WO2023140146A1 - Polishing composition, concentrated solution of polishing composition, and polishing method - Google Patents

Polishing composition, concentrated solution of polishing composition, and polishing method Download PDF

Info

Publication number
WO2023140146A1
WO2023140146A1 PCT/JP2023/000300 JP2023000300W WO2023140146A1 WO 2023140146 A1 WO2023140146 A1 WO 2023140146A1 JP 2023000300 W JP2023000300 W JP 2023000300W WO 2023140146 A1 WO2023140146 A1 WO 2023140146A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
polishing
less
polishing composition
content
Prior art date
Application number
PCT/JP2023/000300
Other languages
French (fr)
Japanese (ja)
Inventor
修 後藤
大輝 ▲高▼間
優己 田中
公亮 土屋
Original Assignee
株式会社フジミインコーポレーテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フジミインコーポレーテッド filed Critical 株式会社フジミインコーポレーテッド
Priority to JP2023575205A priority Critical patent/JPWO2023140146A1/ja
Publication of WO2023140146A1 publication Critical patent/WO2023140146A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/02Polishing compositions containing abrasives or grinding agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting

Definitions

  • the present invention relates to a polishing composition, a polishing composition concentrate, and a polishing method.
  • a surface defect inspection device is used to manage surface defects of single crystal silicon substrates (silicon wafers). Defects detected by the surface defect inspection apparatus include foreign matter and residues on the single crystal silicon substrate that have not been completely removed in the polishing, rinsing, and cleaning processes.
  • a typical surface defect inspection apparatus irradiates the surface of a single crystal silicon substrate with light such as a laser beam, receives the reflected light as a signal, and analyzes it to detect the presence or absence of defects and their sizes.
  • haze When a mirror-finished surface of a single crystal silicon substrate after polishing or after polishing and rinsing is irradiated with strong light, cloudiness may be seen due to irregular reflection caused by extremely fine roughness of the surface of the single crystal silicon substrate. This cloudiness is called haze, and haze can be used as a measure of surface roughness of a single crystal silicon substrate. If there is haze on the surface of the single-crystal silicon substrate, diffusely reflected light caused by the haze may become noise and interfere with defect detection by a surface defect inspection apparatus. Therefore, as the size of defects to be detected, that is, the size of defects to be managed becomes smaller, the need to reduce haze increases.
  • JP-A-2016-122804 discloses a polishing liquid composition for silicon wafers containing silica particles (component A), hydroxylamine (component B), and a water-soluble polymer compound (component C), wherein the mass ratio of hydroxylamine to component C (mass of hydroxylamine/mass of component C) is within a specific range.
  • an object of the present invention is to provide means capable of polishing an object to be polished at a high polishing rate and capable of maintaining good surface quality of the object to be polished after polishing.
  • the present inventors have accumulated extensive research. As a result, the present inventors have found that the above problems can be solved by a polishing composition having the following composition, and have completed the present invention.
  • the first embodiment of the present invention includes abrasive grains and a basic compound, wherein the basic compound contains ammonia and a piperazine compound, and the content C1 of the piperazine compound represented by the following formula (1) is more than 0% and 5.5% or less, where A1 (unit: mass%) is the content of the ammonia in the polishing composition and B1 (unit: mass%) is the content of the piperazine compound in the polishing composition.
  • a polishing composition A polishing composition.
  • a second embodiment of the present invention includes an abrasive grain and a basic compound, wherein the basic compound contains ammonia and an amine compound A having two or more nitrogen atoms and a pKa higher than that of the ammonia.
  • the content of the ammonia in the polishing composition is A2 (unit: mass %) and the content of the amine compound A in the polishing composition is B2 (unit: mass %)
  • the content C2 of the amine compound A represented by the following formula (2) is 0. % more than 5.5% or less.
  • a third embodiment of the present invention comprises an abrasive grain and a basic compound, wherein the basic compound contains ammonia and an amine compound B having one nitrogen atom and a pKa higher than that of the ammonia, the amine compound B is a secondary amine or a tertiary amine, and the content of the ammonia in the polishing composition is A3 (unit: mass %), and the content of the amine compound B in the polishing composition is B3 (unit: mass %). ) is more than 0% and 35% or less in the polishing composition.
  • a fourth aspect of the present invention is a concentrated liquid of the polishing composition according to the first to third aspects.
  • a fifth aspect of the present invention is a polishing method comprising polishing an object to be polished using the polishing compositions according to the first to third aspects.
  • a first embodiment of the present invention comprises abrasive grains and a basic compound, wherein the basic compound contains ammonia and a piperazine compound, and when the content of the ammonia in the polishing composition is A1 (unit: mass %) and the content of the piperazine compound in the polishing composition is B1 (unit: mass %), the content C1 of the piperazine compound represented by the following formula (1) is more than 0% and 5.5% or less. composition.
  • a second embodiment of the present invention includes an abrasive grain and a basic compound, wherein the basic compound contains ammonia and an amine compound A having two or more nitrogen atoms and a pKa higher than that of the ammonia.
  • the content of the ammonia in the polishing composition is A2 (unit: mass %) and the content of the amine compound A in the polishing composition is B2 (unit: mass %)
  • the content C2 of the amine compound A represented by the following formula (2) is 0. % more than 5.5% or less.
  • a third embodiment of the present invention comprises an abrasive grain and a basic compound, wherein the basic compound contains ammonia and an amine compound B having one nitrogen atom and a pKa higher than that of the ammonia, the amine compound B is a secondary amine or a tertiary amine, and the content of the ammonia in the polishing composition is A3 (unit: mass %), and the content of the amine compound B in the polishing composition is B3 (unit: mass %). ) is more than 0% and 35% or less in the polishing composition.
  • the polishing composition according to the present invention having such a configuration can polish an object to be polished at a high polishing rate, and can maintain good surface quality of the object to be polished after polishing.
  • Increasing the etching rate of the object to be polished is one of the effective means for rapidly polishing the object to be polished.
  • the piperazine compound, the amine compound A, or the amine compound B is added to the polishing composition so that the contents C1 to C3 represented by the above formulas (1) to (3) satisfy the above ranges, whereby the ammonia effectively interacts with the piperazine compound, the amine compound A, or the amine compound B, and the etching rate becomes moderate. It is believed that this allows the object to be polished to be polished at a high polishing rate.
  • the surface quality of the polished surface can be improved by adding a water-soluble polymer, a surfactant, or the like to the polishing composition to protect the substrate.
  • the polishing rate can be improved without impairing the effect of using the water-soluble polymer, surfactant, etc. (effect of improving the quality of the polished surface).
  • polishing composition according to the first embodiment of the present invention is also referred to as “first polishing composition”
  • polishing composition according to the second embodiment of the present invention is also referred to as “second polishing composition”
  • polishing composition according to the third embodiment of the present invention is also referred to as "third polishing composition”.
  • polishing compositions according to the first to third embodiments of the present invention are collectively referred to as “polishing compositions according to the present invention”.
  • ammonia contents A1, A2, and A3 in the above formulas (1) to (3) are collectively referred to as “ammonia content A”
  • contents C1, C2, and C3 are collectively referred to as "content C”.
  • the polishing composition according to the present invention may be used in combination of two or three of the piperazine compound, amine compound A, and amine compound B.
  • each compound is added so that the contents C1, C2, and C3 represented by the above formulas (1) to (3) respectively satisfy the above numerical ranges.
  • the amount of each compound added is adjusted so that the content C1 of the piperazine compound represented by the above formula (1) satisfies the range of more than 0% and 5.5% or less, and the content C3 of the amine compound B satisfies the range of more than 0% and 35% or less.
  • polishing compositions according to some embodiments of the present invention comprise abrasive grains.
  • Abrasive grains serve to mechanically polish the surface of an object to be polished.
  • the material and properties of the abrasive grains are not particularly limited, and can be appropriately selected according to the intended use and mode of use of the polishing composition.
  • Examples of abrasive grains include inorganic particles, organic particles, and organic-inorganic composite particles.
  • inorganic particles include particles made of oxides such as silica, alumina, cerium oxide, chromium oxide, titanium dioxide, zirconium oxide, magnesium oxide, manganese dioxide, zinc oxide, and red iron oxide; particles made of nitrides such as silicon nitride and boron nitride particles; particles made of carbides such as silicon carbide and boron carbide; particles made of diamond; Specific examples of organic particles include polymethyl methacrylate (PMMA) particles, poly(meth)acrylic acid particles (here, (meth)acrylic acid refers to acrylic acid and methacrylic acid comprehensively), polyacrylonitrile particles, and the like. Such abrasive grains may be used singly or in combination of two or more.
  • oxides such as silica, alumina, cerium oxide, chromium oxide, titanium dioxide, zirconium oxide, magnesium oxide, manganese dioxide, zinc oxide, and red iron oxide
  • particles made of nitrides such as silicon nitride and
  • the polishing composition according to some embodiments of the present invention preferably contains silica as abrasive grains.
  • silica include colloidal silica, fumed silica, precipitated silica, and the like.
  • Silica can be used singly or in combination of two or more.
  • Colloidal silica is particularly preferred because it is less likely to cause scratches on the surface of the object to be polished and can exhibit good polishing performance (such as performance to reduce surface roughness).
  • colloidal silica for example, colloidal silica produced by ion exchange method using water glass (sodium silicate) as a raw material, and colloidal silica produced by alkoxide method (colloidal silica produced by hydrolytic condensation reaction of alkoxysilane) can be preferably employed.
  • Colloidal silica can be used singly or in combination of two or more.
  • the true specific gravity of silica is preferably 1.5 or more, more preferably 1.6 or more, and still more preferably 1.7 or more.
  • the upper limit of the true specific gravity of silica is not particularly limited, it is typically 2.3 or less, for example 2.2 or less.
  • a value measured by a liquid replacement method using ethanol as a replacement liquid can be adopted.
  • the shape of colloidal silica is not particularly limited, and may be spherical or non-spherical.
  • the non-spherical shape include polygonal prisms such as triangular prisms and square prisms, columnar shapes, bale shapes in which the central portion of the column swells more than the ends, donut shapes in which the central portion of the disc penetrates, plate shapes, so-called cocoon shapes with a constriction in the central portion, so-called associative spherical shapes in which multiple particles are integrated, so-called confetti shapes with multiple projections on the surface, rugby ball shapes, and various other shapes, but are not particularly limited.
  • the average value of the major axis/minor axis ratio (average aspect ratio) of the abrasive grains is theoretically 1.0 or more, preferably 1.05 or more, and more preferably 1.1 or more. A higher polishing rate can be achieved by increasing the average aspect ratio.
  • the average aspect ratio of the abrasive grains is preferably 3.0 or less, more preferably 2.0 or less, and still more preferably 1.5 or less from the viewpoint of reducing scratches.
  • the shape (outer shape) and average aspect ratio of abrasive grains can be grasped, for example, by electron microscope observation.
  • a specific procedure for grasping the average aspect ratio for example, using a scanning electron microscope (SEM), for a predetermined number (for example, 200 pieces) of silica particles that can recognize the shape of independent particles, draw a minimum rectangle circumscribing each particle image. Then, for the rectangle drawn for each particle image, the value obtained by dividing the length of the long side (the value of the major axis) by the length of the short side (the value of the minor axis) is calculated as the major axis/minor axis ratio (aspect ratio).
  • the average aspect ratio can be obtained by arithmetically averaging the aspect ratios of the predetermined number of particles.
  • the abrasive grains contained in the polishing composition may be in the form of primary particles, or may be in the form of secondary particles in which a plurality of primary particles are associated. Further, the abrasive grains in the form of primary particles and the abrasive grains in the form of secondary particles may be mixed. In a preferred embodiment, at least part of the abrasive grains are contained in the polishing composition in the form of secondary particles.
  • the surface of the object to be polished (especially a silicon wafer) is generally finished to a high-quality mirror surface through a lapping process and a polishing process.
  • the polishing process is usually composed of a plurality of polishing processes including a preliminary polishing process (preliminary polishing process, a polishing process before the final polishing process) and a final polishing process (final polishing process).
  • a polishing composition with high processing power (polishing power) is used in the step of roughly polishing an object to be polished (especially a silicon wafer) (e.g., preliminary polishing step), and a polishing composition with low polishing power is used in the step of finely polishing (e.g., final polishing step).
  • the polishing composition used has different polishing characteristics required for each polishing process, and thus the particle size and content of silica contained in the polishing composition may be different depending on the stage of the polishing process in which the polishing composition is used.
  • the increase in the particle size of the abrasive grains makes it easier to mechanically polish the surface of the object to be polished, and tends to improve the polishing rate.
  • the reduction in the particle size of the abrasive grains tends to make it easier to reduce the haze of the polished object.
  • the average primary particle size of the abrasive grains contained in the polishing composition according to some embodiments of the present invention is not particularly limited, but is preferably 5 nm or more, more preferably 10 nm or more, even more preferably 15 nm or more, and particularly preferably 20 nm or more (for example, more than 20 nm). Further, the average primary particle size of the abrasive grains contained in the polishing composition according to some embodiments of the present invention is, for example, 100 nm or less, may be 80 nm or less, preferably 60 nm or less, more preferably 50 nm or less, more preferably 45 nm or less, and particularly preferably 43 nm or less. In some aspects, the average primary particle size of the abrasive grains may be less than 40 nm, less than 38 nm, less than 35 nm, less than 32 nm, or less than 30 nm.
  • the average secondary particle size of the abrasive grains contained in the polishing composition according to some embodiments of the present invention is preferably 10 nm or more, more preferably 20 nm or more, even more preferably 30 nm or more, and particularly preferably 35 nm or more.
  • the average secondary particle size of the abrasive grains may be 40 nm or more, 42 nm or more, or 44 nm or more.
  • the average secondary particle diameter of the abrasive grains contained in the polishing composition according to some embodiments of the present invention is, for example, 250 nm or less, may be 180 nm or less, may be 150 nm or less, or may be 100 nm or less. It is preferably 90 nm or less, and further preferably 80 nm or less.
  • the average secondary particle size of the abrasive grains may be 70 nm or less, 60 nm or less, or 50 nm or less.
  • the preferred ranges of the average primary particle size and average secondary particle size of the abrasive grains are also the preferred ranges of the average primary particle size and average secondary particle size of the abrasive grains contained in the raw material dispersion used for the preparation.
  • the specific surface area can be measured using, for example, "Flow Sorb II 2300” manufactured by Micromeritex.
  • the average secondary particle size of the abrasive grains is measured, for example, by a dynamic light scattering method, and can be measured using, for example, “Nanotrack (registered trademark) UPA-UT151” manufactured by Nikkiso Co., Ltd.
  • the polishing composition to be used has different polishing characteristics required for each polishing process, so the content of abrasive grains in the polishing composition may also vary depending on the stage of the polishing process in which the polishing composition is used.
  • the polishing rate for the surface of the object to be polished tends to improve due to the increase in the content of abrasive grains.
  • a decrease in the content of abrasive grains tends to improve the dispersion stability of the polishing composition and reduce the residue of abrasive grains on the polished surface.
  • the content of abrasive grains in the concentrated liquid is not particularly limited, but is preferably 0.001% by mass or more, more preferably 0.01% by mass or more, further preferably 0.025% by mass or more, even more preferably 0.1% by mass or more, particularly preferably 0.5% by mass or more, and particularly preferably 1% by mass or more. It is more particularly preferred that the content is 3% by mass or more, most preferably 3% by mass or more.
  • the content of abrasive grains in the concentrated liquid of the polishing composition is not particularly limited, but from the viewpoint of storage stability, filterability, etc., it is preferably 50% by mass or less, more preferably 20% by mass or less, more preferably 10% by mass or less, and particularly preferably 9% by mass or less.
  • the content of abrasive grains in the polishing composition is not particularly limited, but from the viewpoint of further improving the polishing rate, it is preferably 0.001% by mass or more, more preferably 0.01% by mass or more, further preferably 0.025% by mass or more, and particularly preferably 0.1% by mass or more.
  • the content of abrasive grains in the polishing composition is not particularly limited, but is, for example, less than 10% by mass, may be less than 7% by mass, may be 5% by mass or less, may be 2% by mass or less, is preferably less than 1% by mass, more preferably 0.8% by mass or less, further preferably 0.6% by mass or less, particularly preferably 0.4% by mass or less, and most preferably 0.3% by mass or less.
  • the preferable adjustment of the content of abrasive grains is preferably carried out by diluting the concentrated solution of the polishing composition with a dispersion medium such as water or a solution or dispersion containing any polishing aid.
  • the polishing composition according to some embodiments of the present invention may contain silica and abrasive grains other than silica.
  • the content of the other abrasive grains is preferably 5% by mass or less, more preferably 3% by mass or less, further preferably 2% by mass or less, and particularly preferably 1% by mass or less, relative to the total mass of silica and other abrasive grains.
  • the most preferable form is a form in which the content of other abrasive grains is 0% by mass, that is, no abrasive grains other than silica are contained.
  • the polishing composition comprises a basic compound.
  • the basic compound refers to a compound having a function of increasing the pH of the polishing composition when added to the polishing composition.
  • the basic compound has the function of chemically polishing the surface of the object to be polished by etching and the function of improving the dispersion stability of the abrasive grains.
  • Basic compounds can also be used as pH adjusters.
  • the basic compound contained in the first polishing composition according to the present invention contains ammonia and a piperazine compound, and is characterized in that the content C1 of the piperazine compound represented by the above formula (1) is more than 0% and 5.5% or less.
  • the basic compound contained in the second polishing composition according to the present invention contains ammonia and an amine compound A having two or more nitrogen atoms and a pKa higher than that of ammonia, and is characterized in that the content C2 of the amine compound A represented by the above formula (2) is more than 0% and 5.5% or less.
  • the basic compound contained in the third polishing composition according to the present invention contains ammonia and an amine compound B having one nitrogen atom and a higher pKa than ammonia, the amine compound B is a secondary amine or a tertiary amine, and is characterized in that the content C3 of the amine compound B represented by the above formula (3) is more than 0% and 35% or less.
  • the acid dissociation constant (pKa) means the negative common logarithm (reciprocal logarithm) of the equilibrium constant Ka in the dissociation reaction in which hydrogen ions are released from the acid.
  • the acid dissociation constant of a base is the acid dissociation constant of the conjugate acid of that base.
  • the pKa of the amine compounds employs a value calculated from the neutralization titration curve of the amine compound. More specifically, the pKa employs a value calculated from a neutralization titration curve of an amine compound measured by the method described in Examples.
  • the pKa of ammonia calculated by this method is 9.35.
  • the highest pKa among the multiple pKas is taken as the pKa of the compound. If the amine compound has a single pKa, then that single pKa is the pKa of the compound.
  • Polishing compositions according to some embodiments of the present invention contain ammonia as a basic compound.
  • the polishing composition does not contain ammonia, that is, when the content of ammonia is 0% by mass, the etching rate decreases.
  • the content A of ammonia in the polishing composition is not particularly limited.
  • the content A of ammonia in the concentrated liquid is preferably 0.001% by mass or more, more preferably 0.01% by mass or more, and further preferably 0.05% by mass or more, relative to the total mass of the concentrated liquid of the polishing composition.
  • the ammonia content A is preferably 1% by mass or less, more preferably 0.5% by mass or less, and further preferably 0.2% by mass or less, relative to the total mass of the concentrated liquid of the polishing composition.
  • the content A of ammonia in the polishing composition is preferably 0.0001% by mass or more, more preferably 0.0005% by mass or more, and even more preferably 0.001% by mass or more, relative to the total mass of the polishing composition.
  • the ammonia content A is preferably 1% by mass or less, more preferably 0.5% by mass or less, and even more preferably 0.1% by mass or less, relative to the total mass of the polishing composition.
  • the polishing composition according to some embodiments of the present invention contains an ammonium salt such as ammonium carbonate or ammonium hydrogen carbonate, which will be described later
  • the content A of ammonia includes the content of ammonia obtained by reacting ammonium ions derived from the ammonium salt with hydroxide ions.
  • the content of ammonia in the polishing composition is preferably 0.0001% by mass or more and 1% by mass or less, more preferably 0.0005% by mass or more and 0.5% by mass or less, and even more preferably 0.001% by mass or more and 0.1% by mass or less.
  • a first polishing composition according to the present invention contains a piperazine compound.
  • the piperazine compound has a role of oxidizing the surface of the object to be polished (particularly a silicon wafer), and when added to the polishing composition in a range where the content C1 represented by the following formula (1) is more than 0% and 5.5% or less, etching of the object to be polished can be efficiently advanced and the polishing rate can be improved.
  • A1 is the ammonia content (unit: mass%) in the first polishing composition
  • B1 is the piperazine compound content (unit: mass%) in the polishing composition.
  • the piperazine compound content C1 is 0%, that is, when the polishing composition does not contain a piperazine compound, the polishing rate decreases.
  • the content C1 of the piperazine compound exceeds 5.5%, the etching rate is suppressed by the piperazine compound, resulting in a decrease in the polishing rate.
  • the piperazine compound content C1 is preferably 0.1% or more, more preferably 0.5% or more, and even more preferably 1.0% or more.
  • the piperazine compound content C1 is preferably 5.0% or less, more preferably 4.5% or less, even more preferably 4.0% or less, and particularly preferably 3.0% or less.
  • the content C1 of the piperazine compound is preferably 0.1% or more and 5.0% or less, more preferably 0.5% or more and 4.5% or less, further preferably 1.0% or more and 4.0% or less, and particularly preferably 1.0% or more and 3.0% or less.
  • the piperazine compound is not particularly limited as long as it is a compound having a piperazine skeleton (piperazine ring).
  • Specific examples of piperazine compounds include anhydrous piperazine, piperazine hexahydrate, 1-methylpiperazine, 2-methylpiperazine, 1-ethylpiperazine, 2-ethylpiperazine, 1-(n-propyl)piperazine, 2-(n-propyl)piperazine, 1-isopropylpiperazine, 1-allylpiperazine, 1-(n-butyl)piperazine, 1-isobutylpiperazine.
  • piperazine compounds at least one selected from the group consisting of 1-methylpiperazine, 1-(2-aminoethyl)piperazine, 1,4-dimethylpiperazine, and 1,4-bis(3-aminopropyl)piperazine is preferred.
  • the content B1 of the piperazine compound in the first polishing composition is not particularly limited as long as the content C1 of the piperazine compound represented by the above formula (1) is more than 0% and 5.5% or less.
  • the content B1 of the piperazine compound in the concentrate is preferably 0.000001% by mass or more, more preferably 0.00001% by mass or more, and particularly preferably 0.00005% by mass or more, relative to the total mass of the concentrate of the first polishing composition.
  • the content B1 of the piperazine compound is preferably 0.1% by mass or less, more preferably 0.01% by mass or less, and particularly preferably 0.008% by mass or less, relative to the total mass of the concentrated liquid of the first polishing composition.
  • the content B1 of the piperadin compound in the polishing composition is preferably 0.001 % % by mass or less of 0.1 % by mass of 0.001001 % by mass, 0.001 % % by mass. It is more preferable to be 1 % by mass or less, and it is particularly preferable to be 0.00005 % by mass or less of 0.008 % by mass or less.
  • the content B1 of the piperadin compound in the polishing composition is preferably 0.001 % by mass or more, compared to the total amount of the first polishing composition, and it is more preferable to be 0.0000,000 % by mass or more. It is even more preferable to be 001 % by mass or more, and it is particularly preferable to be 0.00004 % by mass or more.
  • the content B1 of the piperazine compound is, for example, 0.1% by mass or less, may be 0.05% by mass or less, preferably 0.01% by mass or less, more preferably 0.005% by mass or less, further preferably 0.001% by mass or less, and particularly preferably 0.0005% by mass or less, relative to the total mass of the first polishing composition.
  • the content B1 of the piperazine compound in the first polishing composition is preferably 0.0000001% by mass or more and 0.01% by mass or less, more preferably 0.0000005% by mass or more and 0.005% by mass or less, and more preferably 0.0000001% by mass or more and 0.001% by mass or less, relative to the total mass of the first polishing composition. It is more preferably not more than 0.000004% by mass, and particularly preferably 0.000004% by mass or more and 0.0005% by mass or less.
  • the polishing composition according to the second aspect of the present invention includes an amine compound A having two or more nitrogen atoms and a pKa higher than that of ammonia, and the content C2 of the amine compound A represented by the following formula (2) is in the range of more than 0% and 5.5% or less.
  • A2 is the content of ammonia (unit: % by mass) in the second polishing composition
  • B2 is the content of amine compound A in the second polishing composition (unit: % by mass).
  • the polishing rate is lowered.
  • the content C2 of the amine compound A in the second polishing composition exceeds 5.5%, the etching rate is suppressed, resulting in a decrease in polishing rate.
  • the content C2 of the amine compound A is preferably 0.1% or more, more preferably 0.5% or more, even more preferably 1.0% or more.
  • the content C2 of the amine compound A is preferably 5.0% or less, more preferably 4.5% or less, even more preferably 4.0% or less, and particularly preferably 3.0% or less.
  • the content C2 of the amine compound A is preferably 0.1% or more and 5.0% or less, more preferably 0.5% or more and 4.5% or less, further preferably 1.0% or more and 4.0% or less, and particularly preferably 1.0% or more and 3.0% or less.
  • the pKa of amine compound A is preferably 9.5 or more, more preferably 9.7 or more, and even more preferably 9.8 or more, from the viewpoint that the effects of the present invention are more exhibited. From the same point of view, the pKa of amine compound A is preferably 14.0 or less, more preferably 13.0 or less, and even more preferably 12.0 or less. That is, the pKa of amine compound A is preferably 9.5 or more and 14.0 or less, more preferably 9.7 or more and 13.0 or less, and even more preferably 9.8 or more and 12.0 or less.
  • amine compound A aliphatic amines, alicyclic amines, aromatic amines, heterocyclic amines, guanidines, piguanides, and the like can be used without particular limitation as long as they have two or more nitrogen atoms and have a pKa higher than that of ammonia.
  • the amino group of the amine compound A is not particularly limited and may be a primary amino group, a secondary amino group, a tertiary amino group, or the like, and may have a combination thereof.
  • the amine compound A may have a substituent such as a hydroxy group.
  • the number of nitrogen atoms in the amine compound A is not particularly limited as long as it is 2 or more, and may be 3 or more, 4 or more, 5 or more, or 10 or more.
  • the number of nitrogen atoms in the amine compound A may be 20 or less, 15 or less, 8 or less, 6 or less, 4 or less, or 3 or less.
  • amine compounds A compounds having a piperazine skeleton (piperazine ring) are classified as piperazine compounds contained in the first polishing composition.
  • the aliphatic amine may be an amine having a branched structure or an amine having no branched structure (linear amine). Aliphatic amines may be saturated, containing no double or triple bonds, or unsaturated.
  • the number of carbon atoms in the aliphatic amine is not particularly limited as long as it is 1 or more, but may be 2 or more, 3 or more, 5 or more, 10 or more, or 15 or more.
  • the number of carbon atoms in the aliphatic amine may be 30 or less, 20 or less, 15 or less, 10 or less, or 5 or less.
  • Alicyclic amines include amines containing one or more carbocyclic rings.
  • the above carbocyclic ring may be a saturated ring containing no double bond or triple bond in the ring, a partially saturated ring or an unsaturated ring.
  • the number of atoms constituting the carbocyclic ring may be 3 or more, 4 or more, 5 or more, or 6 or more.
  • the number of atoms constituting the carbocyclic ring may be 15 or less, 10 or less, 8 or less, 7 or less, or 6 or less.
  • Aromatic amines include amines having one or more aromatic rings (excluding heterocycles). A benzene ring, a naphthalene ring, etc. are mentioned as an aromatic ring. As used herein, aromatic amines shall not include heterocyclic amines.
  • Heterocyclic amines include amines containing one or more heterocycles. Heterocycles contain heteroatoms independently selected from nitrogen, oxygen and sulfur atoms within the ring. The number of heteroatoms contained in the heterocyclic ring is not particularly limited as long as it is 1 or more, but may be 2 or more or 3 or more. The number of heteroatoms contained in the heterocyclic ring may be 5 or less, 4 or less, or 3 or less.
  • a heterocyclic ring may be a saturated ring containing no double or triple bond in the ring, a partially saturated ring or an unsaturated ring.
  • a heterocycle may be an aromatic ring or a non-aromatic ring.
  • the number of atoms constituting the heterocyclic ring may be 3 or more, 4 or more, 5 or more, or 6 or more.
  • the number of atoms constituting the heterocyclic ring may be 15 or less, 10 or less, 8 or less, 7 or less, or 6 or less.
  • amine compound A examples include ethylenediamine, propylenediamine (1,2-diaminopropane), trimethylenediamine (1,3-diaminopropane), tetramethylenediamine (1,4-diaminobutane), pentamethylenediamine (1,5-diaminopentane), hexamethylenediamine (1,6-diaminohexane), heptamethylenediamine (1,7-diaminoheptane), octamethylenediamine (1,8-diaminooc tan), nonamethylenediamine (1,9-diaminononane), decamethylenediamine (1,10-diaminodecane), N-methyl-1,3-propanediamine, 3-dimethylamino-1-propylamine, 3-diethylamino-1-propylamine, 3-dibutylamino-1-propylamine, N,
  • Amine compound A can be used alone or in combination of two or more.
  • amine compounds A at least one selected from the group consisting of trans-1,2-cyclohexyldiamine (pKa: 10.00) and ethylenediamine (pKa: 10.03) is preferable.
  • the content B2 of the amine compound A in the second polishing composition is not particularly limited as long as the content C2 of the amine compound A represented by the above formula (2) is more than 0% and 5.5% or less.
  • the content B2 of the amine compound A in the concentrated liquid is preferably 0.000001% by mass or more, more preferably 0.00001% by mass or more, more preferably 0.00005% by mass or more, further preferably 0.0001% by mass or more, and further preferably 0.0000% by mass. 5% by mass or more is particularly preferred.
  • the content B2 of the amine compound A is preferably 0.1% by mass or less, more preferably 0.01% by mass or less, and particularly preferably 0.008% by mass or less, relative to the total mass of the concentrated liquid of the second polishing composition.
  • the content B2 of the amine compound A in the second polishing composition is preferably 0.000001% by mass or more, more preferably 0.000005% by mass or more, further preferably 0.00001% by mass or more, and particularly preferably 0.00004% by mass, relative to the total mass of the second polishing composition.
  • the content B2 of the amine compound A is, for example, 0.1% by mass or less, may be 0.05% by mass or less, preferably 0.01% by mass or less, more preferably 0.005% by mass or less, further preferably 0.001% by mass or less, and particularly preferably 0.0005% by mass or less, relative to the total mass of the second polishing composition.
  • the content B2 of the amine compound A in the second polishing composition is preferably 0.000001% by mass or more and 0.01% by mass or less, more preferably 0.000005% by mass or more and 0.005% by mass or less, and 0.00001% by mass or more and 0.001% by mass or less, relative to the total mass of the second polishing composition. More preferably, it is particularly preferably 0.00004% by mass or more and 0.0005% by mass or less.
  • the polishing composition according to the second aspect of the present invention contains an amine compound B which is a secondary amine or a tertiary amine having one nitrogen atom and a pKa higher than that of ammonia, and the content C3 represented by the following formula (3) of the amine compound B is in the range of more than 0% and 35% or less.
  • A3 is the content of ammonia (unit: % by mass) in the third polishing composition
  • B3 is the content of amine compound B in the third polishing composition (unit: % by mass).
  • the polishing rate when the content C3 of the amine compound B is 0%, the polishing rate is lowered.
  • the content C3 of the amine compound B when the content C3 of the amine compound B exceeds 35%, the etching rate is suppressed, resulting in a decrease in polishing rate.
  • the content C3 of the amine compound B is preferably 0.1% or more, more preferably 0.5% or more, even more preferably 1.0% or more.
  • the content C3 of the amine compound B is preferably 30.0% or less, more preferably 20.0% or less, even more preferably 15.0% or less, and particularly preferably 10.0% or less.
  • the content C3 of the amine compound B is preferably 0.1% or more and 30.0% or less, more preferably 0.5% or more and 20.0% or less, further preferably 1.0% or more and 15.0% or less, and particularly preferably 1.0% or more and 10.0% or less.
  • the pKa of amine compound B is preferably 9.5 or more, more preferably 9.8 or more, and even more preferably 10.0 or more, from the viewpoint that the effects of the present invention are more exhibited. From the same point of view, the pKa of amine compound A is preferably 15.0 or less, more preferably 13.0 or less, and even more preferably 12.0 or less. That is, the pKa of amine compound B is preferably from 9.5 to 15.0, more preferably from 9.8 to 13.0, and even more preferably from 10.0 to 12.0.
  • amine compound B aliphatic amines, alicyclic amines, aromatic amines, heterocyclic amines, and the like can be used without particular limitation as long as they have one nitrogen atom and have a higher pKa than ammonia.
  • the amino group of the amine compound B is a secondary amino group or a tertiary amino group, but may have a combination thereof.
  • the amine compound B may have a substituent such as a hydroxy group.
  • the aliphatic amine may be an amine having a branched structure or an amine having no branched structure (linear amine). Aliphatic amines may be saturated, containing no double or triple bonds, or unsaturated.
  • the number of carbon atoms in the aliphatic amine is not particularly limited as long as it is 1 or more, but it may be 2 or more, 3 or more, 5 or more, or 10 or more.
  • the number of carbon atoms in the aliphatic amine may be 20 or less, 15 or less, 10 or less, or 5 or less.
  • Alicyclic amines include amines containing one or more carbocyclic rings.
  • the above carbocyclic ring may be a saturated ring containing no double bond or triple bond in the ring, a partially saturated ring or an unsaturated ring.
  • the number of atoms constituting the carbocyclic ring may be 3 or more, 4 or more, 5 or more, or 6 or more.
  • the number of atoms constituting the carbocyclic ring may be 15 or less, 10 or less, 8 or less, 7 or less, or 6 or less.
  • Aromatic amines include amines having one or more aromatic rings (excluding heterocycles). A benzene ring, a naphthalene ring, etc. are mentioned as an aromatic ring.
  • Heterocyclic amines include amines containing one or more heterocycles. Heterocycles contain heteroatoms independently selected from nitrogen, oxygen and sulfur atoms within the ring.
  • a heterocyclic ring may be a saturated ring containing no double or triple bond in the ring, a partially saturated ring or an unsaturated ring.
  • a heterocycle may be an aromatic ring or a non-aromatic ring.
  • the number of atoms constituting the heterocyclic ring may be 3 or more, 4 or more, 5 or more, or 6 or more.
  • the number of atoms constituting the heterocyclic ring may be 15 or less, 10 or less, 8 or less, 7 or less, or 6 or less.
  • amine compound B examples include dimethylamine, diethylamine (pKa: 10.90), di(n-propyl)amine, diisopropylamine, di(n-butyl)amine, diisobutylamine, di(sec-butyl)amine, dimethylethylamine, methyldiethylamine, dimethylpropylamine, dimethylbutylamine, dimethylisobutylamine, dimethylisopropylamine, dimethylsec-butylamine, dimethyltert-butylamine, triethylamine, tripropylamine, tributylamine, N-methylethanolamine.
  • the amine compound B can be used singly or in combination of two or more.
  • amine compounds B at least one selected from piperidine (pKa: 10.97), N-methylpiperidine (pKa: 10.08), triethylamine (pKa: 10.68), and N-methylpyrrolidine (pKa: 10.31) is preferred.
  • the content B3 of the amine compound B in the third polishing composition is not particularly limited as long as the content C3 of the amine compound B represented by the above formula (3) is more than 0% and 35% or less.
  • the content B3 of the amine compound in the concentrated liquid is preferably 0.000001% by mass or more, more preferably 0.00001% by mass or more, more preferably 0.0001% by mass or more, further preferably 0.001% by mass or more, and even more preferably 0.004% by mass or more, relative to the total mass of the concentrated liquid of the second polishing composition. is particularly preferred.
  • the content B3 of the amine compound B is preferably 1% by mass or less, more preferably 0.5% by mass or less, further preferably 0.1% by mass or less, and particularly preferably 0.07% by mass or less, relative to the total mass of the concentrated liquid of the third polishing composition.
  • the content B3 of the amine compound B in the polishing composition is preferably 0.000001% by mass or more, more preferably 0.000005% by mass or more, more preferably 0.00001% by mass or more, further preferably 0.00005% by mass or more, and further preferably 0.0001% by mass or more. % or more is particularly preferred.
