WO2023140262A1 - Copolymer, composition, varnish, and cured products of these - Google Patents

Copolymer, composition, varnish, and cured products of these Download PDF

Info

Publication number
WO2023140262A1
WO2023140262A1 PCT/JP2023/001239 JP2023001239W WO2023140262A1 WO 2023140262 A1 WO2023140262 A1 WO 2023140262A1 JP 2023001239 W JP2023001239 W JP 2023001239W WO 2023140262 A1 WO2023140262 A1 WO 2023140262A1
Authority
WO
WIPO (PCT)
Prior art keywords
aromatic
vinyl compound
mass
aromatic vinyl
copolymer
Prior art date
Application number
PCT/JP2023/001239
Other languages
French (fr)
Japanese (ja)
Inventor
亨 荒井
Original Assignee
デンカ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デンカ株式会社 filed Critical デンカ株式会社
Priority to JP2023557658A priority Critical patent/JPWO2023140262A1/ja
Publication of WO2023140262A1 publication Critical patent/WO2023140262A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/34Monomers containing two or more unsaturated aliphatic radicals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F257/00Macromolecular compounds obtained by polymerising monomers on to polymers of aromatic monomers as defined in group C08F12/00
    • C08F257/02Macromolecular compounds obtained by polymerising monomers on to polymers of aromatic monomers as defined in group C08F12/00 on to polymers of styrene or alkyl-substituted styrenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/08Copolymers of styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C08L71/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
    • C08L71/12Polyphenylene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/44Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports

