensitive adhesive layer formed using the pressure-sensitive adhesive composition.
  • a pressure-sensitive adhesive composition containing a polyester-based polymer, a tackifying resin and a cross-linking agent is provided.
  • the content of the tackifying resin is 20 parts by weight or more with respect to 100 parts by weight of the polyester polymer.
  • the weight average molecular weight (Mw) of the polyester polymer is 110,000 or more.
  • the adhesive composition contains a predetermined amount or more of a tackifying resin for adhesive properties and tends to have a low viscosity, but by using a polyester-based polymer having an Mw of 110,000 or more, the adhesive composition has an appropriate viscosity.
  • the pressure-sensitive adhesive composition contains a cross-linking agent, if the concentration is increased for viscosity adjustment or the like, the cross-linking reaction may proceed before the pressure-sensitive adhesive layer is formed.
  • the Mw of the polyester polymer makes it easy to obtain a good viscosity, so there is no need to increase the concentration of the pressure-sensitive adhesive composition excessively (meaning beyond the normal range).
  • Such a pressure-sensitive adhesive composition is easy to handle and easy to form a thin pressure-sensitive adhesive.
  • the content of the tackifying resin is 20 parts by weight or more and less than 100 parts by weight with respect to 100 parts by weight of the polyester polymer.
  • an adhesive composition having a solid content concentration of 10 to 70% by weight and a viscosity of 10 to 10000 mPa ⁇ s at 23°C, a thin adhesive can be formed with good productivity.
  • an isocyanate-based cross-linking agent is preferably used as the cross-linking agent.
  • the degree of cross-linking of the polyester-based pressure-sensitive adhesive can be effectively increased.
  • the adhesive composition (and thus the adhesive) contains a cross-linking catalyst.
  • a composition containing a cross-linking catalyst if the concentration of the pressure-sensitive adhesive composition is increased for viscosity adjustment or the like, the cross-linking reaction tends to proceed before the formation of the pressure-sensitive adhesive layer.
  • the pressure-sensitive adhesive composition contains a cross-linking catalyst and can be suitable for forming a thin pressure-sensitive adhesive with good handleability.
  • a polyester polymer in which 50% or more of the constituent carbon is biomass-derived carbon is used as the polyester polymer.
  • environmental problems such as global warming have come to be emphasized, and it is desired to reduce the amount of fossil resource-based materials such as petroleum used.
  • both the above acrylic adhesives and synthetic rubber adhesives are adhesives whose main raw materials are fossil resources such as petroleum, and in reality, it is difficult to reduce fossil resource-based materials, and there is a limit to switching to renewable organic resources.
  • the polyester-based polymer used for the polyester-based pressure-sensitive adhesive can be synthesized using a biomass material. By using a polyester-based polymer having a bio rate of 50% or more, dependence on fossil resource-based materials can be reduced.
  • biomass materials typically refer to materials derived from biological resources (typically photosynthetic plants) that can be sustainably reproduced in the presence of sunlight, water, and carbon dioxide.
  • a pressure-sensitive adhesive sheet having a pressure-sensitive adhesive layer is provided.
  • the pressure-sensitive adhesive layer contains a polyester polymer, a tackifying resin and a cross-linking agent.
  • the content of the tackifying resin in the adhesive layer is 20 parts by weight or more with respect to 100 parts by weight of the polyester polymer.
  • the polyester-based polymer has a weight average molecular weight of 110,000 or more.
  • the pressure-sensitive adhesive layer has a thickness in the range of 5-50 ⁇ m. According to the technology disclosed herein, a pressure-sensitive adhesive sheet having a thin pressure-sensitive adhesive layer with a thickness of about 5 to 50 ⁇ m can be produced with good productivity with less restrictions and load on the manufacturing process.
  • the pressure-sensitive adhesive sheet disclosed herein has good adhesive properties obtained by using a tackifying resin, and the thin pressure-sensitive adhesive layer is formed with good quality and productivity. Therefore, it is suitable for use in mobile electronic devices, where a thin pressure-sensitive adhesive with high adhesive properties is required due to demands such as weight reduction, miniaturization, thin thickness, and high functionality.
  • a thin pressure-sensitive adhesive with high adhesive properties is required due to demands such as weight reduction, miniaturization, thin thickness, and high functionality.
  • the inside of a portable electronic device may include a heat-generating element such as a battery, it may be exposed to a temperature of 40° C. or higher, for example.
  • a portable electronic device using any adhesive sheet disclosed herein in other words, a portable electronic device including the adhesive sheet is provided.
  • FIG. 1 is a cross-sectional view schematically showing the configuration of a pressure-sensitive adhesive sheet according to one embodiment
  • FIG. FIG. 3 is a cross-sectional view schematically showing the configuration of a pressure-sensitive adhesive sheet according to another embodiment
  • FIG. 3 is a cross-sectional view schematically showing the configuration of a pressure-sensitive adhesive sheet according to another embodiment
  • 1 is a front view schematically showing an example of a mobile electronic device including an adhesive sheet
  • polyester polymer contains a polyester-based polymer (hereinafter, unless otherwise specified, the matters described for the adhesive composition can also be applied to the adhesive (layer) described later).
  • a pressure-sensitive adhesive composition or pressure-sensitive adhesive containing a polyester-based polymer is also referred to as a polyester-based pressure-sensitive adhesive composition or a polyester-based pressure-sensitive adhesive.
  • the above polyester-based polymer is typically contained in the pressure-sensitive adhesive layer as a base polymer.
  • the base polymer refers to a main component of a rubber-like polymer (a polymer exhibiting rubber elasticity in a temperature range around room temperature) contained in the pressure-sensitive adhesive composition or pressure-sensitive adhesive (layer).
  • the term "main component” refers to a component contained in an amount exceeding 50% by weight unless otherwise specified.
  • the polyester-based polymer refers to a polymer obtained by polycondensation of a dicarboxylic acid and a diol.
  • the weight average molecular weight (Mw) of the polyester polymer used in the technology disclosed herein is 110,000 or more.
  • Mw weight average molecular weight
  • the pressure-sensitive adhesive composition can obtain an appropriate viscosity and easily form a thin pressure-sensitive adhesive having good quality.
  • Such a pressure-sensitive adhesive composition does not need to be excessively concentrated, and even if it contains a cross-linking agent, it tends to have a sufficient pot life and is excellent in handleability.
  • the Mw of the polyester-based polymer is 120,000 or greater, and may be 125,000 or greater.
  • the cohesive force of the pressure-sensitive adhesive layer is increased, and the holding power and, in turn, the high-temperature holding power are improved.
  • a high-molecular-weight polyester-based polymer as described above it is easy to obtain excellent repulsion resistance.
  • the upper limit of the Mw of the polyester-based polymer is usually about 30 ⁇ 10 4 or less, preferably about 20 ⁇ 10 4 or less, more preferably about 15 ⁇ 10 4 or less from the viewpoint of adhesive strength and the like.
  • Mw of a polyester-based polymer refers to a value in terms of standard polystyrene obtained by GPC (gel permeation chromatography).
  • GPC gel permeation chromatography
  • model name "HLC-8320GPC” column: TSKgelGMH-H(S), manufactured by Tosoh Corporation
  • GPC measurement can be performed under the following conditions. It is measured by the same method in the examples described later.
  • the glass transition temperature (Tg) of the polyester-based polymer is advantageously about 15°C or less, preferably about 0°C or less, more preferably about -15°C or less, even more preferably about -20°C or less, particularly preferably about -25°C or less (for example, about -30°C or less).
  • Tg glass transition temperature
  • the adhesive strength can be preferably improved.
  • the Tg of the polyester polymer is usually about -80°C or higher, preferably about -60°C or higher, more preferably about -45°C or higher, still more preferably about -40°C or higher, and may be about -35°C or higher.
  • the Tg of the polyester-based polymer can be adjusted by appropriately changing the monomer composition (that is, the types and usage ratio of the monomers used in synthesizing the polymer).
  • the Tg of the polyester polymer is measured by the following method. That is, a disc-shaped test piece having a thickness of 2 mm and a diameter of 8 mm is prepared using a polyester-based polymer to be measured. This test piece is sandwiched between parallel plates for shear testing, and the peak value of tan ⁇ (loss elastic modulus G''/storage elastic modulus G') is obtained at a frequency of 1 Hz using a measuring device (ARES, manufactured by Rheometric Scientific), and the temperature of the peak value is defined as Tg (glass transition temperature) [°C]. It is measured by the same method in the examples described later.
  • 50% or more of the constituent carbon of the polyester-based polymer is biomass-derived carbon.
  • the biomass carbon ratio (also referred to as biorate) of the polyester-based polymer is preferably 50% or more.
  • the bio-content of the polyester-based polymer is 52% or greater, suitably 55% or greater, and may be, for example, 60% or greater.
  • the bio rate of the polyester-based polymer is preferably 70% or higher, more preferably 75% or higher, still more preferably 80% or higher, and may be 85% or higher, or 88% or higher.
  • the upper limit of the bio rate is 100% by definition, in some embodiments, the bio rate of the polyester-based polymer may be, for example, 95% or less, and when more emphasis is placed on adhesive performance, it may be 92% or less, 90% or less, or 85% or less.
  • the polyester-based polymer may have a bio-factor of less than 50%, less than 30%, less than 10%, or less than 1%.
  • the bio-rate of the polyester-based polymer may be substantially 0%.
  • biomass-derived carbon in this specification means carbon derived from biomass materials, that is, materials derived from renewable organic resources (renewable carbon).
  • biomass materials typically refer to materials derived from biological resources (typically photosynthetic plants) that can be sustainably reproduced in the presence of sunlight, water, and carbon dioxide. Therefore, materials derived from fossil resources that are depleted by use after mining (fossil resource-based materials) are excluded from the concept of biomass materials here.
  • the bio-rate of a polyester-based polymer that is, the ratio of biomass-derived carbon to the total carbon contained in the polyester-based polymer can be estimated from the carbon isotope content with a mass number of 14 measured according to ASTM D6866. The same applies to the examples described later.
  • Dicarboxylic acid Any of aliphatic dicarboxylic acids, dimer acids, alicyclic dicarboxylic acids, unsaturated dicarboxylic acids, and aromatic dicarboxylic acids can be used as the dicarboxylic acid used for synthesizing the polyester-based polymer.
  • dicarboxylic acids include aliphatic dicarboxylic acids such as malonic acid, succinic acid, glutaric acid, dimethylglutaric acid, adipic acid, trimethyladipic acid, pimelic acid, suberic acid, azelaic acid, dodecanedioic acid, sebacic acid, thiodipropionic acid and diglycolic acid; dimer acids obtained by dimerizing fatty acids such as oleic acid and erucic acid; 1,2-cyclopentanedicarboxylic acid, 1,2-cyclohexanedicarboxylic acid, Alicyclic dicarboxylic acids such as 1,3-cyclohexanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, 4-methyl-1,2-cyclohexanedicarboxylic acid, norbornanedicarboxylic acid and adamantanedicarboxylic acid; unsaturated dicarboxylic acids such as male,
  • the dicarboxylic acid derivatives include derivatives such as carboxylates, carboxylic acid anhydrides, carboxylic acid halides, and carboxylic acid esters. By appropriately selecting and using one or more of these dicarboxylic acids, it is possible to obtain a polyester polymer capable of exhibiting good adhesive properties such as being suitable for both adhesive strength and high temperature holding power.
  • a plant-derived dicarboxylic acid as the dicarboxylic acid from the viewpoint of obtaining a polyester-based polymer with a high bio-ratio.
  • suitable examples of such dicarboxylic acids include sebacic acid derived from plants (eg, castor oil), and dimer acid derived from fatty acids such as oleic acid and erucic acid. Plant-derived dicarboxylic acids can be used singly or in combination of two or more.
  • the weight ratio of the plant-derived dicarboxylic acid in the total amount (total weight) of the dicarboxylic acids as monomer components of the polyester polymer is appropriately set to about 1% by weight or more, preferably about 10% by weight or more, more preferably about 50% by weight or more, even more preferably about 70% by weight or more, particularly preferably about 80% by weight or more, and may be about 90% by weight or more, It may be approximately 95% by weight or more (eg, 95 to 100% by weight).
  • the upper limit of the weight ratio of the plant-derived dicarboxylic acid is 100% by weight, and from the viewpoint of adhesive properties such as high-temperature holding power, it is suitably about 99% by weight or less, preferably about 95% by weight or less, and may be about 90% by weight or less.
  • a dimer acid is used as the plant-derived dicarboxylic acid.
  • a dimer acid By using a dimer acid, the bio rate of the polyester-based polymer can be increased while obtaining good adhesive properties.
  • a dimer acid can be used individually by 1 type or in combination of 2 or more types.
  • the weight ratio of the dimer acid to the total amount (total weight) of the dicarboxylic acid as the monomer component of the polyester polymer is suitably about 1% by weight or more, preferably about 10% by weight or more, more preferably about 50% by weight or more, even more preferably about 70% by weight or more, particularly preferably about 80% by weight or more, and may be about 90% by weight or more, or about 95% by weight or more (for example, 95 to 1%). 00% by weight).
  • the polymer can be designed based on the properties of the dimer acid.
  • the upper limit of the weight ratio of the dimer acid is 100% by weight, and from the viewpoint of adhesive properties such as high-temperature holding power, it is suitably about 99% by weight or less, preferably about 95% by weight or less, and may be about 90% by weight or less.
  • sebacic acid may be used as the plant-derived dicarboxylic acid.
  • the use of sebacic acid can also increase the bio-rate of the polyester polymer.
  • the weight ratio of sebacic acid to the total amount (total weight) of the dicarboxylic acid as the monomer component of the polyester polymer may be about 1% by weight or more, for example about 10% by weight or more, about 50% by weight or more, about 70% by weight or more, or about 90% by weight or more (for example, 95 to 100% by weight).
  • the weight ratio of the sebacic acid may be approximately 95% by weight or less, or may be approximately 75% by weight or less, or may be approximately 60% by weight or less from the viewpoint of adhesive properties such as high-temperature holding power.
  • the technology disclosed herein can be practiced in either a mode in which the dicarboxylic acid used as a monomer component for synthesizing the polyester polymer contains sebacic acid or no sebacic acid.
  • the weight ratio of the sebacic acid may be about 50% by weight or less, about 30% by weight or less, about 10% by weight or less, about 3% by weight or less, or less than 1% by weight, and the dicarboxylic acid used for synthesizing the polyester polymer may be substantially free of sebacic acid.
  • the molecular weight of the plant-derived dicarboxylic acid is not particularly limited, and is suitably 100 or more, and may be 150 or more.
  • the molecular weight of the plant-derived dicarboxylic acid is suitably about 1,000 or less, for example, 800 or less, 700 or less, or 600 or less, from the standpoint of monomer availability and synthesizability.
  • Preferred examples of dicarboxylic acids having the above molecular weights include dimer acids.
  • the molecular weight calculated from the chemical formula is adopted as the molecular weight of the dicarboxylic acid.
  • the molecular weight of the dicarboxylic acid e.g., the plant-derived dicarboxylic acid
  • the molecular weight of the dicarboxylic acid is the sum of the products of the molecular weight and weight fraction of each dicarboxylic acid (total value).
  • aromatic dicarboxylic acids are preferably used as the dicarboxylic acid used for synthesizing the polyester-based polymer disclosed herein.
  • the use of a dicarboxylic acid containing an aromatic dicarboxylic acid tends to increase the cohesive force and improve the high-temperature holding power.
  • an aromatic dicarboxylic acid as the dicarboxylic acid, the amount of the cross-linking agent used can be suppressed, so that it is easy to improve the high-temperature holding power while maintaining or improving the adhesive strength.
  • Suitable examples of the aromatic dicarboxylic acid include isophthalic acid, terephthalic acid and orthophthalic acid, with terephthalic acid being more preferred. These can be used individually by 1 type or in combination of 2 or more types.
  • biomass-derived terephthalic acid and its derivatives can be used as the dicarboxylic acid.
  • the method for obtaining the biomass-derived dicarboxylic acid is not particularly limited.
  • biomass-derived terephthalic acid is converted to isobutylene after isobutanol is obtained from corn, sugars, and wood, which is then dimerized to obtain isooctene, and the method described in Chemischetechnik, vol.38, No.3, p116-119; and oxidizing it to obtain terephthalic acid (International Publication No. 2009/079213).
  • the weight ratio of the aromatic dicarboxylic acid to the total amount (total weight) of the dicarboxylic acid in the monomer component of the polyester polymer is not particularly limited, and is suitably about 1% by weight or more, and from the viewpoint of improving high-temperature holding power, it is preferably about 3% by weight or more, more preferably about 5% by weight or more, and even more preferably about 7% by weight or more.
  • the upper limit of the weight ratio of the aromatic carboxylic acid may vary depending on other dicarboxylic acid species, and is not limited to a specific range.
  • dicarboxylic acids derived from fossil resources are used from the viewpoint of obtaining desired adhesive properties in consideration of productivity, efficiency, and cost.
  • dicarboxylic acids eg aliphatic dicarboxylic acids
  • examples of such dicarboxylic acids include dimethylglutaric acid, adipic acid, trimethyladipic acid, pimelic acid, suberic acid, azelaic acid.
  • adipic acid is preferably used as the aliphatic dicarboxylic acid.
  • the dicarboxylic acids (eg, aliphatic dicarboxylic acids) derived from fossil resources may be used singly or in combination of two or more.
  • the molecular weight of the dicarboxylic acid used as a monomer component for synthesizing the polyester-based polymer disclosed herein is not particularly limited, and is suitably 100 or more, and may be 150 or more. In some embodiments, the molecular weight of the dicarboxylic acid used may be 200 or greater, 250 or greater, 350 or greater, 450 or greater, or 500 or greater (eg, 530 or greater). On the other hand, the molecular weight of the dicarboxylic acid is suitably about 1000 or less from the viewpoint of monomer availability and synthesizability, and may be, for example, 800 or less, 700 or less, or 600 or less (e.g., 550 or less).
  • the polyester-based polymer disclosed herein (having an Mw of a predetermined value or more, preferably having a Tg within a predetermined range) is preferably synthesized using a dicarboxylic acid having a molecular weight within the above range.
  • diol Any of (poly)alkylene glycols, aliphatic diols, dimer diols, alicyclic diols, aromatic diols, and unsaturated diols can be used as diols used for synthesizing the polyester-based polymer disclosed herein.
  • diol examples include (poly)alkylene glycols such as ethylene glycol, diethylene glycol, triethylene glycol, polyethylene glycol, propylene glycol, dipropylene glycol, polypropylene glycol, and polytetramethylene glycol; Pandiol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, 1,5-pentanediol, 3-methyl-1,5-pentanediol, 1,6-hexanediol, 2-methyl-1,3-hexanediol, 2,2,4-trimethyl-1,6-hexanediol, 1,8-octanediol, 1,9-nonanediol, 1,10-decanediol and other aliphatic diols Ol; dimer diols (such as dimer diols derived from fatty acids such as oleic acid
  • the diol is preferably (poly)alkylene glycols, aliphatic diols or alicyclic diols, more preferably (poly)alkylene glycols or aliphatic diols.
  • diols preferably ethylene glycol and aliphatic diols
  • dicarboxylic acid preferably dimer acid and aromatic dicarboxylic acid
  • Preferred examples include (poly)ethylene glycol, 1,3-propanediol, 2-methyl-1,3-propanediol, 2,2-dimethyl-1,3-propanediol (neopentyl glycol), 1,4-butanediol, 1,5-pentanediol, and 1,6-hexanediol. More preferred are butanediol and 1,6-hexanediol. These can be used individually by 1 type or in combination of 2 or more types.
  • the (poly)alkylene glycols, aliphatic diols, and alicyclic diols described above may be derived from plants or fossil resources.
  • the (poly)ethylene glycol is used in the sense of including ethylene glycol, diethylene glycol, triethylene glycol, and polyethylene glycol.
  • the weight ratio of (poly)alkylene glycols, aliphatic diols and alicyclic diols (preferably the weight ratio of ethylene glycol and aliphatic diols) to the total amount (total weight) of diols in the monomer component of the polyester polymer is not particularly limited, and is suitably about 50% by weight or more. From the viewpoint of obtaining good adhesive properties, it is preferably about 70% by weight or more, more preferably about 80% by weight or more, even more preferably about 90% by weight or more, and particularly preferably about 95% by weight. % or more (for example, 99 to 100% by weight).
  • the weight ratio of the (poly)alkylene glycols, the aliphatic diol and the alicyclic diol may be, for example, approximately 95% by weight or less.
  • (poly)ethylene glycol is used as the diol.
  • (poly)ethylene glycol in combination with a suitable dicarboxylic acid, good adhesive properties (adhesive strength and high temperature holding power) can preferably be obtained.
  • the weight ratio of the (poly)ethylene glycol in the total amount (total weight) of the diol as the monomer component of the polyester polymer is suitably about 1% by weight or more, preferably about 10% by weight or more, more preferably about 50% by weight or more, still more preferably about 80% by weight or more, particularly preferably about 90% by weight or more (for example, 95 to 100% by weight).
  • the polymer By setting the amount of (poly)ethylene glycol to a predetermined value or more, the polymer can be designed based on the properties of (poly)ethylene glycol. Further, for example, the use of (poly)ethylene glycol facilitates obtaining a pressure-sensitive adhesive layer with low haze. Further, the weight ratio of the (poly)ethylene glycol may be approximately 95% by weight or less, approximately 70% by weight or less, or approximately 50% by weight or less.
  • the (poly)ethylene glycol mentioned above may be derived from plants or fossil resources. (Poly)ethylene glycol may be used alone or in combination of two or more.
  • a plant-derived diol as the diol from the viewpoint of obtaining a polyester-based polymer with a bio rate of 50% or more.
  • examples of such diols include biomass diols obtained from biomass ethanol (e.g., biomass (poly)ethylene glycol, etc.), fatty acid esters derived from plants (e.g., castor oil), dimer diols derived from fatty acids such as oleic acid and erucic acid, and butanediol produced using glucose. Plant-derived diols can be used singly or in combination of two or more.
  • the weight ratio of the plant-derived diol in the total amount (total weight) of diols as monomer components of the polyester polymer may be about 1% by weight or more, may be about 10% by weight or more, may be about 50% by weight or more, may be about 80% by weight or more, or may be about 90% by weight or more (for example, 95 to 100% by weight).
  • the weight ratio of the plant-derived diol may be approximately 95% by weight or less, approximately 70% by weight or less, or approximately 50% by weight or less.
  • the polyester-based polymer can have a bio rate of a predetermined value or more.
  • the weight ratio of the plant-derived diol may be approximately 30% by weight or less, approximately 10% by weight or less, or approximately 3% by weight or less (for example, less than 1% by weight).
  • the technology disclosed herein can also be preferably practiced in a mode in which the diol used as the monomer component for synthesizing the polyester-based polymer does not substantially contain a plant-derived diol.
  • dimer diol is used as the plant-derived diol.
  • the use of dimer diol can also increase the bio-rate of the polyester-based polymer.
  • a dimer diol can be used individually by 1 type or in combination of 2 or more types.
  • the weight ratio of the dimer diol to the total amount (total weight) of the diol as the monomer component of the polyester polymer may be about 1% by weight or more, for example about 10% by weight or more, about 50% by weight or more, about 70% by weight or more, about 80% by weight or more, or about 90% by weight or more (for example, 95 to 100% by weight).
  • the weight ratio of the dimer diol may be approximately 95% by weight or less, approximately 85% by weight or less, or approximately 60% by weight or less.
  • the technology disclosed herein can be practiced in either a mode in which the diol used as a monomer component for synthesizing the polyester-based polymer contains dimer diol or a mode in which it does not contain dimer diol.
  • the weight percentage of the dimer diol may be approximately 50% by weight or less (for example, less than 50% by weight), approximately 30% by weight or less, approximately 10% by weight or less, approximately 3% by weight or less, or less than 1% by weight.
  • the molecular weight of the diol is not particularly limited.
  • the molecular weight of the diol is suitably 500 or less, for example, from the viewpoint of monomer availability and synthesizing properties, and may be 300 or less, 150 or less, 100 or less, or 80 or less.
  • the molecular weight of the diol is suitably about 50 or more, and may be more than 100, for example.
  • a polyester-based polymer capable of exhibiting good adhesive properties, such as achieving both adhesive strength and high-temperature holding power can be preferably synthesized.
  • the molecular weight of the diol derived from fossil resources is suitably 500 or less, and may be 300 or less.
  • the molecular weight of the fossil resource-derived diol is suitably about 50 or more, and may be more than 100, for example. Suitable examples of diols having the above molecular weights include ethylene glycol.
  • the molecular weight calculated from the chemical formula can be adopted as the molecular weight of the diol.
  • the molecular weight of the diol is the sum of the products of the molecular weight and the weight fraction of each diol (total value).
  • the polyester-based polymer disclosed herein can be substantially composed of the dicarboxylic acid and the diol described above, but for the purpose of introducing desired functional groups, adjusting the molecular weight, etc., other copolymerization components other than the dicarboxylic acid and the diol may be copolymerized as long as the effects of the technology disclosed herein are not impaired.
  • Such other copolymerization components include polyvalent carboxylic acids containing 3 or 4 or more carboxy groups (trimellitic acid, pyromellitic acid, adamantanetricarboxylic acid, trimesic acid, trivalent or higher polycarboxylic acids such as trimeric acid), polyols containing 3 or 4 or more hydroxyl groups per molecule (pentaerythritol, dipentaerythritol, tripentaerythritol, glycerin, trimethylolpropane, trimethylolethane, 1,3,6- hexanetriol, adamantanetriol, etc.), monocarboxylic acids, monoalcohols, hydroxycarboxylic acids, lactones and the like.
  • polyvalent carboxylic acids containing 3 or 4 or more carboxy groups trimesic acid, trivalent or higher polycarboxylic acids such as trimeric acid
  • polyols containing 3 or 4 or more hydroxyl groups per molecule
  • the above-mentioned other copolymerization components can be used singly or in combination of two or more. These other copolymer components may or may not be derived from plants.
  • the ratio of the above-mentioned other copolymerization components in the monomer components of the polyester polymer is suitable, for example, less than 10% by weight, less than 3% by weight, typically less than 1% by weight (further less than 0.1% by weight).
  • the technology disclosed herein can also be preferably carried out in a mode in which the monomer component of the polyester-based polymer does not substantially contain the other copolymer components.
  • the total ratio of the dicarboxylic acid and the diol is suitably about 90% by weight or more, preferably about 95% by weight or more, more preferably about 98% by weight or more, and even more preferably about 99% by weight or more (for example, 99 to 100% by weight).
  • the technique disclosed herein is preferably practiced in a mode using a polyester-based polymer substantially synthesized from dicarboxylic acid and diol.
  • dimer acid as a dicarboxylic acid and (poly)ethylene glycol as a diol are used together as the monomer component of the polyester polymer.
  • dimer acid and (poly)ethylene glycol it is possible to preferably synthesize a polyester-based polymer that has Mw of a predetermined value or more and can exhibit good adhesive properties, such as being suitable for both adhesive strength and high-temperature holding power.
  • the total proportion of dimer acid and (poly)ethylene glycol in the total amount of monomer components of the polyester polymer is suitably about 50% by weight or more, preferably about 60% by weight or more, more preferably about 70% by weight or more, more preferably about 80% by weight or more, and may be about 90% by weight or more (for example, 99 to 100% by weight).
  • the polyester-based polymer has an aromatic ring in its polymer molecule.
  • a polyester-based polymer containing an aromatic ring is likely to have a high-temperature holding power.
  • the aromatic ring is introduced into the polymer by using a monomer having an aromatic ring (aromatic dicarboxylic acid or aromatic diol).
  • the copolymerization ratio of the aromatic ring-containing monomer typically aromatic dicarboxylic acid, aromatic diol
  • the viewpoint of improving high-temperature holding power it is preferably about 3% by weight or more, more preferably about 5% by weight or more, and further preferably about 7% by weight or more.
  • the upper limit of the copolymerization ratio of the aromatic ring-containing monomer is, for example, about 30% by weight or less, and from the viewpoint of adhesive properties such as adhesive strength, it is preferably about 15% by weight or less, more preferably about 12% by weight or less, still more preferably about 10% by weight or less, and particularly preferably about 8% by weight or less.
  • the method for obtaining the polyester-based polymer disclosed herein is not particularly limited, and polymerization methods known as methods for synthesizing polyester-based polymers can be appropriately employed.
  • the monomer raw material used for the synthesis of the polyester-based polymer for example, a monomer blended in such a manner that 0.95 to 1.05 equivalents (preferably 0.98 to 1.02 equivalents) of dicarboxylic acid per equivalent of diol can be used.
  • the dicarboxylic acid and the diol in the above ratio, a high-molecular-weight polyester-based polymer can be easily obtained.
  • the polymer can be appropriately crosslinked (for example, crosslinked based on reaction with a crosslinking agent such as an isocyanate-based crosslinking agent) to increase cohesion.
  • the weight ratio of the dicarboxylic acid and the diol as the monomer components used in the synthesis of the polyester-based polymer is not particularly limited, and an appropriate weight ratio can be set in consideration of the target polymer physical properties and synthetic properties.
  • the ratio (weight ratio A1/A2) between the weight A1 of the dicarboxylic acid and the weight A2 of the diol used as the monomer component may be 10/90 or more, or 30/70 or more.
  • the weight ratio (A1/A2) is about 50/50 or higher, more preferably 60/40 or higher, even more preferably 70/30 or higher, 80/20 or higher, or 90/10 or higher.
  • the properties based on the dicarboxylic acid can be favorably expressed.
  • the bio rate of the obtained polyester-based polymer can be effectively increased.
  • the weight ratio (A1/A2) may be, for example, 95/5 or less, or 85/15 or less.
  • the weight ratio (A1/A2) may be 75/25 or less, or 50/50 or less (for example, 30/70 or less), from the viewpoint of favorably expressing diol-based properties.
  • the above weight ratio allows the polyester polymer to have a high bio-rate.
  • a polyester-based polymer having a bio rate of a predetermined value or more can be obtained regardless of the weight ratio of the dicarboxylic acid and the diol.
  • the polyester-based polymer in the technology disclosed here can be obtained by polycondensation of a dicarboxylic acid and a diol, like general polyesters. More specifically, the reaction between the carboxyl group of the dicarboxylic acid and the hydroxyl group of the diol is allowed to proceed while removing water (generated water) and the like typically produced by the above reaction out of the reaction system, whereby a polyester polymer can be synthesized.
  • a method for removing the generated water out of the reaction system a method of blowing an inert gas into the reaction system and removing the generated water out of the reaction system together with the inert gas, a method of azeotropic dehydration as a reaction water discharge solvent such as toluene or xylene, a method of distilling off the generated water from the reaction system under reduced pressure (a decompression method), and the like can be used.
  • the reaction temperature and reaction time when carrying out the above reactions (including esterification and polycondensation), and the degree of pressure reduction (pressure in the reaction system) when a pressure reduction method is employed can be appropriately set so that a polyester polymer having desired properties (e.g., molecular weight) can be efficiently obtained.
  • the reaction temperature it is usually appropriate for the reaction temperature to be approximately 150° C. or higher (for example, 180° C. to 260° C.). By setting the reaction temperature within the above range, a favorable reaction rate is obtained, productivity is improved, and deterioration of the produced polyester polymer can be easily prevented or suppressed.
  • the reaction time is not particularly limited and may be about 3 to 48 hours (eg 10 to 30 hours).
  • a decompression method it is not particularly limited, but it is usually appropriate to set the degree of decompression to 10 kPa or less (typically 10 kPa to 0.1 kPa), for example, 4 kPa to 0.1 kPa.
  • 10 kPa or less typically 10 kPa to 0.1 kPa
  • 4 kPa to 0.1 kPa By setting the pressure in the reaction system within the above range, the water produced by the reaction can be efficiently distilled out of the system, and a favorable reaction rate can be easily maintained.
  • the reaction temperature is relatively high, the dicarboxylic acid and diol which are raw materials can be easily prevented from being distilled out of the system by setting the pressure in the reaction system to the above lower limit or higher. From the viewpoint of stably maintaining the pressure in the reaction system, it is usually appropriate to set the pressure in the reaction system to 0.1 kPa or more.
  • a suitable amount of a known or commonly used catalyst can be used for esterification and condensation, as in general polyester synthesis.
  • catalysts include various metal compounds such as titanium, germanium, antimony, tin, and zinc; strong acids such as p-toluenesulfonic acid and sulfuric acid; and the like. Since the amount of the catalyst used can be appropriately set according to the reaction rate and the like, detailed description is omitted here.
  • a solvent may or may not be used in the process of synthesizing a polyester-based polymer by reacting a dicarboxylic acid and a diol.
  • the above synthesis can be carried out substantially without using an organic solvent (for example, this means excluding an embodiment in which an organic solvent is intentionally used as a reaction solvent during the above reaction). Synthesizing a polyester polymer without substantially using an organic solvent in this way and preparing a polyester pressure-sensitive adhesive using such a polyester polymer meet the demand for avoiding the use of organic solvents in the production process and are preferable.
  • the adhesive composition (and thus the adhesive layer) disclosed herein includes a tackifying resin.
  • a tackifying resin By using an appropriate amount of the tackifying resin, the effect of improving the adhesive strength based on the tackifying resin is effectively exhibited, and adhesive properties such as adhesive strength and high-temperature holding power can be preferably improved.
  • the viscosity of the pressure-sensitive adhesive composition tends to decrease, but by using the polyester-based polymer having the above Mw and the tackifying resin in combination, the pressure-sensitive adhesive composition obtains an appropriate viscosity and easily forms a thin pressure-sensitive adhesive having good quality.
  • tackifying resin one or more selected from various known tackifying resins such as phenol-based tackifying resins, terpene-based tackifying resins, modified terpene-based tackifying resins, rosin-based tackifying resins, hydrocarbon-based tackifying resins, epoxy-based tackifying resins, polyamide-based tackifying resins, elastomer-based tackifying resins, and ketone-based tackifying resins can be used.
  • phenol-based tackifying resins such as phenol-based tackifying resins, terpene-based tackifying resins, modified terpene-based tackifying resins, rosin-based tackifying resins, hydrocarbon-based tackifying resins, epoxy-based tackifying resins, polyamide-based tackifying resins, elastomer-based tackifying resins, and ketone-based tackifying resins
  • phenolic tackifying resins include terpene phenolic resins, hydrogenated terpene phenolic resins, alkylphenolic resins and rosin phenolic resins.
  • Terpene phenol resin refers to a polymer containing a terpene residue and a phenol residue, and is a concept that includes both copolymers of terpenes and phenolic compounds (terpene-phenol copolymer resins) and phenol-modified terpenes or homopolymers or copolymers thereof (phenol-modified terpene resins).
  • terpenes constituting such a terpene phenol resin include monoterpenes such as ⁇ -pinene, ⁇ -pinene and limonene (including d-, l- and d/l-forms (dipentene)).
  • a hydrogenated terpene phenol resin refers to a hydrogenated terpene phenol resin having a structure obtained by hydrogenating such a terpene phenol resin. It is sometimes called a hydrogenated terpene phenolic resin.
  • Alkylphenol resins are resins obtained from alkylphenols and formaldehyde (oily phenolic resins). Examples of alkylphenol resins include novolac and resole types.
  • Rosin phenolic resins are typically rosins or phenol-modified products of the various rosin derivatives described above (including rosin esters, unsaturated fatty acid-modified rosins, and unsaturated fatty acid-modified rosin esters).
  • rosin phenol resins include rosin phenol resins obtained by a method of adding phenol to rosins or various rosin derivatives described above with an acid catalyst and thermally polymerizing the mixture.
  • terpene phenol resins terpene phenol resins, hydrogenated terpene phenol resins and alkylphenol resins are preferred, terpene phenol resins and hydrogenated terpene phenol resins are more preferred, and terpene phenol resins are particularly preferred.
  • terpene-based tackifying resins include polymers of terpenes (eg, monoterpenes) such as ⁇ -pinene, ⁇ -pinene, d-limonene, l-limonene, and dipentene. It may be a homopolymer of one kind of terpenes, or a copolymer of two or more kinds of terpenes.
  • terpene homopolymer includes ⁇ -pinene polymer, ⁇ -pinene polymer, dipentene polymer and the like.
  • modified terpene resins include those obtained by modifying the above terpene resins. Specific examples include styrene-modified terpene resins and hydrogenated terpene resins.
  • rosin-based tackifying resins here includes both rosins and rosin derivative resins.
  • rosins include unmodified rosins (fresh rosins) such as gum rosin, wood rosin, and tall oil rosin; modified rosins obtained by modifying these unmodified rosins by hydrogenation, disproportionation, polymerization, etc. (hydrogenated rosins, disproportionation rosins, polymerized rosins, other chemically modified rosins, etc.);
  • the rosin derivative resin is typically a derivative of the above rosins.
  • the term "rosin-based resin” as used herein includes derivatives of unmodified rosin and derivatives of modified rosin (including hydrogenated rosin, disproportionated rosin and polymerized rosin).
  • rosin esters such as undenatured rosin esters, which are esters of undenatured rosin and alcohols, and denatured rosin esters, which are esters of denatured rosin and alcohols; for example, unsaturated fatty acid-modified rosins obtained by modifying rosins with unsaturated fatty acids; ), rosin alcohols obtained by reducing the carboxy group of .);
  • Specific examples of rosin esters include methyl esters, triethylene glycol esters, glycerin esters and pentaerythritol esters of unmodified rosins or modified rosins (hydrogenated rosins, disproportionated rosins, polymerized rosins, etc.).
  • hydrocarbon-based tackifying resins include various hydrocarbon-based resins such as aliphatic hydrocarbon resins, aromatic hydrocarbon resins, aliphatic cyclic hydrocarbon resins, aliphatic/aromatic petroleum resins (styrene-olefin copolymers, etc.), aliphatic/alicyclic petroleum resins, hydrogenated hydrocarbon resins, coumarone-based resins, and coumarone-indene-based resins.
  • hydrocarbon-based resins such as aliphatic hydrocarbon resins, aromatic hydrocarbon resins, aliphatic cyclic hydrocarbon resins, aliphatic/aromatic petroleum resins (styrene-olefin copolymers, etc.), aliphatic/alicyclic petroleum resins, hydrogenated hydrocarbon resins, coumarone-based resins, and coumarone-indene-based resins.
  • the tackifier resin contains one or more phenol-based tackifier resins (eg, terpene phenol resins) and rosin-based tackifier resins (polymerized rosin esters, etc.). More preferably, one or more selected from terpene phenol resins and polymerized rosin esters are used as the tackifying resin.
  • a tackifying resin containing one or more phenolic tackifying resins eg, terpene phenolic resin
  • Phenolic tackifying resins tend to be more compatible with polyester-based polymers than other tackifying resins (for example, rosin-based tackifying resins).
  • the technology disclosed herein can be preferably practiced, for example, in an aspect in which approximately 25% by weight or more (more preferably approximately 30% by weight or more) of the total amount of tackifying resin is a terpene phenolic resin.
  • tackifying resin Approximately 50% by weight or more of the total amount of tackifying resin may be the terpene phenolic resin, and approximately 80% by weight or more (eg, approximately 90% by weight or more) may be the terpene phenolic resin. Substantially all of the tackifying resin (eg, approximately 95% to 100% by weight, or even approximately 99% to 100% by weight) may be a terpene phenolic resin.
  • a tackifying resin having an aromatic ring in the molecule is preferably used as the tackifying resin.
  • a tackifying resin containing an aromatic ring tends to provide high-temperature holding power.
  • Preferable examples of tackifying resins having aromatic rings include phenol-based tackifying resins. Among them, terpene phenol resin is more preferable.
  • the technology disclosed herein is particularly preferably carried out in a mode in which the polyester-based polymer in the pressure-sensitive adhesive layer contains an aromatic ring, and the tackifier resin also contains an aromatic ring. Both the polyester-based polymer and the tackifier resin have a structure containing an aromatic ring, so that more excellent high-temperature holding power can be easily obtained.
  • both the polyester-based polymer and the tackifying resin have an aromatic ring, they have excellent compatibility and can satisfactorily exhibit desired adhesive properties.
  • a tackifying resin having an aromatic ring in the molecule it is preferable to use a tackifying resin with a high aromatic ring ratio.
  • a tackifying resin having a high phenol ratio is preferably used.
  • the aromatic ring ratio (e.g., phenol ratio) of the tackifying resin is, for example, 10% by weight or more, and from the viewpoint of high temperature holding power, is preferably 15% by weight or more, more preferably 20% by weight or more, still more preferably 25% by weight or more, and particularly preferably 30% by weight or more.
  • the upper limit of the aromatic ring ratio (e.g., phenol ratio) of the tackifying resin is, for example, 65% by weight or less, and from the viewpoint of adhesive strength, etc., it may be 50% by weight or less, 40% by weight or less, or 35% by weight or less.
  • the aromatic ring ratio (eg, phenol ratio) of the tackifier resin refers to the aromatic ring ratio (eg, phenol ratio) calculated from 1 H-NMR spectrum measured by a nuclear magnetic resonance (NMR) apparatus.
  • NMR nuclear magnetic resonance
  • the tackifying resin has the chemical structure shown below, in the 1 H-NMR spectrum, the peaks with chemical shifts between 7.5 and 6.3 ppm are derived from the phenol skeleton, and the peaks between 5.6 and 0.1 ppm are considered to be derived from the pinene skeleton.
  • a plant-derived tackifying resin (vegetable tackifying resin) is preferably used as the tackifying resin from the viewpoint of improving the bio rate of the entire pressure-sensitive adhesive layer.
  • the vegetable tackifying resin is composed of at least a part of the resin derived from a plant, and the entire resin may be derived from a plant, a part of the resin may be derived from a plant, and the other part may be derived from fossil resources.
  • Examples of vegetable tackifying resins include the above-described rosin-based tackifying resins, terpene-based tackifying resins, terpene phenolic resins, hydrogenated terpene phenolic resins, rosin phenolic resins, and the like. Vegetable tackifying resins can be used singly or in combination of two or more.
  • the proportion of the vegetable tackifying resin in the total amount of the tackifying resin contained in the pressure-sensitive adhesive layer may be 30% by weight or more (e.g., 50% by weight or more, typically 80% by weight or more), and the proportion of the vegetable tackifying resin in the total amount of the tackifying resin may be 90% by weight or more (e.g., 95% by weight or more, typically 99 to 100% by weight).
  • the technology disclosed herein can be practiced in a manner substantially free of tackifying resins other than vegetable tackifying resins.
  • the softening point of the tackifying resin is not particularly limited. From the viewpoint of improving the cohesive strength, in some aspects, the softening point (softening temperature) of the tackifying resin is suitably about 50° C. or higher, and a tackifying resin having a softening point (softening temperature) of about 80° C. or higher (preferably about 100° C. or higher, for example about 115° C. or higher) can be preferably used. In some other embodiments, the softening point of the tackifying resin used may be on the order of 120° C. or higher (eg, 135° C. or higher or 145° C. or higher).
  • the technology disclosed herein can be preferably carried out in a mode in which the tackifying resin having the softening point accounts for more than 50% by weight (more preferably more than 70% by weight, for example more than 90% by weight) of the total tackifying resin contained in the pressure-sensitive adhesive layer.
  • a phenol-based tackifier resin terpene phenol resin, etc.
  • a rosin-based tackifier resin polymerized rosin ester, etc.
  • a tackifying resin having a softening point of approximately 200° C. or less (more preferably approximately 180° C. or less, still more preferably less than 160° C., for example, 155° C. or less or 150° C. or less) can be preferably used.
  • the softening point of the tackifying resin can be measured based on the softening point test method (ring and ball method) specified in JIS K2207.
  • the tackifying resin one having an acid value limited to a predetermined value or less is preferably used.
  • a tackifier resin having a low acid value is preferred because it does not inhibit the cross-linking reaction during the formation of the pressure-sensitive adhesive.
  • a pressure-sensitive adhesive containing a tackifying resin whose acid value is limited to a predetermined value or less tends to be excellent in durability.
  • the acid value of the tackifying resin is suitably about 20 mgKOH/g or less, preferably less than 10 mgKOH/g, more preferably 7 mgKOH/g or less, still more preferably 4 mgKOH/g or less (eg 0 to 4 mgKOH/g), and may be less than 3 mgKOH/g (eg less than 1 mgKOH/g).
  • the acid value of the tackifying resin can be measured by the potentiometric titration method specified in JIS K 0070:1992.
  • the tackifying resin is used at a ratio of 20 parts by weight or more with respect to 100 parts by weight of the polyester polymer.
  • the desired tack properties can preferably be achieved.
  • the content of the tackifying resin relative to 100 parts by weight of the polyester polymer is about 25 parts by weight or more, more preferably about 30 parts by weight or more, even more preferably about 35 parts by weight or more, and may be about 40 parts by weight or more.
  • the upper limit of the content of the tackifying resin is not particularly limited, and in some embodiments, the content of the tackifying resin with respect to 100 parts by weight of the polyester polymer is usually about 120 parts by weight or less, preferably less than 100 parts by weight, more preferably about 80 parts by weight or less, and even more preferably about 60 parts by weight or less (e.g., about 50 parts by weight or less).
  • the content of the tackifying resin with respect to 100 parts by weight of the polyester polymer is usually about 120 parts by weight or less, preferably less than 100 parts by weight, more preferably about 80 parts by weight or less, and even more preferably about 60 parts by weight or less (e.g., about 50 parts by weight or less).
  • the adhesive composition disclosed herein contains a cross-linking agent.
  • the pressure-sensitive adhesive layer formed using the pressure-sensitive adhesive composition may contain the cross-linking agent in the form after the cross-linking reaction, the form before the cross-linking reaction, the form in which the cross-linking reaction is partially performed, the intermediate or composite form thereof, or the like.
  • the above-mentioned cross-linking agent is usually contained in the pressure-sensitive adhesive layer exclusively in the form after the cross-linking reaction.
  • the cross-linking agent used for cross-linking the polyester polymer may also function as a chain extender.
  • cross-linking agent is not particularly limited, and can be appropriately selected and used from conventionally known cross-linking agents.
  • cross-linking agents include isocyanate-based cross-linking agents, epoxy-based cross-linking agents, oxazoline-based cross-linking agents, aziridine-based cross-linking agents, melamine-based cross-linking agents, and metal chelate-based cross-linking agents.
  • a crosslinking agent can be used individually by 1 type or in combination of 2 or more types. Among them, an isocyanate-based cross-linking agent is preferable.
  • polyfunctional isocyanate-based compounds compounds having an average of two or more isocyanate groups per molecule, including those having an isocyanurate structure
  • the isocyanate-based cross-linking agents may be used singly or in combination of two or more.
  • polyfunctional isocyanate compounds include aliphatic polyisocyanate compounds, alicyclic polyisocyanate compounds, and aromatic polyisocyanate compounds.
  • aliphatic polyisocyanate compounds include 1,2-ethylene diisocyanate; tetramethylene diisocyanates such as 1,2-tetramethylene diisocyanate, 1,3-tetramethylene diisocyanate and 1,4-tetramethylene diisocyanate; methylene diisocyanate; 2-methyl-1,5-pentane diisocyanate, 3-methyl-1,5-pentane diisocyanate, lysine diisocyanate, and the like.
  • alicyclic polyisocyanate compounds include isophorone diisocyanate; cyclohexyl diisocyanates such as 1,2-cyclohexyl diisocyanate, 1,3-cyclohexyl diisocyanate and 1,4-cyclohexyl diisocyanate; cyclopentyl diisocyanates such as 1,2-cyclopentyl diisocyanate and 1,3-cyclopentyl diisocyanate; hydrogenated tetramethylxylene diisocyanate, 4,4'-dicyclohexylmethane diisocyanate, and the like.
  • aromatic polyisocyanate compounds include 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, 4,4'-diphenylmethane diisocyanate, 2,4'-diphenylmethane diisocyanate, 2,2'-diphenylmethane diisocyanate, 4,4'-diphenyl ether diisocyanate, 2-nitrodiphenyl-4,4'-diisocyanate, 2,2'-diphenylpropane-4,4'-diisocyanate, 3,3'-dimethyl diisocyanate, Phenylmethane-4,4'-diisocyanate, 4,4'-diphenylpropane diisocyanate, m-phenylene diisocyanate, p-phenylene diisocyanate, naphthylene-1,4-diisocyanate, naphthylene-1,5-diisocyanate, 3,3'-dimeth
  • polyfunctional isocyanates examples include polyfunctional isocyanate compounds having an average of 2 or 3 or more isocyanate groups per molecule.
  • Such polyfunctional isocyanate compounds may be difunctional or trifunctional or higher functional isocyanate polymers (e.g., dimers or trimers), derivatives (e.g., addition reaction products of polyhydric alcohols and polyfunctional isocyanates having two or more molecules), polymers, and the like.
  • Examples thereof include dimers and trimers of diphenylmethane diisocyanate, isocyanurate of hexamethylene diisocyanate (trimer adduct of isocyanurate structure), reaction products of trimethylolpropane and tolylene diisocyanate, reaction products of trimethylolpropane and hexamethylene diisocyanate, and polyfunctional isocyanate compounds such as polymethylene polyphenyl isocyanate, polyether polyisocyanate, and polyester polyisocyanate.
  • a cross-linking agent having no aromatic ring is preferably used as the cross-linking agent.
  • the cross-linking agent for example, among the isocyanate-based cross-linking agents described above, it is preferable to use an isocyanate-based compound having no aromatic ring.
  • an aromatic ring-free isocyanate compound as a cross-linking agent, it is possible to effectively increase the degree of cross-linking with less hindrance to cross-linking in the pressure-sensitive adhesive composition containing the polyester-based polymer and the tackifying resin.
  • Typical examples of the aromatic ring-free isocyanates include aliphatic isocyanate compounds.
  • a particularly preferred embodiment includes an embodiment in which an aromatic ring-free isocyanate compound (typically an aliphatic isocyanate compound) is used as a cross-linking agent in a configuration in which both the polyester polymer and the tackifying resin have aromatic rings.
  • an aromatic ring-free isocyanate compound typically an aliphatic isocyanate compound
  • two or more cross-linking agents having different numbers of functional groups may be used.
  • the functional group refers to a cross-linking reactive group, and for example, refers to an isocyanate group in the polyfunctional isocyanate compound described above.
  • one or more bifunctional cross-linking agents and one or more tri- or more tri-functional cross-linking agents are used in combination as cross-linking agents.
  • a bifunctional type and a trifunctional or more functional type together, it is easy to achieve both adhesive strength and high-temperature holding power.
  • bifunctional cross-linking agent and tri- or higher functional cross-linking agent bi-functional cross-linking agents and tri- or higher functional cross-linking agents can be used without particular limitation.
  • isocyanate compounds are preferably used as the bifunctional cross-linking agent and the tri- or higher functional cross-linking agent.
  • the amount of the bi-functional cross-linking agent used is not particularly limited.
  • the amount of the bi-functional cross-linking agent used relative to 100 parts by weight of the polyester polymer is suitably about 0.01 parts by weight or more, preferably about 0.1 parts by weight or more, more preferably about 0.5 parts by weight or more, even more preferably about 0.8 parts by weight or more, and may be about 1.5 parts by weight or more. , about 3 parts by weight or more.
  • the amount of the bifunctional cross-linking agent to be used relative to 100 parts by weight of the polyester polymer is usually about 10 parts by weight or less, preferably about 7 parts by weight or less, and may be 4 parts by weight or less.
  • the amount of the tri- or higher-functional cross-linking agent used is not particularly limited.
  • the amount of the tri- or higher-functional cross-linking agent used relative to 100 parts by weight of the polyester polymer is appropriately about 0.01 part by weight or more, preferably about 0.1 part by weight or more, more preferably about 0.5 part by weight or more, and may be about 1 part by weight or more, from the viewpoint of obtaining the effect of using the tri- or more functional cross-linking agent.
  • the cohesive force is increased, and excellent properties (adhesive force, high-temperature holding power, etc.) can be easily obtained.
  • the amount of the trifunctional or higher cross-linking agent used relative to 100 parts by weight of the polyester polymer is usually appropriately about 8 parts by weight or less, preferably about 5 parts by weight or less, about 4 parts by weight or less, may be about 3 parts by weight or less, or may be 2 parts by weight or less.
  • the ratio of the bi-functional cross-linking agent and the tri- or more functional cross-linking agent is appropriately set so that the desired multiple adhesive properties (adhesive strength, high temperature holding power, etc.) are achieved in a well-balanced manner, and is not limited to a specific range.
  • the weight ratio (C B /C A ) of the amount C B of the tri- or higher-functional cross-linking agent to the amount C A of the bi-functional cross-linking agent is , for example, 0.1 or more, and from the viewpoint of improving the cohesive strength, it is suitably 0.2 or more.
  • the amount of the cross-linking agent used is not particularly limited.
  • the amount of the cross-linking agent used relative to 100 parts by weight of the polyester polymer can be about 0.005 parts by weight or more (for example, 0.01 parts by weight or more, typically 0.1 parts by weight or more).
  • the amount of the cross-linking agent to be used relative to 100 parts by weight of the polyester polymer is usually appropriately about 0.5 parts by weight or more, preferably about 1 part by weight or more, more preferably about 2 parts by weight or more (for example, more than 2 parts by weight), and still more preferably 2.5 parts by weight or more.