  • the content B3 of the amine compound B is, for example, 0.1% by mass or less, may be 0.05% by mass or less, preferably 0.01% by mass or less, more preferably 0.008% by mass or less, and further preferably 0.005% by mass or less, relative to the total mass of the third polishing composition.
  • the content B3 of the amine compound B in the polishing composition is preferably 0.000001% by mass or more and 0.1% by mass or less, more preferably 0.000005% by mass or more and 0.1% by mass or less, more preferably 0.00001% by mass or more and 0.05% by mass or less, and 0.0 It is more preferably 0005% by mass or more and 0.01% by mass or less, and particularly preferably 0.0001% by mass or more and 0.008% by mass or less.
  • the polishing composition according to some embodiments of the present invention may further contain other basic compounds as long as the contents C1 to C3 of the piperazine compound represented by the formulas (1) to (3), the amine compound A, and the amine compound B satisfy the above ranges.
  • Examples of such other basic compounds include, for example, hydroxides or salts of Group 2 elements or alkali metals such as calcium hydroxide, potassium hydroxide, potassium carbonate, potassium hydrogen carbonate, potassium sulfate, potassium acetate, potassium chloride, sodium hydroxide, sodium hydrogen carbonate, and sodium carbonate; tetraalkylammonium hydroxides such as tetramethylammonium hydroxide, tetraethylammonium hydroxide, and tetrabutylammonium hydroxide; , ammonium carbonate, ammonium hydrogen carbonate; and the like.
  • Amine compounds with a lower pKa than ammonia can also be used as other basic compounds. These other basic compounds can be used singly or in combination of two or more.
  • the piperazine compound, amine compound A, and amine compound B do not include the above other basic compounds.
  • the content of the other basic compound is preferably 10% by mass or less, more preferably 5% by mass or less, further preferably 2% by mass or less, and particularly preferably 1% by mass or less, relative to the total mass of the basic compounds.
  • the content of the other basic compound is preferably 5% by mass or less, more preferably 3% by mass or less, further preferably 2% by mass or less, and particularly preferably 1% by mass or less, relative to the total mass of the basic compounds.
  • the most preferable form is one in which the content of other basic compounds is 0% by mass, i.e., a form containing no basic compounds other than ammonia, piperazine compound, amine compound A, and amine compound B.
  • the content of the basic compound in the concentrated liquid is preferably 0.001% by mass or more, more preferably 0.005% by mass or more, further preferably 0.01% by mass or more, and particularly preferably 0.03% by mass or more.
  • a high polishing rate can be easily obtained by increasing the content of the basic compound.
  • the content of the basic compound in the concentrated liquid of the polishing composition is preferably 10% by mass or less, more preferably 5% by mass or less, more preferably 3% by mass or less, and particularly preferably 1% by mass or less, from the viewpoint of storage stability, filterability, and the like.
  • the content of the basic compound in the concentrated liquid is preferably 0.001% by mass or more and 10% by mass or less, more preferably 0.005% by mass or more and 5% by mass or less, further preferably 0.01% by mass or more and 3% by mass or less, and particularly preferably 0.03% by mass or more and 1% by mass or less.
  • the content of the basic compound in the polishing composition is not particularly limited, but is preferably 0.0001% by mass or more, more preferably 0.001% by mass or more, and even more preferably 0.002% by mass or more. Further, when the polishing composition according to some embodiments of the present invention is in the form of a diluted solution, the content of the basic compound in the polishing composition is preferably 5% by mass or less, more preferably 2% by mass or less, further preferably 1% by mass or less, and particularly preferably 0.5% by mass or less, from the viewpoint of storage stability, filterability, and the like.
  • the polishing composition preferably contains a dispersion medium (especially water).
  • the dispersion medium especially water has the function of dissolving or dispersing the components contained in the polishing composition.
  • the water contain as few impurities as possible.
  • water for example, water having a total content of transition metal ions of 100 ppb or less is preferable.
  • the purity of water can be increased by, for example, removal of impurity ions using an ion exchange resin, removal of foreign matter using a filter, distillation, or other operations.
  • water it is preferable to use, for example, deionized water (ion-exchanged water), pure water, ultrapure water, distilled water, or the like.
  • the dispersion medium may be a mixed solvent of water and an organic solvent for dispersing or dissolving each component.
  • the organic solvent used includes acetone, acetonitrile, ethanol, methanol, isopropanol, glycerin, ethylene glycol, propylene glycol, etc., which are organic solvents miscible with water.
  • these organic solvents may be used without being mixed with water, and each component may be dispersed or dissolved and then mixed with water. These organic solvents can be used singly or in combination of two or more.
  • the dispersion medium is preferably water only.
  • the polishing composition may contain a water-soluble polymer.
  • the water-soluble polymer adheres to the surface of the object to be polished and protects the surface of the object to be polished from uneven or excessive etching that may occur due to the action of the basic compound. This can improve the quality of the surface of the object to be polished after polishing.
  • polymer refers to a (co)polymer having a weight average molecular weight of 5,000 or more.
  • the weight average molecular weight can be measured by gel permeation chromatography (GPC), and specifically, the value measured by the method described in Examples is adopted. In addition, only when the molecular weight cannot be measured by GPC, the molecular weight calculated from the molecular formula is adopted as the weight average molecular weight.
  • water-soluble polymer those having at least one functional group selected from cationic groups, anionic groups and nonionic groups in the molecule can be used.
  • water-soluble polymers include those containing hydroxyl groups, carboxyl groups, acyloxy groups, sulfo groups, amide structures, imide structures, quaternary ammonium structures, heterocyclic structures, vinyl structures, etc. in the molecule.
  • water-soluble polymers include polymers having structural units derived from vinyl alcohol (hereinafter also referred to as "polyvinyl alcohol-based polymers"), cellulose derivatives, starch derivatives, polymers having oxyalkylene units, and water-soluble polymers having nitrogen atoms.
  • polyvinyl alcohol-based polymers polymers having structural units derived from vinyl alcohol
  • cellulose derivatives cellulose derivatives
  • starch derivatives polymers having oxyalkylene units
  • polymers having nitrogen atoms a polyvinyl alcohol-based polymers
  • a polishing composition containing these polymers tends to reduce the haze of an object to be polished.
  • the polyvinyl alcohol-based polymer may contain only vinyl alcohol units (hereinafter also referred to as "VA units”) as repeating units, or may contain repeating units other than VA units (hereinafter also referred to as "non-VA units”) in addition to VA units.
  • a vinyl alcohol unit is a structural moiety represented by the following chemical formula: --CH 2 --CH(OH)--.
  • the polyvinyl alcohol-based polymer may be a random copolymer containing VA units and non-VA units, or may be a block copolymer or a graft copolymer.
  • the polyvinyl alcohol-based polymer may contain only one type of non-VA unit, or may contain two or more types of non-VA units.
  • the polyvinyl alcohol-based polymer used in the polishing composition disclosed herein may be unmodified polyvinyl alcohol (non-modified PVA) or modified polyvinyl alcohol (modified PVA).
  • the unmodified PVA is produced by hydrolyzing (saponifying) polyvinyl acetate, and refers to a polyvinyl alcohol-based polymer that is substantially free of repeating units other than repeating units (—CH 2 —CH(OCOCH 3 )—) having a vinyl-polymerized structure of vinyl acetate and repeating units other than VA units.
  • the degree of saponification of the non-modified PVA may be, for example, 60% or more, may be 70% or more from the viewpoint of water solubility, may be 80% or more, or may be 90% or more.
  • unmodified PVA with a degree of saponification of 95% or higher or 98% or higher can be preferably employed as the water-soluble polymer compound.
  • the polyvinyl alcohol-based polymer may be a modified PVA containing VA units and non-VA units having at least one structure selected from oxyalkylene groups, carbonyl groups, acetoacetyl groups, carboxy groups, (di)carboxylic acid groups, (di)carboxylic acid esters, phenyl groups, naphthyl groups, sulfo groups, amino groups, hydroxyl groups, amide groups, imide groups, nitrile groups, ether groups, ester groups, and salts thereof.
  • non-VA units that can be contained in the modified PVA include, but are not limited to, repeating units derived from N-vinyl type monomers and N-(meth)acryloyl type monomers, repeating units derived from ethylene, repeating units derived from alkyl vinyl ethers, repeating units derived from vinyl esters of monocarboxylic acids having 3 or more carbon atoms, and repeating units derived from (di)acetone compounds.
  • a preferred example of the N-vinyl type monomer is N-vinylpyrrolidone.
  • a preferred example of the N-(meth)acryloyl type monomer is N-(meth)acryloylmorpholine.
  • the alkyl vinyl ether may be a vinyl ether having an alkyl group having 1 to 10 carbon atoms, such as propyl vinyl ether, butyl vinyl ether, 2-ethylhexyl vinyl ether.
  • the vinyl ester of a monocarboxylic acid having 3 or more carbon atoms may be a vinyl ester of a monocarboxylic acid having 3 or more and 7 or less carbon atoms, such as vinyl propanoate, vinyl butanoate, vinyl pentanoate, and vinyl hexanoate.
  • Preferred examples of the (di)acetone compound include diacetone (meth)acrylamide and acetylacetone.
  • the polyvinyl alcohol-based polymer may be modified PVA in which some of the VA units contained in the polyvinyl alcohol-based polymer are acetalized with an aldehyde compound or a ketone compound.
  • the acetalized modified PVA is a water-soluble polymer obtained by an acetalization reaction between the above unmodified PVA and an aldehyde compound.
  • the aldehyde compound used to produce the acetalized modified PVA is not particularly limited.
  • the aldehyde compound has 1 to 7 carbon atoms, more preferably 2 to 7 carbon atoms.
  • aldehyde compound examples include formaldehyde; linear or branched alkyl aldehydes such as acetaldehyde, propionaldehyde, n-butyraldehyde, isobutyraldehyde, tert-butyraldehyde, hexylaldehyde and n-pentylaldehyde; alicyclic or aromatic aldehydes such as cyclohexanecarbaldehyde and benzaldehyde; These may be used individually by 1 type, and may be used in combination of 2 or more type. In addition, excluding formaldehyde, one or more hydrogen atoms may be substituted with halogen or the like.
  • straight-chain or branched alkylaldehydes are preferred because of their high solubility in water and easy acetalization reaction, and among them, acetaldehyde, n-propylaldehyde, n-butyraldehyde, and n-pentylaldehyde are more preferred.
  • aldehyde compound in addition to the above, aldehyde compounds having 8 or more carbon atoms such as 2-ethylhexylaldehyde, nonylaldehyde, and decylaldehyde may be used.
  • aldehyde compounds having 8 or more carbon atoms such as 2-ethylhexylaldehyde, nonylaldehyde, and decylaldehyde may be used.
  • polyvinyl alcohol-based polymer cation-modified polyvinyl alcohol into which a cationic group such as a quaternary ammonium structure is introduced may be used.
  • Examples of the cation-modified polyvinyl alcohol include those into which a cationic group derived from a monomer having a cationic group, such as diallyldialkylammonium salts and N-(meth)acryloylaminoalkyl-N,N,N-trialkylammonium salts, is introduced.
  • the polyvinyl alcohol-based polymer may also have a structural portion in which the non-VA unit is represented by the chemical formula: --CH 2 --CH(CR 5 (OR 8 )--CR 6 (OR 9 )--R 7 )--.
  • R 5 to R 7 each independently represent a hydrogen atom or an organic group
  • R 8 and R 9 each independently represent a hydrogen atom or R 10 --CO-- (wherein R 10 represents an alkyl group).
  • modified PVA include modified PVA having a 1,2-diol structure in the side chain.
  • the ratio of the number of moles of VA units to the number of moles of all repeating units constituting the polyvinyl alcohol polymer may be, for example, 5% or more, 10% or more, 20% or more, or 30% or more.
  • the molar ratio of the VA units may be 50% or more, 65% or more, 75% or more, 80% or more, or 90% or more (e.g., 95% or more, or 98% or more).
  • Substantially 100% of the repeating units constituting the polyvinyl alcohol polymer may be VA units.
  • substantially 100% means that the polyvinyl alcohol-based polymer does not contain non-VA units at least intentionally, and typically the ratio of the number of moles of non-VA units to the number of moles of all repeating units is less than 2% (for example, less than 1%), and includes cases where it is 0%. In some other embodiments, the ratio of the number of moles of VA units to the number of moles of all repeating units constituting the polyvinyl alcohol polymer may be, for example, 95% or less, 90% or less, 80% or less, or 70% or less.
  • the content of VA units (mass-based content) in the polyvinyl alcohol-based polymer may be, for example, 5% by mass or more, 10% by mass or more, 20% by mass or more, or 30% by mass or more.
  • the content of the VA unit may be 50% by mass or more (e.g., more than 50% by mass), 70% by mass or more, or 80% by mass or more (e.g., 90% by mass or more, or 95% by mass or more, or 98% by mass or more).
  • Substantially 100% by mass of the repeating units constituting the polyvinyl alcohol-based polymer may be VA units.
  • substantially 100% by mass means that non-VA units are not at least intentionally included as repeating units constituting the polyvinyl alcohol-based polymer, and typically the content of non-VA units in the polyvinyl alcohol-based polymer is less than 2% by mass (for example, less than 1% by mass). In some other aspects, the content of VA units in the polyvinyl alcohol polymer may be, for example, 95% by mass or less, 90% by mass or less, 80% by mass or less, or 70% by mass or less.
  • the polyvinyl alcohol-based polymer may contain multiple polymer chains with different VA unit contents in the same molecule.
  • the polymer chain refers to a portion (segment) that constitutes a part of one molecule of polymer.
  • the polyvinyl alcohol-based polymer may contain a polymer chain A having a VA unit content of more than 50% by mass and a polymer chain B having a VA unit content of less than 50% by mass (i.e., having a non-VA unit content of more than 50% by mass) in the same molecule.
  • the polymer chain A may contain only VA units as repeating units, or may contain non-VA units in addition to VA units.
  • the content of VA units in the polymer chain A may be 60% by mass or more, 70% by mass or more, 80% by mass or more, or 90% by mass or more. In some embodiments, the content of VA units in polymer chain A may be 95% by mass or more, or 98% by mass or more. Substantially 100% by mass of the repeating units constituting the polymer chain A may be VA units.
  • the polymer chain B may contain only non-VA units as repeating units, or may contain VA units in addition to non-VA units.
  • the content of non-VA units in polymer chain B may be 60% by mass or more, 70% by mass or more, 80% by mass or more, or 90% by mass or more. In some embodiments, the content of non-VA units in polymer chain B may be 95 wt% or more, or 98 wt% or more. Substantially 100% by mass of the repeating units constituting the polymer chain B may be non-VA units.
  • polyvinyl alcohol-based polymers containing polymer chain A and polymer chain B in the same molecule include block copolymers and graft copolymers containing these polymer chains.
  • the graft copolymer may be a graft copolymer having a structure in which a polymer chain B (side chain) is grafted to a polymer chain A (main chain), or a graft copolymer having a structure in which a polymer chain A (side chain) is grafted to a polymer chain B (main chain).
  • a polyvinyl alcohol-based polymer having a structure in which a polymer chain B is grafted onto a polymer chain A can be used.
  • polymer chain B examples include a polymer chain whose main repeating unit is a repeating unit derived from an N-vinyl type monomer, a polymer chain whose main repeating unit is a repeating unit derived from an N-(meth)acryloyl type monomer, and a polymer chain whose main repeating unit is an oxyalkylene unit.
  • main repeating unit refers to a repeating unit containing more than 50% by mass unless otherwise specified.
  • a suitable example of the polymer chain B is a polymer chain having an N-vinyl type monomer as the main repeating unit, that is, an N-vinyl polymer chain.
  • the content of repeating units derived from the N-vinyl type monomer in the N-vinyl polymer chain is typically more than 50% by mass, may be 70% by mass or more, may be 85% by mass or more, and may be 95% by mass or more.
  • Substantially all of the polymer chain B may be repeating units derived from an N-vinyl type monomer.
  • N-vinyl type monomers include monomers having a nitrogen-containing heterocyclic ring (eg, lactam ring) and N-vinyl chain amides.
  • N-vinyllactam type monomers include N-vinylpyrrolidone, N-vinylpiperidone, N-vinylmorpholinone, N-vinylcaprolactam, N-vinyl-1,3-oxazin-2-one, N-vinyl-3,5-morpholinedione and the like.
  • Specific examples of N-vinyl chain amides include N-vinylacetamide, N-vinylpropionic acid amide, N-vinylbutyric acid amide and the like.
  • Polymer chain B can be, for example, an N-vinyl polymer chain in which more than 50% by weight (eg, 70% by weight or more, or 85% by weight or more, or 95% by weight or more) of its repeating units are N-vinylpyrrolidone units. Substantially all of the repeating units constituting the polymer chain B may be N-vinylpyrrolidone units.
  • polymer chain B is a polymer chain whose main repeating unit is a repeating unit derived from an N-(meth)acryloyl type monomer, that is, an N-(meth)acryloyl polymer chain.
  • the content of repeating units derived from the N-(meth)acryloyl-type monomer in the N-(meth)acryloyl-based polymer chain is typically more than 50% by mass, and may be 70% by mass or more, 85% by mass or more, and may be 95% by mass or more.
  • Substantially all of the polymer chain B may be repeating units derived from N-(meth)acryloyl type monomers.
  • N-(meth)acryloyl-type monomers include linear amides having an N-(meth)acryloyl group and cyclic amides having an N-(meth)acryloyl group.
  • linear amides having an N-(meth)acryloyl group include (meth)acrylamide; N-alkyl(meth)acrylamides such as N-methyl(meth)acrylamide, N-ethyl(meth)acrylamide, N-propyl(meth)acrylamide, N-isopropyl(meth)acrylamide, and Nn-butyl(meth)acrylamide; N,N-dimethyl(meth)acrylamide, N,N-diethyl(meth)acrylamide, N,N-dipropyl(meth)acrylamide, N, N-diisopropyl(meth)acrylamide, N,N-dialkyl(meth)acrylamide such as N,N-di(n-butyl)(meth)acrylamide
  • polymer chain B is a polymer chain containing an oxyalkylene unit as a main repeating unit, that is, an oxyalkylene-based polymer chain.
  • the content of oxyalkylene units in the oxyalkylene-based polymer chain is typically more than 50% by mass, may be 70% by mass or more, may be 85% by mass or more, or may be 95% by mass or more.
  • Substantially all of the repeating units contained in polymer chain B may be oxyalkylene units.
  • oxyalkylene units include oxyethylene units, oxypropylene units, and oxybutylene units. Each such oxyalkylene unit may be a repeating unit derived from the corresponding alkylene oxide.
  • the oxyalkylene unit contained in the oxyalkylene-based polymer chain may be of only one type, or may be of two or more types. For example, it may be an oxyalkylene polymer chain containing a combination of oxyethylene units and oxypropylene units. In the oxyalkylene-based polymer chain containing two or more oxyalkylene units, the oxyalkylene units may be random copolymers, block copolymers, or graft copolymers of the corresponding alkylene oxides.
  • polymer chain B examples include a polymer chain containing a repeating unit derived from an alkyl vinyl ether (e.g., a vinyl ether having an alkyl group having 1 to 10 carbon atoms), a polymer chain containing a repeating unit derived from a monocarboxylic acid vinyl ester (e.g., a vinyl ester of a monocarboxylic acid having 3 or more carbon atoms), a polymer chain in which a portion of the VA units are acetalized with an aldehyde (e.g., an alkyl aldehyde having an alkyl group having 1 to 7 carbon atoms), and a cationic group (e.g., a cation having a quaternary ammonium structure). a polymer chain into which a functional group) has been introduced, and the like.
  • an alkyl vinyl ether e.g., a vinyl ether having an alkyl group having 1 to 10 carbon atoms
  • the polyvinyl alcohol-based polymer in the polishing composition may be unmodified PVA, modified PVA, or a combination of unmodified PVA and modified PVA.
  • the amount of the modified PVA used relative to the total amount of the polyvinyl alcohol polymer contained in the polishing composition may be, for example, less than 95% by mass, 90% by mass or less, 75% by mass or less, 50% by mass or less, 30% by mass or less, 10% by mass or less, 5% by mass or less, or 1% by mass or less.
  • the polishing composition according to the present invention can be preferably implemented, for example, in a mode using modified PVA as the polyvinyl alcohol-based polymer.
  • cellulose derivative refers to cellulose in which some of the hydroxy groups have been substituted with other different substituents.
  • a cellulose derivative may be used individually by 1 type, and may be used in combination of 2 or more type.
  • examples of cellulose derivatives include cellulose derivatives such as hydroxyethylcellulose (HEC), hydroxypropylcellulose, hydroxyethylmethylcellulose, hydroxypropylmethylcellulose, methylcellulose, ethylcellulose, ethylhydroxyethylcellulose and carboxymethylcellulose, and pullulan.
  • the water soluble polymer comprises a starch derivative.
  • Starch derivatives are polymers containing ⁇ -glucose units as main repeating units, such as pregelatinized starch, pullulan, carboxymethyl starch, cyclodextrin, and the like.
  • a starch derivative may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the water-soluble polymer comprises a polymer having oxyalkylene units.
  • Polymers containing oxyalkylene units include polyethylene oxide (PEO), block copolymers of ethylene oxide (EO) and propylene oxide (PO) or butylene oxide (BO), and random copolymers of EO and PO or BO.
  • Block copolymers of ethylene oxide (EO) and propylene oxide (PO) include block copolymers of ethylene oxide (EO) and propylene oxide (PO) (diblock copolymers, PEO (polyethylene oxide)-PPO (polypropylene oxide)-PEO type triblock copolymers, PPO-PEO-PPO type triblock copolymers, etc.). PEO-PPO-PEO type triblock copolymers are usually more preferred.
  • a polymer having an oxyalkylene unit may be used alone or in combination of two or more.
  • the water-soluble polymer contains nitrogen atoms with a view to reducing haze.
  • the haze of the object to be polished can be reduced.
  • the nitrogen atom-containing water-soluble polymer may be used singly or in combination of two or more.
  • water-soluble polymers having nitrogen atoms include poly N-acryloylmorpholine (PACMO), poly N-vinylpyrrolidone (PVP), polyhydroxylethylacrylamide (PHEAA), poly N-vinylimidazole (PVI), poly N-vinylcarbazole, poly N-vinylcaprolactam, poly N-vinylpiperidine and the like.
  • PACMO poly N-acryloylmorpholine
  • PVP poly N-vinylpyrrolidone
  • PHEAA polyhydroxylethylacrylamide
  • PV poly N-vinylimidazole
  • poly N-vinylcarbazole poly N-vinylcaprolactam
  • poly N-vinylpiperidine and the like.
  • the weight average molecular weight of the water-soluble polymer is preferably 5,000 or greater, more preferably 6,000 or greater, and even more preferably 1 ⁇ 10 4 or greater. According to this embodiment, there is a technical effect of improving the haze reduction effect. According to some embodiments of the present invention, the weight-average molecular weight of the water-soluble polymer is preferably 200 ⁇ 10 4 or less, more preferably 100 ⁇ 10 4 or less, and even more preferably 50 ⁇ 10 4 or less, from the viewpoint of haze reduction, washability, and the like.
  • the weight-average molecular weight of the water-soluble polymer is 5,000 or more for the smallest water-soluble polymer among them.
  • the water-soluble polymer is a polyvinyl alcohol-based polymer.
  • the weight average molecular weight of the polyvinyl alcohol polymer is preferably 5,000 or more, more preferably 6,000 or more, and even more preferably 1.0 ⁇ 10 4 or more. According to this embodiment, there is a technical effect of improving the haze reduction effect.
  • the weight average molecular weight of the polyvinyl alcohol polymer is preferably 100 ⁇ 10 4 or less, more preferably 30 ⁇ 10 4 or less, and even more preferably 10 ⁇ 10 4 or less. According to such an embodiment, dispersion stability is improved.
  • the water-soluble polymer is a cellulose derivative.
  • the weight average molecular weight of the cellulose derivative is preferably 5,000 or more, more preferably 1 ⁇ 10 4 or more, and even more preferably 10 ⁇ 10 4 or more. According to this embodiment, there is a technical effect of improving the haze reduction effect. According to some embodiments of the present invention, the weight average molecular weight of the cellulose derivative is preferably 200 ⁇ 10 4 or less, more preferably 150 ⁇ 10 4 or less, even more preferably 100 ⁇ 10 4 or less. According to such an embodiment, dispersion stability is improved.
  • the water-soluble polymer is a water-soluble polymer having nitrogen atoms.
  • the weight average molecular weight of the nitrogen atom-containing water-soluble polymer is preferably 5,000 or more, more preferably 7,500 or more, and even more preferably 1 ⁇ 10 4 or more. According to this embodiment, there is a technical effect of improving the haze reduction effect.
  • the weight average molecular weight of the nitrogen atom-containing water-soluble polymer is preferably 100 ⁇ 10 4 or less, more preferably 75 ⁇ 10 4 or less, and even more preferably 50 ⁇ 10 4 or less. According to such an embodiment, dispersion stability is improved.
  • the content of the water-soluble polymer in the concentrated liquid is preferably 0.0001% by mass or more, more preferably 0.0005% by mass or more, further preferably 0.001% by mass or more, and particularly preferably 0.01% by mass or more, from the viewpoint of improving stability.
  • the content of the water-soluble polymer in the concentrate is preferably 5% by mass or less, more preferably 3% by mass or less, and even more preferably 1% by mass or less, from the viewpoint of storage stability, filterability, and the like.
  • the content of the water-soluble polymer when the polishing composition is in the form of a diluted solution, is preferably 0.00005% by mass or more, more preferably 0.0001% by mass or more, even more preferably 0.0005% by mass or more, and particularly preferably 0.001% by mass or more, from the viewpoint of improving the haze reduction effect.
  • the content of the water-soluble polymer when the polishing composition is in the form of a diluted solution, is preferably 0.1% by mass or less, more preferably 0.05% by mass or less, and even more preferably 0.02% by mass or less, from the viewpoint of maintaining the polishing rate.
  • the said content points out the total amount.
  • the water-soluble polymer contains hydroxy groups with a view to reducing haze.
  • the polishing composition can contain any two or more water-soluble polymers.
  • the water-soluble polymer for example, two or more water-soluble polymers selected from the group consisting of polyvinyl alcohol-based polymers, cellulose derivatives, starch derivatives, and nitrogen atom-containing water-soluble polymers can be used in combination.
  • a polishing composition containing these water-soluble polymers tends to reduce the haze of an object to be polished.
  • the polishing composition contains two or more types of water-soluble polymers, for example, one or more of each of a polyvinyl alcohol-based polymer and a water-soluble polymer having a nitrogen atom, one or more of each of a cellulose derivative and a polyvinyl alcohol-based polymer, and one or more of each of a cellulose derivative and a water-soluble polymer having a nitrogen atom can be used in combination.
  • the polishing composition contains at least one water-soluble polymer selected from polyvinyl alcohol-based polymer and nitrogen atom-containing water-soluble polymer
  • the polyvinyl alcohol-based polymer and the nitrogen atom-containing water-soluble polymer may be the water-soluble polymers described above as some embodiments of the present invention.
  • it is preferable to use a water-soluble polymer in combination such as one or more types of acetalized modified PVA and poly N-acryloylmorpholine, one or more types of unmodified PVA and poly N-acryloylmorpholine, one or more types of unmodified PVA and poly N-vinylpyrrolidone, and one or more types of unmodified PVA and polyhydroxylethylacrylamide.
  • the content ratio of the two or more water-soluble polymers is not particularly limited.
  • a polishing composition concentrate or diluent
  • the ratio of the content of the polyvinyl alcohol-based polymer to the content of the water-soluble polymer having a nitrogen atom is preferably 0.01 or more, may be 0.05 or more, or may be 0.15 or more (e.g., 0.5 or more).
  • the upper limit of the content ratio is not particularly limited, it is preferably 99 or less, may be 19 or less, or may be 6 or less (for example, 2 or less).
  • the content of the polyvinyl alcohol-based polymer and the water-soluble polymer having nitrogen atoms is preferably 1:99 to 99:1 in mass ratio, may be 5:95 to 95:5, or may be 15:85 to 85:15 (eg 65:35 to 35:65).
  • Polishing compositions according to some embodiments of the present invention may optionally contain a surfactant.
  • a surfactant By including a surfactant in the polishing composition, haze on the surface of the object to be polished after polishing can be reduced more effectively.
  • Any of anionic, cationic, nonionic and amphoteric surfactants can be used as surfactants.
  • anionic or nonionic surfactants can be preferably employed.
  • Nonionic surfactants are more preferable from the viewpoint of low foaming properties and ease of pH control.
  • oxyalkylene polymers such as polyethylene glycol, polypropylene glycol, and polytetramethylene glycol; polyoxyalkylene alkyl ethers such as polyoxyethylene alkyl ethers, polyoxyethylene alkylphenyl ethers, polyoxyalkylene derivatives (e.g., polyoxyalkylene adducts) such as polyoxyalkylene alkyl ethers such as polyoxyethylene alkyl ethers, polyoxyethylene alkylphenyl ethers, polyoxyethylene alkylamines, polyoxyethylene fatty acid esters, and polyoxyethylene sorbitan fatty acid esters; ; and other nonionic surfactants.
  • the surfactant preferably contains a surfactant containing a polyoxyalkylene structure. Surfactants can be used singly or in combination of two or more.
  • nonionic surfactants containing a polyoxyalkylene structure include block copolymers of ethylene oxide (EO) and propylene oxide (PO) (diblock copolymers, PEO (polyethylene oxide)-PPO (polypropylene oxide)-PEO type triblock copolymers, PPO-PEO-PPO type triblock copolymers, etc.), random copolymers of EO and PO, polyoxyethylene glycol, polyoxyethylene propyl ether, polyoxyethylene butyl ether, poly Oxyethylene pentyl ether, polyoxyethylene hexyl ether, polyoxyethylene octyl ether, polyoxyethylene-2-ethylhexyl ether, polyoxyethylene nonyl ether, polyoxyethylene decyl ether, polyoxyethylene isodecyl ether, polyoxyethylene tridecyl ether, polyoxyethylene lauryl ether, polyoxyethylene cetyl ether, polyoxyethylene stearyl ether, polyoxy
  • preferred surfactants include block copolymers of EO and PO (especially PEO-PPO-PEO type triblock copolymers), random copolymers of EO and PO, and polyoxyethylene alkyl ethers (e.g., polyoxyethylene decyl ether).
  • the weight average molecular weight (Mws) of the surfactant is typically less than 5,000, and preferably 4,000 or less (eg, 3,000 or less) from the viewpoint of filterability and washability.
  • the Mws of the surfactant is usually suitably 200 or more from the viewpoint of surface activity and the like, and preferably 250 or more (for example, 300 or more) from the viewpoint of haze reduction effect and the like.
  • a more preferable range of Mws of the surfactant may vary depending on the type of the surfactant. For example, when polyoxyethylene alkyl ether is used as a surfactant, its Mws is preferably 1,500 or less, and may be 1,000 or less (eg, 500 or less). Further, for example, when a PEO-PPO-PEO type triblock copolymer is used as a surfactant, its Mws may be, for example, 500 or more, 1,000 or more, or even 1,200 or more.
  • the polishing composition according to some embodiments of the present invention contains a surfactant
  • its content is not particularly limited as long as it does not significantly impair the effects of the present invention.
  • the content of the surfactant with respect to 100 parts by mass of the abrasive grains is suitably 0.001 parts by mass or more, preferably 0.005 parts by mass or more, 0.01 parts by mass or more, or 0.05 parts by mass or more.
  • the said content points out the total amount.
  • Polishing compositions according to some embodiments of the present invention may contain a chelating agent.
  • the chelating agent suppresses metal contamination on the surface of the object to be polished by trapping metal impurity components in the polishing system to form complexes.
  • chelating agents include aminocarboxylic acid-based chelating agents and organic phosphonic acid-based chelating agents.
  • aminocarboxylic acid-based chelating agents include ethylenediaminetetraacetic acid, sodium ethylenediaminetetraacetate, nitrilotriacetic acid, sodium nitrilotriacetate, ammonium nitrilotriacetate, hydroxyethylethylenediaminetriacetic acid, sodium hydroxyethylethylenediaminetriacetate, diethylenetriaminepentaacetic acid, sodium diethylenetriaminepentaacetate, triethylenetetraminehexaacetic acid, and sodium triethylenetetraminehexaacetate.
  • organic phosphonic acid chelating agents include 2-aminoethylphosphonic acid, 1-hydroxyethylidene-1,1-diphosphonic acid, aminotri(methylenephosphonic acid), ethylenediaminetetrakis(methylenephosphonic acid), diethylenetriaminepenta(methylenephosphonic acid), ethane-1,1,-diphosphonic acid, ethane-1,1,2-triphosphonic acid, ethane-1-hydroxy-1,1-diphosphonic acid, and ethane-1-hydroxy-1,1,2-triphosphonic acid.
  • chelating agents it is preferable to use an organic phosphonic acid-based chelating agent, particularly ethylenediaminetetrakis(methylenephosphonic acid).
  • the chelating agents may be used singly or in combination of two or more.
  • the polishing composition according to some embodiments of the present invention may further contain known additives such as organic acids, organic acid salts, inorganic acids, inorganic acid salts, preservatives, antifungal agents, etc., which can be used in polishing compositions (typically, polishing compositions used in the final polishing step of silicon wafers), as long as the effects of the present invention are not significantly hindered.
  • known additives such as organic acids, organic acid salts, inorganic acids, inorganic acid salts, preservatives, antifungal agents, etc.
  • organic acids examples include fatty acids such as formic acid, acetic acid and propionic acid, aromatic carboxylic acids such as benzoic acid and phthalic acid, citric acid, oxalic acid, tartaric acid, malic acid, maleic acid, fumaric acid, succinic acid, organic sulfonic acids, and organic phosphonic acids.
  • organic acid salts include alkali metal salts (sodium salt, potassium salt, etc.) and ammonium salts of organic acids.
  • inorganic acids include sulfuric acid, nitric acid, hydrochloric acid, carbonic acid, and the like.
  • inorganic acid salts include alkali metal salts (sodium salt, potassium salt, etc.) and ammonium salts of inorganic acids.
  • the organic acid and its salt and the inorganic acid and its salt can be used singly or in combination of two or more.
  • antiseptics and antifungal agents include isothiazoline compounds, paraoxybenzoic acid esters, phenoxyethanol and the like.
  • Polishing compositions according to some embodiments of the present invention are preferably substantially free of oxidizing agents. This is because if the polishing composition contains an oxidizing agent, the surface of the object to be polished (particularly a silicon wafer) is oxidized to form an oxide film, which prolongs the required polishing time.
  • the oxidizing agent include hydrogen peroxide (H 2 O 2 ), sodium persulfate, ammonium persulfate, sodium dichloroisocyanurate and the like.
  • the polishing composition "substantially does not contain an oxidizing agent" means that it does not contain an oxidizing agent at least intentionally.
  • a trace amount of oxidizing agent (for example, the molar concentration of the oxidizing agent in the polishing composition is 0.001 mol/L or less, preferably 0.0005 mol/L or less, more preferably 0.0001 mol/L or less, still more preferably 0.00005 mol/L or less, and particularly preferably 0.00001 mol/L or less) derived from raw materials, manufacturing methods, etc. is unavoidable. It can be included in the concept of composition.
  • the method for producing the polishing composition according to some embodiments of the invention is not particularly limited.
  • abrasive grains, a basic compound (ammonia, and at least one of a piperazine compound, an amine compound A, and an amine compound B), and other components added as necessary are sequentially added and stirred in a dispersion medium.
  • the polishing composition according to some embodiments of the present invention may be a one-component type, or may be a multi-component type composed of two or more components.
  • the polishing composition described above may be used for polishing as it is, or the concentrated solution of the polishing composition may be diluted by adding water, or in the case of a multi-component polishing composition, it may be prepared by diluting with an aqueous solution containing water and a part of the constituent components and used for polishing. For example, after storing or transporting a concentrated solution of the polishing composition, the polishing composition can be prepared by diluting at the time of use.
  • the concentrated form of the polishing composition is advantageous from the viewpoint of convenience and cost reduction during production, distribution, storage, and the like.
  • the concentration ratio can be, for example, about 2 times or more and 100 times or less in terms of volume, and usually about 5 times or more and 50 times or less is appropriate.