Definitions

  • the present invention relates to insulating materials that are copolymers, compositions, varnishes, and cured products thereof.
  • Fluorine-based resins such as perfluoroethylene are characterized by excellent low dielectric constant, low dielectric loss, and excellent heat resistance.
  • substrates and insulating materials using post-curing resins such as epoxy resins, unsaturated polyester resins, polyimide resins, and phenolic resins have been widely used due to their heat resistance and ease of handling.
  • Patent Document 3 discloses a cured product composed of an ethylene-olefin (aromatic vinyl compound)-aromatic polyene copolymer and a non-polar vinyl compound copolymer obtained from a specific coordination polymerization catalyst and having a specific composition and formulation.
  • an ethylene-olefin (aromatic vinyl compound)-aromatic polyene copolymer and a non-polar vinyl compound copolymer obtained from a specific coordination polymerization catalyst and having a specific composition and formulation.
  • a cured product obtained from a similar composition of an olefin-aromatic vinyl compound-aromatic polyene copolymer and a composition with an auxiliary material or the like is characterized by a low dielectric constant and a low dielectric loss tangent (Patent Documents 4 and 5).
  • the low dielectric properties of known hard crosslinkable raw materials are not sufficient, and there is a problem that the low dielectric properties of the cured product deteriorate when a large amount is blended.
  • the dielectric constant of the resulting cured product increases because inorganic fillers generally have a high dielectric constant.
  • Patent Document 6 a low-dielectric and curable aromatic vinyl compound-aromatic polyene copolymer obtained by cationic polymerization is known (Patent Document 6), but the copolymer according to this prior art has a dendritic (tree-like) structure, so there are many polymer terminal structures, and because of the contained terminal structure peculiar to cationic polymerization, the molecular design for improving heat resistance and durability is complicated.
  • olefin-aromatic vinyl compound-aromatic polyene copolymers described in the above-mentioned published patent documents are relatively soft and exhibit good solubility in solvents such as toluene, ethylbenzene, and limonene.
  • the present invention provides an aromatic vinyl compound-aromatic polyene copolymer that can give a harder cured product and has high solubility in solvents. Also provided is a harder cured product containing an aromatic vinyl compound-aromatic polyene copolymer.
  • the present invention can provide the following aspects.
  • An aromatic vinyl compound-aromatic polyene copolymer that satisfies all of the following conditions (1) to (4).
  • the copolymer has a number average molecular weight of 500 or more and less than 100,000.
  • the aromatic vinyl compound monomer is an aromatic vinyl compound having 8 or more and 20 or less carbon atoms, and the content of the aromatic vinyl compound monomer units exceeds 70% by mass.
  • the aromatic polyene is one or more selected from polyenes having 5 to 20 carbon atoms and having a plurality of vinyl groups and/or vinylene groups in the molecule, and the content of vinyl groups and/or vinylene groups derived from the aromatic polyene units is 2 or more and less than 30 per number average molecular weight.
  • One or more selected from olefin monomer units having 2 to 20 carbon atoms may be included, and the sum of the aromatic vinyl compound monomer units and the aromatic polyene monomer units and, if present, the olefin monomer units is 100% by mass.
  • a composition comprising the aromatic vinyl compound-aromatic polyene copolymer according to any one of aspects 1 to 3 and one or more selected from the following (a) to (d).
  • (a) a curing agent (b) one or more resins selected from hydrocarbon elastomers, polyphenylene ether resins and aromatic polyene resins (c) monomers
  • (d) another olefin-aromatic vinyl compound-aromatic polyene copolymer i) that satisfies all of the following conditions (i) to (iv): the copolymer has a number average molecular weight of 500 or more and less than 100,000.
  • the aromatic vinyl compound monomer is an aromatic vinyl compound having 8 or more and 20 or less carbon atoms, and the content of aromatic vinyl compound monomer units is 70% by mass or less.
  • the aromatic polyene is one or more selected from polyenes having 5 to 20 carbon atoms and having a plurality of vinyl groups and/or vinylene groups in the molecule, and the content of vinyl groups and/or vinylene groups derived from the aromatic polyene units is 1.5 or more and less than 20 per number average molecular weight.
  • the olefin is one or more selected from olefins having 2 to 20 carbon atoms, the content of olefin monomer units is 30% by mass or more, and the total of the olefin monomer units, aromatic vinyl compound monomer units and aromatic polyene monomer units is 100% by mass.
  • a varnish comprising a copolymer according to any one of aspects 1 to 3, or a composition according to aspect 4, and (h) a solvent.
  • Aspect 10 The cured body according to any one of aspects 7 to 9, which is an electrical insulating material.
  • a CCL substrate, FCCL substrate, interlayer insulating material, bonding sheet, or coverlay comprising the cured body according to any one of aspects 7 to 9.
  • the aromatic vinyl compound-aromatic polyene copolymer according to the embodiment of the present invention, the composition containing the same, or the cured product or varnish made of the same provides a hard cured product and a low dielectric material having high solubility in solvents.
  • compositions according to the invention are described in more detail below.
  • sheet also includes the concept of film. Further, even if the term “film” is used in this specification, the concept of "sheet” is also included.
  • composition as used herein is a concept that includes varnish. That is, among the compositions, those that are particularly liquid are described as varnishes.
  • interlayer insulation includes the concept of bonding sheets or interlayer adhesives.
  • the aromatic vinyl compound-aromatic polyene copolymer of the present invention is an aromatic vinyl compound-aromatic polyene copolymer that satisfies all of the following conditions (1) to (4).
  • the copolymer has a number average molecular weight of 500 or more and less than 100,000.
  • the aromatic vinyl compound monomer is an aromatic vinyl compound having 8 or more and 20 or less carbon atoms, and the content of the aromatic vinyl compound monomer units exceeds 70% by mass. It is preferably 71% by mass or more, more preferably 80% by mass or more.
  • the aromatic polyene is one or more selected from polyenes having a plurality of vinyl groups and/or vinylene groups in the molecule and having 5 to 20 carbon atoms, and the vinyl group and/or vinylene group content derived from the aromatic polyene unit is 2 or more and less than 30, preferably 3 or more and less than 30 per number average molecular weight.
  • One or more selected from olefin monomer units having 2 to 20 carbon atoms may be included, and the sum of the aromatic vinyl compound monomer units and the aromatic polyene monomer units and, if present, the olefin monomer units is 100% by mass.
  • the olefin monomer that may be included here is one or more selected from ⁇ -olefins having 2 to 20 carbon atoms and cyclic olefins having 5 to 20 carbon atoms, and is substantially free of oxygen, nitrogen, and halogen, and is a compound composed of carbon and hydrogen.
  • ⁇ -olefins having 2 to 20 carbon atoms include ethylene, propylene, 1-butene, 1-hexene, 1-octene, 1-decane, 1-dodecane, 4-methyl-1-pentene and 3,5,5-trimethyl-1-hexene.
  • Examples of cyclic olefins having 5 to 20 carbon atoms include norbornene and cyclopentene.
  • the olefin that can be preferably used is a combination of ethylene and an ⁇ -olefin other than ethylene or a cyclic olefin, or ethylene alone.
  • the aromatic vinyl compound monomer is an aromatic vinyl compound having 8 to 20 carbon atoms, and examples thereof include styrene, paramethylstyrene, ethylstyrene (ethylvinylbenzene), paraisobutylstyrene, various vinylnaphthalenes, and various vinylanthracenes.
  • the aromatic polyene monomer is a polyene having a plurality of vinyl groups and/or vinylene groups in the molecule and having 5 to 20 carbon atoms, preferably a polyene having a plurality of vinyl groups in the molecule and having 5 to 20 carbon atoms, more preferably ortho-, meta-, and para-divinylbenzenes or mixtures thereof, divinylnaphthalene, divinylanthracene, p-2-propenylstyrene, p-3-butenylstyrene, etc. having an aromatic vinyl structure.
  • Bifunctional aromatic vinyl compounds such as 1,2-bis(vinylphenyl)ethane (abbreviation: BVPE) described in JP-A-2004-087639 can also be used.
  • BVPE 1,2-bis(vinylphenyl)ethane
  • ortho-, meta-, and para-divinylbenzenes, or mixtures thereof, are preferably used, and most preferably, a mixture of meta-divinylbenzene and para-divinylbenzene.
  • these divinylbenzenes are referred to as divinylbenzenes.
  • divinylbenzenes When divinylbenzenes are used as the aromatic polyene, they are preferable because they have high curing efficiency and are easy to cure.
  • the above-mentioned olefin, aromatic vinyl compound, and aromatic polyene monomers may contain other polar groups such as olefins containing oxygen atoms, nitrogen atoms, etc., aromatic vinyl compounds containing oxygen atoms, nitrogen atoms, etc., or aromatic polyenes containing oxygen atoms, nitrogen atoms, etc.
  • the total mass of the monomers containing these polar groups is preferably 10% by mass or less, more preferably 3% by mass or less, of the total mass of the resin composition, and most preferably does not contain a monomer containing a polar group.
  • the present aromatic vinyl compound-aromatic polyene copolymer may preferably further satisfy the following condition (5).
  • the content of olefin monomer units is 1% by mass or more, and the total amount of olefin monomer units, aromatic vinyl compound monomer units and aromatic polyene monomer units is 100% by mass.
  • the number average molecular weight (Mn) of the copolymer is 500 or more and less than 100,000.
  • the number average molecular weight of 500 or more and less than 100,000 in the present invention means that the molecular weight in terms of standard polystyrene obtained by GPC (gel permeation chromatography) falls within that range.
  • the number average molecular weight of the copolymer may be preferably 1,000 or more and 80,000 or less, more preferably 1,000 or more and 50,000 or less, and still more preferably 1,000 or more and 40,000 or less.
  • the content of the aromatic vinyl compound monomer unit contained in the present copolymer exceeds 70% by mass, preferably 71% by mass or more, and more preferably 80% by mass or more, when the total of the aromatic vinyl compound monomer unit, the aromatic polyene monomer unit, and the optionally present olefin monomer unit is 100% by mass.
  • the finally obtained cured body of the present aromatic vinyl compound-aromatic polyene copolymer alone can have a tensile modulus of 1000 MPa or more at 25°C, and the cured body of the composition mainly composed of the present aromatic vinyl compound-aromatic polyene copolymer can easily have a tensile modulus of 100 MPa or more at 25°C.
  • the present aromatic vinyl compound-aromatic polyene copolymer has a high solubility in solvents such as methyl ethyl ketone (MEK), making it easy to produce varnishes using methyl ethyl ketone as a solvent.
  • the content of the aromatic vinyl compound monomer unit contained in the present copolymer may be 98% by mass or less, 95% by mass or less, 92% by mass or less, or 90% by mass or less with respect to the above criteria.
  • the aromatic vinyl compound monomer unit is 98% by mass or less, it becomes easier to adjust the hardness of the cured product to an appropriate level.
  • the content of vinyl groups and/or vinylene groups derived from aromatic polyene units preferably the content of vinyl groups is 2 or more and less than 30, preferably 3 or more and less than 30 per number average molecular weight. If the content of the vinyl group and/or vinylene group is less than 2, the cross-linking efficiency is low, making it difficult to obtain a cured product with a sufficient cross-linking density.
  • the vinyl group content derived from the aromatic polyene unit (divinylbenzene unit) per number average molecular weight in the copolymer can be obtained by comparing the number average molecular weight (Mn) in terms of standard polystyrene determined by a GPC (gel permeation chromatography) method known to those skilled in the art with the vinyl group content derived from the aromatic polyene unit obtained by 1 H-NMR measurement.
  • Mn number average molecular weight
  • the vinyl group content derived from the aromatic polyene unit (divinylbenzene unit) in the copolymer is 0.88% by mass and the standard polystyrene conversion number average molecular weight (Mn) by GPC measurement is 38300
  • Mn standard polystyrene conversion number average molecular weight
  • the molecular weight of the vinyl group derived from the aromatic polyene unit in the number average molecular weight is 336, which is the product of these, and this is the formula weight 2 of the vinyl group.
  • Dividing by 7 gives 12.5. That is, the vinyl group content derived from the aromatic polyene unit per number average molecular weight in the present copolymer is required to be 12.5.
  • the assignment of peaks obtained in 1 H-NMR measurements of copolymers is known from the literature.
  • a method for determining the composition of a copolymer from comparison of peak areas obtained by 1 H-NMR measurement is also known. Furthermore, it is also possible to improve the accuracy of the composition by adding the data of the peak areas and their ratios of the 13 C-NMR spectrum measured in a known quantitative mode to the present 1 H-NMR measurement method. Furthermore, the composition can also be obtained from the data of the peak areas and their ratios in the 13 C-NMR spectrum measured in a known quantitative mode. Also, in this specification, the content of divinylbenzene units in the copolymer is determined from the peak intensity of the vinyl group derived from the divinylbenzene units (by 1 H-NMR measurement). That is, from the content of vinyl groups derived from divinylbenzene units, the content of divinylbenzene units is determined assuming that one vinyl group is a vinyl group derived from one divinylbenzene unit in the copolymer.
  • the content of the olefin monomer unit may be preferably 0% by mass or more or 1% by mass or more, more preferably 0% by mass or more and less than 30% by mass or 1% by mass or more and less than 30% by mass, and still more preferably 1% by mass or more and 20% by mass or less.
  • the total amount of the olefin monomer units, the aromatic vinyl compound monomer units and the aromatic polyene monomer units is 100% by mass.
  • the content of the olefin monomer unit is 1% by mass or more, the toughness (elongation) and impact resistance of the finally obtained cured product are improved, and cracking during curing and cracking during the heat cycle test of the cured product are less likely to occur.
  • the content of the olefin monomer unit is preferably more than 5% by mass and less than 30% by mass.
  • the copolymer may be free of olefinic monomer units.
  • the aromatic vinyl compound-aromatic polyene copolymer of the present invention can be produced by copolymerizing an aromatic vinyl compound, an aromatic polyene, and optionally an olefin monomer through coordination polymerization.
  • a single-site coordination polymerization catalyst composed of a transition metal compound and a cocatalyst described in JP-A-2009-161743, JP-A-2010-280771, and International Publication No. 00/037517, because an aromatic vinyl compound-aromatic polyene copolymer can be efficiently produced.
  • the chemical structure of the present copolymer obtained using a coordination polymerization catalyst consisting of a combination of a transition metal compound and a co-catalyst is characterized in that it does not contain a specific structure. That is, the copolymer obtained by the cationic polymerization method according to the prior art has, for example, a polymer terminal structure containing an alicyclic ring as described in WO 2018/181842 above, but the copolymer according to the embodiment of the present invention has a remarkable difference that it does not have such a structure. Due to this difference, the present invention provides the effect of facilitating molecular design.
  • the polymer terminal structure contained in the aromatic vinyl compound-aromatic polyene copolymer of the present invention can be clarified qualitatively or quantitatively by known methods using 1 H-NMR and 13 C-NMR.
  • the polymer terminal structure contained in the styrene-divinylbenzene copolymer comprising styrene as a general aromatic vinyl compound and divinylbenzene as the aromatic polyene is one of the structures represented by E-1 to E-6 below, or any combination thereof.
  • an ethylene-styrene-divinylbenzene copolymer composed of styrene as a general aromatic vinyl compound, divinylbenzene as an aromatic polyene, and ethylene as an olefin as another component is one of the structures represented by the following chemical formulas E-1 to E-6, or any combination thereof.
  • P represents the polymer structural residue of the aromatic vinyl compound-aromatic polyene copolymer
  • Z represents hydrogen, a vinyl group, or a vinylene group.
  • polymer terminal structures are generally composed of E-1 and E-3, and substantially most of them are E-1 and E-3. In addition, E-5 may also be included. These structures are terminals having a saturated structure, and therefore the aromatic vinyl compound-aromatic polyene copolymer of the present invention essentially has the feature of high durability such as heat resistance.
  • the structure of the polymerization initiation terminal changes depending on factors such as whether the first monomer insertion occurs with respect to the metal-hydrogen bond, whether the first monomer insertion occurs with the metal-alkyl group structure, whether the first monomer insertion occurs with ethylene, styrene, or divinylbenzene, and when the first monomer is styrene or divinylbenzene, whether it is 2,1 insertion or 1,2 insertion.
  • the structure of the chain transfer end (polymerization termination end) of the polymer growing chain of the polymer terminal structure is generally E-2 and E-6, and the remaining E-5, E-4, E-1 and E-3 are also included.
  • the ratio of the structure of the chain transfer end changes depending on whether the chain transfer occurs by hydrogen abstraction at the beta position, by chain transfer to another coordination monomer, by chain transfer to the alkylaluminum co-catalyst component, or by chain transfer to a chain transfer agent such as hydrogen. That is, the polymer terminal structure of the aromatic vinyl compound-aromatic polyene copolymer which may contain an olefin according to the present invention has many saturated types E-1, E-3, and E-5, and unsaturated types E-4 and E-6 have a small proportion.
  • the polymer terminal structure of the aromatic vinyl compound-aromatic polyene copolymer which may contain an olefin of the present invention consists of one or more of the above structures E-1 to E-6, and other structures are substantially not included. Since the aromatic vinyl compound-aromatic polyene copolymer which may contain an olefin according to the present invention is obtained by specific coordination polymerization, it is a copolymer having a relatively low degree of polymer chain branching and high linearity.
  • a terminal structure containing an alicyclic ring formed by a chain transfer such as an electrophilic substitution reaction of a carbocation at a polymer growth terminal to an aromatic ring of an aromatic monomer, which is described in International Publication No. 2018/181842 relating to the prior art, is not included in the copolymer according to the present invention.
  • the aromatic vinyl compound-aromatic polyene copolymer described in WO 2018/181842 contains a very large number of terminal structures per polymer molecule due to its dendritic and multibranched structure, and the terminal structures described are mostly unsaturated structures of vinyl groups and vinylene groups with various structures due to cationic polymerization, and there is a problem in heat resistance stability. It has a problem of deteriorating heat resistance stability. If a large amount of unsaturated groups such as vinylene groups are present in the cured product, they will bond or react with oxygen in the air, resulting in an increase in the dielectric constant and dielectric loss tangent of the cured product, which is not preferable.
  • aromatic vinyl compound-aromatic polyene copolymer which may contain an olefin
  • examples of the aromatic vinyl compound-aromatic polyene copolymer (which may contain an olefin) in the present copolymer include styrene-divinylbenzene copolymer, ethylene-styrene-divinylbenzene copolymer, ethylene-propylene-styrene-divinylbenzene copolymer, ethylene-1-hexene-styrene-divinylbenzene copolymer, and ethylene-1-octene-styrene-divinylbenzene copolymer.
  • the composition of the present invention may further contain (a) a curing agent, (b) one or more resins selected from hydrocarbon elastomers, polyphenylene ether resins, and aromatic polyene resins, (c) a monomer, and (d) one or more selected from another olefin-aromatic vinyl compound-aromatic polyene copolymer that satisfies all of the following conditions (i) to (iv). (i) The copolymer has a number average molecular weight of 500 or more and less than 100,000.
  • the aromatic vinyl compound monomer is an aromatic vinyl compound having 8 or more and 20 or less carbon atoms, and the content of aromatic vinyl compound monomer units is 70% by mass or less.
  • the aromatic polyene is one or more selected from polyenes having 5 to 20 carbon atoms and having a plurality of vinyl groups and/or vinylene groups in the molecule, and the content of vinyl groups and/or vinylene groups derived from the aromatic polyene units is 1.5 or more and less than 20 per number average molecular weight.
  • the olefin is one or more selected from olefins having 2 to 20 carbon atoms, the content of olefin monomer units is 30% by mass or more, and the total of the olefin monomer units, aromatic vinyl compound monomer units and aromatic polyene monomer units is 100% by mass.
  • the other olefin-aromatic vinyl compound-aromatic polyene copolymer as an optional additional component described above may have the same characteristics as the present copolymer, except for the content of aromatic vinyl compound monomer units.
  • curing agent As the curing agent that can be used in the composition of the present invention, it is possible to use known curing agents that can be used for conventional polymerization or curing of aromatic polyenes and aromatic vinyl compounds. Examples of such curing agents include radical polymerization initiators (radical generators), cationic polymerization initiators, and anionic polymerization initiators, and preferably radical polymerization initiators can be used. More preferred are organic peroxides, azo polymerization initiators, etc., which can be freely selected according to the application and conditions. Catalogs with organic peroxides can be found on the NOF website, e.g.
  • Photopolymerization initiators include radical photopolymerization initiators, cationic photopolymerization initiators, and anionic photopolymerization initiators. Such photoinitiators are available, for example, from Tokyo Chemical Industry Co., Ltd. Furthermore, curing by radiation or electron beam itself is also possible. It is also possible to perform cross-linking and curing by thermal polymerization of contained raw materials without containing a curing agent.
  • the amount of the curing agent used is not particularly limited, but is generally preferably 0.01 to 10 parts by mass with respect to 100 parts by mass of the resin composition. It is preferable that the resin composition excludes a curing agent and a solvent.
  • a curing agent such as a peroxide or an azo polymerization initiator
  • the curing treatment is performed at an appropriate temperature and time in consideration of its half-life.
  • the conditions in this case are arbitrary according to the curing agent, but generally a temperature range of about 50°C to 200°C is suitable.
  • composition or varnish according to the embodiment of the present invention can contain the sum of component (b), that is, “one or more resins selected from hydrocarbon elastomers, polyphenylene ether resins, and aromatic polyene resins” and component (d), that is, “another olefin-aromatic vinyl compound-aromatic polyene copolymer", preferably in the range of 1 to 200 parts by mass with respect to 100 parts by mass of the copolymer.
  • component (b) or component (d) By adding component (b) or component (d), the effect of improving the mechanical properties necessary for various purposes of use of the cured product obtained from the present varnish can be obtained.
  • the amount of the hydrocarbon-based elastomer that may be contained in the composition according to the embodiment of the present invention is preferably 1 to 200 parts by mass, more preferably 1 to 100 parts by mass, and most preferably 1 to 50 parts by mass, based on 100 parts by mass of the present copolymer (that is, another olefin-aromatic vinyl compound-aromatic polyene copolymer which is an optional additional component is excluded).
  • the hydrocarbon elastomer that can be suitably used in the composition of the present invention preferably has a number average molecular weight of 100 to 100,000, more preferably 500 to 100,000, and even more preferably 1,000 to 4,500.
  • the hydrocarbon-based elastomer that can be suitably used in the composition of the present invention is preferably one or more elastomers selected from ethylene-based or propylene-based elastomers, conjugated diene-based polymers, aromatic vinyl compound-conjugated diene-based block copolymers or random copolymers, and hydrides (hydrogenated products) thereof.
  • Ethylene-based elastomers include ethylene- ⁇ -olefin copolymers such as ethylene-octene copolymers and ethylene-1-hexene copolymers, EPR, and EPDM.
  • Propylene-based elastomers include atactic polypropylene, low stereoregular polypropylene, and propylene- ⁇ -olefin copolymers such as propylene-1-butene copolymers. These hydrocarbon elastomers may be modified such as by introducing functional groups with maleic anhydride or other compounds.
  • Conjugated diene polymers include polybutadiene and 1,2-polybutadiene.
  • aromatic vinyl compound-conjugated diene block copolymers or random copolymers and hydrides (hydrogenated products) thereof include SBS, SIS, SEBS, SEPS, SEEPS and SEEBS.
  • the 1,2-polybutadiene that can be preferably used is available from Nippon Soda Co., Ltd. under the product names of liquid polybutadiene: product names B-1000, 2000 and 3000, for example.
  • "Ricon 100" manufactured by TOTAL CRAY VALLEY can be exemplified.
  • conjugated diene polymers and their hydrides may be modified such as by introducing functional groups with maleic anhydride or other compounds.
  • conjugated diene-based polymers polymers containing no vinylene groups or less vinylene groups in the main chain are preferred. This is because the vinylene group in the main chain tends to remain in the cured product even after curing, and the vinylene group reacts with oxygen in the air to generate a polar group containing oxygen, which tends to increase the dielectric constant and dielectric loss values.
  • a 1,4-polybutadiene copolymer is not suitable as the conjugated diene polymer, and a 1,2-polybutadiene polymer or copolymer containing a 1,2-polybutadiene structure can be preferably used.
  • various hydrogenated polymers in which the vinylene groups are hydrogenated and their content is greatly reduced.
  • Hydrogenated polymers of conjugated diene polymers include hydrogenated SBR, SEBS, SEPS, SEEPS and SEEBS, preferably hydrogenated polymers of conjugated diene polymers having methyl-substituted styrene.
  • the composition of the present invention is used in an amount of preferably 150 parts by mass or less, more preferably 1 to 30 parts by mass, and most preferably 1 to 20 parts by mass, based on 100 parts by mass of the copolymer, from the viewpoint of handling and molding processability (handlability as a thermoplastic resin) in an uncured state.
  • polyphenylene ether also referred to as "polyphenylene ether-based resin"
  • polyphenylene ether-based resin commercially available known polyphenylene ethers can be used.
  • the number average molecular weight of the polyphenylene ether is arbitrary, and is preferably 10,000 or less, most preferably 5,000 or less, in consideration of the molding processability of the composition.
  • the number average molecular weight is preferably 500 or more.
  • the terminal of the molecule is modified with a functional group.
  • one molecule has a plurality of functional groups.
  • modified polyphenylene ether is preferred.
  • the functional group includes a radically polymerizable functional group and a functional group such as an epoxy group, preferably a radically polymerizable functional group.
  • a vinyl group is preferable as the radically polymerizable functional group.
  • the vinyl group is preferably one or more selected from the group consisting of an allyl group, a (meth)acryloyl group and an aromatic vinyl group, more preferably one or more selected from the group consisting of a (meth)acryloyl group and an aromatic vinyl group, and most preferably an aromatic vinyl group. That is, in the composition of the present invention, a bifunctional polyphenylene ether in which both ends of the molecular chain are modified with radically polymerizable functional groups is particularly preferred.
  • Such preferred polyphenylene ethers include SABIC's Noryl (trademark) SA9000 (modified polyphenylene ether having methacryloyl groups at both ends, number average molecular weight of 2200) and Mitsubishi Gas Chemical Co., Ltd.'s bifunctional polyphenylene ether oligomer (OPE-2St, modified polyphenylene ether having vinylbenzyl groups at both ends, number average molecular weight of 1200), and the like.
  • OPE-2St modified polyphenylene ether having vinylbenzyl groups at both ends, number average molecular weight of 1200
  • allylated PPE manufactured by Asahi Kasei Corp. aromatic polyethers manufactured by JSR Corp. (ELPAC HC-F series), etc. can also be used.
  • a bifunctional polyphenylene ether oligomer manufactured by Mitsubishi Gas Chemical Co., Ltd. can be preferably used.
  • the amount of polyphenylene ether used in the composition of the present invention is preferably 1 to 200 parts by mass, more preferably 1 to 100 parts by mass, per 100 parts by mass of the copolymer.
  • the aromatic polyene-based resin includes a divinylbenzene-based reactive polybranched copolymer (PDV) manufactured by Nippon Steel Chemical & Materials. Such a PDV is described, for example, in the document "Synthesis of Polyfunctional Aromatic Vinyl Copolymer and Development of New IPN-type Low Dielectric Loss Material Using Same” (Masao Kawabe, Journal of Electronics Packaging Society p125, Vol.12 No.2 (2009)).
  • the amount of the aromatic polyene resin used in the composition of the present invention is preferably 1 to 200 parts by mass, more preferably 1 to 100 parts by mass, and most preferably 1 to 50 parts by mass, based on 100 parts by mass of the copolymer. Use of the aromatic polyene-based resin in an amount within these ranges is preferable in order to prevent a decrease in adhesion to other members and a decrease in toughness.
  • the monomer that the composition of the present invention may contain is preferably 100 parts by weight or less per 100 parts by weight of the copolymer.
  • the present resin composition may be substantially free of monomers.
  • a monomer is a monomer that can be polymerized by either radical polymerization, cationic polymerization, or anionic polymerization, preferably a monomer that can be radically polymerized. Its molecular weight is preferably 5000 or less, preferably less than 5000, more preferably 1000 or less, more preferably less than 1000, still more preferably 500 or less, still more preferably less than 500, the "aromatic vinyl compound” and "aromatic polyene", and may also contain an "aromatic vinylene compound” as appropriate.
  • An aromatic vinylene compound is a compound having both a single aromatic ring or multiple condensed aromatic rings having 9 to 30 carbon atoms and a vinylene group.
  • aromatic vinylene compounds include indenes, beta-substituted styrenes and acenaphthylenes.
  • the indenes include indene, various alkyl-substituted indenes and phenyl-substituted indenes.
  • Beta-substituted styrenes include ⁇ -alkyl-substituted styrenes such as ⁇ -methylstyrene, or phenyl-substituted styrenes.
  • Acenaphthylenes include acenaphthylene, various alkyl-substituted acenaphthylenes, and various phenyl-substituted acenaphthylenes.
  • the aromatic vinylenes the compounds exemplified above may be used alone, or two or more of them may be used in combination.
  • the aromatic vinylenes preferably have a boiling point of 175°C or higher at normal pressure.
  • Acenaphthylene is most preferable from the viewpoint of industrial availability and radical polymerizability.
  • the monomer can be selected from "aromatic vinyl compound", "aromatic polyene", or "aromatic vinylene". Preferred are the aforementioned "aromatic vinyl compound” and "aromatic polyene”. Also more preferably, the monomer may be the following "polar monomer”.
  • the polar monomer that the composition of the present invention may contain is preferably 100 parts by weight or less per 100 parts by weight of the copolymer.
  • the present resin composition may be substantially free of polar monomers.
  • a polar monomer is a monomer having one or more atoms selected from oxygen, nitrogen, phosphorus, and sulfur in the molecule, and a polar monomer that can be suitably used has a molecular weight of preferably less than 5000, more preferably less than 1000, and even more preferably less than 500.
  • a polar monomer that can be suitably used in the resin composition of the present invention is preferably a polar monomer that can be polymerized by a radical polymerization initiator.
  • Polar monomers include various maleimides, bismaleimides, maleic anhydride, triallyl isocyanurate, glycidyl (meth)acrylate, tri(meth)acryl isocyanurate, trimethylolpropane tri(meth)acrylate, and the like.
  • Maleimides and bismaleimides that can be used in the present invention are described in, for example, International Publication No. 2016/114287 and Japanese Patent Application Laid-Open No. 2008-291227, and can be purchased from, for example, Daiwa Kasei Kogyo Co., Ltd., Nippon Kayaku Co., Ltd., Designer molecules inc.
  • a bismaleimide resin "SLK” manufactured by Shin-Etsu Chemical Co., Ltd.
  • maleimide group-containing compounds are preferably bismaleimides from the viewpoints of solubility in organic solvents, high frequency characteristics, high adhesion to conductors, moldability of prepreg, and the like.
  • These maleimide group-containing compounds may be used as polyaminobismaleimide compounds from the viewpoints of solubility in organic solvents, high frequency characteristics, high adhesion to conductors, moldability of prepreg, and the like.
  • a polyaminobismaleimide compound is obtained, for example, by Michael addition reaction between a compound having two maleimide groups at the terminals and an aromatic diamine compound having two primary amino groups in the molecule.
  • a polar monomer having a polyfunctional group of two or more functional groups such as bismaleimides, triallyl isocyanurate (TAIC), and trimethylolpropane tri(meth)acrylate.
  • the amount of the polar monomer used in the resin composition of the present invention is preferably 0.1 to 20 parts by mass, more preferably 0.1 to 10 parts by mass, per 100 parts by mass of the copolymer. By using an amount within this range, it is possible to obtain the effect of preventing the dielectric constant and dielectric loss tangent of the obtained cured product from becoming too high.
  • the composition of the present invention may contain one or more selected from olefin-aromatic vinyl compound-aromatic polyene copolymers other than the present copolymer, which satisfy all of the following conditions (i) to (iv).
  • the copolymer has a number average molecular weight of 500 or more and less than 100,000.
  • the aromatic vinyl compound monomer is an aromatic vinyl compound having 8 or more and 20 or less carbon atoms, and the content of aromatic vinyl compound monomer units is 70% by mass or less.
  • the aromatic polyene is one or more selected from polyenes having 5 to 20 carbon atoms and having a plurality of vinyl groups and/or vinylene groups in the molecule, and the content of vinyl groups and/or vinylene groups derived from the aromatic polyene units is 1.5 or more and less than 20 per number average molecular weight.
  • the olefin is one or more selected from olefins having 2 to 20 carbon atoms, the content of olefin monomer units is 30% by mass or more, and the total of the olefin monomer units, aromatic vinyl compound monomer units and aromatic polyene monomer units is 100% by mass.
  • Such olefin-aromatic vinyl compound-aromatic polyene copolymers that satisfy all other specific conditions are described, for example, in WO2021/112087, WO2021/112088, and WO2022/014599.
  • An olefin-aromatic vinyl compound-aromatic polyene copolymer that satisfies all such other specific conditions is flexible and exhibits a low dielectric constant and a low dielectric loss tangent, so it is suitable because it can be combined with the aromatic vinyl compound-aromatic polyene copolymer of the present invention to form a composition to provide a cured product with a low dielectric constant and a low dielectric loss tangent that covers a wide range of physical properties.
  • the other olefin-aromatic vinyl compound-aromatic polyene copolymer is preferably added in an amount of 1 to 200 parts by mass, particularly preferably 50 to 200 parts by mass.
  • uncured includes the concept of semi-cured.
  • the uncured composition is in a state in which the composition itself exhibits thermoplasticity (i.e., a property in which molding such as sheeting is possible under molding conditions that do not cause curing), and indicates a state in which curing is possible by applying appropriate curing conditions (heating, pressure, etc.) after molding.
  • the glass transition temperature of the aromatic vinyl compound-aromatic polyene copolymer of the present invention can be confirmed to be in the range of 30°C to 100°C by a known measuring method.
  • the other olefin-aromatic vinyl compound-aromatic polyene copolymer described above can be confirmed to have a glass transition temperature in the range of -100 to 30°C by a similar measurement method. Therefore, the composition as described above has a plurality of glass transition temperatures both in the range of 30°C to 100°C and in the range of -100°C to 30°C in an uncured state. Examples of known measurement methods include differential scanning calorimetry (DSC) and dynamic viscoelasticity measurement (DMA).
  • DSC differential scanning calorimetry
  • DMA dynamic viscoelasticity measurement
  • composition of the present invention may contain one or more selected from the following (e) to (g). (e) filler (f) flame retardant (g) surface modifier
  • a known inorganic or organic filler can be added as required. These fillers are added for the purpose of controlling the coefficient of thermal expansion, controlling the thermal conductivity, and reducing the price, and the amount used is arbitrary depending on the purpose.
  • a known surface modifier such as a silane coupling agent.
  • the inorganic filler is preferably one or more of boron nitride (BN) or silica, more preferably silica. As silica, fused silica is preferred.
  • a hollow filler or a filler having a shape with many voids may be added.
  • organic fillers such as high-molecular-weight polyethylene or ultra-high-molecular-weight polyethylene instead of inorganic fillers.
  • the organic filler itself is preferably crosslinked, and is preferably blended in the form of fine particles or powder.
  • the dielectric loss tangent (dielectric loss) can be suppressed.
  • a high dielectric constant, low dielectric loss tangent insulating layer is suitable for applications such as capacitors, inductors for resonant circuits, filters, and antennas.
  • high dielectric constant insulator filler used in the present invention examples include inorganic fillers and metal particles subjected to insulation treatment. Specific examples are known high dielectric constant inorganic fillers such as barium titanate and strontium titanate, and other examples are specifically described in JP-A-2004-087639.
  • Flame retardants may be used in the compositions of the present invention.
  • preferred flame retardants are known organic phosphorous compounds such as phosphoric acid esters or condensates thereof, known brominated flame retardants, and red phosphorus.
  • phosphoric acid esters compounds having a plurality of xylenyl groups in the molecule are particularly preferred from the viewpoint of flame retardancy and low dielectric loss tangent.
  • antimony compounds such as antimony trioxide, antimony tetroxide, antimony pentoxide, and sodium antimonate, or nitrogen-containing compounds such as melamine, triallyl-1,3,5-triazine-2,3,4-(1H,3H,5H)-trione, and 2,4,6-triaryloxy-1,3,5-triazine may be added as flame retardant aids in addition to the flame retardant.
  • the total amount of these flame retardants and auxiliary flame retardants is usually preferably 1 to 100 parts by mass with respect to 100 parts by mass of the resin composition. Further, 30 to 200 parts by mass of the polyphenylene ether (PPE)-based resin having a low dielectric constant and excellent flame retardancy may be used with respect to 100 parts by mass of the flame retardant.
  • PPE polyphenylene ether
  • the composition of the present invention contains a surface modifying agent for the purpose of improving adhesion to a copper foil for wiring.
  • the purpose is to increase the adhesion strength (peel strength) to the smooth surface of the copper foil.
  • the amount of the surface modifier used is in the range of 0.001 to 10 parts by mass, more preferably 0.01 to 5 parts by mass, most preferably 0.01 to 1 part by mass, based on 100 parts by mass of the olefin-aromatic vinyl compound-aromatic polyene copolymer. If the amount of the surface modifier used is less than 10 parts by mass, the dielectric constant and dielectric loss tangent of the cured product obtained from the composition will be low.
  • a known surface modifier can be used in the present invention.
  • silane-based surface modifiers also known as silane coupling agents
  • titanate-based surface modifiers and isocyanate-based surface modifiers.
  • silane-based surface modifiers are used.
  • One or more of these surface modifiers may be used.
  • silane-based surface modifiers are available from Shin-Etsu Chemical Co., Dow Corning, and Evonik.
  • composition of the present invention may further comprise (h) a solvent.
  • a solvent particularly liquid by containing a solvent.
  • a suitable solvent may be added to the composition of the present invention, if necessary. Moreover, the usage amount is not particularly limited. A solvent is used to adjust the viscosity and fluidity of the composition. In particular, when the resin composition of the present invention is in the form of varnish, a solvent is preferably used. As the solvent, if the boiling point under atmospheric pressure is high, that is, if the volatility is low, the thickness of the coated film will be uniform. A preferable boiling point is approximately 75° C. or higher, more preferably 130° C. or higher and 300° C. or lower under atmospheric pressure.
  • solvents examples include cyclohexane, cyclohexanone, methyl ethyl ketone (MEK), toluene, ethylbenzene, xylene, mesitylene, tetralin, acetone, limonene, mixed alkanes, and mixed aromatic solvents.
  • the amount of the solvent used in the composition of the present invention is arbitrary, but is preferably 5 to 500 parts by mass, more preferably 10 to 300 parts by mass, and most preferably 50 to 150 parts by mass, relative to 100 parts by mass of the copolymer.
  • methyl ethyl ketone MK
  • the aromatic vinyl compound-aromatic polyene copolymer of the present invention is preferred because of its high solubility in methyl ethyl ketone.
  • composition and varnish of the present invention can contain additives that are commonly used in resins, such as antioxidants, weathering agents, light stabilizers, lubricants, compatibilizers, and antistatic agents, as long as the effects and objects of the present invention are not impaired.
  • the composition and varnish of the present invention can be obtained by mixing, dissolving, or melting the various additives described above, and any known methods for mixing, dissolving, and melting can be employed.
  • the composition of the present invention can be mixed by a known kneading method such as a twin-screw kneader, various rolls, various kneaders, and the like.
  • a known kneading method such as a twin-screw kneader, various rolls, various kneaders, and the like.
  • the composition is a varnish, it can be mixed by adding to the varnish and stirring.
  • the varnish of the present invention can exhibit a viscous liquid state by adjusting the composition and molecular weight of the copolymer to be used, adding a certain amount or more of a liquid monomer or solvent within the scope of the present invention, or adding a liquid flame retardant, and can exhibit a viscous liquid state by heating at room temperature or 100 ° C. or less. It is 500 mPa ⁇ s or less.
  • a molded body can be obtained by applying, impregnating, filling, or dripping onto another material by an appropriate method and removing the solvent.
  • the desired cured product can be obtained by curing with heat or light.
  • Such properties can be obtained by various transfer molding (press-fit molding), coating on or between substrates and semiconductor device materials, extrusion lamination, or spin coating to form sheets or films, and then curing to form an insulating coating or insulating layer.
  • the polymerization liquid obtained when copolymerizing the aromatic vinyl compound-aromatic polyene copolymer of the present invention (generally containing a solvent such as toluene, ethylbenzene, cyclohexane, and methylcyclohexane, a residual monomer such as styrene and divinylbenzene, a residual monomer such as an olefin monomer, a catalyst, and a co-catalyst component) can be used as a varnish as it is.
  • the varnish can also be obtained by distilling off part or all of the solvent and residual monomers from the polymer solution under reduced pressure and diluting with the solvent as necessary. That is, the varnish of the present invention may contain residual monomers during polymerization and solvents used in polymerization.
  • the shape of the molded article obtained from the composition of the present invention is arbitrary. These compositions can exhibit thermoplastic properties. Therefore, under conditions that do not cause cross-linking, a known molding method for thermoplastic resins, such as extrusion molding, injection molding, press molding, inflation molding, etc., in a substantially uncured state, can be molded into shapes such as sheets, tubes, strips, and pellets. In a certain embodiment, it is possible to obtain the effect that the molded article has less self-adhesiveness (tackiness). The molded body can then be crosslinked (cured). For example, when the composition is a varnish, it is generally formed into a sheet or film by removing the solvent by heating, depressurization, air drying, etc.
  • Uncured sheets and films can be obtained by these methods.
  • a composite can also be obtained by impregnating a porous substrate, woven fabric, or non-woven fabric with the varnish of the present invention and removing the solvent.
  • a hemispherical shape can be formed by dropping the solution onto the substrate and removing the solvent.
  • the sheet may be uncured (semi-cured) to the extent that the sheet shape can be maintained, or may be fully cured.
  • the degree of hardening of the composition can be quantitatively measured by a known dynamic viscoelasticity measurement method (DMA, Dynamic Mechanical Analysis).
  • DMA Dynamic Mechanical Analysis
  • composition and varnish of the present invention, and the molded article obtained from them can be cured by a known method with reference to the curing conditions (temperature, time, pressure) of the raw materials and curing agents contained therein.
  • the curing agent used is a peroxide
  • the curing conditions can be determined with reference to the half-life temperature and the like disclosed for each peroxide.
  • the cured product obtained from the composition of the present invention is sufficiently cured, and the gel content measured according to ASTM is preferably 90% by mass or more, more preferably more than 90% by mass.
  • the dielectric constant of the cured product is preferably 3.0 to 2.0, more preferably 2.8 to 2.0, and most preferably 2.5 to 2.0.
  • the dielectric loss tangent is preferably 0.003 or less and 0.0005 or more, more preferably 0.002 or less and 0.0005 or more.
  • the volume resistivity of the obtained cured product is preferably 1 ⁇ 10 15 ⁇ cm or more, and the water absorption is preferably 0.1% by mass or less, more preferably less than 0.1% by mass, as an electrically insulating material. These values are particularly preferable values for an electrical insulating material for high frequencies of 3 GHz or higher, for example.
  • the cured product obtained from the copolymer or composition of the present invention is particularly suitable as an electrical insulating material for high-frequency signals, and these cured products can be suitably used for CCL substrates, FCCL substrates, interlayer insulating materials (bonding sheets), or coverlays.
  • the present invention also relates to CCL substrates, FCCL substrates, interlayer insulating materials (bonding sheets), or coverlays made of the present copolymers or compositions containing the same.
  • copolymers obtained in Synthesis Examples and Comparative Synthesis Examples were analyzed by the following means.
  • the content of vinyl group units derived from ethylene, styrene, and divinylbenzene in the copolymer was determined by 1 H-NMR from peak area intensities attributed to each. Samples were dissolved in heavy 1,1,2,2-tetrachloroethane and measurements were made at 80-130°C.
  • GPC gel permeation chromatography
  • ⁇ Tensile modulus> In accordance with JIS K-6251: 2017, the cured body of the composition according to each example and comparative example was molded into a film sheet with a thickness of about 1 mm, cut into a No. 2 dumbbell No. 1/2 type test piece shape, and Tensilon UCT-1T manufactured by Orientec Co., Ltd. It was measured at 25 ° C. and a tensile speed of 500 mm / min to determine the tensile modulus.
  • ⁇ Storage modulus> Using a dynamic viscoelasticity measuring device (TA Instruments Co., formerly Rheometrics Co. RSA-G2), measurement was performed while the temperature was raised from room temperature under the condition of a frequency of 1 Hz, and the storage modulus at 280°C was measured. A sample for measurement (3 mm ⁇ 40 mm) was cut out from a film having a thickness of about 0.1 to 0.3 mm and measured to determine the storage modulus. The main measurement parameters involved in the measurements are: Measurement frequency 1Hz Heating rate 3°C/min Sample measurement length 10mm Distortion 0.1%
  • CTE linear expansion coefficient
  • TMA thermomechanical analyzer
  • divinylbenzene trade name "divinylbenzene (96%)” manufactured by Nippon Steel Chemical & Material (a mixture of meta- and para-isomers containing 96% by mass of divinylbenzene) was used. Polymerization was carried out using a polymerization vessel with a capacity of 10 L, a stirrer and a jacket for heating and cooling.
  • Synthesis Example P-1 A polymerization vessel was charged with 870 g of toluene, 4530 g of styrene, and 130 g of divinylbenzene (meta-para mixture, manufactured by Nippon Steel Chemical & Materials Co., Ltd., purity: 80%), and nitrogen with a dew point of ⁇ 50° C. or less was bubbled into the liquid at a liquid temperature of 40° C. while the interior was sufficiently replaced with nitrogen. Further, the gas was switched to ethylene, pressurized to about 0.5 MPa and released to normal pressure, which was repeated 5 times to replace the inside with ethylene gas.
  • Synthesis Example P-2 Polymerization was carried out in the same manner as in P-1, except that the internal pressure of the polymerization vessel was maintained at 0.00 MPa (0.0 atm in gauge) and the internal temperature during polymerization was maintained at 100°C. About 600 g of copolymer P-2 was obtained. Table 1 shows the composition and number average molecular weight of the copolymer.
  • the solubility of the obtained copolymers P-1 to P-4 in methyl ethyl ketone was examined as follows. At 25° C., 3 g of fine particles of the copolymer were accurately weighed in a container equipped with a stirrer placed on an electronic balance, 3 g of methyl ethyl ketone was added, and the mixture was stirred for 15 minutes. If undissolved, the same operation was performed while adding methyl ethyl ketone in increments of 3 g, and the mass of methyl ethyl ketone until it was completely dissolved was measured and the solubility was used. If the solubility at 25° C. is 40 g or more in terms of 100 g of methyl ethyl ketone, it is described as excellent; if it is 20 g or more and less than 40 g, it is fair;
  • a bifunctional polyphenylene ether oligomer (OPE-2St, modified polyphenylene ether having vinylbenzyl groups at both ends, number average molecular weight of 1200) was obtained by diluting a toluene solution product manufactured by Mitsubishi Gas Chemical Co., Ltd. with toluene, adding a large amount of methanol to precipitate methanol, air-drying, and drying under reduced pressure to obtain a powdery polyphenylene ether oligomer and use it.
  • PBd 1,2-polybutadiene
  • B-3000 number average molecular weight 3200, viscosity 210 Poise (45 ° C.)
  • SEBS Hydrogenated styrene thermoplastic elastomer, "Tuftec H1041” manufactured by Asahi Kasei Corporation, number average molecular weight 58000
  • Perbutyl P ( ⁇ , ⁇ '-di(t-butylperoxy)diisopropylbenzene) manufactured by NOF Corporation was used as a curing agent.
  • Example 1 P-1 (ethylene-styrene-divinylbenzene copolymer) obtained in Synthesis Example and a solvent (toluene) were heated to about 60° C. and stirred to dissolve the copolymer using a vessel equipped with a heating/cooling jacket and a stirring blade. Furthermore, 1 part by mass of a curing agent was added to 100 parts by mass of the resin component excluding the curing agent and the solvent, and the mixture was dissolved and stirred to obtain a varnish-like composition.
  • a curing agent 1 part by mass of a curing agent was added to 100 parts by mass of the resin component excluding the curing agent and the solvent, and the mixture was dissolved and stirred to obtain a varnish-like composition.
  • the obtained composition was poured into a Teflon (registered trademark) formwork (frame part length 7 cm, width 7 cm, thickness 0.2 mm, 0.5 mm, or 1.0 mm) on a PET sheet placed on a glass plate, air-dried, and further dried at 60 ° C. for 3 hours or more in a vacuum dryer to obtain an uncured sheet. Further, a Teflon sheet and a Teflon mold were placed under a load of 5 MPa in a press, and heat treated at 120° C. for 30 minutes, 150° C. for 30 minutes, and then at 200° C. for 120 minutes.
  • Teflon registered trademark
  • Examples 2-6 A curable resin composition was prepared according to the formulation shown in Table 2 (the units in the table are parts by mass) in the same manner as in Example 1, and uncured sheets and cured sheets of the compositions of Examples were obtained in the same manner.
  • Comparative Examples 1-3 A curable resin composition was prepared according to the formulation shown in Table 2 (units are parts by mass) in the same manner as in Example 1, and an uncured sheet and a cured sheet of the composition of Comparative Example were obtained in the same manner.
  • Table 2 shows the gel content, tensile modulus at 25° C., storage modulus at 280° C., dielectric constant, dielectric loss tangent, coefficient of linear expansion (CTE), and water absorption of the cured sheets obtained in Examples and Comparative Examples.
  • Table 2 also shows the results of visually confirming whether the state of the varnish is good (Good) or not (NG).
  • the cured product of the composition of OPE-2St and P-1 (Example 5) that gives a hard, independently cured product
  • the cured product of the composition of P-4 and P-1 that gives a soft, independently cured product (Example 3)
  • the cured product of the composition of 1,2-polybutadiene, SEBS, and P-1 (Example 4) also exhibit high tensile moduli.
  • a cured body of the composition of the present invention can easily exhibit a high tensile modulus of 100 MPa or more at room temperature.
  • cured sheets made of the copolymer of the present invention and the composition containing the copolymer of the present invention exhibit low dielectric constant and dielectric loss tangent.
  • the tackiness of the uncured sheets obtained in each of Examples and Comparative Examples was evaluated by feeling with hands.
  • the uncured sheets of Examples 1, 2, and 5 were hard and had no tackiness (self-adhesiveness).
  • the uncured sheets of Examples 3, 4, and 6 were somewhat tacky, but could be handled as free-standing sheets.
  • the tackiness of the uncured sheets of Comparative Examples 1, 2, and 3 was higher than that of the uncured sheets of each of the other Examples (especially Examples 3 and 6).
  • the uncured sheets of Comparative Examples 2 and 3 had remarkably high tackiness, and it was difficult to peel off the sheets of each Comparative Example when they were brought into close contact with each other. From this result, it was confirmed that the uncured sheet made of the copolymer of the present invention and the composition containing the copolymer of the present invention can relatively reduce tackiness.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