  • the pressure-sensitive adhesive composition does not need to be excessively concentrated for coatability, so even if the amount of the cross-linking agent is increased, the pressure-sensitive adhesive composition can have good storage stability before forming the pressure-sensitive adhesive layer.
  • the amount of the cross-linking agent used relative to 100 parts by weight of the polyester polymer is usually about 12 parts by weight or less, for example about 10 parts by weight or less, suitably about 8 parts by weight or less, and about 5 parts by weight or less. According to the technology disclosed herein, it is possible to obtain a cohesive force that preferably exhibits high-temperature holding power with the use amount of the cross-linking agent being limited as described above.
  • the amount of the cross-linking agent to be used is more preferably 4 parts by weight or less, more preferably about 3.5 parts by weight or less based on 100 parts by weight of the polyester polymer.
  • the amount used is not particularly limited.
  • the amount of the isocyanate-based cross-linking agent used can be, for example, about 0.5 parts by weight or more and about 10 parts by weight or less with respect to 100 parts by weight of the polyester polymer.
  • the amount of the isocyanate-based cross-linking agent used relative to 100 parts by weight of the polyester polymer is usually appropriately about 1 part by weight or more, preferably about 2 parts by weight or more (e.g., more than 2 parts by weight), more preferably about 2.5 parts by weight or more, still more preferably 2.8 parts by weight or more, may be about 3.5 parts by weight or more, may be about 4.0 parts by weight or more, or may be 4.5 parts by weight or more. According to the technique disclosed herein, it is not necessary to increase the concentration of the PSA composition excessively for coatability.
  • the PSA composition can have good storage stability before the formation of the PSA layer.
  • the amount of the isocyanate cross-linking agent to be used for 100 parts by weight of the polyester polymer is usually about 8 parts by weight or less, preferably about 5 parts by weight or less. According to the technique disclosed herein, it is possible to obtain a cohesive force that preferably exhibits high-temperature holding power with the use amount of the isocyanate-based cross-linking agent limited as described above.
  • the amount of the isocyanate cross-linking agent used relative to 100 parts by weight of the polyester polymer is more preferably 4.5 parts by weight or less, more preferably about 4.2 parts by weight or less, and particularly preferably 3.8 parts by weight or less (e.g. 3.5 parts by weight or less), and may be about 3.2 parts by weight or less.
  • crosslinking catalyst In the technology disclosed herein, it is preferable to use a cross-linking catalyst in addition to the above-described cross-linking agent in order to promote the cross-linking reaction more effectively.
  • crosslinking catalysts include zirconium-containing compounds (zirconium-based catalysts) such as zirconium tetraacetylacetonate, zirconium monoacetylacetonate, zirconium ethylacetoacetate, and zirconium octylate compounds; Aluminum-containing compounds (aluminum-based catalysts) such as aluminum secondary butoxide, aluminum trisacetylacetonate, aluminum bisethylacetoacetate, and aluminum trisethylacetoacetate (aluminum-based catalysts); Iron-containing compounds (iron-based catalysts) such as Nasem ferric iron (iron-based catalysts); ); and other organometallic catalysts.
  • a crosslinking catalyst can be used individually by 1 type or in combination of 2 or more
  • the cross-linking catalyst does not contain a tin-containing compound from the viewpoint of environmental impact and safety.
  • a non-tin-based compound as a cross-linking catalyst, the amount of tin-based compound (typically organic tin) used in the pressure-sensitive adhesive can be reduced.
  • the cross-linking catalyst does not include an iron-based catalyst. For example, in a mode of use in which the adhesive is required to have transparency and optical properties, it is desirable to avoid using an iron-based compound that may color the adhesive.
  • the amount of cross-linking catalyst used is not particularly limited.
  • the amount of the crosslinking catalyst used can be, for example, about 0.001 parts by weight or more, preferably about 0.01 parts by weight or more, and about 0.05 parts by weight or more (for example, 0.10 parts by weight or more) per 100 parts by weight of the polyester polymer.
  • the amount of the cross-linking catalyst used can be, for example, about 3 parts by weight or less, preferably about 1 part by weight or less, and may be about 0.3 parts by weight or less with respect to 100 parts by weight of the polyester polymer.
  • the pressure-sensitive adhesive composition disclosed herein may contain a hydrolysis-resistant agent (also referred to as an anti-hydrolysis agent).
  • a hydrolysis-resistant agent also referred to as an anti-hydrolysis agent.
  • the hydrolysis-resistant agent is not particularly limited, and known or commonly used hydrolysis-resistant agents can be used. Examples thereof include oxazoline group-containing compounds, epoxy group-containing compounds, carbodiimide group-containing compounds, and the like. Among them, carbodiimide group-containing compounds are preferred.
  • the hydrolysis resistant agents can be used singly or in combination of two or more.
  • carbodiimide group-containing compounds include dicyclohexylcarbodiimide, diisopropylcarbodiimide, dimethylcarbodiimide, diisobutylcarbodiimide, dioctylcarbodiimide, t-butylisopropylcarbodiimide, diphenylcarbodiimide, di-t-butylcarbodiimide, di- ⁇ -naphthylcarbodiimide, and monofunctional cyclic structure carbodiimide.
  • the monofunctional cyclic structure carbodiimide refers to a compound having one carbodiimide group in its molecular structure and having the first nitrogen atom and the second nitrogen atom of the carbodiimide group bonded by a bonding group composed of an aliphatic group, an alicyclic group, an aromatic group, or a combination thereof.
  • the bonding group may contain a heteroatom and a substituent.
  • Suitable examples of the carbodiimide group-containing compound include dicyclohexylcarbodiimide, diisopropylcarbodiimide, and monofunctional cyclic structure carbodiimide.
  • the amount of the hydrolysis-resistant agent (preferably, a carbodiimide group-containing compound) used is not particularly limited, and is preferably about 0.05 parts by weight or more, preferably about 0.1 parts by weight or more, for example, about 0.3 parts by weight or more, relative to 100 parts by weight of the polyester polymer so that the effect of containing the hydrolysis-resistant agent is preferably expressed.
  • the upper limit of the amount of the anti-hydrolysis agent to be used is, for example, about 5 parts by weight or less, preferably about 3 parts by weight or less, and may be, for example, 1 part by weight or less per 100 parts by weight of the polyester polymer.
  • the pressure-sensitive adhesive composition may optionally contain various additives commonly used in the field of pressure-sensitive adhesives, such as leveling agents, fillers, plasticizers, softeners, colorants (pigments, dyes, etc.), antistatic agents, anti-aging agents, UV absorbers, antioxidants, and light stabilizers.
  • additives commonly used in the field of pressure-sensitive adhesives, such as leveling agents, fillers, plasticizers, softeners, colorants (pigments, dyes, etc.), antistatic agents, anti-aging agents, UV absorbers, antioxidants, and light stabilizers.
  • the pressure-sensitive adhesive composition disclosed herein may further contain a known or commonly used solvent or dispersion medium for the purpose of adjusting the solid content concentration or viscosity.
  • a solvent-type adhesive composition containing an adhesive in an organic solvent is suitable.
  • the organic solvent is not particularly limited, and one or more of known or commonly used organic solvents that can be used for polyester pressure-sensitive adhesives can be used.
  • organic solvents such as toluene, ethyl acetate, methyl ethyl ketone, methylcyclohexane, cyclohexane, xylene and butyl acetate can be used. Among them, it is preferable to use ethyl acetate.
  • the viscosity of the adhesive composition disclosed herein at 23° C. is, for example, about 10 mPa s or more, may be about 20 mPa s or more, may be about 30 mPa s or more, may be about 10000 mPa s or less, may be about 8000 mPa s or less, or may be about 6000 mPa s or less. In some embodiments, the viscosity may be greater than 100 mPa ⁇ s, greater than 300 mPa ⁇ s, greater than 500 mPa ⁇ s, or greater than 700 mPa ⁇ s.
  • a thin pressure-sensitive adhesive can be formed with good productivity.
  • the solid content concentration of the pressure-sensitive adhesive composition disclosed herein is, for example, approximately 10% by weight or more, may be approximately 20% by weight or more, may be approximately 30% by weight or more, may be approximately 70% by weight or less, may be approximately 60% by weight or less, or may be approximately 55% by weight or less.
  • the pressure-sensitive adhesive composition having the above-described solid content concentration is easy to handle and easily forms a thin pressure-sensitive adhesive with high productivity.
  • the viscosity of the pressure-sensitive adhesive composition at 23° C. refers to the viscosity measured at a sample (pressure-sensitive adhesive composition to be measured) temperature of 23° C. ⁇ 5° C. using a BH viscometer at a rotation speed of 20 rpm.
  • the appropriate type (number) of rotors to be used for the measurement is selected according to the viscosity of the sample.
  • the solid content (non-volatile content) of the pressure-sensitive adhesive composition refers to the weight ratio of the residue after heating the pressure-sensitive adhesive composition at 130° C. for 120 minutes with respect to the entire pressure-sensitive adhesive composition.
  • the adhesive composition according to some aspects can be prepared containing a polyester-based polymer having a bio rate of 50% or more, in such aspects the adhesive composition has a bio rate of a predetermined value or more.
  • the non-volatile content (solid content) of the pressure-sensitive adhesive composition may have a bio rate of approximately 30% or more (for example, more than 30%), suitably approximately 40% or more, and preferably 50% or more.
  • a high non-volatile bio rate of the pressure-sensitive adhesive composition means that the amount of fossil resource-based materials such as petroleum used is small.
  • the pressure-sensitive adhesive composition By designing the pressure-sensitive adhesive composition so as to increase the bio-ratio of the non-volatile matter, it is possible to reduce the dependence of the pressure-sensitive adhesive as a whole on fossil resource-based materials.
  • the non-volatile content of the pressure-sensitive adhesive composition may have a bio rate of 55% or more, 60% or more, 70% or more, or 75% or more.
  • the upper limit of bio-percentage is by definition 100%, in the pressure-sensitive adhesive compositions disclosed herein, the bio-percentage can typically be less than 100% because the ingredients may include materials derived from fossil resources.
  • the non-volatile content of the adhesive composition may be, for example, less than 90%.
  • the adhesive composition may have a non-volatile bio-fraction of less than 30%, less than 10%, or less than 1%.
  • the non-volatile bio-rate of the pressure-sensitive adhesive composition may be substantially 0%.
  • bio rate of the non-volatile content of the adhesive composition is basically the same as the bio rate of the adhesive layer formed using the pressure-sensitive adhesive composition, so the above numerical range as the bio rate of the non-volatile content of the pressure-sensitive adhesive composition can also be applied to the bio rate of the pressure-sensitive adhesive layer.
  • the biorate of the adhesive composition and adhesive layer that is, the ratio of biomass-derived carbon to the total carbon contained in the adhesive composition and adhesive layer can be estimated from the carbon isotope content with a mass number of 14 measured according to ASTM D6866.
  • the biorate of the base material and the biorate of the pressure-sensitive adhesive sheet, which will be described later, can also be estimated by the same method.
  • a pressure-sensitive adhesive layer can be formed from the pressure-sensitive adhesive composition by a conventionally known method.
  • a PSA sheet can be formed by applying a PSA composition to a surface having releasability (release surface) and then curing the PSA composition to form a PSA layer on the surface.
  • a method (direct method) of forming a pressure-sensitive adhesive layer by directly applying (typically applying) a pressure-sensitive adhesive composition to the substrate and curing it can be preferably employed.
  • a method (transfer method) of forming a pressure-sensitive adhesive layer on the surface by applying a pressure-sensitive adhesive composition to a surface having releasability (release surface) and curing the composition, and transferring the pressure-sensitive adhesive layer to a substrate may be employed.
  • the release surface the surface of a release liner, the back surface of a base material subjected to a release treatment, or the like can be used.
  • curing of the pressure-sensitive adhesive composition can be performed by subjecting the pressure-sensitive adhesive composition to a curing treatment such as drying, crosslinking, polymerization, or cooling. Two or more curing treatments may be performed simultaneously or stepwise.
  • the pressure-sensitive adhesive layer disclosed herein is typically formed continuously, but is not limited to such a form, and may be a pressure-sensitive adhesive layer formed in a regular or random pattern such as dots or stripes.
  • the pressure-sensitive adhesive composition can be performed using known or conventional coaters such as gravure roll coaters, reverse roll coaters, kiss roll coaters, dip roll coaters, die coaters, comma coaters, bar coaters, knife coaters, and spray coaters.
  • the adhesive composition may be applied by impregnation, curtain coating, or the like.
  • the coating speed of the pressure-sensitive adhesive composition is not particularly limited.
  • the pressure-sensitive adhesive composition is applied to a predetermined thickness by supplying the pressure-sensitive adhesive composition from a coater to the surface to be coated while feeding a substrate or release liner having a surface to be coated at a speed (coating speed) of about 3 to 100 m / min (for example, 5 to 50 m / min).
  • the pressure-sensitive adhesive composition can be dried at room temperature or under heating. From the viewpoint of promoting the cross-linking reaction, improving production efficiency, etc., it is preferable to dry the pressure-sensitive adhesive composition under heating.
  • the drying temperature can be, for example, about 40 to 150°C, and usually about 40 to 130°C is preferable.
  • aging is preferably performed for the purpose of adjusting component migration in the pressure-sensitive adhesive layer, progressing the cross-linking reaction, alleviating distortion that may exist in the substrate and the pressure-sensitive adhesive layer, and the like.
  • the aging conditions are not particularly limited, and can be, for example, about 70° C. or lower (typically about 40 to 70° C.) for 1 day or longer (eg, 3 days or longer).
  • a thin adhesive layer having good quality can be formed based on the components contained in the adhesive composition, so there are few restrictions on the types of coaters provided in the adhesive sheet manufacturing machine, and there are also few restrictions on the coating speed and drying temperature, and a thin adhesive layer with good quality can be formed.
  • the pressure-sensitive adhesive sheet disclosed herein includes a pressure-sensitive adhesive layer formed using the pressure-sensitive adhesive composition described above.
  • the pressure-sensitive adhesive sheet may be, for example, in the form of a substrate-less double-sided pressure-sensitive adhesive sheet having a first pressure-sensitive adhesive surface formed by one surface of the pressure-sensitive adhesive layer and a second pressure-sensitive adhesive surface formed by the other surface of the pressure-sensitive adhesive layer.
  • the pressure-sensitive adhesive sheet disclosed herein may be in the form of a substrate-attached pressure-sensitive adhesive sheet in which the pressure-sensitive adhesive layer is laminated on one or both sides of a supporting substrate.
  • the supporting substrate may be simply referred to as "substrate".
  • FIG. 1 schematically shows the structure of a pressure-sensitive adhesive sheet according to one embodiment.
  • This pressure-sensitive adhesive sheet 1 is configured as a substrate-less double-sided pressure-sensitive adhesive sheet comprising a pressure-sensitive adhesive layer 21 .
  • the adhesive sheet 1 is used by attaching a first adhesive surface 21A constituted by one surface (first surface) of the adhesive layer 21 and a second adhesive surface 21B constituted by the other surface (second surface) of the adhesive layer 21 to different parts of the adherend.
  • the locations where the adhesive surfaces 21A and 21B are attached may be locations on different members or different locations within a single member.
  • the pressure-sensitive adhesive sheet 1 before use can be a constituent element of a pressure-sensitive adhesive sheet 100 with a release liner in which the first pressure-sensitive adhesive surface 21A and the second pressure-sensitive adhesive surface 21B are protected by release liners 31 and 32, respectively, at least on the side facing the pressure-sensitive adhesive layer 21, respectively, as shown in FIG.
  • the release liners 31 and 32 for example, a sheet-like base material (liner base material) having a release layer provided on one side thereof with a release treatment agent so that the one side becomes a release surface can be preferably used.
  • a release liner 31 having release surfaces on both sides may be used without the release liner 32, and the release liner 31 may be superimposed on the pressure-sensitive adhesive sheet 1 and spirally wound to form a release liner-attached pressure-sensitive adhesive sheet in a form (roll form) in which the second pressure-sensitive adhesive surface 21B is in contact with the back surface of the release liner 31 and protected.
  • FIG. 2 schematically shows the structure of a pressure-sensitive adhesive sheet according to another embodiment.
  • This pressure-sensitive adhesive sheet 2 is configured as a single-sided pressure-sensitive adhesive sheet with a substrate, which includes a sheet-like supporting substrate (for example, a resin film) 10 having a first surface 10A and a second surface 10B, and an adhesive layer 21 provided on the first surface 10A side.
  • the pressure-sensitive adhesive layer 21 is fixedly provided on the first surface 10A side of the support substrate 10 , that is, without the intention of separating the pressure-sensitive adhesive layer 21 from the support substrate 10 . As shown in FIG.
  • the pressure-sensitive adhesive sheet 2 before use can be a component of a pressure-sensitive adhesive sheet 200 with a release liner, in which the surface (adhesive surface) 21A of the pressure-sensitive adhesive layer 21 is protected by a release liner 31 having a release surface on at least the side facing the pressure-sensitive adhesive layer 21.
  • the release liner 31 may be omitted, the support substrate 10 having the second surface 10B serving as a release surface may be used, and the adhesive surface 21A may be protected by contacting the second surface (back surface) 10B of the support substrate 10 by rolling the adhesive sheet 2 (roll configuration).
  • FIG. 3 schematically shows the structure of a pressure-sensitive adhesive sheet according to yet another embodiment.
  • This pressure-sensitive adhesive sheet 3 is configured as a double-sided pressure-sensitive adhesive sheet with a substrate, which includes a sheet-like supporting substrate (for example, a resin film) 10 having a first surface 10A and a second surface 10B, a first pressure-sensitive adhesive layer 21 fixedly provided on the first surface 10A side, and a second pressure-sensitive adhesive layer 22 fixedly provided on the second surface 10B side.
  • a sheet-like supporting substrate for example, a resin film
  • the pressure-sensitive adhesive sheet 3 before use can be a component of a release liner-equipped pressure-sensitive adhesive sheet 300 in which the surface (first pressure-sensitive adhesive surface) 21A of the first pressure-sensitive adhesive layer 21 and the surface (second pressure-sensitive adhesive surface) 22A of the second pressure-sensitive adhesive layer 22 are protected by release liners 31 and 32, as shown in FIG.
  • the release liner 32 may be omitted, and a release liner 31 having release surfaces on both sides may be used, and the release liner 31 may be superimposed on the pressure-sensitive adhesive sheet 3 and spirally wound to form a release liner-attached pressure-sensitive adhesive sheet in a form (roll form) in which the second pressure-sensitive adhesive surface 22A is protected by coming into contact with the back surface of the release liner 31.
  • a release liner having a release treatment layer on the surface of a liner base material such as resin film or paper, or a release liner made of a low-adhesive material such as polyolefin resin (e.g. polyethylene, polypropylene) or fluorine resin can be used.
  • the release treatment layer may be formed by surface-treating the liner base material with a release treatment agent such as a silicone-based, long-chain alkyl-based, fluorine-based, or molybdenum sulfide-based release agent.
  • a release liner having a release treatment layer on the surface of a resin film or a release liner made of a low-adhesive material is preferable from the viewpoint of avoiding the generation of paper dust.
  • the concept of the adhesive sheet can include what is called adhesive tape, adhesive film, adhesive label, and the like.
  • the pressure-sensitive adhesive sheet may be in the form of a roll or sheet, or may be cut or punched into an appropriate shape according to the purpose and mode of use.
  • the thickness (total thickness) of the pressure-sensitive adhesive sheet disclosed herein is not particularly limited, and can be in the range of, for example, approximately 2 ⁇ m to 1000 ⁇ m. In some aspects, the thickness of the pressure-sensitive adhesive sheet is preferably about 5 ⁇ m to 500 ⁇ m (eg, 10 ⁇ m to 300 ⁇ m, typically 15 ⁇ m to 200 ⁇ m) in consideration of adhesive properties.
  • the thickness of the adhesive sheet is 100 ⁇ m or less, more preferably 70 ⁇ m or less, still more preferably 50 ⁇ m or less, particularly preferably 35 ⁇ m or less, for example, 30 ⁇ m or less, or 25 ⁇ m or less, from the viewpoint of reducing the weight, size, thickness, and functionality of products to which the adhesive sheet is applied (for example, portable electronic devices).
  • a thin pressure-sensitive adhesive layer can be formed with good quality and high productivity, so that the total thickness of the pressure-sensitive adhesive sheet can also be within the range of the predetermined value or less.
  • the lower limit of the thickness of the pressure-sensitive adhesive sheet is not particularly limited.
  • bio rate In some aspects, it is preferred that approximately 30% or more (eg, more than 30%) of the total carbon contained in the adhesive sheet is biomass-derived carbon. That is, it is preferable that the adhesive sheet has a bio rate of 30% or more.
  • the bio rate of the adhesive sheet is preferably 40% or more, may be 50% or more, may be 60% or more, may be 70% or more, or may be 75% or more.
  • the bio rate of the adhesive sheet may be less than 100% because it may not be efficient in terms of productivity, performance, etc. to make all the materials that make up the adhesive sheet derived from plants.
  • the bio rate of the adhesive sheet may be, for example, 90% or less, and when more emphasis is placed on adhesive performance, it may be 80% or less, or 70% or less.
  • the adhesive sheet bio-factor may be less than 30%, may be less than 10%, or may be less than 1%.
  • the bio rate of the adhesive sheet may be substantially 0%.
  • the bio rate of the pressure-sensitive adhesive layer matches the bio rate of the entire pressure-sensitive adhesive sheet.
  • the pressure-sensitive adhesive sheet preferably has a 180-degree peel strength (adhesive strength to SUS) of 10 N/20 mm or more to a stainless steel plate.
  • a pressure-sensitive adhesive sheet exhibiting the above properties can be preferably used in a manner in which re-peeling is not intended, typically, because it is strongly bonded to an adherend. From the viewpoint of achieving more reliable bonding, the adhesive strength may be, for example, 11 N/20 mm or more, preferably 12 N/20 mm or more, 13 N/20 mm or more, 14 N/20 mm or more, or 15 N/20 mm or more.
  • the upper limit of the adhesive strength is not particularly limited, and in some aspects, the adhesive strength may be, for example, 50 N/20 mm or less, 30 N/20 mm or less, or 25 N/20 mm or less. Specifically, the adhesion to SUS is measured by the method described in Examples below.
  • the pressure-sensitive adhesive sheet disclosed herein preferably has a holding power that does not fall off within 1 hour of the holding power test conducted under the conditions of 80°C, 1 kg load, and 1 hour.
  • a pressure-sensitive adhesive sheet exhibiting such high-temperature holding power can exhibit good holding performance even in a temperature range higher than room temperature (for example, a temperature of 40° C. or higher). It is suitable that the pressure-sensitive adhesive sheet has a displacement distance of 5.0 mm or less (for example, 3.0 mm or less) after the holding force test.
  • the displacement distance is preferably less than 2.0 mm, more preferably less than 1.0 mm, even more preferably less than 0.5 mm, and particularly preferably less than 0.3 mm (e.g., 0.1 mm or less).
  • the lower limit of the displacement distance is 0.0 mm, which means that no displacement is observed in the holding force test.
  • the holding force test is carried out by the method described in Examples below.
  • the thickness of the pressure-sensitive adhesive layer is not particularly limited, and can be appropriately selected depending on the purpose.
  • the thickness of the adhesive layer is, for example, 100 ⁇ m or less, preferably 50 ⁇ m or less, more preferably 35 ⁇ m or less, even more preferably 30 ⁇ m or less, particularly preferably 25 ⁇ m or less, and may be, for example, 22 ⁇ m or less, from the viewpoint of weight reduction, miniaturization, thin thickness, high functionality, etc. of products to which the adhesive sheet is applied (e.g., portable electronic devices). According to the technology disclosed herein, it is possible to form such a thin pressure-sensitive adhesive layer with good quality and high productivity.
  • the thickness of the pressure-sensitive adhesive layer is usually suitably 3 ⁇ m or more, preferably 5 ⁇ m or more. From the viewpoint of facilitating the realization of a pressure-sensitive adhesive sheet exhibiting higher high-temperature holding power, in some embodiments, the thickness of the pressure-sensitive adhesive layer may be, for example, 8 ⁇ m or more, preferably 12 ⁇ m or more, 15 ⁇ m or more, or 18 ⁇ m or more.
  • the pressure-sensitive adhesive sheet disclosed herein is a double-sided pressure-sensitive adhesive sheet having pressure-sensitive adhesive layers on both sides of a substrate, the thickness of each pressure-sensitive adhesive layer may be the same or different.
  • the pressure-sensitive adhesive sheet disclosed herein can be in the form of a pressure-sensitive adhesive sheet with a substrate having a pressure-sensitive adhesive layer on one or both sides of the substrate.
  • Various sheet-like substrates can be used as the substrate, and for example, resin films, papers, cloths, rubber sheets, foam sheets, metal foils, composites thereof, and the like can be used.
  • substrates that are less likely to generate dust for example, fine fibers or particles such as paper dust
  • substrates that do not contain fibrous materials such as paper and cloth are preferable, and for example, resin films, rubber sheets, foam sheets, metal foils, composites thereof, and the like can be preferably used.
  • resin films examples include polyester films such as polyethylene terephthalate (PET) and polyethylene naphthalate; vinyl chloride resin films; polyolefin films such as polyethylene (PE), polypropylene (PP), ethylene-propylene copolymers, and ethylene-butene copolymers; vinylidene chloride resin films; vinyl acetate resin films;
  • rubber sheets include natural rubber sheets and butyl rubber sheets.
  • foam sheets include foamed polyurethane sheets and foamed polyolefin sheets.
  • metal foil examples include aluminum foil and copper foil.
  • a resin film is preferably used as the base material.
  • a resin film is preferably used as a material excellent in dimensional stability, thickness accuracy, economy (cost), workability and tensile strength.
  • the resin film for example, a polyester film such as a PET film described later
  • Such recyclable resin films and recycled resin films are also referred to as recycled films.
  • Such recyclability of the resin film can also be applied to the resin film used for the release liner described above.
  • the term "resin film” is typically a non-porous film, and is a concept distinguished from so-called nonwoven fabrics and woven fabrics.
  • a polyester film can be preferably used as the substrate from the viewpoint of strength and workability.
  • a polyester resin containing polyester obtained by polycondensation of a dicarboxylic acid and a diol as a main component is typically used.
  • dicarboxylic acids constituting the polyester include phthalic acid, isophthalic acid, terephthalic acid, 2-methylterephthalic acid, 5-sulfoisophthalic acid, 4,4'-diphenyldicarboxylic acid, 4,4'-diphenyletherdicarboxylic acid, 4,4'-diphenylketonedicarboxylic acid, 4,4'-diphenoxyethanedicarboxylic acid, 4,4'-diphenylsulfonedicarboxylic acid, 1,4-naphthalenedicarboxylic acid, 1,5- aromatic dicarboxylic acids such as naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid and 2,7-naphthalenedicarboxylic acid; alicyclic dicarboxylic acids such as 1,2-cyclohexanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid and 1,4-cyclohexanedicarboxy
  • diols constituting the polyester include aliphatic diols such as ethylene glycol, diethylene glycol, polyethylene glycol, propylene glycol, polypropylene glycol, 1,3-propanediol, 1,5-pentanediol, neopentyl glycol, 1,4-butanediol, 1,6-hexanediol, 1,8-octanediol, and polyoxytetramethylene glycol; 1,2-cyclohexanediol, 1,4-cyclohexanediol, 1,1-cyclohexanedimethylol, , 4-cyclohexanedimethylol, xylylene glycol, 4,4'-dihydroxybiphenyl, 2,2-bis(4'-hydroxyphenyl)propane, bis(4-hydroxyphenyl)sulfone, and other aromatic diols.
  • aliphatic diols such as
  • Aliphatic diols are preferred from the viewpoint of transparency and the like, and ethylene glycol is particularly preferred.
  • the ratio of the aliphatic diol (preferably ethylene glycol) to the diols constituting the polyester is preferably 50% by weight or more (for example, 80% by weight or more, typically 95% by weight or more).
  • the diol may consist essentially of ethylene glycol.
  • biomass-derived ethylene glycol typically, biomass ethylene glycol obtained using biomass ethanol as a raw material
  • biomass-derived ethylene glycol typically, biomass ethylene glycol obtained using biomass ethanol as a raw material
  • the proportion of biomass-derived ethylene glycol in the ethylene glycol constituting the polyester may be, for example, 50% by weight or more, preferably 75% by weight or more, 90% by weight or more, or 95% by weight or more.
  • Substantially all of the ethylene glycol may be biomass-derived ethylene glycol.
  • polyester resin films include polyethylene terephthalate (PET) film, polybutylene terephthalate (PBT) film, polyethylene naphthalate (PEN) film, and polybutylene naphthalate film.
  • the polyester film substrate may contain a polymer other than the above polyester in addition to polyester.
  • Preferred examples of the polymer other than polyester include, among the various polymer materials exemplified as the resin film that can constitute the base material, those other than polyester.
  • the polyester film substrate disclosed herein contains a polymer other than the polyester in addition to the polyester, the content of the polymer other than the polyester is suitably less than 100 parts by weight, preferably 50 parts by weight or less, more preferably 30 parts by weight or less, and even more preferably 10 parts by weight or less, relative to 100 parts by weight of the polyester.
  • the content of the polymer other than polyester may be 5 parts by weight or less, or may be 1 part by weight or less with respect to 100 parts by weight of polyester.
  • the technology disclosed herein can be preferably practiced, for example, in a mode in which 99.5 to 100% by weight of the polyester film substrate is polyester.
  • a polyolefin film can be preferably used as the substrate from the viewpoint of strength and flexibility.
  • a polyolefin film is a film whose main component is a polymer containing ⁇ -olefin as a main monomer (main component among monomer components). The proportion of the polymer is usually 50% by weight or more (eg 80% by weight or more, typically 90-100% by weight).
  • Specific examples of polyolefins include those containing ethylene as the main monomer (polyethylene) and those containing propylene as the main monomer (polypropylene).
  • the polyethylene may be a homopolymer of ethylene, a copolymer of ethylene and another olefin (e.g., one or more selected from ⁇ -olefins having 3 to 10 carbon atoms), or a copolymer of ethylene and a monomer other than an olefin (e.g., one or more selected from ethylenically unsaturated monomers such as vinyl acetate, acrylic acid, methacrylic acid, methyl acrylate and ethyl acrylate).
  • another olefin e.g., one or more selected from ⁇ -olefins having 3 to 10 carbon atoms
  • a copolymer of ethylene and a monomer other than an olefin e.g., one or more selected from ethylenically unsaturated monomers such as vinyl acetate, acrylic acid, methacrylic acid, methyl acrylate and ethyl acrylate.
  • the polypropylene may be a homopolymer of propylene, a copolymer of propylene and other olefins (for example, one or more selected from ⁇ -olefins having 2,4 to 10 carbon atoms), or a copolymer of propylene and a monomer other than an olefin.
  • the substrates disclosed herein may contain only one of the above polyolefins, or may contain two or more polyolefins.
  • the polyolefin film substrate may contain a polymer other than the above polyolefin in addition to polyolefin.
  • Preferred examples of the polymer other than polyolefin include those other than polyolefin among the various polymer materials exemplified as the resin film that can constitute the base material.
  • the content of the polymer other than the polyolefin is suitably less than 100 parts by weight, preferably 50 parts by weight or less, more preferably 30 parts by weight or less, and even more preferably 10 parts by weight or less, relative to 100 parts by weight of the polyolefin.
  • the content of the polymer other than polyolefin may be 5 parts by weight or less, or may be 1 part by weight or less with respect to 100 parts by weight of polyolefin.
  • the technology disclosed herein can be preferably practiced, for example, in a mode in which 99.5 to 100% by weight of the polyolefin film substrate is polyolefin.
  • the base material disclosed here preferably contains a biomass material.
  • the biomass material that can constitute the base material is not particularly limited, but for example, biomass polyester such as biomass PET and biomass polytrimethylene terephthalate (biomass PTT); polylactic acid; hexanoate); biomass polyamides such as polyhexamethylene sebacamide and poly(xylylene sebacamide); biomass polyurethanes such as biomass polyester ether urethane and biomass polyether urethane; cellulosic resin; These can be used individually by 1 type or in combination of 2 or more types.
  • biomass PET and biomass PTT are preferred, and biomass HDPE, biomass LDPE, biomass LLDPE, biomass PP and biomass PET are particularly preferred.
  • biomass material described above is a resin material, it can be preferably applied to a configuration in which the substrate is a resin film.
  • the amount of fossil resource-based material used can be reduced in the pressure-sensitive adhesive sheet having a resin film (preferably polyolefin film) as a base material.
  • the bio rate of the base material is preferably 20% or more, more preferably 35% or more.
  • the bio rate of the substrate may be, for example, 50% or higher, 70% or higher, 85% or higher, or 90% or higher.
  • the upper limit of the bio rate is 100% or less, in some embodiments, the bio rate of the base material may be, for example, 80% or less, 60% or less, 40% or less, or less than 20% in consideration of workability, strength, and the like.
  • the base material may have transparency, or may have light shielding or dimming properties.
  • the substrate eg, resin film
  • the substrate can contain a colorant.
  • the light transmittance (light shielding property) of the substrate can be adjusted. Adjusting the light transmittance (for example, normal light transmittance) of the substrate can also help adjust the light transmittance of the substrate and further the light transmittance of the pressure-sensitive adhesive sheet including the substrate.
  • coloring agent conventionally known pigments and dyes can be used in the same manner as the coloring agent that can be contained in the adhesive layer.
  • the coloring agent is not particularly limited, and may be, for example, black, gray, white, red, blue, yellow, green, yellow-green, orange, purple, gold, silver, pearl color, and the like.
  • the substrate may be colored with a colored layer arranged on the surface of the base film (preferably resin film).
  • the base film may or may not contain a coloring agent.
  • the colored layer may be arranged on either one surface of the base film, or may be arranged on both surfaces. In the configuration in which the colored layers are arranged on both surfaces of the base film, the configurations of the colored layers may be the same or different.
  • the color and transparency of the pressure-sensitive adhesive sheet can be adjusted, and desired design properties, light-shielding properties, and hiding properties can be obtained.
  • the color of the colored layer is not particularly limited, and various colors can be adopted depending on the purpose.
  • the colored layer may be a black layer (eg, black printed layer) formed by, for example, black printing.
  • the colored layer can be formed, for example, by applying a colored layer-forming composition containing a coloring agent and a binder to the base film.
  • a colored layer-forming composition containing a coloring agent and a binder
  • Materials known in the field of coatings or printing can be used as binders without particular limitations. Examples include polyurethane, phenol resin, epoxy resin, urea melamine resin, polymethyl methacrylate, and the like.
  • the colored layer-forming composition may be, for example, a solvent type, an ultraviolet curable type, a heat curable type, or the like.
  • the formation of the colored layer can be carried out by adopting means conventionally used for forming the colored layer without particular limitation. For example, a method of forming a colored layer (printed layer) by printing such as gravure printing, flexographic printing, and offset printing can be preferably employed.
  • the colored layer may have a single layer structure consisting entirely of one layer, or may have a multilayer structure including two, three or more sub-colored layers.
  • a colored layer having a multi-layer structure including two or more sub-colored layers can be formed, for example, by repeatedly applying (for example, printing) a composition for forming a colored layer.
  • the colors and blending amounts of the colorants contained in each sub-colored layer may be the same or different. From the viewpoint of preventing the formation of pinholes and increasing the reliability of preventing light leakage, it is particularly significant to have a multi-layer structure in the colored layer for imparting light-shielding properties.
  • a known pigment or dye can be appropriately selected according to the desired color.
  • white pigments include, but are not limited to, titanium dioxide, zinc white, white lead, and the like.
  • black pigments include carbon black, acetylene black, pine smoke, graphite and the like. These can be used individually by 1 type or in combination of 2 or more types.
  • the content of the coloring agent is set according to the required color tone, light transmittance, etc., and is not limited to a specific range.
  • the content of the coloring agent is suitably about 65% by weight or less, preferably 30% by weight or less (for example, 15% by weight or less), and may be 8% by weight or less.
  • the thickness of the entire colored layer is usually appropriately 0.1 ⁇ m or more, preferably 0.5 ⁇ m or more, and more preferably 0.7 ⁇ m or more.
  • the thickness of the entire colored layer may be about 0.8 ⁇ m or more, or about 1 ⁇ m or more. In some other embodiments, the thickness of the entire colored layer may be 2 ⁇ m or more (eg, 3 ⁇ m or more) or 4 ⁇ m or more from the viewpoint of obtaining sufficient light shielding properties.
  • the thickness of the entire colored layer is usually 10 ⁇ m or less, preferably 7 ⁇ m or less, and more preferably 5 ⁇ m or less. In some embodiments, the total color layer thickness can be about 3 ⁇ m or less, or even about 2 ⁇ m or less. In the colored layer including two or more sub-colored layers, the thickness of each sub-colored layer is preferably about 0.5 ⁇ m to 2 ⁇ m.
  • the surface (adhesive layer side surface) of the base material (for example, resin film, rubber sheet, foam sheet, etc.) on which the adhesive layer is arranged may be subjected to known or commonly used surface treatments such as corona discharge treatment, plasma treatment, ultraviolet irradiation treatment, acid treatment, alkali treatment, and formation of an undercoat layer.
  • a surface treatment can be a treatment for improving the adhesion between the substrate and the adhesive layer, in other words, the anchoring property of the adhesive layer to the substrate.
  • the base material may not be subjected to a surface treatment for improving the anchoring property on the pressure-sensitive adhesive layer side surface.
  • the undercoat agent (primer) used for the formation is not particularly limited, and can be appropriately selected from known ones.
  • the thickness of the undercoat layer is not particularly limited, and can be, for example, more than 0.01 ⁇ m.
  • the thickness of the undercoat layer is preferably less than 1.0 ⁇ m, and may be 0.7 ⁇ m or less, or 0.5 ⁇ m or less. Since primers are generally highly dependent on fossil resource-based materials, not having an excessively large thickness of the undercoat layer can be advantageous from the viewpoint of reducing the bio-rate of the pressure-sensitive adhesive sheet, which will be described later.
  • the adhesive layer non-formed surface (back surface) of the substrate may be subjected to a release treatment with a release treatment agent (back surface treatment agent).
  • the back-treatment agent that can be used to form the back-treatment layer is not particularly limited, and silicone-based back-treatment agents, fluorine-based back-treatment agents, long-chain alkyl-based back-treatment agents, and other known or commonly used treatment agents can be used depending on the purpose and application.
  • the back surface treatment agents can be used singly or in combination of two or more.
  • additives such as fillers (inorganic fillers, organic fillers, etc.), anti-aging agents, antioxidants, UV absorbers, antistatic agents, lubricants, plasticizers, colorants (pigments, dyes, etc.) may be added to the base material (for example, resin film base material) as necessary.
  • the blending ratio of various additives is usually about 30% by weight or less (for example, 20% by weight or less, typically 10% by weight or less).
  • a pigment for example, a white pigment
  • the content is appropriately about 0.1 to 10% by weight (for example, 1 to 8% by weight, typically 1 to 5% by weight).
  • the thickness of the base material is not particularly limited and can be appropriately selected according to the purpose, but is generally about 1 ⁇ m to 500 ⁇ m. From the standpoint of handleability of the substrate, the thickness of the substrate may be, for example, 1.5 ⁇ m or more, 2 ⁇ m or more, 3 ⁇ m or more, 4 ⁇ m or more, or 4.5 ⁇ m or more. Further, from the viewpoint of thinning the pressure-sensitive adhesive sheet, in some aspects, the thickness of the substrate may be, for example, 150 ⁇ m or less, 100 ⁇ m or less, 50 ⁇ m or less, 25 ⁇ m or less, 20 ⁇ m or less, 10 ⁇ m or less, 7 ⁇ m or less, 5 ⁇ m or less, or 4 ⁇ m or less.
  • an adhesive sheet having an adhesive layer is provided. Details thereof are as described in the above-mentioned adhesive composition and adhesive sheet, and redundant description is omitted.
  • the use of the pressure-sensitive adhesive sheet disclosed herein is not particularly limited, and it can be used for various purposes without limitation.
  • the pressure-sensitive adhesive sheet can be used for the purpose of fixing, bonding, reinforcing, etc. of the members in a mode of being attached to the members constituting the electronic device.
  • the PSA sheet disclosed herein can be preferably used for fixing or joining members, for example, in the form of a double-sided PSA sheet. In such applications it is particularly significant that the adhesive sheet exhibits good adhesion and holding power.
  • the double-sided pressure-sensitive adhesive sheet may be substrateless or may have a substrate.
  • a substrate-less double-sided PSA sheet or a substrate-attached double-sided PSA sheet using a thin substrate can be preferably employed.
  • a thin base material a base material having a thickness of 10 ⁇ m or less (for example, less than 5 ⁇ m) can be preferably used.
  • the adhesive sheet disclosed here is suitable for use in fixing members in mobile electronic devices, for example.
  • the pressure-sensitive adhesive sheet disclosed herein has good adhesive properties, and a thin pressure-sensitive adhesive layer is formed with good quality and high productivity. Therefore, the pressure-sensitive adhesive sheet disclosed herein is suitable for use in mobile electronic devices in which a thin layer pressure-sensitive adhesive is required due to demands such as weight reduction, miniaturization, thinness, and high functionality.
  • the pressure-sensitive adhesive sheet disclosed herein can have adhesion reliability that achieves both adhesive strength and high-temperature holding power, and is therefore suitable for use in portable electronic devices that require high performance. Since the inside of a portable electronic device may contain a heat-generating element such as a battery, it may be exposed to temperatures of, for example, 40° C. or higher.
  • Non-limiting examples of the above portable electronic devices include mobile phones, smartphones, tablet computers, notebook computers, various wearable devices (for example, wrist wear type worn on the wrist like a wristwatch, modular type worn on a part of the body with a clip or strap, eyewear type including glasses type (monocular type or binocular type, including head-mounted type), clothing type attached to shirts, socks, hats, etc.
  • various wearable devices for example, wrist wear type worn on the wrist like a wristwatch, modular type worn on a part of the body with a clip or strap, eyewear type including glasses type (monocular type or binocular type, including head-mounted type), clothing type attached to shirts, socks, hats, etc.
  • the pressure-sensitive adhesive sheet disclosed herein can be preferably used, for example, for the purpose of fixing a pressure-sensitive sensor and other members in a portable electronic device having a pressure-sensitive sensor among such portable electronic devices.
  • the pressure-sensitive adhesive sheet is a device for indicating a position on the screen (typically a pen-type or mouse-type device) and a device for detecting the position, and can be used to fix pressure sensors and other members in an electronic device (typically a portable electronic device) having a function of specifying an absolute position on a board (typically a touch panel) corresponding to the screen.
  • an electronic device typically a portable electronic device having a function of specifying an absolute position on a board (typically a touch panel) corresponding to the screen.
  • the term “portable” means not only being able to be simply carried, but also having a level of portability that allows an individual (a typical adult) to carry it relatively easily.
  • the material (adherend material) to which the adhesive sheet disclosed herein is attached is not particularly limited, but examples include metal materials such as copper, iron, aluminum, and stainless steel; various resin materials (typically plastic materials); inorganic materials such as glass;
  • the resin material include polyimide-based resins, acrylic-based resins, polyethernitrile-based resins, polyethersulfone-based resins, polyester-based resins (PET-based resins, polyethylene naphthalate-based resins, etc.), polyvinyl chloride-based resins, polyphenylene sulfide-based resins, polyetheretherketone-based resins, polyamide-based resins (such as so-called aramid resins), polyarylate-based resins, polycarbonate-based resins, and liquid crystal polymers.
  • the adhesive sheet disclosed herein is preferably used for bonding the metal materials, polyester resins such as PET, polyimide resins, aramid resins, polyphenylene sulfide resins, polycarbonate resins, and the like.
  • the above materials may be member materials that constitute products such as portable electronic devices.
  • the adhesive sheet disclosed herein can be used by being attached to a member made of the above materials.
  • FIG. 4 is an example schematically showing a portable electronic device (smartphone) using the adhesive sheet disclosed herein.
  • a battery (heat generating element) 540 is built inside a housing 520 of the portable electronic device 500 .
  • the portable electronic device 500 is configured including an adhesive sheet 550 .
  • the adhesive sheet 550 has the form of a double-sided adhesive sheet (double-sided adhesive sheet) for fixing members constituting the portable electronic device 500 .
  • the portable electronic device 500 includes a touch panel 570 whose display unit also functions as an input unit.
  • the pressure-sensitive adhesive sheet disclosed herein is preferably used as a constituent element (member joining means) of the portable electronic device as described above.
  • a portable electronic device A housing and a touch panel whose display unit also functions as an input unit, A heating element (e.g., battery) is built in the housing, At least a first member and a second member among a large number of members constituting the portable electronic device are joined by an adhesive sheet,
  • the adhesive sheet has an adhesive layer,
  • the pressure-sensitive adhesive layer contains a polyester polymer, a tackifying resin and a cross-linking agent, The content of the tackifying resin in the adhesive layer is 20 parts by weight or more with respect to 100 parts by weight of the polyester polymer,
  • the portable electronic device wherein the polyester polymer has a weight average molecular weight of 110,000 or more.
  • the pressure-sensitive adhesive composition wherein the polyester polymer has a weight average molecular weight of 110,000 or more.
  • a pressure-sensitive adhesive sheet having a pressure-sensitive adhesive layer contains a polyester polymer, a tackifying resin and a cross-linking agent, The content of the tackifying resin in the adhesive layer is 20 parts by weight or more with respect to 100 parts by weight of the polyester polymer, The pressure-sensitive adhesive sheet, wherein the polyester polymer has a weight average molecular weight of 110,000 or more.
  • a method for producing a pressure-sensitive adhesive sheet having a pressure-sensitive adhesive layer comprising: preparing a pressure-sensitive adhesive composition comprising a polyester-based polymer, a tackifying resin and a cross-linking agent; applying the pressure-sensitive adhesive composition to a substrate surface or a releasable surface to form a pressure-sensitive adhesive layer; including here, The content of the tackifying resin is 20 parts by weight or more with respect to 100 parts by weight of the polyester polymer, A method for producing a pressure-sensitive adhesive sheet, wherein the polyester polymer has a weight average molecular weight of 110,000 or more.
  • Synthesis example 1 A four-necked separable flask was equipped with a stirrer, a thermometer, a nitrogen tube and a water separation tube, and 100 g of ethylene glycol (manufactured by Tokyo Chemical Industry Co., Ltd., molecular weight 62), 700 g of dimer acid (product name "PRIPOL 1009", manufactured by Croda, molecular weight 567), 63 g of terephthalic acid (manufactured by Tokyo Chemical Industry Co., Ltd., molecular weight 166), and di-n-butyltin oxide (manufactured by Kishida Chemical Co., Ltd., molecular weight 249) as a polymerization catalyst.
  • ethylene glycol manufactured by Tokyo Chemical Industry Co., Ltd., molecular weight 62
  • dimer acid product name "PRIPOL 1009"
  • terephthalic acid manufactured by Tokyo Chemical Industry Co., Ltd., molecular weight 166
  • di-n-butyltin oxide
  • polyester polymer (A1) with a bio rate of 81%.
  • This polyester polymer (A1) had a weight average molecular weight (Mw) of 100,000 and a glass transition temperature (Tg) of -33°C.
  • polyester polymer (A2) having a higher molecular weight than the polyester polymer (A1) was obtained in the same manner as in Synthesis Example 1, except that the reaction time in Synthesis Example 1 was changed to about 36 hours.
  • the monomer composition of this polyester polymer (A2) was the same as that of the polyester polymer (A1), and Mw was 130,000.
  • Example 1 To 100 parts of the polyester polymer (A1), 40 parts of a terpene phenol resin (trade name “YS Polyster S145", manufactured by Yasuhara Chemical Co., Ltd., phenol ratio 22%, hereinafter sometimes referred to as "S145") as a tackifying resin, 3 parts of an isocyanurate body of hexamethylene diisocyanate (trade name "Coronate HX", manufactured by Tosoh Corporation) as a cross-linking agent, an organic zirconium compound (trade name "Orgatics ZC-162”) as a cross-linking catalyst.
  • a terpene phenol resin trade name "YS Polyster S145", manufactured by Yasuhara Chemical Co., Ltd., phenol ratio 22%, hereinafter sometimes referred to as "S145”
  • 3 parts of an isocyanurate body of hexamethylene diisocyanate trade name "Coronate HX", manufactured by Tosoh Corporation
  • an organic zirconium compound
  • an adhesive composition (adhesive solution) according to this example.
  • the solid content concentration of this adhesive composition was 40%, and the viscosity at 23° C. was about 300 mPa ⁇ s.
  • Example 2 A pressure-sensitive adhesive composition according to this example was prepared in the same manner as in Example 1, except that 0.01 part of an organic tin compound (trade name “dibutyltin (IV) dilaurate”, manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) was used as a cross-linking catalyst instead of the organic zirconium compound.
  • the solid content concentration of this adhesive composition was 40%, and the viscosity at 23° C. was about 300 mPa ⁇ s.
  • Example 3 To 100 parts of the polyester polymer (A2), 40 parts of a terpene phenol resin (trade name “YS Polystar G150", manufactured by Yasuhara Chemical Co., Ltd., phenol ratio 32%, hereinafter sometimes referred to as "G150") as a tackifying resin, 2 parts of an isocyanurate body of hexamethylene diisocyanate (trade name "Coronate HX", manufactured by Tosoh Corporation) as a cross-linking agent, an organic zirconium compound (trade name "Orgatics ZC-162”) as a cross-linking catalyst.
  • a terpene phenol resin trade name "YS Polystar G150", manufactured by Yasuhara Chemical Co., Ltd., phenol ratio 32%, hereinafter sometimes referred to as "G150”
  • G150 terpene phenol resin
  • an isocyanurate body of hexamethylene diisocyanate trade name "Coronate HX", manufactured by Tosoh Corporation
  • Example 4 To 100 parts of the polyester polymer (A2), 40 parts of a terpene phenol resin (trade name “YS Polystar S145”, manufactured by Yasuhara Chemical Co., Ltd., phenol ratio 22%) as a tackifying resin, isocyanurate of hexamethylene diisocyanate (trade name “Coronate HX”, manufactured by Tosoh Corporation) as a cross-linking agent 3 parts, an organic tin compound (trade name “dibutyltin dilaurate (IV)”, manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) 0.01 as a cross-linking catalyst.
  • a pressure-sensitive adhesive composition according to this example was prepared in the same manner as in Example 3, except that 1 part was used. The solid content concentration of this adhesive composition was 40%, and the viscosity at 23° C. was about 800 mPa ⁇ s.
  • Examples 5 to 8> A pressure-sensitive adhesive composition according to each example was prepared in the same manner as in Example 4, except that the amounts of the tackifier resin and cross-linking agent used were changed as shown in Table 1.
  • a pressure-sensitive adhesive layer was formed by the method described in the evaluation of the pressure-sensitive adhesive coatability, and the pressure-sensitive adhesive layer was attached to the release-treated surface of a release-treated PET film (trade name “Diafoil MRE #38” manufactured by Mitsubishi Chemical Corporation).
  • the obtained adhesive sheet was cut into a size of 20 mm in width and 150 mm in length to prepare a measurement sample.
  • the adhesive surface of the measurement sample was exposed in an environment of 23° C. and 50% RH, and the adhesive surface was press-bonded to a stainless steel plate (SUS304BA plate) as an adherend by reciprocating a 2-kg rubber roller once. This was left in an environment of 23 ° C.
  • the peel strength (adhesive strength to SUS) [N / 20 mm] was measured under the conditions of a peel angle of 180 degrees and a tensile speed of 300 mm / min.
  • a universal tensile and compression tester (equipment name “Tensile and Compression Tester, TCM-1kNB”, manufactured by Minebea Co., Ltd.) was used.
  • a pressure-sensitive adhesive layer was formed by the method described in the evaluation of the pressure-sensitive adhesive coatability, and the pressure-sensitive adhesive layer was attached to the release-treated surface of a release-treated PET film (trade name “Diafoil MRE #38” manufactured by Mitsubishi Chemical Corporation).
  • a measurement sample (test piece) was prepared by cutting the adhesive sheet into a size of 10 mm in width and 100 mm in length. Under an environment of 23 ° C. and 50% RH, the adhesive surface of the measurement sample was pressed against a bakelite plate (phenolic resin plate) as an adherend with a 10 mm wide and 20 mm long pasting area with a 2 kg roller. The adherend to which the test piece was adhered in this manner was allowed to stand in an environment of 80° C.
  • the adhesive sheet to be measured can be reinforced by attaching an appropriate backing material.
  • the backing material for example, a PET film having a thickness of about 50 ⁇ m can be used, and this backing material was used in the examples.
  • Table 1 shows the evaluation results of the adhesive composition and adhesive sheet according to each example.
  • Example 5 in which the amount of the tackifying resin used was less than 20 parts by weight with respect to 100 parts by weight of the polyester polymer, the adhesion to SUS was low.
  • a PSA composition containing a polyester polymer, a tackifier resin and a cross-linking agent, wherein the content of the tackifier resin is 20 parts by weight or more relative to 100 parts by weight of the polyester polymer, and the Mw of the polyester polymer is 110,000 or more, can form a thin PSA with good quality. Also, it can be seen that such adhesives can exhibit good adhesive properties based on the use of tackifying resins.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Adhesive Tapes (AREA)