  • the concentration ratio of the polishing composition according to a preferred embodiment is 10 times or more and 40 times or less, for example, 15 times or more and 25 times or less.
  • the polishing composition according to some embodiments of the present invention is preferably alkaline, and has a pH of preferably 8.0 or higher, more preferably 9.0 or higher, and even more preferably 9.5 or higher. As the pH of the polishing composition increases, the polishing rate tends to increase. On the other hand, the pH is preferably 12.0 or less, more preferably 11.0 or less, and even more preferably 10.8 or less. A lower pH of the polishing composition tends to improve surface accuracy.
  • the pH of the polishing composition according to some embodiments of the present invention is preferably in the range of 8.0 to 12.0, more preferably in the range of 9.0 to 11.0, and even more preferably in the range of 9.5 to 10.8.
  • the pH of the polishing composition is preferably within the above range.
  • the polishing composition When the polishing composition is reused, it may be adjusted so that the pH falls within the above range, if necessary.
  • a known pH adjuster may be used, or the basic compound described above may be used.
  • the pH value of the polishing composition can be confirmed with a pH meter. A detailed method for measuring pH is described in Examples.
  • Objects to be polished using the polishing compositions according to some embodiments of the present invention are not particularly limited, and can be applied to polishing objects having various materials and shapes.
  • Materials of the object to be polished include, for example, silicon materials, metals or semimetals such as aluminum, nickel, tungsten, steel, tantalum, titanium, and stainless steel, or alloys thereof; vitreous materials such as quartz glass, aluminosilicate glass, and vitreous carbon; ceramic materials such as alumina, silica, sapphire, silicon nitride, tantalum nitride, and titanium carbide; compound semiconductor substrate materials such as silicon carbide, gallium nitride, and gallium arsenide; Further, the object to be polished may be composed of a plurality of materials among the above materials.
  • the silicon material is preferable because the effects of the polishing composition according to some embodiments of the present invention can be obtained more remarkably.
  • the polishing compositions according to some embodiments of the present invention are preferably used for polishing substrates having surfaces made of silicon materials.
  • the silicon material preferably contains at least one material selected from the group consisting of silicon single crystal, amorphous silicon and polysilicon.
  • the silicon material single crystal silicon or polysilicon is more preferable, and single crystal silicon is particularly preferable, from the viewpoint that the effects of the present invention can be obtained more remarkably.
  • the polishing compositions according to some embodiments of the present invention are particularly preferably used for polishing a substrate (for example, a silicon wafer) having a silicon single crystal surface.
  • the shape of the object to be polished is not particularly limited.
  • the polishing composition according to some embodiments of the present invention can be preferably applied to polishing objects having flat surfaces, such as plates and polyhedrons.
  • polishing method Another aspect of the present invention provides a polishing method comprising polishing an object to be polished using the polishing composition.
  • the polishing composition according to some embodiments of the present invention is particularly suitable for use in the final polishing step because of its excellent haze reduction effect. That is, the polishing methods according to some embodiments of the present invention are preferably used in the final polishing process. Therefore, according to the present invention, there is also provided a method for manufacturing an object to be polished (for example, a method for manufacturing a silicon wafer) including a final polishing step using the polishing composition.
  • the final polishing step refers to the last polishing step in the manufacturing process of the object (that is, the step in which no further polishing is performed after that step).
  • the polishing composition according to some embodiments of the present invention may also be used in a polishing step upstream of the finish polishing step (referring to a step between the rough polishing step and the final polishing step), for example, in a polishing step performed immediately before the finish polishing step.
  • the polishing compositions according to some embodiments of the present invention are preferably used for polishing silicon wafers, as described above. And, the polishing composition according to some embodiments of the present invention is particularly suitable as a polishing composition used in the final polishing step of silicon wafers. More specifically, the polishing composition according to some embodiments of the present invention is suitable for polishing a silicon wafer prepared to have a surface roughness of 0.01 nm or more and 100 nm or less by a process upstream of the final polishing process.
  • a general polishing apparatus can be used that has a holder that holds a substrate having an object to be polished, a motor that can change the number of rotations, and a polishing surface plate to which a polishing pad (abrasive cloth) can be attached.
  • polishing pad a general non-woven fabric type, polyurethane type, suede type, etc. can be used without particular limitation.
  • the polishing pad is preferably grooved so that the polishing composition is accumulated.
  • the polishing conditions are appropriately set depending on the stage of the polishing process in which the polishing composition is used.
  • a double-sided polishing machine or a single-sided polishing machine may be used, but a double-sided polishing machine can be preferably used.
  • the rotation speed of the platen is usually about 10 rpm to 100 rpm, preferably about 20 rpm to 50 rpm.
  • the rotation speeds of the upper rotary platen and the lower rotary platen may be different, but they are usually set to the same relative speed with respect to the wafer.
  • a single-sided polishing apparatus can be suitably used, and the rotation speed of the surface plate is usually about 10 rpm to 100 rpm, preferably about 20 rpm to 50 rpm, more preferably about 25 rpm to 50 rpm. With such a rotation speed, the haze level on the surface of the object to be polished can be significantly reduced.
  • the object to be polished is usually pressurized by a surface plate.
  • the pressure at this time can be appropriately selected, but in the pre-polishing step, it is generally preferably about 5 kPa or more and 30 kPa or less, more preferably about 10 kPa or more and 25 kPa or less. In the case of the final polishing step, the pressure is preferably about 5 kPa or more and 30 kPa or less, more preferably about 10 kPa or more and 20 kPa or less. Such a pressure can significantly reduce the haze level on the surface of the object to be polished.
  • the supply rate of the polishing composition can also be appropriately selected according to the size of the platen, but in the case of the preliminary polishing step, it is usually preferably about 0.1 L/min or more and 5 L/min or less, preferably about 0.2 L/min or more and 2 L/min or less.
  • the flow rate is generally preferably about 0.1 L/min or more and 5 L/min or less, preferably about 0.2 L/min or more and 2 L/min or less.
  • the holding temperature of the polishing composition in the polishing apparatus is not particularly limited, but from the viewpoint of the stability of the polishing rate and the reduction of the haze level, it is generally preferably about 15°C or more and 40°C or less, more preferably about 18°C or more and 25°C or less.
  • polishing conditions are merely examples, and may be outside the above range, and the settings can be changed as appropriate. Such conditions can be appropriately set by those skilled in the art.
  • SC-1 cleaning is a cleaning method that uses, for example, a mixture of ammonia and hydrogen peroxide (eg, 40° C. or higher and 80° C. or lower). By performing SC-1 cleaning, the surface of the silicon wafer can be thinly etched and particles on the surface of the silicon wafer can be removed.
  • the present invention includes the following aspects and forms. 1. including abrasive grains and a basic compound,
  • the basic compound contains ammonia and a piperazine compound,
  • the content of the piperazine compound C1 is 1.0% or more and 4.0% or less.
  • the piperazine compound is at least one selected from the group consisting of 1-methylpiperazine, 1-(2-aminoethyl)piperazine, 1,4-dimethylpiperazine, and 1,4-bis(3-aminopropyl)piperazine. or 2.
  • the basic compound contains ammonia and an amine compound A having two or more nitrogen atoms and a pKa higher than that of the ammonia,
  • the content of the ammonia in the polishing composition is A2 (unit: mass %) and the content of the amine compound A in the polishing composition is B2 (unit: mass %)
  • the content C2 of the amine compound A represented by the following formula (2) is more than 0% and 5.5% or less;
  • the content C2 of the amine compound A is 1.0% or more and 4.0% or less.
  • the amine compound A is at least one selected from the group consisting of trans-1,2-cyclohexyldiamine and ethylenediamine. or 6.
  • the basic compound contains ammonia and an amine compound B that has one nitrogen atom and has a higher pKa than the ammonia,
  • the amine compound B is a secondary amine or a tertiary amine,
  • the content C3 of the amine compound B represented by the following formula (3) is more than 0% and 35% or less;
  • the content C3 of the amine compound B is 1.0% or more and 15.0% or less.
  • the amine compound B is at least one selected from the group consisting of piperidine, N-methylpiperidine, triethylamine, and N-methylpyrrolidine. or 10.
  • the polishing composition according to any one of; 13. The above 1. used for polishing a substrate having a surface made of a silicon material. ⁇ 12.
  • a polishing method comprising polishing an object to be polished using the polishing composition according to any one of the above.
  • ⁇ Average primary particle size of silica> The average primary particle size of silica was calculated from the specific surface area of colloidal silica measured by the BET method using a surface area measuring device manufactured by Micromeritex under the trade name “Flow Sorb II 2300” and the true density of colloidal silica.
  • ⁇ pH of Polishing Composition The pH was measured using a pH meter (glass electrode type hydrogen ion concentration indicator (model number F-2372) manufactured by Horiba, Ltd.). More specifically, standard buffer solutions (phthalate pH buffer pH: 4.01 (25 ° C.), neutral phosphate pH buffer pH: 6.86 (25 ° C.), carbonate pH buffer pH: 10.01 (25 ° C.)) were used to perform three-point calibration, the glass electrode was placed in the polishing composition to be measured, and the value after 2 minutes or more had passed and stabilized was measured.
  • a pH meter glass electrode type hydrogen ion concentration indicator (model number F-2372) manufactured by Horiba, Ltd.
  • pKa of amine compound was calculated from a neutralization titration curve obtained by titrating a 0.1% by mass aqueous solution of the amine compound with 0.5M (mol/L) hydrochloric acid using a Hiranuma automatic titrator (manufactured by Hitachi High-Tech Co., Ltd.).
  • the pKa of ammonia calculated by this method is 9.35.
  • Example 1 to 22 Comparative Examples 1 to 13
  • Each component abrasive grains, dispersion medium, ammonia, piperazine compound, amine compound A, amine compound B
  • polishing compositions of Examples 1 to 22 and Comparative Examples 1 to 13 were obtained by diluting the obtained concentrates with water.
  • the composition of the polishing composition is as shown in Tables 1 to 3 below.
  • Table 1 shows Examples and Comparative Examples relating to the first polishing composition
  • Table 2 shows Examples and Comparative Examples relating to the second polishing composition
  • Table 3 shows Examples and Comparative Examples relating to the third polishing composition.
  • Colloidal silica with an average primary particle diameter of 25 nm was used as abrasive grains.
  • the content of abrasive grains is 0.169% by mass.
  • Water was used as a dispersion medium.
  • Comparative Example 5 is an example in which no piperazine compound is added and only ammonia is added as a basic compound
  • Comparative Examples 6 and 10 are examples in which ammonia is not added.
  • the pH values of the polishing compositions of Examples 1 to 22 and Comparative Examples 1 to 13 are shown in Tables 1 to 3 below.
  • the wafer was immersed in HF (3% by mass) for 30 seconds, washed with ultrapure water, immersed in each slurry, and allowed to stand at 25°C for 40 hours. The wafer was taken out, washed with ultrapure water, and dried.
  • the weight of the silicon wafer after immersion was measured. From the weight of the wafer before and after immersion, the surface area of the wafer, and the specific gravity of silicon, the etching rate R was calculated based on the following equations (A) to (C). The specific gravity of silicon used was 2.33.
  • Tables 1 to 3 below show the relative values of the etching rate of each example and comparative example with respect to the etching rate of comparative example 5.
  • the polishing compositions of Examples 1 to 22 have a higher etching rate than the polishing compositions of Comparative Examples 1 to 13, and the object to be polished can be polished at a high polishing rate.
  • polishing compositions of Examples 23 to 26 and Comparative Example 14 Concentrated solutions of the polishing compositions of Examples 23 to 26 and Comparative Example 14 were prepared by mixing each component (abrasive grains, dispersion medium, ammonia, piperazine compound, water-soluble polymer, surfactant). Polishing compositions of Examples 23 to 26 and Comparative Example 14 were obtained by diluting the obtained concentrates with water.
  • the composition of the polishing composition is as shown below: Abrasive grains: 0.169% by mass of colloidal silica with an average primary particle diameter of 25 nm
  • Dispersion medium water
  • First water-soluble polymer Poly N-acryloylmorpholine (PACMO) having a weight average molecular weight (Mw) of 4.7 ⁇ 10 5 0.008% by mass
  • Second water-soluble polymer 0.0025% by mass of acetalized modified polyvinyl alcohol (PVA) having a weight average molecular weight (Mw) of 1.0 ⁇ 10 4
  • First surfactant polyoxyethylene decyl ether (ethylene oxide addition mole number 5, molecular weight 378) 0.0008% by mass
  • Second surfactant polyethylene oxide (PEO)-polypropylene oxide (PPO)-polyethylene oxide (PEO) type triblock copolymer having a weight average molecular weight (Mw) of 3 ⁇ 10 3 0.0004% by mass
  • Table 1 Details of the content of ammonia and the type and content
  • a p-type COP (Crystal Orginated Particle)-free silicon wafer having a ⁇ 100> crystal orientation and a size of 300 mm was prepared.
  • a COP is a concave defect formed on the surface of a silicon wafer, and is caused by a crystal defect of single crystal silicon forming the silicon wafer or a scratch exceeding a certain width and depth caused by an abrasive (abrasive grain).
  • Polishing device Sheet-fed polishing machine manufactured by Okamoto Machine Tool Co., Ltd., model "PNX-332B” Polishing load: 20kPa Surface plate rotation speed: 20 rpm Carrier rotation speed: 20 rpm Polishing pad: Product name “SUBA400” manufactured by Nitta DuPont Co., Ltd.
  • Polishing composition supply rate 1 L/min Temperature of polishing composition: 20°C Surface plate cooling water temperature: 20°C Polishing time: 3 minutes Polishing composition for preliminary polishing: 1.0% by mass of colloidal silica (average primary particle diameter: 35 nm), 0.068% by mass of KOH, dispersion medium: water.
  • Polishing device Sheet-fed polishing machine manufactured by Okamoto Machine Tool Co., Ltd., model "PNX-332B" Polishing load: 10kPa Surface plate rotation speed: 52 rpm Carrier rotation speed: 50 rpm Polishing pad: Product name “POLYPAS275NX” manufactured by Fujibo Ehime Co., Ltd. Polishing composition supply rate: 1.5 L/min Temperature of polishing composition: 20°C Surface plate cooling water temperature: 20°C Polishing time: 4 minutes Polishing composition for final polishing: Polishing compositions of Examples 23 to 26 and Comparative Example 14 shown in Table 4 below.
  • the polished silicon wafer was immersed in the first cleaning bath for 6 minutes and then immersed in the second cleaning bath for 15 minutes. After that, the silicon wafer was again immersed in the first cleaning bath for 6 minutes, immersed in the second cleaning bath for 16 minutes, and then dried.
  • a p-type COP (Crystal Orginated Particle) free silicon wafer having a ⁇ 100> crystal orientation and a size of 200 mm was prepared.
  • the prepared silicon wafer was polished under the following polishing conditions.
  • Polishing device Sheet-fed polishing machine manufactured by Okamoto Machine Tool Co., Ltd., model "PNX-322" Polishing load: 10kPa Surface plate rotation speed: 30 rpm Carrier rotation speed: 30 rpm Polishing pad: Product name “POLYPAS275NX” manufactured by Fujibo Ehime Co., Ltd. Polishing composition supply rate: 0.4 L/min Temperature of polishing composition: 20°C Surface plate cooling water temperature: 20°C Polishing time: 10 minutes Polishing composition: Polishing compositions of Examples 23 to 26 and Comparative Example 14 shown in Table 4 below.
  • the polishing rate was calculated from the difference in weight of the silicon wafer before and after polishing and the specific gravity of silicon. Table 4 below shows the relative values of the polishing rates of Examples 23 to 26 with respect to the polishing rate of Comparative Example 14.
  • Examples 27 to 39, Comparative Example 15 Each component (abrasive grain, dispersion medium, ammonia, piperazine compound, amine compound A, amine compound B, water-soluble polymer, surfactant) was mixed to prepare a concentrated solution of the polishing composition of Examples 27 to 39 and Comparative Example 15. Polishing compositions of Examples 27 to 39 and Comparative Example 15 were obtained by diluting the obtained concentrates with water.
  • the composition of the polishing composition is as shown below: Abrasive grains: 0.17% by mass of colloidal silica with an average primary particle diameter of 25 nm
  • Dispersion medium water
  • First water-soluble polymer Poly N-acryloylmorpholine (PACMO) having a weight average molecular weight (Mw) of 4.7 ⁇ 10 5 0.008% by mass
  • Second water-soluble polymer 0.003% by mass of acetalized modified polyvinyl alcohol (PVA) having a weight average molecular weight (Mw) of 1.0 ⁇ 10 4
  • First surfactant polyoxyethylene decyl ether (ethylene oxide addition mole number 5, molecular weight 378) 0.0008% by mass
  • Second surfactant Polyethylene oxide (PEO)-polypropylene oxide (PPO)-polyethylene oxide (PEO) type triblock copolymer having a weight average molecular weight (Mw) of 3 ⁇ 10 3 0.0004% by mass.
  • Comparative Example 15 is an example in which no piperazine compound was added and only ammonia was added as a basic compound.
  • the pH values of the polishing compositions of Examples 27 to 39 and Comparative Example 15 are shown in Table 5 below.
  • Polishing device Sheet-fed polishing machine manufactured by Okamoto Machine Tool Co., Ltd., model "PNX-332B” Polishing load: 20kPa Surface plate rotation speed: 20 rpm Carrier rotation speed: 20 rpm Polishing pad: Product name “SUBA400” manufactured by Nitta DuPont Co., Ltd.
  • Polishing composition supply rate 1 L/min Temperature of polishing composition: 20°C Surface plate cooling water temperature: 20°C Polishing time: 3 minutes Polishing composition for preliminary polishing: 1.0% by mass of colloidal silica (average primary particle diameter: 35 nm), 0.068% by mass of KOH, dispersion medium: water.
  • Polishing device Sheet-fed polishing machine manufactured by Okamoto Machine Tool Co., Ltd., model "PNX-332B" Polishing load: 20kPa Surface plate rotation speed: 52 rpm Carrier rotation speed: 50 rpm Polishing pad: Product name “POLYPAS275NX” manufactured by Fujibo Ehime Co., Ltd. Polishing composition supply rate: 1.5 L/min Temperature of polishing composition: 20°C Surface plate cooling water temperature: 20°C Polishing time: 4 minutes Polishing composition for final polishing: Polishing compositions of Examples 27 to 39 and Comparative Example 15 shown in Table 5 below.
  • the silicon wafers polished by the above final polishing were cleaned under the following cleaning conditions: (Washing conditions) After polishing, the silicon wafer was removed from the polishing apparatus, washed with an ozone water cleaning solution (60 seconds) using a single wafer cleaning apparatus, then cleaned with an SC-1 cleaning solution and a brush (110 seconds), then washed with an ozone water cleaning solution (20 seconds) and with a hydrofluoric acid cleaning solution (15 seconds) as one set. The silicon wafer was then dried.
  • a p-type COP (Crystal Orginated Particle)-free silicon wafer having a ⁇ 100> crystal orientation and a size of 300 mm was prepared.
  • the prepared silicon wafer was polished under the following polishing conditions.
  • Polishing device Sheet-fed polishing machine manufactured by Okamoto Machine Tool Co., Ltd., model "PNX-322" Polishing load: 20kPa Surface plate rotation speed: 52 rpm Carrier rotation speed: 50 rpm Polishing pad: Product name “POLYPAS275NX” manufactured by Fujibo Ehime Co., Ltd. Polishing composition supply rate: 0.75 L/min Temperature of polishing composition: 20°C Surface plate cooling water temperature: 20°C Polishing time: 10 minutes Polishing composition: Polishing compositions of Examples 27 to 39 and Comparative Example 15 shown in Table 5 below.
  • the silicon wafers polished under the above polishing conditions were washed under the following washing conditions: (Washing condition) After polishing, the silicon wafer was immersed in ozone water for 15 minutes, then immersed in ultrapure water, and then dried with a spin dryer.
  • the polishing rate was calculated from the difference in weight of the silicon wafer before and after polishing and the specific gravity of silicon. Table 5 below shows the relative values of the polishing rates of Examples 27 to 39 with respect to the polishing rate of Comparative Example 15.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

The present invention provides a means which makes it possible to polish a target object at a high polishing rate and also makes it possible to maintain the surface quality of the polished target object at a good level. The present invention is a polishing composition comprising abrasive grains and a basic compound, in which the basic compound comprises ammonia and a piperazine compound, and the content ratio C1 of the piperazine compound represented by formula (1) is more than 0% and 5.5% or less when the content of the ammonia in the polishing composition is defined as A1 (unit: % by mass) and the content of the piperazine compound in the polishing composition is defined as B1 (unit: % by mass).

Description

研磨用組成物、研磨用組成物の濃縮液、および研磨方法Polishing composition, concentrate of polishing composition, and polishing method
 本発明は、研磨用組成物、研磨用組成物の濃縮液、および研磨方法に関する。 The present invention relates to a polishing composition, a polishing composition concentrate, and a polishing method.
 コンピュータに使用されるULSI等の集積回路の高度集積化および高速化を実現するために、半導体デバイスのデザインルールの微細化は年々進んでいる。それに伴い、より微少な表面欠陥が半導体デバイスの性能に悪影響を与える事例が増えており、従来、問題とされなかったナノオーダーの欠陥を管理することの重要性が高まっている。 In order to achieve higher integration and higher speed of integrated circuits such as ULSI used in computers, the design rules of semiconductor devices are becoming finer year by year. Along with this, the number of cases where finer surface defects adversely affect the performance of semiconductor devices is increasing, and the importance of managing nano-order defects, which have not been regarded as a problem in the past, is increasing.
 単結晶シリコン基板(シリコンウェーハ)の表面欠陥の管理には、表面欠陥検査装置が用いられる。表面欠陥検査装置によって検出される欠陥には、研磨工程、リンス工程および洗浄工程で除去しきれなかった単結晶シリコン基板上の異物および残渣が含まれる。一般的な表面欠陥検査装置は、単結晶シリコン基板表面にレーザー光などの光を照射し、その反射光を信号として受信して解析することで欠陥の有無およびサイズを検出している。 A surface defect inspection device is used to manage surface defects of single crystal silicon substrates (silicon wafers). Defects detected by the surface defect inspection apparatus include foreign matter and residues on the single crystal silicon substrate that have not been completely removed in the polishing, rinsing, and cleaning processes. A typical surface defect inspection apparatus irradiates the surface of a single crystal silicon substrate with light such as a laser beam, receives the reflected light as a signal, and analyzes it to detect the presence or absence of defects and their sizes.
 研磨後または研磨およびリンス後の鏡面に仕上げられた単結晶シリコン基板の表面に強い光を照射すると、単結晶シリコン基板表面の非常に微細な荒れに起因する乱反射により曇りが見られることがある。この曇りはヘイズと呼ばれ、ヘイズは単結晶シリコン基板表面の粗さの尺度として用いることができる。単結晶シリコン基板表面にヘイズがあると、ヘイズにより生じる乱反射光がノイズとなって表面欠陥検査装置による欠陥検出の妨げになることがある。そのため、検出しようとする欠陥のサイズ、つまり管理しようとする欠陥のサイズが小さくなるにつれて、ヘイズの低減の必要性が高まっている。 When a mirror-finished surface of a single crystal silicon substrate after polishing or after polishing and rinsing is irradiated with strong light, cloudiness may be seen due to irregular reflection caused by extremely fine roughness of the surface of the single crystal silicon substrate. This cloudiness is called haze, and haze can be used as a measure of surface roughness of a single crystal silicon substrate. If there is haze on the surface of the single-crystal silicon substrate, diffusely reflected light caused by the haze may become noise and interfere with defect detection by a surface defect inspection apparatus. Therefore, as the size of defects to be detected, that is, the size of defects to be managed becomes smaller, the need to reduce haze increases.
 単結晶シリコン基板(シリコンウェーハ)のヘイズの低減と高研磨速度とを両立できる技術として、例えば、特開2016-122804号公報には、シリカ粒子(成分A)と、ヒドロキシアミン(成分B)と、水溶性高分子化合物(成分C)とを含み、成分Cに対するヒドロキシアミンの質量比(ヒドロキシアミンの質量/成分Cの質量)が特定の範囲である、シリコンウェーハ用研磨液組成物が開示されている。 As a technique capable of achieving both a reduction in haze and a high polishing rate of a single crystal silicon substrate (silicon wafer), for example, JP-A-2016-122804 discloses a polishing liquid composition for silicon wafers containing silica particles (component A), hydroxylamine (component B), and a water-soluble polymer compound (component C), wherein the mass ratio of hydroxylamine to component C (mass of hydroxylamine/mass of component C) is within a specific range.
 しかしながら、特開2016-122804号公報に記載の技術では、ヘイズの低減と高研磨速度との両立が未だ不十分であった。 However, with the technique described in JP-A-2016-122804, it is still insufficient to achieve both reduction of haze and high polishing rate.
 そこで、本発明は、研磨対象物を高い研磨速度で研磨することができ、研磨後の研磨対象物の表面品質を良好に維持することができる手段を提供することを目的とする。 Therefore, an object of the present invention is to provide means capable of polishing an object to be polished at a high polishing rate and capable of maintaining good surface quality of the object to be polished after polishing.
 上記課題を解決すべく、本発明者らは鋭意研究を積み重ねた。その結果、下記の構成を有する研磨用組成物により、上記課題が解決することを見出し、本発明を完成させるに至った。 In order to solve the above problems, the present inventors have accumulated extensive research. As a result, the present inventors have found that the above problems can be solved by a polishing composition having the following composition, and have completed the present invention.
 すなわち、本発明の第1の形態は、砥粒と、塩基性化合物と、を含み、前記塩基性化合物は、アンモニアおよびピペラジン化合物を含有し、前記アンモニアの研磨用組成物中の含有量をA1(単位:質量%)とし、前記ピペラジン化合物の研磨用組成物中の含有量をB1(単位:質量%)としたとき、下記式(1)で表される前記ピペラジン化合物の含有率C1が0%超5.5%以下である、研磨用組成物である。 That is, the first embodiment of the present invention includes abrasive grains and a basic compound, wherein the basic compound contains ammonia and a piperazine compound, and the content C1 of the piperazine compound represented by the following formula (1) is more than 0% and 5.5% or less, where A1 (unit: mass%) is the content of the ammonia in the polishing composition and B1 (unit: mass%) is the content of the piperazine compound in the polishing composition. A polishing composition.
 本発明の第2の形態は、砥粒と、塩基性化合物と、を含み、前記塩基性化合物は、アンモニア、および窒素原子を2つ以上有しかつpKaが前記アンモニアよりも高いアミン化合物Aを含有し、前記アンモニアの研磨用組成物中の含有量をA2(単位:質量%)とし、前記アミン化合物Aの研磨用組成物中の含有量をB2(単位:質量%)としたとき、下記式(2)で表される前記アミン化合物Aの含有率C2が0%超5.5%以下である、研磨用組成物である。 A second embodiment of the present invention includes an abrasive grain and a basic compound, wherein the basic compound contains ammonia and an amine compound A having two or more nitrogen atoms and a pKa higher than that of the ammonia. When the content of the ammonia in the polishing composition is A2 (unit: mass %) and the content of the amine compound A in the polishing composition is B2 (unit: mass %), the content C2 of the amine compound A represented by the following formula (2) is 0. % more than 5.5% or less.
 本発明の第3の形態は、砥粒と、塩基性化合物と、を含み、前記塩基性化合物は、アンモニアおよび窒素原子を1つ有しかつpKaが前記アンモニアよりも高いアミン化合物Bを含有し、前記アミン化合物Bは第2級アミンまたは第3級アミンであり、前記アンモニアの研磨用組成物中の含有量をA3(単位:質量%)とし、前記アミン化合物Bの研磨用組成物中の含有量をB3(単位:質量%)としたとき、下記式(3)で表される前記アミン化合物Bの含有率C3が0%超35%以下である、研磨用組成物である。 A third embodiment of the present invention comprises an abrasive grain and a basic compound, wherein the basic compound contains ammonia and an amine compound B having one nitrogen atom and a pKa higher than that of the ammonia, the amine compound B is a secondary amine or a tertiary amine, and the content of the ammonia in the polishing composition is A3 (unit: mass %), and the content of the amine compound B in the polishing composition is B3 (unit: mass %). ) is more than 0% and 35% or less in the polishing composition.
 本発明の第4の形態は、上記第1~第3の形態に係る研磨用組成物の濃縮液である。 A fourth aspect of the present invention is a concentrated liquid of the polishing composition according to the first to third aspects.
 本発明の第5の形態は、上記第1~第3の形態に係る研磨用組成物を用いて研磨対象物を研磨することを含む、研磨方法である。 A fifth aspect of the present invention is a polishing method comprising polishing an object to be polished using the polishing compositions according to the first to third aspects.
 本発明の第1の形態は、砥粒と、塩基性化合物と、を含み、前記塩基性化合物は、アンモニアおよびピペラジン化合物を含有し、前記アンモニアの研磨用組成物中の含有量をA1(単位:質量%)とし、前記ピペラジン化合物の研磨用組成物中の含有量をB1(単位:質量%)としたとき、下記式(1)で表される前記ピペラジン化合物の含有率C1が0%超5.5%以下である、研磨用組成物である。 A first embodiment of the present invention comprises abrasive grains and a basic compound, wherein the basic compound contains ammonia and a piperazine compound, and when the content of the ammonia in the polishing composition is A1 (unit: mass %) and the content of the piperazine compound in the polishing composition is B1 (unit: mass %), the content C1 of the piperazine compound represented by the following formula (1) is more than 0% and 5.5% or less. composition.
 本発明の第2の形態は、砥粒と、塩基性化合物と、を含み、前記塩基性化合物は、アンモニア、および窒素原子を2つ以上有しかつpKaが前記アンモニアよりも高いアミン化合物Aを含有し、前記アンモニアの研磨用組成物中の含有量をA2(単位:質量%)とし、前記アミン化合物Aの研磨用組成物中の含有量をB2(単位:質量%)としたとき、下記式(2)で表される前記アミン化合物Aの含有率C2が0%超5.5%以下である、研磨用組成物である。 A second embodiment of the present invention includes an abrasive grain and a basic compound, wherein the basic compound contains ammonia and an amine compound A having two or more nitrogen atoms and a pKa higher than that of the ammonia. When the content of the ammonia in the polishing composition is A2 (unit: mass %) and the content of the amine compound A in the polishing composition is B2 (unit: mass %), the content C2 of the amine compound A represented by the following formula (2) is 0. % more than 5.5% or less.
 本発明の第3の形態は、砥粒と、塩基性化合物と、を含み、前記塩基性化合物は、アンモニアおよび窒素原子を1つ有しかつpKaが前記アンモニアよりも高いアミン化合物Bを含有し、前記アミン化合物Bは第2級アミンまたは第3級アミンであり、前記アンモニアの研磨用組成物中の含有量をA3(単位:質量%)とし、前記アミン化合物Bの研磨用組成物中の含有量をB3(単位:質量%)としたとき、下記式(3)で表される前記アミン化合物Bの含有率C3が0%超35%以下である、研磨用組成物である。 A third embodiment of the present invention comprises an abrasive grain and a basic compound, wherein the basic compound contains ammonia and an amine compound B having one nitrogen atom and a pKa higher than that of the ammonia, the amine compound B is a secondary amine or a tertiary amine, and the content of the ammonia in the polishing composition is A3 (unit: mass %), and the content of the amine compound B in the polishing composition is B3 (unit: mass %). ) is more than 0% and 35% or less in the polishing composition.
 かような構成を有する本発明に係る研磨用組成物は、研磨対象物を高い研磨速度で研磨することができ、研磨後の研磨対象物の表面品質を良好に維持することができる。 The polishing composition according to the present invention having such a configuration can polish an object to be polished at a high polishing rate, and can maintain good surface quality of the object to be polished after polishing.
 本発明に係る研磨用組成物により、上記のような効果が得られるメカニズムは、以下の通りであると考えられる。ただし、下記メカニズムはあくまで推測であり、これによって本発明の範囲が限定されることがない。 The mechanism by which the above effects are obtained by the polishing composition according to the present invention is believed to be as follows. However, the mechanism described below is merely speculation, and does not limit the scope of the present invention.
 研磨対象物を速く研磨するために、研磨対象物のエッチング速度を速くすることは、有効な手段の一つである。本発明では、上記式(1)~(3)で表される含有率C1~C3が上記の範囲を満たすように、ピペラジン化合物、アミン化合物A、またはアミン化合物Bを研磨用組成物に加えることにより、アンモニアと、ピペラジン化合物、アミン化合物A、またはアミン化合物Bとが効果的に相互作用し、エッチング速度が適度なものとなる。これにより、研磨対象物を高い研磨速度で研磨することができるものと考えられる。また、研磨面の表面品質向上は、水溶性高分子や界面活性剤等を研磨用組成物に含ませ、基板を保護するなどの方法により実現される。本発明では、上記式(1)~(3)で表される含有率C1~C3が上記の範囲を満たすように、ピペラジン化合物、アミン化合物A、またはアミン化合物Bを研磨用組成物に加えることにより、水溶性高分子や界面活性剤等の使用効果(研磨面の品質改善効果)を損なうことなく、研磨レート向上に寄与することができるものと考えられる。 Increasing the etching rate of the object to be polished is one of the effective means for rapidly polishing the object to be polished. In the present invention, the piperazine compound, the amine compound A, or the amine compound B is added to the polishing composition so that the contents C1 to C3 represented by the above formulas (1) to (3) satisfy the above ranges, whereby the ammonia effectively interacts with the piperazine compound, the amine compound A, or the amine compound B, and the etching rate becomes moderate. It is believed that this allows the object to be polished to be polished at a high polishing rate. The surface quality of the polished surface can be improved by adding a water-soluble polymer, a surfactant, or the like to the polishing composition to protect the substrate. In the present invention, by adding the piperazine compound, the amine compound A, or the amine compound B to the polishing composition so that the contents C1 to C3 represented by the above formulas (1) to (3) satisfy the above ranges, it is believed that the polishing rate can be improved without impairing the effect of using the water-soluble polymer, surfactant, etc. (effect of improving the quality of the polished surface).
 以下、本発明の実施形態を説明するが、本発明は、以下の実施形態のみには限定されず、特許請求の範囲内で種々改変することができる。本明細書に記載される実施形態は、任意に組み合わせることにより、他の実施形態とすることができる。以下では、本発明の第1の形態に係る研磨用組成物を「第1の研磨用組成物」とも称し、本発明の第2の形態に係る研磨用組成物を「第2の研磨用組成物」とも称し、本発明の第3の形態に係る研磨用組成物を「第3の研磨用組成物」とも称する。また、本発明の第1~第3の形態に係る研磨用組成物をまとめて、「本発明に係る研磨用組成物」とも称する。さらに、上記式(1)~(3)におけるアンモニアの含有量A1、A2、およびA3をまとめて、「アンモニアの含有量A」とも称し、含有率C1、C2、およびC3をまとめて、「含有率C」とも称する。 Embodiments of the present invention will be described below, but the present invention is not limited to the following embodiments, and various modifications can be made within the scope of the claims. The embodiments described herein can be combined arbitrarily to form other embodiments. Hereinafter, the polishing composition according to the first embodiment of the present invention is also referred to as "first polishing composition", the polishing composition according to the second embodiment of the present invention is also referred to as "second polishing composition", and the polishing composition according to the third embodiment of the present invention is also referred to as "third polishing composition". Further, the polishing compositions according to the first to third embodiments of the present invention are collectively referred to as "polishing compositions according to the present invention". Furthermore, the ammonia contents A1, A2, and A3 in the above formulas (1) to (3) are collectively referred to as "ammonia content A", and the contents C1, C2, and C3 are collectively referred to as "content C".
 本明細書においては、便宜上、第1~第3の研磨用組成物を区別して説明するが、本発明に係る研磨用組成物は、ピペラジン化合物、アミン化合物A、およびアミン化合物Bのうちの2種または3種を組み合わせて使用してもよい。この際、上記式(1)~(3)で表される含有率C1、C2、およびC3が、それぞれ上記数値範囲を満たすように各化合物を添加する。例えば、ピペラジン化合物とアミン化合物Bとを組み合わせて使用する場合、上記式(1)で表されるピペラジン化合物の含有率C1が0%超5.5%以下の範囲を満たし、かつアミン化合物Bの含有率C3が0%超35%以下の範囲を満たすように、各化合物の添加量を調整する。 In the present specification, for the sake of convenience, the first to third polishing compositions are separately described, but the polishing composition according to the present invention may be used in combination of two or three of the piperazine compound, amine compound A, and amine compound B. At this time, each compound is added so that the contents C1, C2, and C3 represented by the above formulas (1) to (3) respectively satisfy the above numerical ranges. For example, when a piperazine compound and an amine compound B are used in combination, the amount of each compound added is adjusted so that the content C1 of the piperazine compound represented by the above formula (1) satisfies the range of more than 0% and 5.5% or less, and the content C3 of the amine compound B satisfies the range of more than 0% and 35% or less.