Provided is an aromatic vinyl compound-aromatic polyene copolymer that satisfies all of conditions (1) to (4). (1) The number average molecular weight of the copolymer is at least 500 and less than 100,000. (2) The aromatic vinyl compound monomer is an aromatic vinyl compound having 8-20 carbon atoms, and the content of aromatic vinyl compound monomer units is more than 70 mass%. (3) The aromatic polyene is one or more types selected from among polyenes having 5-20 carbon atoms and having a plurality of vinyl groups and/or vinylene groups in the molecule, and the content of vinyl groups and/or vinylene groups derived from aromatic polyene units is at least 2 and less than 30, and preferably at least 3 and less than 30, per number average molecular weight. (4) The copolymer may contain one or more types selected from among olefin monomer units having 2-20 carbon atoms, and in a case where aromatic vinyl compound monomer units and aromatic polyene monomer units are present, the total amount of these and olefin monomer units is 100 mass%.

Description

共重合体、組成物、ワニス、及びそれらの硬化体Copolymers, compositions, varnishes, and cured products thereof
本発明は、共重合体、組成物、ワニス、及びそれらの硬化体である絶縁材料に関する。 TECHNICAL FIELD The present invention relates to insulating materials that are copolymers, compositions, varnishes, and cured products thereof.
通信周波数がギガヘルツ帯及びそれ以上の高周波帯に移行することにともない、低誘電特性を有する絶縁材料を含むCCLやFCCLからなる多層基板に対するニーズが高まっている。パーフルオロエチレン等のフッ素系樹脂は優れた低誘電率、低誘電損失と耐熱性に優れた特徴を有するが成形加工性、膜成形性に難があり、また、配線の銅箔との接着性にも課題があるため、多層基板への適用が難しい。一方、エポキシ樹脂、不飽和ポリエステル樹脂、ポリイミド樹脂、フェノール樹脂等の後硬化樹脂を用いた基板、絶縁材料はその耐熱性、易取り扱い性から広く用いられてきているが、誘電率、誘電損失が比較的高く、高周波用の絶縁材料としては改善が望まれている(特許文献1)。 As the communication frequency shifts to the gigahertz band and higher frequency bands, there is an increasing need for multilayer substrates made of CCL or FCCL containing an insulating material with low dielectric properties. Fluorine-based resins such as perfluoroethylene are characterized by excellent low dielectric constant, low dielectric loss, and excellent heat resistance. On the other hand, substrates and insulating materials using post-curing resins such as epoxy resins, unsaturated polyester resins, polyimide resins, and phenolic resins have been widely used due to their heat resistance and ease of handling.
そこで本質的に低誘電特性を有する炭化水素系樹脂に注目が集まっている。本来は熱可塑性樹脂である炭化水素系樹脂を硬化性樹脂とするためには官能基を導入する必要があるが、一般的にラジカル、又は熱に反応する官能基は極性を有し、そのため低誘電特性が悪化してしまう。炭化水素からのみ構成される官能基、例えば芳香族ビニル基を導入しようとすると、高価な炭化水素系単量体間の分子間反応を利用する場合が多く(特許文献2)、経済的ではない場合が多い。特許文献3には、特定の配位重合触媒から得られ、特定の組成と配合を有するエチレン-オレフィン(芳香族ビニル化合物)-芳香族ポリエン共重合体、非極性ビニル化合物共重合体からなる硬化体が示されている。本技術の場合、芳香族ポリエン(ジビニルベンゼン)の2つのビニル基のうち一つのみが選択的に共重合され残りのビニル基が保存されるため、容易に芳香族ビニル基の官能基を有する、架橋性の炭化水素系共重合体マクロモノマーを得ることができる。同様なオレフィン-芳香族ビニル化合物-芳香族ポリエン共重合体、及び副原料等との組成物から得られる硬化体は低誘電率、低誘電正接という特徴を有している(特許文献4、5)が、具体的に記載されているオレフィン-芳香族ビニル化合物-芳香族ポリエン共重合体は比較的軟質であり、硬質化するためには他の硬質副原料や無機フィラーを多く配合する必要がある。 Therefore, attention is focused on hydrocarbon-based resins that inherently have low dielectric properties. In order to make a hydrocarbon resin, which is originally a thermoplastic resin, into a curable resin, it is necessary to introduce a functional group, but in general, the functional group that reacts to radicals or heat has polarity, which deteriorates the low dielectric properties. When trying to introduce a functional group composed only of a hydrocarbon, such as an aromatic vinyl group, in many cases, an intermolecular reaction between expensive hydrocarbon-based monomers is used (Patent Document 2), which is often uneconomical. Patent Document 3 discloses a cured product composed of an ethylene-olefin (aromatic vinyl compound)-aromatic polyene copolymer and a non-polar vinyl compound copolymer obtained from a specific coordination polymerization catalyst and having a specific composition and formulation. In the case of this technology, only one of the two vinyl groups of the aromatic polyene (divinylbenzene) is selectively copolymerized and the remaining vinyl groups are preserved, so that it is possible to easily obtain a crosslinkable hydrocarbon-based copolymer macromonomer having aromatic vinyl functional groups. A cured product obtained from a similar composition of an olefin-aromatic vinyl compound-aromatic polyene copolymer and a composition with an auxiliary material or the like is characterized by a low dielectric constant and a low dielectric loss tangent (Patent Documents 4 and 5).
公知の硬質な架橋性の原料はその低誘電特性が十分ではなく、多く配合すると硬化体の低誘電特性が悪化してしまうという課題がある。無機フィラーを比較的多く配合すると、一般的に無機フィラーは誘電率が高いために得られる硬化体の誘電率が高くなってしまう。また、カチオン重合により得られる低誘電かつ硬化性の芳香族ビニル化合物-芳香族ポリエン共重合体が知られている(特許文献6)が、この従来技術に係る共重合体はそのデンドリック(樹状)な構造故にポリマー末端構造が多く、その含まれるカチオン重合特有の末端構造故に、耐熱性、耐久性を高めるための分子設計が複雑である。 The low dielectric properties of known hard crosslinkable raw materials are not sufficient, and there is a problem that the low dielectric properties of the cured product deteriorate when a large amount is blended. When a relatively large amount of inorganic filler is blended, the dielectric constant of the resulting cured product increases because inorganic fillers generally have a high dielectric constant. In addition, a low-dielectric and curable aromatic vinyl compound-aromatic polyene copolymer obtained by cationic polymerization is known (Patent Document 6), but the copolymer according to this prior art has a dendritic (tree-like) structure, so there are many polymer terminal structures, and because of the contained terminal structure peculiar to cationic polymerization, the molecular design for improving heat resistance and durability is complicated.
特開平6-192392号公報JP-A-6-192392 特開2004-087639号公報JP-A-2004-087639 特開2007-217706号公報Japanese Patent Application Laid-Open No. 2007-217706 国際公開第2021/112087号WO2021/112087 国際公開第2021/112088号WO2021/112088 国際公開第2018/181842号WO2018/181842
上記の公開特許文献に記載されているオレフィン-芳香族ビニル化合物-芳香族ポリエン共重合体は比較的軟質であり、かつトルエン、エチルベンゼン、リモネン等の溶媒には良好な溶解性を示すが、他の副原料に用いられる場合が多いメチルエチルケトン(MEK)等の溶剤への溶解性が不十分であり、これらの副原料を含むワニスを作成することが困難であるという課題を有している。 The olefin-aromatic vinyl compound-aromatic polyene copolymers described in the above-mentioned published patent documents are relatively soft and exhibit good solubility in solvents such as toluene, ethylbenzene, and limonene.
上述した従来技術が解決できなかった課題に対し、本発明においては、得られる硬化体がより硬質な硬化体を与えることができ、かつ溶剤に対する溶解性が高い芳香族ビニル化合物-芳香族ポリエン共重合体を提供する。また芳香族ビニル化合物-芳香族ポリエン共重合体を含む、より硬質な硬化体を提供する。 In order to solve the above-described problems that the prior art could not solve, the present invention provides an aromatic vinyl compound-aromatic polyene copolymer that can give a harder cured product and has high solubility in solvents. Also provided is a harder cured product containing an aromatic vinyl compound-aromatic polyene copolymer.
本発明ではすなわち以下の態様を提供できる。 The present invention can provide the following aspects.
態様1.
下記(1)~(4)の条件をすべて満たす、芳香族ビニル化合物-芳香族ポリエン共重合体。
(1)共重合体の数平均分子量が500以上10万未満である。
(2)芳香族ビニル化合物単量体が、炭素数8以上20以下の芳香族ビニル化合物であり、芳香族ビニル化合物単量体単位の含量が70質量%を超える。
(3)芳香族ポリエンが、分子内にビニル基及び/又はビニレン基を複数有する炭素数5以上20以下のポリエンから選ばれる一種以上であり、かつ芳香族ポリエン単位に由来するビニル基及び/又はビニレン基の含有量が数平均分子量あたり2個以上30個未満である。
(4)炭素数2以上20以下のオレフィン単量体単位から選ばれる単数又は複数が含まれていてもよく、芳香族ビニル化合物単量体単位と芳香族ポリエン単量体単位と存在する場合に前記オレフィン単量体単位との合計が100質量%である。
Mode 1.
An aromatic vinyl compound-aromatic polyene copolymer that satisfies all of the following conditions (1) to (4).
(1) The copolymer has a number average molecular weight of 500 or more and less than 100,000.
(2) The aromatic vinyl compound monomer is an aromatic vinyl compound having 8 or more and 20 or less carbon atoms, and the content of the aromatic vinyl compound monomer units exceeds 70% by mass.
(3) The aromatic polyene is one or more selected from polyenes having 5 to 20 carbon atoms and having a plurality of vinyl groups and/or vinylene groups in the molecule, and the content of vinyl groups and/or vinylene groups derived from the aromatic polyene units is 2 or more and less than 30 per number average molecular weight.
(4) One or more selected from olefin monomer units having 2 to 20 carbon atoms may be included, and the sum of the aromatic vinyl compound monomer units and the aromatic polyene monomer units and, if present, the olefin monomer units is 100% by mass.
態様2.
芳香族ビニル化合物単量体単位と芳香族ポリエン単量体単位と存在する場合にオレフィン単量体単位との合計100質量%に対して、オレフィン単量体単位の含有量が0質量%以上30質量%未満である、態様1に記載の芳香族ビニル化合物-芳香族ポリエン共重合体。
Mode 2.
The aromatic vinyl compound-aromatic polyene copolymer according to aspect 1, wherein the content of the olefin monomer unit is 0% by mass or more and less than 30% by mass with respect to the total 100% by mass of the aromatic vinyl compound monomer unit, the aromatic polyene monomer unit, and the olefin monomer unit when present.
態様3.
オレフィン単量体単位を含まない、態様2に記載の芳香族ビニル化合物-芳香族ポリエン共重合体。
Mode 3.
The aromatic vinyl compound-aromatic polyene copolymer according to aspect 2, which does not contain olefin monomer units.
態様4.
態様1~3のいずれか一項に記載の芳香族ビニル化合物-芳香族ポリエン共重合体と、以下の(a)~(d)から選ばれる単数又は複数とを含む組成物。
(a)硬化剤
(b)炭化水素系エラストマー、ポリフェニレンエーテル系樹脂、芳香族ポリエン系樹脂から選ばれる単数又は複数の樹脂
(c)単量体
(d)下記(i)~(iv)の条件をすべて満たす、別のオレフィン-芳香族ビニル化合物-芳香族ポリエン共重合体
(i)共重合体の数平均分子量が500以上10万未満である。
(ii)芳香族ビニル化合物単量体が、炭素数8以上20以下の芳香族ビニル化合物であり、芳香族ビニル化合物単量体単位の含量が70質量%以下である。
(iii)芳香族ポリエンが、分子内にビニル基及び/又はビニレン基を複数有する炭素数5以上20以下のポリエンから選ばれる一種以上であり、かつ芳香族ポリエン単位に由来するビニル基及び/又はビニレン基の含有量が数平均分子量あたり1.5個以上20個未満である。
(iv)オレフィンが炭素数2以上20以下のオレフィンから選ばれる単数又は複数であり、オレフィン単量体単位の含量が30質量%以上であり、前記オレフィン単量体単位と芳香族ビニル化合物単量体単位と芳香族ポリエン単量体単位の合計が100質量%である。
Mode 4.
A composition comprising the aromatic vinyl compound-aromatic polyene copolymer according to any one of aspects 1 to 3 and one or more selected from the following (a) to (d).
(a) a curing agent (b) one or more resins selected from hydrocarbon elastomers, polyphenylene ether resins and aromatic polyene resins (c) monomers (d) another olefin-aromatic vinyl compound-aromatic polyene copolymer (i) that satisfies all of the following conditions (i) to (iv): the copolymer has a number average molecular weight of 500 or more and less than 100,000.
(ii) The aromatic vinyl compound monomer is an aromatic vinyl compound having 8 or more and 20 or less carbon atoms, and the content of aromatic vinyl compound monomer units is 70% by mass or less.
(iii) The aromatic polyene is one or more selected from polyenes having 5 to 20 carbon atoms and having a plurality of vinyl groups and/or vinylene groups in the molecule, and the content of vinyl groups and/or vinylene groups derived from the aromatic polyene units is 1.5 or more and less than 20 per number average molecular weight.
(iv) The olefin is one or more selected from olefins having 2 to 20 carbon atoms, the content of olefin monomer units is 30% by mass or more, and the total of the olefin monomer units, aromatic vinyl compound monomer units and aromatic polyene monomer units is 100% by mass.
態様5.
態様1~3のいずれか一項に記載の共重合体、又は態様4に記載の組成物と、(h)溶剤とを含むワニス。
Mode 5.
A varnish comprising a copolymer according to any one of aspects 1 to 3, or a composition according to aspect 4, and (h) a solvent.
態様6.
溶剤がMEK(メチルエチルケトン)である、態様5に記載のワニス。
Mode 6.
Varnish according to aspect 5, wherein the solvent is MEK (methyl ethyl ketone).
態様7.
態様1~3のいずれか一項に記載の芳香族ビニル化合物-芳香族ポリエン共重合体の硬化体。
Aspect 7.
A cured product of the aromatic vinyl compound-aromatic polyene copolymer according to any one of Embodiments 1 to 3.
態様8.
態様4に記載の組成物の硬化体。
Mode 8.
A cured product of the composition according to aspect 4.
態様9.
態様5又は6に記載のワニスの硬化体。
Mode 9.
A cured product of the varnish according to aspect 5 or 6.
態様10.
電気絶縁材料である態様7~9のいずれか一項に記載の硬化体。
Aspect 10.
The cured body according to any one of aspects 7 to 9, which is an electrical insulating material.
態様11.
態様7~9のいずれか一項に記載の硬化体を含む、CCL基板、FCCL基板、層間絶縁材、ボンディングシート、又はカバーレイ。
Aspect 11.
A CCL substrate, FCCL substrate, interlayer insulating material, bonding sheet, or coverlay, comprising the cured body according to any one of aspects 7 to 9.
本発明の実施形態に係る芳香族ビニル化合物-芳香族ポリエン共重合体、若しくはそれを含む組成物、又はそれからなる硬化体若しくはワニスにより、硬化体が硬質であり、かつ溶剤に対する溶解性が高い低誘電材料が得られる。 The aromatic vinyl compound-aromatic polyene copolymer according to the embodiment of the present invention, the composition containing the same, or the cured product or varnish made of the same provides a hard cured product and a low dielectric material having high solubility in solvents.
本発明に係る組成物を以下にさらに詳細に説明する。本明細書においてシートとは、フィルムの概念をも包含するものとする。また、本明細書においてフィルムと記載されていても、シートの概念をも包含するものとする。本明細書において組成物とは、ワニスを包含する概念である。すなわち、組成物のうち特に液状であるものをワニスと記載している。本明細書において、層間絶縁材はボンディングシート又は層間接着剤の概念を含む。 The compositions according to the invention are described in more detail below. In this specification, the term "sheet" also includes the concept of film. Further, even if the term "film" is used in this specification, the concept of "sheet" is also included. The term "composition" as used herein is a concept that includes varnish. That is, among the compositions, those that are particularly liquid are described as varnishes. As used herein, interlayer insulation includes the concept of bonding sheets or interlayer adhesives.
本明細書において数値範囲は、別段の断わりが無いかぎりはその下限値及び上限値を含むものとする。 Numerical ranges in this specification include their lower and upper limits unless otherwise specified.
<芳香族ビニル化合物-芳香族ポリエン共重合体>
本発明の芳香族ビニル化合物-芳香族ポリエン共重合体は下記(1)~(4)の条件をすべて満たす芳香族ビニル化合物-芳香族ポリエン共重合体である。
(1)共重合体の数平均分子量が500以上10万未満である。
(2)芳香族ビニル化合物単量体が、炭素数8以上20以下の芳香族ビニル化合物であり、芳香族ビニル化合物単量体単位の含量が70質量%を超える。好ましくは71質量%以上、より好ましくは80質量%以上である。
(3)芳香族ポリエンが、分子内にビニル基及び/又はビニレン基を複数有する炭素数5以上20以下のポリエンから選ばれる一種以上であり、かつ芳香族ポリエン単位に由来するビニル基及び/又はビニレン基の含有量が数平均分子量あたり2個以上30個未満、好ましくは3個以上30個未満である。
(4)炭素数2以上20以下のオレフィン単量体単位から選ばれる単数又は複数が含まれていても良く、芳香族ビニル化合物単量体単位と芳香族ポリエン単量体単位と存在する場合にオレフィン単量体単位との合計が100質量%である。
<Aromatic Vinyl Compound-Aromatic Polyene Copolymer>
The aromatic vinyl compound-aromatic polyene copolymer of the present invention is an aromatic vinyl compound-aromatic polyene copolymer that satisfies all of the following conditions (1) to (4).
(1) The copolymer has a number average molecular weight of 500 or more and less than 100,000.
(2) The aromatic vinyl compound monomer is an aromatic vinyl compound having 8 or more and 20 or less carbon atoms, and the content of the aromatic vinyl compound monomer units exceeds 70% by mass. It is preferably 71% by mass or more, more preferably 80% by mass or more.
(3) The aromatic polyene is one or more selected from polyenes having a plurality of vinyl groups and/or vinylene groups in the molecule and having 5 to 20 carbon atoms, and the vinyl group and/or vinylene group content derived from the aromatic polyene unit is 2 or more and less than 30, preferably 3 or more and less than 30 per number average molecular weight.
(4) One or more selected from olefin monomer units having 2 to 20 carbon atoms may be included, and the sum of the aromatic vinyl compound monomer units and the aromatic polyene monomer units and, if present, the olefin monomer units is 100% by mass.
ここで含まれても良いオレフィン単量体とは、炭素数2以上20以下のαオレフィン及び炭素数5以上20以下の環状オレフィンから選ばれる一種以上であり、実質的に酸素や窒素、ハロゲンを含まず、炭素と水素から構成される化合物である。炭素数2以上20以下のα-オレフィンとしては、例えばエチレン、プロピレン、1-ブテン、1-ヘキセン、1-オクテン、1-デカン、1-ドデカン、4-メチル-1-ペンテン、3,5,5-トリメチル-1-ヘキセン等が例示できる。炭素数5以上20以下の環状オレフィンとしては、ノルボルネン、シクロペンテン等が例示できる。オレフィンとして好ましく使用できるのは、エチレンとエチレン以外のα-オレフィンや環状オレフィンとの組み合わせか、又はエチレン単独である。 The olefin monomer that may be included here is one or more selected from α-olefins having 2 to 20 carbon atoms and cyclic olefins having 5 to 20 carbon atoms, and is substantially free of oxygen, nitrogen, and halogen, and is a compound composed of carbon and hydrogen. Examples of α-olefins having 2 to 20 carbon atoms include ethylene, propylene, 1-butene, 1-hexene, 1-octene, 1-decane, 1-dodecane, 4-methyl-1-pentene and 3,5,5-trimethyl-1-hexene. Examples of cyclic olefins having 5 to 20 carbon atoms include norbornene and cyclopentene. The olefin that can be preferably used is a combination of ethylene and an α-olefin other than ethylene or a cyclic olefin, or ethylene alone.
芳香族ビニル化合物単量体は、炭素数8以上20以下の芳香族ビニル化合物であり、例えばスチレン、パラメチルスチレン、エチルスチレン(エチルビニルベンゼン)、パライソブチルスチレン、各種ビニルナフタレン、各種ビニルアントラセン等が例示できる。 The aromatic vinyl compound monomer is an aromatic vinyl compound having 8 to 20 carbon atoms, and examples thereof include styrene, paramethylstyrene, ethylstyrene (ethylvinylbenzene), paraisobutylstyrene, various vinylnaphthalenes, and various vinylanthracenes.
芳香族ポリエン単量体としては、その分子内にビニル基及び/又はビニレン基を複数有する炭素数5以上20以下のポリエンであり、好ましくはその分子内にビニル基を複数有する炭素数5以上20以下のポリエンであり、さらに好ましくは、オルト、メタ、パラの各種ジビニルベンゼン又はこれらの混合物、ジビニルナフタレン、ジビニルアントラセン、p-2-プロペニルスチレン、p-3-ブテニルスチレン等の芳香族ビニル構造を有し、実質的に酸素や窒素、ハロゲンを含まず、炭素と水素から構成される化合物である。また、特開2004-087639号公報に記載されている二官能性芳香族ビニル化合物、例えば1,2-ビス(ビニルフェニル)エタン(略称:BVPE)を用いることもできる。この中で好ましくは、オルト、メタ、パラの各種ジビニルベンゼン、又はこれらの混合物が用いられ、最も好ましくはメタジビニルベンゼン及びパラジビニルベンゼンの混合物が用いられる。本明細書ではこれらジビニルベンゼンをジビニルベンゼン類と記す。芳香族ポリエンとしてジビニルベンゼン類を用いた場合、硬化処理を行う際に硬化効率が高く、硬化が容易であるため好ましい。 The aromatic polyene monomer is a polyene having a plurality of vinyl groups and/or vinylene groups in the molecule and having 5 to 20 carbon atoms, preferably a polyene having a plurality of vinyl groups in the molecule and having 5 to 20 carbon atoms, more preferably ortho-, meta-, and para-divinylbenzenes or mixtures thereof, divinylnaphthalene, divinylanthracene, p-2-propenylstyrene, p-3-butenylstyrene, etc. having an aromatic vinyl structure. , is a compound composed of carbon and hydrogen, substantially free of oxygen, nitrogen, and halogens. Bifunctional aromatic vinyl compounds such as 1,2-bis(vinylphenyl)ethane (abbreviation: BVPE) described in JP-A-2004-087639 can also be used. Among these, ortho-, meta-, and para-divinylbenzenes, or mixtures thereof, are preferably used, and most preferably, a mixture of meta-divinylbenzene and para-divinylbenzene. In this specification, these divinylbenzenes are referred to as divinylbenzenes. When divinylbenzenes are used as the aromatic polyene, they are preferable because they have high curing efficiency and are easy to cure.
以上のオレフィン、芳香族ビニル化合物、芳香族ポリエンの各単量体としては、他に極性基、例えば酸素原子、窒素原子等を含むオレフィン、酸素原子や窒素原子等を含む芳香族ビニル化合物、又は、酸素原子や窒素原子等を含む芳香族ポリエンを含んでいてもよいが、これら極性基を含む単量体の総質量は、本樹脂組成物の総質量の10質量%以下が好ましく、3質量%以下がより好ましく、極性基を含む単量体を含まないことが最も好ましい。10質量%以下にすることにより、本樹脂組成物を硬化して得られる硬化体の誘電特性(低誘電率/低誘電損失)を向上できる。 The above-mentioned olefin, aromatic vinyl compound, and aromatic polyene monomers may contain other polar groups such as olefins containing oxygen atoms, nitrogen atoms, etc., aromatic vinyl compounds containing oxygen atoms, nitrogen atoms, etc., or aromatic polyenes containing oxygen atoms, nitrogen atoms, etc. The total mass of the monomers containing these polar groups is preferably 10% by mass or less, more preferably 3% by mass or less, of the total mass of the resin composition, and most preferably does not contain a monomer containing a polar group. By setting the amount to 10% by mass or less, the dielectric properties (low dielectric constant/low dielectric loss) of the cured product obtained by curing the present resin composition can be improved.
本芳香族ビニル化合物-芳香族ポリエン共重合体は、好ましくはさらに下記(5)の条件を満たしてもよい。
(5)オレフィン単量体単位の含量が1質量%以上であり、オレフィン単量体単位と芳香族ビニル化合物単量体単位と芳香族ポリエン単量体単位の合計が100質量%である。
The present aromatic vinyl compound-aromatic polyene copolymer may preferably further satisfy the following condition (5).
(5) The content of olefin monomer units is 1% by mass or more, and the total amount of olefin monomer units, aromatic vinyl compound monomer units and aromatic polyene monomer units is 100% by mass.
共重合体の数平均分子量(Mn)は500以上10万未満である。本発明において数平均分子量が500以上10万未満であるということは、GPC(ゲルパーミエーションクロマトグラフィー;ゲル浸透クロマトグラフィー)法により得られる、標準ポリスチレン換算の分子量がその範囲に入る値であるということである。 The number average molecular weight (Mn) of the copolymer is 500 or more and less than 100,000. The number average molecular weight of 500 or more and less than 100,000 in the present invention means that the molecular weight in terms of standard polystyrene obtained by GPC (gel permeation chromatography) falls within that range.
当該共重合体の数平均分子量は、好ましくは1000以上80000以下であってよく、さらに好ましくは1000以上50000以下、より好ましくは1000以上40000以下であってよい。 The number average molecular weight of the copolymer may be preferably 1,000 or more and 80,000 or less, more preferably 1,000 or more and 50,000 or less, and still more preferably 1,000 or more and 40,000 or less.
芳香族ビニル化合物単量体単位と、芳香族ポリエン単量体単位と、必要に応じて存在するオレフィン単量体単位との合計を100質量%としたときに、本共重合体に含まれる芳香族ビニル化合物単量体単位の含量は70質量%を超え、好ましくは71質量%以上であり、さらに好ましくは80質量%以上である。芳香族ビニル化合物単量体単位の含量が70質量%を超えることで、最終的に得られる本芳香族ビニル化合物-芳香族ポリエン共重合体単独の硬化体の25℃における引張弾性率が1000MPa以上とすることが可能で、本芳香族ビニル化合物-芳香族ポリエン共重合体を主体とする組成物の硬化体の25℃における引張弾性率が100MPa以上とすることが容易となる。さらに本芳香族ビニル化合物-芳香族ポリエン共重合体はメチルエチルケトン(MEK)等の溶剤に対する溶解性が高くなり、例えばメチルエチルケトンを溶媒とするワニスを製造することが容易になる。 The content of the aromatic vinyl compound monomer unit contained in the present copolymer exceeds 70% by mass, preferably 71% by mass or more, and more preferably 80% by mass or more, when the total of the aromatic vinyl compound monomer unit, the aromatic polyene monomer unit, and the optionally present olefin monomer unit is 100% by mass. When the content of the aromatic vinyl compound monomer units exceeds 70% by mass, the finally obtained cured body of the present aromatic vinyl compound-aromatic polyene copolymer alone can have a tensile modulus of 1000 MPa or more at 25°C, and the cured body of the composition mainly composed of the present aromatic vinyl compound-aromatic polyene copolymer can easily have a tensile modulus of 100 MPa or more at 25°C. Furthermore, the present aromatic vinyl compound-aromatic polyene copolymer has a high solubility in solvents such as methyl ethyl ketone (MEK), making it easy to produce varnishes using methyl ethyl ketone as a solvent.
また、本共重合体に含まれる芳香族ビニル化合物単量体単位の含量は、上記基準に対して98質量%以下、95質量%以下、92質量%以下、若しくは90質量%以下であってよい。芳香族ビニル化合物単量体単位が98質量%以下であると、硬化体の硬度を適切な程度に調整しやすくなる。 Also, the content of the aromatic vinyl compound monomer unit contained in the present copolymer may be 98% by mass or less, 95% by mass or less, 92% by mass or less, or 90% by mass or less with respect to the above criteria. When the aromatic vinyl compound monomer unit is 98% by mass or less, it becomes easier to adjust the hardness of the cured product to an appropriate level.
本共重合体において、芳香族ポリエン単位に由来するビニル基及び/又はビニレン基の含有量、好ましくビニル基の含有量は数平均分子量あたり2個以上30個未満であり、好ましくは3個以上30個未満である。当該ビニル基及び/又はビニレン基の含有量が2個未満では架橋効率が低く、十分な架橋密度の硬化体を得ることが難しくなる。共重合体中の数平均分子量あたりの芳香族ポリエン単位(ジビニルベンゼン単位)に由来するビニル基含有量は、当業者に公知のGPC(ゲルパーミエーションクロマトグラフィー)法により求める標準ポリスチレン換算の数平均分子量(Mn)と、1H-NMR測定により得られる芳香族ポリエン単位に由来するビニル基含有量とを比較することで得ることができる。例として、1H-NMR測定により得られる各ピーク面積の強度比較により、共重合体中の芳香族ポリエン単位(ジビニルベンゼン単位)に由来するビニル基含有量が0.88質量%であり、GPC測定による標準ポリスチレン換算数平均分子量(Mn)が38300の場合、本数平均分子量中の芳香族ポリエン単位に由来するビニル基の分子量は、これらの積である336となり、これをビニル基の式量27で割ることで、12.5となる。すなわち、本共重合体中の数平均分子量あたりの芳香族ポリエン単位に由来するビニル基含有量は12.5個であると求められる。共重合体の1H-NMR測定で得られるピークの帰属は文献により公知である。また、1H-NMR測定で得られるピーク面積の比較から共重合体の組成を求める方法も公知である。さらに本1H-NMR測定による方法に、公知の定量モードで測定した13C-NMRスペクトルのピーク面積やその比率のデータを加えて、組成の精度を向上させることも可能である。さらに公知の定量モードで測定した13C-NMRスペクトルのピーク面積やその比率のデータから組成を求めることもできる。また本明細書では共重合体中のジビニルベンゼン単位の含量をジビニルベンゼン単位に由来するビニル基のピーク強度(1H-NMR測定による)から求めている。すなわちジビニルベンゼン単位に由来するビニル基含有量から、当該ビニル基1個は、共重合体中のジビニルベンゼンユニット1個に由来するビニル基として、ジビニルベンゼン単位の含量を求めている。 In the present copolymer, the content of vinyl groups and/or vinylene groups derived from aromatic polyene units, preferably the content of vinyl groups is 2 or more and less than 30, preferably 3 or more and less than 30 per number average molecular weight. If the content of the vinyl group and/or vinylene group is less than 2, the cross-linking efficiency is low, making it difficult to obtain a cured product with a sufficient cross-linking density. The vinyl group content derived from the aromatic polyene unit (divinylbenzene unit) per number average molecular weight in the copolymer can be obtained by comparing the number average molecular weight (Mn) in terms of standard polystyrene determined by a GPC (gel permeation chromatography) method known to those skilled in the art with the vinyl group content derived from the aromatic polyene unit obtained by 1 H-NMR measurement. As an example , when the vinyl group content derived from the aromatic polyene unit (divinylbenzene unit) in the copolymer is 0.88% by mass and the standard polystyrene conversion number average molecular weight (Mn) by GPC measurement is 38300, the molecular weight of the vinyl group derived from the aromatic polyene unit in the number average molecular weight is 336, which is the product of these, and this is the formula weight 2 of the vinyl group. Dividing by 7 gives 12.5. That is, the vinyl group content derived from the aromatic polyene unit per number average molecular weight in the present copolymer is required to be 12.5. The assignment of peaks obtained in 1 H-NMR measurements of copolymers is known from the literature. A method for determining the composition of a copolymer from comparison of peak areas obtained by 1 H-NMR measurement is also known. Furthermore, it is also possible to improve the accuracy of the composition by adding the data of the peak areas and their ratios of the 13 C-NMR spectrum measured in a known quantitative mode to the present 1 H-NMR measurement method. Furthermore, the composition can also be obtained from the data of the peak areas and their ratios in the 13 C-NMR spectrum measured in a known quantitative mode. Also, in this specification, the content of divinylbenzene units in the copolymer is determined from the peak intensity of the vinyl group derived from the divinylbenzene units (by 1 H-NMR measurement). That is, from the content of vinyl groups derived from divinylbenzene units, the content of divinylbenzene units is determined assuming that one vinyl group is a vinyl group derived from one divinylbenzene unit in the copolymer.