Abstract

The purpose of the present invention is to provide an adhesive composition that readily forms a thin, high-quality polyester adhesive in a composition that contains a polyester polymer and a crosslinking agent and additionally contains a prescribed amount or more of a tackifying resin. Provided is an adhesive composition containing a polyester polymer, a tackifying resin, and a crosslinking agent. The tackifying resin content is 20 parts by weight or greater per 100 parts by weight of the polyester polymer. The weight-average molecular weight of the polyester polymer is 110,000 or greater.

Description

粘着剤組成物および粘着シートAdhesive composition and adhesive sheet
 本発明は、粘着剤組成物および粘着シートに関する。本出願は、2022年1月21日に出願された日本国特許出願2022-8141号に基づく優先権を主張しており、その出願の全内容は本明細書中に参照として組み入れられている。 The present invention relates to an adhesive composition and an adhesive sheet. This application claims priority based on Japanese Patent Application No. 2022-8141 filed on January 21, 2022, the entire contents of which are incorporated herein by reference.
 一般に、粘着剤(感圧接着剤ともいう。以下同じ。)は室温付近の温度域において柔らかい固体(粘弾性体)の状態を呈し、圧力により簡単に被着体に接着する性質を有する。このような性質を活かして、粘着剤は、家電製品から自動車、各種機械、電気機器、電子機器等の様々な産業分野において、典型的には該粘着剤の層を含む粘着シートの形態で、作業性がよく接着の信頼性の高い接合手段として広く利用されている。粘着剤としては、アクリル系粘着剤やゴム系粘着剤、ポリエステル系粘着剤等の各種粘着剤が、使用目的や使用箇所、要求特性等に応じて用いられる。例えば、ポリエステル系粘着剤に関する従来技術を開示する文献として、特許文献1~3が挙げられる。 In general, pressure-sensitive adhesives (also called pressure-sensitive adhesives; the same shall apply hereinafter) exhibit a soft solid (viscoelastic) state in a temperature range near room temperature, and have the property of easily adhering to adherends under pressure. Taking advantage of such properties, pressure-sensitive adhesives are typically in the form of pressure-sensitive adhesive sheets containing a layer of the pressure-sensitive adhesive in various industrial fields such as home appliances, automobiles, various machines, electrical equipment, and electronic devices. As the adhesive, various adhesives such as acrylic adhesives, rubber adhesives, polyester adhesives, etc. are used according to the purpose of use, the place of use, required properties, and the like. For example, Patent Documents 1 to 3 are cited as documents disclosing prior art regarding polyester pressure-sensitive adhesives.
日本国特許第4914132号公報Japanese Patent No. 4914132 日本国特許第6687997号公報Japanese Patent No. 6687997 日本国特許出願公開2020-79372号公報Japanese Patent Application Publication No. 2020-79372
 粘着シートは、例えば、携帯電話、スマートフォン、タブレット型パソコン等の携帯電子機器における部材の固定等に好ましく用いられている。携帯電子機器用途の粘着剤としては、上記携帯電子機器の軽量化、小型化、薄厚化、高機能化等の要請から、薄層のものが好ましく用いられる。携帯電子機器用粘着シートとしては、アクリル系ポリマーをベースポリマーとするアクリル系粘着剤を用いるものが主流であり、他には、例えば、スチレン-ブタジエンブロック共重合体等のゴム系ブロック共重合体をベースポリマーとする合成ゴム系粘着剤が用いられ得る。ポリエステル系粘着剤は、耐薬品性や耐水性、耐久性、光学特性(透明性)等の諸特性に優れ、アクリル系粘着剤や合成ゴム系粘着剤と同等以上の粘着特性を発揮し得るので、携帯電子機器用粘着剤としての利用が期待されている。また、ポリエステル系粘着剤は、バイオマス材料を用いて合成できるため、化石資源系材料への依存度を低減することができるという利点を有する(例えば特許文献1および2)。 Adhesive sheets are preferably used, for example, for fixing members in mobile electronic devices such as mobile phones, smartphones, and tablet computers. As the pressure-sensitive adhesive for use in portable electronic devices, a thin-layer adhesive is preferably used in view of the demands for lighter weight, smaller size, thinner thickness, higher functionality, and the like of the above-mentioned portable electronic devices. As adhesive sheets for mobile electronic devices, those using an acrylic adhesive with an acrylic polymer as a base polymer are the mainstream, and in addition, for example, a synthetic rubber adhesive with a rubber block copolymer such as a styrene-butadiene block copolymer as a base polymer can be used. Polyester-based adhesives are excellent in various properties such as chemical resistance, water resistance, durability, and optical properties (transparency), and can exhibit adhesive properties equal to or higher than those of acrylic adhesives and synthetic rubber-based adhesives, so they are expected to be used as adhesives for mobile electronic devices. In addition, the polyester-based pressure-sensitive adhesive can be synthesized using biomass materials, so it has the advantage of being able to reduce dependence on fossil resource-based materials (for example, Patent Documents 1 and 2).
 しかし、一般に、ポリエステル系粘着剤に用いられるポリエステル系ポリマーは、アクリル系ポリマー等と比べて低分子量であるため、ポリエステル系ポリマーを含む粘着剤組成物は粘度が低い傾向にある。そのため、薄厚のポリエステル系粘着剤を形成する場合、その低粘度ゆえにハジキ等の問題が生じやすい。具体的には、薄厚の粘着剤層を塗工する場合、通常、溶剤等により粘着剤組成物を希釈して用いるが、もとより低粘度の粘着剤組成物を希釈すると、粘着剤組成物の粘度はさらに低下してしまい、塗工後にハジキ等の問題が生じやすい。薄厚に塗工するには、希釈後においても、粘着剤組成物は適度な粘度を有する必要がある。また例えば、ポリエステル系粘着剤組成物を高粘度化するために、固形分濃度を高めると、粘着剤層形成前の段階で架橋反応が進行してしまうおそれがあり、十分なポットライフが得られない。そのため、良好な品質を有する薄厚ポリエステル系粘着剤を得るには、粘着シート製造機の選定や、粘着剤組成物の粘度の調節などに制限があるのが実情である。 However, in general, polyester-based polymers used in polyester-based adhesives have a lower molecular weight than acrylic polymers and the like, so adhesive compositions containing polyester-based polymers tend to have low viscosities. Therefore, when forming a thin polyester-based pressure-sensitive adhesive, problems such as repelling tend to occur due to its low viscosity. Specifically, when a thin pressure-sensitive adhesive layer is applied, the pressure-sensitive adhesive composition is usually diluted with a solvent or the like. However, if a low-viscosity pressure-sensitive adhesive composition is diluted, the viscosity of the pressure-sensitive adhesive composition will further decrease, and problems such as repelling will easily occur after coating. For thin coating, the pressure-sensitive adhesive composition must have an appropriate viscosity even after dilution. Further, for example, if the solid content concentration is increased in order to increase the viscosity of the polyester-based pressure-sensitive adhesive composition, the crosslinking reaction may proceed before the pressure-sensitive adhesive layer is formed, and a sufficient pot life cannot be obtained. Therefore, in order to obtain a thin polyester-based pressure-sensitive adhesive with good quality, the actual situation is that there are restrictions on the selection of a pressure-sensitive adhesive sheet manufacturing machine, the adjustment of the viscosity of the pressure-sensitive adhesive composition, and the like.
 また、接着面積が制限されがちな携帯電子機器用途では、十分な粘着特性を得るため、ポリエステル系粘着剤に対して粘着付与樹脂の添加が不可欠と考えられる。しかし、粘着付与樹脂を添加すれば、粘着剤組成物の粘度はさらに低下してしまう。そのような事情から、例えば携帯電子機器用途などで求められる粘着特性と、薄厚粘着剤層の形成性との両立は、工業生産的にはより難しい傾向にある。一般的に用いられる粘着シート製造機を利用して、粘度の調節などのプロセスの制限や負荷少なく、粘着剤組成物の含有成分の工夫により、良好な品質を有する薄厚ポリエステル系粘着剤を得ることができれば、工業生産的観点から有用である。 In addition, it is considered essential to add a tackifying resin to the polyester-based adhesive in order to obtain sufficient adhesive properties for mobile electronic device applications, where the adhesive area tends to be limited. However, the addition of a tackifying resin further reduces the viscosity of the adhesive composition. Under these circumstances, it tends to be more difficult in terms of industrial production to achieve both adhesive properties required for use in portable electronic devices and the ability to form a thin adhesive layer. It would be useful from the viewpoint of industrial production if a thin polyester-based pressure-sensitive adhesive having good quality could be obtained by using a commonly used pressure-sensitive adhesive sheet manufacturing machine, reducing process restrictions and loads such as viscosity adjustment, and devising the components contained in the pressure-sensitive adhesive composition.
 本発明は、上記の事情に鑑みて創出されたものであり、ポリエステル系ポリマーおよび架橋剤を含み、粘着付与樹脂を所定量以上含む粘着剤において、その含有成分に基づき、良好な品質を有する薄厚の粘着剤を形成しやすい粘着剤組成物を提供することを目的とする。関連する他の目的は、上記粘着剤組成物を用いて形成された粘着剤層を有する粘着シートを提供することである。 The present invention was created in view of the above circumstances, and aims to provide a pressure-sensitive adhesive composition containing a polyester-based polymer and a cross-linking agent, and containing a predetermined amount or more of a tackifying resin, based on the components contained in the pressure-sensitive adhesive composition, which facilitates the formation of a thin pressure-sensitive adhesive of good quality. Another related object is to provide a pressure-sensitive adhesive sheet having a pressure-sensitive adhesive layer formed using the pressure-sensitive adhesive composition.
 本明細書によると、ポリエステル系ポリマー、粘着付与樹脂および架橋剤を含む粘着剤組成物が提供される。前記粘着付与樹脂の含有量は、前記ポリエステル系ポリマー100重量部に対して20重量部以上である。そして、前記ポリエステル系ポリマーの重量平均分子量(Mw)は110,000以上である。上記組成によると、粘着特性のために粘着付与樹脂を所定量以上含み、低粘度になりがちであるにもかかわらず、Mwが110,000以上のポリエステル系ポリマーを使用することにより、粘着剤組成物は適度な粘度を得て、良好な品質を有する薄厚の粘着剤を、製造プロセスの制限や負荷少なく形成しやすい。すなわち、上記組成によると、粘着付与樹脂の使用に基づく良好な粘着特性と、粘着剤層形成性とを両立することができる。また、上記粘着剤組成物は架橋剤を含むため、粘度調節等のために高濃度化すると、粘着剤層形成前に架橋反応が進行するおそれがあるが、上記組成によると、ポリエステル系ポリマーのMwに基づき良好な粘度が得られやすいので、粘着剤組成物を過度(通常の範囲を超えての意)に高濃度化する必要がない。かかる粘着剤組成物は取り扱いやすく、かつ薄厚の粘着剤を形成しやすい。 According to this specification, a pressure-sensitive adhesive composition containing a polyester-based polymer, a tackifying resin and a cross-linking agent is provided. The content of the tackifying resin is 20 parts by weight or more with respect to 100 parts by weight of the polyester polymer. Also, the weight average molecular weight (Mw) of the polyester polymer is 110,000 or more. According to the above composition, the adhesive composition contains a predetermined amount or more of a tackifying resin for adhesive properties and tends to have a low viscosity, but by using a polyester-based polymer having an Mw of 110,000 or more, the adhesive composition has an appropriate viscosity. That is, according to the above composition, it is possible to achieve both good adhesive properties based on the use of the tackifying resin and adhesive layer formability. In addition, since the pressure-sensitive adhesive composition contains a cross-linking agent, if the concentration is increased for viscosity adjustment or the like, the cross-linking reaction may proceed before the pressure-sensitive adhesive layer is formed. However, according to the above-described composition, the Mw of the polyester polymer makes it easy to obtain a good viscosity, so there is no need to increase the concentration of the pressure-sensitive adhesive composition excessively (meaning beyond the normal range). Such a pressure-sensitive adhesive composition is easy to handle and easy to form a thin pressure-sensitive adhesive.
 ここに開示される技術(粘着剤組成物および粘着シートを包含する。以下同じ。)のいくつかの好ましい態様において、前記粘着付与樹脂の含有量は、前記ポリエステル系ポリマー100重量部に対して20重量部以上100重量部未満である。粘着付与樹脂量を上記の範囲とすることで、ここに開示される技術による効果は好ましく発揮される。 In some preferred embodiments of the technology disclosed herein (including adhesive compositions and adhesive sheets; hereinafter the same), the content of the tackifying resin is 20 parts by weight or more and less than 100 parts by weight with respect to 100 parts by weight of the polyester polymer. By setting the amount of the tackifying resin within the above range, the effects of the technology disclosed herein are preferably exhibited.
 特に限定するものではないが、固形分濃度が10~70重量%であり、23℃における粘度が10~10000mPa・sである粘着剤組成物を用いることにより、薄厚の粘着剤が生産性よく形成され得る。 Although not particularly limited, by using an adhesive composition having a solid content concentration of 10 to 70% by weight and a viscosity of 10 to 10000 mPa·s at 23°C, a thin adhesive can be formed with good productivity.
 いくつかの好ましい態様において、前記架橋剤としては、イソシアネート系架橋剤が好ましく用いられる。イソシアネート系架橋剤を用いることにより、ポリエステル系粘着剤の架橋度を効果的に高めることができる。 In some preferred embodiments, an isocyanate-based cross-linking agent is preferably used as the cross-linking agent. By using the isocyanate-based cross-linking agent, the degree of cross-linking of the polyester-based pressure-sensitive adhesive can be effectively increased.
 いくつかの態様において、粘着剤組成物(ひいては粘着剤)は架橋触媒を含む。架橋触媒を含む組成においては、粘度調節等のために粘着剤組成物を高濃度化すると、粘着剤層形成前に架橋反応が進行しやすいところ、ここに開示される技術によると、ポリエステル系ポリマーのMwに基づき良好な粘度が得られやすいので、粘着剤組成物を過度に高濃度化する必要がない。上記粘着剤組成物は、架橋触媒を含む組成で、薄厚の粘着剤形成に適した取り扱い性のよいものとなり得る。 In some embodiments, the adhesive composition (and thus the adhesive) contains a cross-linking catalyst. In a composition containing a cross-linking catalyst, if the concentration of the pressure-sensitive adhesive composition is increased for viscosity adjustment or the like, the cross-linking reaction tends to proceed before the formation of the pressure-sensitive adhesive layer. However, according to the technology disclosed herein, it is easy to obtain a good viscosity based on the Mw of the polyester polymer, so there is no need to increase the concentration of the pressure-sensitive adhesive composition excessively. The pressure-sensitive adhesive composition contains a cross-linking catalyst and can be suitable for forming a thin pressure-sensitive adhesive with good handleability.
 いくつかの好ましい態様において、ポリエステル系ポリマーとして、構成炭素の50%以上がバイオマス由来炭素であるポリエステル系ポリマーが用いられる。近年、地球温暖化等の環境問題が重視されるようになり、石油等の化石資源系材料の使用量を低減することが望まれており、粘着剤についても、化石資源系材料の使用量を低減することが望ましい。しかし、上記アクリル系粘着剤や合成ゴム系粘着剤はいずれも、石油等の化石資源を主原料とする粘着剤であり、現実的には、化石資源系材料の低減が難しく、再生可能な有機資源への切替えには限度がある。一方、ポリエステル系粘着剤に用いられるポリエステル系ポリマーは、バイオマス材料を用いて合成することができる。バイオ率が50%以上であるポリエステル系ポリマーを用いることにより、化石資源系材料への依存度を低減することができる。なお、バイオマス材料とは、典型的には、太陽光と水と二酸化炭素とが存在すれば持続的な再生産が可能な生物資源(典型的には、光合成を行う植物)に由来する材料のことをいう。 In some preferred embodiments, a polyester polymer in which 50% or more of the constituent carbon is biomass-derived carbon is used as the polyester polymer. In recent years, environmental problems such as global warming have come to be emphasized, and it is desired to reduce the amount of fossil resource-based materials such as petroleum used. However, both the above acrylic adhesives and synthetic rubber adhesives are adhesives whose main raw materials are fossil resources such as petroleum, and in reality, it is difficult to reduce fossil resource-based materials, and there is a limit to switching to renewable organic resources. On the other hand, the polyester-based polymer used for the polyester-based pressure-sensitive adhesive can be synthesized using a biomass material. By using a polyester-based polymer having a bio rate of 50% or more, dependence on fossil resource-based materials can be reduced. Note that biomass materials typically refer to materials derived from biological resources (typically photosynthetic plants) that can be sustainably reproduced in the presence of sunlight, water, and carbon dioxide.
 また、本明細書によると、粘着剤層を有する粘着シートが提供される。この粘着シートにおいて、前記粘着剤層は、ポリエステル系ポリマー、粘着付与樹脂および架橋剤を含む。また、前記粘着剤層における前記粘着付与樹脂の含有量は、前記ポリエステル系ポリマー100重量部に対して20重量部以上である。そして、前記ポリエステル系ポリマーの重量平均分子量は110,000以上である。ここに開示される技術によると、上記構成の粘着シートは、その粘着剤層が薄層であっても、製造プロセスの制限や負荷少なく作製され得るので、生産性に優れ、産業上の利用性が高い。また、上記構成の粘着シートは、接着力と高温保持力とを両立した優れた粘着特性を有するものとなり得る。 Also, according to the present specification, a pressure-sensitive adhesive sheet having a pressure-sensitive adhesive layer is provided. In this pressure-sensitive adhesive sheet, the pressure-sensitive adhesive layer contains a polyester polymer, a tackifying resin and a cross-linking agent. Moreover, the content of the tackifying resin in the adhesive layer is 20 parts by weight or more with respect to 100 parts by weight of the polyester polymer. Also, the polyester-based polymer has a weight average molecular weight of 110,000 or more. According to the technology disclosed herein, the pressure-sensitive adhesive sheet having the above configuration can be produced with less restrictions and less load on the manufacturing process even if the pressure-sensitive adhesive layer is thin, and thus has excellent productivity and high industrial applicability. In addition, the pressure-sensitive adhesive sheet having the above-described structure can have excellent pressure-sensitive adhesive properties in which both adhesive strength and high-temperature holding power are achieved.
 いくつかの好ましい態様において、前記粘着剤層の厚さは5~50μmの範囲内である。ここに開示される技術によると、厚さ5~50μm程度の薄厚粘着剤層を有する粘着シートが、製造プロセスの制限や負荷少なく生産性よく作製され得る。 In some preferred embodiments, the pressure-sensitive adhesive layer has a thickness in the range of 5-50 μm. According to the technology disclosed herein, a pressure-sensitive adhesive sheet having a thin pressure-sensitive adhesive layer with a thickness of about 5 to 50 μm can be produced with good productivity with less restrictions and load on the manufacturing process.
 ここに開示される粘着シートは、粘着付与樹脂を使用することにより得られる良好な粘着特性を有し、薄厚の粘着剤層が品質よく、かつ生産性よく形成されたものであるので、軽量化、小型化、薄厚化、高機能化等の要請から、高い粘着特性を有する薄厚の粘着剤が求められている携帯電子機器用途に好適である。また、携帯電子機器の内部は、バッテリー等の発熱要素を含み得ることから、例えば40℃以上の温度に曝されることがあるところ、上記構成の粘着シートは、接着力と高温保持力とを両立した粘着特性を有するものであり得るので、この点においても携帯電子機器内の部材固定用途に好適である。 The pressure-sensitive adhesive sheet disclosed herein has good adhesive properties obtained by using a tackifying resin, and the thin pressure-sensitive adhesive layer is formed with good quality and productivity. Therefore, it is suitable for use in mobile electronic devices, where a thin pressure-sensitive adhesive with high adhesive properties is required due to demands such as weight reduction, miniaturization, thin thickness, and high functionality. In addition, since the inside of a portable electronic device may include a heat-generating element such as a battery, it may be exposed to a temperature of 40° C. or higher, for example.
 上記より、本明細書によると、ここに開示されるいずれかの粘着シートが用いられた携帯電子機器、換言すると、当該粘着シートを含む携帯電子機器が提供される。 From the above, according to the present specification, a portable electronic device using any adhesive sheet disclosed herein, in other words, a portable electronic device including the adhesive sheet is provided.
一実施形態に係る粘着シートの構成を模式的に示す断面図である。1 is a cross-sectional view schematically showing the configuration of a pressure-sensitive adhesive sheet according to one embodiment; FIG. 他の一実施形態に係る粘着シートの構成を模式的に示す断面図である。FIG. 3 is a cross-sectional view schematically showing the configuration of a pressure-sensitive adhesive sheet according to another embodiment; 他の一実施形態に係る粘着シートの構成を模式的に示す断面図である。FIG. 3 is a cross-sectional view schematically showing the configuration of a pressure-sensitive adhesive sheet according to another embodiment; 粘着シートを含んで構成された携帯電子機器の一例を模式的に示す正面図である。1 is a front view schematically showing an example of a mobile electronic device including an adhesive sheet; FIG.
 以下、本発明の好適な実施形態を説明する。本明細書において特に言及している事項以外の事柄であって本発明の実施に必要な事柄は、本明細書に記載された発明の実施についての教示と出願時の技術常識とに基づいて当業者に理解され得る。本発明は、本明細書に開示されている内容と当該分野における技術常識とに基づいて実施することができる。
 なお、以下の図面において、同じ作用を奏する部材・部位には同じ符号を付して説明することがあり、重複する説明は省略または簡略化することがある。また、図面に記載の実施形態は、本発明を明瞭に説明するために模式化されており、製品として実際に提供される本発明の粘着シートのサイズや縮尺を必ずしも正確に表したものではない。
Preferred embodiments of the present invention are described below. Matters other than the matters specifically referred to in the present specification and necessary for the practice of the present invention can be understood by those skilled in the art based on the teachings of the practice of the invention described herein and the common general knowledge at the time of filing. The present invention can be implemented based on the contents disclosed in this specification and common general technical knowledge in the field.
In the drawings below, members and portions having the same function may be denoted by the same reference numerals, and redundant description may be omitted or simplified. In addition, the embodiments described in the drawings are schematic for clearly explaining the present invention, and do not necessarily accurately represent the size and scale of the pressure-sensitive adhesive sheet of the present invention that is actually provided as a product.
 <粘着剤組成物>
 (ポリエステル系ポリマー)
 ここに開示される粘着剤組成物は、ポリエステル系ポリマーを含む(以下、特に断りがないかぎり、粘着剤組成物について説明する事項は、後述の粘着剤(層)にも適用され得る)。このような、ポリエステル系ポリマーを含む粘着剤組成物や粘着剤は、ポリエステル系粘着剤組成物、ポリエステル系粘着剤ともいう。上記ポリエステル系ポリマーは、典型的にはベースポリマーとして粘着剤層に含まれる。ここで、ベースポリマーとは、粘着剤組成物や粘着剤(層)に含まれるゴム状ポリマー(室温付近の温度域においてゴム弾性を示すポリマー)の主成分をいう。また、この明細書において「主成分」とは、特記しない場合、50重量%を超えて含まれる成分を指す。また、本明細書においてポリエステル系ポリマーとは、ジカルボン酸とジオールとを重縮合して得られるポリマーをいう。
<Adhesive composition>
(polyester polymer)
The adhesive composition disclosed herein contains a polyester-based polymer (hereinafter, unless otherwise specified, the matters described for the adhesive composition can also be applied to the adhesive (layer) described later). Such a pressure-sensitive adhesive composition or pressure-sensitive adhesive containing a polyester-based polymer is also referred to as a polyester-based pressure-sensitive adhesive composition or a polyester-based pressure-sensitive adhesive. The above polyester-based polymer is typically contained in the pressure-sensitive adhesive layer as a base polymer. Here, the base polymer refers to a main component of a rubber-like polymer (a polymer exhibiting rubber elasticity in a temperature range around room temperature) contained in the pressure-sensitive adhesive composition or pressure-sensitive adhesive (layer). In this specification, the term "main component" refers to a component contained in an amount exceeding 50% by weight unless otherwise specified. Moreover, in this specification, the polyester-based polymer refers to a polymer obtained by polycondensation of a dicarboxylic acid and a diol.
 ここに開示される技術において用いられるポリエステル系ポリマーの重量平均分子量(Mw)は110,000以上である。Mwが110,000以上のポリエステル系ポリマーを使用することにより、粘着特性のために粘着付与樹脂を所定量以上含み、低粘度になりがちである粘着剤組成物であっても、当該粘着剤組成物は適度な粘度を得て、良好な品質を有する薄厚の粘着剤を形成しやすい。かかる粘着剤組成物は、過度に高濃度化する必要がなく、架橋剤を含む組成であっても十分なポットライフを有しやすく、取扱い性に優れる。いくつかの好ましい態様において、ポリエステル系ポリマーのMwは、120,000以上であり、125,000以上であってもよい。Mwが所定値以上のポリエステル系ポリマーを用いることで、粘着剤層の凝集力が高くなり、保持力、ひいては高温保持力が向上する。また、上記のように高分子量のポリエステル系ポリマーを使用することにより、優れた耐反発性が得られやすい。ポリエステル系ポリマーのMwの上限は、通常は、凡そ30×10以下であることが適当であり、接着力等の観点から、好ましくは凡そ20×10以下、より好ましくは凡そ15×10以下であってもよい。 The weight average molecular weight (Mw) of the polyester polymer used in the technology disclosed herein is 110,000 or more. By using a polyester-based polymer having an Mw of 110,000 or more, even if the pressure-sensitive adhesive composition contains a predetermined amount or more of a tackifying resin for adhesive properties and tends to have a low viscosity, the pressure-sensitive adhesive composition can obtain an appropriate viscosity and easily form a thin pressure-sensitive adhesive having good quality. Such a pressure-sensitive adhesive composition does not need to be excessively concentrated, and even if it contains a cross-linking agent, it tends to have a sufficient pot life and is excellent in handleability. In some preferred embodiments, the Mw of the polyester-based polymer is 120,000 or greater, and may be 125,000 or greater. By using a polyester-based polymer having a Mw of a predetermined value or more, the cohesive force of the pressure-sensitive adhesive layer is increased, and the holding power and, in turn, the high-temperature holding power are improved. Also, by using a high-molecular-weight polyester-based polymer as described above, it is easy to obtain excellent repulsion resistance. The upper limit of the Mw of the polyester-based polymer is usually about 30×10 4 or less, preferably about 20×10 4 or less, more preferably about 15×10 4 or less from the viewpoint of adhesive strength and the like.
 なお、本明細書において、ポリエステル系ポリマーのMwとは、GPC(ゲルパーミエーションクロマトグラフィ)により得られた標準ポリスチレン換算の値をいう。GPC装置としては、例えば機種名「HLC-8320GPC」(カラム:TSKgelGMH-H(S)、東ソー社製)を用いることができる。GPC測定は、より具体的には、以下の条件で行うことができる。後述の実施例においても同様の方法で測定される。
 [GPC測定]
 カラム:TSKgelGMH-H(S)
 カラム温度:40℃
 溶離液:THF(アミン系成分0.1重量%添加)
 流速:0.5mL/min
 注入量:100μL
 検出器:示差屈折計(RI)
 標準試料:ポリスチレン(PS)
In addition, in this specification, Mw of a polyester-based polymer refers to a value in terms of standard polystyrene obtained by GPC (gel permeation chromatography). As the GPC apparatus, for example, model name "HLC-8320GPC" (column: TSKgelGMH-H(S), manufactured by Tosoh Corporation) can be used. More specifically, GPC measurement can be performed under the following conditions. It is measured by the same method in the examples described later.
[GPC measurement]
Column: TSKgelGMH-H (S)
Column temperature: 40°C
Eluent: THF (0.1% by weight of amine component added)
Flow rate: 0.5mL/min
Injection volume: 100 μL
Detector: differential refractometer (RI)
Standard sample: polystyrene (PS)
 ポリエステル系ポリマーのガラス転移温度(Tg)は、凡そ15℃以下であることが有利であり、好ましくは凡そ0℃以下、より好ましくは凡そ-15℃以下、さらに好ましくは凡そ-20℃以下、特に好ましくは凡そ-25℃以下(例えば凡そ-30℃以下)である。Tgが低いポリエステル系ポリマーを用いることにより、接着力を好ましく向上させることができる。また、粘着剤層の凝集力の観点から、ポリエステル系ポリマーのTgは、通常は凡そ-80℃以上であり、好ましくは凡そ-60℃以上、より好ましくは凡そ-45℃以上、さらに好ましくは凡そ-40℃以上であり、凡そ-35℃以上であってもよい。ポリエステル系ポリマーのTgは、モノマー組成(すなわち、該ポリマーの合成に使用するモノマーの種類や使用量比)を適宜変えることにより調整することができる。 The glass transition temperature (Tg) of the polyester-based polymer is advantageously about 15°C or less, preferably about 0°C or less, more preferably about -15°C or less, even more preferably about -20°C or less, particularly preferably about -25°C or less (for example, about -30°C or less). By using a polyester-based polymer with a low Tg, the adhesive strength can be preferably improved. Further, from the viewpoint of the cohesive strength of the pressure-sensitive adhesive layer, the Tg of the polyester polymer is usually about -80°C or higher, preferably about -60°C or higher, more preferably about -45°C or higher, still more preferably about -40°C or higher, and may be about -35°C or higher. The Tg of the polyester-based polymer can be adjusted by appropriately changing the monomer composition (that is, the types and usage ratio of the monomers used in synthesizing the polymer).
 ポリエステル系ポリマーのTgは、以下の方法で測定される。すなわち、測定対象であるポリエステル系ポリマーを用いて、厚さ2mm×直径8mmの円盤状の試験片を作製する。この試験片を、せん断試験用のパラレルプレートで挟み込み、測定装置(ARES、Rheometric Scientific社製)を用いて、周波数1Hzにて、tanδ(損失弾性率G''/貯蔵弾性率G')のピーク値を求め、当該ピーク値の温度をTg(ガラス転移温度)[℃]とする。後述の実施例においても同様の方法で測定される。  The Tg of the polyester polymer is measured by the following method. That is, a disc-shaped test piece having a thickness of 2 mm and a diameter of 8 mm is prepared using a polyester-based polymer to be measured. This test piece is sandwiched between parallel plates for shear testing, and the peak value of tan δ (loss elastic modulus G''/storage elastic modulus G') is obtained at a frequency of 1 Hz using a measuring device (ARES, manufactured by Rheometric Scientific), and the temperature of the peak value is defined as Tg (glass transition temperature) [°C]. It is measured by the same method in the examples described later.
 いくつかの好ましい態様において、ポリエステル系ポリマーは、その構成炭素の50%以上がバイオマス由来炭素である。換言すれば、上記ポリエステル系ポリマーのバイオマス炭素比(バイオ率ともいう。)は50%以上であることが好ましい。このようにバイオ率が所定値以上であるポリエステル系ポリマーを用いることによって、粘着剤の化石資源系材料への依存度を低減することができる。ポリエステル系ポリマーの合成に使用するジカルボン酸とジオールの少なくとも一方(例えば両方)にバイオマス由来の化合物を使用することにより、ポリエステル系ポリマーのバイオ率を50%以上とすることができる。バイオマス由来のポリエステル系ポリマーを使用するいくつかの態様において、ポリエステル系ポリマーのバイオ率は、52%以上であり、55%以上が適当であり、例えば60%以上であってもよい。ポリエステル系ポリマーのバイオ率は、好ましくは70%以上、より好ましくは75%以上、さらに好ましくは80%以上であり、85%以上であってもよく、88%以上でもよい。バイオ率の上限は定義上100%であるが、いくつかの態様において、ポリエステル系ポリマーのバイオ率は、例えば95%以下であってよく、より粘着性能が重視される場合には92%以下でもよく、90%以下でもよく、85%以下でもよい。他のいくつかの態様において、ポリエステル系ポリマーのバイオ率は50%未満であってもよく、30%未満でもよく、10%未満でもよく、1%未満でもよい。ポリエステル系ポリマーのバイオ率は、実質的に0%であってもよい。 In some preferred embodiments, 50% or more of the constituent carbon of the polyester-based polymer is biomass-derived carbon. In other words, the biomass carbon ratio (also referred to as biorate) of the polyester-based polymer is preferably 50% or more. By using a polyester-based polymer having a bio rate of a predetermined value or more in this manner, the dependence of the adhesive on fossil resource-based materials can be reduced. By using a biomass-derived compound for at least one (for example, both) of the dicarboxylic acid and the diol used in the synthesis of the polyester polymer, the bio rate of the polyester polymer can be made 50% or more. In some embodiments using a biomass-derived polyester-based polymer, the bio-content of the polyester-based polymer is 52% or greater, suitably 55% or greater, and may be, for example, 60% or greater. The bio rate of the polyester-based polymer is preferably 70% or higher, more preferably 75% or higher, still more preferably 80% or higher, and may be 85% or higher, or 88% or higher. Although the upper limit of the bio rate is 100% by definition, in some embodiments, the bio rate of the polyester-based polymer may be, for example, 95% or less, and when more emphasis is placed on adhesive performance, it may be 92% or less, 90% or less, or 85% or less. In some other embodiments, the polyester-based polymer may have a bio-factor of less than 50%, less than 30%, less than 10%, or less than 1%. The bio-rate of the polyester-based polymer may be substantially 0%.
 ここで、本明細書においてバイオマス由来炭素とは、バイオマス材料、すなわち再生可能な有機資源に由来する材料に由来する炭素(再生可能炭素)を意味する。上記バイオマス材料とは、典型的には、太陽光と水と二酸化炭素とが存在すれば持続的な再生産が可能な生物資源(典型的には、光合成を行う植物)に由来する材料のことをいう。したがって、採掘後の使用によって枯渇する化石資源に由来する材料(化石資源系材料)は、ここでいうバイオマス材料の概念から除かれる。ポリエステル系ポリマーのバイオ率、すなわち該ポリエステル系ポリマーに含まれる全炭素に占めるバイオマス由来炭素の割合は、ASTM D6866に準拠して測定される質量数14の炭素同位体含有量から見積もることができる。後述の実施例についても同様である。 Here, biomass-derived carbon in this specification means carbon derived from biomass materials, that is, materials derived from renewable organic resources (renewable carbon). The biomass materials typically refer to materials derived from biological resources (typically photosynthetic plants) that can be sustainably reproduced in the presence of sunlight, water, and carbon dioxide. Therefore, materials derived from fossil resources that are depleted by use after mining (fossil resource-based materials) are excluded from the concept of biomass materials here. The bio-rate of a polyester-based polymer, that is, the ratio of biomass-derived carbon to the total carbon contained in the polyester-based polymer can be estimated from the carbon isotope content with a mass number of 14 measured according to ASTM D6866. The same applies to the examples described later.
 (ジカルボン酸)
 上記ポリエステル系ポリマーの合成に用いられるジカルボン酸としては、脂肪族ジカルボン酸、ダイマー酸、脂環式ジカルボン酸、不飽和ジカルボン酸、芳香族ジカルボン酸のいずれも使用可能である。ジカルボン酸の具体例としては、例えば、マロン酸、コハク酸、グルタル酸、ジメチルグルタル酸、アジピン酸、トリメチルアジピン酸、ピメリン酸、スベリン酸、アゼライン酸、ドデカン二酸、セバシン酸、チオジプロピオン酸、ジグリコール酸等の脂肪族ジカルボン酸;オレイン酸、エルカ酸等の脂肪酸を二量体化したダイマー酸;1,2-シクロペンタンジカルボン酸、1,2-シクロヘキサンジカルボン酸、1,3-シクロヘキサンジカルボン酸、1,4-シクロヘキサンジカルボン酸、4-メチル-1,2-シクロヘキサンジカルボン酸、ノルボルナンジカルボン酸、アダマンタンジカルボン酸等の脂環式ジカルボン酸;マレイン酸、無水マレイン酸、フマル酸、イタコン酸、シトラコン酸、ドデセニル無水コハク酸等の不飽和ジカルボン酸;イソフタル酸、テレフタル酸、オルソフタル酸、ベンジルマロン酸、2,2’―ビフェニルジカルボン酸、4,4’―ビフェニルジカルボン酸、4,4’―ジカルボキシジフェニルエーテル、ナフタレンジカルボン酸等の芳香族ジカルボン酸;これらの誘導体;等が挙げられる。なお、上記ジカルボン酸の誘導体には、カルボン酸塩、カルボン酸無水物、カルボン酸ハロゲン化物、カルボン酸エステル等の誘導体が含まれる。これらのジカルボン酸の1種または2種以上を適切に選定して用いることで、接着力および高温保持力の両立に適するなど、良好な粘着特性を発揮し得るポリエステル系ポリマーを得ることができる。
(Dicarboxylic acid)
Any of aliphatic dicarboxylic acids, dimer acids, alicyclic dicarboxylic acids, unsaturated dicarboxylic acids, and aromatic dicarboxylic acids can be used as the dicarboxylic acid used for synthesizing the polyester-based polymer. Specific examples of dicarboxylic acids include aliphatic dicarboxylic acids such as malonic acid, succinic acid, glutaric acid, dimethylglutaric acid, adipic acid, trimethyladipic acid, pimelic acid, suberic acid, azelaic acid, dodecanedioic acid, sebacic acid, thiodipropionic acid and diglycolic acid; dimer acids obtained by dimerizing fatty acids such as oleic acid and erucic acid; 1,2-cyclopentanedicarboxylic acid, 1,2-cyclohexanedicarboxylic acid, Alicyclic dicarboxylic acids such as 1,3-cyclohexanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, 4-methyl-1,2-cyclohexanedicarboxylic acid, norbornanedicarboxylic acid and adamantanedicarboxylic acid; unsaturated dicarboxylic acids such as maleic acid, maleic anhydride, fumaric acid, itaconic acid, citraconic acid and dodecenylsuccinic anhydride; isophthalic acid, terephthalic acid, orthophthalic acid, benzylmalonic acid, 2,2'- Aromatic dicarboxylic acids such as biphenyldicarboxylic acid, 4,4′-biphenyldicarboxylic acid, 4,4′-dicarboxydiphenyl ether, and naphthalenedicarboxylic acid; derivatives thereof; and the like. The dicarboxylic acid derivatives include derivatives such as carboxylates, carboxylic acid anhydrides, carboxylic acid halides, and carboxylic acid esters. By appropriately selecting and using one or more of these dicarboxylic acids, it is possible to obtain a polyester polymer capable of exhibiting good adhesive properties such as being suitable for both adhesive strength and high temperature holding power.
 いくつかの好ましい態様において、ジカルボン酸としては、バイオ率が高いポリエステル系ポリマーを得る観点から、植物由来のジカルボン酸を用いることが好ましい。そのようなジカルボン酸の好適例としては、植物(例えばヒマシ油)由来のセバシン酸、オレイン酸やエルカ酸等の脂肪酸から誘導されるダイマー酸が挙げられる。植物由来のジカルボン酸は、1種を単独でまたは2種以上を組み合わせて用いることができる。 In some preferred embodiments, it is preferable to use a plant-derived dicarboxylic acid as the dicarboxylic acid from the viewpoint of obtaining a polyester-based polymer with a high bio-ratio. Suitable examples of such dicarboxylic acids include sebacic acid derived from plants (eg, castor oil), and dimer acid derived from fatty acids such as oleic acid and erucic acid. Plant-derived dicarboxylic acids can be used singly or in combination of two or more.
 いくつかの好ましい態様において、化石資源系材料への依存度を低減する観点から、ポリエステル系ポリマーのモノマー成分としてのジカルボン酸の総量(合計重量)に占める植物由来のジカルボン酸の重量割合は、凡そ1重量%以上とすることが適当であり、好ましくは凡そ10重量%以上、より好ましくは凡そ50重量%以上、さらに好ましくは凡そ70重量%以上、特に好ましくは凡そ80重量%以上であり、凡そ90重量%以上であってもよく、凡そ95重量%以上(例えば95~100重量%)でもよい。また、上記植物由来のジカルボン酸の重量割合の上限は、100重量%であり、高温保持力等の粘着特性の観点から、凡そ99重量%以下が適当であり、好ましくは凡そ95重量%以下であり、凡そ90重量%以下であってもよい。 In some preferred embodiments, from the viewpoint of reducing dependence on fossil resource-based materials, the weight ratio of the plant-derived dicarboxylic acid in the total amount (total weight) of the dicarboxylic acids as monomer components of the polyester polymer is appropriately set to about 1% by weight or more, preferably about 10% by weight or more, more preferably about 50% by weight or more, even more preferably about 70% by weight or more, particularly preferably about 80% by weight or more, and may be about 90% by weight or more, It may be approximately 95% by weight or more (eg, 95 to 100% by weight). In addition, the upper limit of the weight ratio of the plant-derived dicarboxylic acid is 100% by weight, and from the viewpoint of adhesive properties such as high-temperature holding power, it is suitably about 99% by weight or less, preferably about 95% by weight or less, and may be about 90% by weight or less.
 いくつかの好ましい態様において、植物由来のジカルボン酸としてダイマー酸が用いられる。ダイマー酸を用いることにより、良好な粘着特性を得つつ、ポリエステル系ポリマーのバイオ率を高めることができる。ダイマー酸は、1種を単独でまたは2種以上を組み合わせて用いることができる。上記ジカルボン酸としてダイマー酸を用いる態様において、ポリエステル系ポリマーのモノマー成分としてのジカルボン酸の総量(合計重量)に占めるダイマー酸の重量割合は、凡そ1重量%以上とすることが適当であり、好ましくは凡そ10重量%以上、より好ましくは凡そ50重量%以上、さらに好ましくは凡そ70重量%以上、特に好ましくは凡そ80重量%以上であり、凡そ90重量%以上であってもよく、凡そ95重量%以上(例えば95~100重量%)でもよい。ダイマー酸の使用量を所定量以上とすることにより、ダイマー酸の特性に基づき、ポリマーを設計することができる。また、上記ダイマー酸の重量割合の上限は、100重量%であり、高温保持力等の粘着特性の観点から、凡そ99重量%以下が適当であり、好ましくは凡そ95重量%以下であり、凡そ90重量%以下であってもよい。 In some preferred embodiments, a dimer acid is used as the plant-derived dicarboxylic acid. By using a dimer acid, the bio rate of the polyester-based polymer can be increased while obtaining good adhesive properties. A dimer acid can be used individually by 1 type or in combination of 2 or more types. In the embodiment using the dimer acid as the dicarboxylic acid, the weight ratio of the dimer acid to the total amount (total weight) of the dicarboxylic acid as the monomer component of the polyester polymer is suitably about 1% by weight or more, preferably about 10% by weight or more, more preferably about 50% by weight or more, even more preferably about 70% by weight or more, particularly preferably about 80% by weight or more, and may be about 90% by weight or more, or about 95% by weight or more (for example, 95 to 1%). 00% by weight). By setting the amount of the dimer acid to be used to a predetermined amount or more, the polymer can be designed based on the properties of the dimer acid. The upper limit of the weight ratio of the dimer acid is 100% by weight, and from the viewpoint of adhesive properties such as high-temperature holding power, it is suitably about 99% by weight or less, preferably about 95% by weight or less, and may be about 90% by weight or less.
 いくつかの態様において、植物由来のジカルボン酸としてセバシン酸を用いてもよい。セバシン酸を用いることによっても、ポリエステル系ポリマーのバイオ率を高めることができる。上記ジカルボン酸としてセバシン酸を用いる態様において、ポリエステル系ポリマーのモノマー成分としてのジカルボン酸の総量(合計重量)に占めるセバシン酸の重量割合は、凡そ1重量%以上であってもよく、例えば凡そ10重量%以上でもよく、凡そ50重量%以上でもよく、凡そ70重量%以上でもよく、凡そ90重量%以上(例えば95~100重量%)でもよい。また、上記セバシン酸の重量割合は、凡そ95重量%以下であってもよく、高温保持力等の粘着特性の観点から、凡そ75重量%以下でもよく、凡そ60重量%以下でもよい。ここに開示される技術は、ポリエステル系ポリマーの合成に用いられるモノマー成分としてのジカルボン酸がセバシン酸を含む態様、あるいはセバシン酸を含まない態様のいずれの態様でも実施することができる。例えば、上記セバシン酸の重量割合は、凡そ50重量%以下であってもよく、凡そ30重量%以下でもよく、凡そ10重量%以下でもよく、凡そ3重量%以下でもよく、1重量%未満でもよく、ポリエステル系ポリマーの合成に用いられるジカルボン酸は、実質的にセバシン酸を含まなくてもよい。 In some embodiments, sebacic acid may be used as the plant-derived dicarboxylic acid. The use of sebacic acid can also increase the bio-rate of the polyester polymer. In the embodiment using sebacic acid as the dicarboxylic acid, the weight ratio of sebacic acid to the total amount (total weight) of the dicarboxylic acid as the monomer component of the polyester polymer may be about 1% by weight or more, for example about 10% by weight or more, about 50% by weight or more, about 70% by weight or more, or about 90% by weight or more (for example, 95 to 100% by weight). The weight ratio of the sebacic acid may be approximately 95% by weight or less, or may be approximately 75% by weight or less, or may be approximately 60% by weight or less from the viewpoint of adhesive properties such as high-temperature holding power. The technology disclosed herein can be practiced in either a mode in which the dicarboxylic acid used as a monomer component for synthesizing the polyester polymer contains sebacic acid or no sebacic acid. For example, the weight ratio of the sebacic acid may be about 50% by weight or less, about 30% by weight or less, about 10% by weight or less, about 3% by weight or less, or less than 1% by weight, and the dicarboxylic acid used for synthesizing the polyester polymer may be substantially free of sebacic acid.
 上記植物由来のジカルボン酸の分子量は、特に限定されず、100以上であることが適当であり、150以上であってもよい。植物由来のジカルボン酸の分子量が大きいほど、ポリエステル系ポリマーのバイオ率を高めやすい。そのような観点からは、植物由来のジカルボン酸の分子量は、250以上であってもよく、350以上でもよく、450以上でもよく、500以上(例えば550以上)でもよい。一方、モノマー入手性や合成性等の観点から、植物由来のジカルボン酸の分子量は、1000以下程度であることが適当であり、例えば800以下であってもよく、700以下でもよく、600以下でもよい。上記分子量を有するジカルボン酸の好適例としては、ダイマー酸が挙げられる。 The molecular weight of the plant-derived dicarboxylic acid is not particularly limited, and is suitably 100 or more, and may be 150 or more. The greater the molecular weight of the plant-derived dicarboxylic acid, the easier it is to increase the bio-rate of the polyester-based polymer. From such a viewpoint, the molecular weight of the plant-derived dicarboxylic acid may be 250 or more, 350 or more, 450 or more, or 500 or more (for example, 550 or more). On the other hand, the molecular weight of the plant-derived dicarboxylic acid is suitably about 1,000 or less, for example, 800 or less, 700 or less, or 600 or less, from the standpoint of monomer availability and synthesizability. Preferred examples of dicarboxylic acids having the above molecular weights include dimer acids.
 なお、本明細書において、ジカルボン酸の分子量としては、化学式から算出される分子量が採用される。また、ジカルボン酸(例えば上記植物由来のジカルボン酸)を2種以上用いる態様においては、ジカルボン酸(例えば上記植物由来のジカルボン酸)の分子量として、各ジカルボン酸の分子量と重量分率との積の総和(合計値)が採用される。 In addition, in this specification, the molecular weight calculated from the chemical formula is adopted as the molecular weight of the dicarboxylic acid. In an embodiment using two or more dicarboxylic acids (e.g., the plant-derived dicarboxylic acid), the molecular weight of the dicarboxylic acid (e.g., the plant-derived dicarboxylic acid) is the sum of the products of the molecular weight and weight fraction of each dicarboxylic acid (total value).
 また、ここに開示されるポリエステル系ポリマーの合成に用いられるジカルボン酸としては、芳香族ジカルボン酸が好ましく用いられる。芳香族ジカルボン酸を含むジカルボン酸を用いることにより、凝集力が高まり、高温保持力が改善する傾向がある。ジカルボン酸として芳香族ジカルボン酸を含ませることにより、架橋剤の使用量を抑制することができるので、接着力を維持または向上させつつ、高温保持力を向上させやすい。芳香族ジカルボン酸の好適例としては、イソフタル酸、テレフタル酸、オルソフタル酸が挙げられ、テレフタル酸がより好ましい。これらは1種を単独でまたは2種以上を組み合わせて用いることができる。 In addition, aromatic dicarboxylic acids are preferably used as the dicarboxylic acid used for synthesizing the polyester-based polymer disclosed herein. The use of a dicarboxylic acid containing an aromatic dicarboxylic acid tends to increase the cohesive force and improve the high-temperature holding power. By including an aromatic dicarboxylic acid as the dicarboxylic acid, the amount of the cross-linking agent used can be suppressed, so that it is easy to improve the high-temperature holding power while maintaining or improving the adhesive strength. Suitable examples of the aromatic dicarboxylic acid include isophthalic acid, terephthalic acid and orthophthalic acid, with terephthalic acid being more preferred. These can be used individually by 1 type or in combination of 2 or more types.
 なお、ここに開示される技術は、バイオマス由来の芳香族ジカルボン酸を用いることによって、ポリエステル系ポリマーのバイオ率を高める態様を包含する。いくつかの態様において、上記ジカルボン酸として、バイオマス由来のテレフタル酸およびその誘導体が用いられ得る。上記バイオマス由来のジカルボン酸を得る方法は特に限定されず、例えば、バイオマス由来のテレフタル酸は、とうもろこしや糖類、木材からイソブタノールを得た後、イソブチレンへ変換し、それを二量化してイソオクテンを得て、Chemische Technik, vol.38, No.3, p116-119;1986に記載の方法、すなわちラジカル開裂、再結合、環化を経てp-キシレンを合成し、これを酸化してテレフタル酸を得る方法が挙げられる(国際公開第2009/079213号公報)。 It should be noted that the technology disclosed herein includes an aspect of increasing the bio-rate of a polyester-based polymer by using a biomass-derived aromatic dicarboxylic acid. In some embodiments, biomass-derived terephthalic acid and its derivatives can be used as the dicarboxylic acid. The method for obtaining the biomass-derived dicarboxylic acid is not particularly limited. For example, biomass-derived terephthalic acid is converted to isobutylene after isobutanol is obtained from corn, sugars, and wood, which is then dimerized to obtain isooctene, and the method described in Chemische Technik, vol.38, No.3, p116-119; and oxidizing it to obtain terephthalic acid (International Publication No. 2009/079213).
 ジカルボン酸として芳香族ジカルボン酸を使用する態様において、ポリエステル系ポリマーのモノマー成分におけるジカルボン酸の総量(合計重量)に占める芳香族ジカルボン酸の重量割合は、特に限定されず、凡そ1重量%以上とすることが適当であり、高温保持力向上の観点から、好ましくは凡そ3重量%以上、より好ましくは凡そ5重量%以上、さらに好ましくは凡そ7重量%以上である。また、上記芳香族カルボン酸の重量割合の上限は、他のジカルボン酸種等によって異なり得るので特定の範囲に限定されず、例えば凡そ50重量%以下とすることが適当であり、接着力等の粘着特性の観点から、好ましくは凡そ30重量%以下、より好ましくは凡そ20重量%以下、さらに好ましくは凡そ15重量%以下であり、特に好ましくは凡そ10重量%以下である。 In the embodiment in which an aromatic dicarboxylic acid is used as the dicarboxylic acid, the weight ratio of the aromatic dicarboxylic acid to the total amount (total weight) of the dicarboxylic acid in the monomer component of the polyester polymer is not particularly limited, and is suitably about 1% by weight or more, and from the viewpoint of improving high-temperature holding power, it is preferably about 3% by weight or more, more preferably about 5% by weight or more, and even more preferably about 7% by weight or more. In addition, the upper limit of the weight ratio of the aromatic carboxylic acid may vary depending on other dicarboxylic acid species, and is not limited to a specific range.
 また、いくつかの態様において、生産性や効率、コストを考慮して、所望の粘着特性を得る観点から、化石資源に由来するジカルボン酸(例えば脂肪族ジカルボン酸)が用いられる。そのようなジカルボン酸(例えば脂肪族ジカルボン酸)の例としては、ジメチルグルタル酸、アジピン酸、トリメチルアジピン酸、ピメリン酸、スベリン酸、アゼライン酸が挙げられる。なかでも、脂肪族ジカルボン酸として、アジピン酸が好ましく用いられる。上記化石資源に由来するジカルボン酸(例えば脂肪族ジカルボン酸)は、1種を単独でまたは2種以上を組み合わせて用いることができる。 In addition, in some embodiments, dicarboxylic acids derived from fossil resources (for example, aliphatic dicarboxylic acids) are used from the viewpoint of obtaining desired adhesive properties in consideration of productivity, efficiency, and cost. Examples of such dicarboxylic acids (eg aliphatic dicarboxylic acids) include dimethylglutaric acid, adipic acid, trimethyladipic acid, pimelic acid, suberic acid, azelaic acid. Among them, adipic acid is preferably used as the aliphatic dicarboxylic acid. The dicarboxylic acids (eg, aliphatic dicarboxylic acids) derived from fossil resources may be used singly or in combination of two or more.