 本明細書において、特記しない限り、操作および物性等の測定は室温(20℃以上25℃以下)/相対湿度40%RH以上50%RH以下の条件で行う。 In this specification, unless otherwise specified, operations and measurements of physical properties are performed under conditions of room temperature (20°C or higher and 25°C or lower)/relative humidity of 40% RH or higher and 50% RH or lower.
 [砥粒]
 本発明のいくつかの実施形態に係る研磨用組成物は、砥粒を含む。砥粒は、研磨対象物の表面を機械的に研磨する働きをする。砥粒の材質や性状は特に制限されず、研磨用組成物の使用目的や使用態様等に応じて適宜選択することができる。砥粒の例としては、無機粒子、有機粒子、および有機無機複合粒子が挙げられる。無機粒子の具体例としては、シリカ、アルミナ、酸化セリウム、酸化クロム、二酸化チタン、酸化ジルコニウム、酸化マグネシウム、二酸化マンガン、酸化亜鉛、ベンガラ等の酸化物からなる粒子;窒化ケイ素、窒化ホウ素粒子等の窒化物からなる粒子;炭化ケイ素、炭化ホウ素等の炭化物からなる粒子;ダイヤモンドからなる粒子;炭酸カルシウムや炭酸バリウム等の炭酸塩等が挙げられる。有機粒子の具体例としては、ポリメタクリル酸メチル(PMMA)粒子やポリ(メタ)アクリル酸粒子(ここで(メタ)アクリル酸とは、アクリル酸およびメタクリル酸を包括的に指す意味である)、ポリアクリロニトリル粒子等が挙げられる。このような砥粒は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
[Abrasive]
Polishing compositions according to some embodiments of the present invention comprise abrasive grains. Abrasive grains serve to mechanically polish the surface of an object to be polished. The material and properties of the abrasive grains are not particularly limited, and can be appropriately selected according to the intended use and mode of use of the polishing composition. Examples of abrasive grains include inorganic particles, organic particles, and organic-inorganic composite particles. Specific examples of inorganic particles include particles made of oxides such as silica, alumina, cerium oxide, chromium oxide, titanium dioxide, zirconium oxide, magnesium oxide, manganese dioxide, zinc oxide, and red iron oxide; particles made of nitrides such as silicon nitride and boron nitride particles; particles made of carbides such as silicon carbide and boron carbide; particles made of diamond; Specific examples of organic particles include polymethyl methacrylate (PMMA) particles, poly(meth)acrylic acid particles (here, (meth)acrylic acid refers to acrylic acid and methacrylic acid comprehensively), polyacrylonitrile particles, and the like. Such abrasive grains may be used singly or in combination of two or more.
 本発明のいくつかの実施形態に係る研磨用組成物は、砥粒としてシリカを含むことが好ましい。シリカの具体例としては、コロイダルシリカ、フュームドシリカ、沈降シリカ等が挙げられる。シリカは、1種単独でもまたは2種以上を組み合わせても用いることができる。研磨対象物表面にスクラッチを生じにくく、かつ良好な研磨性能(表面粗さを低下させる性能等)を発揮し得ることから、コロイダルシリカが特に好ましい。コロイダルシリカとしては、例えば、イオン交換法により水ガラス(珪酸Na)を原料として作製されたコロイダルシリカや、アルコキシド法により作製されたコロイダルシリカ(アルコキシシランの加水分解縮合反応により製造されたコロイダルシリカ)を好ましく採用することができる。コロイダルシリカは、1種単独でもまたは2種以上を組み合わせても用いることができる。 The polishing composition according to some embodiments of the present invention preferably contains silica as abrasive grains. Specific examples of silica include colloidal silica, fumed silica, precipitated silica, and the like. Silica can be used singly or in combination of two or more. Colloidal silica is particularly preferred because it is less likely to cause scratches on the surface of the object to be polished and can exhibit good polishing performance (such as performance to reduce surface roughness). As colloidal silica, for example, colloidal silica produced by ion exchange method using water glass (sodium silicate) as a raw material, and colloidal silica produced by alkoxide method (colloidal silica produced by hydrolytic condensation reaction of alkoxysilane) can be preferably employed. Colloidal silica can be used singly or in combination of two or more.
 シリカの真比重は、1.5以上であることが好ましく、より好ましくは1.6以上、さらに好ましくは1.7以上である。シリカの真比重の上限は特に限定されないが、典型的には2.3以下、例えば2.2以下である。シリカの真比重としては、置換液としてエタノールを用いた液体置換法による測定値を採用し得る。 The true specific gravity of silica is preferably 1.5 or more, more preferably 1.6 or more, and still more preferably 1.7 or more. Although the upper limit of the true specific gravity of silica is not particularly limited, it is typically 2.3 or less, for example 2.2 or less. As the true specific gravity of silica, a value measured by a liquid replacement method using ethanol as a replacement liquid can be adopted.
 コロイダルシリカの形状は、特に制限されず、球形状であってもよいし、非球形状であってもよい。非球形状の具体例としては、三角柱や四角柱などの多角柱状、円柱状、円柱の中央部が端部よりも膨らんだ俵状、円盤の中央部が貫通しているドーナツ状、板状、中央部にくびれを有するいわゆる繭状、複数の粒子が一体化しているいわゆる会合型球形状、表面に複数の突起を有するいわゆる金平糖形状、ラグビーボール形状等、種々の形状が挙げられ、特に制限されない。 The shape of colloidal silica is not particularly limited, and may be spherical or non-spherical. Specific examples of the non-spherical shape include polygonal prisms such as triangular prisms and square prisms, columnar shapes, bale shapes in which the central portion of the column swells more than the ends, donut shapes in which the central portion of the disc penetrates, plate shapes, so-called cocoon shapes with a constriction in the central portion, so-called associative spherical shapes in which multiple particles are integrated, so-called confetti shapes with multiple projections on the surface, rugby ball shapes, and various other shapes, but are not particularly limited.
 特に限定するものではないが、砥粒の長径/短径比の平均値(平均アスペクト比)は、原理的に1.0以上であり、好ましくは1.05以上、さらに好ましくは1.1以上である。平均アスペクト比の増大によって、より高い研磨レートが実現され得る。また、砥粒の平均アスペクト比は、スクラッチ低減等の観点から、好ましくは3.0以下であり、より好ましくは2.0以下、さらに好ましくは1.5以下である。 Although not particularly limited, the average value of the major axis/minor axis ratio (average aspect ratio) of the abrasive grains is theoretically 1.0 or more, preferably 1.05 or more, and more preferably 1.1 or more. A higher polishing rate can be achieved by increasing the average aspect ratio. Also, the average aspect ratio of the abrasive grains is preferably 3.0 or less, more preferably 2.0 or less, and still more preferably 1.5 or less from the viewpoint of reducing scratches.
 砥粒の形状(外形)や平均アスペクト比は、例えば、電子顕微鏡観察により把握することができる。平均アスペクト比を把握する具体的な手順としては、例えば、走査型電子顕微鏡(SEM)を用いて、独立した粒子の形状を認識できる所定個数(例えば200個)のシリカ粒子について、各々の粒子画像に外接する最小の長方形を描く。そして、各粒子画像に対して描かれた長方形について、その長辺の長さ(長径の値)を短辺の長さ(短径の値)で除した値を長径/短径比(アスペクト比)として算出する。上記所定個数の粒子のアスペクト比を算術平均することにより、平均アスペクト比を求めることができる。 The shape (outer shape) and average aspect ratio of abrasive grains can be grasped, for example, by electron microscope observation. As a specific procedure for grasping the average aspect ratio, for example, using a scanning electron microscope (SEM), for a predetermined number (for example, 200 pieces) of silica particles that can recognize the shape of independent particles, draw a minimum rectangle circumscribing each particle image. Then, for the rectangle drawn for each particle image, the value obtained by dividing the length of the long side (the value of the major axis) by the length of the short side (the value of the minor axis) is calculated as the major axis/minor axis ratio (aspect ratio). The average aspect ratio can be obtained by arithmetically averaging the aspect ratios of the predetermined number of particles.
 研磨用組成物中に含まれる砥粒は、一次粒子の形態であってもよく、複数の一次粒子が会合した二次粒子の形態であってもよい。また、一次粒子の形態の砥粒と二次粒子の形態の砥粒とが混在していてもよい。好ましい一態様では、少なくとも一部の砥粒が二次粒子の形態で研磨用組成物中に含まれている。 The abrasive grains contained in the polishing composition may be in the form of primary particles, or may be in the form of secondary particles in which a plurality of primary particles are associated. Further, the abrasive grains in the form of primary particles and the abrasive grains in the form of secondary particles may be mixed. In a preferred embodiment, at least part of the abrasive grains are contained in the polishing composition in the form of secondary particles.
 ここで、研磨対象物(特にはシリコンウェーハ)の表面は、一般に、ラッピング工程とポリシング工程とを経て高品質な鏡面に仕上げられる。そして、上記ポリシング工程は、通常、予備研磨工程(予備ポリシング工程、仕上げ研磨工程より前のポリシング工程)と仕上げ研磨工程(ファイナルポリシング工程)とを含む複数の研磨工程により構成されている。例えば、研磨対象物(特にはシリコンウェーハ)を大まかに研磨する段階(例えば、予備研磨工程)では加工力(研磨力)の高い研磨用組成物が使用され、より繊細に研磨する段階(例えば、仕上げ研磨工程)では研磨力の低い研磨用組成物が使用される傾向にある。このように、使用される研磨用組成物は、研磨工程ごとに求められる研磨特性が異なるため、研磨用組成物に含まれるシリカの粒子径およびその含有量は、その研磨用組成物が使用される研磨工程の段階に依存して、それぞれ異なったものが採用されうる。 Here, the surface of the object to be polished (especially a silicon wafer) is generally finished to a high-quality mirror surface through a lapping process and a polishing process. The polishing process is usually composed of a plurality of polishing processes including a preliminary polishing process (preliminary polishing process, a polishing process before the final polishing process) and a final polishing process (final polishing process). For example, a polishing composition with high processing power (polishing power) is used in the step of roughly polishing an object to be polished (especially a silicon wafer) (e.g., preliminary polishing step), and a polishing composition with low polishing power is used in the step of finely polishing (e.g., final polishing step). As described above, the polishing composition used has different polishing characteristics required for each polishing process, and thus the particle size and content of silica contained in the polishing composition may be different depending on the stage of the polishing process in which the polishing composition is used.
 このとき、砥粒の粒子径の増大によって、研磨対象物の表面を機械的に研磨しやすくなり、研磨速度が向上する傾向がある。一方、砥粒の粒子径の減少によって、研磨済研磨対象物のヘイズが低減しやすくなる傾向がある。 At this time, the increase in the particle size of the abrasive grains makes it easier to mechanically polish the surface of the object to be polished, and tends to improve the polishing rate. On the other hand, the reduction in the particle size of the abrasive grains tends to make it easier to reduce the haze of the polished object.
 本発明のいくつかの実施形態に係る研磨用組成物に含有される砥粒の平均一次粒子径は、特に制限されないが、5nm以上であることが好ましく、10nm以上であることがより好ましく、15nm以上であることがさらに好ましく、20nm以上(例えば20nm超)であることが特に好ましい。また、本発明のいくつかの実施形態に係る研磨用組成物に含有される砥粒の平均一次粒子径は、例えば100nm以下であり、80nm以下でもよく、60nm以下であることが好ましく、50nm以下であることがより好ましく、45nm以下であることがさらに好ましく、43nm以下であることが特に好ましい。いくつかの態様において、砥粒の平均一次粒子径は、40nm未満でもよく、38nm未満でもよく、35nm未満でもよく、32nm未満でもよく、30nm未満でもよい。 The average primary particle size of the abrasive grains contained in the polishing composition according to some embodiments of the present invention is not particularly limited, but is preferably 5 nm or more, more preferably 10 nm or more, even more preferably 15 nm or more, and particularly preferably 20 nm or more (for example, more than 20 nm). Further, the average primary particle size of the abrasive grains contained in the polishing composition according to some embodiments of the present invention is, for example, 100 nm or less, may be 80 nm or less, preferably 60 nm or less, more preferably 50 nm or less, more preferably 45 nm or less, and particularly preferably 43 nm or less. In some aspects, the average primary particle size of the abrasive grains may be less than 40 nm, less than 38 nm, less than 35 nm, less than 32 nm, or less than 30 nm.
 本発明のいくつかの実施形態に係る研磨用組成物に含有される砥粒の平均二次粒子径は、10nm以上であることが好ましく、20nm以上であることがより好ましく、30nm以上であることがさらに好ましく、35nm以上であることが特に好ましい。いくつかの態様において、砥粒の平均二次粒子径は、40nm以上であってもよく、42nm以上でもよく、44nm以上でもよい。また、本発明のいくつかの実施形態に係る研磨用組成物に含有される砥粒の平均二次粒子径は、例えば250nm以下であり、180nm以下でもよく、150nm以下でもよく、100nm以下であることが好ましく、90nm以下であることがより好ましく、80nm以下であることがさらに好ましい。いくつかの態様において、砥粒の平均二次粒子径は、70nm以下でもよく、60nm以下でもよく、50nm以下でもよい。 The average secondary particle size of the abrasive grains contained in the polishing composition according to some embodiments of the present invention is preferably 10 nm or more, more preferably 20 nm or more, even more preferably 30 nm or more, and particularly preferably 35 nm or more. In some aspects, the average secondary particle size of the abrasive grains may be 40 nm or more, 42 nm or more, or 44 nm or more. Further, the average secondary particle diameter of the abrasive grains contained in the polishing composition according to some embodiments of the present invention is, for example, 250 nm or less, may be 180 nm or less, may be 150 nm or less, or may be 100 nm or less. It is preferably 90 nm or less, and further preferably 80 nm or less. In some aspects, the average secondary particle size of the abrasive grains may be 70 nm or less, 60 nm or less, or 50 nm or less.
 なお、上記の砥粒の平均一次粒子径および平均二次粒子径の好ましい範囲は、その調製に用いられる原料分散液に含有される砥粒の平均一次粒子径および平均二次粒子径の好ましい範囲でもある。 The preferred ranges of the average primary particle size and average secondary particle size of the abrasive grains are also the preferred ranges of the average primary particle size and average secondary particle size of the abrasive grains contained in the raw material dispersion used for the preparation.
 本明細書において平均一次粒子径とは、BET法により測定される比表面積(BET値)から、平均一次粒子径(nm)=6000/(真密度(g/cm)×BET値(m/g))の式により算出される粒子径(BET粒子径)をいう。上記比表面積は、例えば、マイクロメリテックス社製の「Flow SorbII 2300」を用いて測定することができる。また、砥粒の平均二次粒子径は、例えば動的光散乱法により測定され、例えば、日機装株式会社製の「ナノトラック(登録商標)UPA-UT151」を用いて測定することができる。 As used herein, the average primary particle size refers to the particle size (BET particle size) calculated from the specific surface area (BET value) measured by the BET method, average primary particle size (nm) = 6000/(true density (g/cm 3 ) x BET value (m 2 /g)). The specific surface area can be measured using, for example, "Flow Sorb II 2300" manufactured by Micromeritex. The average secondary particle size of the abrasive grains is measured, for example, by a dynamic light scattering method, and can be measured using, for example, "Nanotrack (registered trademark) UPA-UT151" manufactured by Nikkiso Co., Ltd.
 また、上述のように、使用される研磨用組成物は、研磨工程ごとに求められる研磨特性が異なるため、研磨用組成物中の砥粒の含有量についても、その研磨用組成物が使用される研磨工程の段階に依存して、異なったものが採用されうる。 In addition, as described above, the polishing composition to be used has different polishing characteristics required for each polishing process, so the content of abrasive grains in the polishing composition may also vary depending on the stage of the polishing process in which the polishing composition is used.
 このとき、砥粒の含有量の増加によって、研磨対象物の表面に対する研磨速度が向上する傾向がある。一方、砥粒の含有量の減少によって、研磨用組成物の分散安定性が向上し、かつ、研磨された面の砥粒の残渣が低減する傾向がある。 At this time, the polishing rate for the surface of the object to be polished tends to improve due to the increase in the content of abrasive grains. On the other hand, a decrease in the content of abrasive grains tends to improve the dispersion stability of the polishing composition and reduce the residue of abrasive grains on the polished surface.
 本発明のいくつかの実施形態に係る研磨用組成物が分散媒等で希釈して研磨に用いられる濃縮液の状態である場合、当該濃縮液中における砥粒の含有量は、特に制限されないが、0.001質量%以上であることが好ましく、0.01質量%以上であることがより好ましく、0.025質量%以上であることがさらに好ましく、0.1質量%以上であることがよりさらに好ましく、0.5質量%以上であることが特に好ましく、1質量%以上であることがさらに特に好ましく、3質量%以上であることが最も好ましい。また、この場合、研磨用組成物の濃縮液中における砥粒の含有量は、特に制限されないが、保管安定性や濾過性等の観点から、50質量%以下であることが好ましく、20質量%以下であることがより好ましく、10質量%以下であることがさらに好ましく、9質量%以下であることが特に好ましい。 When the polishing composition according to some embodiments of the present invention is in the state of a concentrated liquid diluted with a dispersion medium or the like and used for polishing, the content of abrasive grains in the concentrated liquid is not particularly limited, but is preferably 0.001% by mass or more, more preferably 0.01% by mass or more, further preferably 0.025% by mass or more, even more preferably 0.1% by mass or more, particularly preferably 0.5% by mass or more, and particularly preferably 1% by mass or more. It is more particularly preferred that the content is 3% by mass or more, most preferably 3% by mass or more. In this case, the content of abrasive grains in the concentrated liquid of the polishing composition is not particularly limited, but from the viewpoint of storage stability, filterability, etc., it is preferably 50% by mass or less, more preferably 20% by mass or less, more preferably 10% by mass or less, and particularly preferably 9% by mass or less.
 また、本発明のいくつかの実施形態に係る研磨用組成物が希釈液の状態である場合、当該研磨用組成物中における砥粒の含有量は、特に制限されないが、研磨速度をより向上させるとの観点から、0.001質量%以上であることが好ましく、0.01質量%以上であることがより好ましく、0.025質量%以上であることがさらに好ましく、0.1質量%以上であることが特に好ましい。また、この場合、研磨用組成物中における砥粒の含有量は、特に制限されないが、例えば10質量%未満であり、7質量%未満でもよく、5質量%以下でもよく、2質量%以下でもよく、1質量%未満であることが好ましく、0.8質量%以下であることがより好ましく、0.6質量%以下であることがさらに好ましく、0.4質量%以下であることが特に好ましく、0.3質量%以下であることが最も好ましい。 In addition, when the polishing composition according to some embodiments of the present invention is in the form of a diluted solution, the content of abrasive grains in the polishing composition is not particularly limited, but from the viewpoint of further improving the polishing rate, it is preferably 0.001% by mass or more, more preferably 0.01% by mass or more, further preferably 0.025% by mass or more, and particularly preferably 0.1% by mass or more. In this case, the content of abrasive grains in the polishing composition is not particularly limited, but is, for example, less than 10% by mass, may be less than 7% by mass, may be 5% by mass or less, may be 2% by mass or less, is preferably less than 1% by mass, more preferably 0.8% by mass or less, further preferably 0.6% by mass or less, particularly preferably 0.4% by mass or less, and most preferably 0.3% by mass or less.
 上記研磨用組成物を希釈液にする場合、好ましい砥粒の含有量の調整は、研磨用組成物の濃縮液を水等の分散媒や、これに任意の研磨助剤が含まれた溶液または分散液などを用いて希釈することで行うことが好ましい。 When the above-mentioned polishing composition is used as a diluted solution, the preferable adjustment of the content of abrasive grains is preferably carried out by diluting the concentrated solution of the polishing composition with a dispersion medium such as water or a solution or dispersion containing any polishing aid.
 本発明のいくつかの実施形態に係る研磨用組成物は、シリカとシリカ以外の他の砥粒とを含んでいてもよい。ただし、本発明のいくつかの実施形態に係る研磨用組成物が希釈液の状態である場合、当該他の砥粒の含有量は、シリカと他の砥粒との合計質量に対して、5質量%以下であることが好ましく、3質量%以下であることがより好ましく、2質量%以下であることがさらに好ましく、1質量%以下であることが特に好ましい。最も好ましい形態は、他の砥粒の含有量が0質量%であること、すなわちシリカ以外の他の砥粒を含まない形態である。 The polishing composition according to some embodiments of the present invention may contain silica and abrasive grains other than silica. However, when the polishing composition according to some embodiments of the present invention is in the form of a diluted solution, the content of the other abrasive grains is preferably 5% by mass or less, more preferably 3% by mass or less, further preferably 2% by mass or less, and particularly preferably 1% by mass or less, relative to the total mass of silica and other abrasive grains. The most preferable form is a form in which the content of other abrasive grains is 0% by mass, that is, no abrasive grains other than silica are contained.
 [塩基性化合物]
 本発明のいくつかの実施形態において、研磨用組成物は、塩基性化合物を含む。ここで塩基性化合物とは、研磨用組成物に添加されることによって該研磨用組成物のpHを上昇させる機能を有する化合物を指す。塩基性化合物は、研磨対象物の面をエッチングにより化学的に研磨する働き、および砥粒の分散安定性を向上させる働きを有する。また、塩基性化合物は、pH調整剤として用いることができる。
[Basic compound]
In some embodiments of the invention, the polishing composition comprises a basic compound. Here, the basic compound refers to a compound having a function of increasing the pH of the polishing composition when added to the polishing composition. The basic compound has the function of chemically polishing the surface of the object to be polished by etching and the function of improving the dispersion stability of the abrasive grains. Basic compounds can also be used as pH adjusters.
 本発明に係る第1の研磨用組成物に含まれる塩基性化合物は、アンモニアおよびピペラジン化合物を含有し、上記式(1)で表されるピペラジン化合物の含有率C1が0%超5.5%以下である点に特徴を有する。 The basic compound contained in the first polishing composition according to the present invention contains ammonia and a piperazine compound, and is characterized in that the content C1 of the piperazine compound represented by the above formula (1) is more than 0% and 5.5% or less.
 本発明に係る第2の研磨用組成物に含まれる塩基性化合物は、アンモニア、および窒素原子を2つ以上有しかつpKaがアンモニアよりも高いアミン化合物Aを含有し、上記式(2)で表される該アミン化合物Aの含有率C2が0%超5.5%以下である点に特徴を有する。 The basic compound contained in the second polishing composition according to the present invention contains ammonia and an amine compound A having two or more nitrogen atoms and a pKa higher than that of ammonia, and is characterized in that the content C2 of the amine compound A represented by the above formula (2) is more than 0% and 5.5% or less.
 本発明に係る第3の研磨用組成物に含まれる塩基性化合物は、アンモニア、および窒素原子を1つ有しかつpKaがアンモニアよりも高いアミン化合物Bを含有し、該アミン化合物Bは第2級アミンまたは第3級アミンであり、上記式(3)で表される該アミン化合物Bの含有率C3が0%超35%以下である点に特徴を有する。 The basic compound contained in the third polishing composition according to the present invention contains ammonia and an amine compound B having one nitrogen atom and a higher pKa than ammonia, the amine compound B is a secondary amine or a tertiary amine, and is characterized in that the content C3 of the amine compound B represented by the above formula (3) is more than 0% and 35% or less.
 ここで、酸解離定数(pKa)とは、酸から水素イオンが放出される解離反応における平衡定数Kaの負の常用対数(逆数の対数)を意味する。塩基の酸解離定数は、その塩基の共役酸の酸解離定数である。本明細書において、アミン化合物(アミン化合物Aおよびアミン化合物B)のpKaは、アミン化合物の中和滴定曲線から算出される値を採用する。より具体的には、当該pKaは、実施例に記載の方法により測定されるアミン化合物の中和滴定曲線から算出される値を採用する。この方法により算出されるアンモニアのpKaは、9.35である。 Here, the acid dissociation constant (pKa) means the negative common logarithm (reciprocal logarithm) of the equilibrium constant Ka in the dissociation reaction in which hydrogen ions are released from the acid. The acid dissociation constant of a base is the acid dissociation constant of the conjugate acid of that base. In this specification, the pKa of the amine compounds (amine compound A and amine compound B) employs a value calculated from the neutralization titration curve of the amine compound. More specifically, the pKa employs a value calculated from a neutralization titration curve of an amine compound measured by the method described in Examples. The pKa of ammonia calculated by this method is 9.35.
 アミン化合物が複数のpKaを有する場合は、当該複数のpKaのうち最も高いpKaをその化合物のpKaとする。アミン化合物が単一のpKaを有する場合は、当該単一のpKaをその化合物のpKaとする。 When the amine compound has multiple pKas, the highest pKa among the multiple pKas is taken as the pKa of the compound. If the amine compound has a single pKa, then that single pKa is the pKa of the compound.
 <アンモニア>
 本発明のいくつかの実施形態に係る研磨用組成物は、塩基性化合物としてアンモニアを含む。研磨用組成物がアンモニアを含まない場合、すなわちアンモニアの含有量が0質量%の場合、エッチング速度が低下する。
<Ammonia>
Polishing compositions according to some embodiments of the present invention contain ammonia as a basic compound. When the polishing composition does not contain ammonia, that is, when the content of ammonia is 0% by mass, the etching rate decreases.
 上記式(1)~(3)で表されるピペラジン化合物またはアミン化合物の含有率Cが上記の範囲を満たす限りにおいて、研磨用組成物中のアンモニアの含有量Aは、特に制限されない。しかしながら、本発明のいくつかの実施形態に係る研磨用組成物が濃縮液の状態である場合、当該濃縮液中のアンモニアの含有量Aは、研磨用組成物の濃縮液の全質量に対して、0.001質量%以上であることが好ましく、0.01質量%以上であることがより好ましく、0.05質量%以上であることがさらに好ましい。また、本発明のいくつかの実施形態に係る研磨用組成物が濃縮液の状態である場合、アンモニアの含有量Aは、研磨用組成物の濃縮液の全質量に対して、1質量%以下であることが好ましく、0.5質量%以下であることがより好ましく、0.2質量%以下であることがさらに好ましい。 As long as the content C of the piperazine compound or amine compound represented by the above formulas (1) to (3) satisfies the above range, the content A of ammonia in the polishing composition is not particularly limited. However, when the polishing composition according to some embodiments of the present invention is in a concentrated liquid state, the content A of ammonia in the concentrated liquid is preferably 0.001% by mass or more, more preferably 0.01% by mass or more, and further preferably 0.05% by mass or more, relative to the total mass of the concentrated liquid of the polishing composition. Further, when the polishing composition according to some embodiments of the present invention is in the form of a concentrated liquid, the ammonia content A is preferably 1% by mass or less, more preferably 0.5% by mass or less, and further preferably 0.2% by mass or less, relative to the total mass of the concentrated liquid of the polishing composition.
 本発明のいくつかの実施形態に係る研磨用組成物が希釈液の状態である場合、研磨用組成物中のアンモニアの含有量Aは、研磨用組成物の全質量に対して、0.0001質量%以上であることが好ましく、0.0005質量%以上であることがより好ましく、0.001質量%以上であることがさらに好ましい。また、本発明のいくつかの実施形態に係る研磨用組成物が希釈液の状態である場合、アンモニアの含有量Aは、研磨用組成物の全質量に対して、1質量%以下であることが好ましく、0.5質量%以下であることがより好ましく、0.1質量%以下であることがさらに好ましい。なお、本発明のいくつかの実施形態に係る研磨用組成物に、後述する炭酸アンモニウム、炭酸水素アンモニウム等のアンモニウム塩が含まれる場合、アンモニアの含有量Aには、アンモニウム塩由来のアンモニウムイオンが水酸化物イオンと反応することで得られるアンモニアの含有量も含まれる。 When the polishing composition according to some embodiments of the present invention is in the form of a diluted solution, the content A of ammonia in the polishing composition is preferably 0.0001% by mass or more, more preferably 0.0005% by mass or more, and even more preferably 0.001% by mass or more, relative to the total mass of the polishing composition. Further, when the polishing composition according to some embodiments of the present invention is in the form of a diluted solution, the ammonia content A is preferably 1% by mass or less, more preferably 0.5% by mass or less, and even more preferably 0.1% by mass or less, relative to the total mass of the polishing composition. In addition, when the polishing composition according to some embodiments of the present invention contains an ammonium salt such as ammonium carbonate or ammonium hydrogen carbonate, which will be described later, the content A of ammonia includes the content of ammonia obtained by reacting ammonium ions derived from the ammonium salt with hydroxide ions.
 すなわち、本発明のいくつかの実施形態に係る研磨用組成物が希釈液の状態である場合、研磨用組成物中のアンモニアの含有量は、研磨用組成物の全質量に対して、0.0001質量%以上1質量%以下であることが好ましく、0.0005質量%以上0.5質量%以下であることがより好ましく、0.001質量%以上0.1質量%以下であることがさらに好ましい。 That is, when the polishing composition according to some embodiments of the present invention is in the form of a diluted solution, the content of ammonia in the polishing composition is preferably 0.0001% by mass or more and 1% by mass or less, more preferably 0.0005% by mass or more and 0.5% by mass or less, and even more preferably 0.001% by mass or more and 0.1% by mass or less.
 <ピペラジン化合物>
 本発明に係る第1の研磨用組成物は、ピペラジン化合物を含む。ピペラジン化合物は、研磨対象物(特にはシリコンウェーハ)の表面を酸化する役割を有するが、下記式(1)で表される含有率C1が0%超5.5%以下の範囲で研磨用組成物に添加されることにより、研磨対象物のエッチングを効率よく進め、研磨速度を向上させうる。
<Piperazine compound>
A first polishing composition according to the present invention contains a piperazine compound. The piperazine compound has a role of oxidizing the surface of the object to be polished (particularly a silicon wafer), and when added to the polishing composition in a range where the content C1 represented by the following formula (1) is more than 0% and 5.5% or less, etching of the object to be polished can be efficiently advanced and the polishing rate can be improved.
 上記式(1)中、A1は、第1の研磨用組成物中のアンモニアの含有量(単位:質量%)であり、B1は、研磨用組成物中のピペラジン化合物の含有量(単位:質量%)である。 In the above formula (1), A1 is the ammonia content (unit: mass%) in the first polishing composition, and B1 is the piperazine compound content (unit: mass%) in the polishing composition.
 上記ピペラジン化合物の含有率C1が0%の場合、すなわち、研磨用組成物がピペラジン化合物を含まない場合、研磨速度が低下する。一方、上記ピペラジン化合物の含有率C1が5.5%を超える場合、ピペラジン化合物によりエッチング速度が抑制されるため、研磨速度が低下する。ピペラジン化合物の含有率C1は、0.1%以上が好ましく、0.5%以上がより好ましく、1.0%以上がさらに好ましい。ピペラジン化合物の含有率C1は、5.0%以下が好ましく、4.5%以下がより好ましく、4.0%以下がさらに好ましく、3.0%以下が特に好ましい。 When the piperazine compound content C1 is 0%, that is, when the polishing composition does not contain a piperazine compound, the polishing rate decreases. On the other hand, when the content C1 of the piperazine compound exceeds 5.5%, the etching rate is suppressed by the piperazine compound, resulting in a decrease in the polishing rate. The piperazine compound content C1 is preferably 0.1% or more, more preferably 0.5% or more, and even more preferably 1.0% or more. The piperazine compound content C1 is preferably 5.0% or less, more preferably 4.5% or less, even more preferably 4.0% or less, and particularly preferably 3.0% or less.
 すなわち、ピペラジン化合物の含有率C1は、0.1%以上5.0%以下が好ましく、0.5%以上4.5%以下がより好ましく、1.0%以上4.0%以下がさらに好ましく、1.0%以上3.0%以下が特に好ましい。 That is, the content C1 of the piperazine compound is preferably 0.1% or more and 5.0% or less, more preferably 0.5% or more and 4.5% or less, further preferably 1.0% or more and 4.0% or less, and particularly preferably 1.0% or more and 3.0% or less.
 ピペラジン化合物は、ピペラジン骨格(ピペラジン環)を有する化合物であれば特に制限されない。ピペラジン化合物の具体例としては、例えば、無水ピペラジン、ピペラジン六水和物、1-メチルピペラジン、2-メチルピペラジン、1-エチルピペラジン、2-エチルピペラジン、1-(n-プロピル)ピペラジン、2-(n-プロピル)ピペラジン、1-イソプロピルピペラジン、1-アリルピペラジン、1-(n-ブチル)ピペラジン、1-イソブチルピペラジン、1-ヒドロキシエトキシエチルピペラジン、1-フェニルピペラジン、1-アミノピペラジン、1-アミノ-4-メチルピペラジン、1-(2-ヒドロキシエチル)ピペラジン、1-ピペラジンカルボン酸エチル、1-ホルミルピペラジン、1-アセチルピペラジン、1-シクロペンチルピペラジン、1-シクロヘキシルピペラジン、1-(2-メトキシエチル)ピペラジン、1-ピペロニルピペラジン、1-(ジフェニルメチル)ピペラジン、2-ピペラジノン、1-メチル-3-フェニルピペラジン、1,4-ビス(3-アミノプロピル)ピペラジン、1-(2-ジメチルアミノエチル)-4-メチルピペラジン、1-(2-アミノエチル)ピペラジン、1,4-ビス(3-アミノプロピル)ピペラジン、1,4-ジメチルピペラジン、2,5-ジメチルピペラジン、2,6-ジメチルピペラジン、1,4-ジエチルピペラジン、1,4-ジメチルピペラジン-2-オン、1,4-ジエチルピペラジン-2-オン、1,4-ジホルミルピペラジン、1-(4-アミノフェニル)-4-メチルピペラジン、1,4-ジアセチル-2,5-ピペラジンジオン、1-メチル-4-(1,4’-ビピペラジン-4-イル)ピペラジン、1-(4-アミノフェニル)-4-(4-メトキシフェニル)ピペラジン、1,4-ジメチルピペラジン-2,3-ジオン、2-ピペラジンカルボン酸等が挙げられる。これらピペラジン化合物は、1種単独でもまたは2種以上を組み合わせても用いることができる。 The piperazine compound is not particularly limited as long as it is a compound having a piperazine skeleton (piperazine ring). Specific examples of piperazine compounds include anhydrous piperazine, piperazine hexahydrate, 1-methylpiperazine, 2-methylpiperazine, 1-ethylpiperazine, 2-ethylpiperazine, 1-(n-propyl)piperazine, 2-(n-propyl)piperazine, 1-isopropylpiperazine, 1-allylpiperazine, 1-(n-butyl)piperazine, 1-isobutylpiperazine. , 1-hydroxyethoxyethylpiperazine, 1-phenylpiperazine, 1-aminopiperazine, 1-amino-4-methylpiperazine, 1-(2-hydroxyethyl)piperazine, 1-piperazineethylcarboxylate, 1-formylpiperazine, 1-acetylpiperazine, 1-cyclopentylpiperazine, 1-cyclohexylpiperazine, 1-(2-methoxyethyl)piperazine, 1-piperonylpiperazine Lazin, 1-(diphenylmethyl)piperazine, 2-piperazinone, 1-methyl-3-phenylpiperazine, 1,4-bis(3-aminopropyl)piperazine, 1-(2-dimethylaminoethyl)-4-methylpiperazine, 1-(2-aminoethyl)piperazine, 1,4-bis(3-aminopropyl)piperazine, 1,4-dimethylpiperazine, 2,5-dimethylpiperazine, 2,6-dimethyl Piperazine, 1,4-diethylpiperazine, 1,4-dimethylpiperazin-2-one, 1,4-diethylpiperazin-2-one, 1,4-diformylpiperazine, 1-(4-aminophenyl)-4-methylpiperazine, 1,4-diacetyl-2,5-piperazinedione, 1-methyl-4-(1,4'-bipiperazin-4-yl)piperazine, 1-(4 -aminophenyl)-4-(4-methoxyphenyl)piperazine, 1,4-dimethylpiperazine-2,3-dione, 2-piperazinecarboxylic acid and the like. These piperazine compounds can be used singly or in combination of two or more.