本共重合体において、好ましいオレフィン単量体単位の含量は0質量%以上若しくは1質量%以上であってよく、より好ましくは0質量%以上30質量%未満若しくは1質量%以上30質量%未満、さらに好ましくは1質量%以上20質量%以下であってよい。前記オレフィン単量体単位と芳香族ビニル化合物単量体単位と芳香族ポリエン単量体単位の合計は100質量%である。オレフィン単量体単位の含量が1質量%以上であると、最終的に得られる硬化体の靱性(伸び)や耐衝撃性が向上し、硬化途中での割れや、硬化体のヒートサイクル試験中での割れが発生しづらくなる。特に硬化体の靱性(伸び)や耐衝撃性の一層の向上の観点からは、オレフィン単量体単位の含量は5質量%より多く30質量%未満であることが好ましい。別の実施形態では、本共重合体がオレフィン単量体単位を含まなくてもよい。 In the present copolymer, the content of the olefin monomer unit may be preferably 0% by mass or more or 1% by mass or more, more preferably 0% by mass or more and less than 30% by mass or 1% by mass or more and less than 30% by mass, and still more preferably 1% by mass or more and 20% by mass or less. The total amount of the olefin monomer units, the aromatic vinyl compound monomer units and the aromatic polyene monomer units is 100% by mass. When the content of the olefin monomer unit is 1% by mass or more, the toughness (elongation) and impact resistance of the finally obtained cured product are improved, and cracking during curing and cracking during the heat cycle test of the cured product are less likely to occur. In particular, from the viewpoint of further improving the toughness (elongation) and impact resistance of the cured product, the content of the olefin monomer unit is preferably more than 5% by mass and less than 30% by mass. In another embodiment, the copolymer may be free of olefinic monomer units.
<芳香族ビニル化合物-芳香族ポリエン共重合体の製造方法>
本発明の芳香族ビニル化合物-芳香族ポリエン共重合体は、芳香族ビニル化合物、芳香族ポリエン、必要に応じて用いるオレフィンの各単量体を配位重合により共重合することで製造できる。例えば特開2009-161743号公報、特開2010-280771号公報、国際公開第00/037517号に記載されている遷移金属化合物と助触媒とから構成されるシングルサイト配位重合触媒を用いると効率よく芳香族ビニル化合物-芳香族ポリエン共重合体を製造できるため好ましい。
<Method for Producing Aromatic Vinyl Compound-Aromatic Polyene Copolymer>
The aromatic vinyl compound-aromatic polyene copolymer of the present invention can be produced by copolymerizing an aromatic vinyl compound, an aromatic polyene, and optionally an olefin monomer through coordination polymerization. For example, it is preferable to use a single-site coordination polymerization catalyst composed of a transition metal compound and a cocatalyst described in JP-A-2009-161743, JP-A-2010-280771, and International Publication No. 00/037517, because an aromatic vinyl compound-aromatic polyene copolymer can be efficiently produced.
遷移金属化合物と助触媒の組み合わせからなる配位重合触媒を用いて得られる本共重合体の化学構造は、特定の構造が含まれていないという特徴がある。すなわち、従来技術に係るカチオン重合法によって得られる共重合体は、例えば上記で国際公開第2018/181842号に記載されているような脂環を含むポリマー末端構造を有しているが、本発明の実施形態に係る共重合体は、そのような構造を有していないという顕著な相違がある。この相違により、本発明では、分子設計が容易であるという効果が得られる。 The chemical structure of the present copolymer obtained using a coordination polymerization catalyst consisting of a combination of a transition metal compound and a co-catalyst is characterized in that it does not contain a specific structure. That is, the copolymer obtained by the cationic polymerization method according to the prior art has, for example, a polymer terminal structure containing an alicyclic ring as described in WO 2018/181842 above, but the copolymer according to the embodiment of the present invention has a remarkable difference that it does not have such a structure. Due to this difference, the present invention provides the effect of facilitating molecular design.
本発明の芳香族ビニル化合物-芳香族ポリエン共重合体に含まれるポリマー末端構造は、1H-NMR、13C-NMRを用いた公知の方法により定性的、又は定量的に明らかにすることができる。本発明の芳香族ビニル化合物-芳香族ポリエン共重合体において一般的な芳香族ビニル化合物としてスチレン、芳香族ポリエンとしてジビニルベンゼンからなるスチレン-ジビニルベンゼン共重合体に含まれるポリマー末端構造は以下のE-1~E-6で表される構造のうちの一種、又はそれらの任意の組み合わせである。また本発明の芳香族ビニル化合物-芳香族ポリエン共重合体において一般的な芳香族ビニル化合物としてスチレン、芳香族ポリエンとしてジビニルベンゼン、その他成分としてのオレフィンとしてエチレンからなるエチレン-スチレン-ジビニルベンゼン共重合体に含まれるポリマー末端構造は以下の化学式E-1~E-6で表される構造のうちの一種、又はそれらの任意の組み合わせである。 The polymer terminal structure contained in the aromatic vinyl compound-aromatic polyene copolymer of the present invention can be clarified qualitatively or quantitatively by known methods using 1 H-NMR and 13 C-NMR. In the aromatic vinyl compound-aromatic polyene copolymer of the present invention, the polymer terminal structure contained in the styrene-divinylbenzene copolymer comprising styrene as a general aromatic vinyl compound and divinylbenzene as the aromatic polyene is one of the structures represented by E-1 to E-6 below, or any combination thereof. In the aromatic vinyl compound-aromatic polyene copolymer of the present invention, an ethylene-styrene-divinylbenzene copolymer composed of styrene as a general aromatic vinyl compound, divinylbenzene as an aromatic polyene, and ethylene as an olefin as another component is one of the structures represented by the following chemical formulas E-1 to E-6, or any combination thereof.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
上記式中、Pは芳香族ビニル化合物-芳香族ポリエン共重合体のポリマー構造残基を示し、Zは水素又はビニル基若しくはビニレン基を示す。 In the above formula, P represents the polymer structural residue of the aromatic vinyl compound-aromatic polyene copolymer, and Z represents hydrogen, a vinyl group, or a vinylene group.
ポリマー末端構造の約半数を占める重合開始末端は、一般的に上記のE-1及びE-3が多く、実質的にほとんどがE-1及びE-3である。またさらにE-5が含まれる場合も有る。これら構造は飽和構造を有する末端であり、それ故、本発明の芳香族ビニル化合物-芳香族ポリエン共重合体は本質的に耐熱性等の耐久性が高い特長を有している。重合開始末端の構造は、金属-水素結合に対し最初のモノマー挿入が起こるのか、金属-アルキル基構造に対し最初のモノマー挿入が起こるのか、最初のモノマー挿入がエチレン、スチレン、ジビニルベンゼンのいずれかにより起こるのか、最初のモノマーがスチレン、ジビニルベンゼンの場合、2,1挿入か1,2挿入か等の要因によりこれら構造の割合は変化する。 About half of the polymer terminal structures are generally composed of E-1 and E-3, and substantially most of them are E-1 and E-3. In addition, E-5 may also be included. These structures are terminals having a saturated structure, and therefore the aromatic vinyl compound-aromatic polyene copolymer of the present invention essentially has the feature of high durability such as heat resistance. The structure of the polymerization initiation terminal changes depending on factors such as whether the first monomer insertion occurs with respect to the metal-hydrogen bond, whether the first monomer insertion occurs with the metal-alkyl group structure, whether the first monomer insertion occurs with ethylene, styrene, or divinylbenzene, and when the first monomer is styrene or divinylbenzene, whether it is 2,1 insertion or 1,2 insertion.
ポリマー末端構造のポリマー成長鎖の連鎖移動末端(重合終了末端)の構造は一般的にE-2、E-6が多く、残りのE-5、E-4、E-1、E-3も含まれる。連鎖移動末端の構造は、連鎖移動が、ベータ位の水素引き抜きで起こるのか、他の配位モノマーへの連鎖移動で起こるのか、助触媒成分であるアルキルアルミニウムへの連鎖移動で起こるのか、水素等の連鎖移動剤への連鎖移動で起こるのかにより、その割合は変化する。つまり、本発明に係る、オレフィンを含んでいてもよい芳香族ビニル化合物-芳香族ポリエン共重合体のポリマー末端構造は、飽和型であるE-1、E-3、E-5が多く、不飽和型であるE-4、E-6の割合は少ない。エチレン以外のオレフィン、スチレン以外の芳香族ビニル化合物、ジビニルベンゼン以外の芳香族ポリエンを使用した場合も、上記E-1~E-6の末端構造のそれぞれのエチレン、スチレン、ジビニルベンゼンの各ユニットをそれ以外のモノマーに置き換えた構造となる。 The structure of the chain transfer end (polymerization termination end) of the polymer growing chain of the polymer terminal structure is generally E-2 and E-6, and the remaining E-5, E-4, E-1 and E-3 are also included. The ratio of the structure of the chain transfer end changes depending on whether the chain transfer occurs by hydrogen abstraction at the beta position, by chain transfer to another coordination monomer, by chain transfer to the alkylaluminum co-catalyst component, or by chain transfer to a chain transfer agent such as hydrogen. That is, the polymer terminal structure of the aromatic vinyl compound-aromatic polyene copolymer which may contain an olefin according to the present invention has many saturated types E-1, E-3, and E-5, and unsaturated types E-4 and E-6 have a small proportion. Even when an olefin other than ethylene, an aromatic vinyl compound other than styrene, or an aromatic polyene other than divinylbenzene is used, each unit of ethylene, styrene, and divinylbenzene in the terminal structures of E-1 to E-6 is replaced with a monomer other than that.
本発明の、オレフィンを含んでいても良い芳香族ビニル化合物-芳香族ポリエン共重合体のポリマー末端構造はいずれにせよ上記E-1~E-6の構造のうちの一種以上からなり、他の構造は実質的に含まれない。本発明に係るオレフィンを含んでいてもよい芳香族ビニル化合物-芳香族ポリエン共重合体は、特定の配位重合により得られるため、ポリマー鎖分岐度が比較的少ない直鎖性が高い共重合体であって、ポリマー末端構造の含まれる割合自体も比較的少なく、前記理由により不飽和型の末端構造の含まれる割合はさらに少ない。 In any case, the polymer terminal structure of the aromatic vinyl compound-aromatic polyene copolymer which may contain an olefin of the present invention consists of one or more of the above structures E-1 to E-6, and other structures are substantially not included. Since the aromatic vinyl compound-aromatic polyene copolymer which may contain an olefin according to the present invention is obtained by specific coordination polymerization, it is a copolymer having a relatively low degree of polymer chain branching and high linearity.
一方、カチオン重合で得られるポリマーの例として、従来技術に係る国際公開第2018/181842号に記載されている、ポリマー成長末端の炭素カチオンの芳香族系モノマーの芳香族環への求電子置換反応等の連鎖移動により形成される、脂環を含んだ末端構造は、本発明に係る共重合体には含まれていない。一方、国際公開第2018/181842号に記載の芳香族ビニル化合物-芳香族ポリエン共重合体にはそのデンドリックな、多分岐な構造故にポリマー一分子あたりに末端構造が非常に多く含まれ、記載されているその末端構造は、カチオン重合故の多様な構造のビニル基やビニレン基の不飽和構造がほとんどであり耐熱安定性に課題があり、特に比較的多く含まれるビニレン基は、硬化反応後も硬化体中に多く残存するために硬化後の耐熱安定性を悪化させるという課題を有している。硬化体中にビニレン基等の不飽和基が多く存在すると、空気中の酸素と結合や反応を起こし結果として硬化体の誘電率や誘電正接の値を増加させてしまうため好ましくない。 On the other hand, as an example of a polymer obtained by cationic polymerization, a terminal structure containing an alicyclic ring formed by a chain transfer such as an electrophilic substitution reaction of a carbocation at a polymer growth terminal to an aromatic ring of an aromatic monomer, which is described in International Publication No. 2018/181842 relating to the prior art, is not included in the copolymer according to the present invention. On the other hand, the aromatic vinyl compound-aromatic polyene copolymer described in WO 2018/181842 contains a very large number of terminal structures per polymer molecule due to its dendritic and multibranched structure, and the terminal structures described are mostly unsaturated structures of vinyl groups and vinylene groups with various structures due to cationic polymerization, and there is a problem in heat resistance stability. It has a problem of deteriorating heat resistance stability. If a large amount of unsaturated groups such as vinylene groups are present in the cured product, they will bond or react with oxygen in the air, resulting in an increase in the dielectric constant and dielectric loss tangent of the cured product, which is not preferable.
本共重合体において、芳香族ビニル化合物-芳香族ポリエン共重合体(オレフィンを含みうる)としては、スチレン-ジビニルベンゼン共重合体、エチレン-スチレン-ジビニルベンゼン共重合体、エチレン-プロピレン-スチレン-ジビニルベンゼン共重合体、エチレン-1-ヘキセン-スチレン-ジビニルベンゼン共重合体、エチレン-1-オクテン-スチレン-ジビニルベンゼン共重合体が例示できる。 Examples of the aromatic vinyl compound-aromatic polyene copolymer (which may contain an olefin) in the present copolymer include styrene-divinylbenzene copolymer, ethylene-styrene-divinylbenzene copolymer, ethylene-propylene-styrene-divinylbenzene copolymer, ethylene-1-hexene-styrene-divinylbenzene copolymer, and ethylene-1-octene-styrene-divinylbenzene copolymer.
本発明の組成物は、前記本共重合体の他にさらに、(a)硬化剤、(b)炭化水素系エラストマー、ポリフェニレンエーテル系樹脂、芳香族ポリエン系樹脂から選ばれる単数又は複数の樹脂、(c)単量体、(d)下記(i)~(iv)の条件をすべて満たす、別のオレフィン-芳香族ビニル化合物-芳香族ポリエン共重合体から選ばれる単数又は複数を含むことができる。
(i)共重合体の数平均分子量が500以上10万未満である。
(ii)芳香族ビニル化合物単量体が、炭素数8以上20以下の芳香族ビニル化合物であり、芳香族ビニル化合物単量体単位の含量が70質量%以下である。
(iii)芳香族ポリエンが、分子内にビニル基及び/又はビニレン基を複数有する炭素数5以上20以下のポリエンから選ばれる一種以上であり、かつ芳香族ポリエン単位に由来するビニル基及び/又はビニレン基の含有量が数平均分子量あたり1.5個以上20個未満である。
(iv)オレフィンが炭素数2以上20以下のオレフィンから選ばれる単数又は複数であり、オレフィン単量体単位の含量が30質量%以上であり、前記オレフィン単量体単位と芳香族ビニル化合物単量体単位と芳香族ポリエン単量体単位の合計が100質量%である。
In addition to the present copolymer, the composition of the present invention may further contain (a) a curing agent, (b) one or more resins selected from hydrocarbon elastomers, polyphenylene ether resins, and aromatic polyene resins, (c) a monomer, and (d) one or more selected from another olefin-aromatic vinyl compound-aromatic polyene copolymer that satisfies all of the following conditions (i) to (iv).
(i) The copolymer has a number average molecular weight of 500 or more and less than 100,000.
(ii) The aromatic vinyl compound monomer is an aromatic vinyl compound having 8 or more and 20 or less carbon atoms, and the content of aromatic vinyl compound monomer units is 70% by mass or less.
(iii) The aromatic polyene is one or more selected from polyenes having 5 to 20 carbon atoms and having a plurality of vinyl groups and/or vinylene groups in the molecule, and the content of vinyl groups and/or vinylene groups derived from the aromatic polyene units is 1.5 or more and less than 20 per number average molecular weight.
(iv) The olefin is one or more selected from olefins having 2 to 20 carbon atoms, the content of olefin monomer units is 30% by mass or more, and the total of the olefin monomer units, aromatic vinyl compound monomer units and aromatic polyene monomer units is 100% by mass.
上記の任意付加成分としての別のオレフィン-芳香族ビニル化合物-芳香族ポリエン共重合体は、その芳香族ビニル化合物単量体単位の含量についての条件を除き、本共重合体と同様の特徴を有していてよい。 The other olefin-aromatic vinyl compound-aromatic polyene copolymer as an optional additional component described above may have the same characteristics as the present copolymer, except for the content of aromatic vinyl compound monomer units.
<硬化剤>
本発明の組成物に用いることができる硬化剤としては、従来の芳香族ポリエン、芳香族ビニル化合物の重合、又は硬化に使用できる公知の硬化剤を用いることが可能である。このような硬化剤には、ラジカル重合開始剤(ラジカル発生剤)、カチオン重合開始剤、アニオン重合開始剤が例示できるが、好ましくはラジカル重合開始剤を用いることができる。さらに好ましくは、有機過酸化物系(パーオキサイド)、アゾ系重合開始剤等であり、用途、条件に応じて自由に選択できる。有機過酸化物が掲載されたカタログは日油社ホームページ、例えば
https://www.nof.co.jp/business/chemical/chemical-product01
からダウンロ-ド可能である。また有機過酸化物は富士フイルム和光純薬社や東京化成工業社のカタログ等にも記載されている。本発明に用いられる硬化剤はこれらの会社より入手できる。また公知の光、紫外線、放射線を用いる光重合開始剤を硬化剤として用いることもできる。光重合開始剤としては、光ラジカル重合開始剤、光カチオン重合開始剤、又は光アニオン重合開始剤が挙げられる。このような光重合開始剤は例えば東京化成工業社から入手できる。さらに、放射線あるいは電子線そのものによる硬化も可能である。また、硬化剤を含まず、含まれる原料の熱重合による架橋、硬化を行うことも可能である。
<Curing agent>
As the curing agent that can be used in the composition of the present invention, it is possible to use known curing agents that can be used for conventional polymerization or curing of aromatic polyenes and aromatic vinyl compounds. Examples of such curing agents include radical polymerization initiators (radical generators), cationic polymerization initiators, and anionic polymerization initiators, and preferably radical polymerization initiators can be used. More preferred are organic peroxides, azo polymerization initiators, etc., which can be freely selected according to the application and conditions. Catalogs with organic peroxides can be found on the NOF website, e.g.
https://www.nof.co.jp/business/chemical/chemical-product01
can be downloaded from Organic peroxides are also described in the catalogs of Fuji Film Wako Pure Chemical Co., Ltd. and Tokyo Kasei Kogyo Co., Ltd., etc. Curing agents for use in the present invention are available from these companies. A known photopolymerization initiator using light, ultraviolet rays, or radiation can also be used as a curing agent. Photopolymerization initiators include radical photopolymerization initiators, cationic photopolymerization initiators, and anionic photopolymerization initiators. Such photoinitiators are available, for example, from Tokyo Chemical Industry Co., Ltd. Furthermore, curing by radiation or electron beam itself is also possible. It is also possible to perform cross-linking and curing by thermal polymerization of contained raw materials without containing a curing agent.
硬化剤の使用量に特に制限はないが、一般的には樹脂組成物100質量部に対し、0.01~10質量部が好ましい。樹脂組成物は、硬化剤や溶剤を除くことが好ましい。過酸化物系(パーオキサイド)、アゾ系重合開始剤等の硬化剤を用いる場合には、その半減期を考慮し、適切な温度、時間で硬化処理を行う。この場合の条件は、硬化剤に合わせて任意であるが、一般的には50℃から200℃程度の温度範囲が適当である。 The amount of the curing agent used is not particularly limited, but is generally preferably 0.01 to 10 parts by mass with respect to 100 parts by mass of the resin composition. It is preferable that the resin composition excludes a curing agent and a solvent. When using a curing agent such as a peroxide or an azo polymerization initiator, the curing treatment is performed at an appropriate temperature and time in consideration of its half-life. The conditions in this case are arbitrary according to the curing agent, but generally a temperature range of about 50°C to 200°C is suitable.
本発明の実施形態に係る組成物又はワニスは、(b)成分こと「炭化水素系エラストマー、ポリフェニレンエーテル系樹脂、芳香族ポリエン系樹脂から選ばれる単数又は複数の樹脂」及び(d)成分こと「別のオレフィン-芳香族ビニル化合物-芳香族ポリエン共重合体」の合計を、好ましくは共重合体100質量部に対し1~200質量部の範囲で含むことができる。これら(b)成分又は(d)成分の添加により、本ワニスから得られる硬化体の、各種使用目的に必要な力学物性が向上する効果が得られる。 The composition or varnish according to the embodiment of the present invention can contain the sum of component (b), that is, "one or more resins selected from hydrocarbon elastomers, polyphenylene ether resins, and aromatic polyene resins" and component (d), that is, "another olefin-aromatic vinyl compound-aromatic polyene copolymer", preferably in the range of 1 to 200 parts by mass with respect to 100 parts by mass of the copolymer. By adding component (b) or component (d), the effect of improving the mechanical properties necessary for various purposes of use of the cured product obtained from the present varnish can be obtained.
<炭化水素系エラストマー>
本発明の実施形態に係る組成物が含んでよい炭化水素系エラストマーの使用量は、本共重合体100質量部(すなわち、任意付加成分である別のオレフィン-芳香族ビニル化合物-芳香族ポリエン共重合体は除いて考える)に対し、1~200質量部が好ましく、1~100質量部がより好ましく、1~50質量部が最も好ましい。本発明の組成物に好適に用いることができる炭化水素系エラストマーは、数平均分子量が100以上100000以下であることが好ましく、500以上100000以下であることがより好ましく、1000以上4500以下であることがさらに好ましい。本発明の組成物に好適に用いることができる炭化水素系エラストマーとしては、好ましくは、エチレン系やプロピレン系のエラストマー、共役ジエン系重合体や芳香族ビニル化合物-共役ジエン系のブロック共重合体又はランダム共重合体、及びこれらの水素化物(水添物)から選ばれる単数又は複数のエラストマーである。エチレン系エラストマーとしては、エチレン-オクテン共重合体やエチレン-1-ヘキセン共重合体等のエチレン-αオレフィン共重合体、EPR、EPDMが挙げられ、プロピレン系エラストマーとしては、アタクティックポリプロピレン、低立体規則性のポリプロピレン、プロピレン-1-ブテン共重合体等のプロピレン-αオレフィン共重合体が挙げられる。これらの炭化水素系エラストマーには、無水マレイン酸その他の化合物で官能基を導入する等の変性がされていてもよい。
<Hydrocarbon elastomer>
The amount of the hydrocarbon-based elastomer that may be contained in the composition according to the embodiment of the present invention is preferably 1 to 200 parts by mass, more preferably 1 to 100 parts by mass, and most preferably 1 to 50 parts by mass, based on 100 parts by mass of the present copolymer (that is, another olefin-aromatic vinyl compound-aromatic polyene copolymer which is an optional additional component is excluded). The hydrocarbon elastomer that can be suitably used in the composition of the present invention preferably has a number average molecular weight of 100 to 100,000, more preferably 500 to 100,000, and even more preferably 1,000 to 4,500. The hydrocarbon-based elastomer that can be suitably used in the composition of the present invention is preferably one or more elastomers selected from ethylene-based or propylene-based elastomers, conjugated diene-based polymers, aromatic vinyl compound-conjugated diene-based block copolymers or random copolymers, and hydrides (hydrogenated products) thereof. Ethylene-based elastomers include ethylene-α-olefin copolymers such as ethylene-octene copolymers and ethylene-1-hexene copolymers, EPR, and EPDM. Propylene-based elastomers include atactic polypropylene, low stereoregular polypropylene, and propylene-α-olefin copolymers such as propylene-1-butene copolymers. These hydrocarbon elastomers may be modified such as by introducing functional groups with maleic anhydride or other compounds.
共役ジエン系重合体としては、ポリブタジエンや1,2-ポリブタジエンが挙げられる。芳香族ビニル化合物-共役ジエン系のブロック共重合体又はランダム共重合体、及びこれらの水素化物(水添物)としては、SBS、SIS、SEBS、SEPS、SEEPS、SEEBS等が例示できる。好適に用いることができる1,2-ポリブタジエンは、例えば、日本曹達社から、液状ポリブタジエン:製品名B-1000、2000、3000の製品名で入手できる。また、好適に用いることができる1,2-ポリブタジエン構造を含む共重合体としては、TOTAL CRAY VALLEY社の「Ricon100」が例示できる。これらの共役ジエン系重合体やその水素化物には、無水マレイン酸や他の化合物で官能基を導入する等の変性がされていてもよい。共役ジエン系重合体の中では、主鎖中にビニレン基を含まない、又はビニレン基がより少ない重合体が好ましい。これは、主鎖中のビニレン基は硬化後においても硬化体中に残留し易く、ビニレン基は空気中の酸素と反応し酸素を含む極性基を生成し誘電率や誘電損失の値が上昇しやすいのに対し、ビニル基は硬化体の高温耐久性試験(例えば空気中125℃)後において、誘電率や誘電正接の値を低く維持しやすい傾向があるからである。本観点から共役ジエン系重合体としては、1,4-ポリブタジエン系の共重合体は好適ではなく、好ましくは1,2-ポリブタジエン構造を含む、1,2-ポリブタジエン系の重合体又は共重合体を使用できる。さらに本観点から好ましくは、ビニレン基が水素添加されその含量が大きく減少している各種の水素添加重合体を使用できる。共役ジエン系重合体の水素添加重合体としては、水素化SBR、SEBS、SEPS、SEEPS、SEEBSが挙げられ、好ましくはメチル置換スチレンを有する共役ジエン系重合体の水素添加重合体であってよい。これら炭化水素系エラストマーから選ばれる単数又は複数の樹脂が、特に室温(25℃)で液状(概ね300000mPa・s以下)の場合、本発明の組成物の未硬化状態での取扱性や成形加工性(熱可塑性樹脂としての取り扱い性)の観点から、その使用量は、共重合体100質量部に対し、好ましくは150質量部以下、より好ましくは1~30質量部、最も好ましくは1~20質量部の範囲である。 Conjugated diene polymers include polybutadiene and 1,2-polybutadiene. Examples of aromatic vinyl compound-conjugated diene block copolymers or random copolymers and hydrides (hydrogenated products) thereof include SBS, SIS, SEBS, SEPS, SEEPS and SEEBS. The 1,2-polybutadiene that can be preferably used is available from Nippon Soda Co., Ltd. under the product names of liquid polybutadiene: product names B-1000, 2000 and 3000, for example. As a copolymer containing a 1,2-polybutadiene structure that can be suitably used, "Ricon 100" manufactured by TOTAL CRAY VALLEY can be exemplified. These conjugated diene polymers and their hydrides may be modified such as by introducing functional groups with maleic anhydride or other compounds. Among the conjugated diene-based polymers, polymers containing no vinylene groups or less vinylene groups in the main chain are preferred. This is because the vinylene group in the main chain tends to remain in the cured product even after curing, and the vinylene group reacts with oxygen in the air to generate a polar group containing oxygen, which tends to increase the dielectric constant and dielectric loss values. From this point of view, a 1,4-polybutadiene copolymer is not suitable as the conjugated diene polymer, and a 1,2-polybutadiene polymer or copolymer containing a 1,2-polybutadiene structure can be preferably used. Further, from this point of view, it is preferable to use various hydrogenated polymers in which the vinylene groups are hydrogenated and their content is greatly reduced. Hydrogenated polymers of conjugated diene polymers include hydrogenated SBR, SEBS, SEPS, SEEPS and SEEBS, preferably hydrogenated polymers of conjugated diene polymers having methyl-substituted styrene. When one or more resins selected from these hydrocarbon-based elastomers are liquid (approximately 300,000 mPa s or less) at room temperature (25°C), the composition of the present invention is used in an amount of preferably 150 parts by mass or less, more preferably 1 to 30 parts by mass, and most preferably 1 to 20 parts by mass, based on 100 parts by mass of the copolymer, from the viewpoint of handling and molding processability (handlability as a thermoplastic resin) in an uncured state.
<ポリフェニレンエーテル>
ポリフェニレンエーテル(「ポリフェニレンエーテル系樹脂」とも称する)としては、市販の公知のポリフェニレンエーテルを用いることができる。ポリフェニレンエーテルの数平均分子量は任意であり、組成物の成形加工性を考慮すると数平均分子量は好ましくは1万以下、最も好ましくは5000以下である。数平均分子量は好ましくは500以上である。
<Polyphenylene ether>
As the polyphenylene ether (also referred to as "polyphenylene ether-based resin"), commercially available known polyphenylene ethers can be used. The number average molecular weight of the polyphenylene ether is arbitrary, and is preferably 10,000 or less, most preferably 5,000 or less, in consideration of the molding processability of the composition. The number average molecular weight is preferably 500 or more.