 ここに開示されるポリエステル系ポリマーの合成に用いられるモノマー成分としてのジカルボン酸の分子量は、特に限定されず、100以上であることが適当であり、150以上であってもよい。いくつかの態様において、用いられるジカルボン酸の分子量は、200以上であってもよく、250以上でもよく、350以上でもよく、450以上でもよく、500以上(例えば530以上)でもよい。一方、モノマー入手性や、合成性等の観点から、ジカルボン酸の分子量は、1000以下程度であることが適当であり、例えば800以下であってもよく、700以下でもよく、600以下(例えば550以下)でもよい。ここに開示されるポリエステル系ポリマー(所定値以上のMwを有し、好ましくは所定範囲のTgを有するポリエステル系ポリマー)は、上記範囲の分子量を有するジカルボン酸を用いて好ましく合成される。 The molecular weight of the dicarboxylic acid used as a monomer component for synthesizing the polyester-based polymer disclosed herein is not particularly limited, and is suitably 100 or more, and may be 150 or more. In some embodiments, the molecular weight of the dicarboxylic acid used may be 200 or greater, 250 or greater, 350 or greater, 450 or greater, or 500 or greater (eg, 530 or greater). On the other hand, the molecular weight of the dicarboxylic acid is suitably about 1000 or less from the viewpoint of monomer availability and synthesizability, and may be, for example, 800 or less, 700 or less, or 600 or less (e.g., 550 or less). The polyester-based polymer disclosed herein (having an Mw of a predetermined value or more, preferably having a Tg within a predetermined range) is preferably synthesized using a dicarboxylic acid having a molecular weight within the above range.
 (ジオール)
 ここに開示されるポリエステル系ポリマーの合成に用いられるジオールとしては、(ポリ)アルキレングリコール類、脂肪族ジオール、ダイマージオール、脂環式ジオール、芳香族ジオール、不飽和ジオールのいずれも使用可能である。上記ジオールの具体例としては、例えば、エチレングリコール、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコール、プロピレングリコール、ジプロピレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール等の(ポリ)アルキレングリコール類;1,3-プロパンジオール、2-メチル-1,3-プロパンジオール、2,2-ジメチル-1,3-プロパンジオール(ネオペンチルグリコール)、2-エチル-2-ブチル-1,3-プロパンジオール、2-エチル-2-イソブチル-1,3-プロパンジオール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、3-メチル-1,5-ペンタンジオール、1,6-ヘキサンジオール、2-メチル-1,3-ヘキサンジオール、2,2,4-トリメチル-1,6-ヘキサンジオール、1,8-オクタンジオール、1,9-ノナンジオール、1,10-デカンジオール等の脂肪族ジオール;ダイマージオール(オレイン酸、エルカ酸等の脂肪酸から誘導されるダイマージオール等);1,2-シクロヘキサンジメタノール、1,3-シクロヘキサンジメタノール、1,4-シクロヘキサンジメタノール、スピログリコール、トリシクロデカンジメタノール、アダマンタンジオール、2,2,4,4-テトラメチル-1,3-シクロブタンジオール等の脂環式ジオール;4,4′-チオジフェノール、4,4′-メチレンジフェノール、4,4′-ジヒドロキシビフェニル、o-,m-およびp-ジヒドロキシベンゼン、2,5-ナフタレンジオール、p-キシレンジオールおよびそれらのエチレンオキサイド、プロピレンオキサイド付加体等の芳香族ジオール;等が挙げられる。これらのジオールの1種または2種以上を適切に選定して用いることで、接着力および高温保持力の両立に適するなど、良好な粘着特性を発揮し得るポリエステル系ポリマーを得ることができる。
(diol)
Any of (poly)alkylene glycols, aliphatic diols, dimer diols, alicyclic diols, aromatic diols, and unsaturated diols can be used as diols used for synthesizing the polyester-based polymer disclosed herein. Specific examples of the diol include (poly)alkylene glycols such as ethylene glycol, diethylene glycol, triethylene glycol, polyethylene glycol, propylene glycol, dipropylene glycol, polypropylene glycol, and polytetramethylene glycol; Pandiol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, 1,5-pentanediol, 3-methyl-1,5-pentanediol, 1,6-hexanediol, 2-methyl-1,3-hexanediol, 2,2,4-trimethyl-1,6-hexanediol, 1,8-octanediol, 1,9-nonanediol, 1,10-decanediol and other aliphatic diols Ol; dimer diols (such as dimer diols derived from fatty acids such as oleic acid and erucic acid); alicyclic diols such as 1,2-cyclohexanedimethanol, 1,3-cyclohexanedimethanol, 1,4-cyclohexanedimethanol, spiroglycol, tricyclodecanedimethanol, adamantanediol, 2,2,4,4-tetramethyl-1,3-cyclobutanediol; 4,4'-thiodiphenol, 4,4'-methylenediphenol, 4,4'-dihydroxy aromatic diols such as biphenyl, o-, m- and p-dihydroxybenzene, 2,5-naphthalenediol, p-xylenediol and their ethylene oxide and propylene oxide adducts; By appropriately selecting and using one or more of these diols, it is possible to obtain a polyester polymer capable of exhibiting good adhesive properties such as being suitable for both adhesive strength and high-temperature holding power.
 いくつかの態様において、ジオールとしては、(ポリ)アルキレングリコール類、脂肪族ジオール、脂環式ジオールが好ましく、(ポリ)アルキレングリコール類、脂肪族ジオールがより好ましい。これらのジオール(好ましくはエチレングリコールや脂肪族ジオール)を、上述のジカルボン酸(好ましくはダイマー酸や芳香族ジカルボン酸)と組み合わせて合成することで、粘着特性に優れたポリエステル系ポリマーを好ましく得ることができる。好適例としては、(ポリ)エチレングリコール、1,3-プロパンジオール、2-メチル-1,3-プロパンジオール、2,2-ジメチル-1,3-プロパンジオール(ネオペンチルグリコール)、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオールが挙げられ、反応性等の観点から、エチレングリコール、1,3-プロパンジオール、2,2-ジメチル-1,3-プロパンジオール、1,4-ブタンジオール、1,6-ヘキサンジオールがより好ましい。これらは1種を単独でまたは2種以上を組み合わせて用いることができる。上述の(ポリ)アルキレングリコール類、脂肪族ジオール、脂環式ジオールは、植物由来であってもよく、化石資源由来であってもよい。なお、本明細書において、上記(ポリ)エチレングリコールは、エチレングリコール、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコールを包含する意味で用いられる。 In some aspects, the diol is preferably (poly)alkylene glycols, aliphatic diols or alicyclic diols, more preferably (poly)alkylene glycols or aliphatic diols. By synthesizing these diols (preferably ethylene glycol and aliphatic diols) in combination with the above-described dicarboxylic acid (preferably dimer acid and aromatic dicarboxylic acid), a polyester polymer having excellent adhesive properties can be preferably obtained. Preferred examples include (poly)ethylene glycol, 1,3-propanediol, 2-methyl-1,3-propanediol, 2,2-dimethyl-1,3-propanediol (neopentyl glycol), 1,4-butanediol, 1,5-pentanediol, and 1,6-hexanediol. More preferred are butanediol and 1,6-hexanediol. These can be used individually by 1 type or in combination of 2 or more types. The (poly)alkylene glycols, aliphatic diols, and alicyclic diols described above may be derived from plants or fossil resources. In this specification, the (poly)ethylene glycol is used in the sense of including ethylene glycol, diethylene glycol, triethylene glycol, and polyethylene glycol.
 ポリエステル系ポリマーのモノマー成分におけるジオールの総量(合計重量)に占める(ポリ)アルキレングリコール類、脂肪族ジオールおよび脂環式ジオールの重量割合(好ましくはエチレングリコールおよび脂肪族ジオールの重量割合)は、特に限定されず、凡そ50重量%以上とすることが適当であり、良好な粘着特性を得る観点から、好ましくは凡そ70重量%以上、より好ましくは凡そ80重量%以上、さらに好ましくは凡そ90重量%以上、特に好ましくは凡そ95重量%以上(例えば99~100重量%)である。また、上記(ポリ)アルキレングリコール類、脂肪族ジオールおよび脂環式ジオールの重量割合(好ましくはエチレングリコールおよび脂肪族ジオールの重量割合)は、例えば凡そ95重量%以下であってもよい。 The weight ratio of (poly)alkylene glycols, aliphatic diols and alicyclic diols (preferably the weight ratio of ethylene glycol and aliphatic diols) to the total amount (total weight) of diols in the monomer component of the polyester polymer is not particularly limited, and is suitably about 50% by weight or more. From the viewpoint of obtaining good adhesive properties, it is preferably about 70% by weight or more, more preferably about 80% by weight or more, even more preferably about 90% by weight or more, and particularly preferably about 95% by weight. % or more (for example, 99 to 100% by weight). Further, the weight ratio of the (poly)alkylene glycols, the aliphatic diol and the alicyclic diol (preferably the weight ratio of ethylene glycol and the aliphatic diol) may be, for example, approximately 95% by weight or less.
 いくつかの好ましい態様において、ジオールとして、(ポリ)エチレングリコールが用いられる。(ポリ)エチレングリコールを適当なジカルボン酸と組み合わせて用いることにより、良好な粘着特性(接着力および高温保持力)を好ましく得ることができる。上記ジオールとして上記(ポリ)エチレングリコールを用いる態様において、ポリエステル系ポリマーのモノマー成分としてのジオールの総量(合計重量)に占める上記(ポリ)エチレングリコールの重量割合は、凡そ1重量%以上とすることが適当であり、好ましくは凡そ10重量%以上、より好ましくは凡そ50重量%以上、さらに好ましくは凡そ80重量%以上、特に好ましくは凡そ90重量%以上(例えば95~100重量%)である。(ポリ)エチレングリコールの使用量を所定値以上とすることにより、(ポリ)エチレングリコールの特性に基づき、ポリマーを設計することができる。また例えば、(ポリ)エチレングリコールの使用により、ヘイズの低い粘着剤層が得られやすい。また、上記(ポリ)エチレングリコールの重量割合は、凡そ95重量%以下であってもよく、凡そ70重量%以下でもよく、凡そ50重量%以下でもよい。上述の(ポリ)エチレングリコールは、植物由来であってもよく、化石資源由来であってもよい。(ポリ)エチレングリコールは、1種を単独でまたは2種以上を組み合わせて用いることができる。 In some preferred embodiments, (poly)ethylene glycol is used as the diol. By using (poly)ethylene glycol in combination with a suitable dicarboxylic acid, good adhesive properties (adhesive strength and high temperature holding power) can preferably be obtained. In the embodiment using the (poly)ethylene glycol as the diol, the weight ratio of the (poly)ethylene glycol in the total amount (total weight) of the diol as the monomer component of the polyester polymer is suitably about 1% by weight or more, preferably about 10% by weight or more, more preferably about 50% by weight or more, still more preferably about 80% by weight or more, particularly preferably about 90% by weight or more (for example, 95 to 100% by weight). By setting the amount of (poly)ethylene glycol to a predetermined value or more, the polymer can be designed based on the properties of (poly)ethylene glycol. Further, for example, the use of (poly)ethylene glycol facilitates obtaining a pressure-sensitive adhesive layer with low haze. Further, the weight ratio of the (poly)ethylene glycol may be approximately 95% by weight or less, approximately 70% by weight or less, or approximately 50% by weight or less. The (poly)ethylene glycol mentioned above may be derived from plants or fossil resources. (Poly)ethylene glycol may be used alone or in combination of two or more.
 いくつかの態様において、ジオールとしては、バイオ率が50%以上であるポリエステル系ポリマーを得る観点から、植物由来のジオールを用いることが好ましい。そのようなジオールの例としては、バイオマスエタノールを原料として得られるバイオマスジオール(例えばバイオマス(ポリ)エチレングリコール等)、植物(例えばヒマシ油)から誘導される脂肪酸エステル、オレイン酸やエルカ酸等の脂肪酸から誘導されるダイマージオール、グルコースを用いて生成されるブタンジオール等が挙げられる。植物由来のジオールは、1種を単独でまたは2種以上を組み合わせて用いることができる。 In some embodiments, it is preferable to use a plant-derived diol as the diol from the viewpoint of obtaining a polyester-based polymer with a bio rate of 50% or more. Examples of such diols include biomass diols obtained from biomass ethanol (e.g., biomass (poly)ethylene glycol, etc.), fatty acid esters derived from plants (e.g., castor oil), dimer diols derived from fatty acids such as oleic acid and erucic acid, and butanediol produced using glucose. Plant-derived diols can be used singly or in combination of two or more.
 いくつかの態様において、化石資源系材料への依存度を低減する観点から、ポリエステル系ポリマーのモノマー成分としてのジオールの総量(合計重量)に占める植物由来のジオールの重量割合は、凡そ1重量%以上であってもよく、凡そ10重量%以上でもよく、凡そ50重量%以上でもよく、凡そ80重量%以上でもよく、凡そ90重量%以上(例えば95~100重量%)でもよい。また、上記植物由来のジオールの重量割合は、凡そ95重量%以下であってもよく、凡そ70重量%以下でもよく、凡そ50重量%以下でもよい。このように、植物由来のジオールの使用量が相対的に低く、化石資源由来のジオールを用いる態様においても、例えば、化石資源由来のジオールとして、相対的に分子量の低いものを使用することにより、ポリエステル系ポリマーは所定値以上のバイオ率を有するものとなり得る。そのような観点から、上記植物由来のジオールの重量割合は、凡そ30重量%以下であってもよく、凡そ10重量%以下でもよく、凡そ3重量%以下(例えば1重量%未満)でもよい。ここに開示される技術は、ポリエステル系ポリマーの合成に用いられるモノマー成分としてのジオールが、植物由来のジオールを実質的に含まない態様でも好ましく実施することができる。 In some embodiments, from the viewpoint of reducing dependence on fossil resource-based materials, the weight ratio of the plant-derived diol in the total amount (total weight) of diols as monomer components of the polyester polymer may be about 1% by weight or more, may be about 10% by weight or more, may be about 50% by weight or more, may be about 80% by weight or more, or may be about 90% by weight or more (for example, 95 to 100% by weight). The weight ratio of the plant-derived diol may be approximately 95% by weight or less, approximately 70% by weight or less, or approximately 50% by weight or less. Thus, even in an embodiment in which the amount of the plant-derived diol used is relatively low and the fossil resource-derived diol is used, for example, by using a fossil resource-derived diol having a relatively low molecular weight, the polyester-based polymer can have a bio rate of a predetermined value or more. From such a point of view, the weight ratio of the plant-derived diol may be approximately 30% by weight or less, approximately 10% by weight or less, or approximately 3% by weight or less (for example, less than 1% by weight). The technology disclosed herein can also be preferably practiced in a mode in which the diol used as the monomer component for synthesizing the polyester-based polymer does not substantially contain a plant-derived diol.
 いくつかの態様において、植物由来のジオールとしてダイマージオールが用いられる。ダイマージオールを用いることによっても、ポリエステル系ポリマーのバイオ率を高めることができる。ダイマージオールは、1種を単独でまたは2種以上を組み合わせて用いることができる。上記ジオールとしてダイマージオールを用いる態様において、ポリエステル系ポリマーのモノマー成分としてのジオールの総量(合計重量)に占めるダイマージオールの重量割合は、凡そ1重量%以上であってもよく、例えば凡そ10重量%以上でもよく、凡そ50重量%以上でもよく、凡そ70重量%以上でもよく、凡そ80重量%以上でもよく、凡そ90重量%以上(例えば95~100重量%)でもよい。また、上記ダイマージオールの重量割合は、凡そ95重量%以下であってもよく、凡そ85重量%以下でもよく、凡そ60重量%以下でもよい。ここに開示される技術は、ポリエステル系ポリマーの合成に用いられるモノマー成分としてのジオールがダイマージオールを含む態様、あるいはダイマージオールを含まない態様のいずれの態様でも実施することができる。例えば、上記ダイマージオールの重量割合は、凡そ50重量%以下(例えば50重量%未満)であってもよく、凡そ30重量%以下でもよく、凡そ10重量%以下でもよく、凡そ3重量%以下でもよく、1重量%未満でもよく、ポリエステル系ポリマーの合成に用いられるジオールは、実質的にダイマージオールを含まなくてもよい。 In some embodiments, dimer diol is used as the plant-derived diol. The use of dimer diol can also increase the bio-rate of the polyester-based polymer. A dimer diol can be used individually by 1 type or in combination of 2 or more types. In the embodiment using the dimer diol as the diol, the weight ratio of the dimer diol to the total amount (total weight) of the diol as the monomer component of the polyester polymer may be about 1% by weight or more, for example about 10% by weight or more, about 50% by weight or more, about 70% by weight or more, about 80% by weight or more, or about 90% by weight or more (for example, 95 to 100% by weight). Further, the weight ratio of the dimer diol may be approximately 95% by weight or less, approximately 85% by weight or less, or approximately 60% by weight or less. The technology disclosed herein can be practiced in either a mode in which the diol used as a monomer component for synthesizing the polyester-based polymer contains dimer diol or a mode in which it does not contain dimer diol. For example, the weight percentage of the dimer diol may be approximately 50% by weight or less (for example, less than 50% by weight), approximately 30% by weight or less, approximately 10% by weight or less, approximately 3% by weight or less, or less than 1% by weight.
 上記ジオールの分子量は特に限定されない。ジオールの分子量は、モノマー入手性や合成性等の観点から、例えば500以下であることが適当であり、300以下であってもよく、150以下でもよく、100以下でもよく、80以下でもよい。また、ジオールの分子量は、50以上程度であることが適当であり、例えば100超であってもよい。上記分子量の範囲のジオールを用いる態様で、接着力と高温保持力とを両立するなど、良好な粘着特性を発揮し得るポリエステル系ポリマーが好ましく合成され得る。また、例えば、上記ジオールが化石資源由来である態様において、化石資源由来のジオールの分子量は、500以下であることが適当であり、300以下であってもよい。化石資源由来のジオールの分子量が小さいほど、ポリエステル系ポリマーは、高いバイオ率を有しやすい。そのような観点からは、化石資源由来のジオールの分子量は、150以下であってもよく、100以下でもよく、80以下でもよい。また、化石資源由来のジオールの分子量は、50以上程度であることが適当であり、例えば100超であってもよい。上記分子量を有するジオールの好適例としては、エチレングリコールが挙げられる。 The molecular weight of the diol is not particularly limited. The molecular weight of the diol is suitably 500 or less, for example, from the viewpoint of monomer availability and synthesizing properties, and may be 300 or less, 150 or less, 100 or less, or 80 or less. Also, the molecular weight of the diol is suitably about 50 or more, and may be more than 100, for example. In an embodiment using a diol having a molecular weight within the above range, a polyester-based polymer capable of exhibiting good adhesive properties, such as achieving both adhesive strength and high-temperature holding power, can be preferably synthesized. Further, for example, in the embodiment in which the diol is derived from fossil resources, the molecular weight of the diol derived from fossil resources is suitably 500 or less, and may be 300 or less. The smaller the molecular weight of the diol derived from fossil resources, the more likely the polyester-based polymer will have a high bio-rate. From such a viewpoint, the molecular weight of the fossil resource-derived diol may be 150 or less, 100 or less, or 80 or less. In addition, the molecular weight of the fossil resource-derived diol is suitably about 50 or more, and may be more than 100, for example. Suitable examples of diols having the above molecular weights include ethylene glycol.
 なお、本明細書において、ジオールの分子量としては、化学式から算出される分子量を採用することができる。また、ジオール(例えば上記化石資源由来のジオール)を2種以上用いる態様においては、ジオール(例えば上記化石資源由来のジオール)の分子量として、各ジオールの分子量と重量分率との積の総和(合計値)が採用される。 In addition, in this specification, the molecular weight calculated from the chemical formula can be adopted as the molecular weight of the diol. Further, in an embodiment using two or more kinds of diols (for example, the above-mentioned fossil resource-derived diols), the molecular weight of the diol (for example, the above-mentioned fossil resource-derived diol) is the sum of the products of the molecular weight and the weight fraction of each diol (total value).
 ここに開示されるポリエステル系ポリマーは、上述のジカルボン酸とジオールから実質的に構成され得るが、所望の官能基の導入や分子量の調節等を目的として、ここに開示される技術による効果が損なわれない範囲で、ジカルボン酸およびジオール以外の他の共重合成分が共重合されていてもよい。そのような他の共重合成分としては、カルボキシ基を3つまたは4つ以上含む多価カルボン酸(トリメリット酸、ピロメリット酸、アダマンタントリカルボン酸、トリメシン酸、トリマー酸等の三価以上の多価カルボン酸)、一分子中に水酸基を3つまたは4つ以上含むポリオール(ペンタエリスリトール、ジペンタエリスリトール、トリペンタエリスリトール、グリセリン、トリメチロールプロパン、トリメチロールエタン、1,3,6-ヘキサントリオール、アダマンタントリオール等)、モノカルボン酸、モノアルコール、ヒドロキシカルボン酸、ラクトン等が挙げられる。上記他の共重合成分は、1種を単独でまたは2種以上を組み合わせて用いることができる。これら他の共重合成分は、植物由来であってもよく、植物由来でなくてもよい。上記他の共重合成分の割合は、ポリエステル系ポリマーのモノマー成分中、例えば10重量%未満とすることが適当であり、3重量%未満、典型的には1重量%未満(さらには0.1重量%未満)程度であってもよい。ここに開示される技術は、ポリエステル系ポリマーのモノマー成分が上記他の共重合成分を実質的に含まない態様でも好ましく実施され得る。 The polyester-based polymer disclosed herein can be substantially composed of the dicarboxylic acid and the diol described above, but for the purpose of introducing desired functional groups, adjusting the molecular weight, etc., other copolymerization components other than the dicarboxylic acid and the diol may be copolymerized as long as the effects of the technology disclosed herein are not impaired. Such other copolymerization components include polyvalent carboxylic acids containing 3 or 4 or more carboxy groups (trimellitic acid, pyromellitic acid, adamantanetricarboxylic acid, trimesic acid, trivalent or higher polycarboxylic acids such as trimeric acid), polyols containing 3 or 4 or more hydroxyl groups per molecule (pentaerythritol, dipentaerythritol, tripentaerythritol, glycerin, trimethylolpropane, trimethylolethane, 1,3,6- hexanetriol, adamantanetriol, etc.), monocarboxylic acids, monoalcohols, hydroxycarboxylic acids, lactones and the like. The above-mentioned other copolymerization components can be used singly or in combination of two or more. These other copolymer components may or may not be derived from plants. The ratio of the above-mentioned other copolymerization components in the monomer components of the polyester polymer is suitable, for example, less than 10% by weight, less than 3% by weight, typically less than 1% by weight (further less than 0.1% by weight). The technology disclosed herein can also be preferably carried out in a mode in which the monomer component of the polyester-based polymer does not substantially contain the other copolymer components.
 ここに開示されるポリエステル系ポリマーの合成に用いられるモノマー成分において、特に限定されるものではないが、ジカルボン酸とジオールとの合計割合は、凡そ90重量%以上であることが適当であり、好ましくは凡そ95重量%以上、より好ましくは凡そ98重量%以上、さらに好ましくは凡そ99重量%以上(例えば99~100重量%)である。ここに開示される技術は、実質的にジカルボン酸とジオールとから合成されるポリエステル系ポリマーを用いる態様で好ましく実施される。 In the monomer components used to synthesize the polyester-based polymer disclosed herein, although not particularly limited, the total ratio of the dicarboxylic acid and the diol is suitably about 90% by weight or more, preferably about 95% by weight or more, more preferably about 98% by weight or more, and even more preferably about 99% by weight or more (for example, 99 to 100% by weight). The technique disclosed herein is preferably practiced in a mode using a polyester-based polymer substantially synthesized from dicarboxylic acid and diol.
 いくつかの好ましい態様において、ポリエステル系ポリマーのモノマー成分は、ジカルボン酸としてのダイマー酸と、ジオールとしての(ポリ)エチレングリコールとを併用する。ダイマー酸と(ポリ)エチレングリコールとを組み合わせて使用することにより、所定値以上のMwを有し、接着力と高温保持力との両立に適するなど、良好な粘着特性を発揮し得るポリエステル系ポリマーを好ましく合成することができる。ポリエステル系ポリマーのモノマー成分総量に占めるダイマー酸と(ポリ)エチレングリコールとの合計割合は、凡そ50重量%以上であることが適当であり、好ましくは凡そ60重量%以上、より好ましくは凡そ70重量%以上、さらに好ましくは凡そ80重量%以上であり、凡そ90重量%以上(例えば99~100重量%)であってもよい。 In some preferred embodiments, dimer acid as a dicarboxylic acid and (poly)ethylene glycol as a diol are used together as the monomer component of the polyester polymer. By using a combination of dimer acid and (poly)ethylene glycol, it is possible to preferably synthesize a polyester-based polymer that has Mw of a predetermined value or more and can exhibit good adhesive properties, such as being suitable for both adhesive strength and high-temperature holding power. The total proportion of dimer acid and (poly)ethylene glycol in the total amount of monomer components of the polyester polymer is suitably about 50% by weight or more, preferably about 60% by weight or more, more preferably about 70% by weight or more, more preferably about 80% by weight or more, and may be about 90% by weight or more (for example, 99 to 100% by weight).
 いくつかの好ましい態様において、ポリエステル系ポリマーは、そのポリマー分子内に芳香環を有する。芳香環を含むポリエステル系ポリマーによると、高温保持力が得られやすい。上記芳香環は、芳香環を有するモノマー(芳香族ジカルボン酸や芳香族ジオール)の使用によってポリマー内に導入される。ポリエステル系ポリマーが芳香環を有する態様において、芳香環含有モノマー(典型的には芳香族ジカルボン酸、芳香族ジオール)の共重合割合は、特に限定されず、凡そ1重量%以上とすることが適当であり、高温保持力向上の観点から、好ましくは凡そ3重量%以上、より好ましくは凡そ5重量%以上、さらに好ましくは凡そ7重量%以上である。また、上記芳香環含有モノマーの共重合割合の上限は、例えば凡そ30重量%以下とすることが適当であり、接着力等の粘着特性の観点から、好ましくは凡そ15重量%以下、より好ましくは凡そ12重量%以下、さらに好ましくは凡そ10重量%以下であり、特に好ましくは凡そ8重量%以下である。 In some preferred embodiments, the polyester-based polymer has an aromatic ring in its polymer molecule. A polyester-based polymer containing an aromatic ring is likely to have a high-temperature holding power. The aromatic ring is introduced into the polymer by using a monomer having an aromatic ring (aromatic dicarboxylic acid or aromatic diol). In the aspect in which the polyester-based polymer has an aromatic ring, the copolymerization ratio of the aromatic ring-containing monomer (typically aromatic dicarboxylic acid, aromatic diol) is not particularly limited, and is suitably about 1% by weight or more. From the viewpoint of improving high-temperature holding power, it is preferably about 3% by weight or more, more preferably about 5% by weight or more, and further preferably about 7% by weight or more. The upper limit of the copolymerization ratio of the aromatic ring-containing monomer is, for example, about 30% by weight or less, and from the viewpoint of adhesive properties such as adhesive strength, it is preferably about 15% by weight or less, more preferably about 12% by weight or less, still more preferably about 10% by weight or less, and particularly preferably about 8% by weight or less.
 ここに開示されるポリエステル系ポリマーを得る方法は特に限定されず、ポリエステル系ポリマーの合成手法として知られている重合方法を適宜採用することができる。ポリエステル系ポリマーの合成に用いるモノマー原料は、例えば、ジオール1当量あたり、ジカルボン酸0.95~1.05当量(好ましくは0.98~1.02当量)となるようモノマーを配合したものを用いることができる。ジカルボン酸とジオールとを上記の割合で配合することにより、高分子量のポリエステル系ポリマーが得られやすい。また、上記ポリマーは、適度に架橋(例えばイソシアネート系架橋剤等の架橋剤との反応に基づく架橋)して凝集力を高めるものとなり得る。 The method for obtaining the polyester-based polymer disclosed herein is not particularly limited, and polymerization methods known as methods for synthesizing polyester-based polymers can be appropriately employed. As the monomer raw material used for the synthesis of the polyester-based polymer, for example, a monomer blended in such a manner that 0.95 to 1.05 equivalents (preferably 0.98 to 1.02 equivalents) of dicarboxylic acid per equivalent of diol can be used. By blending the dicarboxylic acid and the diol in the above ratio, a high-molecular-weight polyester-based polymer can be easily obtained. In addition, the polymer can be appropriately crosslinked (for example, crosslinked based on reaction with a crosslinking agent such as an isocyanate-based crosslinking agent) to increase cohesion.
 ここに開示される技術において、ポリエステル系ポリマーの合成に用いられるモノマー成分としてのジカルボン酸とジオールとの重量比率は、特に限定されず、目的とするポリマー物性や合成性等を考慮して、適当な重量比率が設定され得る。いくつかの態様において、上記モノマー成分として用いられるジカルボン酸の重量A1とジオールの重量A2との比率(重量比率A1/A2)は、10/90以上であってもよく、30/70以上でもよい。いくつかの好ましい態様において、上記重量比率(A1/A2)は、凡そ50/50以上であり、より好ましくは60/40以上、さらに好ましくは70/30以上であり、80/20以上でもよく、90/10以上でもよい。例えば、上記のようにジカルボン酸の重量比率を高めることにより、ジカルボン酸に基づく特性を好適に発現させることができる。また、植物由来のジカルボン酸を用いる態様においては、得られるポリエステル系ポリマーのバイオ率を効果的に高めることができる。また、上記重量比率(A1/A2)は、例えば95/5以下であってもよく、85/15以下でもよい。いくつかの態様においては、ジオールに基づく特性を好適に発現する観点から、上記重量比率(A1/A2)は、75/25以下であってもよく、50/50以下(例えば30/70以下)でもよい。植物由来のジオールを用いる態様においては、上記重量比率とすることで、ポリエステル系ポリマーは、高いバイオ率を有することができる。なお、ジカルボン酸、ジオールともに植物由来の材料を用いる態様においては、ジカルボン酸とジオールとの重量比率にかかわらず、所定値以上のバイオ率を有するポリエステル系ポリマーを得ることができる。 In the technology disclosed herein, the weight ratio of the dicarboxylic acid and the diol as the monomer components used in the synthesis of the polyester-based polymer is not particularly limited, and an appropriate weight ratio can be set in consideration of the target polymer physical properties and synthetic properties. In some embodiments, the ratio (weight ratio A1/A2) between the weight A1 of the dicarboxylic acid and the weight A2 of the diol used as the monomer component may be 10/90 or more, or 30/70 or more. In some preferred embodiments, the weight ratio (A1/A2) is about 50/50 or higher, more preferably 60/40 or higher, even more preferably 70/30 or higher, 80/20 or higher, or 90/10 or higher. For example, by increasing the weight ratio of the dicarboxylic acid as described above, the properties based on the dicarboxylic acid can be favorably expressed. Moreover, in the embodiment using a plant-derived dicarboxylic acid, the bio rate of the obtained polyester-based polymer can be effectively increased. Further, the weight ratio (A1/A2) may be, for example, 95/5 or less, or 85/15 or less. In some embodiments, the weight ratio (A1/A2) may be 75/25 or less, or 50/50 or less (for example, 30/70 or less), from the viewpoint of favorably expressing diol-based properties. In an aspect using a plant-derived diol, the above weight ratio allows the polyester polymer to have a high bio-rate. In addition, in an embodiment in which plant-derived materials are used for both the dicarboxylic acid and the diol, a polyester-based polymer having a bio rate of a predetermined value or more can be obtained regardless of the weight ratio of the dicarboxylic acid and the diol.
 ここに開示される技術におけるポリエステル系ポリマーは、一般的なポリエステルと同様、ジカルボン酸とジオールとの重縮合により得ることができる。より詳しくは、ジカルボン酸の有するカルボキシ基とジオールの有する水酸基との反応を、典型的には上記反応により生成する水(生成水)等を反応系外に除去しつつ進行させることにより、ポリエステル系ポリマーを合成することができる。上記生成水を反応系外に除去する方法としては、反応系内に不活性ガスを吹き込んで該不活性ガスとともに生成水を反応系外に取り出す方法、トルエンやキシレン等の反応水排出溶剤として共沸脱水させる方法、減圧下で反応系から生成水を留去する方法(減圧法)等を用いることができる。 The polyester-based polymer in the technology disclosed here can be obtained by polycondensation of a dicarboxylic acid and a diol, like general polyesters. More specifically, the reaction between the carboxyl group of the dicarboxylic acid and the hydroxyl group of the diol is allowed to proceed while removing water (generated water) and the like typically produced by the above reaction out of the reaction system, whereby a polyester polymer can be synthesized. As a method for removing the generated water out of the reaction system, a method of blowing an inert gas into the reaction system and removing the generated water out of the reaction system together with the inert gas, a method of azeotropic dehydration as a reaction water discharge solvent such as toluene or xylene, a method of distilling off the generated water from the reaction system under reduced pressure (a decompression method), and the like can be used.
 上記反応(エステル化および重縮合を包含する。)を行う際の反応温度や反応時間、減圧法を採用する場合における減圧度(反応系内の圧力)は、目的とする特性(例えば分子量)のポリエステル系ポリマーが効率よく得られるように、適宜設定することができる。特に限定するものではないが、通常は、上記反応温度は凡そ150℃以上(例えば180℃~260℃)とすることが適当である。反応温度を上記範囲内とすることにより、良好な反応速度が得られ、生産性が向上し、また生成したポリエステル系ポリマーの劣化を防止または抑制しやすい。反応時間としては、特に限定されず、3~48時間(例えば10~30時間)程度であり得る。減圧法を採用する場合、特に限定するものではないが、通常は上記減圧度を10kPa以下(典型的には10kPa~0.1kPa)とすることが適当であり、例えば4kPa~0.1kPaとすることができる。反応系内の圧力を上記範囲内とすることにより、反応により生成した水を系外に効率よく留去することができ、良好な反応速度を維持しやすい。また、反応温度が比較的高い場合には、反応系内の圧力を上記下限値以上とすることにより、原料であるジカルボン酸やジオールの系外留去を防止しやすい。反応系内の圧力の安定維持の観点から、通常は、反応系内の圧力を0.1kPa以上とすることが適当である。 The reaction temperature and reaction time when carrying out the above reactions (including esterification and polycondensation), and the degree of pressure reduction (pressure in the reaction system) when a pressure reduction method is employed can be appropriately set so that a polyester polymer having desired properties (e.g., molecular weight) can be efficiently obtained. Although it is not particularly limited, it is usually appropriate for the reaction temperature to be approximately 150° C. or higher (for example, 180° C. to 260° C.). By setting the reaction temperature within the above range, a favorable reaction rate is obtained, productivity is improved, and deterioration of the produced polyester polymer can be easily prevented or suppressed. The reaction time is not particularly limited and may be about 3 to 48 hours (eg 10 to 30 hours). When a decompression method is employed, it is not particularly limited, but it is usually appropriate to set the degree of decompression to 10 kPa or less (typically 10 kPa to 0.1 kPa), for example, 4 kPa to 0.1 kPa. By setting the pressure in the reaction system within the above range, the water produced by the reaction can be efficiently distilled out of the system, and a favorable reaction rate can be easily maintained. Further, when the reaction temperature is relatively high, the dicarboxylic acid and diol which are raw materials can be easily prevented from being distilled out of the system by setting the pressure in the reaction system to the above lower limit or higher. From the viewpoint of stably maintaining the pressure in the reaction system, it is usually appropriate to set the pressure in the reaction system to 0.1 kPa or more.
 上記反応には、一般的なポリエステルの合成と同様、公知ないし慣用の触媒がエステル化、縮合のために適当量用いられ得る。かかる触媒として、例えば、チタン系、ゲルマニウム系、アンチモン系、スズ系、亜鉛系等の種々の金属化合物;p-トルエンスルホン酸や硫酸等の強酸;等が挙げられる。触媒の使用量は、反応速度等に応じて適切に設定され得るので、ここでは詳細な説明は省略する。 For the above reaction, a suitable amount of a known or commonly used catalyst can be used for esterification and condensation, as in general polyester synthesis. Examples of such catalysts include various metal compounds such as titanium, germanium, antimony, tin, and zinc; strong acids such as p-toluenesulfonic acid and sulfuric acid; and the like. Since the amount of the catalyst used can be appropriately set according to the reaction rate and the like, detailed description is omitted here.
 ジカルボン酸とジオールとの反応によってポリエステル系ポリマーを合成する上記過程において、溶媒は用いてもよく、用いなくてもよい。上記合成は、有機溶媒を実質的に使用することなく(例えば、上記反応の際の反応溶媒として意図的に有機溶媒を使用する態様を排除する意味である。)実施することができる。このように有機溶媒を実質的に使用することなくポリエステル系ポリマーを合成すること、および、かかるポリエステル系ポリマーを用いてポリエステル系粘着剤を調製することは、その製造過程において有機溶媒の使用を控えたいとの要請に適うものであり好ましい。 A solvent may or may not be used in the process of synthesizing a polyester-based polymer by reacting a dicarboxylic acid and a diol. The above synthesis can be carried out substantially without using an organic solvent (for example, this means excluding an embodiment in which an organic solvent is intentionally used as a reaction solvent during the above reaction). Synthesizing a polyester polymer without substantially using an organic solvent in this way and preparing a polyester pressure-sensitive adhesive using such a polyester polymer meet the demand for avoiding the use of organic solvents in the production process and are preferable.
 なお、上記反応の際、合成されるポリエステル系ポリマーの分子量と反応系の粘度との間には一般に相関があるので、このことを利用してポリエステル系ポリマーの分子量を管理することができる。例えば、反応中に攪拌機のトルクや反応系の粘度を連続的あるいは間欠的に測定(監視)することにより、目標とする分子量を満たすポリエステル系ポリマーを精度よく合成することが可能である。   In the above reaction, there is generally a correlation between the molecular weight of the synthesized polyester polymer and the viscosity of the reaction system, and this fact can be used to control the molecular weight of the polyester polymer. For example, by continuously or intermittently measuring (monitoring) the torque of the stirrer and the viscosity of the reaction system during the reaction, it is possible to accurately synthesize a polyester polymer that satisfies the target molecular weight.  
 (粘着付与樹脂)
 ここに開示される粘着剤組成物(ひいては粘着剤層)は粘着付与樹脂を含む。粘着付与樹脂を適当量使用することにより、粘着付与樹脂に基づく接着力向上作用が効果的に発揮され、接着力、高温保持力等の粘着特性を好ましく改善することができる。その一方で、粘着付与樹脂を含有させることにより、粘着剤組成物の粘度は低下する傾向にあるが、上記Mwを有するポリエステル系ポリマーと粘着付与樹脂とを併用することにより、当該粘着剤組成物は適度な粘度を得て、良好な品質を有する薄厚の粘着剤を形成しやすい。上記粘着付与樹脂としては、フェノール系粘着付与樹脂、テルペン系粘着付与樹脂、変性テルペン系粘着付与樹脂、ロジン系粘着付与樹脂、炭化水素系粘着付与樹脂、エポキシ系粘着付与樹脂、ポリアミド系粘着付与樹脂、エラストマー系粘着付与樹脂、ケトン系粘着付与樹脂等の、公知の各種粘着付与樹脂から選択される1種または2種以上を用いることができる。
(tackifying resin)
The adhesive composition (and thus the adhesive layer) disclosed herein includes a tackifying resin. By using an appropriate amount of the tackifying resin, the effect of improving the adhesive strength based on the tackifying resin is effectively exhibited, and adhesive properties such as adhesive strength and high-temperature holding power can be preferably improved. On the other hand, by containing a tackifying resin, the viscosity of the pressure-sensitive adhesive composition tends to decrease, but by using the polyester-based polymer having the above Mw and the tackifying resin in combination, the pressure-sensitive adhesive composition obtains an appropriate viscosity and easily forms a thin pressure-sensitive adhesive having good quality. As the tackifying resin, one or more selected from various known tackifying resins such as phenol-based tackifying resins, terpene-based tackifying resins, modified terpene-based tackifying resins, rosin-based tackifying resins, hydrocarbon-based tackifying resins, epoxy-based tackifying resins, polyamide-based tackifying resins, elastomer-based tackifying resins, and ketone-based tackifying resins can be used.
 フェノール系粘着付与樹脂の例には、テルペンフェノール樹脂、水素添加テルペンフェノール樹脂、アルキルフェノール樹脂およびロジンフェノール樹脂が含まれる。
 テルペンフェノール樹脂とは、テルペン残基およびフェノール残基を含むポリマーを指し、テルペン類とフェノール化合物との共重合体(テルペン-フェノール共重合体樹脂)と、テルペン類またはその単独重合体もしくは共重合体をフェノール変性したもの(フェノール変性テルペン樹脂)との双方を包含する概念である。このようなテルペンフェノール樹脂を構成するテルペン類の好適例としては、α-ピネン、β-ピネン、リモネン(d体、l体およびd/l体(ジペンテン)を包含する。)等のモノテルペン類が挙げられる。水素添加テルペンフェノール樹脂とは、このようなテルペンフェノール樹脂を水素化した構造を有する水素添加テルペンフェノール樹脂をいう。水添テルペンフェノール樹脂と称されることもある。
 アルキルフェノール樹脂は、アルキルフェノールとホルムアルデヒドから得られる樹脂(油性フェノール樹脂)である。アルキルフェノール樹脂の例としては、ノボラックタイプおよびレゾールタイプのものが挙げられる。
 ロジンフェノール樹脂は、典型的には、ロジン類または上記の各種ロジン誘導体(ロジンエステル類、不飽和脂肪酸変性ロジン類および不飽和脂肪酸変性ロジンエステル類を包含する。)のフェノール変性物である。ロジンフェノール樹脂の例には、ロジン類または上記の各種ロジン誘導体にフェノールを酸触媒で付加させ熱重合する方法等により得られるロジンフェノール樹脂が含まれる。
 これらのフェノール系粘着付与樹脂のうち、テルペンフェノール樹脂、水素添加テルペンフェノール樹脂およびアルキルフェノール樹脂が好ましく、テルペンフェノール樹脂および水素添加テルペンフェノール樹脂がより好ましく、なかでもテルペンフェノール樹脂が好ましい。
Examples of phenolic tackifying resins include terpene phenolic resins, hydrogenated terpene phenolic resins, alkylphenolic resins and rosin phenolic resins.
Terpene phenol resin refers to a polymer containing a terpene residue and a phenol residue, and is a concept that includes both copolymers of terpenes and phenolic compounds (terpene-phenol copolymer resins) and phenol-modified terpenes or homopolymers or copolymers thereof (phenol-modified terpene resins). Preferable examples of terpenes constituting such a terpene phenol resin include monoterpenes such as α-pinene, β-pinene and limonene (including d-, l- and d/l-forms (dipentene)). A hydrogenated terpene phenol resin refers to a hydrogenated terpene phenol resin having a structure obtained by hydrogenating such a terpene phenol resin. It is sometimes called a hydrogenated terpene phenolic resin.
Alkylphenol resins are resins obtained from alkylphenols and formaldehyde (oily phenolic resins). Examples of alkylphenol resins include novolac and resole types.
Rosin phenolic resins are typically rosins or phenol-modified products of the various rosin derivatives described above (including rosin esters, unsaturated fatty acid-modified rosins, and unsaturated fatty acid-modified rosin esters). Examples of rosin phenol resins include rosin phenol resins obtained by a method of adding phenol to rosins or various rosin derivatives described above with an acid catalyst and thermally polymerizing the mixture.
Among these phenolic tackifying resins, terpene phenol resins, hydrogenated terpene phenol resins and alkylphenol resins are preferred, terpene phenol resins and hydrogenated terpene phenol resins are more preferred, and terpene phenol resins are particularly preferred.
 テルペン系粘着付与樹脂の例には、α-ピネン、β-ピネン、d-リモネン、l-リモネン、ジペンテン等のテルペン類(例えばモノテルペン類)の重合体が含まれる。1種のテルペン類の単独重合体であってもよく、2種以上のテルペン類の共重合体であってもよい。1種のテルペン類の単独重合体としては、α-ピネン重合体、β-ピネン重合体、ジペンテン重合体等が挙げられる。
 変性テルペン樹脂の例としては、上記テルペン樹脂を変性したものが挙げられる。具体的には、スチレン変性テルペン樹脂、水素添加テルペン樹脂等が例示される。
Examples of terpene-based tackifying resins include polymers of terpenes (eg, monoterpenes) such as α-pinene, β-pinene, d-limonene, l-limonene, and dipentene. It may be a homopolymer of one kind of terpenes, or a copolymer of two or more kinds of terpenes. One type of terpene homopolymer includes α-pinene polymer, β-pinene polymer, dipentene polymer and the like.
Examples of modified terpene resins include those obtained by modifying the above terpene resins. Specific examples include styrene-modified terpene resins and hydrogenated terpene resins.
 ここでいうロジン系粘着付与樹脂の概念には、ロジン類およびロジン誘導体樹脂の双方が包含される。ロジン類の例には、ガムロジン、ウッドロジン、トール油ロジン等の未変性ロジン(生ロジン);これらの未変性ロジンを水素添加、不均化、重合等により変性した変性ロジン(水素添加ロジン、不均化ロジン、重合ロジン、その他の化学的に修飾されたロジン等);が含まれる。 The concept of rosin-based tackifying resins here includes both rosins and rosin derivative resins. Examples of rosins include unmodified rosins (fresh rosins) such as gum rosin, wood rosin, and tall oil rosin; modified rosins obtained by modifying these unmodified rosins by hydrogenation, disproportionation, polymerization, etc. (hydrogenated rosins, disproportionation rosins, polymerized rosins, other chemically modified rosins, etc.);
 ロジン誘導体樹脂は、典型的には上記のようなロジン類の誘導体である。ここでいうロジン系樹脂の概念には、未変性ロジンの誘導体および変性ロジン(水素添加ロジン、不均化ロジンおよび重合ロジンを包含する。)の誘導体が包含される。例えば、未変性ロジンとアルコール類とのエステルである未変性ロジンエステルや、変性ロジンとアルコール類とのエステルである変性ロジンエステル等のロジンエステル類;例えば、ロジン類を不飽和脂肪酸で変性した不飽和脂肪酸変性ロジン類;例えば、ロジンエステル類を不飽和脂肪酸で変性した不飽和脂肪酸変性ロジンエステル類;例えば、ロジン類または上記の各種ロジン誘導体(ロジンエステル類、不飽和脂肪酸変性ロジン類および不飽和脂肪酸変性ロジンエステル類を包含する。)のカルボキシ基を還元処理したロジンアルコール類;例えば、ロジン類または上記の各種ロジン誘導体の金属塩;等が挙げられる。ロジンエステル類の具体例としては、未変性ロジンまたは変性ロジン(水素添加ロジン、不均化ロジン、重合ロジン等)のメチルエステル、トリエチレングリコールエステル、グリセリンエステル、ペンタエリスリトールエステル等が挙げられる。 The rosin derivative resin is typically a derivative of the above rosins. The term "rosin-based resin" as used herein includes derivatives of unmodified rosin and derivatives of modified rosin (including hydrogenated rosin, disproportionated rosin and polymerized rosin). For example, rosin esters such as undenatured rosin esters, which are esters of undenatured rosin and alcohols, and denatured rosin esters, which are esters of denatured rosin and alcohols; for example, unsaturated fatty acid-modified rosins obtained by modifying rosins with unsaturated fatty acids; ), rosin alcohols obtained by reducing the carboxy group of .); Specific examples of rosin esters include methyl esters, triethylene glycol esters, glycerin esters and pentaerythritol esters of unmodified rosins or modified rosins (hydrogenated rosins, disproportionated rosins, polymerized rosins, etc.).
 炭化水素系粘着付与樹脂の例としては、脂肪族系炭化水素樹脂、芳香族系炭化水素樹脂、脂肪族系環状炭化水素樹脂、脂肪族・芳香族系石油樹脂(スチレン-オレフィン系共重合体等)、脂肪族・脂環族系石油樹脂、水素添加炭化水素樹脂、クマロン系樹脂、クマロンインデン系樹脂等の各種の炭化水素系の樹脂が挙げられる。 Examples of hydrocarbon-based tackifying resins include various hydrocarbon-based resins such as aliphatic hydrocarbon resins, aromatic hydrocarbon resins, aliphatic cyclic hydrocarbon resins, aliphatic/aromatic petroleum resins (styrene-olefin copolymers, etc.), aliphatic/alicyclic petroleum resins, hydrogenated hydrocarbon resins, coumarone-based resins, and coumarone-indene-based resins.
 いくつかの好ましい態様として、上記粘着付与樹脂が1種または2種以上のフェノール系粘着付与樹脂(例えばテルペンフェノール樹脂)、ロジン系粘着付与樹脂(重合ロジンエステル等)を含む態様が挙げられる。より好ましくは、上記粘着付与樹脂として、テルペンフェノール樹脂および重合ロジンエステルから選択される1種または2種以上が使用される。テルペンフェノール樹脂および重合ロジンエステルのなかから適当な粘着付与樹脂を選択して用いることにより、接着力と高温保持力とをよりよく両立するなど、優れた粘着特性を得ることができる。 Some preferred embodiments include embodiments in which the tackifier resin contains one or more phenol-based tackifier resins (eg, terpene phenol resins) and rosin-based tackifier resins (polymerized rosin esters, etc.). More preferably, one or more selected from terpene phenol resins and polymerized rosin esters are used as the tackifying resin. By selecting and using an appropriate tackifying resin from terpene phenol resins and polymerized rosin esters, excellent adhesive properties such as better adhesion and high-temperature holding power can be achieved.
 また、上記粘着付与樹脂として、1種または2種以上のフェノール系粘着付与樹脂(例えばテルペンフェノール樹脂)を含む粘着付与樹脂を用いることが特に好ましい。フェノール系粘着付与樹脂は、他の粘着付与樹脂(例えばロジン系粘着付与樹脂)に比べて、ポリエステル系ポリマーとの相溶性に優れる傾向がある。ここに開示される技術は、例えば、粘着付与樹脂の総量の凡そ25重量%以上(より好ましくは凡そ30重量%以上)がテルペンフェノール樹脂である態様で好ましく実施され得る。粘着付与樹脂の総量の凡そ50重量%以上がテルペンフェノール樹脂であってもよく、凡そ80重量%以上(例えば凡そ90重量%以上)がテルペンフェノール樹脂であってもよい。粘着付与樹脂の実質的に全部(例えば凡そ95重量%以上100重量%以下、さらには凡そ99重量%以上100重量%以下)がテルペンフェノール樹脂であってもよい。 In addition, it is particularly preferable to use a tackifying resin containing one or more phenolic tackifying resins (eg, terpene phenolic resin) as the tackifying resin. Phenolic tackifying resins tend to be more compatible with polyester-based polymers than other tackifying resins (for example, rosin-based tackifying resins). The technology disclosed herein can be preferably practiced, for example, in an aspect in which approximately 25% by weight or more (more preferably approximately 30% by weight or more) of the total amount of tackifying resin is a terpene phenolic resin. Approximately 50% by weight or more of the total amount of tackifying resin may be the terpene phenolic resin, and approximately 80% by weight or more (eg, approximately 90% by weight or more) may be the terpene phenolic resin. Substantially all of the tackifying resin (eg, approximately 95% to 100% by weight, or even approximately 99% to 100% by weight) may be a terpene phenolic resin.
 いくつかの態様において、粘着付与樹脂として、分子内に芳香環を有する粘着付与樹脂が好ましく用いられる。芳香環を含む粘着付与樹脂によると、高温保持力が得られやすい。芳香環を有する粘着付与樹脂の好適例としては、フェノール系粘着付与樹脂が挙げられる。なかでも、テルペンフェノール樹脂がより好ましい。ここに開示される技術は、粘着剤層中のポリエステル系ポリマーが芳香環を含み、かつ粘着付与樹脂も芳香環を含む態様で特に好ましく実施される。ポリエステル系ポリマー、粘着付与樹脂ともに、芳香環を含む構造とすることにより、より優れた高温保持力が得られやすい。また、上記ポリエステル系ポリマーと粘着付与樹脂とが、ともに芳香環を有することで、相溶性に優れ、所望の粘着特性を良好に発現させることができる。 In some embodiments, a tackifying resin having an aromatic ring in the molecule is preferably used as the tackifying resin. A tackifying resin containing an aromatic ring tends to provide high-temperature holding power. Preferable examples of tackifying resins having aromatic rings include phenol-based tackifying resins. Among them, terpene phenol resin is more preferable. The technology disclosed herein is particularly preferably carried out in a mode in which the polyester-based polymer in the pressure-sensitive adhesive layer contains an aromatic ring, and the tackifier resin also contains an aromatic ring. Both the polyester-based polymer and the tackifier resin have a structure containing an aromatic ring, so that more excellent high-temperature holding power can be easily obtained. In addition, since both the polyester-based polymer and the tackifying resin have an aromatic ring, they have excellent compatibility and can satisfactorily exhibit desired adhesive properties.
 分子内に芳香環を有する粘着付与樹脂を使用する態様においては、芳香環比率が高い粘着付与樹脂を使用することが好ましい。芳香環としてフェノール構造を有する粘着付与樹脂においては、フェノール比率の高い粘着付与樹脂が好ましく用いられる。芳香環比率(例えばフェノール比率)の高い粘着付与樹脂を使用することにより、より優れた高温保持力が得られやすい。粘着付与樹脂の芳香環比率(例えばフェノール比率)は、例えば10重量%以上であり、高温保持力の観点から、好ましくは15重量%以上、より好ましくは20重量%以上、さらに好ましくは25重量%以上であり、特に好ましくは30重量%以上である。粘着付与樹脂の芳香環比率(例えばフェノール比率)の上限は、例えば65重量%以下であり、接着力等の観点から、50重量%以下であってもよく、40重量%以下でもよく、35重量%以下でもよい。 In the embodiment using a tackifying resin having an aromatic ring in the molecule, it is preferable to use a tackifying resin with a high aromatic ring ratio. In the tackifying resin having a phenol structure as an aromatic ring, a tackifying resin having a high phenol ratio is preferably used. By using a tackifying resin with a high aromatic ring ratio (for example, phenol ratio), more excellent high-temperature holding power is likely to be obtained. The aromatic ring ratio (e.g., phenol ratio) of the tackifying resin is, for example, 10% by weight or more, and from the viewpoint of high temperature holding power, is preferably 15% by weight or more, more preferably 20% by weight or more, still more preferably 25% by weight or more, and particularly preferably 30% by weight or more. The upper limit of the aromatic ring ratio (e.g., phenol ratio) of the tackifying resin is, for example, 65% by weight or less, and from the viewpoint of adhesive strength, etc., it may be 50% by weight or less, 40% by weight or less, or 35% by weight or less.
 本明細書において、粘着付与樹脂の芳香環比率(例えばフェノール比率)とは、核磁気共鳴(NMR)装置によって測定したH-NMRスペクトルにより算出される芳香環比率(例えばフェノール比率)をいう。例えば、粘着付与樹脂が以下に示す化学構造を有する場合、H-NMRスペクトルにおいて、化学シフトが7.5~6.3ppmの間にあるピークはフェノール骨格由来であり、5.6~0.1ppmの間にあるピークはピネン骨格由来であると考えられる。
Figure JPOXMLDOC01-appb-C000001