 これらピペラジン化合物の中でも、1-メチルピペラジン、1-(2-アミノエチル)ピペラジン、1,4-ジメチルピペラジン、および1,4-ビス(3-アミノプロピル)ピペラジンからなる群より選択される少なくとも1種であることが好ましい。 Among these piperazine compounds, at least one selected from the group consisting of 1-methylpiperazine, 1-(2-aminoethyl)piperazine, 1,4-dimethylpiperazine, and 1,4-bis(3-aminopropyl)piperazine is preferred.
 第1の研磨用組成物中のピペラジン化合物の含有量B1は、上記式(1)で表されるピペラジン化合物の含有率C1が0%超5.5%以下である限りにおいて、特に制限されない。 The content B1 of the piperazine compound in the first polishing composition is not particularly limited as long as the content C1 of the piperazine compound represented by the above formula (1) is more than 0% and 5.5% or less.
 しかしながら、本発明に係る第1の研磨用組成物が濃縮液の状態である場合、当該濃縮液中のピペラジン化合物の含有量B1は、第1の研磨用組成物の濃縮液の全質量に対して、0.000001質量%以上であることが好ましく、0.00001質量%以上であることがより好ましく、0.00005質量%以上であることが特に好ましい。また、本発明に係る第1の研磨用組成物が濃縮液の状態である場合、ピペラジン化合物の含有量B1は、第1の研磨用組成物の濃縮液の全質量に対して、0.1質量%以下であることが好ましく、0.01質量%以下であることがより好ましく、0.008質量%以下であることが特に好ましい。 However, when the first polishing composition according to the present invention is in the form of a concentrate, the content B1 of the piperazine compound in the concentrate is preferably 0.000001% by mass or more, more preferably 0.00001% by mass or more, and particularly preferably 0.00005% by mass or more, relative to the total mass of the concentrate of the first polishing composition. Further, when the first polishing composition according to the present invention is in the form of a concentrated liquid, the content B1 of the piperazine compound is preferably 0.1% by mass or less, more preferably 0.01% by mass or less, and particularly preferably 0.008% by mass or less, relative to the total mass of the concentrated liquid of the first polishing composition.
 すなわち、本発明に係る第1の研磨用組成物が濃縮液の状態である場合、研磨用組成物中のピペラジン化合物の含有量B1は、第1の研磨用組成物の全質量に対して、0.000001質量%以上0.1質量%以下であることが好ましく、0.00001質量%以上0.01質量%以下であることがより好ましく、0.00005質量%以上0.008質量%以下であることが特に好ましい。 That is, if the first polishing composition according to the present invention is the condition of the concentrated solution, the content B1 of the piperadin compound in the polishing composition is preferably 0.001 % % by mass or less of 0.1 % by mass of 0.001001 % by mass, 0.001 % % by mass. It is more preferable to be 1 % by mass or less, and it is particularly preferable to be 0.00005 % by mass or less of 0.008 % by mass or less.
 また、本発明に係る第1の研磨用組成物が希釈液の状態である場合、研磨用組成物中のピペラジン化合物の含有量B1は、第1の研磨用組成物の全質量に対して、0.0000001質量%以上であることが好ましく、0.0000005質量%以上であることがより好ましく、0.000001質量%以上であることがさらに好ましく、0.000004質量%以上であることが特に好ましい。また、本発明に係る第1の研磨用組成物が希釈液の状態である場合、ピペラジン化合物の含有量B1は、第1の研磨用組成物の全質量に対して、例えば0.1質量%以下であり、0.05質量%以下でもよく、0.01質量%以下であることが好ましく、0.005質量%以下であることがより好ましく、0.001質量%以下であることがさらに好ましく、0.0005質量%以下であることが特に好ましい。 Further, if the first polishing composition according to the present invention is in the diluted liquid, the content B1 of the piperadin compound in the polishing composition is preferably 0.001 % by mass or more, compared to the total amount of the first polishing composition, and it is more preferable to be 0.0000,000 % by mass or more. It is even more preferable to be 001 % by mass or more, and it is particularly preferable to be 0.00004 % by mass or more. Further, when the first polishing composition according to the present invention is in the form of a diluted solution, the content B1 of the piperazine compound is, for example, 0.1% by mass or less, may be 0.05% by mass or less, preferably 0.01% by mass or less, more preferably 0.005% by mass or less, further preferably 0.001% by mass or less, and particularly preferably 0.0005% by mass or less, relative to the total mass of the first polishing composition.
 すなわち、本発明に係る第1の研磨用組成物が希釈液の状態である場合、第1の研磨用組成物中のピペラジン化合物の含有量B1は、第1の研磨用組成物の全質量に対して、0.0000001質量%以上0.01質量%以下であることが好ましく、0.0000005質量%以上0.005質量%以下であることがより好ましく、0.000001質量%以上0.001質量%以下であることがさらに好ましく、0.000004質量%以上0.0005質量%以下であることが特に好ましい。 That is, when the first polishing composition according to the present invention is in the form of a diluted solution, the content B1 of the piperazine compound in the first polishing composition is preferably 0.0000001% by mass or more and 0.01% by mass or less, more preferably 0.0000005% by mass or more and 0.005% by mass or less, and more preferably 0.0000001% by mass or more and 0.001% by mass or less, relative to the total mass of the first polishing composition. It is more preferably not more than 0.000004% by mass, and particularly preferably 0.000004% by mass or more and 0.0005% by mass or less.
 <アミン化合物A>
 本発明の第2の形態に係る研磨用組成物は、窒素原子を2つ以上有しかつpKaがアンモニアよりも高いアミン化合物Aを含み、該アミン化合物Aの下記式(2)で表される含有率C2が0%超5.5%以下の範囲である。アミン化合物Aがこのような範囲で、研磨用組成物に添加されることにより、研磨対象物のエッチングを効率よく進め、研磨速度を向上させうる。
<Amine compound A>
The polishing composition according to the second aspect of the present invention includes an amine compound A having two or more nitrogen atoms and a pKa higher than that of ammonia, and the content C2 of the amine compound A represented by the following formula (2) is in the range of more than 0% and 5.5% or less. By adding the amine compound A in such a range to the polishing composition, the etching of the object to be polished can be efficiently advanced and the polishing rate can be improved.
 上記式(2)中、A2は、第2の研磨用組成物中のアンモニアの含有量(単位:質量%)であり、B2は、第2の研磨用組成物中のアミン化合物Aの含有量(単位:質量%)である。 In the above formula (2), A2 is the content of ammonia (unit: % by mass) in the second polishing composition, and B2 is the content of amine compound A in the second polishing composition (unit: % by mass).
 第2の研磨用組成物において、上記アミン化合物Aの含有率C2が0%の場合、研磨速度が低下する。一方、第2の研磨用組成物において、上記アミン化合物Aの含有率C2が5.5%を超える場合、エッチング速度が抑制されるため、研磨速度が低下する。第2の研磨用組成物において、アミン化合物Aの含有率C2は、0.1%以上が好ましく、0.5%以上がより好ましく、1.0%以上がさらに好ましい。また、第2の研磨用組成物において、アミン化合物Aの含有率C2は、5.0%以下が好ましく、4.5%以下がより好ましく、4.0%以下がさらに好ましく、3.0%以下が特に好ましい。 When the content C2 of the amine compound A is 0% in the second polishing composition, the polishing rate is lowered. On the other hand, when the content C2 of the amine compound A in the second polishing composition exceeds 5.5%, the etching rate is suppressed, resulting in a decrease in polishing rate. In the second polishing composition, the content C2 of the amine compound A is preferably 0.1% or more, more preferably 0.5% or more, even more preferably 1.0% or more. In the second polishing composition, the content C2 of the amine compound A is preferably 5.0% or less, more preferably 4.5% or less, even more preferably 4.0% or less, and particularly preferably 3.0% or less.
 すなわち、第2の研磨用組成物において、アミン化合物Aの含有率C2は、0.1%以上5.0%以下が好ましく、0.5%以上4.5%以下がより好ましく、1.0%以上4.0%以下がさらに好ましく、1.0%以上3.0%以下が特に好ましい。 That is, in the second polishing composition, the content C2 of the amine compound A is preferably 0.1% or more and 5.0% or less, more preferably 0.5% or more and 4.5% or less, further preferably 1.0% or more and 4.0% or less, and particularly preferably 1.0% or more and 3.0% or less.
 アミン化合物AのpKaは、本発明の効果がより発揮されるという観点から、9.5以上であることが好ましく、9.7以上であることがより好ましく、9.8以上であることがさらに好ましい。同様の観点から、アミン化合物AのpKaは、好ましくは14.0以下であることが好ましく、13.0以下であることがより好ましく、12.0以下であることがさらに好ましい。すなわち、アミン化合物AのpKaは、9.5以上14.0以下であることが好ましく、9.7以上13.0以下であることがより好ましく、9.8以上12.0以下であることがさらに好ましい。 The pKa of amine compound A is preferably 9.5 or more, more preferably 9.7 or more, and even more preferably 9.8 or more, from the viewpoint that the effects of the present invention are more exhibited. From the same point of view, the pKa of amine compound A is preferably 14.0 or less, more preferably 13.0 or less, and even more preferably 12.0 or less. That is, the pKa of amine compound A is preferably 9.5 or more and 14.0 or less, more preferably 9.7 or more and 13.0 or less, and even more preferably 9.8 or more and 12.0 or less.
 アミン化合物Aとしては、窒素原子を2つ以上有し、かつpKaがアンモニアよりも高ければ、脂肪族アミン、脂環式アミン、芳香族アミン、複素環式アミン、グアニジン類、ピグアニド類等を特に制限なく用いることができる。また、アミン化合物Aが有するアミノ基は、第1級アミノ基、第2級アミノ基、第3級アミノ基等、特に制限されるものではなく、これらの組み合わせを有していてもよい。さらに、アミン化合物Aは、ヒドロキシ基等の置換基を有していてもよい。アミン化合物Aの窒素原子数は、2以上であれば特に限定されるものではなく、3以上でもよく、4以上でもよく、5以上でもよく、10以上でもよい。アミン化合物Aの窒素原子数は、20以下でもよく、15以下でもよく、8以下でもよく、6以下でもよく、4以下でもよく、3以下でもよい。なお、アミン化合物Aのうち、ピペラジン骨格(ピペラジン環)を有する化合物は、第1の研磨用組成物に含まれるピペラジン化合物に分類するものとする。 As the amine compound A, aliphatic amines, alicyclic amines, aromatic amines, heterocyclic amines, guanidines, piguanides, and the like can be used without particular limitation as long as they have two or more nitrogen atoms and have a pKa higher than that of ammonia. Moreover, the amino group of the amine compound A is not particularly limited and may be a primary amino group, a secondary amino group, a tertiary amino group, or the like, and may have a combination thereof. Furthermore, the amine compound A may have a substituent such as a hydroxy group. The number of nitrogen atoms in the amine compound A is not particularly limited as long as it is 2 or more, and may be 3 or more, 4 or more, 5 or more, or 10 or more. The number of nitrogen atoms in the amine compound A may be 20 or less, 15 or less, 8 or less, 6 or less, 4 or less, or 3 or less. Among amine compounds A, compounds having a piperazine skeleton (piperazine ring) are classified as piperazine compounds contained in the first polishing composition.
 脂肪族アミンは、分岐構造を有するアミンであってもよく、分岐構造を有しないアミン(直鎖構造のアミン)であってもよい。脂肪族アミンは、二重結合や三重結合を含まない飽和であってもよく、不飽和であってもよい。脂肪族アミンの炭素原子数は、1以上であれば特に限定されるものではないが、2以上でもよく、3以上でもよく、5以上でもよく、10以上でもよく、15以上でもよい。脂肪族アミンの炭素原子数は、30以下でもよく、20以下でもよく、15以下でもよく、10以下でもよく、5以下でもよい。 The aliphatic amine may be an amine having a branched structure or an amine having no branched structure (linear amine). Aliphatic amines may be saturated, containing no double or triple bonds, or unsaturated. The number of carbon atoms in the aliphatic amine is not particularly limited as long as it is 1 or more, but may be 2 or more, 3 or more, 5 or more, 10 or more, or 15 or more. The number of carbon atoms in the aliphatic amine may be 30 or less, 20 or less, 15 or less, 10 or less, or 5 or less.
 脂環式アミンとしては、1または複数の炭素環を含むアミンが挙げられる。上記炭素環は、環内に二重結合や三重結合を含まない飽和環であってもよいし、部分飽和環または不飽和環であってもよい。炭素環を構成する原子数は、3以上でもよく、4以上でもよく、5以上でもよく、6以上でもよい。炭素環を構成する原子数は、15以下でもよく、10以下でもよく、8以下でもよく、7以下でもよく、6以下でもよい。 Alicyclic amines include amines containing one or more carbocyclic rings. The above carbocyclic ring may be a saturated ring containing no double bond or triple bond in the ring, a partially saturated ring or an unsaturated ring. The number of atoms constituting the carbocyclic ring may be 3 or more, 4 or more, 5 or more, or 6 or more. The number of atoms constituting the carbocyclic ring may be 15 or less, 10 or less, 8 or less, 7 or less, or 6 or less.
 芳香族アミンとしては、1または複数の芳香環(但し、複素環を除く)を有するアミンが挙げられる。芳香環としてはベンゼン環、ナフタレン環等が挙げられる。本明細書において、芳香族アミンには、複素環式アミンが含まれないものとする。 Aromatic amines include amines having one or more aromatic rings (excluding heterocycles). A benzene ring, a naphthalene ring, etc. are mentioned as an aromatic ring. As used herein, aromatic amines shall not include heterocyclic amines.
 複素環式アミンとしては、1または複数の複素環を含むアミンが挙げられる。複素環は、環内に窒素原子、酸素原子および硫黄原子から独立に選択されるヘテロ原子を含む。複素環に含まれるヘテロ原子の数は、1以上であれば特に限定されるものではないが、2以上でもよく、3以上でもよい。複素環に含まれるヘテロ原子の数は、5以下でもよく、4以下でもよく、3以下でもよい。複素環は、環内に二重結合や三重結合を含まない飽和環であってもよいし、部分飽和環または不飽和環であってもよい。複素環は、芳香環であってもよいし、非芳香環であってもよい。複素環を構成する原子数は、3以上でもよく、4以上でもよく、5以上でもよく、6以上でもよい。複素環を構成する原子数は、15以下でもよく、10以下でもよく、8以下でもよく、7以下でもよく、6以下でもよい。 Heterocyclic amines include amines containing one or more heterocycles. Heterocycles contain heteroatoms independently selected from nitrogen, oxygen and sulfur atoms within the ring. The number of heteroatoms contained in the heterocyclic ring is not particularly limited as long as it is 1 or more, but may be 2 or more or 3 or more. The number of heteroatoms contained in the heterocyclic ring may be 5 or less, 4 or less, or 3 or less. A heterocyclic ring may be a saturated ring containing no double or triple bond in the ring, a partially saturated ring or an unsaturated ring. A heterocycle may be an aromatic ring or a non-aromatic ring. The number of atoms constituting the heterocyclic ring may be 3 or more, 4 or more, 5 or more, or 6 or more. The number of atoms constituting the heterocyclic ring may be 15 or less, 10 or less, 8 or less, 7 or less, or 6 or less.
 アミン化合物Aの具体例としては、例えば、エチレンジアミン、プロピレンジアミン(1,2-ジアミノプロパン)、トリメチレンジアミン(1,3-ジアミノプロパン)、テトラメチレンジアミン(1,4-ジアミノブタン)、ペンタメチレンジアミン(1,5-ジアミノペンタン)、ヘキサメチレンジアミン(1,6-ジアミノヘキサン)、ヘプタメチレンジアミン(1,7-ジアミノヘプタン)、オクタメチレンジアミン(1,8-ジアミノオクタン)、ノナメチレンジアミン(1,9-ジアミノノナン)、デカメチレンジアミン(1,10-ジアミノデカン)、N-メチル-1,3-プロパンジアミン、3-ジメチルアミノ-1-プロピルアミン、3-ジエチルアミノ-1-プロピルアミン、3-ジブチルアミノ-1-プロピルアミン、N,N,N’,N’-テトラメチルエチレンジアミン(TMEDA)、N,N,N’,N’-テトラメチル-1,3-プロパンジアミン(TMPDA)等の脂肪族アミン類;シクロブタンジアミン、イソホロンジアミン、ビシクロ[2,2,1]ヘプタンビスメチルアミン、トリシクロ[3,3,1,13,7]デカン-1,3-ジアミン、trans-1,2-シクロヘキシルジアミン、cis-1,2-シクロヘキシルジアミン、trans-1,3-シクロヘキシルジアミン、cis-1,3-シクロヘキシルジアミン、trans-1,4-シクロへキシルジアミン(pKa:10.73)、cis-1,4-シクロへキシルジアミン、4,4’-ジアミノジシクロヘキシルメタン、3,3’-ジメチル-4,4’-ジアミノジシクロヘキシルメタン、3,3’-ジエチル-4,4’-ジアミノジシクロヘキシルメタン、3,3’,5,5’-テトラメチル-4,4’-ジアミノジシクロヘキシルメタン、3,3’,5,5’-テトラエチル-4,4’-ジアミノジシクロヘキシルメタン、3,5-ジエチル-3’,5’-ジメチル-4,4’-ジアミノジシクロヘキシルメタン、4,4’-ジアミノジシクロヘキシルエーテル、3,3’-ジメチル-4,4’-ジアミノジシクロヘキシルエーテル、3,3’-ジエチル-4,4’-ジアミノジシクロヘキシルエーテル、3,3’,5,5’-テトラメチル-4,4’-ジアミノジシクロヘキシルエーテル、3,3’,5,5’-テトラエチル-4,4’-ジアミノジシクロヘキシルエーテル、3,5-ジエチル-3’,5’-ジメチル-4,4’-ジアミノジシクロヘキシルエーテル、2,2-ビス(4-アミノシクロヘキシル)プロパン、2,2-ビス(3-メチル-4-アミノシクロヘキシル)プロパン、2,2-ビス(3-エチル-4-アミノシクロヘキシル)プロパン、2,2-ビス(3,5-ジメチル-4-アミノシクロヘキシル)プロパン、2,2-ビス(3,5-ジエチル-4-アミノシクロヘキシル)プロパン、2,2-(3,5-ジエチル-3’,5’-ジメチル-4,4’-ジアミノジシクロヘキシル)プロパン等の脂環式アミン類;グアニジン、2-アミノグアニジン、ジフェニルグアニジン等のグアニジン類;ブチルビグアニド、1-フェニルピグアニド、1-o-トリルビグアニド等のビグアニド類;m-キシリレンジアミン等の芳香族アミン類;1,8-ジアザビシクロ[5.4.0]-7-ウンデセン(DBU)、1,5-ジアザビシクロ[4.3.0]-5-ノネン(DBN)、N-(3-アミノプロピル)モルホリン、4-ジメチルアミノピリジン(DMAP)等の複素環式アミン類;等が挙げられるが、これらに限定されるものではない。 Specific examples of the amine compound A include ethylenediamine, propylenediamine (1,2-diaminopropane), trimethylenediamine (1,3-diaminopropane), tetramethylenediamine (1,4-diaminobutane), pentamethylenediamine (1,5-diaminopentane), hexamethylenediamine (1,6-diaminohexane), heptamethylenediamine (1,7-diaminoheptane), octamethylenediamine (1,8-diaminooc tan), nonamethylenediamine (1,9-diaminononane), decamethylenediamine (1,10-diaminodecane), N-methyl-1,3-propanediamine, 3-dimethylamino-1-propylamine, 3-diethylamino-1-propylamine, 3-dibutylamino-1-propylamine, N,N,N',N'-tetramethylethylenediamine (TMEDA), N,N,N',N'-tetramethyl-1,3-propanediamine ( TMPDA) and other aliphatic amines; cyclobutanediamine, isophoronediamine, bicyclo[2,2,1]heptanebismethylamine, tricyclo[3,3,1,13,7] Decane-1,3-diamine, trans-1,2-cyclohexyldiamine, cis-1,2-cyclohexyldiamine, trans-1,3-cyclohexyldiamine, cis-1,3-cyclohexyldiamine, trans-1,4-cyclohexyldiamine (pKa: 10.73), cis-1,4-cyclohexyldiamine, 4,4'-diaminodicyclohexyl Methane, 3,3'-dimethyl-4,4'-diaminodicyclohexylmethane, 3,3'-diethyl-4,4'-diaminodicyclohexylmethane, 3,3',5,5'-tetramethyl-4,4'-diaminodicyclohexylmethane, 3,3',5,5'-tetraethyl-4,4'-diaminodicyclohexylmethane, 3,5-diethyl-3',5'-dimethyl-4,4'-diaminodicyclohexylmethane Hexylmethane, 4,4'-diaminodicyclohexyl ether, 3,3'-dimethyl-4,4'-diaminodicyclohexyl ether, 3,3'-diethyl-4,4'-diaminodicyclohexyl ether, 3,3',5,5'-tetramethyl-4,4'-diaminodicyclohexyl ether, 3,3',5,5'-tetraethyl-4,4'-diaminodicyclohexyl ether, 3,5-diethyl- 3',5'-dimethyl-4,4'-diaminodicyclohexyl ether, 2,2-bis(4-aminocyclohexyl)propane, 2,2-bis(3-methyl-4-aminocyclohexyl)propane, 2,2-bis(3-ethyl-4-aminocyclohexyl)propane, 2,2-bis(3,5-dimethyl-4-aminocyclohexyl)propane, 2,2-bis(3,5-diethyl-4-aminocyclohexyl) i) alicyclic amines such as propane and 2,2-(3,5-diethyl-3',5'-dimethyl-4,4'-diaminodicyclohexyl)propane; guanidines such as guanidine, 2-aminoguanidine and diphenylguanidine; biguanides such as butylbiguanide, 1-phenylpiguanide and 1-o-tolylbiguanide; Heterocyclic amines such as cyclo[5.4.0]-7-undecene (DBU), 1,5-diazabicyclo[4.3.0]-5-nonene (DBN), N-(3-aminopropyl)morpholine, 4-dimethylaminopyridine (DMAP); and the like, but are not limited thereto.
 アミン化合物Aは、1種単独でも、または2種以上を組み合わせても使用することができる。 Amine compound A can be used alone or in combination of two or more.
 これらアミン化合物Aの中でも、trans-1,2-シクロヘキシルジアミン(pKa:10.00)、およびエチレンジアミン(pKa:10.03)からなる群より選択される少なくとも1種が好ましい。 Among these amine compounds A, at least one selected from the group consisting of trans-1,2-cyclohexyldiamine (pKa: 10.00) and ethylenediamine (pKa: 10.03) is preferable.
 第2の研磨用組成物中のアミン化合物Aの含有量B2は、上記式(2)で表されるアミン化合物Aの含有率C2が0%超5.5%以下である限りにおいて、特に制限されない。 The content B2 of the amine compound A in the second polishing composition is not particularly limited as long as the content C2 of the amine compound A represented by the above formula (2) is more than 0% and 5.5% or less.
 しかしながら、本発明に係る第2の研磨用組成物が濃縮液の状態である場合、当該濃縮液中のアミン化合物Aの含有量B2は、第2の研磨用組成物の濃縮液の全質量に対して、0.000001質量%以上であることが好ましく、0.00001質量%以上であることがより好ましく、0.00005質量%以上であることがより好ましく、0.0001質量%以上であることがさらに好ましく、0.0005質量%以上であることが特に好ましい。また、本発明に係る第2の研磨用組成物が濃縮液の状態である場合、アミン化合物Aの含有量B2は、第2の研磨用組成物の濃縮液の全質量に対して、0.1質量%以下であることが好ましく、0.01質量%以下であることがより好ましく、0.008質量%以下であることが特に好ましい。 However, when the second polishing composition according to the present invention is in the form of a concentrated liquid, the content B2 of the amine compound A in the concentrated liquid is preferably 0.000001% by mass or more, more preferably 0.00001% by mass or more, more preferably 0.00005% by mass or more, further preferably 0.0001% by mass or more, and further preferably 0.0000% by mass. 5% by mass or more is particularly preferred. Further, when the second polishing composition according to the present invention is in the form of a concentrated liquid, the content B2 of the amine compound A is preferably 0.1% by mass or less, more preferably 0.01% by mass or less, and particularly preferably 0.008% by mass or less, relative to the total mass of the concentrated liquid of the second polishing composition.
 また、本発明に係る第2の研磨用組成物が希釈液の状態である場合、第2の研磨用組成物中のアミン化合物Aの含有量B2は、第2の研磨用組成物の全質量に対して、0.000001質量%以上であることが好ましく、0.000005質量%以上であることがより好ましく、0.00001質量%以上であることがさらに好ましく、0.00004質量%であることが特に好ましい。また、本発明に係る第2の研磨用組成物が希釈液の状態である場合、アミン化合物Aの含有量B2は、第2の研磨用組成物の全質量に対して、例えば0.1質量%以下であり、0.05質量%以下でもよく、0.01質量%以下であることが好ましく、0.005質量%以下であることがより好ましく、0.001質量%以下であることがさらに好ましく、0.0005質量%以下であることが特に好ましい。 Further, when the second polishing composition according to the present invention is in the form of a diluted solution, the content B2 of the amine compound A in the second polishing composition is preferably 0.000001% by mass or more, more preferably 0.000005% by mass or more, further preferably 0.00001% by mass or more, and particularly preferably 0.00004% by mass, relative to the total mass of the second polishing composition. When the second polishing composition according to the present invention is in the form of a diluted solution, the content B2 of the amine compound A is, for example, 0.1% by mass or less, may be 0.05% by mass or less, preferably 0.01% by mass or less, more preferably 0.005% by mass or less, further preferably 0.001% by mass or less, and particularly preferably 0.0005% by mass or less, relative to the total mass of the second polishing composition.
 すなわち、本発明に係る第2の研磨用組成物が希釈液の状態である場合、第2の研磨用組成物中のアミン化合物Aの含有量B2は、第2の研磨用組成物の全質量に対して、0.000001質量%以上0.01質量%以下であることが好ましく、0.000005質量%以上0.005質量%以下であることがより好ましく、0.00001質量%以上0.001質量%以下であることがさらに好ましく、0.00004質量%以上0.0005質量%以下であることが特に好ましい。 That is, when the second polishing composition according to the present invention is in the form of a diluted solution, the content B2 of the amine compound A in the second polishing composition is preferably 0.000001% by mass or more and 0.01% by mass or less, more preferably 0.000005% by mass or more and 0.005% by mass or less, and 0.00001% by mass or more and 0.001% by mass or less, relative to the total mass of the second polishing composition. More preferably, it is particularly preferably 0.00004% by mass or more and 0.0005% by mass or less.
 <アミン化合物B>
 本発明の第2の形態に係る研磨用組成物は、窒素原子を1つ有しかつpKaがアンモニアよりも高い、第2級アミンまたは第3級アミンであるアミン化合物Bを含み、該アミン化合物Bの下記式(3)で表される含有率C3が0%超35%以下の範囲である。アミン化合物Bがこのような範囲で、研磨用組成物に添加されることにより、研磨対象物のエッチングを効率よく進め、研磨速度を向上させうる。
<Amine compound B>
The polishing composition according to the second aspect of the present invention contains an amine compound B which is a secondary amine or a tertiary amine having one nitrogen atom and a pKa higher than that of ammonia, and the content C3 represented by the following formula (3) of the amine compound B is in the range of more than 0% and 35% or less. By adding the amine compound B in such a range to the polishing composition, the etching of the object to be polished can be efficiently advanced and the polishing rate can be improved.
 上記式(3)中、A3は、第3の研磨用組成物中のアンモニアの含有量(単位:質量%)であり、B3は、第3の研磨用組成物中のアミン化合物Bの含有量(単位:質量%)である。 In the above formula (3), A3 is the content of ammonia (unit: % by mass) in the third polishing composition, and B3 is the content of amine compound B in the third polishing composition (unit: % by mass).
 第3の研磨用組成物において、上記アミン化合物Bの含有率C3が0%の場合、研磨速度が低下する。一方、第3の研磨用組成物において、上記アミン化合物Bの含有率C3が35%を超える場合、エッチング速度が抑制されるため、研磨速度が低下する。第3の研磨用組成物において、アミン化合物Bの含有率C3は、0.1%以上が好ましく、0.5%以上がより好ましく、1.0%以上がさらに好ましい。また、第3の研磨用組成物において、アミン化合物Bの含有率C3は、30.0%以下が好ましく、20.0%以下がより好ましく、15.0%以下がさらに好ましく、10.0%以下が特に好ましい。 In the third polishing composition, when the content C3 of the amine compound B is 0%, the polishing rate is lowered. On the other hand, in the third polishing composition, when the content C3 of the amine compound B exceeds 35%, the etching rate is suppressed, resulting in a decrease in polishing rate. In the third polishing composition, the content C3 of the amine compound B is preferably 0.1% or more, more preferably 0.5% or more, even more preferably 1.0% or more. In the third polishing composition, the content C3 of the amine compound B is preferably 30.0% or less, more preferably 20.0% or less, even more preferably 15.0% or less, and particularly preferably 10.0% or less.
 すなわち、第3の研磨用組成物において、アミン化合物Bの含有率C3は、0.1%以上30.0%以下が好ましく、0.5%以上20.0%以下がより好ましく、1.0%以上15.0%以下がさらに好ましく、1.0%以上10.0%以下が特に好ましい。 That is, in the third polishing composition, the content C3 of the amine compound B is preferably 0.1% or more and 30.0% or less, more preferably 0.5% or more and 20.0% or less, further preferably 1.0% or more and 15.0% or less, and particularly preferably 1.0% or more and 10.0% or less.
 アミン化合物BのpKaは、本発明の効果がより発揮されるという観点から、9.5以上であることが好ましく、9.8以上であることがより好ましく、10.0以上であることがさらに好ましい。同様の観点から、アミン化合物AのpKaは、好ましくは15.0以下であることが好ましく、13.0以下であることがより好ましく、12.0以下であることがさらに好ましい。すなわち、アミン化合物BのpKaは、9.5以上15.0以下であることが好ましく、9.8以上13.0以下であることがより好ましく、10.0以上12.0以下であることがさらに好ましい。 The pKa of amine compound B is preferably 9.5 or more, more preferably 9.8 or more, and even more preferably 10.0 or more, from the viewpoint that the effects of the present invention are more exhibited. From the same point of view, the pKa of amine compound A is preferably 15.0 or less, more preferably 13.0 or less, and even more preferably 12.0 or less. That is, the pKa of amine compound B is preferably from 9.5 to 15.0, more preferably from 9.8 to 13.0, and even more preferably from 10.0 to 12.0.
 アミン化合物Bとしては、窒素原子を1つ有しかつpKaがアンモニアよりも高ければ、脂肪族アミン、脂環式アミン、芳香族アミン、複素環式アミン等を特に制限なく用いることができる。また、アミン化合物Bが有するアミノ基は、第2級アミノ基または第3級アミノ基であるが、これらの組み合わせを有していてもよい。さらに、アミン化合物Bは、ヒドロキシ基等の置換基を有していてもよい。 As the amine compound B, aliphatic amines, alicyclic amines, aromatic amines, heterocyclic amines, and the like can be used without particular limitation as long as they have one nitrogen atom and have a higher pKa than ammonia. Moreover, the amino group of the amine compound B is a secondary amino group or a tertiary amino group, but may have a combination thereof. Furthermore, the amine compound B may have a substituent such as a hydroxy group.
 脂肪族アミンは、分岐構造を有するアミンであってもよく、分岐構造を有しないアミン(直鎖構造のアミン)であってもよい。脂肪族アミンは、二重結合や三重結合を含まない飽和であってもよく、不飽和であってもよい。脂肪族アミンの炭素原子数は、1以上であれば特に限定されるものではないが、2以上でもよく、3以上でもよく、5以上でもよく、10以上でもよい。脂肪族アミンの炭素原子数は、20以下でもよく、15以下でもよく、10以下でもよく、5以下でもよい。 The aliphatic amine may be an amine having a branched structure or an amine having no branched structure (linear amine). Aliphatic amines may be saturated, containing no double or triple bonds, or unsaturated. The number of carbon atoms in the aliphatic amine is not particularly limited as long as it is 1 or more, but it may be 2 or more, 3 or more, 5 or more, or 10 or more. The number of carbon atoms in the aliphatic amine may be 20 or less, 15 or less, 10 or less, or 5 or less.
 脂環式アミンとしては、1または複数の炭素環を含むアミンが挙げられる。上記炭素環は、環内に二重結合や三重結合を含まない飽和環であってもよいし、部分飽和環または不飽和環であってもよい。炭素環を構成する原子数は、3以上でもよく、4以上でもよく、5以上でもよく、6以上でもよい。炭素環を構成する原子数は、15以下でもよく、10以下でもよく、8以下でもよく、7以下でもよく、6以下でもよい。 Alicyclic amines include amines containing one or more carbocyclic rings. The above carbocyclic ring may be a saturated ring containing no double bond or triple bond in the ring, a partially saturated ring or an unsaturated ring. The number of atoms constituting the carbocyclic ring may be 3 or more, 4 or more, 5 or more, or 6 or more. The number of atoms constituting the carbocyclic ring may be 15 or less, 10 or less, 8 or less, 7 or less, or 6 or less.
 芳香族アミンとしては、1または複数の芳香環(但し、複素環を除く)を有するアミンが挙げられる。芳香環としてはベンゼン環、ナフタレン環等が挙げられる。 Aromatic amines include amines having one or more aromatic rings (excluding heterocycles). A benzene ring, a naphthalene ring, etc. are mentioned as an aromatic ring.
 複素環式アミンとしては、1または複数の複素環を含むアミンが挙げられる。複素環は、環内に窒素原子、酸素原子および硫黄原子から独立に選択されるヘテロ原子を含む。複素環は、環内に二重結合や三重結合を含まない飽和環であってもよいし、部分飽和環または不飽和環であってもよい。複素環は、芳香環であってもよいし、非芳香環であってもよい。複素環を構成する原子数は、3以上でもよく、4以上でもよく、5以上でもよく、6以上でもよい。複素環を構成する原子数は、15以下でもよく、10以下でもよく、8以下でもよく、7以下でもよく、6以下でもよい。 Heterocyclic amines include amines containing one or more heterocycles. Heterocycles contain heteroatoms independently selected from nitrogen, oxygen and sulfur atoms within the ring. A heterocyclic ring may be a saturated ring containing no double or triple bond in the ring, a partially saturated ring or an unsaturated ring. A heterocycle may be an aromatic ring or a non-aromatic ring. The number of atoms constituting the heterocyclic ring may be 3 or more, 4 or more, 5 or more, or 6 or more. The number of atoms constituting the heterocyclic ring may be 15 or less, 10 or less, 8 or less, 7 or less, or 6 or less.
 アミン化合物Bの具体例としては、ジメチルアミン、ジエチルアミン(pKa:10.90)、ジ(n-プロピル)アミン、ジイソプロピルアミン、ジ(n-ブチル)アミン、ジイソブチルアミン、ジ(sec-ブチル)アミン、ジメチルエチルアミン、メチルジエチルアミン、ジメチルプロピルアミン、ジメチルブチルアミン、ジメチルイソブチルアミン、ジメチルイソプロピルアミン、ジメチルsec-ブチルアミン、ジメチルtert-ブチルアミン、トリエチルアミン、トリプロピルアミン、トリブチルアミン、N-メチルエタノールアミン、N-メチルジエタノールアミン、N-エチルエタノールアミン、N-ブチルブタノールアミン、N,N-ジブチルエタノールアミン等の脂肪族アミン類;メチルシクロペンチルアミン、メチルシクロヘキシルアミン、メチルシクロオクチルアミン、エチルシクロペンチルアミン、エチルシクロヘキシルアミン、エチルシクロオクチルアミン、プロピルシクロペンチルアミン、プロピルシクロヘキシルアミン、ブチルシクロペンチルアミン、ブチルシクロヘキシルアミン、ヘキシルシクロペンチルアミン、ヘキシルシクロヘキシルアミン、ヘキシルシクロオクチルアミン、ジシクロペンチルアミン、ジシクロヘキシルアミン等の脂環式アミン類;ベンジルメチルアミン、ベンジルエチルアミン、ジエチルベンジルアミン等の芳香族アミン類;ピペリジン、N-メチルピペリジン、N-エチルピペリジン、ピロリジン、N-メチルピロリジン、N-ヒドロキシエチルピロリジン、1-アザビシクロ[2.2.2]オクタン(ABCO、キヌクリジン)、ヘキサメチレンイミン等の複素環式アミン類;等が挙げられるが、これらに限定されるものではない。 Specific examples of amine compound B include dimethylamine, diethylamine (pKa: 10.90), di(n-propyl)amine, diisopropylamine, di(n-butyl)amine, diisobutylamine, di(sec-butyl)amine, dimethylethylamine, methyldiethylamine, dimethylpropylamine, dimethylbutylamine, dimethylisobutylamine, dimethylisopropylamine, dimethylsec-butylamine, dimethyltert-butylamine, triethylamine, tripropylamine, tributylamine, N-methylethanolamine. , N-methyldiethanolamine, N-ethylethanolamine, N-butylbutanolamine, N,N-dibutylethanolamine; alicyclic amines such as octylamine, dicyclopentylamine, and dicyclohexylamine; aromatic amines such as benzylmethylamine, benzylethylamine, and diethylbenzylamine; It is not limited to these.