また、本発明の組成物の硬化を目的とした添加の場合、分子末端が官能基で変性されていることが好ましい。また、本発明の組成物の硬化を目的とした添加の場合、一分子内に複数の官能基を有していることが好ましい。例えば、変性ポリフェニレンエーテルとすることが好ましい。官能基としては、ラジカル重合性の官能基、エポキシ基等の官能基が挙げられ、好ましくは、ラジカル重合性の官能基である。ラジカル重合性の官能基としては、ビニル基が好ましい。ビニル基としては、アリル基、(メタ)アクリロイル基、芳香族ビニル基からなる群の一種以上が好ましく、(メタ)アクリロイル基、芳香族ビニル基からなる群の一種以上がより好ましく、芳香族ビニル基が最も好ましい。つまり、本発明の組成物においては、分子鎖の両末端がラジカル重合性の官能基で変性されている二官能性ポリフェニレンエーテルが特に好ましい。このような好ましいポリフェニレンエーテルとしてはSABIC社のNoryl(商標)SA9000(両末端にメタクリロイル基を有する変性ポリフェニレンエーテル、数平均分子量2200)や三菱ガス化学社製二官能ポリフェニレンエーテルオリゴマー(OPE-2St、両末端にビニルベンジル基を有する変性ポリフェニレンエーテル、数平均分子量1200)等が挙げられる。また、旭化成社のアリル化PPEや、JSR社の芳香族ポリエーテル(ELPAC HC-Fシリーズ)等も用いることができる。これらの中で好ましくは三菱ガス化学社製二官能ポリフェニレンエーテルオリゴマー(OPE-2St)を用いることができる。本発明の組成物に用いるポリフェニレンエーテルの使用量は、共重合体100質量部に対し、1~200質量部が好ましく、1~100質量部がより好ましい。 In the case of addition for the purpose of curing the composition of the present invention, it is preferable that the terminal of the molecule is modified with a functional group. In the case of addition for the purpose of curing the composition of the present invention, it is preferable that one molecule has a plurality of functional groups. For example, modified polyphenylene ether is preferred. The functional group includes a radically polymerizable functional group and a functional group such as an epoxy group, preferably a radically polymerizable functional group. A vinyl group is preferable as the radically polymerizable functional group. The vinyl group is preferably one or more selected from the group consisting of an allyl group, a (meth)acryloyl group and an aromatic vinyl group, more preferably one or more selected from the group consisting of a (meth)acryloyl group and an aromatic vinyl group, and most preferably an aromatic vinyl group. That is, in the composition of the present invention, a bifunctional polyphenylene ether in which both ends of the molecular chain are modified with radically polymerizable functional groups is particularly preferred. Such preferred polyphenylene ethers include SABIC's Noryl (trademark) SA9000 (modified polyphenylene ether having methacryloyl groups at both ends, number average molecular weight of 2200) and Mitsubishi Gas Chemical Co., Ltd.'s bifunctional polyphenylene ether oligomer (OPE-2St, modified polyphenylene ether having vinylbenzyl groups at both ends, number average molecular weight of 1200), and the like. In addition, allylated PPE manufactured by Asahi Kasei Corp., aromatic polyethers manufactured by JSR Corp. (ELPAC HC-F series), etc. can also be used. Among these, a bifunctional polyphenylene ether oligomer (OPE-2St) manufactured by Mitsubishi Gas Chemical Co., Ltd. can be preferably used. The amount of polyphenylene ether used in the composition of the present invention is preferably 1 to 200 parts by mass, more preferably 1 to 100 parts by mass, per 100 parts by mass of the copolymer.
<芳香族ポリエン系樹脂>
芳香族ポリエン系樹脂とは、日鉄ケミカル&マテリアル社製、ジビニルベンゼン系反応性多分岐共重合体(PDV)を包含する。このようなPDVは、例えば文献「多官能芳香族ビニル共重合体の合成とそれを用いた新規IPN型低誘電損失材料の開発」(川辺 正直、エレクトロニクス実装学会誌 p125、Vol.12 No.2(2009))に記載されている。本発明の組成物に用いる芳香族ポリエン系樹脂の使用量は、共重合体100質量部に対し、1~200質量部が好ましく、1~100質量部がより好ましく、1~50質量部が最も好ましい。芳香族ポリエン系樹脂のこれら範囲内の量の使用は、他の部材との接着性の低下や靱性の低下を防ぐために好ましい。
<Aromatic polyene resin>
The aromatic polyene-based resin includes a divinylbenzene-based reactive polybranched copolymer (PDV) manufactured by Nippon Steel Chemical & Materials. Such a PDV is described, for example, in the document "Synthesis of Polyfunctional Aromatic Vinyl Copolymer and Development of New IPN-type Low Dielectric Loss Material Using Same" (Masao Kawabe, Journal of Electronics Packaging Society p125, Vol.12 No.2 (2009)). The amount of the aromatic polyene resin used in the composition of the present invention is preferably 1 to 200 parts by mass, more preferably 1 to 100 parts by mass, and most preferably 1 to 50 parts by mass, based on 100 parts by mass of the copolymer. Use of the aromatic polyene-based resin in an amount within these ranges is preferable in order to prevent a decrease in adhesion to other members and a decrease in toughness.
<単量体>
本発明の組成物が含んでよい単量体は、好ましくは共重合体100質量部に対し100質量部以下である。なお本樹脂組成物は実質的に単量体を含まなくても良い。単量体とはラジカル重合、カチオン重合、アニオン重合のいずれかで重合可能な単量体であり、好ましくはラジカル重合可能な単量体である。その分子量は5000以下が好ましく、5000未満が好ましく、1000以下がより好ましく、1000未満がより好ましく、500以下がさらに好ましく、500未満がさらに好ましく、前記「芳香族ビニル化合物」や「芳香族ポリエン」を含み、また「芳香族ビニレン化合物」も適宜含んでもよい。芳香族ビニレン化合物は、炭素数9~30の単数の芳香族環又は複数の縮合した芳香族環とビニレン基を共に有する化合物である。このような芳香族ビニレン化合物の例としては、インデン類、ベータ置換スチレン類、アセナフチレン類が挙げられる。前記インデン類としては、インデン、各種アルキル置換インデンやフェニル置換インデン類が挙げられる。ベータ置換スチレン類では、β-メチルスチレン等のβ-アルキル置換スチレン、又はフェニル置換スチレンが挙げられる。アセナフチレン類としては、アセナフチレン、各種アルキル置換アセナフチレン、各種フェニル置換アセナフチレン類が挙げられる。前記芳香族ビニレン類は、前記例示の化合物を単独で用いてもよいし、二種以上を組み合わせて用いてもよい。前記芳香族ビニレン類は、常圧で175℃以上の沸点を有するものが好ましい。工業的な入手性やラジカル重合性の観点からはアセナフチレンが最も好ましい。単量体として好ましくは、「芳香族ビニル化合物」、「芳香族ポリエン」、又は「芳香族ビニレン」から選択できる。好ましくは前記「芳香族ビニル化合物」や「芳香族ポリエン」である。またより好ましくは、単量体は下記「極性単量体」であってよい。
<monomer>
The monomer that the composition of the present invention may contain is preferably 100 parts by weight or less per 100 parts by weight of the copolymer. The present resin composition may be substantially free of monomers. A monomer is a monomer that can be polymerized by either radical polymerization, cationic polymerization, or anionic polymerization, preferably a monomer that can be radically polymerized. Its molecular weight is preferably 5000 or less, preferably less than 5000, more preferably 1000 or less, more preferably less than 1000, still more preferably 500 or less, still more preferably less than 500, the "aromatic vinyl compound" and "aromatic polyene", and may also contain an "aromatic vinylene compound" as appropriate. An aromatic vinylene compound is a compound having both a single aromatic ring or multiple condensed aromatic rings having 9 to 30 carbon atoms and a vinylene group. Examples of such aromatic vinylene compounds include indenes, beta-substituted styrenes and acenaphthylenes. Examples of the indenes include indene, various alkyl-substituted indenes and phenyl-substituted indenes. Beta-substituted styrenes include β-alkyl-substituted styrenes such as β-methylstyrene, or phenyl-substituted styrenes. Acenaphthylenes include acenaphthylene, various alkyl-substituted acenaphthylenes, and various phenyl-substituted acenaphthylenes. As the aromatic vinylenes, the compounds exemplified above may be used alone, or two or more of them may be used in combination. The aromatic vinylenes preferably have a boiling point of 175°C or higher at normal pressure. Acenaphthylene is most preferable from the viewpoint of industrial availability and radical polymerizability. Preferably, the monomer can be selected from "aromatic vinyl compound", "aromatic polyene", or "aromatic vinylene". Preferred are the aforementioned "aromatic vinyl compound" and "aromatic polyene". Also more preferably, the monomer may be the following "polar monomer".
<極性単量体>
本発明の組成物が含んでよい極性単量体は、好ましくは共重合体100質量部に対し100質量部以下である。なお本樹脂組成物は実質的に極性単量体を含まなくても良い。極性単量体とは、分子内に酸素、窒素、リン、硫黄から選ばれる単数又は複数の原子を有する単量体であり、好適に用いることができる極性単量体は、分子量5000未満が好ましく、1000未満がより好ましく、500未満がさらに好ましい。本発明の樹脂組成物に好適に用いることができる極性単量体は、ラジカル重合開始剤により重合させることが可能な極性単量体が好ましい。極性単量体としては、各種のマレイミド類、ビスマレイミド類、無水マレイン酸、トリアリルイソシアヌレート、グリシジル(メタ)アクリレート、トリ(メタ)アクリルイソシアヌレート、トリメチロールプロパントリ(メタ)アクリレート等が挙げられる。本発明に使用可能なマレイミド類、ビスマレイミド類は例えば国際公開第2016/114287号や特開2008-291227号公報に記載されており、例えば大和化成工業社、日本化薬社、Designer molecules inc社から購入できる。また信越化学社製ビスマレイミド系樹脂「SLK」も用いることができる。これらマレイミド基含有化合物は、有機溶剤への溶解性、高周波特性、導体との高接着性、プリプレグの成形性等の観点から、ビスマレイミド類が好ましい。これらマレイミド基含有化合物は、有機溶剤への溶解性、高周波特性、導体との高接着性、プリプレグの成形性等の観点から、ポリアミノビスマレイミド化合物として用いてもよい。ポリアミノビスマレイミド化合物は、例えば、末端に2個のマレイミド基を有する化合物と分子中に2個の一級アミノ基を有する芳香族ジアミン化合物とをマイケル付加反応させることにより得られる。少量の添加で高い架橋効率を得ようとする場合、二官能基以上の多官能基を有する極性単量体の使用が好ましく、ビスマレイミド類、トリアリルイソシアヌレート(TAIC)、トリメチロールプロパントリ(メタ)アクリレートが例示できる。本発明の樹脂組成物に用いる極性単量体の量は、共重合体100質量部に対し、0.1~20質量部が好ましく、0.1~10質量部がより好ましい。この範囲の量の使用により、得られる硬化体の誘電率や誘電正接が高くなりすぎない効果が得られ、例えば誘電率は4.0以下、好ましくは3.0以下に、誘電正接は0.005以下、好ましくは0.002以下に抑えることが可能となる。
<Polar monomer>
The polar monomer that the composition of the present invention may contain is preferably 100 parts by weight or less per 100 parts by weight of the copolymer. The present resin composition may be substantially free of polar monomers. A polar monomer is a monomer having one or more atoms selected from oxygen, nitrogen, phosphorus, and sulfur in the molecule, and a polar monomer that can be suitably used has a molecular weight of preferably less than 5000, more preferably less than 1000, and even more preferably less than 500. A polar monomer that can be suitably used in the resin composition of the present invention is preferably a polar monomer that can be polymerized by a radical polymerization initiator. Polar monomers include various maleimides, bismaleimides, maleic anhydride, triallyl isocyanurate, glycidyl (meth)acrylate, tri(meth)acryl isocyanurate, trimethylolpropane tri(meth)acrylate, and the like. Maleimides and bismaleimides that can be used in the present invention are described in, for example, International Publication No. 2016/114287 and Japanese Patent Application Laid-Open No. 2008-291227, and can be purchased from, for example, Daiwa Kasei Kogyo Co., Ltd., Nippon Kayaku Co., Ltd., Designer molecules inc. A bismaleimide resin "SLK" manufactured by Shin-Etsu Chemical Co., Ltd. can also be used. These maleimide group-containing compounds are preferably bismaleimides from the viewpoints of solubility in organic solvents, high frequency characteristics, high adhesion to conductors, moldability of prepreg, and the like. These maleimide group-containing compounds may be used as polyaminobismaleimide compounds from the viewpoints of solubility in organic solvents, high frequency characteristics, high adhesion to conductors, moldability of prepreg, and the like. A polyaminobismaleimide compound is obtained, for example, by Michael addition reaction between a compound having two maleimide groups at the terminals and an aromatic diamine compound having two primary amino groups in the molecule. When trying to obtain high cross-linking efficiency with the addition of a small amount, it is preferable to use a polar monomer having a polyfunctional group of two or more functional groups, such as bismaleimides, triallyl isocyanurate (TAIC), and trimethylolpropane tri(meth)acrylate. The amount of the polar monomer used in the resin composition of the present invention is preferably 0.1 to 20 parts by mass, more preferably 0.1 to 10 parts by mass, per 100 parts by mass of the copolymer. By using an amount within this range, it is possible to obtain the effect of preventing the dielectric constant and dielectric loss tangent of the obtained cured product from becoming too high.
<別のオレフィン-芳香族ビニル化合物-芳香族ポリエン共重合体>
本発明の組成物は、(d)下記(i)~(iv)の条件をすべて満たす、上記の本共重合体とは別のオレフィン-芳香族ビニル化合物-芳香族ポリエン共重合体から選ばれる単数又は複数を含むことができる。
(i)共重合体の数平均分子量が500以上10万未満である。
(ii)芳香族ビニル化合物単量体が、炭素数8以上20以下の芳香族ビニル化合物であり、芳香族ビニル化合物単量体単位の含量が70質量%以下である。
(iii)芳香族ポリエンが、分子内にビニル基及び/又はビニレン基を複数有する炭素数5以上20以下のポリエンから選ばれる一種以上であり、かつ芳香族ポリエン単位に由来するビニル基及び/又はビニレン基の含有量が数平均分子量あたり1.5個以上20個未満である。
(iv)オレフィンが炭素数2以上20以下のオレフィンから選ばれる単数又は複数であり、オレフィン単量体単位の含量が30質量%以上であり、前記オレフィン単量体単位と芳香族ビニル化合物単量体単位と芳香族ポリエン単量体単位の合計が100質量%である。
このような、別の特定の条件をすべて満たすオレフィン-芳香族ビニル化合物-芳香族ポリエン共重合体は、例えば国際公開第2021/112087号、国際公開第2021/112088号、及び国際公開第2022/014599号に記載されている。このような別の特定の条件をすべて満たすオレフィン-芳香族ビニル化合物-芳香族ポリエン共重合体は、軟質でかつ低誘電率、低誘電正接を示すので、本発明の芳香族ビニル化合物-芳香族ポリエン共重合体と組み合わせ、組成物とすることで幅広い物性をカバーする低誘電率、低誘電正接の硬化体を与えることができるため好適である。
<Another olefin-aromatic vinyl compound-aromatic polyene copolymer>
The composition of the present invention (d) may contain one or more selected from olefin-aromatic vinyl compound-aromatic polyene copolymers other than the present copolymer, which satisfy all of the following conditions (i) to (iv).
(i) The copolymer has a number average molecular weight of 500 or more and less than 100,000.
(ii) The aromatic vinyl compound monomer is an aromatic vinyl compound having 8 or more and 20 or less carbon atoms, and the content of aromatic vinyl compound monomer units is 70% by mass or less.
(iii) The aromatic polyene is one or more selected from polyenes having 5 to 20 carbon atoms and having a plurality of vinyl groups and/or vinylene groups in the molecule, and the content of vinyl groups and/or vinylene groups derived from the aromatic polyene units is 1.5 or more and less than 20 per number average molecular weight.
(iv) The olefin is one or more selected from olefins having 2 to 20 carbon atoms, the content of olefin monomer units is 30% by mass or more, and the total of the olefin monomer units, aromatic vinyl compound monomer units and aromatic polyene monomer units is 100% by mass.
Such olefin-aromatic vinyl compound-aromatic polyene copolymers that satisfy all other specific conditions are described, for example, in WO2021/112087, WO2021/112088, and WO2022/014599. An olefin-aromatic vinyl compound-aromatic polyene copolymer that satisfies all such other specific conditions is flexible and exhibits a low dielectric constant and a low dielectric loss tangent, so it is suitable because it can be combined with the aromatic vinyl compound-aromatic polyene copolymer of the present invention to form a composition to provide a cured product with a low dielectric constant and a low dielectric loss tangent that covers a wide range of physical properties.
例えば具体的には、本発明の芳香族ビニル化合物-芳香族ポリエン共重合体100質量部に対し、前記別のオレフィン-芳香族ビニル化合物-芳香族ポリエン共重合体を好ましくは1~200質量部、特に好ましくは50~200質量部の範囲で含む組成物は、未硬化の状態でタック性(自己粘着性)が少ないという効果をさらに示すことができる。本明細書において未硬化とは半硬化の概念を包含する。本明細書において未硬化の組成物とは、それ自体が熱可塑性(すなわち硬化を起こさない成形条件においてシート化等の成形加工が可能である性質)を示す状態にあり、成形加工後の適切な硬化条件(加熱、加圧等)を施すことで硬化が可能な状態を示す。そのため、特に未硬化の状態で保管、輸送する必要がある層間絶縁材シートやボンディングシートとして有用である。本発明の芳香族ビニル化合物-芳香族ポリエン共重合体のガラス転移温度は、公知の測定方法により30℃~100℃の範囲に存在することを確認できる。上述した別のオレフィン-芳香族ビニル化合物-芳香族ポリエン共重合体は同様の測定方法により-100~30℃の範囲にガラス転移温度が存在することを確認できる。よって上述したような組成物においては、未硬化の状態で30℃~100℃の範囲及び-100~30℃の範囲に共に複数のガラス転移温度を有することになる。ここで公知の測定方法としては、示差走査熱量測定法(DSC)や動的粘弾性測定法(DMA)等が挙げられる。 Specifically, for example, with respect to 100 parts by mass of the aromatic vinyl compound-aromatic polyene copolymer of the present invention, the other olefin-aromatic vinyl compound-aromatic polyene copolymer is preferably added in an amount of 1 to 200 parts by mass, particularly preferably 50 to 200 parts by mass. As used herein, uncured includes the concept of semi-cured. In this specification, the uncured composition is in a state in which the composition itself exhibits thermoplasticity (i.e., a property in which molding such as sheeting is possible under molding conditions that do not cause curing), and indicates a state in which curing is possible by applying appropriate curing conditions (heating, pressure, etc.) after molding. Therefore, it is particularly useful as an interlayer insulating sheet or bonding sheet that must be stored and transported in an uncured state. The glass transition temperature of the aromatic vinyl compound-aromatic polyene copolymer of the present invention can be confirmed to be in the range of 30°C to 100°C by a known measuring method. The other olefin-aromatic vinyl compound-aromatic polyene copolymer described above can be confirmed to have a glass transition temperature in the range of -100 to 30°C by a similar measurement method. Therefore, the composition as described above has a plurality of glass transition temperatures both in the range of 30°C to 100°C and in the range of -100°C to 30°C in an uncured state. Examples of known measurement methods include differential scanning calorimetry (DSC) and dynamic viscoelasticity measurement (DMA).
さらに、本発明の組成物は、以下の(e)~(g)から選ばれる単数又は複数を含んでもよい。
(e)充填剤
(f)難燃剤
(g)表面変性剤
Furthermore, the composition of the present invention may contain one or more selected from the following (e) to (g).
(e) filler (f) flame retardant (g) surface modifier
<充填剤>
必要に応じて公知の無機、あるいは有機充填剤を添加することができる。これら充填剤は、熱膨張率コントロール、熱伝導性のコントロール、低価格化を目的として添加され、その使用量は目的により任意である。特に無機充填剤の添加の際には、公知の表面変性剤、例えばシランカップリング剤等を用いることが好ましい。特に、本発明の目的の一つである、低誘電率、低誘電損失性に優れた樹脂組成物を目的とする場合、無機充填剤としてはボロンナイトライド(BN)又はシリカからなる一種以上が好ましく、シリカがより好ましい。シリカとしては、溶融シリカが好ましい。低誘電特性という観点からは、好ましくは共重合体100質量部に対して500質量部以下、500質量部未満、さらに好ましくは400質量部以下、400質量部未満の充填剤を用いる。さらには低誘電特性(低誘電率、低誘電損失正接)を改善、向上させるために中空の充填剤や空隙の多い形状の充填剤を添加しても良い。
<Filler>
A known inorganic or organic filler can be added as required. These fillers are added for the purpose of controlling the coefficient of thermal expansion, controlling the thermal conductivity, and reducing the price, and the amount used is arbitrary depending on the purpose. In particular, when adding an inorganic filler, it is preferable to use a known surface modifier such as a silane coupling agent. In particular, when aiming at a resin composition excellent in low dielectric constant and low dielectric loss, which is one of the objects of the present invention, the inorganic filler is preferably one or more of boron nitride (BN) or silica, more preferably silica. As silica, fused silica is preferred. From the viewpoint of low dielectric properties, preferably 500 parts by mass or less and less than 500 parts by mass, more preferably 400 parts by mass or less and less than 400 parts by mass of the filler is used with respect to 100 parts by mass of the copolymer. Furthermore, in order to improve low dielectric properties (low dielectric constant, low dielectric loss tangent), a hollow filler or a filler having a shape with many voids may be added.
また、無機充填剤の代わりに、高分子量ポリエチレン又は超高分子量ポリエチレン等の有機充填剤を用いることも可能である。有機充填剤はそれ自身架橋していることが耐熱性の観点からは好ましく、微粒子あるいは粉末の状態で配合されるのが好ましい。これら有機充填剤は、誘電率、誘電正接の上昇を抑えることができる。 It is also possible to use organic fillers such as high-molecular-weight polyethylene or ultra-high-molecular-weight polyethylene instead of inorganic fillers. From the viewpoint of heat resistance, the organic filler itself is preferably crosslinked, and is preferably blended in the form of fine particles or powder. These organic fillers can suppress increases in dielectric constant and dielectric loss tangent.
一方、本発明の樹脂組成物に1GHzにおける誘電率が好ましくは4~10000、より好ましくは5~10000の高誘電率絶縁体充填剤を混合し分散することによって誘電正接(誘電損失)の増大を抑制しつつ、誘電率が好ましくは4~20の高誘電率絶縁層を有する絶縁硬化体を作成できる。絶縁硬化体からなるフィルムの誘電率を高くすることによって回路の小型化、コンデンサの高容量化が可能となり高周波用電気部品の小型化等に寄与できる。高誘電率、低誘電正接絶縁層はキャパシタ、共振回路用インダクタ、フィルター、アンテナ等の用途に適する。本発明に用いる高誘電率絶縁体充填剤としては、無機充填剤、又は、絶縁処理を施した金属粒子が挙げられる。具体的な例は、チタン酸バリウム、チタン酸ストロンチウム等公知の高誘電率無機充填剤であり、他の例は例えば特開2004-087639号公報に具体的に記載されている。 On the other hand, by mixing and dispersing a high dielectric constant insulator filler having a dielectric constant at 1 GHz of preferably 4 to 10000, more preferably 5 to 10000, in the resin composition of the present invention, the dielectric loss tangent (dielectric loss) can be suppressed. By increasing the dielectric constant of the film made of the insulating hardening material, it becomes possible to reduce the size of the circuit and increase the capacity of the capacitor, which contributes to the reduction of the size of high-frequency electric parts. A high dielectric constant, low dielectric loss tangent insulating layer is suitable for applications such as capacitors, inductors for resonant circuits, filters, and antennas. Examples of the high dielectric constant insulator filler used in the present invention include inorganic fillers and metal particles subjected to insulation treatment. Specific examples are known high dielectric constant inorganic fillers such as barium titanate and strontium titanate, and other examples are specifically described in JP-A-2004-087639.
<難燃剤>
本発明の組成物には難燃剤を使用できる。好ましい難燃剤は、低誘電率、低誘電正接を保持する観点からは、リン酸エステル又はこれらの縮合体等の公知の有機リン系や公知の臭素系難燃剤や赤リンである。特にリン酸エステルの中でも、分子内にキシレニル基を複数有する化合物が、難燃性と低誘電正接性の観点から好ましい。
<Flame retardant>
Flame retardants may be used in the compositions of the present invention. From the viewpoint of maintaining a low dielectric constant and a low dielectric loss tangent, preferred flame retardants are known organic phosphorous compounds such as phosphoric acid esters or condensates thereof, known brominated flame retardants, and red phosphorus. Among phosphoric acid esters, compounds having a plurality of xylenyl groups in the molecule are particularly preferred from the viewpoint of flame retardancy and low dielectric loss tangent.
さらに難燃剤以外に難燃助剤として三酸化アンチモン、四酸化アンチモン、五酸化アンチモン、アンチモン酸ソーダ等のアンチモン系化合物又はメラミン、トリアリル-1,3,5-トリアジン-2,3,4-(1H,3H,5H)-トリオン、2,4,6-トリアリロキシ1,3,5-トリアジン等の含窒素化合物を添加しても良い。これら難燃剤、難燃助剤の合計は、樹脂組成物100質量部に対して通常は1~100質量部が好ましい。また、前記ポリフェニレンエーテル(PPE)系の低誘電率かつ難燃性に優れる樹脂を難燃剤100質量部に対し、30~200質量部使用してもよい。 Furthermore, antimony compounds such as antimony trioxide, antimony tetroxide, antimony pentoxide, and sodium antimonate, or nitrogen-containing compounds such as melamine, triallyl-1,3,5-triazine-2,3,4-(1H,3H,5H)-trione, and 2,4,6-triaryloxy-1,3,5-triazine may be added as flame retardant aids in addition to the flame retardant. The total amount of these flame retardants and auxiliary flame retardants is usually preferably 1 to 100 parts by mass with respect to 100 parts by mass of the resin composition. Further, 30 to 200 parts by mass of the polyphenylene ether (PPE)-based resin having a low dielectric constant and excellent flame retardancy may be used with respect to 100 parts by mass of the flame retardant.
<表面変性剤>
本発明の組成物は、配線用の銅箔との接着性向上を目的に、表面変性剤を含む。特に銅箔の平滑面との接着強度(剥離強度)を高めることが目的である。オレフィン-芳香族ビニル化合物-芳香族ポリエン共重合体100質量部に対して表面変性剤の使用量は0.001~10質量部の範囲であり、0.01~5質量部の範囲がより好ましく、0.01~1質量部の範囲が最も好ましい。表面変性剤の使用量が10質量部以下だと、組成物から得られる硬化体の誘電率や誘電正接が低くなる。本発明においては、公知の表面変性剤を用いることができる。このような表面変性剤としては、シラン系表面変性剤(別名シランカップリング剤)、チタネート系表面変性剤、イソシアネート系表面変性剤が挙げられるが、好ましくはシラン系表面変性剤を用いる。これら表面変性剤は単数、又は複数を用いても良い。このようなシラン系表面変性剤は信越化学工業社やダウコーニング社、エボニック社から入手することができる。
<Surface modifier>
The composition of the present invention contains a surface modifying agent for the purpose of improving adhesion to a copper foil for wiring. In particular, the purpose is to increase the adhesion strength (peel strength) to the smooth surface of the copper foil. The amount of the surface modifier used is in the range of 0.001 to 10 parts by mass, more preferably 0.01 to 5 parts by mass, most preferably 0.01 to 1 part by mass, based on 100 parts by mass of the olefin-aromatic vinyl compound-aromatic polyene copolymer. If the amount of the surface modifier used is less than 10 parts by mass, the dielectric constant and dielectric loss tangent of the cured product obtained from the composition will be low. A known surface modifier can be used in the present invention. Examples of such surface modifiers include silane-based surface modifiers (also known as silane coupling agents), titanate-based surface modifiers, and isocyanate-based surface modifiers. Preferably, silane-based surface modifiers are used. One or more of these surface modifiers may be used. Such silane-based surface modifiers are available from Shin-Etsu Chemical Co., Dow Corning, and Evonik.
本発明の組成物は、さらに、(h)溶剤を含むことができる。また、本発明の組成物のうち、溶剤を含むことで特に液状であるものをワニスと呼ぶ。 The composition of the present invention may further comprise (h) a solvent. Among the compositions of the present invention, those that are particularly liquid by containing a solvent are called varnishes.
<溶剤>
本発明の組成物に対し、必要に応じて適切な溶剤(溶媒)を添加してもよい。またその使用量は、特に限定されない。溶剤は、組成物の粘度、流動性を調節するために用いる。特に、本発明の樹脂組成物がワニス状の場合、溶剤が好ましく使用される。溶剤としては、大気圧下での沸点が高いと、すなわち揮発性が低いと、塗布した膜の厚さが均一になるため、ある程度以上の沸点を有する溶剤が好ましい。好ましい沸点は大気圧下で概ね75℃以上、さらに好ましくは130℃以上300℃以下である。溶剤としては例えば、シクロヘキサン、シクロヘキサノン、メチルエチルケトン(MEK)、トルエン、エチルベンゼン、キシレン、メシチレン、テトラリン、アセトン、リモネン、混合アルカン、混合芳香族系溶媒等が用いられる。本発明の組成物に用いる溶剤の使用量は任意であるが、共重合体100質量部に対し、5~500質量部が好ましく、10~300質量部がより好ましく、50~150質量部が最も好ましい。
<Solvent>
A suitable solvent (solvent) may be added to the composition of the present invention, if necessary. Moreover, the usage amount is not particularly limited. A solvent is used to adjust the viscosity and fluidity of the composition. In particular, when the resin composition of the present invention is in the form of varnish, a solvent is preferably used. As the solvent, if the boiling point under atmospheric pressure is high, that is, if the volatility is low, the thickness of the coated film will be uniform. A preferable boiling point is approximately 75° C. or higher, more preferably 130° C. or higher and 300° C. or lower under atmospheric pressure. Examples of solvents include cyclohexane, cyclohexanone, methyl ethyl ketone (MEK), toluene, ethylbenzene, xylene, mesitylene, tetralin, acetone, limonene, mixed alkanes, and mixed aromatic solvents. The amount of the solvent used in the composition of the present invention is arbitrary, but is preferably 5 to 500 parts by mass, more preferably 10 to 300 parts by mass, and most preferably 50 to 150 parts by mass, relative to 100 parts by mass of the copolymer.
本発明の組成物の構成成分として、トルエンやその他の芳香族系溶媒に溶解性が低い原料、例えば特定のビスマレイミドを用いる場合、溶媒としてメチルエチルケトン(MEK)を用いることができる。その場合、本発明の芳香族ビニル化合物-芳香族ポリエン共重合体はメチルエチルケトンに対する溶解性が高いため好ましい。 When using raw materials with low solubility in toluene or other aromatic solvents, such as specific bismaleimide, as the constituents of the composition of the present invention, methyl ethyl ketone (MEK) can be used as the solvent. In that case, the aromatic vinyl compound-aromatic polyene copolymer of the present invention is preferred because of its high solubility in methyl ethyl ketone.
本発明の組成物やワニスは、本発明の効果、目的を阻害しない範囲で、通常樹脂に用いられる添加剤、例えば酸化防止剤、耐候剤、光安定剤、滑剤、相溶化剤、帯電防止材等を含むことができる。本発明の組成物やワニスは、前記の各種添加物を混合・溶解又は溶融して得られるが、混合、溶解、溶融の方法は任意の公知の方法が採用できる。 The composition and varnish of the present invention can contain additives that are commonly used in resins, such as antioxidants, weathering agents, light stabilizers, lubricants, compatibilizers, and antistatic agents, as long as the effects and objects of the present invention are not impaired. The composition and varnish of the present invention can be obtained by mixing, dissolving, or melting the various additives described above, and any known methods for mixing, dissolving, and melting can be employed.