 前者ピークの積分値合計をA、後者ピークの積分値合計をBとした場合、それらを各骨格の繰返し単位中に含まれるH数で割ることで、粘着付与樹脂中のフェノール骨格とピネン骨格のモル比率を算出することができる。
 モル比率[フェノール骨格:ピネン骨格]=[A/3:B/16]
 次に算出したモル比率に、フェノール(分子量94.1)およびピネン(分子量136.2)の分子量をそれぞれ掛けることで、粘着付与樹脂中のフェノール骨格とピネン骨格の重量比率を算出することができる。
 重量比率[フェノール骨格:ピネン骨格]=[(A/3)×94.1:(B/16)×136.2]
 そして、求められたフェノール骨格の重量比率をa、ピネン骨格の重量比率をbとした場合、以下の式により、上記粘着付与樹脂の芳香環比率(フェノール比率)を算出することができる。
 芳香環比率(%)=100×(a/(a+b))
 NMR装置としては、例えば機種名「AVANCE III-400」(Bruker Biospin製)を用いることができる。H-NMRスペクトル測定は、より具体的には、以下の条件で行うことができる。後述の実施例においても同様の方法で測定される。
 [H-NMR測定]
 観測周波数:400MHz
 測定温度:23℃
 測定溶媒:1,1,2,2-テトラクロルエタン-d(TCE-d
 測定濃度:33mg/mL
As used herein, the aromatic ring ratio (eg, phenol ratio) of the tackifier resin refers to the aromatic ring ratio (eg, phenol ratio) calculated from 1 H-NMR spectrum measured by a nuclear magnetic resonance (NMR) apparatus. For example, when the tackifying resin has the chemical structure shown below, in the 1 H-NMR spectrum, the peaks with chemical shifts between 7.5 and 6.3 ppm are derived from the phenol skeleton, and the peaks between 5.6 and 0.1 ppm are considered to be derived from the pinene skeleton.
Figure JPOXMLDOC01-appb-C000001
When the total integral value of the former peak is A and the total integral value of the latter peak is B, by dividing them by the number of H contained in the repeating unit of each skeleton, the molar ratio of the phenol skeleton and the pinene skeleton in the tackifying resin can be calculated.
Molar ratio [phenol skeleton: pinene skeleton] = [A/3:B/16]
Next, by multiplying the calculated molar ratio by the respective molecular weights of phenol (molecular weight 94.1) and pinene (molecular weight 136.2), the weight ratio of the phenol skeleton and the pinene skeleton in the tackifying resin can be calculated.
Weight ratio [phenol skeleton: pinene skeleton] = [(A/3) × 94.1: (B/16) × 136.2]
Then, when the obtained weight ratio of the phenol skeleton is a and the weight ratio of the pinene skeleton is b, the aromatic ring ratio (phenol ratio) of the tackifier resin can be calculated by the following formula.
Aromatic ring ratio (%) = 100 x (a/(a+b))
As the NMR apparatus, for example, model name "AVANCE III-400" (manufactured by Bruker Biospin) can be used. More specifically, 1 H-NMR spectrum measurement can be performed under the following conditions. It is measured by the same method in the examples described later.
[ 1 H-NMR measurement]
Observation frequency: 400MHz
Measurement temperature: 23°C
Measurement solvent: 1,1,2,2-tetrachloroethane-d 2 (TCE-d 2 )
Measured concentration: 33 mg/mL
 いくつかの態様において、上記粘着付与樹脂としては、粘着剤層全体のバイオ率向上の観点から、植物に由来する粘着付与樹脂(植物性粘着付与樹脂)が好ましく用いられる。植物性粘着付与樹脂は、樹脂の少なくとも一部が植物に由来する成分から構成されており、樹脂のすべてが植物由来であってもよく、樹脂の一部が植物由来であり、他の一部が化石資源由来であってもよい。植物性粘着付与樹脂の例としては、上述のロジン系粘着付与樹脂、テルペン系粘着付与樹脂、テルペンフェノール樹脂、水素添加テルペンフェノール樹脂、ロジンフェノール樹脂等が挙げられる。植物性粘着付与樹脂は、1種を単独でまたは2種以上を組み合わせて用いることができる。いくつかの態様において、粘着剤層に含まれる粘着付与樹脂の総量に占める植物性粘着付与樹脂の割合は、30重量%以上(例えば50重量%以上、典型的には80重量%以上)であってもよく、粘着付与樹脂の総量に占める植物性粘着付与樹脂の割合は、90重量%以上(例えば95重量%以上、典型的には99~100重量%)でもよい。ここに開示される技術は、植物性粘着付与樹脂以外の粘着付与樹脂を実質的に含まない態様で実施され得る。 In some embodiments, a plant-derived tackifying resin (vegetable tackifying resin) is preferably used as the tackifying resin from the viewpoint of improving the bio rate of the entire pressure-sensitive adhesive layer. The vegetable tackifying resin is composed of at least a part of the resin derived from a plant, and the entire resin may be derived from a plant, a part of the resin may be derived from a plant, and the other part may be derived from fossil resources. Examples of vegetable tackifying resins include the above-described rosin-based tackifying resins, terpene-based tackifying resins, terpene phenolic resins, hydrogenated terpene phenolic resins, rosin phenolic resins, and the like. Vegetable tackifying resins can be used singly or in combination of two or more. In some embodiments, the proportion of the vegetable tackifying resin in the total amount of the tackifying resin contained in the pressure-sensitive adhesive layer may be 30% by weight or more (e.g., 50% by weight or more, typically 80% by weight or more), and the proportion of the vegetable tackifying resin in the total amount of the tackifying resin may be 90% by weight or more (e.g., 95% by weight or more, typically 99 to 100% by weight). The technology disclosed herein can be practiced in a manner substantially free of tackifying resins other than vegetable tackifying resins.
 粘着付与樹脂の軟化点は特に限定されない。凝集力向上の観点から、いくつかの態様において、粘着付与樹脂の軟化点(軟化温度)は、凡そ50℃以上であることが適当であり、軟化点(軟化温度)が凡そ80℃以上(好ましくは凡そ100℃以上、例えば凡そ115℃以上)である粘着付与樹脂を好ましく採用し得る。他のいくつかの態様において、用いられる粘着付与樹脂の軟化点は、凡そ120℃以上(例えば135℃以上または145℃以上)であってもよい。ここに開示される技術は、上記軟化点を有する粘着付与樹脂が、粘着剤層に含まれる粘着付与樹脂全体のうち50重量%超(より好ましくは70重量%超、例えば90重量%超)である態様で好ましく実施され得る。例えば、このような軟化点を有するフェノール系粘着付与樹脂(テルペンフェノール樹脂等)やロジン系粘着付与樹脂(重合ロジンエステル等)を好ましく用いることができる。いくつかの好ましい態様において、軟化点が凡そ120℃以上(より好ましくは135℃以上、例えば145℃以上)のテルペンフェノール樹脂を用いることができる。粘着付与樹脂の軟化点の上限は特に制限されない。接着力等の観点から、いくつかの態様において、軟化点が凡そ200℃以下(より好ましくは凡そ180℃以下、さらに好ましくは160℃未満、例えば155℃以下または150℃以下)の粘着付与樹脂を好ましく使用し得る。なお、粘着付与樹脂の軟化点は、JIS K2207に規定する軟化点試験方法(環球法)に基づいて測定することができる。 The softening point of the tackifying resin is not particularly limited. From the viewpoint of improving the cohesive strength, in some aspects, the softening point (softening temperature) of the tackifying resin is suitably about 50° C. or higher, and a tackifying resin having a softening point (softening temperature) of about 80° C. or higher (preferably about 100° C. or higher, for example about 115° C. or higher) can be preferably used. In some other embodiments, the softening point of the tackifying resin used may be on the order of 120° C. or higher (eg, 135° C. or higher or 145° C. or higher). The technology disclosed herein can be preferably carried out in a mode in which the tackifying resin having the softening point accounts for more than 50% by weight (more preferably more than 70% by weight, for example more than 90% by weight) of the total tackifying resin contained in the pressure-sensitive adhesive layer. For example, a phenol-based tackifier resin (terpene phenol resin, etc.) or a rosin-based tackifier resin (polymerized rosin ester, etc.) having such a softening point can be preferably used. In some preferred embodiments, a terpene phenol resin having a softening point of approximately 120° C. or higher (more preferably 135° C. or higher, such as 145° C. or higher) can be used. There is no particular upper limit for the softening point of the tackifying resin. From the viewpoint of adhesion and the like, in some embodiments, a tackifying resin having a softening point of approximately 200° C. or less (more preferably approximately 180° C. or less, still more preferably less than 160° C., for example, 155° C. or less or 150° C. or less) can be preferably used. The softening point of the tackifying resin can be measured based on the softening point test method (ring and ball method) specified in JIS K2207.
 特に限定されるものではないが、粘着付与樹脂としては、酸価が所定値以下に制限されたものが好ましく用いられる。酸価の低い粘着付与樹脂は、粘着剤形成時の架橋反応を阻害しないため好ましい。また、酸価が所定値以下に制限された粘着付与樹脂を含む粘着剤は、耐久性に優れる傾向がある。そのような観点から、粘着付与樹脂の酸価は、凡そ20mgKOH/g以下であることが適当であり、好ましくは10mgKOH/g未満、より好ましくは7mgKOH/g以下、さらに好ましくは4mgKOH/g以下(例えば0~4mgKOH/g)であり、3mgKOH/g未満(例えば1mgKOH/g未満)であってもよい。なお、粘着付与樹脂の酸価は、JIS K 0070:1992に規定する電位差滴定法により測定することができる。 Although not particularly limited, as the tackifying resin, one having an acid value limited to a predetermined value or less is preferably used. A tackifier resin having a low acid value is preferred because it does not inhibit the cross-linking reaction during the formation of the pressure-sensitive adhesive. Moreover, a pressure-sensitive adhesive containing a tackifying resin whose acid value is limited to a predetermined value or less tends to be excellent in durability. From such a viewpoint, the acid value of the tackifying resin is suitably about 20 mgKOH/g or less, preferably less than 10 mgKOH/g, more preferably 7 mgKOH/g or less, still more preferably 4 mgKOH/g or less (eg 0 to 4 mgKOH/g), and may be less than 3 mgKOH/g (eg less than 1 mgKOH/g). The acid value of the tackifying resin can be measured by the potentiometric titration method specified in JIS K 0070:1992.
 ここに開示される技術において、粘着付与樹脂は、ポリエステル系ポリマー100重量部に対して20重量部以上の割合で用いられる。上記の量で粘着付与樹脂を使用することにより、所望の粘着特性を好ましく実現することができる。いくつかの好ましい態様において、ポリエステル系ポリマー100重量部に対する粘着付与樹脂の含有量は凡そ25重量部以上であり、より好ましくは凡そ30重量部以上であり、さらに好ましくは凡そ35重量部以上であり、凡そ40重量部以上であってもよい。粘着付与樹脂の使用量が多くなるほど、優れた接着力が得られやすい傾向がある。粘着付与樹脂の含有量の上限は特に限定されず、ポリエステル系ポリマーとの相溶性や接着性の観点から、いくつかの態様において、通常、ポリエステル系ポリマー100重量部に対する粘着付与樹脂の含有量は、凡そ120重量部以下とすることが適当であり、100重量部未満とすることが好ましく、凡そ80重量部以下とすることがより好ましく、凡そ60重量部以下(例えば凡そ50重量部以下)とすることがさらに好ましい。粘着付与樹脂の含有量を所定の範囲で制限することにより、粘着付与樹脂の添加効果を効果的に得つつ、粘着剤組成物を適度な粘度範囲に保持しやすい。 In the technology disclosed here, the tackifying resin is used at a ratio of 20 parts by weight or more with respect to 100 parts by weight of the polyester polymer. By using the tackifying resin in the above amounts, the desired tack properties can preferably be achieved. In some preferred embodiments, the content of the tackifying resin relative to 100 parts by weight of the polyester polymer is about 25 parts by weight or more, more preferably about 30 parts by weight or more, even more preferably about 35 parts by weight or more, and may be about 40 parts by weight or more. There is a tendency that the greater the amount of tackifying resin used, the easier it is to obtain excellent adhesive strength. The upper limit of the content of the tackifying resin is not particularly limited, and in some embodiments, the content of the tackifying resin with respect to 100 parts by weight of the polyester polymer is usually about 120 parts by weight or less, preferably less than 100 parts by weight, more preferably about 80 parts by weight or less, and even more preferably about 60 parts by weight or less (e.g., about 50 parts by weight or less). By limiting the content of the tackifying resin within a predetermined range, it is possible to effectively obtain the effect of adding the tackifying resin and easily maintain the pressure-sensitive adhesive composition within an appropriate viscosity range.
 (架橋剤)
 ここに開示される粘着剤組成物は架橋剤を含有する。上記粘着剤組成物を用いて形成される粘着剤層は、上記架橋剤を、架橋反応後の形態、架橋反応前の形態、部分的に架橋反応した形態、これらの中間的または複合的な形態等で含有し得る。上記架橋剤は、通常、専ら架橋反応後の形態で粘着剤層に含まれている。なお、ポリエステル系ポリマーの架橋に用いられる架橋剤は、鎖延長剤としても機能するものであり得る。
(crosslinking agent)
The adhesive composition disclosed herein contains a cross-linking agent. The pressure-sensitive adhesive layer formed using the pressure-sensitive adhesive composition may contain the cross-linking agent in the form after the cross-linking reaction, the form before the cross-linking reaction, the form in which the cross-linking reaction is partially performed, the intermediate or composite form thereof, or the like. The above-mentioned cross-linking agent is usually contained in the pressure-sensitive adhesive layer exclusively in the form after the cross-linking reaction. The cross-linking agent used for cross-linking the polyester polymer may also function as a chain extender.
 架橋剤の種類は特に制限されず、従来公知の架橋剤から適宜選択して用いることができる。そのような架橋剤としては、例えば、イソシアネート系架橋剤、エポキシ系架橋剤、オキサゾリン系架橋剤、アジリジン系架橋剤、メラミン系架橋剤、金属キレート系架橋剤等が挙げられる。架橋剤は、1種を単独でまたは2種以上を組み合わせて用いることができる。なかでも、イソシアネート系架橋剤が好ましい。 The type of cross-linking agent is not particularly limited, and can be appropriately selected and used from conventionally known cross-linking agents. Examples of such cross-linking agents include isocyanate-based cross-linking agents, epoxy-based cross-linking agents, oxazoline-based cross-linking agents, aziridine-based cross-linking agents, melamine-based cross-linking agents, and metal chelate-based cross-linking agents. A crosslinking agent can be used individually by 1 type or in combination of 2 or more types. Among them, an isocyanate-based cross-linking agent is preferable.
 イソシアネート系架橋剤としては、多官能イソシアネート系化合物(1分子当たり平均2個以上のイソシアネート基を有する化合物をいい、イソシアヌレート構造を有するものを包含する。)が好ましく使用され得る。イソシアネート系架橋剤は、1種を単独でまたは2種以上を組み合わせて用いることができる。 As the isocyanate-based cross-linking agent, polyfunctional isocyanate-based compounds (compounds having an average of two or more isocyanate groups per molecule, including those having an isocyanurate structure) can be preferably used. The isocyanate-based cross-linking agents may be used singly or in combination of two or more.
 多官能イソシアネート系化合物の例として、脂肪族ポリイソシアネート系化合物、脂環族ポリイソシアネート系化合物、芳香族ポリイソシアネート系化合物等が挙げられる。
 脂肪族ポリイソシアネート系化合物の具体例としては、1,2-エチレンジイソシアネート;1,2-テトラメチレンジイソシアネート、1,3-テトラメチレンジイソシアネート、1,4-テトラメチレンジイソシアネート等のテトラメチレンジイソシアネート;1,2-ヘキサメチレンジイソシアネート、1,3-ヘキサメチレンジイソシアネート、1,4-ヘキサメチレンジイソシアネート、1,5-ヘキサメチレンジイソシアネート、1,6-ヘキサメチレンジイソシアネート、2,5-ヘキサメチレンジイソシアネート等のヘキサメチレンジイソシアネート;2-メチル-1,5-ペンタンジイソシアネート、3-メチル-1,5-ペンタンジイソシアネート、リジンジイソシアネート、等が挙げられる。
Examples of polyfunctional isocyanate compounds include aliphatic polyisocyanate compounds, alicyclic polyisocyanate compounds, and aromatic polyisocyanate compounds.
Specific examples of aliphatic polyisocyanate compounds include 1,2-ethylene diisocyanate; tetramethylene diisocyanates such as 1,2-tetramethylene diisocyanate, 1,3-tetramethylene diisocyanate and 1,4-tetramethylene diisocyanate; methylene diisocyanate; 2-methyl-1,5-pentane diisocyanate, 3-methyl-1,5-pentane diisocyanate, lysine diisocyanate, and the like.
 脂環族ポリイソシアネート系化合物の具体例としては、イソホロンジイソシアネート;1,2-シクロヘキシルジイソシアネート、1,3-シクロヘキシルジイソシアネート、1,4-シクロヘキシルジイソシアネート等のシクロヘキシルジイソシアネート;1,2-シクロペンチルジイソシアネート、1,3-シクロペンチルジイソシアネート等のシクロペンチルジイソシアネート;水素添加キシリレンジイソシアネート、水素添加トリレンジイソシアネート、水素添加ジフェニルメタンジイソシアネート、水素添加テトラメチルキシレンジイソシアネート、4,4’-ジシクロヘキシルメタンジイソシアネート、等が挙げられる。 Specific examples of alicyclic polyisocyanate compounds include isophorone diisocyanate; cyclohexyl diisocyanates such as 1,2-cyclohexyl diisocyanate, 1,3-cyclohexyl diisocyanate and 1,4-cyclohexyl diisocyanate; cyclopentyl diisocyanates such as 1,2-cyclopentyl diisocyanate and 1,3-cyclopentyl diisocyanate; hydrogenated tetramethylxylene diisocyanate, 4,4'-dicyclohexylmethane diisocyanate, and the like.
 芳香族ポリイソシアネート系化合物の具体例としては、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、4,4’-ジフェニルメタンジイソシアネート、2,4’-ジフェニルメタンジイソシアネート、2,2’-ジフェニルメタンジイソシアネート、4,4’-ジフェニルエーテルジイソシアネート、2-ニトロジフェニル-4,4’-ジイソシアネート、2,2’-ジフェニルプロパン-4,4’-ジイソシアネート、3,3’-ジメチルジフェニルメタン-4,4’-ジイソシアネート、4,4’-ジフェニルプロパンジイソシアネート、m-フェニレンジイソシアネート、p-フェニレンジイソシアネート、ナフチレン-1,4-ジイソシアネート、ナフチレン-1,5-ジイソシアネート、3,3’-ジメトキシジフェニル-4,4’-ジイソシアネート、キシリレン-1,4-ジイソシアネート、キシリレン-1,3-ジイソシアネート等が挙げられる。 Specific examples of aromatic polyisocyanate compounds include 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, 4,4'-diphenylmethane diisocyanate, 2,4'-diphenylmethane diisocyanate, 2,2'-diphenylmethane diisocyanate, 4,4'-diphenyl ether diisocyanate, 2-nitrodiphenyl-4,4'-diisocyanate, 2,2'-diphenylpropane-4,4'-diisocyanate, 3,3'-dimethyl diisocyanate, Phenylmethane-4,4'-diisocyanate, 4,4'-diphenylpropane diisocyanate, m-phenylene diisocyanate, p-phenylene diisocyanate, naphthylene-1,4-diisocyanate, naphthylene-1,5-diisocyanate, 3,3'-dimethoxydiphenyl-4,4'-diisocyanate, xylylene-1,4-diisocyanate, xylylene-1,3-diisocyanate and the like.
 多官能イソシアネートとしては、1分子当たり平均して2個または3個以上のイソシアネート基を有する多官能イソシアネート系化合物が例示される。かかる多官能イソシアネート系化合物は、2官能または3官能以上のイソシアネートの多量体(例えば、2量体または3量体)、誘導体(例えば、多価アルコールと2分子以上の多官能イソシアネートとの付加反応生成物)、重合物等であり得る。例えば、ジフェニルメタンジイソシアネートの2量体や3量体、ヘキサメチレンジイソシアネートのイソシアヌレート体(イソシアヌレート構造の3量体付加物)、トリメチロールプロパンとトリレンジイソシアネートとの反応生成物、トリメチロールプロパンとヘキサメチレンジイソシアネートとの反応生成物、ポリメチレンポリフェニルイソシアネート、ポリエーテルポリイソシアネート、ポリエステルポリイソシアネート、等の多官能イソシアネート系化合物が挙げられる。かかる多官能イソシアネート系化合物の市販品としては、旭化成ケミカルズ社製の商品名「デュラネートTPA-100」、同「デュラネートD101」、東ソー社製の商品名「コロネートL」、同「コロネートHL」、同「コロネートHK」、同「コロネートHX」、同「コロネート2096」等が挙げられる。 Examples of polyfunctional isocyanates include polyfunctional isocyanate compounds having an average of 2 or 3 or more isocyanate groups per molecule. Such polyfunctional isocyanate compounds may be difunctional or trifunctional or higher functional isocyanate polymers (e.g., dimers or trimers), derivatives (e.g., addition reaction products of polyhydric alcohols and polyfunctional isocyanates having two or more molecules), polymers, and the like. Examples thereof include dimers and trimers of diphenylmethane diisocyanate, isocyanurate of hexamethylene diisocyanate (trimer adduct of isocyanurate structure), reaction products of trimethylolpropane and tolylene diisocyanate, reaction products of trimethylolpropane and hexamethylene diisocyanate, and polyfunctional isocyanate compounds such as polymethylene polyphenyl isocyanate, polyether polyisocyanate, and polyester polyisocyanate. Commercially available products of such polyfunctional isocyanate compounds include trade names "Duranate TPA-100" and "Duranate D101" manufactured by Asahi Kasei Chemicals, trade names "Coronate L", "Coronate HL", "Coronate HK", "Coronate HX", and "Coronate 2096" manufactured by Tosoh Corporation.
 架橋剤としては、芳香環を有しない架橋剤が好ましく用いられる。例えば、上述したイソシアネート系架橋剤のなかでは、芳香環を有しないイソシアネート系化合物の使用が好ましい。架橋剤として、芳香環非含有イソシアネート系化合物を用いることにより、ポリエステル系ポリマーと粘着付与樹脂とを含有する粘着剤組成物において、架橋阻害少なく効果的に架橋度を高めることができる。上記芳香環非含有イソシアネートの典型例としては、脂肪族イソシアネート系化合物が挙げられる。特に好ましい態様として、ポリエステル系ポリマーおよび粘着付与樹脂がともに芳香環を有する構成に、架橋剤として、芳香環非含有イソシアネート系化合物(典型的には脂肪族イソシアネート系化合物)を用いる態様が挙げられる。 A cross-linking agent having no aromatic ring is preferably used as the cross-linking agent. For example, among the isocyanate-based cross-linking agents described above, it is preferable to use an isocyanate-based compound having no aromatic ring. By using an aromatic ring-free isocyanate compound as a cross-linking agent, it is possible to effectively increase the degree of cross-linking with less hindrance to cross-linking in the pressure-sensitive adhesive composition containing the polyester-based polymer and the tackifying resin. Typical examples of the aromatic ring-free isocyanates include aliphatic isocyanate compounds. A particularly preferred embodiment includes an embodiment in which an aromatic ring-free isocyanate compound (typically an aliphatic isocyanate compound) is used as a cross-linking agent in a configuration in which both the polyester polymer and the tackifying resin have aromatic rings.
 いくつかの態様において、官能基数の異なる2種以上の架橋剤(好適にはイソシアネート系架橋剤)を使用してもよい。官能基数の異なる架橋剤を2種以上用いることにより、複数の特性(例えば接着力や高温保持力等)をバランスよく両立しやすい。なお、上記官能基とは架橋反応性基のことをいい、例えば、上述の多官能イソシアネート系化合物においては、イソシアネート基を指す。いくつかの態様において、架橋剤として、1種または2種以上の2官能架橋剤と、1種または2種以上の3官能以上の架橋剤(例えば3官能架橋剤)とが併用される。2官能タイプと3官能以上タイプとを併用することにより、接着力と高温保持力とを両立しやすい。2官能架橋剤、3官能以上の架橋剤としては、上記各種の架橋剤のなかから、2官能のもの、3官能以上のものを特に制限なく利用できる。いくつかの好ましい態様において、2官能架橋剤、3官能以上の架橋剤として、イソシアネート系化合物が好ましく用いられる。 In some embodiments, two or more cross-linking agents having different numbers of functional groups (preferably isocyanate-based cross-linking agents) may be used. By using two or more types of cross-linking agents having different numbers of functional groups, it is easy to achieve both a plurality of properties (for example, adhesive strength, high-temperature holding power, etc.) in a well-balanced manner. In addition, the functional group refers to a cross-linking reactive group, and for example, refers to an isocyanate group in the polyfunctional isocyanate compound described above. In some embodiments, one or more bifunctional cross-linking agents and one or more tri- or more tri-functional cross-linking agents (eg, tri-functional cross-linking agents) are used in combination as cross-linking agents. By using a bifunctional type and a trifunctional or more functional type together, it is easy to achieve both adhesive strength and high-temperature holding power. As the bifunctional cross-linking agent and tri- or higher functional cross-linking agent, bi-functional cross-linking agents and tri- or higher functional cross-linking agents can be used without particular limitation. In some preferred embodiments, isocyanate compounds are preferably used as the bifunctional cross-linking agent and the tri- or higher functional cross-linking agent.
 架橋剤として2官能架橋剤を使用する態様において、2官能架橋剤の使用量は特に限定されず、例えば、ポリエステル系ポリマー100重量部に対する2官能架橋剤の使用量は、2官能架橋剤の使用効果を得る観点から、凡そ0.01重量部以上とすることが適当であり、好ましくは凡そ0.1重量部以上、より好ましくは凡そ0.5重量部以上、さらに好ましくは凡そ0.8重量部以上であり、凡そ1.5重量部以上であってもよく、凡そ3重量部以上でもよい。また、ポリエステル系ポリマー100重量部に対する2官能架橋剤の使用量は、通常、凡そ10重量部以下が適当であり、凡そ7重量部以下が好ましく、4重量部以下であってもよい。 In embodiments where a bifunctional cross-linking agent is used as the cross-linking agent, the amount of the bi-functional cross-linking agent used is not particularly limited. For example, the amount of the bi-functional cross-linking agent used relative to 100 parts by weight of the polyester polymer is suitably about 0.01 parts by weight or more, preferably about 0.1 parts by weight or more, more preferably about 0.5 parts by weight or more, even more preferably about 0.8 parts by weight or more, and may be about 1.5 parts by weight or more. , about 3 parts by weight or more. Also, the amount of the bifunctional cross-linking agent to be used relative to 100 parts by weight of the polyester polymer is usually about 10 parts by weight or less, preferably about 7 parts by weight or less, and may be 4 parts by weight or less.
 架橋剤として3官能以上の架橋剤を使用する態様において、3官能以上の架橋剤の使用量は特に限定されず、例えば、ポリエステル系ポリマー100重量部に対する3官能以上の架橋剤の使用量は、3官能以上の架橋剤の使用効果を得る観点から、凡そ0.01重量部以上とすることが適当であり、好ましくは凡そ0.1重量部以上、より好ましくは凡そ0.5重量部以上であり、凡そ1重量部以上であってもよい。3官能以上の架橋剤を適当量使用することにより、凝集力が高まり、優れた特性(接着力、高温保持力等)が得られやすい。また、ポリエステル系ポリマー100重量部に対する3官能以上の架橋剤の使用量は、通常、凡そ8重量部以下が適当であり、凡そ5重量部以下が好ましく、凡そ4重量部以下であってもよく、凡そ3重量部以下でもよく、2重量部以下でもよい。 In embodiments in which a tri- or higher-functional cross-linking agent is used as the cross-linking agent, the amount of the tri- or higher-functional cross-linking agent used is not particularly limited. For example, the amount of the tri- or higher-functional cross-linking agent used relative to 100 parts by weight of the polyester polymer is appropriately about 0.01 part by weight or more, preferably about 0.1 part by weight or more, more preferably about 0.5 part by weight or more, and may be about 1 part by weight or more, from the viewpoint of obtaining the effect of using the tri- or more functional cross-linking agent. By using an appropriate amount of a tri- or higher functional cross-linking agent, the cohesive force is increased, and excellent properties (adhesive force, high-temperature holding power, etc.) can be easily obtained. In addition, the amount of the trifunctional or higher cross-linking agent used relative to 100 parts by weight of the polyester polymer is usually appropriately about 8 parts by weight or less, preferably about 5 parts by weight or less, about 4 parts by weight or less, may be about 3 parts by weight or less, or may be 2 parts by weight or less.
 2官能架橋剤と3官能以上の架橋剤とを併用する態様において、2官能架橋剤と3官能以上の架橋剤との使用割合は、目的とする複数の粘着特性(接着力、高温保持力等)がバランスよく実現されるよう適切に設定され、特定の範囲に限定されない。2官能架橋剤の量Cに対する3官能以上の架橋剤の量Cの重量比(C/C)は、例えば0.1以上であり、凝集力向上の観点から、0.2以上が適当であり、また、上記比(C/C)は、例えば10以下であり、7以下が好ましく、5以下がより好ましく、2以下であってもよく、1以下でもよく、0.5以下でもよい。 In the embodiment in which a bifunctional cross-linking agent and a tri- or more functional cross-linking agent are used in combination, the ratio of the bi-functional cross-linking agent and the tri- or more functional cross-linking agent is appropriately set so that the desired multiple adhesive properties (adhesive strength, high temperature holding power, etc.) are achieved in a well-balanced manner, and is not limited to a specific range. The weight ratio (C B /C A ) of the amount C B of the tri- or higher-functional cross-linking agent to the amount C A of the bi-functional cross-linking agent is , for example, 0.1 or more, and from the viewpoint of improving the cohesive strength, it is suitably 0.2 or more.
 架橋剤の使用量は特に限定されず、例えば、ポリエステル系ポリマー100重量部に対する架橋剤の使用量は、凡そ0.005重量部以上(例えば0.01重量部以上、典型的には0.1重量部以上)程度とすることができる。凝集力を向上する観点から、ポリエステル系ポリマー100重量部に対する架橋剤の使用量は、通常、凡そ0.5重量部以上とすることが適当であり、好ましくは凡そ1重量部以上、より好ましくは凡そ2重量部以上(例えば2重量部超)、さらに好ましくは2.5重量部以上である。ここに開示される技術によると、塗工性のために粘着剤組成物を過度に高濃度化する必要がないので、架橋剤を増量しても、粘着剤層形成前においては、粘着剤組成物は良好な保存安定性を有することができる。また、ポリエステル系ポリマー100重量部に対する架橋剤の使用量は、通常、凡そ12重量部以下であり、例えば凡そ10重量部以下であり、凡そ8重量部以下とすることが適当であり、凡そ5重量部以下とすることが好ましい。ここに開示される技術によると、上記のように制限された架橋剤使用量で、高温保持力を好ましく発揮する凝集力を得ることができる。ポリエステル系ポリマー100重量部に対する架橋剤の使用量は、より好ましくは4重量部以下、さらに好ましくは凡そ3.5重量部以下である。 The amount of the cross-linking agent used is not particularly limited. For example, the amount of the cross-linking agent used relative to 100 parts by weight of the polyester polymer can be about 0.005 parts by weight or more (for example, 0.01 parts by weight or more, typically 0.1 parts by weight or more). From the viewpoint of improving the cohesive strength, the amount of the cross-linking agent to be used relative to 100 parts by weight of the polyester polymer is usually appropriately about 0.5 parts by weight or more, preferably about 1 part by weight or more, more preferably about 2 parts by weight or more (for example, more than 2 parts by weight), and still more preferably 2.5 parts by weight or more. According to the technique disclosed herein, the pressure-sensitive adhesive composition does not need to be excessively concentrated for coatability, so even if the amount of the cross-linking agent is increased, the pressure-sensitive adhesive composition can have good storage stability before forming the pressure-sensitive adhesive layer. In addition, the amount of the cross-linking agent used relative to 100 parts by weight of the polyester polymer is usually about 12 parts by weight or less, for example about 10 parts by weight or less, suitably about 8 parts by weight or less, and about 5 parts by weight or less. According to the technology disclosed herein, it is possible to obtain a cohesive force that preferably exhibits high-temperature holding power with the use amount of the cross-linking agent being limited as described above. The amount of the cross-linking agent to be used is more preferably 4 parts by weight or less, more preferably about 3.5 parts by weight or less based on 100 parts by weight of the polyester polymer.
 イソシアネート系架橋剤を使用する態様において、その使用量は特に限定されない。イソシアネート系架橋剤の使用量は、例えば、ポリエステル系ポリマー100重量部に対して、凡そ0.5重量部以上凡そ10重量部以下とすることができる。凝集力を向上する観点から、ポリエステル系ポリマー100重量部に対するイソシアネート系架橋剤の使用量は、通常、凡そ1重量部以上とすることが適当であり、好ましくは凡そ2重量部以上(例えば2重量部超)、より好ましくは凡そ2.5重量部以上、さらに好ましくは2.8重量部以上であり、凡そ3.5重量部以上であってもよく、凡そ4.0重量部以上でもよく、4.5重量部以上でもよい。ここに開示される技術によると、塗工性のために粘着剤組成物を過度に高濃度化する必要がないので、イソシアネート系架橋剤を増量しても、粘着剤層形成前においては、粘着剤組成物は良好な保存安定性を有することができる。また、ポリエステル系ポリマー100重量部に対するイソシアネート系架橋剤の使用量は、通常、凡そ8重量部以下とすることが適当であり、凡そ5重量部以下とすることが好ましい。ここに開示される技術によると、上記のように制限されたイソシアネート系架橋剤の使用量で、高温保持力を好ましく発揮する凝集力を得ることができる。ポリエステル系ポリマー100重量部に対するイソシアネート系架橋剤の使用量は、より好ましくは4.5重量部以下、さらに好ましくは凡そ4.2重量部以下、特に好ましくは3.8重量部以下(例えば3.5重量部以下)であり、3.2重量部以下程度であってもよい。 In embodiments using an isocyanate-based cross-linking agent, the amount used is not particularly limited. The amount of the isocyanate-based cross-linking agent used can be, for example, about 0.5 parts by weight or more and about 10 parts by weight or less with respect to 100 parts by weight of the polyester polymer. From the viewpoint of improving the cohesive force, the amount of the isocyanate-based cross-linking agent used relative to 100 parts by weight of the polyester polymer is usually appropriately about 1 part by weight or more, preferably about 2 parts by weight or more (e.g., more than 2 parts by weight), more preferably about 2.5 parts by weight or more, still more preferably 2.8 parts by weight or more, may be about 3.5 parts by weight or more, may be about 4.0 parts by weight or more, or may be 4.5 parts by weight or more. According to the technique disclosed herein, it is not necessary to increase the concentration of the PSA composition excessively for coatability. Therefore, even if the amount of the isocyanate-based cross-linking agent is increased, the PSA composition can have good storage stability before the formation of the PSA layer. The amount of the isocyanate cross-linking agent to be used for 100 parts by weight of the polyester polymer is usually about 8 parts by weight or less, preferably about 5 parts by weight or less. According to the technique disclosed herein, it is possible to obtain a cohesive force that preferably exhibits high-temperature holding power with the use amount of the isocyanate-based cross-linking agent limited as described above. The amount of the isocyanate cross-linking agent used relative to 100 parts by weight of the polyester polymer is more preferably 4.5 parts by weight or less, more preferably about 4.2 parts by weight or less, and particularly preferably 3.8 parts by weight or less (e.g. 3.5 parts by weight or less), and may be about 3.2 parts by weight or less.
 (架橋触媒)
 ここに開示される技術においては、架橋反応をより効果的に進行させるために、上記架橋剤に加えて、架橋触媒を用いることが好ましい。架橋触媒としては、ジルコニウムテトラアセチルアセトネート、ジルコニウムモノアセチルアセトネート、ジルコニウムエチルアセトアセテート、オクチル酸ジルコニウム化合物等のジルコニウム含有化合物(ジルコニウム系触媒);ジラウリン酸ジオクチルスズ、ジラウリン酸ジブチルスズ、二酢酸ジブチルスズ、ジブチルスズジアセチルアセトナート、テトラ-n-ブチルスズ、トリメチルスズヒドロキシド、ブチルスズオキシド等のスズ(Sn)含有化合物(スズ系触媒);アルミニウムセカンダリーブトキシド、アルミニウムトリスアセチルアセトネート、アルミニウムビスエチルアセトアセテート、アルミニウムトリスエチルアセトアセテート等のアルミニウム含有化合物(アルミニウム系触媒);ナーセム第二鉄等の鉄含有化合物(鉄系触媒);テトライソプロピルチタネート、テトラ-n-ブチルチタネート、ブチルチタネートダイマー、テトラオクチルチタネート、チタンアセチルアセトネート、チタンテトラアセチルアセトネート、チタンエチルアセトアセテート等のチタン含有化合物(チタン系触媒);等の有機金属触媒が挙げられる。架橋触媒は1種を単独でまたは2種以上を組み合わせて用いることができる。
(crosslinking catalyst)
In the technology disclosed herein, it is preferable to use a cross-linking catalyst in addition to the above-described cross-linking agent in order to promote the cross-linking reaction more effectively. Examples of crosslinking catalysts include zirconium-containing compounds (zirconium-based catalysts) such as zirconium tetraacetylacetonate, zirconium monoacetylacetonate, zirconium ethylacetoacetate, and zirconium octylate compounds; Aluminum-containing compounds (aluminum-based catalysts) such as aluminum secondary butoxide, aluminum trisacetylacetonate, aluminum bisethylacetoacetate, and aluminum trisethylacetoacetate (aluminum-based catalysts); Iron-containing compounds (iron-based catalysts) such as Nasem ferric iron (iron-based catalysts); ); and other organometallic catalysts. A crosslinking catalyst can be used individually by 1 type or in combination of 2 or more types.
 いくつかの好ましい態様において、環境への影響、安全性の観点から、上記架橋触媒はスズ含有化合物を含まない。架橋触媒として、非スズ系化合物を用いることにより、粘着剤におけるスズ系化合物(典型的には有機スズ)の使用量を低減することができる。ここに開示される粘着剤組成物によると、一般に反応速度に優れる傾向があるスズ系架橋触媒を用いることなく、接着力と高温保持力とを両立し得る良好な架橋構造を生産性よく形成することができる。また、いくつかの態様において、架橋触媒は鉄系触媒を含まない。例えば、粘着剤に透明性や光学特性が要求される使用態様においては、粘着剤が着色される可能性がある鉄系化合物の使用を避けることが望ましい。 In some preferred embodiments, the cross-linking catalyst does not contain a tin-containing compound from the viewpoint of environmental impact and safety. By using a non-tin-based compound as a cross-linking catalyst, the amount of tin-based compound (typically organic tin) used in the pressure-sensitive adhesive can be reduced. According to the pressure-sensitive adhesive composition disclosed herein, a good crosslinked structure capable of achieving both adhesive strength and high-temperature holding power can be formed with good productivity without using a tin-based crosslinking catalyst, which generally tends to have an excellent reaction rate. Also, in some embodiments, the cross-linking catalyst does not include an iron-based catalyst. For example, in a mode of use in which the adhesive is required to have transparency and optical properties, it is desirable to avoid using an iron-based compound that may color the adhesive.
 架橋触媒の使用量は特に制限されない。架橋触媒の使用量は、ポリエステル系ポリマー100重量部に対して、例えば凡そ0.001重量部以上とすることができ、凡そ0.01重量部以上が適当であり、凡そ0.05重量以上(例えば0.10重量部以上)であってもよい。また、架橋触媒の使用量は、ポリエステル系ポリマー100重量部に対して、例えば凡そ3重量部以下とすることができ、凡そ1重量部以下が適当であり、凡そ0.3重量以下であってもよい。 The amount of cross-linking catalyst used is not particularly limited. The amount of the crosslinking catalyst used can be, for example, about 0.001 parts by weight or more, preferably about 0.01 parts by weight or more, and about 0.05 parts by weight or more (for example, 0.10 parts by weight or more) per 100 parts by weight of the polyester polymer. The amount of the cross-linking catalyst used can be, for example, about 3 parts by weight or less, preferably about 1 part by weight or less, and may be about 0.3 parts by weight or less with respect to 100 parts by weight of the polyester polymer.
 (耐加水分解剤)
 また、ここに開示される粘着剤組成物は、耐加水分解剤(加水分解防止剤ともいう。)を含んでもよい。耐加水分解剤を添加することにより、粘着剤中での加水分解反応が抑制され、良好な耐久性が得られやすい。耐加水分解剤としては、特に限定されず、公知ないし慣用の耐加水分解剤を用いることができる。例えば、オキサゾリン基含有化合物、エポキシ基含有化合物、カルボジイミド基含有化合物等が挙げられる。なかでも、カルボジイミド基含有化合物が好ましい。耐加水分解剤は、1種を単独でまたは2種以上を組み合わせて用いることができる。
(Hydrolysis resistant agent)
In addition, the pressure-sensitive adhesive composition disclosed herein may contain a hydrolysis-resistant agent (also referred to as an anti-hydrolysis agent). By adding a hydrolysis-resistant agent, the hydrolysis reaction in the pressure-sensitive adhesive is suppressed, making it easier to obtain good durability. The hydrolysis-resistant agent is not particularly limited, and known or commonly used hydrolysis-resistant agents can be used. Examples thereof include oxazoline group-containing compounds, epoxy group-containing compounds, carbodiimide group-containing compounds, and the like. Among them, carbodiimide group-containing compounds are preferred. The hydrolysis resistant agents can be used singly or in combination of two or more.
 カルボジイミド基含有化合物としては、ジシクロヘキシルカルボジイミド、ジイソプロピルカルボジイミド、ジメチルカルボジイミド、ジイソブチルカルボジイミド、ジオクチルカルボジイミド、t-ブチルイソプロピルカルボジイミド、ジフェニルカルボジイミド、ジ-t-ブチルカルボジイミド、ジ-β-ナフチルカルボジイミド、一官能性環状構造カルボジイミド等が挙げられる。ここで、一官能性環状構造カルボジイミドとは、分子構造内にカルボジイミド基を1個有し、脂肪族基、脂環族基、芳香族基またはこれらの組み合わせにより構成される結合基により、カルボジイミド基の第1窒素原子と第2窒素原子とが結合された化合物をいう。なお、上記結合基は、ヘテロ原子、置換基を含んでもよい。カルボジイミド基含有化合物の好適例としては、ジシクロヘキシルカルボジイミド、ジイソプロピルカルボジイミド、一官能性環状構造カルボジイミドが挙げられる。 Examples of carbodiimide group-containing compounds include dicyclohexylcarbodiimide, diisopropylcarbodiimide, dimethylcarbodiimide, diisobutylcarbodiimide, dioctylcarbodiimide, t-butylisopropylcarbodiimide, diphenylcarbodiimide, di-t-butylcarbodiimide, di-β-naphthylcarbodiimide, and monofunctional cyclic structure carbodiimide. Here, the monofunctional cyclic structure carbodiimide refers to a compound having one carbodiimide group in its molecular structure and having the first nitrogen atom and the second nitrogen atom of the carbodiimide group bonded by a bonding group composed of an aliphatic group, an alicyclic group, an aromatic group, or a combination thereof. The bonding group may contain a heteroatom and a substituent. Suitable examples of the carbodiimide group-containing compound include dicyclohexylcarbodiimide, diisopropylcarbodiimide, and monofunctional cyclic structure carbodiimide.
 耐加水分解剤(好適には、カルボジイミド基含有化合物)の使用量は、特に限定されず、耐加水分解剤含有の効果が好ましく発現するよう、ポリエステル系ポリマー100重量部に対して、凡そ0.05重量部以上とすることが適当であり、好ましくは凡そ0.1重量部以上であり、例えば凡そ0.3重量部以上であってもよい。上記耐加水分解剤の使用量の上限は、例えばポリエステル系ポリマー100重量部に対して凡そ5重量部以下であることが適当であり、好ましくは凡そ3重量部以下であり、例えば1重量部以下であってもよい。 The amount of the hydrolysis-resistant agent (preferably, a carbodiimide group-containing compound) used is not particularly limited, and is preferably about 0.05 parts by weight or more, preferably about 0.1 parts by weight or more, for example, about 0.3 parts by weight or more, relative to 100 parts by weight of the polyester polymer so that the effect of containing the hydrolysis-resistant agent is preferably expressed. The upper limit of the amount of the anti-hydrolysis agent to be used is, for example, about 5 parts by weight or less, preferably about 3 parts by weight or less, and may be, for example, 1 part by weight or less per 100 parts by weight of the polyester polymer.
 (その他の添加剤)
 粘着剤組成物には、上述した各成分以外に、必要に応じてレベリング剤、充填剤、可塑剤、軟化剤、着色剤(顔料、染料等)、帯電防止剤、老化防止剤、紫外線吸収剤、酸化防止剤、光安定剤等の、粘着剤の分野において一般的な各種の添加剤が含まれていてもよい。上記各種添加剤については、従来公知のものを常法により使用することができ、特に本発明を特徴づけるものではないので、詳細な説明は省略する。
(Other additives)
In addition to the components described above, the pressure-sensitive adhesive composition may optionally contain various additives commonly used in the field of pressure-sensitive adhesives, such as leveling agents, fillers, plasticizers, softeners, colorants (pigments, dyes, etc.), antistatic agents, anti-aging agents, UV absorbers, antioxidants, and light stabilizers. As for the various additives mentioned above, conventionally known ones can be used in a conventional manner, and since they do not particularly characterize the present invention, detailed description thereof will be omitted.
 (溶媒または分散媒)
 ここに開示される粘着剤組成物は、固形分濃度や粘度の調節等を目的として、さらに公知ないし慣用の溶媒や分散媒を含んでよい。例えば、粘着特性等の観点から、有機溶媒中に粘着剤を含む形態の溶剤型粘着剤組成物が好適である。有機溶媒としては、特に限定されず、ポリエステル系粘着剤に使用可能な公知ないし慣用の有機溶媒の1種または2種以上を使用することができる。例えば、トルエンや酢酸エチル、メチルエチルケトン、メチルシクロヘキサン、シクロヘキサン、キシレン、酢酸ブチル等の有機溶媒を用いることができる。なかでも、酢酸エチルの使用が好ましい。
(solvent or dispersion medium)
The pressure-sensitive adhesive composition disclosed herein may further contain a known or commonly used solvent or dispersion medium for the purpose of adjusting the solid content concentration or viscosity. For example, from the viewpoint of adhesive properties, etc., a solvent-type adhesive composition containing an adhesive in an organic solvent is suitable. The organic solvent is not particularly limited, and one or more of known or commonly used organic solvents that can be used for polyester pressure-sensitive adhesives can be used. For example, organic solvents such as toluene, ethyl acetate, methyl ethyl ketone, methylcyclohexane, cyclohexane, xylene and butyl acetate can be used. Among them, it is preferable to use ethyl acetate.
 (粘度)
 特に限定するものではないが、ここに開示される粘着剤組成物の23℃における粘度は、例えば凡そ10mPa・s以上であり、凡そ20mPa・s以上であってもよく、凡そ30mPa・s以上でもよく、また、例えば凡そ10000mPa・s以下であり、凡そ8000mPa・s以下であってもよく、凡そ6000mPa・s以下でもよい。いくつかの態様において、上記粘度は100mPa・s超であってもよく、300mPa・s超でもよく、500mPa・s超でもよく、700mPa・s超でもよい。上記粘度範囲にある粘着剤組成物を使用することにより、薄厚の粘着剤が生産性よく形成され得る。
(viscosity)
Although not particularly limited, the viscosity of the adhesive composition disclosed herein at 23° C. is, for example, about 10 mPa s or more, may be about 20 mPa s or more, may be about 30 mPa s or more, may be about 10000 mPa s or less, may be about 8000 mPa s or less, or may be about 6000 mPa s or less. In some embodiments, the viscosity may be greater than 100 mPa·s, greater than 300 mPa·s, greater than 500 mPa·s, or greater than 700 mPa·s. By using the pressure-sensitive adhesive composition having the above viscosity range, a thin pressure-sensitive adhesive can be formed with good productivity.
 (固形分濃度)
 また、特に限定するものではないが、ここに開示される粘着剤組成物の固形分濃度は、例えば凡そ10重量%以上であり、凡そ20重量%以上であってもよく、凡そ30重量%以上でもよく、また、例えば凡そ70重量%以下であり、凡そ60重量%以下であってもよく、凡そ55重量%以下でもよい。上記固形分濃度の粘着剤組成物は取扱い性がよく、薄厚の粘着剤を生産性よく形成しやすい。
(Solid content concentration)
In addition, although not particularly limited, the solid content concentration of the pressure-sensitive adhesive composition disclosed herein is, for example, approximately 10% by weight or more, may be approximately 20% by weight or more, may be approximately 30% by weight or more, may be approximately 70% by weight or less, may be approximately 60% by weight or less, or may be approximately 55% by weight or less. The pressure-sensitive adhesive composition having the above-described solid content concentration is easy to handle and easily forms a thin pressure-sensitive adhesive with high productivity.
 なお、上記粘着剤組成物の23℃における粘度とは、試料(測定対象たる粘着剤組成物)温度23℃±5℃において、BH型粘度計を用いて回転数20rpmの条件で測定した粘度をいう。該測定に使用するローターは、試料の粘度に応じて適正な種類(番号)のものを選択する。
 また、上記粘着剤組成物の固形分(不揮発分)とは、粘着剤組成物全体に対する、当該粘着剤組成物を130℃に120分間加熱した後における残分の重量割合をいう。
The viscosity of the pressure-sensitive adhesive composition at 23° C. refers to the viscosity measured at a sample (pressure-sensitive adhesive composition to be measured) temperature of 23° C.±5° C. using a BH viscometer at a rotation speed of 20 rpm. The appropriate type (number) of rotors to be used for the measurement is selected according to the viscosity of the sample.
Moreover, the solid content (non-volatile content) of the pressure-sensitive adhesive composition refers to the weight ratio of the residue after heating the pressure-sensitive adhesive composition at 130° C. for 120 minutes with respect to the entire pressure-sensitive adhesive composition.
 (バイオ率)
 いくつかの態様に係る粘着剤組成物は、バイオ率が50%以上であるポリエステル系ポリマーを含んで調製され得るので、かかる態様において、粘着剤組成物は、所定値以上のバイオ率を有する。特に限定されるものではないが、粘着剤組成物の不揮発分(固形分)のバイオ率は凡そ30%以上(例えば30%超)であってもよく、凡そ40%以上であることが適当であり、50%以上であることが好ましい。粘着剤組成物の不揮発分のバイオ率が高いことは、石油等に代表される化石資源系材料の使用量が少ないことを意味する。粘着剤組成物の不揮発分のバイオ率が高くなるよう設計することで、粘着剤全体としての化石資源系材料への依存度を低減することができる。例えば、粘着剤組成物の不揮発分のバイオ率は、55%以上であってもよく、60%以上でもよく、70%以上でもよく、75%以上でもよい。バイオ率の上限は定義上100%であるが、ここに開示される粘着剤組成物では、含有成分が化石資源由来の材料を含み得るため、典型的にはバイオ率は100%未満であり得る。携帯電子機器用途に適した性能(例えば高温保持力)を得やすくする観点から、いくつかの態様において、粘着剤組成物の不揮発分のバイオ率は、例えば90%未満であってよく、より粘着性能が重視される場合には80%未満でもよく、70%未満でもよい。他のいくつかの態様において、粘着剤組成物の不揮発分のバイオ率は30%未満であってもよく、10%未満でもよく、1%未満でもよい。粘着剤組成物の不揮発分のバイオ率は、実質的に0%であってもよい。なお、上記粘着剤組成物の不揮発分のバイオ率は、基本的に、当該粘着剤組成物を用いて形成される粘着剤層のバイオ率と同じであるので、上記粘着剤組成物の不揮発分のバイオ率としての上記数値範囲は、当該粘着剤層のバイオ率にも適用され得る。
(bio rate)
Since the adhesive composition according to some aspects can be prepared containing a polyester-based polymer having a bio rate of 50% or more, in such aspects the adhesive composition has a bio rate of a predetermined value or more. Although not particularly limited, the non-volatile content (solid content) of the pressure-sensitive adhesive composition may have a bio rate of approximately 30% or more (for example, more than 30%), suitably approximately 40% or more, and preferably 50% or more. A high non-volatile bio rate of the pressure-sensitive adhesive composition means that the amount of fossil resource-based materials such as petroleum used is small. By designing the pressure-sensitive adhesive composition so as to increase the bio-ratio of the non-volatile matter, it is possible to reduce the dependence of the pressure-sensitive adhesive as a whole on fossil resource-based materials. For example, the non-volatile content of the pressure-sensitive adhesive composition may have a bio rate of 55% or more, 60% or more, 70% or more, or 75% or more. Although the upper limit of bio-percentage is by definition 100%, in the pressure-sensitive adhesive compositions disclosed herein, the bio-percentage can typically be less than 100% because the ingredients may include materials derived from fossil resources. From the viewpoint of making it easier to obtain performance (e.g., high-temperature holding power) suitable for use in portable electronic devices, in some embodiments, the non-volatile content of the adhesive composition may be, for example, less than 90%. In some other embodiments, the adhesive composition may have a non-volatile bio-fraction of less than 30%, less than 10%, or less than 1%. The non-volatile bio-rate of the pressure-sensitive adhesive composition may be substantially 0%. Note that the bio rate of the non-volatile content of the adhesive composition is basically the same as the bio rate of the adhesive layer formed using the pressure-sensitive adhesive composition, so the above numerical range as the bio rate of the non-volatile content of the pressure-sensitive adhesive composition can also be applied to the bio rate of the pressure-sensitive adhesive layer.
 なお、粘着剤組成物および粘着剤層のバイオ率、すなわち該粘着剤組成物および粘着剤層に含まれる全炭素に占めるバイオマス由来炭素の割合は、ASTM D6866に準拠して測定される質量数14の炭素同位体含有量から見積もることができる。後述する基材のバイオ率および粘着シートのバイオ率についても、同様の方法で見積もることができる。 The biorate of the adhesive composition and adhesive layer, that is, the ratio of biomass-derived carbon to the total carbon contained in the adhesive composition and adhesive layer can be estimated from the carbon isotope content with a mass number of 14 measured according to ASTM D6866. The biorate of the base material and the biorate of the pressure-sensitive adhesive sheet, which will be described later, can also be estimated by the same method.
 (粘着剤層の形成)