 アミン化合物Bは、1種単独でも、または2種以上を組み合わせても使用することができる。 The amine compound B can be used singly or in combination of two or more.
 これらアミン化合物Bの中でも、ピペリジン(pKa:10.97)、N-メチルピペリジン(pKa:10.08)、トリエチルアミン(pKa:10.68)、およびN-メチルピロリジン(pKa:10.31)から選択される少なくとも1種が好ましい。 Among these amine compounds B, at least one selected from piperidine (pKa: 10.97), N-methylpiperidine (pKa: 10.08), triethylamine (pKa: 10.68), and N-methylpyrrolidine (pKa: 10.31) is preferred.
 第3の研磨用組成物中のアミン化合物Bの含有量B3は、上記式(3)で表されるアミン化合物Bの含有率C3が0%超35%以下である限りにおいて、特に制限されない。 The content B3 of the amine compound B in the third polishing composition is not particularly limited as long as the content C3 of the amine compound B represented by the above formula (3) is more than 0% and 35% or less.
 しかしながら、本発明に係る第3の研磨用組成物が濃縮液の状態である場合、当該濃縮液中のアミン化合物の含有量B3は、第2の研磨用組成物の濃縮液の全質量に対して、0.000001質量%以上であることが好ましく、0.00001質量%以上であることがより好ましく、0.0001質量%以上であることがより好ましく、0.001質量%以上であることがさらに好ましく、0.004質量%以上であることが特に好ましい。また、本発明に係る第2の研磨用組成物が濃縮液の状態である場合、アミン化合物Bの含有量B3は、第3の研磨用組成物の濃縮液の全質量に対して、1質量%以下であることが好ましく、0.5質量%以下であることがより好ましく、0.1質量%以下であることがさらに好ましく、0.07質量%以下が特に好ましい。 However, when the third polishing composition according to the present invention is in the form of a concentrated liquid, the content B3 of the amine compound in the concentrated liquid is preferably 0.000001% by mass or more, more preferably 0.00001% by mass or more, more preferably 0.0001% by mass or more, further preferably 0.001% by mass or more, and even more preferably 0.004% by mass or more, relative to the total mass of the concentrated liquid of the second polishing composition. is particularly preferred. Further, when the second polishing composition according to the present invention is in the form of a concentrated liquid, the content B3 of the amine compound B is preferably 1% by mass or less, more preferably 0.5% by mass or less, further preferably 0.1% by mass or less, and particularly preferably 0.07% by mass or less, relative to the total mass of the concentrated liquid of the third polishing composition.
 また、本発明に係る第3の研磨用組成物が希釈液の状態である場合、研磨用組成物中のアミン化合物Bの含有量B3は、第3の研磨用組成物の全質量に対して、0.000001質量%以上であることが好ましく、0.000005質量%以上であることがより好ましく、0.00001質量%以上であることがより好ましく、0.00005質量%以上であることがさらに好ましく、0.0001質量%以上であることが特に好ましい。また、本発明に係る第3の研磨用組成物が希釈液の状態である場合、アミン化合物Bの含有量B3は、第3の研磨用組成物の全質量に対して、例えば0.1質量%以下であり、0.05質量%以下でもよく、0.01質量%以下であることが好ましく、0.008質量%以下であることがより好ましく、0.005質量%以下であることがさらに好ましい。 Further, when the third polishing composition according to the present invention is in the form of a diluted solution, the content B3 of the amine compound B in the polishing composition is preferably 0.000001% by mass or more, more preferably 0.000005% by mass or more, more preferably 0.00001% by mass or more, further preferably 0.00005% by mass or more, and further preferably 0.0001% by mass or more. % or more is particularly preferred. Further, when the third polishing composition according to the present invention is in the form of a diluted solution, the content B3 of the amine compound B is, for example, 0.1% by mass or less, may be 0.05% by mass or less, preferably 0.01% by mass or less, more preferably 0.008% by mass or less, and further preferably 0.005% by mass or less, relative to the total mass of the third polishing composition.
 すなわち、本発明に係る第3の研磨用組成物が希釈液の状態である場合、研磨用組成物中のアミン化合物Bの含有量B3は、第3の研磨用組成物の全質量に対して、0.000001質量%以上0.1質量%以下であることが好ましく、0.000005質量%以上0.1質量%以下であることがより好ましく、0.00001質量%以上0.05質量%以下であることがより好ましく、0.00005質量%以上0.01質量%以下であることがさらに好ましく、0.0001質量%以上0.008質量%以下であることが特に好ましい。 That is, when the third polishing composition according to the present invention is in the form of a diluted solution, the content B3 of the amine compound B in the polishing composition is preferably 0.000001% by mass or more and 0.1% by mass or less, more preferably 0.000005% by mass or more and 0.1% by mass or less, more preferably 0.00001% by mass or more and 0.05% by mass or less, and 0.0 It is more preferably 0005% by mass or more and 0.01% by mass or less, and particularly preferably 0.0001% by mass or more and 0.008% by mass or less.
 <他の塩基性化合物>
 本発明のいくつかの実施形態に係る研磨用組成物は、上記式(1)~(3)で表されるピペラジン化合物、アミン化合物A、およびアミン化合物Bの含有率C1~C3が上記の範囲を満たす限りにおいて、他の塩基性化合物をさらに含んでもよい。このような他の塩基性化合物の例としては、例えば、水酸化カルシウム、水酸化カリウム、炭酸カリウム、炭酸水素カリウム、硫酸カリウム、酢酸カリウム、塩化カリウム、水酸化ナトリウム、炭酸水素ナトリウム、および炭酸ナトリウム等の第2族元素またはアルカリ金属の水酸化物または塩;水酸化テトラメチルアンモニウム、水酸化テトラエチルアンモニウム、水酸化テトラブチルアンモニウム等の水酸化テトラアルキルアンモニウム;炭酸テトラメチルアンモニウム、炭酸テトラエチルアンモニウム、炭酸テトラブチルアンモニウム等の炭酸テトラアルキルアンモニウム;塩化テトラメチルアンモニウム、塩化テトラエチルアンモニウム、塩化テトラブチルアンモニウムなどの塩化テトラアルキルアンモニウム、炭酸アンモニウム、炭酸水素アンモニウム;等が挙げられる。また。pKaがアンモニアよりも低いアミン化合物も、他の塩基性化合物として使用可能である。これら他の塩基性化合物は、1種単独でもまたは2種以上を組み合わせても用いることができる。本明細書において、ピペラジン化合物、アミン化合物A、およびアミン化合物Bには、上記他の塩基性化合物が含まれないものとする。
<Other basic compounds>
The polishing composition according to some embodiments of the present invention may further contain other basic compounds as long as the contents C1 to C3 of the piperazine compound represented by the formulas (1) to (3), the amine compound A, and the amine compound B satisfy the above ranges. Examples of such other basic compounds include, for example, hydroxides or salts of Group 2 elements or alkali metals such as calcium hydroxide, potassium hydroxide, potassium carbonate, potassium hydrogen carbonate, potassium sulfate, potassium acetate, potassium chloride, sodium hydroxide, sodium hydrogen carbonate, and sodium carbonate; tetraalkylammonium hydroxides such as tetramethylammonium hydroxide, tetraethylammonium hydroxide, and tetrabutylammonium hydroxide; , ammonium carbonate, ammonium hydrogen carbonate; and the like. again. Amine compounds with a lower pKa than ammonia can also be used as other basic compounds. These other basic compounds can be used singly or in combination of two or more. In the present specification, the piperazine compound, amine compound A, and amine compound B do not include the above other basic compounds.
 ただし、本発明のいくつかの実施形態に係る研磨用組成物が濃縮液の状態である場合、当該他の塩基性化合物の含有量は、塩基性化合物の総質量に対して、10質量%以下であることが好ましく、5質量%以下であることがより好ましく、2質量%以下であることがさらに好ましく、1質量%以下であることが特に好ましい。 However, when the polishing composition according to some embodiments of the present invention is in a concentrated liquid state, the content of the other basic compound is preferably 10% by mass or less, more preferably 5% by mass or less, further preferably 2% by mass or less, and particularly preferably 1% by mass or less, relative to the total mass of the basic compounds.
 本発明のいくつかの実施形態に係る研磨用組成物が希釈液の状態である場合、当該他の塩基性化合物の含有量は、塩基性化合物の総質量に対して、5質量%以下であることが好ましく、3質量%以下であることがより好ましく、2質量%以下であることがさらに好ましく、1質量%以下であることが特に好ましい。濃縮液、希釈液を問わず、最も好ましい形態は、他の塩基性化合物の含有量が0質量%であること、すなわちアンモニア、ピペラジン化合物、アミン化合物A、およびアミン化合物B以外の他の塩基性化合物を含まない形態である。 When the polishing composition according to some embodiments of the present invention is in the form of a diluted solution, the content of the other basic compound is preferably 5% by mass or less, more preferably 3% by mass or less, further preferably 2% by mass or less, and particularly preferably 1% by mass or less, relative to the total mass of the basic compounds. Regardless of whether the liquid is a concentrated liquid or a diluent, the most preferable form is one in which the content of other basic compounds is 0% by mass, i.e., a form containing no basic compounds other than ammonia, piperazine compound, amine compound A, and amine compound B.
 本発明のいくつかの実施形態に係る研磨用組成物が濃縮液の状態である場合、当該濃縮液中の塩基性化合物の含有量は、0.001質量%以上であることが好ましく、0.005質量%以上であるとより好ましく、0.01質量%以上であるとさらに好ましく、0.03質量%以上であると特に好ましい。塩基性化合物の含有量を増加させることによって、高い研磨速度が得られ易くなる。また、この場合、研磨用組成物の濃縮液中の塩基性化合物の含有量は、保管安定性や濾過性等の観点から、10質量%以下であると好ましく、5質量%以下であるとより好ましく、3質量%以下であるとさらに好ましく、1質量%以下であると特に好ましい。 When the polishing composition according to some embodiments of the present invention is in the form of a concentrated liquid, the content of the basic compound in the concentrated liquid is preferably 0.001% by mass or more, more preferably 0.005% by mass or more, further preferably 0.01% by mass or more, and particularly preferably 0.03% by mass or more. A high polishing rate can be easily obtained by increasing the content of the basic compound. In this case, the content of the basic compound in the concentrated liquid of the polishing composition is preferably 10% by mass or less, more preferably 5% by mass or less, more preferably 3% by mass or less, and particularly preferably 1% by mass or less, from the viewpoint of storage stability, filterability, and the like.
 すなわち、本発明のいくつかの実施形態に係る研磨用組成物が濃縮液の状態である場合、当該濃縮液中の塩基性化合物の含有量は、0.001質量%以上10質量%以下であることが好ましく、0.005質量%以上5質量%以下であるとより好ましく、0.01質量%以上3質量%以下であるとさらに好ましく、0.03質量%以上1質量%以下であると特に好ましい。 That is, when the polishing composition according to some embodiments of the present invention is in a concentrated liquid state, the content of the basic compound in the concentrated liquid is preferably 0.001% by mass or more and 10% by mass or less, more preferably 0.005% by mass or more and 5% by mass or less, further preferably 0.01% by mass or more and 3% by mass or less, and particularly preferably 0.03% by mass or more and 1% by mass or less.
 本発明のいくつかの実施形態に係る研磨用組成物が希釈液の状態である場合、研磨用組成物中における塩基性化合物の含有量は、特に制限されないが、0.0001質量%以上であることが好ましく、0.001質量%以上であるとより好ましく、0.002質量%以上であるとさらに好ましい。また、本発明のいくつかの実施形態に係る研磨用組成物が希釈液の状態である場合、研磨用組成物中における塩基性化合物の含有量は、保管安定性や濾過性等の観点から、5質量%以下であると好ましく、2質量%以下であるとより好ましく、1質量%以下であるとさらに好ましく、0.5質量%以下であると特に好ましい。 When the polishing composition according to some embodiments of the present invention is in the form of a diluted solution, the content of the basic compound in the polishing composition is not particularly limited, but is preferably 0.0001% by mass or more, more preferably 0.001% by mass or more, and even more preferably 0.002% by mass or more. Further, when the polishing composition according to some embodiments of the present invention is in the form of a diluted solution, the content of the basic compound in the polishing composition is preferably 5% by mass or less, more preferably 2% by mass or less, further preferably 1% by mass or less, and particularly preferably 0.5% by mass or less, from the viewpoint of storage stability, filterability, and the like.
 [分散媒]
 本発明のいくつかの実施形態において、研磨用組成物は、分散媒(特には、水)を含むことが好ましい。分散媒(特には、水)は、研磨用組成物中に含まれる成分を溶解させるまたは分散させる働きを有する。
[Dispersion medium]
In some embodiments of the present invention, the polishing composition preferably contains a dispersion medium (especially water). The dispersion medium (especially water) has the function of dissolving or dispersing the components contained in the polishing composition.
 水は、研磨対象物の汚染や他の成分の作用を阻害するのを防ぐ観点から、不純物をできる限り含有しないことが好ましい。このような水としては、例えば、遷移金属イオンの合計含有量が100ppb以下である水が好ましい。ここで、水の純度は、例えば、イオン交換樹脂を用いる不純物イオンの除去、フィルタによる異物の除去、蒸留等の操作によって高めることができる。具体的には、水としては、例えば、脱イオン水(イオン交換水)、純水、超純水、蒸留水などを用いることが好ましい。 From the viewpoint of preventing contamination of the object to be polished and inhibiting the action of other components, it is preferable that the water contain as few impurities as possible. As such water, for example, water having a total content of transition metal ions of 100 ppb or less is preferable. Here, the purity of water can be increased by, for example, removal of impurity ions using an ion exchange resin, removal of foreign matter using a filter, distillation, or other operations. Specifically, as water, it is preferable to use, for example, deionized water (ion-exchanged water), pure water, ultrapure water, distilled water, or the like.
 分散媒は、各成分の分散または溶解のために、水と有機溶媒との混合溶媒であってもよい。この場合、用いられる有機溶媒としては、水と混和する有機溶媒であるアセトン、アセトニトリル、エタノール、メタノール、イソプロパノール、グリセリン、エチレングリコール、プロピレングリコール等が挙げられる。また、これらの有機溶媒を水と混合せずに用いて、各成分を分散または溶解した後に、水と混合してもよい。これら有機溶媒は、1種単独でもまたは2種以上を組み合わせても用いることができる。ここで、分散媒は、水のみであることが好ましい。 The dispersion medium may be a mixed solvent of water and an organic solvent for dispersing or dissolving each component. In this case, the organic solvent used includes acetone, acetonitrile, ethanol, methanol, isopropanol, glycerin, ethylene glycol, propylene glycol, etc., which are organic solvents miscible with water. Alternatively, these organic solvents may be used without being mixed with water, and each component may be dispersed or dissolved and then mixed with water. These organic solvents can be used singly or in combination of two or more. Here, the dispersion medium is preferably water only.
 [水溶性高分子]
 本発明のいくつかの実施形態において、研磨用組成物は、水溶性高分子を含んでいてもよい。水溶性高分子は、研磨対象物表面に付着し、塩基性化合物の作用によって起こり得る不均一または過度なエッチングから研磨対象物表面を保護する。そのことで、研磨後の研磨対象物表面の品質が向上しうる。
[Water-soluble polymer]
In some embodiments of the invention, the polishing composition may contain a water-soluble polymer. The water-soluble polymer adheres to the surface of the object to be polished and protects the surface of the object to be polished from uneven or excessive etching that may occur due to the action of the basic compound. This can improve the quality of the surface of the object to be polished after polishing.
 本明細書中、「高分子」とは、重量平均分子量が5,000以上である(共)重合体をいう。重量平均分子量は、ゲルパーミーエーションクロマトグラフィー(GPC)によって測定することができ、具体的には、実施例に記載の方法により測定される値を採用する。また、GPCによって測定することができない場合に限っては、分子式から算出した分子量を重量平均分子量として採用する。 As used herein, the term "polymer" refers to a (co)polymer having a weight average molecular weight of 5,000 or more. The weight average molecular weight can be measured by gel permeation chromatography (GPC), and specifically, the value measured by the method described in Examples is adopted. In addition, only when the molecular weight cannot be measured by GPC, the molecular weight calculated from the molecular formula is adopted as the weight average molecular weight.
 本発明のいくつかの実施形態において、水溶性高分子として、分子中に、カチオン基、アニオン基およびノニオン基から選択される少なくとも1種の官能基を有するものを使用することができる。 In some embodiments of the present invention, as the water-soluble polymer, those having at least one functional group selected from cationic groups, anionic groups and nonionic groups in the molecule can be used.
 本発明のいくつかの実施形態において、水溶性高分子として、分子中に、水酸基、カルボキシル基、アシルオキシ基、スルホ基、アミド構造、イミド構造、第四級アンモニウム構造、複素環構造、ビニル構造などを含むものが挙げられる。 In some embodiments of the present invention, water-soluble polymers include those containing hydroxyl groups, carboxyl groups, acyloxy groups, sulfo groups, amide structures, imide structures, quaternary ammonium structures, heterocyclic structures, vinyl structures, etc. in the molecule.
 本発明のいくつかの実施形態において、水溶性高分子として、ビニルアルコールに由来する構造単位を有する高分子(以下、「ポリビニルアルコール系ポリマー」ともいう。)、セルロース誘導体、デンプン誘導体、オキシアルキレン単位を有するポリマー、窒素原子を有する水溶性高分子等が挙げられる。なかでも、ポリビニルアルコール系ポリマーおよびセルロース誘導体の少なくとも一方を含むと好ましい。これらの高分子を含む研磨用組成物は、研磨対象物のヘイズを低減させやすい。 In some embodiments of the present invention, water-soluble polymers include polymers having structural units derived from vinyl alcohol (hereinafter also referred to as "polyvinyl alcohol-based polymers"), cellulose derivatives, starch derivatives, polymers having oxyalkylene units, and water-soluble polymers having nitrogen atoms. Among others, it is preferable to contain at least one of a polyvinyl alcohol-based polymer and a cellulose derivative. A polishing composition containing these polymers tends to reduce the haze of an object to be polished.
 (ポリビニルアルコール系ポリマー)
 ポリビニルアルコール系ポリマーは、繰返し単位としてビニルアルコール単位(以下「VA単位」ともいう。)のみを含んでいてもよく、VA単位に加えてVA単位以外の繰返し単位(以下「非VA単位」ともいう。)を含んでいてもよい。ビニルアルコール単位とは、次の化学式:-CH-CH(OH)-;により表される構造部分である。ポリビニルアルコール系ポリマーは、VA単位と非VA単位とを含むランダム共重合体であってもよく、ブロック共重合体やグラフト共重合体であってもよい。ポリビニルアルコール系ポリマーは、1種類の非VA単位のみを含んでもよく、2種類以上の非VA単位を含んでもよい。
(Polyvinyl alcohol polymer)
The polyvinyl alcohol-based polymer may contain only vinyl alcohol units (hereinafter also referred to as "VA units") as repeating units, or may contain repeating units other than VA units (hereinafter also referred to as "non-VA units") in addition to VA units. A vinyl alcohol unit is a structural moiety represented by the following chemical formula: --CH 2 --CH(OH)--. The polyvinyl alcohol-based polymer may be a random copolymer containing VA units and non-VA units, or may be a block copolymer or a graft copolymer. The polyvinyl alcohol-based polymer may contain only one type of non-VA unit, or may contain two or more types of non-VA units.
 ここに開示される研磨用組成物に使用されるポリビニルアルコール系ポリマーは、変性されていないポリビニルアルコール(非変性PVA)であってもよく、変性ポリビニルアルコール(変性PVA)であってもよい。ここで非変性PVAとは、ポリ酢酸ビニルを加水分解(けん化)することにより生成し、酢酸ビニルがビニル重合した構造の繰返し単位(-CH-CH(OCOCH)-)およびVA単位以外の繰返し単位を実質的に含まないポリビニルアルコール系ポリマーをいう。上記非変性PVAのけん化度は、例えば60%以上であってよく、水溶性の観点から70%以上でもよく、80%以上でもよく、90%以上でもよい。いくつかの態様において、けん化度が95%以上または98%以上である非変性PVAを水溶性高分子化合物として好ましく採用し得る。 The polyvinyl alcohol-based polymer used in the polishing composition disclosed herein may be unmodified polyvinyl alcohol (non-modified PVA) or modified polyvinyl alcohol (modified PVA). Here, the unmodified PVA is produced by hydrolyzing (saponifying) polyvinyl acetate, and refers to a polyvinyl alcohol-based polymer that is substantially free of repeating units other than repeating units (—CH 2 —CH(OCOCH 3 )—) having a vinyl-polymerized structure of vinyl acetate and repeating units other than VA units. The degree of saponification of the non-modified PVA may be, for example, 60% or more, may be 70% or more from the viewpoint of water solubility, may be 80% or more, or may be 90% or more. In some embodiments, unmodified PVA with a degree of saponification of 95% or higher or 98% or higher can be preferably employed as the water-soluble polymer compound.
 ポリビニルアルコール系ポリマーは、VA単位と、オキシアルキレン基、カルボニル基、アセトアセチル基、カルボキシ基、(ジ)カルボン酸基、(ジ)カルボン酸エステル、フェニル基、ナフチル基、スルホ基、アミノ基、水酸基、アミド基、イミド基、ニトリル基、エーテル基、エステル基、およびこれらの塩から選ばれる少なくとも1つの構造を有する非VA単位とを含む変性PVAであってもよい。 The polyvinyl alcohol-based polymer may be a modified PVA containing VA units and non-VA units having at least one structure selected from oxyalkylene groups, carbonyl groups, acetoacetyl groups, carboxy groups, (di)carboxylic acid groups, (di)carboxylic acid esters, phenyl groups, naphthyl groups, sulfo groups, amino groups, hydroxyl groups, amide groups, imide groups, nitrile groups, ether groups, ester groups, and salts thereof.
 変性PVAに含まれ得る非VA単位としては、例えば後述するN-ビニル型のモノマーやN-(メタ)アクリロイル型のモノマーに由来する繰返し単位、エチレンに由来する繰返し単位、アルキルビニルエーテルに由来する繰返し単位、炭素数3以上のモノカルボン酸のビニルエステルに由来する繰返し単位、(ジ)アセトン化合物に由来する繰返し単位等が挙げられるが、これらに限定されない。上記N-ビニル型のモノマーの一好適例として、N-ビニルピロリドンが挙げられる。上記N-(メタ)アクリロイル型のモノマーの一好適例として、N-(メタ)アクリロイルモルホリンが挙げられる。上記アルキルビニルエーテルは、例えばプロピルビニルエーテル、ブチルビニルエーテル、2-エチルヘキシルビニルエーテル等の、炭素数1以上10以下のアルキル基を有するビニルエーテルであり得る。上記炭素数3以上のモノカルボン酸のビニルエステルは、例えばプロパン酸ビニル、ブタン酸ビニル、ペンタン酸ビニル、ヘキサン酸ビニル等の、炭素数3以上7以下のモノカルボン酸のビニルエステルであり得る。上記(ジ)アセトン化合物の好適例として、ジアセトン(メタ)アクリルアミド、アセチルアセトンが挙げられる。 Examples of non-VA units that can be contained in the modified PVA include, but are not limited to, repeating units derived from N-vinyl type monomers and N-(meth)acryloyl type monomers, repeating units derived from ethylene, repeating units derived from alkyl vinyl ethers, repeating units derived from vinyl esters of monocarboxylic acids having 3 or more carbon atoms, and repeating units derived from (di)acetone compounds. A preferred example of the N-vinyl type monomer is N-vinylpyrrolidone. A preferred example of the N-(meth)acryloyl type monomer is N-(meth)acryloylmorpholine. The alkyl vinyl ether may be a vinyl ether having an alkyl group having 1 to 10 carbon atoms, such as propyl vinyl ether, butyl vinyl ether, 2-ethylhexyl vinyl ether. The vinyl ester of a monocarboxylic acid having 3 or more carbon atoms may be a vinyl ester of a monocarboxylic acid having 3 or more and 7 or less carbon atoms, such as vinyl propanoate, vinyl butanoate, vinyl pentanoate, and vinyl hexanoate. Preferred examples of the (di)acetone compound include diacetone (meth)acrylamide and acetylacetone.
 ポリビニルアルコール系ポリマーは、ポリビニルアルコール系ポリマーに含まれるVA単位の一部がアルデヒド化合物またはケトン化合物でアセタール化された変性PVAであってもよい。ここに開示される技術における好ましい一態様において、アセタール化された変性PVAは、上述の非変性PVAとアルデヒド化合物とのアセタール化反応により得られる水溶性高分子である。 The polyvinyl alcohol-based polymer may be modified PVA in which some of the VA units contained in the polyvinyl alcohol-based polymer are acetalized with an aldehyde compound or a ketone compound. In a preferred embodiment of the technology disclosed herein, the acetalized modified PVA is a water-soluble polymer obtained by an acetalization reaction between the above unmodified PVA and an aldehyde compound.
 本発明のいくつかの実施形態において、アセタール化された変性PVAを生成するのに用いられるアルデヒド化合物は特に限定されない。好ましい一態様において、上記アルデヒド化合物の炭素数は1~7であり、より好ましくは2~7である。 In some embodiments of the present invention, the aldehyde compound used to produce the acetalized modified PVA is not particularly limited. In a preferred embodiment, the aldehyde compound has 1 to 7 carbon atoms, more preferably 2 to 7 carbon atoms.
 上記アルデヒド化合物としては、例えば、ホルムアルデヒド;アセトアルデヒド、プロピオンアルデヒド、n-ブチルアルデヒド、イソブチルアルデヒド、tert-ブチルアルデヒド、ヘキシルアルデヒド、n-ペンチルアルデヒド等の直鎖または分岐アルキルアルデヒド類;シクロヘキサンカルバルデヒド、ベンズアルデヒド等の脂環式または芳香族アルデヒド類;が挙げられる。これらは、1種単独で用いてもよいし、2種以上を組み合わせて使用してもよい。また、ホルムアルデヒドを除き、1以上の水素原子がハロゲン等により置換されたものであってもよい。なかでも、水に対する溶解性が高くアセタール化反応が容易である点から、直鎖または分岐アルキルアルデヒド類であることが好ましく、その中でもアセトアルデヒド、n-プロピルアルデヒド、n-ブチルアルデヒド、n-ペンチルアルデヒドであることがより好ましい。 Examples of the aldehyde compound include formaldehyde; linear or branched alkyl aldehydes such as acetaldehyde, propionaldehyde, n-butyraldehyde, isobutyraldehyde, tert-butyraldehyde, hexylaldehyde and n-pentylaldehyde; alicyclic or aromatic aldehydes such as cyclohexanecarbaldehyde and benzaldehyde; These may be used individually by 1 type, and may be used in combination of 2 or more type. In addition, excluding formaldehyde, one or more hydrogen atoms may be substituted with halogen or the like. Among them, straight-chain or branched alkylaldehydes are preferred because of their high solubility in water and easy acetalization reaction, and among them, acetaldehyde, n-propylaldehyde, n-butyraldehyde, and n-pentylaldehyde are more preferred.
 アルデヒド化合物としては、上記の他にも、2-エチルヘキシルアルデヒド、ノニルアルデヒド、デシルアルデヒド等の炭素数8以上のアルデヒド化合物を用いてもよい。また、ポリビニルアルコール系ポリマーとして、第四級アンモニウム構造等のカチオン性基が導入されたカチオン変性ポリビニルアルコールを使用してもよい。上記カチオン変性ポリビニルアルコールとしては、例えば、ジアリルジアルキルアンモニウム塩、N-(メタ)アクリロイルアミノアルキル-N,N,N-トリアルキルアンモニウム塩等のカチオン性基を有するモノマーに由来するカチオン性基が導入されたものが挙げられる。また、ポリビニルアルコール系ポリマーとして、非VA単位が化学式:-CH-CH(CR(OR)-CR(OR)-R)-により表される構造部分を有するものであってもよい。ここでR~Rはそれぞれ独立して水素原子または有機基を示し、RおよびRは、それぞれ独立して水素原子またはR10-CO-(式中、R10はアルキル基を示す)を示す。このような変性PVAとしては、側鎖に1,2-ジオール構造を有する変性PVAが挙げられる。 As the aldehyde compound, in addition to the above, aldehyde compounds having 8 or more carbon atoms such as 2-ethylhexylaldehyde, nonylaldehyde, and decylaldehyde may be used. As the polyvinyl alcohol-based polymer, cation-modified polyvinyl alcohol into which a cationic group such as a quaternary ammonium structure is introduced may be used. Examples of the cation-modified polyvinyl alcohol include those into which a cationic group derived from a monomer having a cationic group, such as diallyldialkylammonium salts and N-(meth)acryloylaminoalkyl-N,N,N-trialkylammonium salts, is introduced. The polyvinyl alcohol-based polymer may also have a structural portion in which the non-VA unit is represented by the chemical formula: --CH 2 --CH(CR 5 (OR 8 )--CR 6 (OR 9 )--R 7 )--. Here, R 5 to R 7 each independently represent a hydrogen atom or an organic group, and R 8 and R 9 each independently represent a hydrogen atom or R 10 --CO-- (wherein R 10 represents an alkyl group). Examples of such modified PVA include modified PVA having a 1,2-diol structure in the side chain.
 ポリビニルアルコール系ポリマーを構成する全繰返し単位のモル数に占めるVA単位のモル数の割合は、例えば5%以上であってよく、10%以上でもよく、20%以上でもよく、30%以上でもよい。特に限定するものではないが、いくつかの態様において、上記VA単位のモル数の割合は、50%以上であってよく、65%以上でもよく、75%以上でもよく、80%以上でもよく、90%以上(例えば95%以上、または98%以上)でもよい。ポリビニルアルコール系ポリマーを構成する繰返し単位の実質的に100%がVA単位であってもよい。ここで「実質的に100%」とは、少なくとも意図的にはポリビニルアルコール系ポリマーに非VA単位を含有させないことをいい、典型的には全繰返し単位のモル数に占める非VA単位のモル数の割合が2%未満(例えば1%未満)であり、0%である場合を包含する。他のいくつかの態様において、ポリビニルアルコール系ポリマーを構成する全繰返し単位のモル数に占めるVA単位のモル数の割合は、例えば95%以下であってよく、90%以下でもよく、80%以下でもよく、70%以下でもよい。 The ratio of the number of moles of VA units to the number of moles of all repeating units constituting the polyvinyl alcohol polymer may be, for example, 5% or more, 10% or more, 20% or more, or 30% or more. Although not particularly limited, in some embodiments, the molar ratio of the VA units may be 50% or more, 65% or more, 75% or more, 80% or more, or 90% or more (e.g., 95% or more, or 98% or more). Substantially 100% of the repeating units constituting the polyvinyl alcohol polymer may be VA units. Here, "substantially 100%" means that the polyvinyl alcohol-based polymer does not contain non-VA units at least intentionally, and typically the ratio of the number of moles of non-VA units to the number of moles of all repeating units is less than 2% (for example, less than 1%), and includes cases where it is 0%. In some other embodiments, the ratio of the number of moles of VA units to the number of moles of all repeating units constituting the polyvinyl alcohol polymer may be, for example, 95% or less, 90% or less, 80% or less, or 70% or less.
 ポリビニルアルコール系ポリマーにおけるVA単位の含有量(質量基準の含有量)は、例えば5質量%以上であってよく、10質量%以上でもよく、20質量%以上でもよく、30質量%以上でもよい。特に限定するものではないが、いくつかの態様において、上記VA単位の含有量は、50質量%以上(例えば50質量%超)であってよく、70質量%以上でもよく、80質量%以上(例えば90質量%以上、または95質量%以上、または98質量%以上)でもよい。ポリビニルアルコール系ポリマーを構成する繰返し単位の実質的に100質量%がVA単位であってもよい。ここで「実質的に100質量%」とは、少なくとも意図的にはポリビニルアルコール系ポリマーを構成する繰返し単位として非VA単位を含有させないことをいい、典型的にはポリビニルアルコール系ポリマーにおける非VA単位の含有量が2質量%未満(例えば1質量%未満)であることをいう。他のいくつかの態様において、ポリビニルアルコール系ポリマーにおけるVA単位の含有量は、例えば95質量%以下であってよく、90質量%以下でもよく、80質量%以下でもよく、70質量%以下でもよい。 The content of VA units (mass-based content) in the polyvinyl alcohol-based polymer may be, for example, 5% by mass or more, 10% by mass or more, 20% by mass or more, or 30% by mass or more. Although not particularly limited, in some embodiments, the content of the VA unit may be 50% by mass or more (e.g., more than 50% by mass), 70% by mass or more, or 80% by mass or more (e.g., 90% by mass or more, or 95% by mass or more, or 98% by mass or more). Substantially 100% by mass of the repeating units constituting the polyvinyl alcohol-based polymer may be VA units. Here, "substantially 100% by mass" means that non-VA units are not at least intentionally included as repeating units constituting the polyvinyl alcohol-based polymer, and typically the content of non-VA units in the polyvinyl alcohol-based polymer is less than 2% by mass (for example, less than 1% by mass). In some other aspects, the content of VA units in the polyvinyl alcohol polymer may be, for example, 95% by mass or less, 90% by mass or less, 80% by mass or less, or 70% by mass or less.
 ポリビニルアルコール系ポリマーは、VA単位の含有量の異なる複数のポリマー鎖を同一分子内に含んでいてもよい。ここでポリマー鎖とは、一分子のポリマーの一部を構成する部分(セグメント)を指す。例えば、ポリビニルアルコール系ポリマーは、VA単位の含有量が50質量%より高いポリマー鎖Aと、VA単位の含有量が50質量%より低い(すなわち、非VA単位の含有量が50質量%より多い)ポリマー鎖Bとを、同一分子内に含んでいてもよい。 The polyvinyl alcohol-based polymer may contain multiple polymer chains with different VA unit contents in the same molecule. Here, the polymer chain refers to a portion (segment) that constitutes a part of one molecule of polymer. For example, the polyvinyl alcohol-based polymer may contain a polymer chain A having a VA unit content of more than 50% by mass and a polymer chain B having a VA unit content of less than 50% by mass (i.e., having a non-VA unit content of more than 50% by mass) in the same molecule.
 ポリマー鎖Aは、繰返し単位としてVA単位のみを含んでいてもよく、VA単位に加えて非VA単位を含んでいてもよい。ポリマー鎖AにおけるVA単位の含有量は、60質量%以上でもよく、70質量%以上でもよく、80質量%以上でもよく、90質量%以上でもよい。いくつかの態様において、ポリマー鎖AにおけるVA単位の含有量は、95質量%以上でもよく、98質量%以上でもよい。ポリマー鎖Aを構成する繰返し単位の実質的に100質量%がVA単位であってもよい。 The polymer chain A may contain only VA units as repeating units, or may contain non-VA units in addition to VA units. The content of VA units in the polymer chain A may be 60% by mass or more, 70% by mass or more, 80% by mass or more, or 90% by mass or more. In some embodiments, the content of VA units in polymer chain A may be 95% by mass or more, or 98% by mass or more. Substantially 100% by mass of the repeating units constituting the polymer chain A may be VA units.