本発明の組成物は公知の混練法、例えば二軸混練機や各種ロール、各種ニーダー等により混合することができる。組成物がワニスである場合には、ワニスへ添加し攪拌することで混合させることができる。 The composition of the present invention can be mixed by a known kneading method such as a twin-screw kneader, various rolls, various kneaders, and the like. When the composition is a varnish, it can be mixed by adding to the varnish and stirring.
<ワニス>
本発明のワニスは、用いる共重合体の組成や分子量の調整や本発明の範囲内での液状単量体や溶剤の一定量以上の添加、あるいは液状の難燃剤の添加により室温、又は100℃以下の加温により粘稠な液状を示すことが可能で、例えば室温で数十万mPa・s以下、好適には10000mPa・s以下若しくは2000mPa・s以下、より好適には1000mPa・s以下、最も好適には500mPa・s以下である。具体的には適当な方法で他の素材に塗布、含浸、充填、あるいは滴下し、溶剤を除くことで成形体とすることができる。さらに熱や光により硬化させて目的の硬化体を得ることができる。このような性状は、各種トランスファー成形(圧入成形)したり、基板や半導体デバイス材料の上又は間に塗布したり、押出ラミネーション、又はスピンコートでシート、フィルムに成形し、その後に硬化したりして絶縁皮膜や絶縁層を形成できる。また、本発明の芳香族ビニル化合物-芳香族ポリエン共重合体を共重合する際に得られる重合液(一般的には本共重合体の他にトルエンやエチルベンゼン、シクロヘキサン、メチルシクロヘキサン等の重合に用いられる溶媒と、スチレン、ジビニルベンゼン等の残留モノマーやオレフィンモノマー等の残留モノマー、触媒や助触媒成分を含む)をそのままワニスとして用いることができる。あるいは本重合液から溶媒や残留モノマーの一部、又は全部を減圧で留去し、必要に応じて前記溶剤で希釈することでもワニスを得ることができる。すなわち本発明のワニスは、重合の際の残留モノマーや重合に用いられた溶媒を含んでいてもよい。
<Varnish>
The varnish of the present invention can exhibit a viscous liquid state by adjusting the composition and molecular weight of the copolymer to be used, adding a certain amount or more of a liquid monomer or solvent within the scope of the present invention, or adding a liquid flame retardant, and can exhibit a viscous liquid state by heating at room temperature or 100 ° C. or less. It is 500 mPa·s or less. Specifically, a molded body can be obtained by applying, impregnating, filling, or dripping onto another material by an appropriate method and removing the solvent. Furthermore, the desired cured product can be obtained by curing with heat or light. Such properties can be obtained by various transfer molding (press-fit molding), coating on or between substrates and semiconductor device materials, extrusion lamination, or spin coating to form sheets or films, and then curing to form an insulating coating or insulating layer. In addition, the polymerization liquid obtained when copolymerizing the aromatic vinyl compound-aromatic polyene copolymer of the present invention (generally containing a solvent such as toluene, ethylbenzene, cyclohexane, and methylcyclohexane, a residual monomer such as styrene and divinylbenzene, a residual monomer such as an olefin monomer, a catalyst, and a co-catalyst component) can be used as a varnish as it is. Alternatively, the varnish can also be obtained by distilling off part or all of the solvent and residual monomers from the polymer solution under reduced pressure and diluting with the solvent as necessary. That is, the varnish of the present invention may contain residual monomers during polymerization and solvents used in polymerization.
<成形体>
本発明の組成物から得られる成形体の形状は任意である。これら組成物は、熱可塑性樹脂の性状を示すことができる。そのため、架橋を起こさない条件下、熱可塑性樹脂としての公知の成形加工方法、例えば押出成形、射出成形、プレス成形、インフレーション成形等により、実質的に未硬化の状態でシート、チューブ、短冊、ペレット等の形状に成形できる。或る実施形態では成形体に自己粘着性(タック性)が少ないという効果を得ることができる。そして成形体はその後に架橋(硬化)させることができる。例えば組成物がワニスの場合、基材上に塗布した後に溶剤を加熱、減圧、風乾等により除去することにより、一般にシートやフィルム状の成形体となる。これらの方法で未硬化のシート、フィルムを得ることができる。多孔性の基材や織布、不織布に、本発明のワニスを含浸させ溶剤を除去し、複合体を得ることもできる。基材上に滴下し、溶剤を除去することで例えば半球状の形状とすることもできる。
シートは、シート形状を維持できる程度に未硬化(半硬化)であるか、又は完全硬化後のものであってもよい。組成物の硬化の程度は、公知の動的粘弾性測定法(DMA、Dynamic Mechanical Analysis)により定量的に測定可能である。
<Molded body>
The shape of the molded article obtained from the composition of the present invention is arbitrary. These compositions can exhibit thermoplastic properties. Therefore, under conditions that do not cause cross-linking, a known molding method for thermoplastic resins, such as extrusion molding, injection molding, press molding, inflation molding, etc., in a substantially uncured state, can be molded into shapes such as sheets, tubes, strips, and pellets. In a certain embodiment, it is possible to obtain the effect that the molded article has less self-adhesiveness (tackiness). The molded body can then be crosslinked (cured). For example, when the composition is a varnish, it is generally formed into a sheet or film by removing the solvent by heating, depressurization, air drying, etc. after coating it on a substrate. Uncured sheets and films can be obtained by these methods. A composite can also be obtained by impregnating a porous substrate, woven fabric, or non-woven fabric with the varnish of the present invention and removing the solvent. For example, a hemispherical shape can be formed by dropping the solution onto the substrate and removing the solvent.
The sheet may be uncured (semi-cured) to the extent that the sheet shape can be maintained, or may be fully cured. The degree of hardening of the composition can be quantitatively measured by a known dynamic viscoelasticity measurement method (DMA, Dynamic Mechanical Analysis).
<硬化>
本発明の組成物やワニス、これらから得られる成形体の硬化は、含まれる原料や硬化剤の硬化条件(温度、時間、圧力)を参考に、公知の方法で硬化を行うことができる。用いられる硬化剤が過酸化物の場合は、過酸化物ごとに開示されている半減期温度等を参考に硬化条件を決定することができる。
<Curing>
The composition and varnish of the present invention, and the molded article obtained from them can be cured by a known method with reference to the curing conditions (temperature, time, pressure) of the raw materials and curing agents contained therein. When the curing agent used is a peroxide, the curing conditions can be determined with reference to the half-life temperature and the like disclosed for each peroxide.
<組成物から得られた硬化体、成形体の硬化体>
本発明の組成物から得られた成形体の硬化体は十分に硬化しており、ASTMに準拠して測定したゲル分は90質量%以上が好ましく、90質量%を超えることがより好ましい。また硬化体の10~50GHzの測定範囲において、特に好ましくは10GHzにおいて、誘電率は3.0以下2.0以上が好ましく、2.8以下2.0以上がより好ましく、2.5以下2.0以上が最も好ましい。誘電正接は0.003以下0.0005以上が好ましく、0.002以下0.0005以上がより好ましい。また、得られた硬化体の体積抵抗率は、好ましくは1×1015Ω・cm以上であり、吸水率は、好ましくは0.1質量%以下、より好ましくは0.1質量%未満であることが、電気絶縁材料として好ましい。これらの値は、例えば、3GHz以上の高周波用電気絶縁材料として特に好ましい値である。
<Hardened body obtained from composition, cured body of molded body>
The cured product obtained from the composition of the present invention is sufficiently cured, and the gel content measured according to ASTM is preferably 90% by mass or more, more preferably more than 90% by mass. In the measurement range of 10 to 50 GHz, particularly preferably at 10 GHz, the dielectric constant of the cured product is preferably 3.0 to 2.0, more preferably 2.8 to 2.0, and most preferably 2.5 to 2.0. The dielectric loss tangent is preferably 0.003 or less and 0.0005 or more, more preferably 0.002 or less and 0.0005 or more. The volume resistivity of the obtained cured product is preferably 1×10 15 Ω·cm or more, and the water absorption is preferably 0.1% by mass or less, more preferably less than 0.1% by mass, as an electrically insulating material. These values are particularly preferable values for an electrical insulating material for high frequencies of 3 GHz or higher, for example.
本発明の共重合体や組成物から得られる硬化体は、特に高周波信号の電気絶縁材料として好適であり、これら硬化体はCCL基板、FCCL基板、層間絶縁材(ボンディングシート)又はカバーレイに好適に用いることが可能である、また本発明は、本共重合体やこれを含む組成物からなる、CCL基板、FCCL基板、層間絶縁材(ボンディングシート)又はカバーレイである。 The cured product obtained from the copolymer or composition of the present invention is particularly suitable as an electrical insulating material for high-frequency signals, and these cured products can be suitably used for CCL substrates, FCCL substrates, interlayer insulating materials (bonding sheets), or coverlays. The present invention also relates to CCL substrates, FCCL substrates, interlayer insulating materials (bonding sheets), or coverlays made of the present copolymers or compositions containing the same.
以下、実施例により本発明を説明するが、本発明は以下の実施例に限定して解釈されるものではない。 EXAMPLES The present invention will be described below with reference to examples, but the present invention should not be construed as being limited to the following examples.
合成例、比較合成例で得られた共重合体の分析は以下の手段によって実施した。 The copolymers obtained in Synthesis Examples and Comparative Synthesis Examples were analyzed by the following means.
共重合体中のエチレン、スチレン、ジビニルベンゼン由来のビニル基単位の含有量の決定は、1H-NMRで、それぞれに帰属されるピーク面積強度から行った。サンプルは重1,1,2,2-テトラクロロエタンに溶解し、測定は、80~130℃で行った。 The content of vinyl group units derived from ethylene, styrene, and divinylbenzene in the copolymer was determined by 1 H-NMR from peak area intensities attributed to each. Samples were dissolved in heavy 1,1,2,2-tetrachloroethane and measurements were made at 80-130°C.
分子量は、GPC(ゲルパーミエーションクロマトグラフィー)を用いて標準ポリスチレン換算の数平均分子量(Mn)を求めた。測定は以下の条件で行った。 As for the molecular weight, GPC (gel permeation chromatography) was used to determine the number average molecular weight (Mn) in terms of standard polystyrene. Measurement was performed under the following conditions.
カラム:TSK-GEL MultiporeHXL-M φ7.8×300mm(東ソー社製)を2本直列に繋いで用いた。
カラム温度:40℃
溶媒:THF
送液流量:1.0ml/min.
検出器:RI検出器
Column: Two TSK-GEL Multipore HXL-M φ7.8×300 mm (manufactured by Tosoh Corporation) were connected in series and used.
Column temperature: 40°C
Solvent: THF
Liquid sending flow rate: 1.0 ml/min.
Detector: RI detector
<ゲル分>
ASTM D2765-84に従い、沸騰トルエン不溶分としてのゲル分を求めた。
<Gel content>
The gel fraction was determined as boiling toluene insolubles according to ASTM D2765-84.
<吸水率>
ASTM D570-98に準拠し、純水中に23℃、24時間浸漬後の吸水率を測定した。
<Water absorption rate>
According to ASTM D570-98, the water absorption was measured after being immersed in pure water at 23° C. for 24 hours.
<誘電率及び誘電損失(誘電正接)>
誘電率、誘電正接は空洞共振器摂動法(アジレント・テクノロジー社製8722ES型ネットワークアナライザー、関東電子応用開発社製空洞共振器)を使用し、シートから切り出した1mm×1.5mm×80mmのサンプルを用い、23℃、10GHzでの値を測定した。
<Dielectric constant and dielectric loss (dielectric loss tangent)>
Permittivity and dielectric loss tangent were measured using a cavity resonator perturbation method (8722ES network analyzer manufactured by Agilent Technologies, cavity resonator manufactured by Kanto Denshi Applied Development Co., Ltd.) using a 1 mm × 1.5 mm × 80 mm sample cut from a sheet at 23 ° C. and 10 GHz.
<引張弾性率>
JIS K-6251:2017に準拠し、各実施例・比較例に係る組成物の硬化体を厚さ約1mmフィルムシートに成形して、2号ダンベル1/2号型テストピース形状にカットし、オリエンテック社製テンシロンUCT-1T型を用い、25℃、引張速度500mm/minにて測定し、引張弾性率を求めた。
<Tensile modulus>
In accordance with JIS K-6251: 2017, the cured body of the composition according to each example and comparative example was molded into a film sheet with a thickness of about 1 mm, cut into a No. 2 dumbbell No. 1/2 type test piece shape, and Tensilon UCT-1T manufactured by Orientec Co., Ltd. It was measured at 25 ° C. and a tensile speed of 500 mm / min to determine the tensile modulus.
<貯蔵弾性率>
動的粘弾性測定装置(TAインスツルメント社、旧レオメトリックス社RSA-G2)を使用し、周波数1Hzの条件下、室温から昇温しながら測定し、280℃の貯蔵弾性率を測定した。厚み約0.1~0.3mmのフィルムから測定用サンプル(3mm×40mm)を切り出して測定し、貯蔵弾性率を求めた。測定に関わる主要測定パラメーターは以下の通りである。
測定周波数 1Hz
昇温速度 3℃/分
サンプル測定長 10mm
歪み 0.1%
<Storage modulus>
Using a dynamic viscoelasticity measuring device (TA Instruments Co., formerly Rheometrics Co. RSA-G2), measurement was performed while the temperature was raised from room temperature under the condition of a frequency of 1 Hz, and the storage modulus at 280°C was measured. A sample for measurement (3 mm×40 mm) was cut out from a film having a thickness of about 0.1 to 0.3 mm and measured to determine the storage modulus. The main measurement parameters involved in the measurements are:
Measurement frequency 1Hz
Heating rate 3°C/min Sample measurement length 10mm
Distortion 0.1%
<CTE(線膨張率)>
CTEはJPCA規格「電子回路基板規格 第3版」第16項プリント配線板用材料規格を参考に、熱機械的分析装置(TMA:Thermomechanical Analyzer、BRUKER AXS社製、現ネッチ・ジャパン社製)を使用し、幅3~5mm、厚さ0.5~0.6mm、チャック間15~20mm、引張り加重10g、昇温速度:10℃/分の条件で測定し、-30℃~150℃の間の平均値を求めた。
<CTE (linear expansion coefficient)>
CTE is measured using a thermomechanical analyzer (TMA: Thermomechanical Analyzer, manufactured by BRUKER AXS, currently manufactured by Netch Japan) with reference to JPCA Standards "Electronic Circuit Board Standards 3rd Edition" Section 16 Material Standards for Printed Wiring Boards. An average value was obtained during 50°C.
<共重合体の製造>
特開2009-161743号公報、特開2010-280771号公報記載の製造方法を参考に、触媒として、Rac-ジメチルメチレンビス(4,5-ベンゾ-1-インデニル)ジルコニウムジクロライド(構造は下記式(1)参照)、助触媒としてモディファイドメチルアルミノキサン(東ソー・ファインケム社製、MMAO-3Aトルエン溶液)、溶媒としてシクロヘキサン、原料としてスチレン、ジビニルベンゼン、エチレン、必要に応じて1-ヘキセンを用いた。ジビニルベンゼンは、日鉄ケミカル&マテリアル社製の商品名「ジビニルベンゼン(96%)」(メタ体とパラ体の混合物でジビニルベンゼンを96質量%含む)を用いた。容量10L、攪拌機及び加熱冷却用ジャケット付の重合缶を使用して重合を行った。
<Production of copolymer>
With reference to the production methods described in JP-A-2009-161743 and JP-A-2010-280771, Rac-dimethylmethylenebis(4,5-benzo-1-indenyl)zirconium dichloride (see the following formula (1) for the structure) as a catalyst, modified methylaluminoxane (manufactured by Tosoh Finechem Co., Ltd., MMAO-3A toluene solution) as a cocatalyst, cyclohexane as a solvent, styrene, divinylbenzene as raw materials, Ethylene was used, optionally 1-hexene. As divinylbenzene, trade name "divinylbenzene (96%)" manufactured by Nippon Steel Chemical & Material (a mixture of meta- and para-isomers containing 96% by mass of divinylbenzene) was used. Polymerization was carried out using a polymerization vessel with a capacity of 10 L, a stirrer and a jacket for heating and cooling.
合成例P-1
重合缶にトルエン870g、スチレン4530g、ジビニルベンゼン(メタパラ混合品、日鉄ケミカル&マテリアルズ社製純度80%)130gを仕込み、液温40℃で露点-50℃以下の窒素を液中にバブリングさせながら内部を十分に窒素で置換した。さらにガスをエチレンに切替え、約0.5MPaに加圧し常圧へ放圧することを5回繰り返し、内部をエチレンガスで置換した。内部の液温を80℃で安定させ、モディファイドメチルアルミノキサン(東ソー・ファインケム社製、MMAO-3Aトルエン溶液)をアルミニウム分として50mmol加え、エチレンガスを導入し圧力をゲージで0.02MPa(ゲージで0.2気圧)で安定したら、触媒タンクよりRac-ジメチルメチレンビス(4,5-ベンゾ-1-インデニル)ジルコニウムジクロライド(構造は下記式(1)参照)を50μmol、トリイソブチルアルミニウム1mmolを含むトルエン溶液30mlを加えることで重合を開始した。重合中は内温を80℃に維持し、内圧を0.02MPaに維持するようにエチレンを供給した。約3時間後、所定のエチレン消費量に達したのちにエチレンガスを放圧し、重合液に少量のイソプロパノールを投入し重合を停止させた。その後、得られた重合液に、十分に大量のメタノールを投入して共重合体を回収した。この共重合体を風乾し、さらに30℃で1昼夜真空乾燥し共重合体P-1を約930g得た。表1に共重合体の組成、数平均分子量を示す。
Synthesis Example P-1
A polymerization vessel was charged with 870 g of toluene, 4530 g of styrene, and 130 g of divinylbenzene (meta-para mixture, manufactured by Nippon Steel Chemical & Materials Co., Ltd., purity: 80%), and nitrogen with a dew point of −50° C. or less was bubbled into the liquid at a liquid temperature of 40° C. while the interior was sufficiently replaced with nitrogen. Further, the gas was switched to ethylene, pressurized to about 0.5 MPa and released to normal pressure, which was repeated 5 times to replace the inside with ethylene gas. Stabilize the internal liquid temperature at 80 ° C., add 50 mmol of modified methylaluminoxane (manufactured by Tosoh Finechem Co., Ltd., MMAO-3A toluene solution) as an aluminum content, introduce ethylene gas and stabilize the pressure at 0.02 MPa (0.2 atm) on the gauge. Polymerization was initiated by adding 30 ml of a toluene solution containing 1 mmol of butylaluminum. During the polymerization, the internal temperature was maintained at 80° C., and ethylene was supplied so as to maintain the internal pressure at 0.02 MPa. After about 3 hours, when a predetermined amount of ethylene was consumed, the ethylene gas was released, and a small amount of isopropanol was added to the polymerization solution to terminate the polymerization. After that, a sufficiently large amount of methanol was added to the resulting polymerization liquid to recover the copolymer. This copolymer was air-dried and further vacuum-dried at 30° C. for one day to obtain about 930 g of copolymer P-1. Table 1 shows the composition and number average molecular weight of the copolymer.
式(1)
Figure JPOXMLDOC01-appb-C000002
formula (1)
Figure JPOXMLDOC01-appb-C000002
合成例P-2
前記P-1と同様に、ただし重合缶内圧をゲージで0.00MPa(ゲージで0.0気圧)、重合中の内部温度を100℃に維持して重合を実施した。共重合体P-2を約600g得た。表1に共重合体の組成、数平均分子量を示す。
Synthesis Example P-2
Polymerization was carried out in the same manner as in P-1, except that the internal pressure of the polymerization vessel was maintained at 0.00 MPa (0.0 atm in gauge) and the internal temperature during polymerization was maintained at 100°C. About 600 g of copolymer P-2 was obtained. Table 1 shows the composition and number average molecular weight of the copolymer.
合成例P-3
特開平9-309925号公報、特開2009-161743号公報、及び特開2010-280771号公報記載の製造方法を参考に、触媒としてRac-ジメチルメチレンビス(4,5-ベンゾ-1-インデニル)ジルコニウムジクロライド(構造は前記式(1)参照)を用い、同様に重合を行った。表1に共重合体P-3の組成、数平均分子量を示す。
Synthesis Example P-3
With reference to the production methods described in JP-A-9-309925, JP-A-2009-161743, and JP-A-2010-280771, polymerization was carried out in the same manner using Rac-dimethylmethylenebis(4,5-benzo-1-indenyl)zirconium dichloride (see formula (1) above for the structure) as a catalyst. Table 1 shows the composition and number average molecular weight of copolymer P-3.
合成例P-4
特開平9-40709号公報、特開平9-309925号公報、特開2009-161743号公報、及び特開2010-280771号公報記載の製造方法を参考に、触媒としてジメチルメチレンビスシクロペンタジエニルジルコニウムジクロライド(構造は下記式(2)参照)を用い、同様に重合を行った。表1に共重合体P-4の組成、数平均分子量を示す。
Synthesis Example P-4
With reference to the production methods described in JP-A-9-40709, JP-A-9-309925, JP-A-2009-161743, and JP-A-2010-280771, polymerization was carried out in the same manner using dimethylmethylenebiscyclopentadienylzirconium dichloride (see formula (2) below for the structure) as a catalyst. Table 1 shows the composition and number average molecular weight of copolymer P-4.
式(2)
Figure JPOXMLDOC01-appb-C000003
formula (2)
Figure JPOXMLDOC01-appb-C000003
得られた共重合体P-1からP-4のメチルエチルケトンに対する溶解性を以下のようにして調べた。25℃において、電子天秤上に設置した攪拌機を備えた容器に共重合体の細粒を3g精秤し、メチルエチルケトンを3g加え15分間攪拌し、未溶解であればその後3g単位でメチルエチルケトンを加えながら同様の操作を実施し、完全に溶解させるまでのメチルエチルケトンの質量を測定し溶解度を用いた。25℃における溶解度がメチルエチルケトン100gに換算して40g以上であればexcellent、20g以上40g未満であればfair、20g未満であればNGとして表1に記載した。 The solubility of the obtained copolymers P-1 to P-4 in methyl ethyl ketone was examined as follows. At 25° C., 3 g of fine particles of the copolymer were accurately weighed in a container equipped with a stirrer placed on an electronic balance, 3 g of methyl ethyl ketone was added, and the mixture was stirred for 15 minutes. If undissolved, the same operation was performed while adding methyl ethyl ketone in increments of 3 g, and the mass of methyl ethyl ketone until it was completely dissolved was measured and the solubility was used. If the solubility at 25° C. is 40 g or more in terms of 100 g of methyl ethyl ketone, it is described as excellent; if it is 20 g or more and less than 40 g, it is fair;
また、他の原料は以下の通りである。
二官能ポリフェニレンエーテルオリゴマー(OPE-2St、両末端にビニルベンジル基を有する変性ポリフェニレンエーテル、数平均分子量1200)は、三菱ガス化学社製のトルエン溶液製品を、さらにトルエンで希釈し、さらに大量のメタノールを加えてメタノール析出を行い、風乾後、減圧乾燥することで、粉末状のポリフェニレンエーテルオリゴマーを得て用いた。
Other raw materials are as follows.
A bifunctional polyphenylene ether oligomer (OPE-2St, modified polyphenylene ether having vinylbenzyl groups at both ends, number average molecular weight of 1200) was obtained by diluting a toluene solution product manufactured by Mitsubishi Gas Chemical Co., Ltd. with toluene, adding a large amount of methanol to precipitate methanol, air-drying, and drying under reduced pressure to obtain a powdery polyphenylene ether oligomer and use it.
1,2-ポリブタジエン(PBd):液状ポリブタジエン、日本曹達社製「B-3000」、数平均分子量3200、粘度210Poise(45℃) 1,2-polybutadiene (PBd): liquid polybutadiene, Nippon Soda Co., Ltd. "B-3000", number average molecular weight 3200, viscosity 210 Poise (45 ° C.)
SEBS:水添スチレン系熱可塑性エラストマー、旭化成社製「タフテックH1041」、数平均分子量58000 SEBS: Hydrogenated styrene thermoplastic elastomer, "Tuftec H1041" manufactured by Asahi Kasei Corporation, number average molecular weight 58000
硬化剤は、日油社製パーブチルP(α,α’-ジ(t-ブチルパーオキシ)ジイソプロピルベンゼン)を用いた。 Perbutyl P (α,α'-di(t-butylperoxy)diisopropylbenzene) manufactured by NOF Corporation was used as a curing agent.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 実施例1
加熱、冷却ジャケット、攪拌翼付きの容器を用い、合成例で得られたP-1(エチレン-スチレン-ジビニルベンゼン共重合体)と溶剤(トルエン)を約60℃に加熱して攪拌し共重合体を溶解した。さらに、硬化剤を、硬化剤、溶剤を除く樹脂成分100質量部に対して1質量部加えて溶解し攪拌混合しワニス状の組成物を得た。得られた組成物をガラス板上に設置したPETシート上のテフロン(登録商標)製型枠(枠部分長さ7cm、幅7cm、厚さ0.2mm、0.5mm、又は1.0mm)に流し込み、風乾後、さらに真空乾燥機中にて60℃で3時間以上乾燥させ、未硬化のシートを得た。さらにプレス機にて5MPaの荷重下、テフロンシートとテフロン型枠を設置し、120℃30分、150℃30分、その後200℃120分加熱処理し、テフロンシートとテフロン型枠を除いて硬化シートを得た。
Example 1
P-1 (ethylene-styrene-divinylbenzene copolymer) obtained in Synthesis Example and a solvent (toluene) were heated to about 60° C. and stirred to dissolve the copolymer using a vessel equipped with a heating/cooling jacket and a stirring blade. Furthermore, 1 part by mass of a curing agent was added to 100 parts by mass of the resin component excluding the curing agent and the solvent, and the mixture was dissolved and stirred to obtain a varnish-like composition. The obtained composition was poured into a Teflon (registered trademark) formwork (frame part length 7 cm, width 7 cm, thickness 0.2 mm, 0.5 mm, or 1.0 mm) on a PET sheet placed on a glass plate, air-dried, and further dried at 60 ° C. for 3 hours or more in a vacuum dryer to obtain an uncured sheet. Further, a Teflon sheet and a Teflon mold were placed under a load of 5 MPa in a press, and heat treated at 120° C. for 30 minutes, 150° C. for 30 minutes, and then at 200° C. for 120 minutes.
 実施例2~6
実施例1と同様の手順で、表2の配合(表中の単位は質量部)で硬化性樹脂組成物を調製し、同様の手順で、実施例の組成物の未硬化シート及び硬化シートを得た。
Examples 2-6
A curable resin composition was prepared according to the formulation shown in Table 2 (the units in the table are parts by mass) in the same manner as in Example 1, and uncured sheets and cured sheets of the compositions of Examples were obtained in the same manner.
 比較例1~3
実施例1と同様の手順で、表2の配合(表中の単位は質量部)で硬化性樹脂組成物を調製し、同様の手順で、比較例の組成物の未硬化シート及び硬化シートを得た。
Comparative Examples 1-3
A curable resin composition was prepared according to the formulation shown in Table 2 (units are parts by mass) in the same manner as in Example 1, and an uncured sheet and a cured sheet of the composition of Comparative Example were obtained in the same manner.
各実施例及び比較例で得られた硬化シートのゲル分、25℃における引張弾性率、280℃における貯蔵弾性率、誘電率、誘電正接、線膨張率(CTE)、吸水率を表2に示す。 Table 2 shows the gel content, tensile modulus at 25° C., storage modulus at 280° C., dielectric constant, dielectric loss tangent, coefficient of linear expansion (CTE), and water absorption of the cured sheets obtained in Examples and Comparative Examples.
また表2には、ワニスとしての状態の良(Good)、不良(NG)を目視で確認した結果も記載した。 Table 2 also shows the results of visually confirming whether the state of the varnish is good (Good) or not (NG).
P-1、P-2樹脂の単独の硬化体(実施例1、2)とP-3、P-4樹脂単独の硬化体(比較例1、2)を比較することで、本発明の共重合体の硬化体は何れも本発明の条件を満たす高い引張弾性率(25℃、すなわち室温)を示すことが分かる。さらに、硬質の単独硬化体を与えるOPE-2StとP-1との組成物(実施例5)の硬化体、軟質の単独硬化体を与えるP-4とP-1との組成物の硬化体(実施例3)や、1,2-ポリブタジエンとSEBSとP-1との組成物の硬化体(実施例4)も同様に高い引張弾性率を示す。本発明の組成物の硬化体は容易に室温で100MPa以上の高い引張弾性率を示すことができる。さらに本発明の共重合体、及び本発明の共重合体を含む組成物からなる硬化シートは、低い誘電率と誘電正接を示すことが確かめられた。 By comparing the cured products of the P-1 and P-2 resins alone (Examples 1 and 2) and the cured products of the P-3 and P-4 resins alone (Comparative Examples 1 and 2), it can be seen that the cured products of the copolymers of the present invention exhibit a high tensile modulus (25° C., that is, room temperature) that satisfies the conditions of the present invention. Furthermore, the cured product of the composition of OPE-2St and P-1 (Example 5) that gives a hard, independently cured product, the cured product of the composition of P-4 and P-1 that gives a soft, independently cured product (Example 3), and the cured product of the composition of 1,2-polybutadiene, SEBS, and P-1 (Example 4) also exhibit high tensile moduli. A cured body of the composition of the present invention can easily exhibit a high tensile modulus of 100 MPa or more at room temperature. Furthermore, it was confirmed that cured sheets made of the copolymer of the present invention and the composition containing the copolymer of the present invention exhibit low dielectric constant and dielectric loss tangent.
さらなる試験として、各実施例、比較例で得られた未硬化シートのタック性を手による感触で評価した。まず実施例1、2、及び5の未硬化シートは硬質でタック性(自己粘着性)は全く感じられなかった。実施例3、4、及び6の未硬化シートは多少タック性があったが自立したシートとしての取扱が可能であった。比較例1、2、及び3の未硬化シートのタック性はその他の各実施例(特に実施例3及び6)の未硬化シートと比較して高かった。特に比較例2、3の未硬化シートのタック性は著しく高く、各比較例のシート同士を密着させると剥がすのが困難であった。この結果から、本発明の共重合体、及び本発明の共重合体を含む組成物からなる未硬化のシートはタック性を相対的に低減できるという効果を示すことが確認できた。 As a further test, the tackiness of the uncured sheets obtained in each of Examples and Comparative Examples was evaluated by feeling with hands. First, the uncured sheets of Examples 1, 2, and 5 were hard and had no tackiness (self-adhesiveness). The uncured sheets of Examples 3, 4, and 6 were somewhat tacky, but could be handled as free-standing sheets. The tackiness of the uncured sheets of Comparative Examples 1, 2, and 3 was higher than that of the uncured sheets of each of the other Examples (especially Examples 3 and 6). In particular, the uncured sheets of Comparative Examples 2 and 3 had remarkably high tackiness, and it was difficult to peel off the sheets of each Comparative Example when they were brought into close contact with each other. From this result, it was confirmed that the uncured sheet made of the copolymer of the present invention and the composition containing the copolymer of the present invention can relatively reduce tackiness.