 粘着剤組成物からの粘着剤層の形成は、従来公知の方法によって行うことができる。例えば、基材レスの両面粘着シートの場合は、剥離性を有する表面(剥離面)に粘着剤組成物を付与した後、該粘着剤組成物を硬化させることにより該表面上に粘着剤層を形成することで粘着シートが形成され得る。また、基材付きの粘着シートの場合は、該基材に粘着剤組成物を直接付与(典型的には塗布)して硬化させることにより粘着剤層を形成する方法(直接法)を好ましく採用することができる。また、剥離性を有する表面(剥離面)に粘着剤組成物を付与して硬化させることにより該表面上に粘着剤層を形成し、その粘着剤層を基材に転写する方法(転写法)を採用してもよい。上記剥離面としては、剥離ライナーの表面や、剥離処理された基材背面等を利用し得る。また、上記粘着剤組成物の硬化は、該粘着剤組成物に乾燥、架橋、重合、冷却等の硬化処理を施すことにより行うことができる。2種以上の硬化処理を同時にまたは段階的に行ってもよい。なお、ここに開示される粘着剤層は、典型的には連続的に形成されるが、かかる形態に限定されるものではなく、例えば点状、ストライプ状等の規則的あるいはランダムなパターンに形成された粘着剤層であってもよい。
(Formation of adhesive layer)
A pressure-sensitive adhesive layer can be formed from the pressure-sensitive adhesive composition by a conventionally known method. For example, in the case of a substrate-less double-sided PSA sheet, a PSA sheet can be formed by applying a PSA composition to a surface having releasability (release surface) and then curing the PSA composition to form a PSA layer on the surface. In the case of a pressure-sensitive adhesive sheet with a substrate, a method (direct method) of forming a pressure-sensitive adhesive layer by directly applying (typically applying) a pressure-sensitive adhesive composition to the substrate and curing it can be preferably employed. In addition, a method (transfer method) of forming a pressure-sensitive adhesive layer on the surface by applying a pressure-sensitive adhesive composition to a surface having releasability (release surface) and curing the composition, and transferring the pressure-sensitive adhesive layer to a substrate may be employed. As the release surface, the surface of a release liner, the back surface of a base material subjected to a release treatment, or the like can be used. Moreover, curing of the pressure-sensitive adhesive composition can be performed by subjecting the pressure-sensitive adhesive composition to a curing treatment such as drying, crosslinking, polymerization, or cooling. Two or more curing treatments may be performed simultaneously or stepwise. The pressure-sensitive adhesive layer disclosed herein is typically formed continuously, but is not limited to such a form, and may be a pressure-sensitive adhesive layer formed in a regular or random pattern such as dots or stripes.
 粘着剤組成物の塗布は、例えば、グラビアロールコーター、リバースロールコーター、キスロールコーター、ディップロールコーター、ダイコーター、コンマコーター、バーコーター、ナイフコーター、スプレーコーター等の、公知ないし慣用のコーターを用いて行うことができる。あるいは、含浸やカーテンコート法等により粘着剤組成物を塗布してもよい。
 粘着剤組成物の塗工速度は、特に限定されず、例えば、塗工対象面を有する基材または剥離ライナー等を、速度(塗工速度)凡そ3~100m/分(例えば5~50m/分)で送りながら、当該塗工対象面に対し粘着剤組成物をコーターから供給することにより、粘着剤組成物は所定の厚さに塗工される。
 粘着剤組成物の乾燥は、常温または加熱下で行うことができる。架橋反応の促進、製造効率向上等の観点から、粘着剤組成物の乾燥は加熱下で行うことが好ましい。乾燥温度は、例えば凡そ40~150℃程度とすることができ、通常は凡そ40~130℃程度とすることが好ましい。粘着剤組成物を乾燥させた後、さらに、粘着剤層内における成分移行の調整、架橋反応の進行、基材や粘着剤層内に存在し得る歪の緩和等を目的としてエージングを行うことが好ましい。エージングの条件は特に限定されず、例えば凡そ70℃以下(典型的には凡そ40~70℃)、1日以上(例えば3日以上)の条件とすることができる。
Application of the pressure-sensitive adhesive composition can be performed using known or conventional coaters such as gravure roll coaters, reverse roll coaters, kiss roll coaters, dip roll coaters, die coaters, comma coaters, bar coaters, knife coaters, and spray coaters. Alternatively, the adhesive composition may be applied by impregnation, curtain coating, or the like.
The coating speed of the pressure-sensitive adhesive composition is not particularly limited. For example, the pressure-sensitive adhesive composition is applied to a predetermined thickness by supplying the pressure-sensitive adhesive composition from a coater to the surface to be coated while feeding a substrate or release liner having a surface to be coated at a speed (coating speed) of about 3 to 100 m / min (for example, 5 to 50 m / min).
The pressure-sensitive adhesive composition can be dried at room temperature or under heating. From the viewpoint of promoting the cross-linking reaction, improving production efficiency, etc., it is preferable to dry the pressure-sensitive adhesive composition under heating. The drying temperature can be, for example, about 40 to 150°C, and usually about 40 to 130°C is preferable. After drying the pressure-sensitive adhesive composition, aging is preferably performed for the purpose of adjusting component migration in the pressure-sensitive adhesive layer, progressing the cross-linking reaction, alleviating distortion that may exist in the substrate and the pressure-sensitive adhesive layer, and the like. The aging conditions are not particularly limited, and can be, for example, about 70° C. or lower (typically about 40 to 70° C.) for 1 day or longer (eg, 3 days or longer).
 ここに開示される技術によると、粘着剤組成物の含有成分に基づき、良好な品質を有する薄厚の粘着剤層を形成することができるので、粘着シート製造機が備えるコーター種の制限は少なく、また、塗工速度や乾燥温度の制限も少なく、薄厚の粘着剤層を良好な品質で形成することができる。 According to the technology disclosed herein, a thin adhesive layer having good quality can be formed based on the components contained in the adhesive composition, so there are few restrictions on the types of coaters provided in the adhesive sheet manufacturing machine, and there are also few restrictions on the coating speed and drying temperature, and a thin adhesive layer with good quality can be formed.
 <粘着シート>
 ここに開示される粘着シートは、上記の粘着剤組成物を用いて形成された粘着剤層を含んで構成されている。上記粘着シートは、例えば、粘着剤層の一方の表面により構成された第一粘着面と、該粘着剤層の他方の表面により構成された第二粘着面と、を備える基材レス両面粘着シートの形態であり得る。あるいは、ここに開示される粘着シートは、上記粘着剤層が支持基材の片面または両面に積層された基材付き粘着シートの形態であってもよい。以下、支持基材のことを単に「基材」ということもある。
<Adhesive sheet>
The pressure-sensitive adhesive sheet disclosed herein includes a pressure-sensitive adhesive layer formed using the pressure-sensitive adhesive composition described above. The pressure-sensitive adhesive sheet may be, for example, in the form of a substrate-less double-sided pressure-sensitive adhesive sheet having a first pressure-sensitive adhesive surface formed by one surface of the pressure-sensitive adhesive layer and a second pressure-sensitive adhesive surface formed by the other surface of the pressure-sensitive adhesive layer. Alternatively, the pressure-sensitive adhesive sheet disclosed herein may be in the form of a substrate-attached pressure-sensitive adhesive sheet in which the pressure-sensitive adhesive layer is laminated on one or both sides of a supporting substrate. Hereinafter, the supporting substrate may be simply referred to as "substrate".
 (粘着シートの構成例)
 一実施形態に係る粘着シートの構造を図1に模式的に示す。この粘着シート1は、粘着剤層21からなる基材レスの両面粘着シートとして構成されている。粘着シート1は、粘着剤層21の一方の表面(第一面)により構成された第一粘着面21Aと、粘着剤層21の他方の表面(第二面)により構成された第二粘着面21Bとを、被着体の異なる箇所に貼り付けて用いられる。粘着面21A,21Bが貼り付けられる箇所は、異なる部材のそれぞれの箇所であってもよく、単一の部材内の異なる箇所であってもよい。使用前(すなわち、被着体への貼付け前)の粘着シート1は、図1に示すように、第一粘着面21Aおよび第二粘着面21Bが、少なくとも粘着剤層21に対向する側がそれぞれ剥離面となっている剥離ライナー31,32によって保護された形態の剥離ライナー付き粘着シート100の構成要素であり得る。剥離ライナー31,32としては、例えば、シート状の基材(ライナー基材)の片面に剥離処理剤による剥離層を設けることで該片面が剥離面となるように構成されたものを好ましく使用し得る。あるいは、剥離ライナー32を省略し、両面が剥離面となっている剥離ライナー31を用い、これと粘着シート1とを重ね合わせて渦巻き状に巻回することにより第二粘着面21Bが剥離ライナー31の背面に当接して保護された形態(ロール形態)の剥離ライナー付き粘着シートを構成していてもよい。
(Example of composition of adhesive sheet)
FIG. 1 schematically shows the structure of a pressure-sensitive adhesive sheet according to one embodiment. This pressure-sensitive adhesive sheet 1 is configured as a substrate-less double-sided pressure-sensitive adhesive sheet comprising a pressure-sensitive adhesive layer 21 . The adhesive sheet 1 is used by attaching a first adhesive surface 21A constituted by one surface (first surface) of the adhesive layer 21 and a second adhesive surface 21B constituted by the other surface (second surface) of the adhesive layer 21 to different parts of the adherend. The locations where the adhesive surfaces 21A and 21B are attached may be locations on different members or different locations within a single member. The pressure-sensitive adhesive sheet 1 before use (that is, before being attached to an adherend) can be a constituent element of a pressure-sensitive adhesive sheet 100 with a release liner in which the first pressure-sensitive adhesive surface 21A and the second pressure-sensitive adhesive surface 21B are protected by release liners 31 and 32, respectively, at least on the side facing the pressure-sensitive adhesive layer 21, respectively, as shown in FIG. As the release liners 31 and 32, for example, a sheet-like base material (liner base material) having a release layer provided on one side thereof with a release treatment agent so that the one side becomes a release surface can be preferably used. Alternatively, a release liner 31 having release surfaces on both sides may be used without the release liner 32, and the release liner 31 may be superimposed on the pressure-sensitive adhesive sheet 1 and spirally wound to form a release liner-attached pressure-sensitive adhesive sheet in a form (roll form) in which the second pressure-sensitive adhesive surface 21B is in contact with the back surface of the release liner 31 and protected.
 他の一実施形態に係る粘着シートの構造を図2に模式的に示す。この粘着シート2は、第一面10Aおよび第二面10Bを有するシート状の支持基材(例えば樹脂フィルム)10と、その第一面10A側に設けられた粘着剤層21とを備える基材付き片面粘着シートとして構成されている。粘着剤層21は、支持基材10の第一面10A側に固定的に、すなわち当該支持基材10から粘着剤層21を分離する意図なく、設けられている。使用前の粘着シート2は、図2に示すように、粘着剤層21の表面(粘着面)21Aが、少なくとも粘着剤層21に対向する側が剥離面となっている剥離ライナー31によって保護された形態の剥離ライナー付き粘着シート200の構成要素であり得る。あるいは、剥離ライナー31を省略し、第二面10Bが剥離面となっている支持基材10を用い、粘着シート2を巻回することにより粘着面21Aが支持基材10の第二面(背面)10Bに当接して保護された形態(ロール形態)であってもよい。 FIG. 2 schematically shows the structure of a pressure-sensitive adhesive sheet according to another embodiment. This pressure-sensitive adhesive sheet 2 is configured as a single-sided pressure-sensitive adhesive sheet with a substrate, which includes a sheet-like supporting substrate (for example, a resin film) 10 having a first surface 10A and a second surface 10B, and an adhesive layer 21 provided on the first surface 10A side. The pressure-sensitive adhesive layer 21 is fixedly provided on the first surface 10A side of the support substrate 10 , that is, without the intention of separating the pressure-sensitive adhesive layer 21 from the support substrate 10 . As shown in FIG. 2, the pressure-sensitive adhesive sheet 2 before use can be a component of a pressure-sensitive adhesive sheet 200 with a release liner, in which the surface (adhesive surface) 21A of the pressure-sensitive adhesive layer 21 is protected by a release liner 31 having a release surface on at least the side facing the pressure-sensitive adhesive layer 21. Alternatively, the release liner 31 may be omitted, the support substrate 10 having the second surface 10B serving as a release surface may be used, and the adhesive surface 21A may be protected by contacting the second surface (back surface) 10B of the support substrate 10 by rolling the adhesive sheet 2 (roll configuration).
 さらに他の一実施形態に係る粘着シートの構造を図3に模式的に示す。この粘着シート3は、第一面10Aおよび第二面10Bを有するシート状の支持基材(例えば樹脂フィルム)10と、その第一面10A側に固定的に設けられた第一粘着剤層21と、第二面10B側に固定的に設けられた第二粘着剤層22と、を備える基材付き両面粘着シートとして構成されている。使用前の粘着シート3は、図3に示すように、第一粘着剤層21の表面(第一粘着面)21Aおよび第二粘着剤層22の表面(第二粘着面)22Aが剥離ライナー31,32によって保護された形態の剥離ライナー付き粘着シート300の構成要素であり得る。あるいは、剥離ライナー32を省略し、両面が剥離面となっている剥離ライナー31を用い、これと粘着シート3とを重ね合わせて渦巻き状に巻回することにより第二粘着面22Aが剥離ライナー31の背面に当接して保護された形態(ロール形態)の剥離ライナー付き粘着シートを構成していてもよい。 FIG. 3 schematically shows the structure of a pressure-sensitive adhesive sheet according to yet another embodiment. This pressure-sensitive adhesive sheet 3 is configured as a double-sided pressure-sensitive adhesive sheet with a substrate, which includes a sheet-like supporting substrate (for example, a resin film) 10 having a first surface 10A and a second surface 10B, a first pressure-sensitive adhesive layer 21 fixedly provided on the first surface 10A side, and a second pressure-sensitive adhesive layer 22 fixedly provided on the second surface 10B side. The pressure-sensitive adhesive sheet 3 before use can be a component of a release liner-equipped pressure-sensitive adhesive sheet 300 in which the surface (first pressure-sensitive adhesive surface) 21A of the first pressure-sensitive adhesive layer 21 and the surface (second pressure-sensitive adhesive surface) 22A of the second pressure-sensitive adhesive layer 22 are protected by release liners 31 and 32, as shown in FIG. Alternatively, the release liner 32 may be omitted, and a release liner 31 having release surfaces on both sides may be used, and the release liner 31 may be superimposed on the pressure-sensitive adhesive sheet 3 and spirally wound to form a release liner-attached pressure-sensitive adhesive sheet in a form (roll form) in which the second pressure-sensitive adhesive surface 22A is protected by coming into contact with the back surface of the release liner 31.
 上述の剥離ライナーとしては、樹脂フィルムや紙等のライナー基材の表面に剥離処理層を有する剥離ライナーや、ポリオレフィン系樹脂(例えばポリエチレン、ポリプロピレン)やフッ素系樹脂等の低接着性材料からなる剥離ライナー等を用いることができる。上記剥離処理層は、例えば、シリコーン系、長鎖アルキル系、フッ素系、硫化モリブデン等の剥離処理剤により上記ライナー基材を表面処理して形成されたものであり得る。電子機器用の分野においては、紙粉の発生を避ける観点から、樹脂フィルムの表面に剥離処理層を有する剥離ライナーまたは低接着性材料からなる剥離ライナーが好ましい。 As the above-mentioned release liner, a release liner having a release treatment layer on the surface of a liner base material such as resin film or paper, or a release liner made of a low-adhesive material such as polyolefin resin (e.g. polyethylene, polypropylene) or fluorine resin can be used. The release treatment layer may be formed by surface-treating the liner base material with a release treatment agent such as a silicone-based, long-chain alkyl-based, fluorine-based, or molybdenum sulfide-based release agent. In the field of electronic devices, a release liner having a release treatment layer on the surface of a resin film or a release liner made of a low-adhesive material is preferable from the viewpoint of avoiding the generation of paper dust.
 なお、ここでいう粘着シートの概念には、粘着テープ、粘着フィルム、粘着ラベル等と称されるものが包含され得る。粘着シートは、ロール形態であってもよく、枚葉形態であってもよく、用途や使用態様に応じて適宜な形状に切断、打ち抜き加工等されたものであってもよい。 It should be noted that the concept of the adhesive sheet here can include what is called adhesive tape, adhesive film, adhesive label, and the like. The pressure-sensitive adhesive sheet may be in the form of a roll or sheet, or may be cut or punched into an appropriate shape according to the purpose and mode of use.
 (総厚)
 ここに開示される粘着シート(粘着剤層を含み、基材付き粘着シートではさらに基材を含むが、剥離ライナーは含まない。)の厚さ(総厚)は、特に限定されず、例えば凡そ2μm~1000μmの範囲とすることができる。いくつかの態様において、粘着シートの厚さは、粘着特性等を考慮して、5μm~500μm(例えば10μm~300μm、典型的には15μm~200μm)程度とすることが好ましい。粘着シートが適用される製品(例えば携帯電子機器)の軽量化、小型化、薄厚化、高機能化等の観点から、いくつかの好ましい態様において、粘着シートの厚さは、100μm以下であり、より好ましくは70μm以下、さらに好ましくは50μm以下、特に好ましくは35μm以下であり、例えば30μm以下であってもよく、25μm以下でもよい。ここに開示される技術によると、薄厚の粘着剤層を良好な品質で生産性よく形成することができるので、粘着シートの総厚も上記所定値以下の範囲とすることができる。粘着シートの厚さの下限値は、特に限定されず、例えば凡そ5μm以上であってもよく、生産性の観点から、凡そ10μm以上でもよく、凡そ15μm以上(例えば凡そ20μm以上)でもよい。
(total thickness)
The thickness (total thickness) of the pressure-sensitive adhesive sheet disclosed herein (including a pressure-sensitive adhesive layer, and a pressure-sensitive adhesive sheet with a substrate, which further includes a substrate, but does not include a release liner) is not particularly limited, and can be in the range of, for example, approximately 2 μm to 1000 μm. In some aspects, the thickness of the pressure-sensitive adhesive sheet is preferably about 5 μm to 500 μm (eg, 10 μm to 300 μm, typically 15 μm to 200 μm) in consideration of adhesive properties. In some preferred embodiments, the thickness of the adhesive sheet is 100 μm or less, more preferably 70 μm or less, still more preferably 50 μm or less, particularly preferably 35 μm or less, for example, 30 μm or less, or 25 μm or less, from the viewpoint of reducing the weight, size, thickness, and functionality of products to which the adhesive sheet is applied (for example, portable electronic devices). According to the technology disclosed herein, a thin pressure-sensitive adhesive layer can be formed with good quality and high productivity, so that the total thickness of the pressure-sensitive adhesive sheet can also be within the range of the predetermined value or less. The lower limit of the thickness of the pressure-sensitive adhesive sheet is not particularly limited.
 (バイオ率)
 いくつかの態様において、粘着シートは、該粘着シートに含まれる全炭素の凡そ30%以上(例えば30%超)がバイオマス由来の炭素であることが好ましい。すなわち、粘着シートのバイオ率が30%以上であることが好ましい。このようにバイオ率の高い粘着シートを用いることにより、化石資源系材料の使用量を低減することができる。かかる観点において、粘着シートのバイオ率は高いほど好ましいといえる。粘着シートのバイオ率は、40%以上であることが好ましく、50%以上でもよく、60%以上でもよく、70%以上でもよく、75%以上でもよい。バイオ率の上限は定義上100%であるが、粘着シートを構成するすべての材料を植物由来とすることは、生産性や性能等の点で効率的でない場合もあることから、粘着シートのバイオ率は100%未満であってもよい。携帯電子機器用途に適した性能(例えば高温保持力)を得やすくする観点から、いくつかの態様において、粘着シートのバイオ率は、例えば90%以下であってよく、より粘着性能が重視される場合には80%以下でもよく、70%以下でもよい。他のいくつかの態様において、粘着シートのバイオ率は30%未満であってもよく、10%未満でもよく、1%未満でもよい。粘着シートのバイオ率は、実質的に0%であってもよい。
 なお、粘着剤層からなる基材レス粘着シートでは、該粘着剤層のバイオ率と粘着シート全体のバイオ率とは一致する。
(bio rate)
In some aspects, it is preferred that approximately 30% or more (eg, more than 30%) of the total carbon contained in the adhesive sheet is biomass-derived carbon. That is, it is preferable that the adhesive sheet has a bio rate of 30% or more. By using a pressure-sensitive adhesive sheet with such a high bio-ratio, it is possible to reduce the amount of fossil resource-based materials used. From this point of view, it can be said that the higher the bio rate of the pressure-sensitive adhesive sheet, the better. The bio rate of the adhesive sheet is preferably 40% or more, may be 50% or more, may be 60% or more, may be 70% or more, or may be 75% or more. Although the upper limit of the bio rate is 100% by definition, the bio rate of the adhesive sheet may be less than 100% because it may not be efficient in terms of productivity, performance, etc. to make all the materials that make up the adhesive sheet derived from plants. From the viewpoint of making it easier to obtain performance (e.g., high temperature holding power) suitable for use in portable electronic devices, in some embodiments, the bio rate of the adhesive sheet may be, for example, 90% or less, and when more emphasis is placed on adhesive performance, it may be 80% or less, or 70% or less. In some other embodiments, the adhesive sheet bio-factor may be less than 30%, may be less than 10%, or may be less than 1%. The bio rate of the adhesive sheet may be substantially 0%.
In addition, in a substrate-less pressure-sensitive adhesive sheet comprising a pressure-sensitive adhesive layer, the bio rate of the pressure-sensitive adhesive layer matches the bio rate of the entire pressure-sensitive adhesive sheet.
 (粘着特性)
 いくつかの態様に係る粘着シートは、ステンレス鋼板に対する180度剥離強度(対SUS粘着力)が10N/20mm以上であることが好ましい。上記特性を示す粘着シートは、被着体に強固に接合することから、典型的には再剥離を意図しない態様で好ましく用いられ得る。より信頼性の高い接合を実現する観点から、上記粘着力は、例えば11N/20mm以上であってよく、12N/20mm以上が好ましく、13N/20mm以上でもよく、14N/20mm以上でもよく、15N/20mm以上でもよい。上記粘着力の上限は特に制限されず、いくつかの態様において、上記粘着力は、例えば50N/20mm以下であってよく、30N/20mm以下でもよく、25N/20mm以下でもよい。上記対SUS粘着力は、具体的には後述の実施例に記載の方法で測定される。
(Adhesive properties)
The pressure-sensitive adhesive sheet according to some aspects preferably has a 180-degree peel strength (adhesive strength to SUS) of 10 N/20 mm or more to a stainless steel plate. A pressure-sensitive adhesive sheet exhibiting the above properties can be preferably used in a manner in which re-peeling is not intended, typically, because it is strongly bonded to an adherend. From the viewpoint of achieving more reliable bonding, the adhesive strength may be, for example, 11 N/20 mm or more, preferably 12 N/20 mm or more, 13 N/20 mm or more, 14 N/20 mm or more, or 15 N/20 mm or more. The upper limit of the adhesive strength is not particularly limited, and in some aspects, the adhesive strength may be, for example, 50 N/20 mm or less, 30 N/20 mm or less, or 25 N/20 mm or less. Specifically, the adhesion to SUS is measured by the method described in Examples below.
 ここに開示される粘着シートは、80℃、荷重1kg、1時間の条件で実施される保持力試験において、当該試験1時間内に落下しない保持力を有することが好ましい。かかる高温保持力を示す粘着シートは、室温よりも高い温度域(例えば40℃以上の温度)においても良好な保持性能を発揮することができる。粘着シートは、上記保持力試験後のズレ距離が5.0mm以下(例えば3.0mm以下)であることが適当である。より高い保持性能を発揮する観点から、上記ズレ距離は、2.0mm未満であることが好ましく、1.0mm未満であることがより好ましく、0.5mm未満であることがさらに好ましく、0.3mm未満(例えば0.1mm以下)であることが特に好ましい。上記ズレ距離の下限は0.0mmであり、これは上記保持力試験においてズレが観察されないことを意味する。上記保持力試験は、具体的には後述の実施例に記載の方法で実施される。 The pressure-sensitive adhesive sheet disclosed herein preferably has a holding power that does not fall off within 1 hour of the holding power test conducted under the conditions of 80°C, 1 kg load, and 1 hour. A pressure-sensitive adhesive sheet exhibiting such high-temperature holding power can exhibit good holding performance even in a temperature range higher than room temperature (for example, a temperature of 40° C. or higher). It is suitable that the pressure-sensitive adhesive sheet has a displacement distance of 5.0 mm or less (for example, 3.0 mm or less) after the holding force test. From the viewpoint of exhibiting higher retention performance, the displacement distance is preferably less than 2.0 mm, more preferably less than 1.0 mm, even more preferably less than 0.5 mm, and particularly preferably less than 0.3 mm (e.g., 0.1 mm or less). The lower limit of the displacement distance is 0.0 mm, which means that no displacement is observed in the holding force test. Specifically, the holding force test is carried out by the method described in Examples below.
 <粘着剤層>
 ここに開示される粘着シートにおいて、粘着剤層の厚さは特に限定されず、目的に応じて適宜選択することができる。いくつかの態様において、粘着シートが適用される製品(例えば携帯電子機器)の軽量化、小型化、薄厚化、高機能化等の観点から、粘着剤層の厚さは、例えば100μm以下であることが適当であり、好ましくは50μm以下であり、より好ましくは35μm以下、さらに好ましくは30μm以下、特に好ましくは25μm以下であり、例えば22μm以下であってもよい。ここに開示される技術によると、上記のような薄厚の粘着剤層を良好な品質で生産性よく形成することができる。粘着剤層の厚さは、通常、3μm以上であることが適当であり、5μm以上であることが好ましい。より高い高温保持力を発揮する粘着シートを実現しやすくする観点から、いくつかの態様において、粘着剤層の厚さは、例えば8μm以上であってよく、12μm以上が好ましく、15μm以上でもよく、18μm以上でもよい。ここに開示される粘着シートが基材の両面に粘着剤層を備える両面粘着シートの場合、各粘着剤層の厚さは、同じであってもよく、異なっていてもよい。
<Adhesive layer>
In the pressure-sensitive adhesive sheet disclosed herein, the thickness of the pressure-sensitive adhesive layer is not particularly limited, and can be appropriately selected depending on the purpose. In some embodiments, the thickness of the adhesive layer is, for example, 100 μm or less, preferably 50 μm or less, more preferably 35 μm or less, even more preferably 30 μm or less, particularly preferably 25 μm or less, and may be, for example, 22 μm or less, from the viewpoint of weight reduction, miniaturization, thin thickness, high functionality, etc. of products to which the adhesive sheet is applied (e.g., portable electronic devices). According to the technology disclosed herein, it is possible to form such a thin pressure-sensitive adhesive layer with good quality and high productivity. The thickness of the pressure-sensitive adhesive layer is usually suitably 3 μm or more, preferably 5 μm or more. From the viewpoint of facilitating the realization of a pressure-sensitive adhesive sheet exhibiting higher high-temperature holding power, in some embodiments, the thickness of the pressure-sensitive adhesive layer may be, for example, 8 μm or more, preferably 12 μm or more, 15 μm or more, or 18 μm or more. When the pressure-sensitive adhesive sheet disclosed herein is a double-sided pressure-sensitive adhesive sheet having pressure-sensitive adhesive layers on both sides of a substrate, the thickness of each pressure-sensitive adhesive layer may be the same or different.
 <基材>
 ここに開示される粘着シートは、基材の片面または両面に粘着剤層を備える基材付き粘着シートの形態であり得る。基材としては、各種のシート状基材を用いることができ、例えば樹脂フィルム、紙、布、ゴムシート、発泡体シート、金属箔、これらの複合体等を用いることができる。電子機器用の分野においては、塵埃(例えば紙粉等の、微小な繊維または粒子)の発生源となりにくい基材が好ましく用いられ得る。かかる観点から、紙や布等の繊維状物を含まない基材が好ましく、例えば樹脂フィルム、ゴムシート、発泡体シート、金属箔、これらの複合体等を好ましく使用し得る。
<Base material>
The pressure-sensitive adhesive sheet disclosed herein can be in the form of a pressure-sensitive adhesive sheet with a substrate having a pressure-sensitive adhesive layer on one or both sides of the substrate. Various sheet-like substrates can be used as the substrate, and for example, resin films, papers, cloths, rubber sheets, foam sheets, metal foils, composites thereof, and the like can be used. In the field of electronic devices, substrates that are less likely to generate dust (for example, fine fibers or particles such as paper dust) can be preferably used. From this point of view, substrates that do not contain fibrous materials such as paper and cloth are preferable, and for example, resin films, rubber sheets, foam sheets, metal foils, composites thereof, and the like can be preferably used.
 樹脂フィルムの例としては、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート等のポリエステルフィルム;塩化ビニル樹脂フィルム;ポリエチレン(PE)、ポリプロピレン(PP)、エチレン-プロピレン共重合体、エチレン-ブテン共重合体等のポリオレフィンフィルム;塩化ビニリデン樹脂フィルム;酢酸ビニル樹脂フィルム;ポリスチレンフィルム;ポリアセタールフィルム;ポリイミドフィルム;ポリアミドフィルム;フッ素樹脂フィルム;セロハン;等が挙げられる。ゴムシートの例としては、天然ゴムシート、ブチルゴムシート等が挙げられる。発泡体シートの例としては、発泡ポリウレタンシート、発泡ポリオレフィンシート等が挙げられる。金属箔の例としては、アルミニウム箔、銅箔等が挙げられる。 Examples of resin films include polyester films such as polyethylene terephthalate (PET) and polyethylene naphthalate; vinyl chloride resin films; polyolefin films such as polyethylene (PE), polypropylene (PP), ethylene-propylene copolymers, and ethylene-butene copolymers; vinylidene chloride resin films; vinyl acetate resin films; Examples of rubber sheets include natural rubber sheets and butyl rubber sheets. Examples of foam sheets include foamed polyurethane sheets and foamed polyolefin sheets. Examples of metal foil include aluminum foil and copper foil.
 上記基材としては、樹脂フィルムの使用が好適である。樹脂フィルムは、寸法安定性、厚み精度、経済性(コスト)、加工性、引張強度に優れる材料として、好ましく用いられる。また、樹脂フィルム(例えば後述するPETフィルム等のポリエステルフィルム)はリサイクルが可能であるので、植物由来の材料を用いているか否かにかかわらず、使用後の樹脂フィルムを再利用することで、持続的な再生産が可能であり、環境負荷を低減することができる。このような、リサイクル可能な樹脂フィルムや、リサイクルされた樹脂フィルムは、リサイクルフィルムともいう。このような樹脂フィルムのリサイクル性は、上述の剥離ライナーに用いられる樹脂フィルムにも適用され得る。なお、この明細書において「樹脂フィルム」とは、典型的には非多孔質のフィルムであって、いわゆる不織布や織布とは区別される概念である。 A resin film is preferably used as the base material. A resin film is preferably used as a material excellent in dimensional stability, thickness accuracy, economy (cost), workability and tensile strength. In addition, since the resin film (for example, a polyester film such as a PET film described later) can be recycled, by reusing the resin film after use, regardless of whether or not a plant-derived material is used, sustainable reproduction is possible and the environmental load can be reduced. Such recyclable resin films and recycled resin films are also referred to as recycled films. Such recyclability of the resin film can also be applied to the resin film used for the release liner described above. In this specification, the term "resin film" is typically a non-porous film, and is a concept distinguished from so-called nonwoven fabrics and woven fabrics.
 いくつかの態様において、強度や加工性の観点から、上記基材としてポリエステルフィルムを好ましく採用し得る。ポリエステルフィルムを構成するポリエステル樹脂としては、典型的には、ジカルボン酸とジオールを重縮合して得られるポリエステルを主成分として含むポリエステル樹脂が用いられる。 In some embodiments, a polyester film can be preferably used as the substrate from the viewpoint of strength and workability. As the polyester resin constituting the polyester film, a polyester resin containing polyester obtained by polycondensation of a dicarboxylic acid and a diol as a main component is typically used.
 上記ポリエステルを構成するジカルボン酸としては、例えば、フタル酸、イソフタル酸、テレフタル酸、2-メチルテレフタル酸、5-スルホイソフタル酸、4,4’-ジフェニルジカルボン酸、4,4’-ジフェニルエーテルジカルボン酸、4,4’-ジフェニルケトンジカルボン酸、4,4’-ジフェノキシエタンジカルボン酸、4,4’-ジフェニルスルホンジカルボン酸、1,4-ナフタレンジカルボン酸、1,5-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、2,7-ナフタレンジカルボン酸等の芳香族ジカルボン酸;1,2-シクロヘキサンジカルボン酸、1,3-シクロヘキサンジカルボン酸、1,4-シクロヘキサンジカルボン酸等の脂環式ジカルボン酸;マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ドデカン酸等の脂肪族ジカルボン酸;マレイン酸、無水マレイン酸、フマル酸等の不飽和ジカルボン酸;これらの誘導体(例えば、テレフタル酸等の上記ジカルボン酸の低級アルキルエステル等);等が挙げられる。これらは1種を単独でまたは2種以上を組み合わせて用いることができる。 Examples of dicarboxylic acids constituting the polyester include phthalic acid, isophthalic acid, terephthalic acid, 2-methylterephthalic acid, 5-sulfoisophthalic acid, 4,4'-diphenyldicarboxylic acid, 4,4'-diphenyletherdicarboxylic acid, 4,4'-diphenylketonedicarboxylic acid, 4,4'-diphenoxyethanedicarboxylic acid, 4,4'-diphenylsulfonedicarboxylic acid, 1,4-naphthalenedicarboxylic acid, 1,5- aromatic dicarboxylic acids such as naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid and 2,7-naphthalenedicarboxylic acid; alicyclic dicarboxylic acids such as 1,2-cyclohexanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid and 1,4-cyclohexanedicarboxylic acid; aliphatic dicarboxylic acids such as malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid and dodecanoic acid; Unsaturated dicarboxylic acids such as leic acid and fumaric acid; derivatives thereof (for example, lower alkyl esters of the above dicarboxylic acids such as terephthalic acid); These can be used individually by 1 type or in combination of 2 or more types.
 上記ポリエステルを構成するジオールとしては、例えば、エチレングリコール、ジエチレングリコール、ポリエチレングリコール、プロピレングリコール、ポリプロピレングリコール、1,3-プロパンジオール、1,5-ペンタンジオール、ネオペンチルグリコール、1,4-ブタンジオール、1,6-ヘキサンジオール、1,8-オクタンジオール、ポリオキシテトラメチレングリコール等の脂肪族ジオール;1,2-シクロヘキサンジオール、1,4-シクロヘキサンジオール、1,1-シクロヘキサンジメチロール、1,4-シクロヘキサンジメチロール等の脂環式ジオール、キシリレングリコール、4,4’-ジヒドロキシビフェニル、2,2-ビス(4’-ヒドロキシフェニル)プロパン、ビス(4-ヒドロキシフェニル)スルホン等の芳香族ジオール;等が挙げられる。これらは1種を単独でまたは2種以上を組み合わせて用いることができる。透明性等の観点から脂肪族ジオールが好ましく、エチレングリコールが特に好ましい。上記ポリエステルを構成するジオールに占める脂肪族ジオール(好ましくはエチレングリコール)の割合は、50重量%以上(例えば80重量%以上、典型的には95重量%以上)であることが好ましい。上記ジオールは、実質的にエチレングリコールのみから構成されていてもよい。上記エチレングリコールとしては、バイオマス由来のエチレングリコール(典型的には、バイオマスエタノールを原料として得られるバイオマスエチレングリコール)が好ましく用いられ得る。例えば、上記ポリエステルを構成するエチレングリコールのうちバイオマス由来のエチレングリコールの占める割合は、例えば50重量%以上であってよく、75重量%以上であることが好ましく、90重量%以上でもよく、95重量%以上でもよい。上記エチレングリコールの実質的に全部がバイオマス由来のエチレングリコールであってもよい。 Examples of diols constituting the polyester include aliphatic diols such as ethylene glycol, diethylene glycol, polyethylene glycol, propylene glycol, polypropylene glycol, 1,3-propanediol, 1,5-pentanediol, neopentyl glycol, 1,4-butanediol, 1,6-hexanediol, 1,8-octanediol, and polyoxytetramethylene glycol; 1,2-cyclohexanediol, 1,4-cyclohexanediol, 1,1-cyclohexanedimethylol, , 4-cyclohexanedimethylol, xylylene glycol, 4,4'-dihydroxybiphenyl, 2,2-bis(4'-hydroxyphenyl)propane, bis(4-hydroxyphenyl)sulfone, and other aromatic diols. These can be used individually by 1 type or in combination of 2 or more types. Aliphatic diols are preferred from the viewpoint of transparency and the like, and ethylene glycol is particularly preferred. The ratio of the aliphatic diol (preferably ethylene glycol) to the diols constituting the polyester is preferably 50% by weight or more (for example, 80% by weight or more, typically 95% by weight or more). The diol may consist essentially of ethylene glycol. As the ethylene glycol, biomass-derived ethylene glycol (typically, biomass ethylene glycol obtained using biomass ethanol as a raw material) can be preferably used. For example, the proportion of biomass-derived ethylene glycol in the ethylene glycol constituting the polyester may be, for example, 50% by weight or more, preferably 75% by weight or more, 90% by weight or more, or 95% by weight or more. Substantially all of the ethylene glycol may be biomass-derived ethylene glycol.
 ポリエステル樹脂フィルムの例としては、ポリエチレンテレフタレート(PET)フィルム、ポリブチレンテレフタレート(PBT)フィルム、ポリエチレンナフタレート(PEN)フィルム、ポリブチレンナフタレートフィルム等が挙げられる。 Examples of polyester resin films include polyethylene terephthalate (PET) film, polybutylene terephthalate (PBT) film, polyethylene naphthalate (PEN) film, and polybutylene naphthalate film.
 ここに開示される基材がポリエステルフィルム基材である場合、該ポリエステルフィルム基材は、ポリエステルに加えて上記ポリエステル以外のポリマーを含んでもよい。上記ポリエステル以外のポリマーとしては、上述の基材を構成し得る樹脂フィルムとして例示した各種ポリマー材料のうち、ポリエステル以外のものが好適例として挙げられる。ここに開示されるポリエステルフィルム基材がポリエステルに加えて上記ポリエステル以外のポリマーを含む場合、該ポリエステル以外のポリマーの含有量は、ポリエステル100重量部に対して100重量部未満とすることが適当であり、50重量部以下が好ましく、30重量部以下がより好ましく、10重量部以下がさらに好ましい。ポリエステル以外のポリマーの含有量は、ポリエステル100重量部に対して5重量部以下であってもよく、1重量部以下であってもよい。ここに開示される技術は、例えば、ポリエステルフィルム基材の99.5~100重量%がポリエステルである態様で好ましく実施され得る。 When the substrate disclosed herein is a polyester film substrate, the polyester film substrate may contain a polymer other than the above polyester in addition to polyester. Preferred examples of the polymer other than polyester include, among the various polymer materials exemplified as the resin film that can constitute the base material, those other than polyester. When the polyester film substrate disclosed herein contains a polymer other than the polyester in addition to the polyester, the content of the polymer other than the polyester is suitably less than 100 parts by weight, preferably 50 parts by weight or less, more preferably 30 parts by weight or less, and even more preferably 10 parts by weight or less, relative to 100 parts by weight of the polyester. The content of the polymer other than polyester may be 5 parts by weight or less, or may be 1 part by weight or less with respect to 100 parts by weight of polyester. The technology disclosed herein can be preferably practiced, for example, in a mode in which 99.5 to 100% by weight of the polyester film substrate is polyester.
 他のいくつかの態様において、強度と柔軟性の観点から、上記基材としてポリオレフィンフィルムを好ましく採用し得る。ポリオレフィンフィルムは、α-オレフィンを主モノマー(モノマー成分のなかの主成分)とする重合体を主成分とするフィルムである。上記重合体の割合は、通常は50重量%以上(例えば80重量%以上、典型的には90~100重量%)である。ポリオレフィンの具体例としては、エチレンを主モノマーとするもの(ポリエチレン)、プロピレンを主モノマーとするもの(ポリプロピレン)等が挙げられる。上記ポリエチレンは、エチレンの単独重合体であってもよく、エチレンと他のオレフィン(例えば、炭素原子数が3~10のα-オレフィンから選択される1種または2種以上)との共重合体であってもよく、エチレンとオレフィン以外のモノマー(例えば、酢酸ビニル、アクリル酸、メタクリル酸、アクリル酸メチル、アクリル酸エチル等のエチレン性不飽和モノマーから選択される1種または2種以上)との共重合体であってもよい。また、上記ポリプロピレンは、プロピレンの単独重合体であってもよく、プロピレンと他のオレフィン(例えば、炭素原子数が2,4~10のα-オレフィンから選択される1種または2種以上)との共重合体であってもよく、プロピレンとオレフィン以外のモノマーとの共重合体であってもよい。ここに開示される基材は、上記のうち1種のポリオレフィンのみを含んでもよく、2種以上のポリオレフィンを含んでもよい。 In some other embodiments, a polyolefin film can be preferably used as the substrate from the viewpoint of strength and flexibility. A polyolefin film is a film whose main component is a polymer containing α-olefin as a main monomer (main component among monomer components). The proportion of the polymer is usually 50% by weight or more (eg 80% by weight or more, typically 90-100% by weight). Specific examples of polyolefins include those containing ethylene as the main monomer (polyethylene) and those containing propylene as the main monomer (polypropylene). The polyethylene may be a homopolymer of ethylene, a copolymer of ethylene and another olefin (e.g., one or more selected from α-olefins having 3 to 10 carbon atoms), or a copolymer of ethylene and a monomer other than an olefin (e.g., one or more selected from ethylenically unsaturated monomers such as vinyl acetate, acrylic acid, methacrylic acid, methyl acrylate and ethyl acrylate). The polypropylene may be a homopolymer of propylene, a copolymer of propylene and other olefins (for example, one or more selected from α-olefins having 2,4 to 10 carbon atoms), or a copolymer of propylene and a monomer other than an olefin. The substrates disclosed herein may contain only one of the above polyolefins, or may contain two or more polyolefins.
 ここに開示される基材がポリオレフィンフィルム基材である場合、該ポリオレフィンフィルム基材は、ポリオレフィンに加えて上記ポリオレフィン以外のポリマーを含んでもよい。上記ポリオレフィン以外のポリマーとしては、上述の基材を構成し得る樹脂フィルムとして例示した各種ポリマー材料のうち、ポリオレフィン以外のものが好適例として挙げられる。ここに開示されるポリオレフィンフィルム基材がポリオレフィンに加えて上記ポリオレフィン以外のポリマーを含む場合、該ポリオレフィン以外のポリマーの含有量は、ポリオレフィン100重量部に対して100重量部未満とすることが適当であり、50重量部以下が好ましく、30重量部以下がより好ましく、10重量部以下がさらに好ましい。ポリオレフィン以外のポリマーの含有量は、ポリオレフィン100重量部に対して5重量部以下であってもよく、1重量部以下であってもよい。ここに開示される技術は、例えば、ポリオレフィンフィルム基材の99.5~100重量%がポリオレフィンである態様で好ましく実施され得る。 When the substrate disclosed herein is a polyolefin film substrate, the polyolefin film substrate may contain a polymer other than the above polyolefin in addition to polyolefin. Preferred examples of the polymer other than polyolefin include those other than polyolefin among the various polymer materials exemplified as the resin film that can constitute the base material. When the polyolefin film substrate disclosed herein contains a polymer other than the polyolefin in addition to the polyolefin, the content of the polymer other than the polyolefin is suitably less than 100 parts by weight, preferably 50 parts by weight or less, more preferably 30 parts by weight or less, and even more preferably 10 parts by weight or less, relative to 100 parts by weight of the polyolefin. The content of the polymer other than polyolefin may be 5 parts by weight or less, or may be 1 part by weight or less with respect to 100 parts by weight of polyolefin. The technology disclosed herein can be preferably practiced, for example, in a mode in which 99.5 to 100% by weight of the polyolefin film substrate is polyolefin.
 ここに開示される基材は、化石資源系材料の使用量低減の観点から、バイオマス材料を含むことが好ましい。上記基材を構成し得るバイオマス材料は特に限定されないが、例えば、バイオマスPET、バイオマスポリトリメチレンテレフタレート(バイオマスPTT)等のバイオマスポリエステル;ポリ乳酸;バイオマス高密度ポリエチレン(バイオマスHDPE)、バイオマス低密度ポリエチレン(バイオマスLDPE)、バイオマス直鎖状低密度ポリエチレン(バイオマスLLDPE)等のバイオマスポリエチレン、バイオマスポリプロピレン(バイオマスPP)等のバイオマスポリオレフィン;バイオマスポリ(3-ヒドロキシブチレート-co-3-ヒドロキシヘキサノエート);ポリヘキサメチレンセバカミド、ポリ(キシリレンセバカミド)等のバイオマスポリアミド;バイオマスポリエステルエーテルウレタン、バイオマスポリエーテルウレタン等のバイオマスポリウレタン;セルロース系樹脂;等が挙げられる。これらは1種を単独でまたは2種以上を組み合わせて用いることができる。なかでも、バイオマスPET、バイオマスPTTが好ましく、バイオマスHDPE、バイオマスLDPE、バイオマスLLDPE、バイオマスPP、バイオマスPETが特に好ましい。上記のバイオマス材料は樹脂材料であることから、基材が樹脂フィルムである構成に好ましく適用され得る。上記のバイオマス材料を用いることによって、樹脂フィルム(好ましくはポリオレフィンフィルム)を基材とする粘着シートにおいて、化石資源系材料の使用量を低減することができる。 From the viewpoint of reducing the amount of fossil resource-based materials used, the base material disclosed here preferably contains a biomass material. The biomass material that can constitute the base material is not particularly limited, but for example, biomass polyester such as biomass PET and biomass polytrimethylene terephthalate (biomass PTT); polylactic acid; hexanoate); biomass polyamides such as polyhexamethylene sebacamide and poly(xylylene sebacamide); biomass polyurethanes such as biomass polyester ether urethane and biomass polyether urethane; cellulosic resin; These can be used individually by 1 type or in combination of 2 or more types. Among them, biomass PET and biomass PTT are preferred, and biomass HDPE, biomass LDPE, biomass LLDPE, biomass PP and biomass PET are particularly preferred. Since the biomass material described above is a resin material, it can be preferably applied to a configuration in which the substrate is a resin film. By using the above biomass material, the amount of fossil resource-based material used can be reduced in the pressure-sensitive adhesive sheet having a resin film (preferably polyolefin film) as a base material.
 基材を備える態様の粘着シートにおいて、該基材のバイオ率は、20%以上であることが好ましく、35%以上であることがより好ましい。化石資源系材料の使用量低減をより重視する場合には、基材のバイオ率は、例えば50%以上であってよく、70%以上でもよく、85%以上でもよく、90%以上でもよい。上記バイオ率の上限は100%以下であるが、いくつかの態様においては、加工性や強度等を考慮して、基材のバイオ率は、例えば80%以下であってよく、60%以下でもよく、40%以下でもよく、20%未満でもよい。 In the pressure-sensitive adhesive sheet having a base material, the bio rate of the base material is preferably 20% or more, more preferably 35% or more. When more emphasis is placed on reducing the amount of fossil resource-based materials used, the bio rate of the substrate may be, for example, 50% or higher, 70% or higher, 85% or higher, or 90% or higher. Although the upper limit of the bio rate is 100% or less, in some embodiments, the bio rate of the base material may be, for example, 80% or less, 60% or less, 40% or less, or less than 20% in consideration of workability, strength, and the like.
 基材は、透明性を有するものであってもよく、遮光性や減光性を有するものであってもよい。いくつかの態様において、基材(例えば樹脂フィルム)には着色剤を含有させることができる。これにより基材の光透過性(遮光性)を調整することができる。基材の光透過性(例えば垂直光透過率)を調整することは、該基材の光透過性、さらには該基材を含む粘着シートの光透過性の調整にも役立ち得る。 The base material may have transparency, or may have light shielding or dimming properties. In some embodiments, the substrate (eg, resin film) can contain a colorant. Thereby, the light transmittance (light shielding property) of the substrate can be adjusted. Adjusting the light transmittance (for example, normal light transmittance) of the substrate can also help adjust the light transmittance of the substrate and further the light transmittance of the pressure-sensitive adhesive sheet including the substrate.
 着色剤としては、粘着剤層に含有させ得る着色剤と同様、従来公知の顔料や染料を用いることができる。着色剤は、特に制限されず、例えば、黒色、灰色、白色、赤色、青色、黄色、緑色、黄緑色、橙色、紫色、金色、銀色、パール色等の着色剤であり得る。 As the coloring agent, conventionally known pigments and dyes can be used in the same manner as the coloring agent that can be contained in the adhesive layer. The coloring agent is not particularly limited, and may be, for example, black, gray, white, red, blue, yellow, green, yellow-green, orange, purple, gold, silver, pearl color, and the like.
 基材は、ベースフィルム(好ましくは樹脂フィルム)の表面に配置された着色層により着色されていてもよい。このようにベースフィルムと着色層を含む構成の基材において、上記ベースフィルムは、着色剤を含んでもよく、含まなくてもよい。上記着色層は、ベースフィルムのいずれか一方の表面に配置されてもよく、両方の表面にそれぞれ配置されてもよい。ベースフィルムの両方の表面にそれぞれ着色層を配置した構成において、それらの着色層の構成は、同一であってもよく、異なってもよい。着色層を配置することにより、粘着シートの色味や透過性は調節され、所望の意匠性や、遮光性、隠蔽性を得ることができる。着色層の色は、特に限定されず、目的に応じて、種々の色彩が採用され得る。いくつかの態様において、着色層は、例えば黒色印刷により形成された黒色層(例えば黒色印刷層)であり得る。 The substrate may be colored with a colored layer arranged on the surface of the base film (preferably resin film). In such a substrate having a structure including a base film and a colored layer, the base film may or may not contain a coloring agent. The colored layer may be arranged on either one surface of the base film, or may be arranged on both surfaces. In the configuration in which the colored layers are arranged on both surfaces of the base film, the configurations of the colored layers may be the same or different. By arranging the colored layer, the color and transparency of the pressure-sensitive adhesive sheet can be adjusted, and desired design properties, light-shielding properties, and hiding properties can be obtained. The color of the colored layer is not particularly limited, and various colors can be adopted depending on the purpose. In some embodiments, the colored layer may be a black layer (eg, black printed layer) formed by, for example, black printing.
 着色層は、例えば、着色剤およびバインダーを含有する着色層形成用組成物を、ベースフィルムに塗布して形成することができる。バインダーとしては、塗料または印刷の分野において公知の材料を特に制限なく使用することができる。例えば、ポリウレタン、フェノール樹脂、エポキシ樹脂、尿素メラミン樹脂、ポリメタクリル酸メチル等が例示される。着色層形成用組成物は、例えば、溶剤型、紫外線硬化型、熱硬化型等であり得る。着色層の形成は、従来より着色層の形成に採用されている手段を特に制限なく採用して行うことができる。例えば、グラビア印刷、フレキソ印刷、オフセット印刷等の印刷により着色層(印刷層)を形成する方法を好ましく採用し得る。 The colored layer can be formed, for example, by applying a colored layer-forming composition containing a coloring agent and a binder to the base film. Materials known in the field of coatings or printing can be used as binders without particular limitations. Examples include polyurethane, phenol resin, epoxy resin, urea melamine resin, polymethyl methacrylate, and the like. The colored layer-forming composition may be, for example, a solvent type, an ultraviolet curable type, a heat curable type, or the like. The formation of the colored layer can be carried out by adopting means conventionally used for forming the colored layer without particular limitation. For example, a method of forming a colored layer (printed layer) by printing such as gravure printing, flexographic printing, and offset printing can be preferably employed.
 着色層は、全体が1層からなる単層構造であってもよく、2層、3層またはそれ以上のサブ着色層を含む多層構造であってもよい。2層以上のサブ着色層を含む多層構造の着色層は、例えば、着色層形成用組成物の塗布(例えば印刷)を繰り返して行うことにより形成することができる。各サブ着色層に含まれる着色剤の色や配合量は、同一であってもよく、異なってもよい。遮光性を付与するための着色層では、ピンホールの発生を防止して光漏れ防止の信頼性を高める観点から、多層構造とすることが特に有意義である。 The colored layer may have a single layer structure consisting entirely of one layer, or may have a multilayer structure including two, three or more sub-colored layers. A colored layer having a multi-layer structure including two or more sub-colored layers can be formed, for example, by repeatedly applying (for example, printing) a composition for forming a colored layer. The colors and blending amounts of the colorants contained in each sub-colored layer may be the same or different. From the viewpoint of preventing the formation of pinholes and increasing the reliability of preventing light leakage, it is particularly significant to have a multi-layer structure in the colored layer for imparting light-shielding properties.
 着色層の着色に使用する着色剤としては、目的とする色に応じた公知の顔料や染料を適宜選択することができる。特に限定するものではないが、白色顔料の例としては、二酸化チタン、亜鉛華、鉛白等が挙げられる。黒色顔料の例としては、カーボンブラック、アセチレンブラック、松煙、黒鉛等が挙げられる。これらは1種を単独でまたは2種以上を組み合わせて用いることができる。 As the coloring agent used for coloring the colored layer, a known pigment or dye can be appropriately selected according to the desired color. Examples of white pigments include, but are not limited to, titanium dioxide, zinc white, white lead, and the like. Examples of black pigments include carbon black, acetylene black, pine smoke, graphite and the like. These can be used individually by 1 type or in combination of 2 or more types.