 ポリマー鎖Bは、繰返し単位として非VA単位のみを含んでいてもよく、非VA単位に加えてVA単位を含んでいてもよい。ポリマー鎖Bにおける非VA単位の含有量は、60質量%以上でもよく、70質量%以上でもよく、80質量%以上でもよく、90質量%以上でもよい。いくつかの態様において、ポリマー鎖Bにおける非VA単位の含有量は、95質量%以上でもよく、98質量%以上でもよい。ポリマー鎖Bを構成する繰返し単位の実質的に100質量%が非VA単位であってもよい。 The polymer chain B may contain only non-VA units as repeating units, or may contain VA units in addition to non-VA units. The content of non-VA units in polymer chain B may be 60% by mass or more, 70% by mass or more, 80% by mass or more, or 90% by mass or more. In some embodiments, the content of non-VA units in polymer chain B may be 95 wt% or more, or 98 wt% or more. Substantially 100% by mass of the repeating units constituting the polymer chain B may be non-VA units.
 ポリマー鎖Aとポリマー鎖Bとを同一分子中に含むポリビニルアルコール系ポリマーの例として、これらのポリマー鎖を含むブロック共重合体やグラフト共重合体が挙げられる。上記グラフト共重合体は、ポリマー鎖A(主鎖)にポリマー鎖B(側鎖)がグラフトした構造のグラフト共重合体であってもよく、ポリマー鎖B(主鎖)にポリマー鎖A(側鎖)がグラフトした構造のグラフト共重合体であってもよい。一態様において、ポリマー鎖Aにポリマー鎖Bがグラフトした構造のポリビニルアルコール系ポリマーを用いることができる。 Examples of polyvinyl alcohol-based polymers containing polymer chain A and polymer chain B in the same molecule include block copolymers and graft copolymers containing these polymer chains. The graft copolymer may be a graft copolymer having a structure in which a polymer chain B (side chain) is grafted to a polymer chain A (main chain), or a graft copolymer having a structure in which a polymer chain A (side chain) is grafted to a polymer chain B (main chain). In one embodiment, a polyvinyl alcohol-based polymer having a structure in which a polymer chain B is grafted onto a polymer chain A can be used.
 ポリマー鎖Bの例としては、N-ビニル型のモノマーに由来する繰返し単位を主繰返し単位とするポリマー鎖、N-(メタ)アクリロイル型のモノマーに由来する繰返し単位を主繰返し単位とするポリマー鎖、オキシアルキレン単位を主繰返し単位とするポリマー鎖等が挙げられる。なお、本明細書において主繰返し単位とは、特記しない場合、50質量%を超えて含まれる繰返し単位をいう。 Examples of the polymer chain B include a polymer chain whose main repeating unit is a repeating unit derived from an N-vinyl type monomer, a polymer chain whose main repeating unit is a repeating unit derived from an N-(meth)acryloyl type monomer, and a polymer chain whose main repeating unit is an oxyalkylene unit. In the present specification, the term "main repeating unit" refers to a repeating unit containing more than 50% by mass unless otherwise specified.
 ポリマー鎖Bの一好適例として、N-ビニル型のモノマーを主繰返し単位とするポリマー鎖、すなわちN-ビニル系ポリマー鎖が挙げられる。N-ビニル系ポリマー鎖におけるN-ビニル型モノマーに由来する繰返し単位の含有量は、典型的には50質量%超であり、70質量%以上であってもよく、85質量%以上であってもよく、95質量%以上であってもよい。ポリマー鎖Bの実質的に全部がN-ビニル型モノマーに由来する繰返し単位であってもよい。 A suitable example of the polymer chain B is a polymer chain having an N-vinyl type monomer as the main repeating unit, that is, an N-vinyl polymer chain. The content of repeating units derived from the N-vinyl type monomer in the N-vinyl polymer chain is typically more than 50% by mass, may be 70% by mass or more, may be 85% by mass or more, and may be 95% by mass or more. Substantially all of the polymer chain B may be repeating units derived from an N-vinyl type monomer.
 N-ビニル型のモノマーの例には、窒素を含有する複素環(例えばラクタム環)を有するモノマーおよびN-ビニル鎖状アミドが含まれる。N-ビニルラクタム型モノマーの具体例としては、N-ビニルピロリドン、N-ビニルピペリドン、N-ビニルモルホリノン、N-ビニルカプロラクタム、N-ビニル-1,3-オキサジン-2-オン、N-ビニル-3,5-モルホリンジオン等が挙げられる。N-ビニル鎖状アミドの具体例としては、N-ビニルアセトアミド、N-ビニルプロピオン酸アミド、N-ビニル酪酸アミド等が挙げられる。ポリマー鎖Bは、例えば、その繰返し単位の50質量%超(例えば70質量%以上、または85質量%以上、または95質量%以上)がN-ビニルピロリドン単位であるN-ビニル系ポリマー鎖であり得る。ポリマー鎖Bを構成する繰返し単位の実質的に全部がN-ビニルピロリドン単位であってもよい。 Examples of N-vinyl type monomers include monomers having a nitrogen-containing heterocyclic ring (eg, lactam ring) and N-vinyl chain amides. Specific examples of N-vinyllactam type monomers include N-vinylpyrrolidone, N-vinylpiperidone, N-vinylmorpholinone, N-vinylcaprolactam, N-vinyl-1,3-oxazin-2-one, N-vinyl-3,5-morpholinedione and the like. Specific examples of N-vinyl chain amides include N-vinylacetamide, N-vinylpropionic acid amide, N-vinylbutyric acid amide and the like. Polymer chain B can be, for example, an N-vinyl polymer chain in which more than 50% by weight (eg, 70% by weight or more, or 85% by weight or more, or 95% by weight or more) of its repeating units are N-vinylpyrrolidone units. Substantially all of the repeating units constituting the polymer chain B may be N-vinylpyrrolidone units.
 ポリマー鎖Bの他の例としては、N-(メタ)アクリロイル型のモノマーに由来する繰返し単位を主な繰返し単位とするポリマー鎖、すなわち、N-(メタ)アクリロイル系ポリマー鎖が挙げられる。N-(メタ)アクリロイル系ポリマー鎖におけるN-(メタ)アクリロイル型モノマーに由来する繰返し単位の含有量は、典型的には50質量%超であり、70質量%以上であってもよく、85質量%以上であってもよく、95質量%以上であってもよい。ポリマー鎖Bの実質的に全部がN-(メタ)アクリロイル型モノマーに由来する繰返し単位であってもよい。 Another example of the polymer chain B is a polymer chain whose main repeating unit is a repeating unit derived from an N-(meth)acryloyl type monomer, that is, an N-(meth)acryloyl polymer chain. The content of repeating units derived from the N-(meth)acryloyl-type monomer in the N-(meth)acryloyl-based polymer chain is typically more than 50% by mass, and may be 70% by mass or more, 85% by mass or more, and may be 95% by mass or more. Substantially all of the polymer chain B may be repeating units derived from N-(meth)acryloyl type monomers.
 N-(メタ)アクリロイル型モノマーの例には、N-(メタ)アクリロイル基を有する鎖状アミドおよびN-(メタ)アクリロイル基を有する環状アミドが含まれる。N-(メタ)アクリロイル基を有する鎖状アミドの例としては、(メタ)アクリルアミド;N-メチル(メタ)アクリルアミド、N-エチル(メタ)アクリルアミド、N-プロピル(メタ)アクリルアミド、N-イソプロピル(メタ)アクリルアミド、N-n-ブチル(メタ)アクリルアミド等のN-アルキル(メタ)アクリルアミド;N,N-ジメチル(メタ)アクリルアミド、N,N-ジエチル(メタ)アクリルアミド、N,N-ジプロピル(メタ)アクリルアミド、N,N-ジイソプロピル(メタ)アクリルアミド、N,N-ジ(n-ブチル)(メタ)アクリルアミド等のN,N-ジアルキル(メタ)アクリルアミド;N-ヒドロキシエチル(メタ)アクリルアミド等のN-ヒドロキシアルキル(メタ)アクリルアミド;等が挙げられる。N-(メタ)アクリロイル基を有する環状アミドの例としては、N-(メタ)アクリロイルモルホリン、N-(メタ)アクリロイルピロリジン等が挙げられる。 Examples of N-(meth)acryloyl-type monomers include linear amides having an N-(meth)acryloyl group and cyclic amides having an N-(meth)acryloyl group. Examples of linear amides having an N-(meth)acryloyl group include (meth)acrylamide; N-alkyl(meth)acrylamides such as N-methyl(meth)acrylamide, N-ethyl(meth)acrylamide, N-propyl(meth)acrylamide, N-isopropyl(meth)acrylamide, and Nn-butyl(meth)acrylamide; N,N-dimethyl(meth)acrylamide, N,N-diethyl(meth)acrylamide, N,N-dipropyl(meth)acrylamide, N, N-diisopropyl(meth)acrylamide, N,N-dialkyl(meth)acrylamide such as N,N-di(n-butyl)(meth)acrylamide; N-hydroxyalkyl(meth)acrylamide such as N-hydroxyethyl(meth)acrylamide; and the like. Examples of cyclic amides having an N-(meth)acryloyl group include N-(meth)acryloylmorpholine, N-(meth)acryloylpyrrolidine and the like.
 ポリマー鎖Bの他の例として、オキシアルキレン単位を主な繰返し単位として含むポリマー鎖、すなわちオキシアルキレン系ポリマー鎖が挙げられる。オキシアルキレン系ポリマー鎖におけるオキシアルキレン単位の含有量は、典型的には50質量%超であり、70質量%以上であってもよく、85質量%以上であってもよく、95質量%以上であってもよい。ポリマー鎖Bに含まれる繰返し単位の実質的に全部がオキシアルキレン単位であってもよい。 Another example of polymer chain B is a polymer chain containing an oxyalkylene unit as a main repeating unit, that is, an oxyalkylene-based polymer chain. The content of oxyalkylene units in the oxyalkylene-based polymer chain is typically more than 50% by mass, may be 70% by mass or more, may be 85% by mass or more, or may be 95% by mass or more. Substantially all of the repeating units contained in polymer chain B may be oxyalkylene units.
 オキシアルキレン単位の例としては、オキシエチレン単位、オキシプロピレン単位、オキシブチレン単位等が挙げられる。このようなオキシアルキレン単位は、それぞれ、対応するアルキレンオキサイドに由来する繰返し単位であり得る。オキシアルキレン系ポリマー鎖に含まれるオキシアルキレン単位は、1種のみであってもよく、2種以上であってもよい。例えば、オキシエチレン単位とオキシプロピレン単位との組合せで含むオキシアルキレン系ポリマー鎖であってもよい。2種以上のオキシアルキレン単位を含むオキシアルキレン系ポリマー鎖において、それらのオキシアルキレン単位は、対応するアルキレンオキシドのランダム共重合体であってもよく、ブロック共重合体やグラフト共重合体であってもよい。 Examples of oxyalkylene units include oxyethylene units, oxypropylene units, and oxybutylene units. Each such oxyalkylene unit may be a repeating unit derived from the corresponding alkylene oxide. The oxyalkylene unit contained in the oxyalkylene-based polymer chain may be of only one type, or may be of two or more types. For example, it may be an oxyalkylene polymer chain containing a combination of oxyethylene units and oxypropylene units. In the oxyalkylene-based polymer chain containing two or more oxyalkylene units, the oxyalkylene units may be random copolymers, block copolymers, or graft copolymers of the corresponding alkylene oxides.
 ポリマー鎖Bのさらに他の例として、アルキルビニルエーテル(例えば、炭素数1以上10以下のアルキル基を有するビニルエーテル)に由来する繰返し単位を含むポリマー鎖、モノカルボン酸ビニルエステル(例えば、炭素数3以上のモノカルボン酸のビニルエステル)に由来する繰返し単位を含むポリマー鎖、VA単位の一部がアルデヒド(例えば、炭素数1以上7以下のアルキル基を有するアルキルアルデヒド)でアセタール化されたポリマー鎖、カチオン性基(例えば、第四級アンモニウム構造を有するカチオン性基)が導入されたポリマー鎖、等が挙げられる。 Further examples of the polymer chain B include a polymer chain containing a repeating unit derived from an alkyl vinyl ether (e.g., a vinyl ether having an alkyl group having 1 to 10 carbon atoms), a polymer chain containing a repeating unit derived from a monocarboxylic acid vinyl ester (e.g., a vinyl ester of a monocarboxylic acid having 3 or more carbon atoms), a polymer chain in which a portion of the VA units are acetalized with an aldehyde (e.g., an alkyl aldehyde having an alkyl group having 1 to 7 carbon atoms), and a cationic group (e.g., a cation having a quaternary ammonium structure). a polymer chain into which a functional group) has been introduced, and the like.
 本発明のいくつかの実施形態において、研磨用組成物におけるポリビニルアルコール系ポリマーとしては、非変性PVAを用いてもよく、変性PVAを用いてもよく、非変性PVAと変性PVAとを組み合わせて用いてもよい。非変性PVAと変性PVAとを組み合わせて用いる態様において、研磨用組成物に含まれるポリビニルアルコール系ポリマー全量に対する変性PVAの使用量は、例えば95質量%未満であってよく、90質量%以下でもよく、75質量%以下でもよく、50質量%以下でもよく、30質量%以下でもよく、10質量%以下でもよく、5質量%以下でもよく、1質量%以下でもよい。本発明に係る研磨用組成物は、例えば、ポリビニルアルコール系ポリマーとして変性PVAを用いる態様で好ましく実施され得る。 In some embodiments of the present invention, the polyvinyl alcohol-based polymer in the polishing composition may be unmodified PVA, modified PVA, or a combination of unmodified PVA and modified PVA. In the embodiment in which the unmodified PVA and the modified PVA are used in combination, the amount of the modified PVA used relative to the total amount of the polyvinyl alcohol polymer contained in the polishing composition may be, for example, less than 95% by mass, 90% by mass or less, 75% by mass or less, 50% by mass or less, 30% by mass or less, 10% by mass or less, 5% by mass or less, or 1% by mass or less. The polishing composition according to the present invention can be preferably implemented, for example, in a mode using modified PVA as the polyvinyl alcohol-based polymer.
 (セルロース誘導体)
 本発明のいくつかの実施形態において、「セルロース誘導体」とは、セルロースが持つヒドロキシ基の一部が他の異なった置換基に置換されたものをいう。セルロース誘導体は、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。セルロース誘導体としては、例えば、ヒドロキシエチルセルロース(HEC)、ヒドロキシプロピルセルロース、ヒドロキシエチルメチルセルロース、ヒドロキシプロピルメチルセルロース、メチルセルロース、エチルセルロース、エチルヒドロキシエチルセルロース、カルボキシメチルセルロースなどのセルロース誘導体およびプルラン等が挙げられる。
(cellulose derivative)
In some embodiments of the present invention, the term "cellulose derivative" refers to cellulose in which some of the hydroxy groups have been substituted with other different substituents. A cellulose derivative may be used individually by 1 type, and may be used in combination of 2 or more type. Examples of cellulose derivatives include cellulose derivatives such as hydroxyethylcellulose (HEC), hydroxypropylcellulose, hydroxyethylmethylcellulose, hydroxypropylmethylcellulose, methylcellulose, ethylcellulose, ethylhydroxyethylcellulose and carboxymethylcellulose, and pullulan.
 (デンプン誘導体)
 本発明のいくつかの実施形態によれば、水溶性高分子は、デンプン誘導体を含む。デンプン誘導体は、主繰返し単位としてα-グルコース単位を含むポリマーであり、例えばアルファ化デンプン、プルラン、カルボキシメチルデンプン、シクロデキストリン等が挙げられる。デンプン誘導体は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
(starch derivative)
According to some embodiments of the invention the water soluble polymer comprises a starch derivative. Starch derivatives are polymers containing α-glucose units as main repeating units, such as pregelatinized starch, pullulan, carboxymethyl starch, cyclodextrin, and the like. A starch derivative may be used individually by 1 type, and may be used in combination of 2 or more type.
 (オキシアルキレン単位を有するポリマー)
 本発明のいくつかの実施形態によれば、水溶性高分子は、オキシアルキレン単位を有するポリマーを含む。オキシアルキレン単位を含むポリマーとしては、ポリエチレンオキシド(PEO)、エチレンオキシド(EO)とプロピレンオキシド(PO)またはブチレンオキシド(BO)とのブロック共重合体、EOとPOまたはBOとのランダム共重合体等が挙げられる。エチレンオキシド(EO)とプロピレンオキシド(PO)とのブロック共重合体には、エチレンオキサイド(EO)とプロピレンオキサイド(PO)とのブロック共重合体(ジブロック型共重合体、PEO(ポリエチレンオキサイド)-PPO(ポリプロピレンオキサイド)-PEO型トリブロック共重合体、PPO-PEO-PPO型のトリブロック共重合体等)が含まれる。通常は、PEO-PPO-PEO型トリブロック共重合体がより好ましい。オキシアルキレン単位を有するポリマーは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
(Polymer having an oxyalkylene unit)
According to some embodiments of the invention, the water-soluble polymer comprises a polymer having oxyalkylene units. Polymers containing oxyalkylene units include polyethylene oxide (PEO), block copolymers of ethylene oxide (EO) and propylene oxide (PO) or butylene oxide (BO), and random copolymers of EO and PO or BO. Block copolymers of ethylene oxide (EO) and propylene oxide (PO) include block copolymers of ethylene oxide (EO) and propylene oxide (PO) (diblock copolymers, PEO (polyethylene oxide)-PPO (polypropylene oxide)-PEO type triblock copolymers, PPO-PEO-PPO type triblock copolymers, etc.). PEO-PPO-PEO type triblock copolymers are usually more preferred. A polymer having an oxyalkylene unit may be used alone or in combination of two or more.
 (窒素原子を有する水溶性高分子)
 本発明のいくつかの実施形態によれば、水溶性高分子は、ヘイズを低減するという観点から、窒素原子を含む。窒素原子を有する水溶性高分子を含むことにより、研磨対象物のヘイズを低減させることができる。
(Water-soluble polymer having nitrogen atoms)
According to some embodiments of the present invention, the water-soluble polymer contains nitrogen atoms with a view to reducing haze. By including the water-soluble polymer having nitrogen atoms, the haze of the object to be polished can be reduced.
 本発明のいくつかの実施形態において、窒素原子を有する水溶性高分子は、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。窒素原子を有する水溶性高分子としては、例えば、ポリN-アクリロイルモルホリン(PACMO)、ポリN-ビニルピロリドン(PVP)、ポリヒドロキシルエチルアクリルアミド(PHEAA)、ポリN-ビニルイミダゾール(PVI)、ポリN-ビニルカルバゾール、ポリN-ビニルカプロラクタム、ポリN-ビニルピペリジン等が挙げられる。なかでも、研磨対象物のヘイズを低減させるという観点から、ポリN-アクリロイルモルホリン(PACMO)を含むことが好ましい。 In some embodiments of the present invention, the nitrogen atom-containing water-soluble polymer may be used singly or in combination of two or more. Examples of water-soluble polymers having nitrogen atoms include poly N-acryloylmorpholine (PACMO), poly N-vinylpyrrolidone (PVP), polyhydroxylethylacrylamide (PHEAA), poly N-vinylimidazole (PVI), poly N-vinylcarbazole, poly N-vinylcaprolactam, poly N-vinylpiperidine and the like. Among them, it is preferable to contain poly-N-acryloylmorpholine (PACMO) from the viewpoint of reducing the haze of the object to be polished.
 本発明のいくつかの実施形態によれば、水溶性高分子の重量平均分子量は、5,000以上であることが好ましく、6,000以上であることがより好ましく、1×10以上であることがさらに好ましい。かかる実施形態によれば、ヘイズ低減効果が向上するという技術的効果がある。本発明のいくつかの実施形態によれば、ヘイズ低減や洗浄性等の観点から、前記水溶性高分子の重量平均分子量は、200×10以下であることが好ましく、100×10以下であることがより好ましく、50×10以下であることがさらに好ましい。なお、上記において、水溶性高分子の重量平均分子量は、研磨用組成物が水溶性高分子を2種以上含む場合には、それらのうちで最も小さい水溶性高分子の重量平均分子量が5,000以上である。かような実施形態であることによって、本発明の所期の効果を効率的に有することができる。 According to some embodiments of the present invention, the weight average molecular weight of the water-soluble polymer is preferably 5,000 or greater, more preferably 6,000 or greater, and even more preferably 1×10 4 or greater. According to this embodiment, there is a technical effect of improving the haze reduction effect. According to some embodiments of the present invention, the weight-average molecular weight of the water-soluble polymer is preferably 200×10 4 or less, more preferably 100×10 4 or less, and even more preferably 50×10 4 or less, from the viewpoint of haze reduction, washability, and the like. In the above, when the polishing composition contains two or more water-soluble polymers, the weight-average molecular weight of the water-soluble polymer is 5,000 or more for the smallest water-soluble polymer among them. By being such an embodiment, the desired effects of the present invention can be obtained efficiently.
 本発明のいくつかの実施形態によれば、当該水溶性高分子はポリビニルアルコール系ポリマーである。ポリビニルアルコール系ポリマーの重量平均分子量は、5,000以上であることが好ましく、6,000以上であることがより好ましく、1.0×10以上であることがさらに好ましい。かかる実施形態によれば、ヘイズ低減効果が向上するという技術的効果がある。本発明のいくつかの実施形態によれば、当該ポリビニルアルコール系
ポリマーの重量平均分子量は、100×10以下であることが好ましく、30×10以下であることがより好ましく、10×10以下であることがさらに好ましい。かかる実施形態によれば、分散安定性が向上する。
According to some embodiments of the invention, the water-soluble polymer is a polyvinyl alcohol-based polymer. The weight average molecular weight of the polyvinyl alcohol polymer is preferably 5,000 or more, more preferably 6,000 or more, and even more preferably 1.0×10 4 or more. According to this embodiment, there is a technical effect of improving the haze reduction effect. According to some embodiments of the present invention, the weight average molecular weight of the polyvinyl alcohol polymer is preferably 100×10 4 or less, more preferably 30×10 4 or less, and even more preferably 10×10 4 or less. According to such an embodiment, dispersion stability is improved.
 本発明のいくつかの実施形態によれば、当該水溶性高分子はセルロース誘導体である。セルロース誘導体の重量平均分子量は、5,000以上であることが好ましく、1×10以上であることがより好ましく、10×10以上であることがさらに好ましい。かかる実施形態によれば、ヘイズ低減効果が向上するという技術的効果がある。本発明のいくつかの実施形態によれば、当該セルロース誘導体の重量平均分子量は、200×10以下であることが好ましく、150×10以下であることがより好ましく、100×10以下であることがさらに好ましい。かかる実施形態によれば、分散安定性が向上する。 According to some embodiments of the invention, the water-soluble polymer is a cellulose derivative. The weight average molecular weight of the cellulose derivative is preferably 5,000 or more, more preferably 1×10 4 or more, and even more preferably 10×10 4 or more. According to this embodiment, there is a technical effect of improving the haze reduction effect. According to some embodiments of the present invention, the weight average molecular weight of the cellulose derivative is preferably 200×10 4 or less, more preferably 150×10 4 or less, even more preferably 100×10 4 or less. According to such an embodiment, dispersion stability is improved.
 本発明のいくつかの実施形態によれば、当該水溶性高分子は窒素原子を有する水溶性高分子である。窒素原子を有する水溶性高分子の重量平均分子量は、5,000以上であることが好ましく、7,500以上であることがより好ましく、1×10以上であることがさらに好ましい。かかる実施形態によれば、ヘイズ低減効果が向上するという技術的効果がある。本発明のいくつかの実施形態によれば、当該窒素原子を有する水溶性高分子の重量平均分子量は、100×10以下であることが好ましく、75×10以下であることがより好ましく、50×10以下であることがさらに好ましい。かかる実施形態によれば、分散安定性が向上する。 According to some embodiments of the invention, the water-soluble polymer is a water-soluble polymer having nitrogen atoms. The weight average molecular weight of the nitrogen atom-containing water-soluble polymer is preferably 5,000 or more, more preferably 7,500 or more, and even more preferably 1×10 4 or more. According to this embodiment, there is a technical effect of improving the haze reduction effect. According to some embodiments of the present invention, the weight average molecular weight of the nitrogen atom-containing water-soluble polymer is preferably 100×10 4 or less, more preferably 75×10 4 or less, and even more preferably 50×10 4 or less. According to such an embodiment, dispersion stability is improved.
 本発明のいくつかの実施形態において、研磨用組成物が濃縮液の状態である場合、当該濃縮液中の水溶性高分子の含有量は、安定性を向上させるという観点から、0.0001質量%以上であることが好ましく、0.0005質量%以上であるとより好ましく、0.001質量%以上であるとさらに好ましく、0.01質量%以上であると特に好ましい。本発明のいくつかの実施形態において、研磨用組成物が濃縮液の状態である場合、当該濃縮液中の水溶性高分子の含有量は、保管安定性や濾過性等の観点から、5質量%以下であると好ましく、3質量%以下であるとより好ましく、1質量%以下であるとさらに好ましい。 In some embodiments of the present invention, when the polishing composition is in the form of a concentrated liquid, the content of the water-soluble polymer in the concentrated liquid is preferably 0.0001% by mass or more, more preferably 0.0005% by mass or more, further preferably 0.001% by mass or more, and particularly preferably 0.01% by mass or more, from the viewpoint of improving stability. In some embodiments of the present invention, when the polishing composition is in the form of a concentrate, the content of the water-soluble polymer in the concentrate is preferably 5% by mass or less, more preferably 3% by mass or less, and even more preferably 1% by mass or less, from the viewpoint of storage stability, filterability, and the like.
 本発明のいくつかの実施形態において、研磨用組成物が希釈液の状態である場合、水溶性高分子の含有量は、ヘイズ低減効果が向上するという観点から、0.00005質量%以上であることが好ましく、0.0001質量%以上であるとより好ましく、0.0005質量%以上であるとさらに好ましく、0.001質量%以上であると特に好ましい。また、本発明のいくつかの実施形態において、研磨用組成物が希釈液の状態である場合、水溶性高分子の含有量は、研磨速度維持の観点から、0.1質量%以下であると好ましく、0.05質量%以下であるとより好ましく、0.02質量%以下であるとさらに好ましい。なお、2種以上の水溶性高分子を用いる場合、上記含有量はその合計量を指す。本発明の好ましいいくつかの実施形態において、水溶性高分子は、ヘイズを低減するという観点から、ヒドロキシ基を含む。 In some embodiments of the present invention, when the polishing composition is in the form of a diluted solution, the content of the water-soluble polymer is preferably 0.00005% by mass or more, more preferably 0.0001% by mass or more, even more preferably 0.0005% by mass or more, and particularly preferably 0.001% by mass or more, from the viewpoint of improving the haze reduction effect. In some embodiments of the present invention, when the polishing composition is in the form of a diluted solution, the content of the water-soluble polymer is preferably 0.1% by mass or less, more preferably 0.05% by mass or less, and even more preferably 0.02% by mass or less, from the viewpoint of maintaining the polishing rate. In addition, when using 2 or more types of water-soluble polymers, the said content points out the total amount. In some preferred embodiments of the present invention, the water-soluble polymer contains hydroxy groups with a view to reducing haze.
 本発明のいくつかの実施形態において、研磨用組成物は任意の水溶性高分子を2種以上含むことができる。当該水溶性高分子としては、例えばポリビニルアルコール系ポリマー、セルロース誘導体、デンプン誘導体、および窒素原子を有する水溶性高分子からなる群より選択される2種以上の水溶性高分子を組み合わせて用いることができる。なかでも、ポリビニルアルコール系ポリマー、セルロース誘導体、および窒素原子を有する水溶性高分子からなる群より選択される2種以上の水溶性高分子を含むと好ましい。これらの水溶性高分子を含む研磨用組成物は、研磨対象物のヘイズを低減させやすい。 In some embodiments of the present invention, the polishing composition can contain any two or more water-soluble polymers. As the water-soluble polymer, for example, two or more water-soluble polymers selected from the group consisting of polyvinyl alcohol-based polymers, cellulose derivatives, starch derivatives, and nitrogen atom-containing water-soluble polymers can be used in combination. Among others, it is preferable to contain two or more water-soluble polymers selected from the group consisting of polyvinyl alcohol-based polymers, cellulose derivatives, and water-soluble polymers having nitrogen atoms. A polishing composition containing these water-soluble polymers tends to reduce the haze of an object to be polished.
 研磨用組成物が2種以上の水溶性高分子を含む場合、例えば、ポリビニルアルコール系ポリマーと窒素原子を有する水溶性高分子とからそれぞれ1種以上、セルロース誘導体とポリビニルアルコール系ポリマーとからそれぞれ1種以上、セルロース誘導体と窒素原子を有する水溶性高分子とからそれぞれ1種以上、等の組合せで用いることができる。 When the polishing composition contains two or more types of water-soluble polymers, for example, one or more of each of a polyvinyl alcohol-based polymer and a water-soluble polymer having a nitrogen atom, one or more of each of a cellulose derivative and a polyvinyl alcohol-based polymer, and one or more of each of a cellulose derivative and a water-soluble polymer having a nitrogen atom can be used in combination.
 研磨用組成物がポリビニルアルコール系ポリマーと窒素原子を有する水溶性高分子とからそれぞれ1種以上の水溶性高分子を含む場合、ポリビニルアルコール系ポリマーおよび窒素原子を有する水溶性高分子としては、本発明のいくつかの実施形態として上述した水溶性高分子を用いることができる。なかでも、アセタール化された変性PVAとポリN-アクリロイルモルホリンとをそれぞれ1種以上、非変性PVAとポリN-アクリロイルモルホリンとをそれぞれ1種以上、非変性PVAとポリN-ビニルピロリドンとをそれぞれ1種以上、非変性PVAとポリヒドロキシルエチルアクリルアミドとをそれぞれ1種以上、等の組合せで水溶性高分子を用いることが好ましい。 When the polishing composition contains at least one water-soluble polymer selected from polyvinyl alcohol-based polymer and nitrogen atom-containing water-soluble polymer, the polyvinyl alcohol-based polymer and the nitrogen atom-containing water-soluble polymer may be the water-soluble polymers described above as some embodiments of the present invention. Among them, it is preferable to use a water-soluble polymer in combination such as one or more types of acetalized modified PVA and poly N-acryloylmorpholine, one or more types of unmodified PVA and poly N-acryloylmorpholine, one or more types of unmodified PVA and poly N-vinylpyrrolidone, and one or more types of unmodified PVA and polyhydroxylethylacrylamide.
 本発明のいくつかの実施形態において、2種以上の水溶性高分子が用いられる場合、当該2種以上の水溶性高分子の含有量の割合は特に制限されない。例えば、ポリビニルアルコール系ポリマーおよび窒素原子を有する水溶性高分子を含む研磨用組成物(濃縮液または希釈液)中において、ポリビニルアルコール系ポリマーの含有量と窒素原子を有する水溶性高分子の含有量との比(ポリビニルアルコール系ポリマー/窒素原子を有する水溶性高分子)の下限は、質量比で0.01以上が好ましく、0.05以上であってもよく、0.15以上(例えば0.5以上)であってもよい。また、当該含有量の比の上限は特に限定されないが、99以下が好ましく、19以下であってもよく、6以下(例えば2以下)であってもよい。ポリビニルアルコール系ポリマーと窒素原子を有する水溶性高分子の含有量は、質量比で1:99~99:1が好ましく、5:95~95:5であってもよく、15:85~85:15(例えば65:35~35:65)であってもよい。 In some embodiments of the present invention, when two or more water-soluble polymers are used, the content ratio of the two or more water-soluble polymers is not particularly limited. For example, in a polishing composition (concentrate or diluent) containing a polyvinyl alcohol-based polymer and a water-soluble polymer having a nitrogen atom, the ratio of the content of the polyvinyl alcohol-based polymer to the content of the water-soluble polymer having a nitrogen atom (polyvinyl alcohol-based polymer/water-soluble polymer having a nitrogen atom) is preferably 0.01 or more, may be 0.05 or more, or may be 0.15 or more (e.g., 0.5 or more). Although the upper limit of the content ratio is not particularly limited, it is preferably 99 or less, may be 19 or less, or may be 6 or less (for example, 2 or less). The content of the polyvinyl alcohol-based polymer and the water-soluble polymer having nitrogen atoms is preferably 1:99 to 99:1 in mass ratio, may be 5:95 to 95:5, or may be 15:85 to 85:15 (eg 65:35 to 35:65).
 <界面活性剤>
 本発明のいくつかの実施形態に係る研磨用組成物は、必要に応じて、界面活性剤を含有してもよい。研磨用組成物に界面活性剤を含有させることにより、研磨後の研磨対象物表面のヘイズをよりよく低減し得る。界面活性剤としては、アニオン性、カチオン性、ノニオン性、両性のいずれのものも使用可能である。通常は、アニオン性またはノニオン性の界面活性剤を好ましく採用し得る。低起泡性やpH調整の容易性の観点から、ノニオン性の界面活性剤がより好ましい。例えば、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール等のオキシアルキレン重合体;ポリオキシエチレンアルキルエーテル等のポリオキシアルキレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、ポリオキシエチレンアルキルアミン、ポリオキシエチレン脂肪酸エステル、ポリオキシエチレングリセリルエーテル脂肪酸エステル、ポリオキシエチレンソルビタン脂肪酸エステル等のポリオキシアルキレン誘導体(例えば、ポリオキシアルキレン付加物);複数種のオキシアルキレンの共重合体(例えば、ジブロック型共重合体、トリブロック型共重合体、ランダム型共重合体、交互共重合体);等のノニオン性界面活性剤が挙げられる。上記界面活性剤としては、ポリオキシアルキレン構造を含有する界面活性剤を含むことが好ましい。界面活性剤は、1種単独でもまたは2種以上を組み合わせても用いることができる。
<Surfactant>
Polishing compositions according to some embodiments of the present invention may optionally contain a surfactant. By including a surfactant in the polishing composition, haze on the surface of the object to be polished after polishing can be reduced more effectively. Any of anionic, cationic, nonionic and amphoteric surfactants can be used as surfactants. Generally, anionic or nonionic surfactants can be preferably employed. Nonionic surfactants are more preferable from the viewpoint of low foaming properties and ease of pH control. For example, oxyalkylene polymers such as polyethylene glycol, polypropylene glycol, and polytetramethylene glycol; polyoxyalkylene alkyl ethers such as polyoxyethylene alkyl ethers, polyoxyethylene alkylphenyl ethers, polyoxyalkylene derivatives (e.g., polyoxyalkylene adducts) such as polyoxyalkylene alkyl ethers such as polyoxyethylene alkyl ethers, polyoxyethylene alkylphenyl ethers, polyoxyethylene alkylamines, polyoxyethylene fatty acid esters, and polyoxyethylene sorbitan fatty acid esters; ; and other nonionic surfactants. The surfactant preferably contains a surfactant containing a polyoxyalkylene structure. Surfactants can be used singly or in combination of two or more.