Claims (11)

  1. 下記(1)~(4)の条件をすべて満たす、芳香族ビニル化合物-芳香族ポリエン共重合体。
    (1)共重合体の数平均分子量が500以上10万未満である。
    (2)芳香族ビニル化合物単量体が、炭素数8以上20以下の芳香族ビニル化合物であり、芳香族ビニル化合物単量体単位の含量が70質量%を超える。
    (3)芳香族ポリエンが、分子内にビニル基及び/又はビニレン基を複数有する炭素数5以上20以下のポリエンから選ばれる一種以上であり、かつ芳香族ポリエン単位に由来するビニル基及び/又はビニレン基の含有量が数平均分子量あたり2個以上30個未満である。
    (4)炭素数2以上20以下のオレフィン単量体単位から選ばれる単数又は複数が含まれていてもよく、芳香族ビニル化合物単量体単位と芳香族ポリエン単量体単位と存在する場合に前記オレフィン単量体単位との合計が100質量%である。
    An aromatic vinyl compound-aromatic polyene copolymer that satisfies all of the following conditions (1) to (4).
    (1) The copolymer has a number average molecular weight of 500 or more and less than 100,000.
    (2) The aromatic vinyl compound monomer is an aromatic vinyl compound having 8 or more and 20 or less carbon atoms, and the content of the aromatic vinyl compound monomer units exceeds 70% by mass.
    (3) The aromatic polyene is one or more selected from polyenes having 5 to 20 carbon atoms and having a plurality of vinyl groups and/or vinylene groups in the molecule, and the content of vinyl groups and/or vinylene groups derived from the aromatic polyene units is 2 or more and less than 30 per number average molecular weight.
    (4) One or more selected from olefin monomer units having 2 to 20 carbon atoms may be included, and the sum of the aromatic vinyl compound monomer units and the aromatic polyene monomer units and, if present, the olefin monomer units is 100% by mass.
  2. 芳香族ビニル化合物単量体単位と芳香族ポリエン単量体単位と存在する場合にオレフィン単量体単位との合計100質量%に対して、オレフィン単量体単位の含有量が0質量%以上30質量%未満である、請求項1に記載の芳香族ビニル化合物-芳香族ポリエン共重合体。 The aromatic vinyl compound-aromatic polyene copolymer according to claim 1, wherein the content of the olefin monomer unit is 0% by mass or more and less than 30% by mass with respect to the total 100% by mass of the aromatic vinyl compound monomer unit, the aromatic polyene monomer unit, and the olefin monomer unit when present.
  3. オレフィン単量体単位を含まない、請求項2に記載の芳香族ビニル化合物-芳香族ポリエン共重合体。 3. The aromatic vinyl compound-aromatic polyene copolymer according to claim 2, which does not contain olefin monomer units.
  4. 請求項1~3のいずれか一項に記載の芳香族ビニル化合物-芳香族ポリエン共重合体と、以下の(a)~(d)から選ばれる単数又は複数とを含む組成物。
    (a)硬化剤
    (b)炭化水素系エラストマー、ポリフェニレンエーテル系樹脂、芳香族ポリエン系樹脂から選ばれる単数又は複数の樹脂
    (c)単量体
    (d)下記(i)~(iv)の条件をすべて満たす、別のオレフィン-芳香族ビニル化合物-芳香族ポリエン共重合体
    (i)共重合体の数平均分子量が500以上10万未満である。
    (ii)芳香族ビニル化合物単量体が、炭素数8以上20以下の芳香族ビニル化合物であり、芳香族ビニル化合物単量体単位の含量が70質量%以下である。
    (iii)芳香族ポリエンが、分子内にビニル基及び/又はビニレン基を複数有する炭素数5以上20以下のポリエンから選ばれる一種以上であり、かつ芳香族ポリエン単位に由来するビニル基及び/又はビニレン基の含有量が数平均分子量あたり1.5個以上20個未満である。
    (iv)オレフィンが炭素数2以上20以下のオレフィンから選ばれる単数又は複数であり、オレフィン単量体単位の含量が30質量%以上であり、前記オレフィン単量体単位と芳香族ビニル化合物単量体単位と芳香族ポリエン単量体単位の合計が100質量%である。
    A composition comprising the aromatic vinyl compound-aromatic polyene copolymer according to any one of claims 1 to 3 and one or more selected from the following (a) to (d).
    (a) a curing agent (b) one or more resins selected from hydrocarbon elastomers, polyphenylene ether resins and aromatic polyene resins (c) monomers (d) another olefin-aromatic vinyl compound-aromatic polyene copolymer (i) that satisfies all of the following conditions (i) to (iv): the copolymer has a number average molecular weight of 500 or more and less than 100,000.
    (ii) The aromatic vinyl compound monomer is an aromatic vinyl compound having 8 or more and 20 or less carbon atoms, and the content of aromatic vinyl compound monomer units is 70% by mass or less.
    (iii) The aromatic polyene is one or more selected from polyenes having 5 to 20 carbon atoms and having a plurality of vinyl groups and/or vinylene groups in the molecule, and the content of vinyl groups and/or vinylene groups derived from the aromatic polyene units is 1.5 or more and less than 20 per number average molecular weight.
    (iv) The olefin is one or more selected from olefins having 2 to 20 carbon atoms, the content of olefin monomer units is 30% by mass or more, and the total of the olefin monomer units, aromatic vinyl compound monomer units and aromatic polyene monomer units is 100% by mass.
  5. 請求項1~3のいずれか一項に記載の共重合体、又は請求項4に記載の組成物と、(h)溶剤とを含むワニス。 A varnish comprising the copolymer according to any one of claims 1 to 3 or the composition according to claim 4 and (h) a solvent.
  6. 溶剤がMEK(メチルエチルケトン)である、請求項5に記載のワニス。 6. A varnish according to claim 5, wherein the solvent is MEK (methyl ethyl ketone).
  7. 請求項1~3のいずれか一項に記載の芳香族ビニル化合物-芳香族ポリエン共重合体の硬化体。 A cured product of the aromatic vinyl compound-aromatic polyene copolymer according to any one of claims 1 to 3.
  8. 請求項4に記載の組成物の硬化体。 A cured product of the composition according to claim 4 .
  9. 請求項5又は6に記載のワニスの硬化体。 A cured body of the varnish according to claim 5 or 6.
  10. 電気絶縁材料である請求項7~9のいずれか一項に記載の硬化体。 The cured body according to any one of claims 7 to 9, which is an electrical insulating material.
  11. 請求項7~9のいずれか一項に記載の硬化体を含む、CCL基板、FCCL基板、層間絶縁材、ボンディングシート、又はカバーレイ。 A CCL substrate, FCCL substrate, interlayer insulating material, bonding sheet, or coverlay, comprising the cured body according to any one of claims 7 to 9.
PCT/JP2023/001239 2022-01-19 2023-01-17 Copolymer, composition, varnish, and cured products of these WO2023140262A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023557658A JPWO2023140262A1 (en) 2022-01-19 2023-01-17