 着色剤の含有量は、要求される色味や光透過性等に応じて設定されるため特定の範囲に限定されるものではないが、着色層中、凡そ1重量%以上とすることが適当であり、好ましくは2重量%以上(例えば5重量%以上)であり、15重量%以上であり得る。また、上記着色剤の含有量は、凡そ65重量%以下とすることが適当であり、好ましくは30重量%以下(例えば15重量%以下)であり、8重量%以下であってもよい。 The content of the coloring agent is set according to the required color tone, light transmittance, etc., and is not limited to a specific range. The content of the coloring agent is suitably about 65% by weight or less, preferably 30% by weight or less (for example, 15% by weight or less), and may be 8% by weight or less.
 着色層全体の厚さは、通常、0.1μm以上が適当であり、好ましくは0.5μm以上、より好ましくは0.7μm以上である。着色層全体の厚さは、凡そ0.8μm以上であってもよく、凡そ1μm以上であってもよい。他のいくつかの態様では、十分な遮光性を得る観点から、着色層全体の厚さを2μm以上(例えば3μm以上)としてもよく、4μm以上としてもよい。また、上記着色層全体の厚さは、通常は10μm以下が適当であり、好ましくは7μm以下、より好ましくは5μm以下である。いくつかの態様において、着色層全体の厚さは、凡そ3μm以下とすることができ、さらには凡そ2μm以下とすることができる。2層以上のサブ着色層を含む着色層において、各サブ着色層の厚さは、通常、0.5μm~2μm程度が好ましい。 The thickness of the entire colored layer is usually appropriately 0.1 μm or more, preferably 0.5 μm or more, and more preferably 0.7 μm or more. The thickness of the entire colored layer may be about 0.8 μm or more, or about 1 μm or more. In some other embodiments, the thickness of the entire colored layer may be 2 μm or more (eg, 3 μm or more) or 4 μm or more from the viewpoint of obtaining sufficient light shielding properties. The thickness of the entire colored layer is usually 10 μm or less, preferably 7 μm or less, and more preferably 5 μm or less. In some embodiments, the total color layer thickness can be about 3 μm or less, or even about 2 μm or less. In the colored layer including two or more sub-colored layers, the thickness of each sub-colored layer is preferably about 0.5 μm to 2 μm.
 基材(例えば樹脂フィルムやゴムシート、発泡体シート等)の粘着剤層が配置される面(粘着剤層側表面)には、コロナ放電処理、プラズマ処理、紫外線照射処理、酸処理、アルカリ処理、下塗り層の形成等の、公知または慣用の表面処理が施されていてもよい。このような表面処理は、基材と粘着剤層との密着性、言い換えると粘着剤層の基材への投錨性を向上させるための処理であり得る。あるいは、上記基材は、上記粘着剤層側表面に投錨性を向上させるような表面処理が施されていないものであってもよい。下塗り層を形成する場合、該形成に使用する下塗り剤(プライマー)は特に限定されず、公知のものから適宜選択することができる。下塗り層の厚さは特に制限されず、例えば0.01μm超とすることができ、通常は0.1μm以上とすることが適当であり、効果を高める観点から0.2μm以上としてもよい。また、下塗り層の厚さは、1.0μm未満とすることが好ましく、0.7μm以下でもよく、0.5μm以下でもよい。一般的にプライマーは化石資源系材料への依存度が高いことから、下塗り層の厚さが大きすぎないことは、後述する粘着シートのバイオ率を低減する観点から有利となり得る。 The surface (adhesive layer side surface) of the base material (for example, resin film, rubber sheet, foam sheet, etc.) on which the adhesive layer is arranged may be subjected to known or commonly used surface treatments such as corona discharge treatment, plasma treatment, ultraviolet irradiation treatment, acid treatment, alkali treatment, and formation of an undercoat layer. Such a surface treatment can be a treatment for improving the adhesion between the substrate and the adhesive layer, in other words, the anchoring property of the adhesive layer to the substrate. Alternatively, the base material may not be subjected to a surface treatment for improving the anchoring property on the pressure-sensitive adhesive layer side surface. When forming the undercoat layer, the undercoat agent (primer) used for the formation is not particularly limited, and can be appropriately selected from known ones. The thickness of the undercoat layer is not particularly limited, and can be, for example, more than 0.01 μm. The thickness of the undercoat layer is preferably less than 1.0 μm, and may be 0.7 μm or less, or 0.5 μm or less. Since primers are generally highly dependent on fossil resource-based materials, not having an excessively large thickness of the undercoat layer can be advantageous from the viewpoint of reducing the bio-rate of the pressure-sensitive adhesive sheet, which will be described later.
 基材の片面に粘着剤層が設けられた片面粘着シートの場合、基材の粘着剤層非形成面(背面)には、剥離処理剤(背面処理剤)によって剥離処理が施されていてもよい。背面処理層の形成に用いられ得る背面処理剤としては、特に限定されず、シリコーン系背面処理剤やフッ素系背面処理剤、長鎖アルキル系背面処理剤その他の公知または慣用の処理剤を目的や用途に応じて用いることができる。背面処理剤は1種を単独でまたは2種以上を組み合わせて用いることができる。 In the case of a single-sided PSA sheet in which an adhesive layer is provided on one side of the substrate, the adhesive layer non-formed surface (back surface) of the substrate may be subjected to a release treatment with a release treatment agent (back surface treatment agent). The back-treatment agent that can be used to form the back-treatment layer is not particularly limited, and silicone-based back-treatment agents, fluorine-based back-treatment agents, long-chain alkyl-based back-treatment agents, and other known or commonly used treatment agents can be used depending on the purpose and application. The back surface treatment agents can be used singly or in combination of two or more.
 基材(例えば樹脂フィルム基材)には、必要に応じて、充填剤(無機充填剤、有機充填剤等)、老化防止剤、酸化防止剤、紫外線吸収剤、帯電防止剤、滑剤、可塑剤、着色剤(顔料、染料等)等の各種添加剤が配合されていてもよい。各種添加剤の配合割合は、通常は30重量%以下(例えば20重量%以下、典型的には10重量%以下)程度である。例えば、基材に顔料(例えば白色顔料)を含ませる場合、その含有割合は0.1~10重量%(例えば1~8重量%、典型的には1~5重量%)程度とすることが適当である。 Various additives such as fillers (inorganic fillers, organic fillers, etc.), anti-aging agents, antioxidants, UV absorbers, antistatic agents, lubricants, plasticizers, colorants (pigments, dyes, etc.) may be added to the base material (for example, resin film base material) as necessary. The blending ratio of various additives is usually about 30% by weight or less (for example, 20% by weight or less, typically 10% by weight or less). For example, when a pigment (for example, a white pigment) is included in the base material, the content is appropriately about 0.1 to 10% by weight (for example, 1 to 8% by weight, typically 1 to 5% by weight).
 基材の厚さは特に限定されず、目的に応じて適宜選択できるが、一般的には1μm~500μm程度である。基材の取扱い性の観点から、上記基材の厚さは、例えば1.5μm以上であってよく、2μm以上でもよく、3μm以上でもよく、4μm以上でもよく、4.5μm以上でもよい。また、粘着シートの薄型化の観点から、いくつかの態様において、基材の厚さは、例えば150μm以下であってよく、100μm以下でもよく、50μm以下でもよく、25μm以下でもよく、20μm以下でもよく、10μm以下でもよく、7μm以下でもよく、5μm未満でもよく、4μm未満でもよい。 The thickness of the base material is not particularly limited and can be appropriately selected according to the purpose, but is generally about 1 μm to 500 μm. From the standpoint of handleability of the substrate, the thickness of the substrate may be, for example, 1.5 μm or more, 2 μm or more, 3 μm or more, 4 μm or more, or 4.5 μm or more. Further, from the viewpoint of thinning the pressure-sensitive adhesive sheet, in some aspects, the thickness of the substrate may be, for example, 150 μm or less, 100 μm or less, 50 μm or less, 25 μm or less, 20 μm or less, 10 μm or less, 7 μm or less, 5 μm or less, or 4 μm or less.
 上記より、ここに開示される技術によると、粘着剤層を有する粘着シートの製造方法が提供される。その詳細については、上記粘着剤組成物および粘着シートにおいて説明したとおりであるので、重複する説明は省略する。 As described above, according to the technology disclosed herein, a method for manufacturing an adhesive sheet having an adhesive layer is provided. Details thereof are as described in the above-mentioned adhesive composition and adhesive sheet, and redundant description is omitted.
 <用途>
 ここに開示される粘着シートの用途は特に限定されず、各種用途に制限なく用いることができる。例えば、粘着シートは、電子機器を構成する部材に貼り付けられる態様で、例えば部材の固定、接合、補強等の目的で使用することができる。ここに開示される粘着シートは、例えば両面粘着シートの形態で、部材を固定または接合する用途に好ましく利用され得る。かかる用途では、粘着シートが良好な接着力と保持力とを示すことが特に有意義である。上記両面粘着シートは、基材レスでもよく、基材付きでもよい。薄型化の観点から、いくつかの態様において、基材レスの両面粘着シートまたは薄手の基材を用いた基材付き両面粘着シートの形態が好ましく採用され得る。上記薄手の基材としては、厚さが10μm以下(例えば5μm未満)の基材が好ましく用いられ得る。
<Application>
The use of the pressure-sensitive adhesive sheet disclosed herein is not particularly limited, and it can be used for various purposes without limitation. For example, the pressure-sensitive adhesive sheet can be used for the purpose of fixing, bonding, reinforcing, etc. of the members in a mode of being attached to the members constituting the electronic device. The PSA sheet disclosed herein can be preferably used for fixing or joining members, for example, in the form of a double-sided PSA sheet. In such applications it is particularly significant that the adhesive sheet exhibits good adhesion and holding power. The double-sided pressure-sensitive adhesive sheet may be substrateless or may have a substrate. From the viewpoint of thinning, in some embodiments, a substrate-less double-sided PSA sheet or a substrate-attached double-sided PSA sheet using a thin substrate can be preferably employed. As the thin base material, a base material having a thickness of 10 μm or less (for example, less than 5 μm) can be preferably used.
 ここに開示される粘着シートは、例えば、携帯電子機器における部材固定用途に好適である。ここに開示される粘着シートは、良好な粘着特性を有し、薄厚の粘着剤層が品質よく、かつ生産性よく形成されたものであるので、軽量化、小型化、薄厚化、高機能化等の要請から、薄層の粘着剤が求められている携帯電子機器用途に好適である。また、ここに開示される粘着シートは、接着力と高温保持力とを両立する接着信頼性を有するものとなり得るので、高性能が求められる携帯電子機器用途に好適である。携帯電子機器の内部は、バッテリー等の発熱要素を含み得ることから、例えば40℃以上の温度に曝されることがあり、高温保持力に優れる粘着シートの使用が特に有意義である。上記携帯電子機器の非限定的な例には、携帯電話、スマートフォン、タブレット型パソコン、ノート型パソコン、各種ウェアラブル機器(例えば、腕時計のように手首に装着するリストウェア型、クリップやストラップ等で体の一部に装着するモジュラー型、メガネ型(単眼型や両眼型。ヘッドマウント型も含む。)を包含するアイウェア型、シャツや靴下、帽子等に例えばアクセサリの形態で取り付ける衣服型、イヤホンのように耳に取り付けるイヤウェア型等)、デジタルカメラ、デジタルビデオカメラ、音響機器(携帯音楽プレーヤー、ICレコーダー等)、計算機(電卓等)、携帯ゲーム機器、電子辞書、電子手帳、電子書籍、車載用情報機器、携帯ラジオ、携帯テレビ、携帯プリンター、携帯スキャナ、携帯モデム等が含まれる。ここに開示される粘着シートは、例えば、このような携帯電子機器のうち感圧センサを備える携帯電子機器内において、感圧センサと他の部材とを固定する目的で好ましく利用され得る。いくつかの好ましい態様において、粘着シートは、画面上の位置を指示するための装置(典型的にはペン型、マウス型の装置)と位置を検出するための装置とで、画面に対応する板(典型的にはタッチパネル)の上で絶対位置を指定することを可能とする機能を備える電子機器(典型的には携帯電子機器)内において、感圧センサと他の部材とを固定するために用いられ得る。なお、この明細書において「携帯」とは、単に携帯することが可能であるだけでは充分ではなく、個人(標準的な成人)が相対的に容易に持ち運び可能なレベルの携帯性を有することを意味するものとする。 The adhesive sheet disclosed here is suitable for use in fixing members in mobile electronic devices, for example. The pressure-sensitive adhesive sheet disclosed herein has good adhesive properties, and a thin pressure-sensitive adhesive layer is formed with good quality and high productivity. Therefore, the pressure-sensitive adhesive sheet disclosed herein is suitable for use in mobile electronic devices in which a thin layer pressure-sensitive adhesive is required due to demands such as weight reduction, miniaturization, thinness, and high functionality. In addition, the pressure-sensitive adhesive sheet disclosed herein can have adhesion reliability that achieves both adhesive strength and high-temperature holding power, and is therefore suitable for use in portable electronic devices that require high performance. Since the inside of a portable electronic device may contain a heat-generating element such as a battery, it may be exposed to temperatures of, for example, 40° C. or higher. Non-limiting examples of the above portable electronic devices include mobile phones, smartphones, tablet computers, notebook computers, various wearable devices (for example, wrist wear type worn on the wrist like a wristwatch, modular type worn on a part of the body with a clip or strap, eyewear type including glasses type (monocular type or binocular type, including head-mounted type), clothing type attached to shirts, socks, hats, etc. in the form of accessories, earwear type attached to ears like earphones, etc.), digital cameras, digital video cameras, audio equipment ( portable music players, IC recorders, etc.), calculators (calculators, etc.), portable game devices, electronic dictionaries, electronic notebooks, electronic books, in-vehicle information equipment, portable radios, portable TVs, portable printers, portable scanners, portable modems, etc. The pressure-sensitive adhesive sheet disclosed herein can be preferably used, for example, for the purpose of fixing a pressure-sensitive sensor and other members in a portable electronic device having a pressure-sensitive sensor among such portable electronic devices. In some preferred embodiments, the pressure-sensitive adhesive sheet is a device for indicating a position on the screen (typically a pen-type or mouse-type device) and a device for detecting the position, and can be used to fix pressure sensors and other members in an electronic device (typically a portable electronic device) having a function of specifying an absolute position on a board (typically a touch panel) corresponding to the screen. In this specification, the term “portable” means not only being able to be simply carried, but also having a level of portability that allows an individual (a typical adult) to carry it relatively easily.
 ここに開示される粘着シートが貼り付けられる材料(被着体材料)としては、特に限定されるものではないが、例えば、銅、鉄、アルミニウム、ステンレス鋼等の金属材料;各種樹脂材料(典型的にはプラスチック材);ガラス等の無機材料;等が挙げられる。上記樹脂材料としては、ポリイミド系樹脂、アクリル系樹脂、ポリエーテルニトリル系樹脂、ポリエーテルスルホン系樹脂、ポリエステル系樹脂(PET系樹脂、ポリエチレンナフタレート系樹脂等)、ポリ塩化ビニル系樹脂、ポリフェニレンスルフィド系樹脂、ポリエーテルエーテルケトン系樹脂、ポリアミド系樹脂(いわゆるアラミド樹脂等)、ポリアリレート系樹脂、ポリカーボネート系樹脂、液晶ポリマー等が挙げられる。なかでも、ここに開示される粘着シートは、上記金属材料や、PET等のポリエステル系樹脂や、ポリイミド系樹脂、アラミド樹脂、ポリフェニレンスルフィド系樹脂、ポリカーボネート系樹脂等の接合に好ましく用いられる。上記の材料は、携帯電子機器等の製品を構成する部材材料であり得る。ここに開示される粘着シートは、上記材料から構成された部材に貼り付けられて用いられ得る。 The material (adherend material) to which the adhesive sheet disclosed herein is attached is not particularly limited, but examples include metal materials such as copper, iron, aluminum, and stainless steel; various resin materials (typically plastic materials); inorganic materials such as glass; Examples of the resin material include polyimide-based resins, acrylic-based resins, polyethernitrile-based resins, polyethersulfone-based resins, polyester-based resins (PET-based resins, polyethylene naphthalate-based resins, etc.), polyvinyl chloride-based resins, polyphenylene sulfide-based resins, polyetheretherketone-based resins, polyamide-based resins (such as so-called aramid resins), polyarylate-based resins, polycarbonate-based resins, and liquid crystal polymers. Among others, the adhesive sheet disclosed herein is preferably used for bonding the metal materials, polyester resins such as PET, polyimide resins, aramid resins, polyphenylene sulfide resins, polycarbonate resins, and the like. The above materials may be member materials that constitute products such as portable electronic devices. The adhesive sheet disclosed herein can be used by being attached to a member made of the above materials.
 図4は、ここに開示される粘着シートが用いられた携帯電子機器(スマートフォン)を模式的に示す一例である。図4に示すように、携帯電子機器500の筐体520の内部には、バッテリー(発熱要素)540が内蔵されている。また、携帯電子機器500は、粘着シート550を含んで構成されている。この構成例では、粘着シート550は、携帯電子機器500を構成する部材を固定する両面接着性のシート(両面粘着シート)の形態を有する。なお、携帯電子機器500は、表示部が入力部としても機能するタッチパネル570を備えている。ここに開示される粘着シートは、上記のような携帯電子機器の構成要素(部材接合手段)として好ましく用いられる。 FIG. 4 is an example schematically showing a portable electronic device (smartphone) using the adhesive sheet disclosed herein. As shown in FIG. 4 , a battery (heat generating element) 540 is built inside a housing 520 of the portable electronic device 500 . Moreover, the portable electronic device 500 is configured including an adhesive sheet 550 . In this configuration example, the adhesive sheet 550 has the form of a double-sided adhesive sheet (double-sided adhesive sheet) for fixing members constituting the portable electronic device 500 . The portable electronic device 500 includes a touch panel 570 whose display unit also functions as an input unit. The pressure-sensitive adhesive sheet disclosed herein is preferably used as a constituent element (member joining means) of the portable electronic device as described above.
 この明細書により開示される事項には、以下のものが含まれる。
 〔1〕 携帯電子機器であって、
 筐体と、表示部が入力部としても機能するタッチパネルと、を備え、
 前記筐体の内部には、発熱要素(例えばバッテリー)が内蔵されており、
 前記携帯電子機器を構成する多数の部材のうち、少なくとも第1の部材と第2の部材とは粘着シートによって接合されており、
 前記粘着シートは、粘着剤層を有しており、
 前記粘着剤層は、ポリエステル系ポリマー、粘着付与樹脂および架橋剤を含み、
 前記粘着剤層における前記粘着付与樹脂の含有量は、前記ポリエステル系ポリマー100重量部に対して20重量部以上であり、
 前記ポリエステル系ポリマーの重量平均分子量は110,000以上である、携帯電子機器。
 〔2〕 前記粘着剤層における前記粘着付与樹脂の含有量は、前記ポリエステル系ポリマー100重量部に対して20重量部以上100重量部未満である、上記〔1〕に記載の携帯電子機器。
 〔3〕 前記架橋剤はイソシアネート系架橋剤を含む、上記〔1〕または〔2〕に記載の携帯電子機器。
 〔4〕 前記ポリエステル系ポリマーの構成炭素の50%以上がバイオマス由来炭素である、上記〔1〕~〔3〕のいずれかに記載の携帯電子機器。
 〔5〕 前記粘着剤層の厚さは5~50μmの範囲内である、上記〔1〕~〔4〕のいずれかに記載の携帯電子機器。
 〔6〕 前記ポリエステル系ポリマーのガラス転移温度は0℃以下である、上記〔1〕~〔5〕のいずれかに記載の携帯電子機器。
 〔7〕 前記ポリエステル系ポリマーは芳香環を含む、上記〔1〕~〔6〕のいずれかに記載の携帯電子機器。
 〔8〕 前記粘着付与樹脂は、テルペンフェノール樹脂および重合ロジンエステルから選択される、上記〔1〕~〔7〕のいずれかに記載の携帯電子機器。
 〔9〕 前記ポリエステル系ポリマーは芳香環を含み、前記粘着付与樹脂も芳香環を含む、上記〔1〕~〔8〕のいずれかに記載の携帯電子機器。
 〔10〕 前記粘着剤層は架橋触媒をさらに含み、該架橋触媒はスズ系化合物を含まない、上記〔1〕~〔9〕のいずれかに記載の携帯電子機器。
Matters disclosed by this specification include the following.
[1] A portable electronic device,
A housing and a touch panel whose display unit also functions as an input unit,
A heating element (e.g., battery) is built in the housing,
At least a first member and a second member among a large number of members constituting the portable electronic device are joined by an adhesive sheet,
The adhesive sheet has an adhesive layer,
The pressure-sensitive adhesive layer contains a polyester polymer, a tackifying resin and a cross-linking agent,
The content of the tackifying resin in the adhesive layer is 20 parts by weight or more with respect to 100 parts by weight of the polyester polymer,
The portable electronic device, wherein the polyester polymer has a weight average molecular weight of 110,000 or more.
[2] The mobile electronic device according to [1] above, wherein the content of the tackifying resin in the pressure-sensitive adhesive layer is 20 parts by weight or more and less than 100 parts by weight with respect to 100 parts by weight of the polyester polymer.
[3] The portable electronic device according to [1] or [2] above, wherein the cross-linking agent includes an isocyanate-based cross-linking agent.
[4] The portable electronic device according to any one of [1] to [3] above, wherein 50% or more of the constituent carbon of the polyester-based polymer is biomass-derived carbon.
[5] The portable electronic device according to any one of [1] to [4] above, wherein the pressure-sensitive adhesive layer has a thickness of 5 to 50 μm.
[6] The portable electronic device according to any one of [1] to [5] above, wherein the polyester polymer has a glass transition temperature of 0° C. or lower.
[7] The portable electronic device according to any one of [1] to [6] above, wherein the polyester polymer contains an aromatic ring.
[8] The portable electronic device according to any one of [1] to [7] above, wherein the tackifying resin is selected from terpene phenol resins and polymerized rosin esters.
[9] The portable electronic device according to any one of [1] to [8] above, wherein the polyester polymer contains an aromatic ring, and the tackifying resin also contains an aromatic ring.
[10] The portable electronic device according to any one of [1] to [9] above, wherein the pressure-sensitive adhesive layer further contains a cross-linking catalyst, and the cross-linking catalyst does not contain a tin-based compound.
 〔11〕 ポリエステル系ポリマー、粘着付与樹脂および架橋剤を含み、
 前記粘着付与樹脂の含有量は、前記ポリエステル系ポリマー100重量部に対して20重量部以上であり、
 前記ポリエステル系ポリマーの重量平均分子量は110,000以上である、粘着剤組成物。
 〔12〕 前記粘着付与樹脂の含有量は、前記ポリエステル系ポリマー100重量部に対して20重量部以上100重量部未満である、上記〔11〕に記載の粘着剤組成物。
 〔13〕 固形分濃度が10~70重量%であり、23℃における粘度が10~10,000mPa・sである、上記〔11〕または〔12〕に記載の粘着剤組成物。
 〔14〕 前記架橋剤はイソシアネート系架橋剤を含む、上記〔11〕~〔13〕のいずれかに記載の粘着剤組成物。
 〔15〕 架橋触媒をさらに含む、上記〔11〕~〔14〕のいずれかに記載の粘着剤組成物。
 〔16〕 前記ポリエステル系ポリマーの構成炭素の50%以上がバイオマス由来炭素である、上記〔11〕~〔15〕のいずれかに記載の粘着剤組成物。
 〔17〕 前記ポリエステル系ポリマーのガラス転移温度は0℃以下である、上記〔11〕~〔16〕のいずれかに記載の粘着剤組成物。
 〔18〕 前記ポリエステル系ポリマーは芳香環を含む、上記〔11〕~〔17〕のいずれかに記載の粘着剤組成物。
 〔19〕 前記粘着付与樹脂は、テルペンフェノール樹脂および重合ロジンエステルから選択される、上記〔11〕~〔18〕のいずれかに記載の粘着剤組成物。
 〔20〕 前記ポリエステル系ポリマーは芳香環を含み、前記粘着付与樹脂も芳香環を含む、上記〔11〕~〔19〕のいずれかに記載の粘着剤組成物。
[11] containing a polyester polymer, a tackifying resin and a cross-linking agent,
The content of the tackifying resin is 20 parts by weight or more with respect to 100 parts by weight of the polyester polymer,
The pressure-sensitive adhesive composition, wherein the polyester polymer has a weight average molecular weight of 110,000 or more.
[12] The pressure-sensitive adhesive composition according to [11] above, wherein the content of the tackifying resin is 20 parts by weight or more and less than 100 parts by weight with respect to 100 parts by weight of the polyester polymer.
[13] The pressure-sensitive adhesive composition of [11] or [12] above, which has a solid content concentration of 10 to 70% by weight and a viscosity of 10 to 10,000 mPa·s at 23°C.
[14] The pressure-sensitive adhesive composition according to any one of [11] to [13] above, wherein the cross-linking agent includes an isocyanate-based cross-linking agent.
[15] The pressure-sensitive adhesive composition according to any one of [11] to [14] above, further comprising a crosslinking catalyst.
[16] The pressure-sensitive adhesive composition according to any one of [11] to [15] above, wherein 50% or more of the constituent carbon of the polyester-based polymer is biomass-derived carbon.
[17] The pressure-sensitive adhesive composition as described in any one of [11] to [16] above, wherein the polyester polymer has a glass transition temperature of 0° C. or lower.
[18] The pressure-sensitive adhesive composition according to any one of [11] to [17] above, wherein the polyester polymer contains an aromatic ring.
[19] The adhesive composition according to any one of [11] to [18] above, wherein the tackifying resin is selected from terpene phenol resins and polymerized rosin esters.
[20] The pressure-sensitive adhesive composition according to any one of [11] to [19] above, wherein the polyester polymer contains an aromatic ring, and the tackifying resin also contains an aromatic ring.
 〔21〕 粘着剤層を有する粘着シートであって、
 前記粘着剤層は、ポリエステル系ポリマー、粘着付与樹脂および架橋剤を含み、
 前記粘着剤層における前記粘着付与樹脂の含有量は、前記ポリエステル系ポリマー100重量部に対して20重量部以上であり、
 前記ポリエステル系ポリマーの重量平均分子量は110,000以上である、粘着シート。
 〔22〕 前記粘着剤層における前記粘着付与樹脂の含有量は、前記ポリエステル系ポリマー100重量部に対して20重量部以上100重量部未満である、上記〔21〕に記載の粘着シート。
 〔23〕 前記架橋剤はイソシアネート系架橋剤を含む、上記〔21〕または〔22〕に記載の粘着シート。
 〔24〕 前記ポリエステル系ポリマーの構成炭素の50%以上がバイオマス由来炭素である、上記〔21〕~〔23〕のいずれかに記載の粘着シート。
 〔25〕 前記粘着剤層の厚さは5~50μmの範囲内である、上記〔21〕~〔24〕のいずれかに記載の粘着シート。
 〔26〕 前記ポリエステル系ポリマーのガラス転移温度は0℃以下である、上記〔21〕~〔25〕のいずれかに記載の粘着シート。
 〔27〕 前記ポリエステル系ポリマーは芳香環を含む、上記〔21〕~〔26〕のいずれかに記載の粘着シート。
 〔28〕 前記粘着付与樹脂は、テルペンフェノール樹脂および重合ロジンエステルから選択される、上記〔21〕~〔27〕のいずれかに記載の粘着シート。
 〔29〕 前記ポリエステル系ポリマーは芳香環を含み、前記粘着付与樹脂も芳香環を含む、上記〔21〕~〔28〕のいずれかに記載の粘着シート。
 〔30〕 ステンレス鋼板に対する180度剥離強度が10N/20mm以上であり、かつ、80℃、荷重1kg、1時間の条件で実施される保持力試験において落下しない、上記〔21〕~〔29〕のいずれかに記載の粘着シート。
[21] A pressure-sensitive adhesive sheet having a pressure-sensitive adhesive layer,
The pressure-sensitive adhesive layer contains a polyester polymer, a tackifying resin and a cross-linking agent,
The content of the tackifying resin in the adhesive layer is 20 parts by weight or more with respect to 100 parts by weight of the polyester polymer,
The pressure-sensitive adhesive sheet, wherein the polyester polymer has a weight average molecular weight of 110,000 or more.
[22] The pressure-sensitive adhesive sheet according to [21] above, wherein the content of the tackifying resin in the pressure-sensitive adhesive layer is 20 parts by weight or more and less than 100 parts by weight with respect to 100 parts by weight of the polyester polymer.
[23] The pressure-sensitive adhesive sheet of [21] or [22] above, wherein the cross-linking agent includes an isocyanate-based cross-linking agent.
[24] The adhesive sheet according to any one of [21] to [23] above, wherein 50% or more of the constituent carbon of the polyester polymer is biomass-derived carbon.
[25] The pressure-sensitive adhesive sheet according to any one of [21] to [24] above, wherein the thickness of the pressure-sensitive adhesive layer is in the range of 5 to 50 µm.
[26] The pressure-sensitive adhesive sheet according to any one of [21] to [25] above, wherein the glass transition temperature of the polyester polymer is 0° C. or lower.
[27] The pressure-sensitive adhesive sheet according to any one of [21] to [26] above, wherein the polyester polymer contains an aromatic ring.
[28] The pressure-sensitive adhesive sheet according to any one of [21] to [27] above, wherein the tackifying resin is selected from terpene phenol resins and polymerized rosin esters.
[29] The pressure-sensitive adhesive sheet according to any one of [21] to [28] above, wherein the polyester-based polymer contains an aromatic ring, and the tackifying resin also contains an aromatic ring.
[30] The pressure-sensitive adhesive sheet according to any one of [21] to [29] above, which has a 180 degree peel strength against a stainless steel plate of 10 N/20 mm or more and does not drop in a holding force test conducted under the conditions of 80° C., a load of 1 kg, and 1 hour.
 〔31〕 携帯電子機器に用いられる、上記〔21〕~〔30〕のいずれかに記載の粘着シート。
 〔32〕 上記〔21〕~〔30〕のいずれかに記載の粘着シートを含む携帯電子機器。
[31] The pressure-sensitive adhesive sheet according to any one of [21] to [30] above, which is used in portable electronic devices.
[32] A portable electronic device comprising the adhesive sheet according to any one of [21] to [30] above.
 〔41〕 粘着剤層を有する粘着シートの製造方法であって、
 ポリエステル系ポリマー、粘着付与樹脂および架橋剤を含む粘着剤組成物を調製する工程と;
 前記粘着剤組成物を基材表面または剥離性表面に塗布し、粘着剤層を形成する工程と;
 を含み、
 ここで、
 前記粘着付与樹脂の含有量は、前記ポリエステル系ポリマー100重量部に対して20重量部以上であり、
 前記ポリエステル系ポリマーの重量平均分子量は110,000以上である、粘着シートの製造方法。
 〔42〕 前記粘着剤組成物における前記粘着付与樹脂の含有量は、前記ポリエステル系ポリマー100重量部に対して20重量部以上100重量部未満である、上記〔41〕に記載の粘着シートの製造方法。
 〔43〕 前記粘着剤組成物の固形分濃度は10~70重量%であり、23℃における粘度は10~10,000mPa・sである、上記〔41〕または〔42〕に記載の粘着シートの製造方法。
 〔44〕 前記架橋剤はイソシアネート系架橋剤を含む、上記〔41〕~〔43〕のいずれかに記載の粘着シートの製造方法。
 〔45〕 架橋触媒をさらに含む、上記〔41〕~〔44〕のいずれかに記載の粘着シートの製造方法。
 〔46〕 前記ポリエステル系ポリマーの構成炭素の50%以上がバイオマス由来炭素である、上記〔41〕~〔45〕のいずれかに記載の粘着シートの製造方法。
 〔47〕 前記粘着付与樹脂は、テルペンフェノール樹脂および重合ロジンエステルから選択される、上記〔41〕~〔46〕のいずれかに記載の粘着シートの製造方法。
 〔48〕 前記粘着剤層の厚さは5~50μmの範囲内である、上記〔41〕~〔47〕のいずれかに記載の粘着シートの製造方法。
 〔49〕 前記粘着シートは、ステンレス鋼板に対する180度剥離強度が10N/20mm以上であり、かつ、80℃、荷重1kg、1時間の条件で実施される保持力試験において落下しない、上記〔41〕~〔48〕のいずれかに記載の粘着シートの製造方法。
 〔50〕 前記粘着シートは、携帯電子機器に用いられる、上記〔41〕~〔47〕のいずれかに記載の粘着シートの製造方法。
[41] A method for producing a pressure-sensitive adhesive sheet having a pressure-sensitive adhesive layer, comprising:
preparing a pressure-sensitive adhesive composition comprising a polyester-based polymer, a tackifying resin and a cross-linking agent;
applying the pressure-sensitive adhesive composition to a substrate surface or a releasable surface to form a pressure-sensitive adhesive layer;
including
here,
The content of the tackifying resin is 20 parts by weight or more with respect to 100 parts by weight of the polyester polymer,
A method for producing a pressure-sensitive adhesive sheet, wherein the polyester polymer has a weight average molecular weight of 110,000 or more.
[42] The method for producing a pressure-sensitive adhesive sheet according to [41] above, wherein the content of the tackifying resin in the pressure-sensitive adhesive composition is 20 parts by weight or more and less than 100 parts by weight with respect to 100 parts by weight of the polyester polymer.
[43] The method for producing a pressure-sensitive adhesive sheet according to [41] or [42] above, wherein the pressure-sensitive adhesive composition has a solid content concentration of 10 to 70% by weight and a viscosity at 23°C of 10 to 10,000 mPa·s.
[44] The method for producing a pressure-sensitive adhesive sheet according to any one of [41] to [43] above, wherein the cross-linking agent includes an isocyanate-based cross-linking agent.
[45] The method for producing a pressure-sensitive adhesive sheet as described in any one of [41] to [44] above, further comprising a cross-linking catalyst.
[46] The method for producing a pressure-sensitive adhesive sheet according to any one of [41] to [45] above, wherein 50% or more of the constituent carbon of the polyester polymer is biomass-derived carbon.
[47] The method for producing a pressure-sensitive adhesive sheet according to any one of [41] to [46] above, wherein the tackifying resin is selected from terpene phenol resins and polymerized rosin esters.
[48] The method for producing a pressure-sensitive adhesive sheet as described in any one of [41] to [47] above, wherein the thickness of the pressure-sensitive adhesive layer is in the range of 5 to 50 µm.
[49] The method for producing a pressure-sensitive adhesive sheet according to any one of [41] to [48] above, wherein the pressure-sensitive adhesive sheet has a 180-degree peel strength against a stainless steel plate of 10 N/20 mm or more, and does not drop in a holding force test conducted under conditions of 80°C, a load of 1 kg, and 1 hour.
[50] The method for producing a pressure-sensitive adhesive sheet according to any one of [41] to [47] above, wherein the pressure-sensitive adhesive sheet is used in portable electronic devices.
 以下、本発明に関するいくつかの実施例を説明するが、本発明をかかる実施例に示すものに限定することを意図したものではない。なお、以下の説明において「部」および「%」は、特に断りがない限り重量基準である。 Several examples of the present invention will be described below, but the present invention is not intended to be limited to those shown in the examples. In the following description, "parts" and "%" are by weight unless otherwise specified.
 <合成例>
 (合成例1)
 四つ口セパラブルフラスコに攪拌機、温度計、窒素管および水分離管を付し、これにエチレングリコール(東京化成工業社製、分子量62)100g、ダイマー酸(製品名「プリポール1009」、クローダ社製、分子量567)700g、テレフタル酸(東京化成社製、分子量166)63g、重合触媒としてジ-n-ブチルスズオキシド(キシダ化学社製、分子量249)0.46g、反応水排出溶剤としてキシレン40gを仕込み、窒素雰囲気で撹拌しながら180℃まで昇温し、この温度を保持した。しばらくすると反応水の流出分離が認められ、反応が進行しはじめた。約24時間反応を続けて、バイオ率が81%のポリエステル系ポリマー(A1)を得た。このポリエステル系ポリマー(A1)の重量平均分子量(Mw)は10万であり、ガラス転移温度(Tg)は-33℃であった。
<Synthesis example>
(Synthesis example 1)
A four-necked separable flask was equipped with a stirrer, a thermometer, a nitrogen tube and a water separation tube, and 100 g of ethylene glycol (manufactured by Tokyo Chemical Industry Co., Ltd., molecular weight 62), 700 g of dimer acid (product name "PRIPOL 1009", manufactured by Croda, molecular weight 567), 63 g of terephthalic acid (manufactured by Tokyo Chemical Industry Co., Ltd., molecular weight 166), and di-n-butyltin oxide (manufactured by Kishida Chemical Co., Ltd., molecular weight 249) as a polymerization catalyst. ) and 40 g of xylene as a solvent for discharging the reaction water were charged, heated to 180° C. while stirring in a nitrogen atmosphere, and maintained at this temperature. After a while, outflow and separation of the reaction water was observed, and the reaction started to progress. The reaction was continued for about 24 hours to obtain a polyester polymer (A1) with a bio rate of 81%. This polyester polymer (A1) had a weight average molecular weight (Mw) of 100,000 and a glass transition temperature (Tg) of -33°C.
 (合成例2)
 合成例1における反応時間を約36時間に変更した他は合成例1と同様にして、ポリエステル系ポリマー(A1)よりも高分子量のポリエステル系ポリマー(A2)を得た。このポリエステル系ポリマー(A2)のモノマー組成は、ポリエステル系ポリマー(A1)と同じであり、Mwは13万であった。
(Synthesis example 2)
A polyester polymer (A2) having a higher molecular weight than the polyester polymer (A1) was obtained in the same manner as in Synthesis Example 1, except that the reaction time in Synthesis Example 1 was changed to about 36 hours. The monomer composition of this polyester polymer (A2) was the same as that of the polyester polymer (A1), and Mw was 130,000.
 <例1>
 ポリエステル系ポリマー(A1)100部に、粘着付与樹脂としてテルペンフェノール樹脂(商品名「YSポリスターS145」、ヤスハラケミカル社製、フェノール比率22%、以下「S145」と表記する場合がある。)40部、架橋剤としてヘキサメチレンジイソシアネートのイソシアヌレート体(商品名「コロネートHX」、東ソー社製)3部、架橋触媒として有機ジルコニウム化合物(商品名「オルガチックスZC-162」、マツモトファインケミカル社製)0.13部、耐加水分解剤としてカルボジイミド基含有化合物(商品名「カルボジライトV-03」、日清紡ケミカル社製)0.5部を配合し、酢酸エチルを加え、本例に係る粘着剤組成物(粘着剤溶液)を調製した。この粘着剤組成物の固形分濃度は40%であり、23℃における粘度は約300mPa・sであった。
<Example 1>
To 100 parts of the polyester polymer (A1), 40 parts of a terpene phenol resin (trade name "YS Polyster S145", manufactured by Yasuhara Chemical Co., Ltd., phenol ratio 22%, hereinafter sometimes referred to as "S145") as a tackifying resin, 3 parts of an isocyanurate body of hexamethylene diisocyanate (trade name "Coronate HX", manufactured by Tosoh Corporation) as a cross-linking agent, an organic zirconium compound (trade name "Orgatics ZC-162") as a cross-linking catalyst. , Matsumoto Fine Chemical Co., Ltd.) 0.13 parts, 0.5 parts of a carbodiimide group-containing compound (trade name "Carbodilite V-03", Nisshinbo Chemical Co., Ltd.) as a hydrolysis resistant agent are blended, and ethyl acetate is added to prepare an adhesive composition (adhesive solution) according to this example. The solid content concentration of this adhesive composition was 40%, and the viscosity at 23° C. was about 300 mPa·s.
 <例2>
 架橋触媒として、有機ジルコニウム化合物に代えて、有機スズ化合物(商品名「ジラウリン酸ジブチルスズ(IV)」、富士フィルム和光純薬社製)0.01部を使用した他は例1と同様にして本例に係る粘着剤組成物を調製した。この粘着剤組成物の固形分濃度は40%であり、23℃における粘度は約300mPa・sであった。
<Example 2>
A pressure-sensitive adhesive composition according to this example was prepared in the same manner as in Example 1, except that 0.01 part of an organic tin compound (trade name “dibutyltin (IV) dilaurate”, manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) was used as a cross-linking catalyst instead of the organic zirconium compound. The solid content concentration of this adhesive composition was 40%, and the viscosity at 23° C. was about 300 mPa·s.
 <例3>
 ポリエステル系ポリマー(A2)100部に、粘着付与樹脂としてテルペンフェノール樹脂(商品名「YSポリスターG150」、ヤスハラケミカル社製、フェノール比率32%、以下「G150」と表記する場合がある。)40部、架橋剤としてヘキサメチレンジイソシアネートのイソシアヌレート体(商品名「コロネートHX」、東ソー社製)2部、架橋触媒として有機ジルコニウム化合物(商品名「オルガチックスZC-162」、マツモトファインケミカル社製)0.03部、耐加水分解剤としてカルボジイミド基含有化合物(商品名「カルボジライトV-03」、日清紡ケミカル社製)0.5部を配合し、酢酸エチルを加え、本例に係る粘着剤組成物(粘着剤溶液)を調製した。この粘着剤組成物の固形分濃度は40%であり、23℃における粘度は約800mPa・sであった。
<Example 3>
To 100 parts of the polyester polymer (A2), 40 parts of a terpene phenol resin (trade name "YS Polystar G150", manufactured by Yasuhara Chemical Co., Ltd., phenol ratio 32%, hereinafter sometimes referred to as "G150") as a tackifying resin, 2 parts of an isocyanurate body of hexamethylene diisocyanate (trade name "Coronate HX", manufactured by Tosoh Corporation) as a cross-linking agent, an organic zirconium compound (trade name "Orgatics ZC-162") as a cross-linking catalyst. , Matsumoto Fine Chemical Co., Ltd.) 0.03 part, 0.5 part of a carbodiimide group-containing compound (trade name "Carbodilite V-03", manufactured by Nisshinbo Chemical Co., Ltd.) as a hydrolysis resistant agent was blended, ethyl acetate was added, and an adhesive composition (adhesive solution) according to this example was prepared. The solid content concentration of this adhesive composition was 40%, and the viscosity at 23° C. was about 800 mPa·s.
 <例4>
 ポリエステル系ポリマー(A2)100部に、粘着付与樹脂としてテルペンフェノール樹脂(商品名「YSポリスターS145」、ヤスハラケミカル社製、フェノール比率22%)40部、架橋剤としてヘキサメチレンジイソシアネートのイソシアヌレート体(商品名「コロネートHX」、東ソー社製)3部、架橋触媒として有機スズ化合物(商品名「ジラウリン酸ジブチルスズ(IV)」、富士フィルム和光純薬社製)0.01部を使用した他は例3と同様にして本例に係る粘着剤組成物を調製した。この粘着剤組成物の固形分濃度は40%であり、23℃における粘度は約800mPa・sであった。
<Example 4>
To 100 parts of the polyester polymer (A2), 40 parts of a terpene phenol resin (trade name “YS Polystar S145”, manufactured by Yasuhara Chemical Co., Ltd., phenol ratio 22%) as a tackifying resin, isocyanurate of hexamethylene diisocyanate (trade name “Coronate HX”, manufactured by Tosoh Corporation) as a cross-linking agent 3 parts, an organic tin compound (trade name “dibutyltin dilaurate (IV)”, manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) 0.01 as a cross-linking catalyst. A pressure-sensitive adhesive composition according to this example was prepared in the same manner as in Example 3, except that 1 part was used. The solid content concentration of this adhesive composition was 40%, and the viscosity at 23° C. was about 800 mPa·s.
 <例5~例8>
 粘着付与樹脂および架橋剤の使用量を表1に示すように変更した他は例4と同様にして各例に係る粘着剤組成物を調製した。
<Examples 5 to 8>
A pressure-sensitive adhesive composition according to each example was prepared in the same manner as in Example 4, except that the amounts of the tackifier resin and cross-linking agent used were changed as shown in Table 1.
 <評価>
 [粘着剤塗工性]
 コンマコーター式およびダイコーター式粘着シート製造機(いずれもライン機。実機ともいう。)を用いて、塗工速度20m/分の条件で、各例に係る粘着剤組成物を、剥離処理したポリエチレンテレフタレート(PET)フィルム(商品名「ダイアホイルMRF♯38」、三菱ケミカル社製)の剥離処理面に、乾燥後の厚みが20μmになるように塗工し、120℃で3分乾燥させた。コンマコーター式、ダイコーター式の塗工のいずれの場合も、乾燥後の粘着剤層が、目視観察にてハジキ等なく良好な品質を有していた場合、「G」(合格)と判定し、コンマコーター式、ダイコーター式の塗工のいずれかで目視にてハジキ等の不具合が生じたり、粘着剤の塗工ができなかった場合、「P」(不合格)と判定した。
<Evaluation>
[Adhesive Coatability]
Using a comma coater type and die coater type pressure-sensitive adhesive sheet manufacturing machine (both line machines, also referred to as actual machines), the pressure-sensitive adhesive composition according to each example was applied at a coating speed of 20 m/min to the release-treated surface of a polyethylene terephthalate (PET) film (trade name “Diafoil MRF #38”, manufactured by Mitsubishi Chemical Corporation) so that the thickness after drying was 20 μm, and dried at 120 ° C. for 3 minutes. In both cases of comma coater type and die coater type coating, if the adhesive layer after drying had good quality without repelling etc. by visual observation, it was judged as "G" (pass), and if defects such as repelling visually occurred in either comma coater type or die coater type coating, or if the adhesive could not be applied, it was judged as "P" (fail).
 [対SUS粘着力]
 上記粘着剤塗工性の評価に記載の方法で粘着剤層を形成し、剥離処理したPETフィルム(商品名「ダイアホイルMRE♯38」、三菱ケミカル社製)の剥離処理面に上記粘着剤層を貼り合わせて、さらに50℃3日間放置し、両面が剥離ライナーで保護された基材レス粘着シートを得た。
 得られた粘着シートを幅20mm、長さ150mmのサイズにカットして測定サンプルを作製した。23℃、50%RHの環境下にて、上記測定サンプルの粘着面を露出させ、その粘着面を被着体としてのステンレス鋼板(SUS304BA板)に2kgのゴムローラを1往復させて圧着した。これを、23℃、50%RHの環境下に30分放置し、次いで同環境下にて引張試験機を使用してJIS Z0237:2000に準じて、剥離角度180度、引張速度300mm/分の条件で剥離強度(対SUS粘着力)[N/20mm]を測定した。引張試験機としては、万能引張圧縮試験機(装置名「引張圧縮試験機、TCM-1kNB」、ミネベア社製)を使用した。
[Adhesive strength against SUS]
A pressure-sensitive adhesive layer was formed by the method described in the evaluation of the pressure-sensitive adhesive coatability, and the pressure-sensitive adhesive layer was attached to the release-treated surface of a release-treated PET film (trade name “Diafoil MRE #38” manufactured by Mitsubishi Chemical Corporation).
The obtained adhesive sheet was cut into a size of 20 mm in width and 150 mm in length to prepare a measurement sample. The adhesive surface of the measurement sample was exposed in an environment of 23° C. and 50% RH, and the adhesive surface was press-bonded to a stainless steel plate (SUS304BA plate) as an adherend by reciprocating a 2-kg rubber roller once. This was left in an environment of 23 ° C. and 50% RH for 30 minutes, and then using a tensile tester in the same environment according to JIS Z0237: 2000, the peel strength (adhesive strength to SUS) [N / 20 mm] was measured under the conditions of a peel angle of 180 degrees and a tensile speed of 300 mm / min. As the tensile tester, a universal tensile and compression tester (equipment name “Tensile and Compression Tester, TCM-1kNB”, manufactured by Minebea Co., Ltd.) was used.
 [高温保持力]
 上記粘着剤塗工性の評価に記載の方法で粘着剤層を形成し、剥離処理したPETフィルム(商品名「ダイアホイルMRE♯38」、三菱ケミカル社製)の剥離処理面に上記粘着剤層を貼り合わせて、さらに50℃3日間放置し、両面が剥離ライナーで保護された基材レス粘着シートを得た。
 粘着シートを幅10mm、長さ100mmのサイズにカットして測定サンプル(試験片)を作製した。23℃、50%RHの環境下にて、上記測定サンプルの粘着面を被着体としてのベークライト板(フェノール樹脂板)に、幅10mm、長さ20mmの貼付け面積にて、2kgのローラを1往復させて圧着した。このようにして試験片を貼り付けた被着体を、上記試験片の長さ方向が鉛直方向となるようにして80℃の環境下に垂下し、30分放置した。次いで、上記試験片の自由端に1kgの荷重を付与し、JIS Z0237に準じて、該荷重が付与された状態で80℃の環境下に1時間放置した。当該放置後の試験片について、最初の貼付け位置からずれた距離(ズレ長さ。以下、ズレ距離ともいう。)[mm]を測定した。試験片がベークライト板から1時間以内に落下した場合は、「落下」(不合格)と評価した。
[High temperature holding power]
A pressure-sensitive adhesive layer was formed by the method described in the evaluation of the pressure-sensitive adhesive coatability, and the pressure-sensitive adhesive layer was attached to the release-treated surface of a release-treated PET film (trade name “Diafoil MRE #38” manufactured by Mitsubishi Chemical Corporation).
A measurement sample (test piece) was prepared by cutting the adhesive sheet into a size of 10 mm in width and 100 mm in length. Under an environment of 23 ° C. and 50% RH, the adhesive surface of the measurement sample was pressed against a bakelite plate (phenolic resin plate) as an adherend with a 10 mm wide and 20 mm long pasting area with a 2 kg roller. The adherend to which the test piece was adhered in this manner was allowed to stand in an environment of 80° C. for 30 minutes with the length direction of the test piece oriented vertically. Next, a load of 1 kg was applied to the free end of the test piece, and the test piece was left under the load at 80° C. for 1 hour according to JIS Z0237. For the test piece after the standing, the distance (length of displacement; hereinafter also referred to as displacement distance) [mm] deviated from the initial sticking position was measured. If the specimen fell from the bakelite plate within 1 hour, it was rated as "dropped" (failed).
 なお、対SUS粘着力および高温保持力の測定にあたっては、必要に応じて(例えば、基材レス両面粘着シートの場合や、基材付き粘着シートであって基材が変形しやすい場合等)、測定対象の粘着シートに適切な裏打ち材を貼り付けて補強することができる。裏打ち材としては、例えば厚さ50μm程度のPETフィルムを用いることができ、実施例ではこの裏打ち材を使用した。 In addition, when measuring the adhesive strength to SUS and the high temperature holding power, if necessary (for example, in the case of a double-sided adhesive sheet without a substrate, or in the case of an adhesive sheet with a substrate and the substrate is easily deformed, etc.), the adhesive sheet to be measured can be reinforced by attaching an appropriate backing material. As the backing material, for example, a PET film having a thickness of about 50 μm can be used, and this backing material was used in the examples.
 各例に係る粘着剤組成物および粘着シートの評価結果を表1に示す。 Table 1 shows the evaluation results of the adhesive composition and adhesive sheet according to each example.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1に示されるように、ポリエステル系ポリマー、粘着付与樹脂および架橋剤を含み、粘着付与樹脂の含有量がポリエステル系ポリマー100重量部に対して20重量部以上である例1~4、例6~8に係る粘着剤組成物において、ポリエステル系ポリマーとして、Mwが110,000以上のものを用いた例3~4、例6~8では、実機による粘着剤塗工性の評価が合格であり、得られた粘着シートは、対SUS粘着力および高温保持力を両立し、優れた粘着特性を有するものであった。一方、Mwが110,000未満のポリエステル系ポリマーを使用した例1~2では、粘着剤塗工性の評価が不合格であり、塗工不良のため評価可能な粘着シートを作製できず、粘着シートの評価に至らなかった。なお、粘着付与樹脂の使用量がポリエステル系ポリマー100重量部に対して20重量部未満であった例5では、対SUS粘着力が低い結果であった。
 上記の結果から、ポリエステル系ポリマー、粘着付与樹脂および架橋剤を含み、粘着付与樹脂の含有量が、ポリエステル系ポリマー100重量部に対して20重量部以上であり、ポリエステル系ポリマーのMwが110,000以上である粘着剤組成物によると、良好な品質を有する薄厚の粘着剤を形成し得ることがわかる。また、かかる粘着剤は、粘着付与樹脂の使用に基づき良好な粘着特性を発揮し得ることがわかる。
As shown in Table 1, in the adhesive compositions according to Examples 1 to 4 and Examples 6 to 8, which contain a polyester polymer, a tackifying resin, and a cross-linking agent, and the content of the tackifying resin is 20 parts by weight or more with respect to 100 parts by weight of the polyester polymer, in Examples 3 to 4 and Examples 6 to 8, in which a polyester polymer having an Mw of 110,000 or more was used, the evaluation of the adhesive coating property by an actual machine was passed, and the obtained adhesive sheets had excellent adhesion to SUS and high-temperature holding power. and had excellent adhesive properties. On the other hand, in Examples 1 and 2 in which Mw used a polyester-based polymer of less than 110,000, the evaluation of the adhesive coating property was unsatisfactory, and an evaluable adhesive sheet could not be produced due to poor coating, and the adhesive sheet was not evaluated. In Example 5, in which the amount of the tackifying resin used was less than 20 parts by weight with respect to 100 parts by weight of the polyester polymer, the adhesion to SUS was low.
From the above results, it can be seen that a PSA composition containing a polyester polymer, a tackifier resin and a cross-linking agent, wherein the content of the tackifier resin is 20 parts by weight or more relative to 100 parts by weight of the polyester polymer, and the Mw of the polyester polymer is 110,000 or more, can form a thin PSA with good quality. Also, it can be seen that such adhesives can exhibit good adhesive properties based on the use of tackifying resins.
 以上、本発明の具体例を詳細に説明したが、これらは例示にすぎず、請求の範囲を限定するものではない。請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。 Specific examples of the present invention have been described in detail above, but these are merely examples and do not limit the scope of the claims. The technology described in the claims includes various modifications and changes of the specific examples illustrated above.
  1,2,3  粘着シート
 10  支持基材
 10A 第一面
 10B 第二面(背面)
 21  粘着剤層(第一粘着剤層)
 21A 粘着面(第一粘着面)
 21B 第二粘着面
 22  粘着剤層(第二粘着剤層)
 22A 粘着面(第二粘着面)
 31,32 剥離ライナー
100,200,300  剥離ライナー付き粘着シート