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022006424 2022-01-19
JP2022-006424 2022-01-19

Publications (1)

Publication Number Publication Date
WO2023140262A1 true WO2023140262A1 (en) 2023-07-27

Family

ID=87348840

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/001239 WO2023140262A1 (en) 2022-01-19 2023-01-17 Copolymer, composition, varnish, and cured products of these

Country Status (3)

Country Link
JP (1) JPWO2023140262A1 (en)
TW (1) TW202340269A (en)
WO (1) WO2023140262A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001316431A (en) * 2000-05-08 2001-11-13 Denki Kagaku Kogyo Kk Medical molded article
JP2010150442A (en) * 2008-12-26 2010-07-08 Denki Kagaku Kogyo Kk Sealing material for solar cell
WO2018181842A1 (en) * 2017-03-30 2018-10-04 新日鉄住金化学株式会社 Soluble polyfunctional vinyl aromatic copolymer, method for producing same, curable resin composition and cured product thereof
WO2021112088A1 (en) * 2019-12-03 2021-06-10 デンカ株式会社 Curable composition and cured article thereof
WO2022014599A1 (en) * 2020-07-15 2022-01-20 デンカ株式会社 Composition and cured body
WO2022054885A1 (en) * 2020-09-11 2022-03-17 デンカ株式会社 Composition and cured product of same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001316431A (en) * 2000-05-08 2001-11-13 Denki Kagaku Kogyo Kk Medical molded article
JP2010150442A (en) * 2008-12-26 2010-07-08 Denki Kagaku Kogyo Kk Sealing material for solar cell
WO2018181842A1 (en) * 2017-03-30 2018-10-04 新日鉄住金化学株式会社 Soluble polyfunctional vinyl aromatic copolymer, method for producing same, curable resin composition and cured product thereof
WO2021112088A1 (en) * 2019-12-03 2021-06-10 デンカ株式会社 Curable composition and cured article thereof
WO2022014599A1 (en) * 2020-07-15 2022-01-20 デンカ株式会社 Composition and cured body
WO2022054885A1 (en) * 2020-09-11 2022-03-17 デンカ株式会社 Composition and cured product of same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DONG J. Y., HONG H., CHUNG T. C., WANG H. C., DATTA S.: "Synthesis of Linear Polyolefin Elastomers Containing Divinylbenzene Units and Applications in Cross-Linking, Functionalization, and Graft Reactions", MACROMOLECULES, AMERICAN CHEMICAL SOCIETY, US, vol. 36, no. 16, 1 August 2003 (2003-08-01), US , pages 6000 - 6009, XP093080101, ISSN: 0024-9297, DOI: 10.1021/ma021749s *

Also Published As

Publication number Publication date
TW202340269A (en) 2023-10-16
JPWO2023140262A1 (en) 2023-07-27

Similar Documents

Publication Publication Date Title
JP7378494B2 (en) Copolymer and laminate containing the same
JP7284875B2 (en) Composition and cured body
JP7428815B2 (en) Composition and cured product thereof
JP5481098B2 (en) Post-curing resin composition and electrical insulating material using the same
WO2023140262A1 (en) Copolymer, composition, varnish, and cured products of these
JP6770854B2 (en) Laminates, metal-clad laminates, printed wiring boards and electronic devices
WO2023063357A1 (en) Multilayer structure including insulating layer
KR20240099475A (en) Copolymers, compositions, varnishes and cured products thereof
WO2024014436A1 (en) Varnish and cured body thereof
WO2023190602A1 (en) Composition
JP2018034419A (en) Laminate, metal-clad laminate, printed wiring board, and electronic equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23743256

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023557658

Country of ref document: JP