 
Reference Signs List 1, 2, 3 Adhesive sheet 10 Supporting substrate 10A First surface 10B Second surface (back surface)
21 adhesive layer (first adhesive layer)
21A adhesive surface (first adhesive surface)
21B second adhesive surface 22 adhesive layer (second adhesive layer)
22A adhesive surface (second adhesive surface)
31, 32 Release liner 100, 200, 300 PSA sheet with release liner

Claims (12)

  1.  ポリエステル系ポリマー、粘着付与樹脂および架橋剤を含み、
     前記粘着付与樹脂の含有量は、前記ポリエステル系ポリマー100重量部に対して20重量部以上であり、
     前記ポリエステル系ポリマーの重量平均分子量は110,000以上である、粘着剤組成物。
    including a polyester-based polymer, a tackifying resin and a cross-linking agent,
    The content of the tackifying resin is 20 parts by weight or more with respect to 100 parts by weight of the polyester polymer,
    The pressure-sensitive adhesive composition, wherein the polyester polymer has a weight average molecular weight of 110,000 or more.
  2.  前記粘着付与樹脂の含有量は、前記ポリエステル系ポリマー100重量部に対して20重量部以上100重量部未満である、請求項1に記載の粘着剤組成物。 The pressure-sensitive adhesive composition according to claim 1, wherein the content of the tackifying resin is 20 parts by weight or more and less than 100 parts by weight with respect to 100 parts by weight of the polyester polymer.
  3.  固形分濃度が10~70重量%であり、23℃における粘度が10~10000mPa・sである、請求項1または2に記載の粘着剤組成物。 The adhesive composition according to claim 1 or 2, which has a solid content concentration of 10 to 70% by weight and a viscosity of 10 to 10,000 mPa·s at 23°C.
  4.  前記架橋剤はイソシアネート系架橋剤を含む、請求項1~3のいずれか一項に記載の粘着剤組成物。 The pressure-sensitive adhesive composition according to any one of claims 1 to 3, wherein the cross-linking agent includes an isocyanate-based cross-linking agent.
  5.  架橋触媒をさらに含む、請求項1~4のいずれか一項に記載の粘着剤組成物。 The pressure-sensitive adhesive composition according to any one of claims 1 to 4, further comprising a cross-linking catalyst.
  6.  前記ポリエステル系ポリマーの構成炭素の50%以上がバイオマス由来炭素である、請求項1~5のいずれか一項に記載の粘着剤組成物。 The pressure-sensitive adhesive composition according to any one of claims 1 to 5, wherein 50% or more of the constituent carbon of the polyester-based polymer is biomass-derived carbon.
  7.  粘着剤層を有する粘着シートであって、
     前記粘着剤層は、ポリエステル系ポリマー、粘着付与樹脂および架橋剤を含み、
     前記粘着剤層における前記粘着付与樹脂の含有量は、前記ポリエステル系ポリマー100重量部に対して20重量部以上であり、
     前記ポリエステル系ポリマーの重量平均分子量は110,000以上である、粘着シート。
    A pressure-sensitive adhesive sheet having a pressure-sensitive adhesive layer,
    The pressure-sensitive adhesive layer contains a polyester polymer, a tackifying resin and a cross-linking agent,
    The content of the tackifying resin in the adhesive layer is 20 parts by weight or more with respect to 100 parts by weight of the polyester polymer,
    The pressure-sensitive adhesive sheet, wherein the polyester polymer has a weight average molecular weight of 110,000 or more.
  8.  前記粘着剤層における前記粘着付与樹脂の含有量は、前記ポリエステル系ポリマー100重量部に対して20重量部以上100重量部未満である、請求項7に記載の粘着シート。 The pressure-sensitive adhesive sheet according to claim 7, wherein the content of the tackifying resin in the pressure-sensitive adhesive layer is 20 parts by weight or more and less than 100 parts by weight with respect to 100 parts by weight of the polyester polymer.
  9.  前記架橋剤はイソシアネート系架橋剤を含む、請求項7または8に記載の粘着シート。 The pressure-sensitive adhesive sheet according to claim 7 or 8, wherein the cross-linking agent contains an isocyanate-based cross-linking agent.
  10.  前記ポリエステル系ポリマーの構成炭素の50%以上がバイオマス由来炭素である、請求項7~9のいずれか一項に記載の粘着シート。 The pressure-sensitive adhesive sheet according to any one of claims 7 to 9, wherein 50% or more of the constituent carbon of the polyester-based polymer is biomass-derived carbon.
  11.  前記粘着剤層の厚さは5~50μmの範囲内である、請求項7~10のいずれか一項に記載の粘着シート。 The pressure-sensitive adhesive sheet according to any one of claims 7 to 10, wherein the pressure-sensitive adhesive layer has a thickness in the range of 5 to 50 µm.
  12.  携帯電子機器に用いられる、請求項7~11のいずれか一項に記載の粘着シート。
     
    The pressure-sensitive adhesive sheet according to any one of claims 7 to 11, which is used for portable electronic devices.
PCT/JP2023/001479 2022-01-21 2023-01-19 Adhesive composition and adhesive sheet WO2023140316A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022008141A JP2023107051A (en) 2022-01-21 2022-01-21 Adhesive composition and adhesive sheet
JP2022-008141 2022-01-21

Publications (1)

Publication Number Publication Date
WO2023140316A1 true WO2023140316A1 (en) 2023-07-27

Family

ID=87348301

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/001479 WO2023140316A1 (en) 2022-01-21 2023-01-19 Adhesive composition and adhesive sheet

Country Status (2)

Country Link
JP (1) JP2023107051A (en)
WO (1) WO2023140316A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011088961A (en) * 2009-10-20 2011-05-06 Nitto Denko Corp Double-sided self-adhesive sheet
JP2011088957A (en) * 2009-10-20 2011-05-06 Nitto Denko Corp Masking self-adhesive tape
US20190106603A1 (en) * 2016-04-29 2019-04-11 3M Innovative Properties Company Adhesive and damping film
WO2021162056A1 (en) * 2020-02-13 2021-08-19 三菱ケミカル株式会社 Adhesive composition, adhesive, adhesive sheet, and double-sided adhesive sheet
JP2021134354A (en) * 2020-02-27 2021-09-13 三菱ケミカル株式会社 Polyester-based adhesive composition, polyester-based adhesive, and adhesive sheet
WO2022181141A1 (en) * 2021-02-26 2022-09-01 日東電工株式会社 Adhesive composition and adhesive sheet

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011088961A (en) * 2009-10-20 2011-05-06 Nitto Denko Corp Double-sided self-adhesive sheet
JP2011088957A (en) * 2009-10-20 2011-05-06 Nitto Denko Corp Masking self-adhesive tape
US20190106603A1 (en) * 2016-04-29 2019-04-11 3M Innovative Properties Company Adhesive and damping film
WO2021162056A1 (en) * 2020-02-13 2021-08-19 三菱ケミカル株式会社 Adhesive composition, adhesive, adhesive sheet, and double-sided adhesive sheet
JP2021134354A (en) * 2020-02-27 2021-09-13 三菱ケミカル株式会社 Polyester-based adhesive composition, polyester-based adhesive, and adhesive sheet
WO2022181141A1 (en) * 2021-02-26 2022-09-01 日東電工株式会社 Adhesive composition and adhesive sheet

Also Published As

Publication number Publication date
JP2023107051A (en) 2023-08-02

Similar Documents

Publication Publication Date Title
JP6343463B2 (en) Double-sided adhesive tape
WO2011055827A1 (en) Pressure-sensitive adhesive composition
CN102639659B (en) Adhesive sheet
CN105121578B (en) Adhesive phase, adhesive tape and double-faced adhesive tape
JP6036674B2 (en) Double-sided pressure-sensitive adhesive sheet, double-sided pressure-sensitive adhesive sheet with release sheet, method for producing the same, and transparent laminate
JP2023107997A (en) Adhesive composition and adhesive sheet
JP2021134354A (en) Polyester-based adhesive composition, polyester-based adhesive, and adhesive sheet
CN110938396B (en) Adhesive sheet for electronic device
CN110938395B (en) Adhesive sheet for electronic device
WO2023140316A1 (en) Adhesive composition and adhesive sheet
JP7246243B2 (en) Adhesive sheet
JP7115649B2 (en) Adhesive tape
JP7211537B2 (en) Adhesive tape
CN111187580B (en) Pressure-sensitive adhesive sheet
JP7439561B2 (en) Polyester adhesive composition, polyester adhesive and adhesive sheet
CN115087713B (en) Adhesive tape
CN115038766B (en) Adhesive tape
WO2023145602A1 (en) Optical multilayer body
JP2023111871A (en) optical laminate
JP2014169420A (en) Double-sided adhesive tape

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23743309

Country of ref document: EP

Kind code of ref document: A1