 ポリオキシアルキレン構造を含有するノニオン性界面活性剤の具体例としては、エチレンオキサイド(EO)とプロピレンオキサイド(PO)とのブロック共重合体(ジブロック型共重合体、PEO(ポリエチレンオキサイド)-PPO(ポリプロピレンオキサイド)-PEO型トリブロック共重合体、PPO-PEO-PPO型のトリブロック共重合体等)、EOとPOとのランダム共重合体、ポリオキシエチレングリコール、ポリオキシエチレンプロピルエーテル、ポリオキシエチレンブチルエーテル、ポリオキシエチレンペンチルエーテル、ポリオキシエチレンヘキシルエーテル、ポリオキシエチレンオクチルエーテル、ポリオキシエチレン-2-エチルヘキシルエーテル、ポリオキシエチレンノニルエーテル、ポリオキシエチレンデシルエーテル、ポリオキシエチレンイソデシルエーテル、ポリオキシエチレントリデシルエーテル、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンセチルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンイソステアリルエーテル、ポリオキシエチレンオレイルエーテル、ポリオキシエチレンフェニルエーテル、ポリオキシエチレンオクチルフェニルエーテル、ポリオキシエチレンノニルフェニルエーテル、ポリオキシエチレンドデシルフェニルエーテル、ポリオキシエチレンスチレン化フェニルエーテル、ポリオキシエチレンラウリルアミン、ポリオキシエチレンステアリルアミン、ポリオキシエチレンオレイルアミン、ポリオキシエチレンモノラウリン酸エステル、ポリオキシエチレンモノステアリン酸エステル、ポリオキシエチレンジステアリン酸エステル、ポリオキシエチレンモノオレイン酸エステル、ポリオキシエチレンジオレイン酸エステル、モノラウリン酸ポリオキシエチレンソルビタン、モノパルチミン酸ポリオキシエチレンソルビタン、モノステアリン酸ポリオキシエチレンソルビタン、モノオレイン酸ポリオキシエチレンソルビタン、トリオレイン酸ポリオキシエチレンソルビタン、テトラオレイン酸ポリオキシエチレンソルビット、ポリオキシエチレンヒマシ油、ポリオキシエチレン硬化ヒマシ油等が挙げられる。なかでも好ましい界面活性剤として、EOとPOとのブロック共重合体(特に、PEO-PPO-PEO型のトリブロック共重合体)、EOとPOとのランダム共重合体およびポリオキシエチレンアルキルエーテル(例えばポリオキシエチレンデシルエーテル)が挙げられる。 Specific examples of nonionic surfactants containing a polyoxyalkylene structure include block copolymers of ethylene oxide (EO) and propylene oxide (PO) (diblock copolymers, PEO (polyethylene oxide)-PPO (polypropylene oxide)-PEO type triblock copolymers, PPO-PEO-PPO type triblock copolymers, etc.), random copolymers of EO and PO, polyoxyethylene glycol, polyoxyethylene propyl ether, polyoxyethylene butyl ether, poly Oxyethylene pentyl ether, polyoxyethylene hexyl ether, polyoxyethylene octyl ether, polyoxyethylene-2-ethylhexyl ether, polyoxyethylene nonyl ether, polyoxyethylene decyl ether, polyoxyethylene isodecyl ether, polyoxyethylene tridecyl ether, polyoxyethylene lauryl ether, polyoxyethylene cetyl ether, polyoxyethylene stearyl ether, polyoxyethylene isostearyl ether, polyoxyethylene oleyl ether, polyoxyethylene phenyl ether, polyoxyethylene octylphenyl ether, polyoxyethylene nonylphenyl ether Ether, polyoxyethylene dodecyl phenyl ether, polyoxyethylene styrenated phenyl ether, polyoxyethylene laurylamine, polyoxyethylene stearylamine, polyoxyethylene oleylamine, polyoxyethylene monolaurate, polyoxyethylene monostearate, polyoxyethylene distearate, polyoxyethylene monooleate, polyoxyethylene dioleate, polyoxyethylene sorbitan monolaurate, polyoxyethylene sorbitan monopaltimate, polyoxyethylene sorbitan monostearate, monooleic acid Polyoxyethylene sorbitan, polyoxyethylene sorbitan trioleate, polyoxyethylene sorbitate tetraoleate, polyoxyethylene castor oil, polyoxyethylene hardened castor oil and the like. Among them, preferred surfactants include block copolymers of EO and PO (especially PEO-PPO-PEO type triblock copolymers), random copolymers of EO and PO, and polyoxyethylene alkyl ethers (e.g., polyoxyethylene decyl ether).
 界面活性剤の重量平均分子量(Mws)は、典型的には5,000未満であり、濾過性や洗浄性等の観点から4,000以下(例えば3,000以下)であることが好ましい。また、界面活性剤のMwsは、界面活性能等の観点から、通常、200以上であることが適当であり、ヘイズ低減効果等の観点から250以上(例えば300以上)であることが好ましい。界面活性剤のMwsのより好ましい範囲は、該界面活性剤の種類によっても異なり得る。例えば、界面活性剤としてポリオキシエチレンアルキルエーテルを用いる場合、そのMwsは、1,500以下であることが好ましく、1,000以下(例えば500以下)であってもよい。また、例えば、界面活性剤としてPEO-PPO-PEO型のトリブロック共重合体を用いる場合、そのMwsは、例えば500以上であってよく、1,000以上であってもよく、さらには1,200以上であってもよい。 The weight average molecular weight (Mws) of the surfactant is typically less than 5,000, and preferably 4,000 or less (eg, 3,000 or less) from the viewpoint of filterability and washability. In addition, the Mws of the surfactant is usually suitably 200 or more from the viewpoint of surface activity and the like, and preferably 250 or more (for example, 300 or more) from the viewpoint of haze reduction effect and the like. A more preferable range of Mws of the surfactant may vary depending on the type of the surfactant. For example, when polyoxyethylene alkyl ether is used as a surfactant, its Mws is preferably 1,500 or less, and may be 1,000 or less (eg, 500 or less). Further, for example, when a PEO-PPO-PEO type triblock copolymer is used as a surfactant, its Mws may be, for example, 500 or more, 1,000 or more, or even 1,200 or more.
 本発明のいくつかの実施形態に係る研磨用組成物が界面活性剤を含む場合、その含有量は、本発明の効果を著しく阻害しない範囲であれば特に制限はない。通常は、洗浄性等の観点から、砥粒100質量部に対する界面活性剤の含有量を20質量部以下とすることが適当であり、15質量部以下が好ましく、10質量部以下(例えば8質量部以下)がより好ましい。界面活性剤の使用効果をよりよく発揮させる観点から、砥粒100質量部に対する界面活性剤の含有量は、0.001質量部以上が適当であり、0.005質量部以上が好ましく、0.01質量部以上でもよく、0.05質量部以上でもよい。なお、2種以上の界面活性剤を用いる場合、上記含有量はその合計量を指す。 When the polishing composition according to some embodiments of the present invention contains a surfactant, its content is not particularly limited as long as it does not significantly impair the effects of the present invention. Usually, from the viewpoint of cleaning properties, it is appropriate to set the content of the surfactant to 100 parts by mass of the abrasive grains to 20 parts by mass or less, preferably 15 parts by mass or less, and more preferably 10 parts by mass or less (e.g., 8 parts by mass or less). From the viewpoint of better exerting the effect of using the surfactant, the content of the surfactant with respect to 100 parts by mass of the abrasive grains is suitably 0.001 parts by mass or more, preferably 0.005 parts by mass or more, 0.01 parts by mass or more, or 0.05 parts by mass or more. In addition, when using 2 or more types of surfactant, the said content points out the total amount.
 [キレート剤]
 本発明のいくつかの実施形態に係る研磨用組成物は、キレート剤を含んでいてもよい。キレート剤は、研磨系中の金属不純物成分を捕捉して錯体を形成することによって、研磨対象物表面の金属汚染を抑制する。
[Chelating agent]
Polishing compositions according to some embodiments of the present invention may contain a chelating agent. The chelating agent suppresses metal contamination on the surface of the object to be polished by trapping metal impurity components in the polishing system to form complexes.
 キレート剤の具体例としては、アミノカルボン酸系キレート剤および有機ホスホン酸系キレート剤が挙げられる。アミノカルボン酸系キレート剤の具体例としては、エチレンジアミン四酢酸、エチレンジアミン四酢酸ナトリウム、ニトリロ三酢酸、ニトリロ三酢酸ナトリウム、ニトリロ三酢酸アンモニウム、ヒドロキシエチルエチレンジアミン三酢酸、ヒドロキシエチルエチレンジアミン三酢酸ナトリウム、ジエチレントリアミン五酢酸、ジエチレントリアミン五酢酸ナトリウム、トリエチレンテトラミン六酢酸、トリエチレンテトラミン六酢酸ナトリウム等が挙げられる。有機ホスホン酸系キレート剤の具体例としては、2-アミノエチルホスホン酸、1-ヒドロキシエチリデン-1,1-ジホスホン酸、アミノトリ(メチレンホスホン酸)、エチレンジアミンテトラキス(メチレンホスホン酸)、ジエチレントリアミンペンタ(メチレンホスホン酸)、エタン-1,1,-ジホスホン酸、エタン-1,1,2-トリホスホン酸、エタン-1-ヒドロキシ-1,1-ジホスホン酸、エタン-1-ヒドロキシ-1,1,2-トリホスホン酸、エタン-1,2-ジカルボキシ-1,2-ジホスホン酸、メタンヒドロキシホスホン酸、2-ホスホノブタン-1,2-ジカルボン酸、1-ホスホノブタン-2,3,4-トリカルボン酸、α-メチルホスホノコハク酸等が挙げられる。これらキレート剤の中でも、有機ホスホン酸系キレート剤、特にエチレンジアミンテトラキス(メチレンホスホン酸)を用いることが好ましい。キレート剤は、1種単独でもまたは2種以上を組み合わせて用いてもよい。 Specific examples of chelating agents include aminocarboxylic acid-based chelating agents and organic phosphonic acid-based chelating agents. Specific examples of aminocarboxylic acid-based chelating agents include ethylenediaminetetraacetic acid, sodium ethylenediaminetetraacetate, nitrilotriacetic acid, sodium nitrilotriacetate, ammonium nitrilotriacetate, hydroxyethylethylenediaminetriacetic acid, sodium hydroxyethylethylenediaminetriacetate, diethylenetriaminepentaacetic acid, sodium diethylenetriaminepentaacetate, triethylenetetraminehexaacetic acid, and sodium triethylenetetraminehexaacetate. Specific examples of organic phosphonic acid chelating agents include 2-aminoethylphosphonic acid, 1-hydroxyethylidene-1,1-diphosphonic acid, aminotri(methylenephosphonic acid), ethylenediaminetetrakis(methylenephosphonic acid), diethylenetriaminepenta(methylenephosphonic acid), ethane-1,1,-diphosphonic acid, ethane-1,1,2-triphosphonic acid, ethane-1-hydroxy-1,1-diphosphonic acid, and ethane-1-hydroxy-1,1,2-triphosphonic acid. , ethane-1,2-dicarboxy-1,2-diphosphonic acid, methanehydroxyphosphonic acid, 2-phosphonobutane-1,2-dicarboxylic acid, 1-phosphonobutane-2,3,4-tricarboxylic acid, α-methylphosphonosuccinic acid and the like. Among these chelating agents, it is preferable to use an organic phosphonic acid-based chelating agent, particularly ethylenediaminetetrakis(methylenephosphonic acid). The chelating agents may be used singly or in combination of two or more.
 [その他の成分]
 本発明のいくつかの実施形態に係る研磨用組成物は、本発明の効果が著しく妨げられない範囲で、例えば有機酸、有機酸塩、無機酸、無機酸塩、防腐剤、防カビ剤等の、研磨用組成物(典型的には、シリコンウェーハの仕上げ研磨工程に用いられる研磨用組成物)に用いられ得る公知の添加剤を、必要に応じてさらに含有してもよい。有機酸の例としては、ギ酸、酢酸、プロピオン酸等の脂肪酸、安息香酸、フタル酸等の芳香族カルボン酸、クエン酸、シュウ酸、酒石酸、リンゴ酸、マレイン酸、フマル酸、コハク酸、有機スルホン酸、有機ホスホン酸等が挙げられる。有機酸塩の例としては、有機酸のアルカリ金属塩(ナトリウム塩、カリウム塩等)やアンモニウム塩等が挙げられる。無機酸の例としては、硫酸、硝酸、塩酸、炭酸等が挙げられる。無機酸塩の例としては、無機酸のアルカリ金属塩(ナトリウム塩、カリウム塩等)やアンモニウム塩が挙げられる。有機酸およびその塩、ならびに無機酸およびその塩は、1種単独でもまたは2種以上を組み合わせても用いることができる。防腐剤および防カビ剤の例としては、イソチアゾリン系化合物、パラオキシ安息香酸エステル類、フェノキシエタノール等が挙げられる。
[Other ingredients]
The polishing composition according to some embodiments of the present invention may further contain known additives such as organic acids, organic acid salts, inorganic acids, inorganic acid salts, preservatives, antifungal agents, etc., which can be used in polishing compositions (typically, polishing compositions used in the final polishing step of silicon wafers), as long as the effects of the present invention are not significantly hindered. Examples of organic acids include fatty acids such as formic acid, acetic acid and propionic acid, aromatic carboxylic acids such as benzoic acid and phthalic acid, citric acid, oxalic acid, tartaric acid, malic acid, maleic acid, fumaric acid, succinic acid, organic sulfonic acids, and organic phosphonic acids. Examples of organic acid salts include alkali metal salts (sodium salt, potassium salt, etc.) and ammonium salts of organic acids. Examples of inorganic acids include sulfuric acid, nitric acid, hydrochloric acid, carbonic acid, and the like. Examples of inorganic acid salts include alkali metal salts (sodium salt, potassium salt, etc.) and ammonium salts of inorganic acids. The organic acid and its salt and the inorganic acid and its salt can be used singly or in combination of two or more. Examples of antiseptics and antifungal agents include isothiazoline compounds, paraoxybenzoic acid esters, phenoxyethanol and the like.
 本発明のいくつかの実施形態に係る研磨用組成物は、酸化剤を実質的に含有しないことが好ましい。研磨用組成物中に酸化剤が含まれていると、研磨対象物(特にはシリコンウェーハ)の表面が酸化されて酸化膜が生じ、これにより所要研磨時間が長くなってしまうためである。ここでいう酸化剤の具体例としては、過酸化水素(H)、過硫酸ナトリウム、過硫酸アンモニウム、ジクロロイソシアヌル酸ナトリウム等が挙げられる。なお、研磨用組成物が「酸化剤を実質的に含有しない」とは、少なくとも意図的には酸化剤を含有させないことをいう。したがって、原料や製法等に由来して微量(例えば、研磨用組成物中における酸化剤のモル濃度が0.001モル/L以下、好ましくは0.0005モル/L以下、より好ましくは0.0001モル/L以下、さらに好ましくは0.00005モル/L以下、特に好ましくは0.00001モル/L以下)の酸化剤が不可避的に含まれている研磨用組成物は、ここでいう酸化剤を実質的に含有しない研磨用組成物の概念に包含され得る。 Polishing compositions according to some embodiments of the present invention are preferably substantially free of oxidizing agents. This is because if the polishing composition contains an oxidizing agent, the surface of the object to be polished (particularly a silicon wafer) is oxidized to form an oxide film, which prolongs the required polishing time. Specific examples of the oxidizing agent here include hydrogen peroxide (H 2 O 2 ), sodium persulfate, ammonium persulfate, sodium dichloroisocyanurate and the like. The polishing composition "substantially does not contain an oxidizing agent" means that it does not contain an oxidizing agent at least intentionally. Therefore, a trace amount of oxidizing agent (for example, the molar concentration of the oxidizing agent in the polishing composition is 0.001 mol/L or less, preferably 0.0005 mol/L or less, more preferably 0.0001 mol/L or less, still more preferably 0.00005 mol/L or less, and particularly preferably 0.00001 mol/L or less) derived from raw materials, manufacturing methods, etc. is unavoidable. It can be included in the concept of composition.
 [研磨用組成物の製造方法]
 本発明のいくつかの実施形態に係る研磨用組成物の製造方法は特に制限されない。例えば、砥粒と、塩基性化合物(アンモニア、ならびにピペラジン化合物、アミン化合物A、およびアミン化合物Bの少なくとも1種)と、必要に応じて添加される他の成分を順次添加し、分散媒中で攪拌することにより製造することができる。
[Method for producing polishing composition]
The method for producing the polishing composition according to some embodiments of the invention is not particularly limited. For example, abrasive grains, a basic compound (ammonia, and at least one of a piperazine compound, an amine compound A, and an amine compound B), and other components added as necessary are sequentially added and stirred in a dispersion medium.
 <研磨用組成物の形態等>
 本発明のいくつかの実施形態に係る研磨用組成物は、一液型であってもよいし、二液以上から構成する多液型であってもよい。また、上記で説明した研磨用組成物は、そのまま研磨に使用されてもよいし、研磨用組成物の濃縮液を、水を加えて希釈する、あるいは多剤型の研磨用組成物の場合は水と構成成分の一部を含有する水溶液で希釈することにより調製して研磨に使用されてもよい。例えば、研磨用組成物の濃縮液を保管または輸送した後に、使用時に希釈して研磨用組成物を調製することができる。
<Form etc. of Polishing Composition>
The polishing composition according to some embodiments of the present invention may be a one-component type, or may be a multi-component type composed of two or more components. In addition, the polishing composition described above may be used for polishing as it is, or the concentrated solution of the polishing composition may be diluted by adding water, or in the case of a multi-component polishing composition, it may be prepared by diluting with an aqueous solution containing water and a part of the constituent components and used for polishing. For example, after storing or transporting a concentrated solution of the polishing composition, the polishing composition can be prepared by diluting at the time of use.
 濃縮された形態の研磨用組成物は、製造、流通、保存等の際における利便性やコスト低減等の観点から有利である。濃縮倍率は、例えば、体積換算で2倍以上100倍以下程度とすることができ、通常は5倍以上50倍以下程度が適当である。好ましい一態様に係る研磨用組成物の濃縮倍率は10倍以上40倍以下であり、例えば15倍以上25倍以下である。 The concentrated form of the polishing composition is advantageous from the viewpoint of convenience and cost reduction during production, distribution, storage, and the like. The concentration ratio can be, for example, about 2 times or more and 100 times or less in terms of volume, and usually about 5 times or more and 50 times or less is appropriate. The concentration ratio of the polishing composition according to a preferred embodiment is 10 times or more and 40 times or less, for example, 15 times or more and 25 times or less.
 本発明のいくつかの実施形態に係る研磨用組成物は、アルカリ性であると好ましく、そのpHは、8.0以上であると好ましく、9.0以上であるとより好ましく、9.5以上であるとさらに好ましい。研磨用組成物のpHが高くなると、研磨速度が向上する傾向にある。一方、pHは、12.0以下であると好ましく、11.0以下であるとより好ましく、10.8以下であるとさらに好ましい。研磨用組成物のpHが低くなると、表面の精度が向上する傾向にある。 The polishing composition according to some embodiments of the present invention is preferably alkaline, and has a pH of preferably 8.0 or higher, more preferably 9.0 or higher, and even more preferably 9.5 or higher. As the pH of the polishing composition increases, the polishing rate tends to increase. On the other hand, the pH is preferably 12.0 or less, more preferably 11.0 or less, and even more preferably 10.8 or less. A lower pH of the polishing composition tends to improve surface accuracy.
 すなわち、本発明のいくつかの実施形態に係る研磨用組成物のpHは、8.0以上12.0以下の範囲であると好ましく、9.0以上11,0以下の範囲であるとより好ましく、9.5以上10.8以下の範囲であるとさらに好ましい。特に研磨対象物がシリコンウェーハである場合、研磨用組成物のpHは、上記範囲であると好ましい。 That is, the pH of the polishing composition according to some embodiments of the present invention is preferably in the range of 8.0 to 12.0, more preferably in the range of 9.0 to 11.0, and even more preferably in the range of 9.5 to 10.8. Especially when the object to be polished is a silicon wafer, the pH of the polishing composition is preferably within the above range.
 研磨用組成物は、これを再使用する際に、必要に応じてpHが上記範囲になるように調整してもよい。pHの調整には、公知のpH調整剤を用いてもよいし、上記塩基性化合物を用いてもよい。研磨用組成物のpHの値は、pHメーターにより確認することができる。pHの詳細な測定方法は実施例に記載する。 When the polishing composition is reused, it may be adjusted so that the pH falls within the above range, if necessary. For adjustment of pH, a known pH adjuster may be used, or the basic compound described above may be used. The pH value of the polishing composition can be confirmed with a pH meter. A detailed method for measuring pH is described in Examples.
 [研磨対象物]
 本発明のいくつかの実施形態に係る研磨用組成物を用いて研磨する研磨対象物は、特に制限されず、種々の材質および形状を有する研磨対象物の研磨に適用され得る。研磨対象物の材料は、例えば、シリコン材料、アルミニウム、ニッケル、タングステン、鋼、タンタル、チタン、ステンレス鋼等の金属もしくは半金属、またはこれらの合金;石英ガラス、アルミノシリケー卜ガラス、ガラス状カーボン等のガラス状物質;アルミナ、シリカ、サファイア、窒化ケイ素、窒化タンタル、炭化チタン等のセラミック材料;炭化ケイ素、窒化ガリウム、ヒ化ガリウム等の化合物半導体基板材料;ポリイミド樹脂等の樹脂材料;等が挙げられる。また、研磨対象物は、上記材料のうち、複数の材料により構成されていてもよい。
[Object to be polished]
Objects to be polished using the polishing compositions according to some embodiments of the present invention are not particularly limited, and can be applied to polishing objects having various materials and shapes. Materials of the object to be polished include, for example, silicon materials, metals or semimetals such as aluminum, nickel, tungsten, steel, tantalum, titanium, and stainless steel, or alloys thereof; vitreous materials such as quartz glass, aluminosilicate glass, and vitreous carbon; ceramic materials such as alumina, silica, sapphire, silicon nitride, tantalum nitride, and titanium carbide; compound semiconductor substrate materials such as silicon carbide, gallium nitride, and gallium arsenide; Further, the object to be polished may be composed of a plurality of materials among the above materials.
 これらの中でも、本発明のいくつかの実施形態に係る研磨用組成物の効果がより顕著に得られることから、シリコン材料であることが好ましい。本発明のいくつかの実施形態に係る研磨用組成物は、シリコン材料からなる表面を有する基板の研磨に用いられることが好ましい。 Among these, the silicon material is preferable because the effects of the polishing composition according to some embodiments of the present invention can be obtained more remarkably. The polishing compositions according to some embodiments of the present invention are preferably used for polishing substrates having surfaces made of silicon materials.
 また、シリコン材料は、シリコン単結晶、アモルファスシリコンおよびポリシリコンからなる群より選択される少なくとも1種の材料を含むことが好ましい。シリコン材料としては、本発明の効果をより顕著に得ることができるとの観点から、シリコン単結晶またはポリシリコンであることがより好ましく、シリコン単結晶であることが特に好ましい。本発明のいくつかの実施形態に係る研磨用組成物は、シリコン単結晶からなる表面を有する基板(例えばシリコンウェーハ)の研磨に用いられることが特に好ましい。 Also, the silicon material preferably contains at least one material selected from the group consisting of silicon single crystal, amorphous silicon and polysilicon. As the silicon material, single crystal silicon or polysilicon is more preferable, and single crystal silicon is particularly preferable, from the viewpoint that the effects of the present invention can be obtained more remarkably. The polishing compositions according to some embodiments of the present invention are particularly preferably used for polishing a substrate (for example, a silicon wafer) having a silicon single crystal surface.
 さらに、研磨対象物の形状は特に制限されない。本発明のいくつかの実施形態に係る研磨用組成物は、例えば、板状や多面体状等の、平面を有する研磨対象物の研磨に好ましく適用され得る。 Furthermore, the shape of the object to be polished is not particularly limited. The polishing composition according to some embodiments of the present invention can be preferably applied to polishing objects having flat surfaces, such as plates and polyhedrons.
 [研磨方法]
 本発明のその他の形態としては、上記研磨用組成物を用いて研磨対象物を研磨することを含む、研磨方法が提供される。本発明のいくつかの実施形態に係る研磨用組成物は、ヘイズの低減効果に優れるため、仕上げ研磨工程において特に好適に用いられる。すなわち、本発明のいくつかの実施形態に係る研磨方法は、仕上げ研磨工程において好適に用いられる。したがって、本発明によれば、上記研磨用組成物を用いた仕上げ研磨工程を含む研磨対象物の製造方法(例えば、シリコンウェーハの製造方法)もまた提供される。なお、仕上げ研磨工程とは、目的物の製造プロセスにおける最後の研磨工程(すなわち、その工程の後にはさらなる研磨を行わない工程)を指す。本発明のいくつかの実施形態に係る研磨用組成物は、また、仕上げ研磨工程よりも上流の研磨工程(粗研磨工程と最終研磨工程との間の工程を指す)、例えば仕上げ研磨工程の直前に行われる研磨工程に用いられてもよい。
[Polishing method]
Another aspect of the present invention provides a polishing method comprising polishing an object to be polished using the polishing composition. The polishing composition according to some embodiments of the present invention is particularly suitable for use in the final polishing step because of its excellent haze reduction effect. That is, the polishing methods according to some embodiments of the present invention are preferably used in the final polishing process. Therefore, according to the present invention, there is also provided a method for manufacturing an object to be polished (for example, a method for manufacturing a silicon wafer) including a final polishing step using the polishing composition. Note that the final polishing step refers to the last polishing step in the manufacturing process of the object (that is, the step in which no further polishing is performed after that step). The polishing composition according to some embodiments of the present invention may also be used in a polishing step upstream of the finish polishing step (referring to a step between the rough polishing step and the final polishing step), for example, in a polishing step performed immediately before the finish polishing step.
 本発明のいくつかの実施形態に係る研磨用組成物は、上述のように、シリコンウェーハの研磨に好ましく使用される。そして、本発明のいくつかの実施形態に係る研磨用組成物は、シリコンウェーハの仕上げ研磨工程に用いられる研磨用組成物として特に好適である。より具体的には、本発明のいくつかの実施形態に係る研磨用組成物は、仕上げ研磨工程よりも上流の工程によって表面粗さ0.01nm以上100nm以下の表面状態に調製されたシリコンウェーハの研磨へ適用されると好適である。 The polishing compositions according to some embodiments of the present invention are preferably used for polishing silicon wafers, as described above. And, the polishing composition according to some embodiments of the present invention is particularly suitable as a polishing composition used in the final polishing step of silicon wafers. More specifically, the polishing composition according to some embodiments of the present invention is suitable for polishing a silicon wafer prepared to have a surface roughness of 0.01 nm or more and 100 nm or less by a process upstream of the final polishing process.
 研磨装置としては、研磨対象物を有する基板等を保持するホルダーと回転数を変更可能なモーター等とが取り付けてあり、研磨パッド(研磨布)を貼り付け可能な研磨定盤を有する一般的な研磨装置を用いることができる。 As the polishing apparatus, a general polishing apparatus can be used that has a holder that holds a substrate having an object to be polished, a motor that can change the number of rotations, and a polishing surface plate to which a polishing pad (abrasive cloth) can be attached.
 上記研磨パッドとしては、一般的な不織布タイプ、ポリウレタンタイプ、スウェードタイプ等を特に制限なく使用することができる。研磨パッドには、研磨用組成物が溜まるような溝加工が施されていることが好ましい。 As the polishing pad, a general non-woven fabric type, polyurethane type, suede type, etc. can be used without particular limitation. The polishing pad is preferably grooved so that the polishing composition is accumulated.
 研磨条件は、研磨用組成物が使用される研磨工程の段階に依存して、適宜設定される。 The polishing conditions are appropriately set depending on the stage of the polishing process in which the polishing composition is used.
 予備研磨工程では、両面研磨装置および片面研磨装置の何れを使用してもよいが、両面研磨装置が好適に使用できる。定盤の回転速度は、通常10rpm以上100rpm以下程度であり、好適には20rpm以上50rpm以下程度である。両面研磨装置を使用する場合、上部回転定盤と下部回転定盤との回転速度は別であってもよいが、通常はウェーハに対して同じ相対速度に設定される。また、仕上げ研磨工程では、片面研磨装置が好適に使用でき、定盤の回転速度は、通常10rpm以上100rpm以下程度であり、好適には20rpm以上50rpm以下程度であり、より好適には25rpm以上50rpm以下程度である。このような回転速度であると、研磨対象物の表面のヘイズレベルを顕著に低減することができる。 In the pre-polishing step, either a double-sided polishing machine or a single-sided polishing machine may be used, but a double-sided polishing machine can be preferably used. The rotation speed of the platen is usually about 10 rpm to 100 rpm, preferably about 20 rpm to 50 rpm. When using a double-sided polishing apparatus, the rotation speeds of the upper rotary platen and the lower rotary platen may be different, but they are usually set to the same relative speed with respect to the wafer. In the final polishing step, a single-sided polishing apparatus can be suitably used, and the rotation speed of the surface plate is usually about 10 rpm to 100 rpm, preferably about 20 rpm to 50 rpm, more preferably about 25 rpm to 50 rpm. With such a rotation speed, the haze level on the surface of the object to be polished can be significantly reduced.
 研磨対象物は、通常、定盤により加圧されている。この際の圧力は、適宜選択することができるが、予備研磨工程では、通常5kPa以上30kPa以下程度が好ましく、10kPa以上25kPa以下程度であることがより好ましい。また、仕上げ研磨工程の場合、通常5kPa以上30kPa以下程度が好ましく、10kPa以上20kPa以下程度であることがより好ましい。このような圧力であると、研磨対象物の表面のヘイズレベルを顕著に低減することができる。 The object to be polished is usually pressurized by a surface plate. The pressure at this time can be appropriately selected, but in the pre-polishing step, it is generally preferably about 5 kPa or more and 30 kPa or less, more preferably about 10 kPa or more and 25 kPa or less. In the case of the final polishing step, the pressure is preferably about 5 kPa or more and 30 kPa or less, more preferably about 10 kPa or more and 20 kPa or less. Such a pressure can significantly reduce the haze level on the surface of the object to be polished.
 研磨用組成物の供給速度も定盤のサイズに応じて適宜選択することができるが、経済性を考慮すると、予備研磨工程の場合、通常0.1L/分以上5L/分以下程度が好ましく、好適には0.2L/分以上2L/分以下程度である。仕上げ研磨工程の場合、通常0.1L/分以上5L/分以下程度が好ましく、好適には0.2L/分以上2L/分以下程度である。かような供給速度により、研磨対象物の表面を効率よく研磨し、研磨対象物の表面のヘイズレベルを顕著に低減することができる。 The supply rate of the polishing composition can also be appropriately selected according to the size of the platen, but in the case of the preliminary polishing step, it is usually preferably about 0.1 L/min or more and 5 L/min or less, preferably about 0.2 L/min or more and 2 L/min or less. In the case of the final polishing step, the flow rate is generally preferably about 0.1 L/min or more and 5 L/min or less, preferably about 0.2 L/min or more and 2 L/min or less. With such a supply rate, the surface of the object to be polished can be efficiently polished, and the haze level of the surface of the object to be polished can be significantly reduced.
 研磨用組成物の研磨装置における保持温度としても特に制限はないが、研磨速度の安定性、ヘイズレベルの低減といった観点から、いずれも通常15℃以上40℃以下程度が好ましく、18℃以上25℃以下程度がより好ましい。 The holding temperature of the polishing composition in the polishing apparatus is not particularly limited, but from the viewpoint of the stability of the polishing rate and the reduction of the haze level, it is generally preferably about 15°C or more and 40°C or less, more preferably about 18°C or more and 25°C or less.
 上記の研磨条件(研磨装置の設定)に関しては単に一例を述べただけであり、上記の範囲を外れてもよいし、適宜設定を変更することもできる。このような条件は当業者であれば適宜設定可能である。 The above polishing conditions (polishing device settings) are merely examples, and may be outside the above range, and the settings can be changed as appropriate. Such conditions can be appropriately set by those skilled in the art.
 さらに、研磨後に洗浄・乾燥を行うことが好ましい。これら操作の方法や条件は特に制限されず、公知のものが適宜採用される。例えば、研磨対象物を洗浄する工程として、SC-1洗浄を行うと好ましい。「SC-1洗浄」とは、例えば、アンモニアと過酸化水素水との混合液(例えば40℃以上80℃以下)を用いて行う洗浄方法である。SC-1洗浄を行うことにより、シリコンウェーハの表面を薄くエッチングして、このシリコンウェーハ表面のパーティクルを除去することができる。 Furthermore, it is preferable to wash and dry after polishing. Methods and conditions for these operations are not particularly limited, and known ones are appropriately employed. For example, it is preferable to perform SC-1 cleaning as the step of cleaning the object to be polished. “SC-1 cleaning” is a cleaning method that uses, for example, a mixture of ammonia and hydrogen peroxide (eg, 40° C. or higher and 80° C. or lower). By performing SC-1 cleaning, the surface of the silicon wafer can be thinly etched and particles on the surface of the silicon wafer can be removed.
 本発明の実施形態を詳細に説明したが、これは説明的かつ例示的なものであって限定的ではなく、本発明の範囲は、添付の特許請求の範囲によって解釈されるべきであることは明らかである。 Although the embodiments of the present invention have been described in detail, it is clear that this is illustrative and exemplary rather than limiting, and that the scope of the present invention should be construed by the appended claims.
 本発明は、下記態様および形態を包含する。
1.砥粒と、塩基性化合物と、を含み、
 前記塩基性化合物は、アンモニアおよびピペラジン化合物を含有し、
 前記アンモニアの研磨用組成物中の含有量をA1(単位:質量%)とし、前記ピペラジン化合物の研磨用組成物中の含有量をB1(単位:質量%)としたとき、下記式(1)で表される前記ピペラジン化合物の含有率C1が0%超5.5%以下である、研磨用組成物;
The present invention includes the following aspects and forms.
1. including abrasive grains and a basic compound,
The basic compound contains ammonia and a piperazine compound,
A polishing composition in which the content C1 of the piperazine compound represented by the following formula (1) is more than 0% and 5.5% or less, where A1 (unit: mass %) is the content of the ammonia in the polishing composition and B1 (unit: mass %) is the content of the piperazine compound in the polishing composition;
2.前記ピペラジン化合物の含有率C1は、1.0%以上4.0%以下である、上記1.に記載の研磨用組成物;
3.前記ピペラジン化合物は、1-メチルピペラジン、1-(2-アミノエチル)ピペラジン、1,4-ジメチルピペラジン、および1,4-ビス(3-アミノプロピル)ピペラジンからなる群より選択される少なくとも1種である、上記1.または2.に記載の研磨用組成物;
4.分散媒をさらに含む、上記1.~3.のいずれかに記載の研磨用組成物;
5.砥粒と、塩基性化合物と、を含み、
 前記塩基性化合物は、アンモニア、および窒素原子を2つ以上有しかつpKaが前記アンモニアよりも高いアミン化合物Aを含有し、
 前記アンモニアの研磨用組成物中の含有量をA2(単位:質量%)とし、前記アミン化合物Aの研磨用組成物中の含有量をB2(単位:質量%)としたとき、下記式(2)で表される前記アミン化合物Aの含有率C2が0%超5.5%以下である、研磨用組成物;
2. 1. The content of the piperazine compound C1 is 1.0% or more and 4.0% or less. The polishing composition according to;
3. 1. The piperazine compound is at least one selected from the group consisting of 1-methylpiperazine, 1-(2-aminoethyl)piperazine, 1,4-dimethylpiperazine, and 1,4-bis(3-aminopropyl)piperazine. or 2. The polishing composition according to;
4. 1. above, further comprising a dispersion medium. ~3. The polishing composition according to any one of;
5. including abrasive grains and a basic compound,
The basic compound contains ammonia and an amine compound A having two or more nitrogen atoms and a pKa higher than that of the ammonia,
When the content of the ammonia in the polishing composition is A2 (unit: mass %) and the content of the amine compound A in the polishing composition is B2 (unit: mass %), the content C2 of the amine compound A represented by the following formula (2) is more than 0% and 5.5% or less;
6.前記アミン化合物Aの含有率C2は、1.0%以上4.0%以下である、上記5.に記載の研磨用組成物;
7.前記アミン化合物Aは、trans-1,2-シクロヘキシルジアミン、およびエチレンジアミンからなる群より選択される少なくとも1種である、上記5.または6.に記載の研磨用組成物;
8.分散媒をさらに含む、上記5.~7.のいずれかに記載の研磨用組成物;
9.砥粒と、塩基性化合物と、を含み、
 前記塩基性化合物は、アンモニアおよび窒素原子を1つ有しかつpKaが前記アンモニアよりも高いアミン化合物Bを含有し、
 前記アミン化合物Bは第2級アミンまたは第3級アミンであり、
 前記アンモニアの研磨用組成物中の含有量をA3(単位:質量%)とし、前記アミン化合物Bの研磨用組成物中の含有量をB3(単位:質量%)としたとき、下記式(3)で表される前記アミン化合物Bの含有率C3が0%超35%以下である、研磨用組成物;
6. 5. The content C2 of the amine compound A is 1.0% or more and 4.0% or less. The polishing composition according to;
7. 5. The amine compound A is at least one selected from the group consisting of trans-1,2-cyclohexyldiamine and ethylenediamine. or 6. The polishing composition according to;
8. 5. above, further comprising a dispersion medium. ~7. The polishing composition according to any one of;
9. including abrasive grains and a basic compound,
The basic compound contains ammonia and an amine compound B that has one nitrogen atom and has a higher pKa than the ammonia,
The amine compound B is a secondary amine or a tertiary amine,
When the content of the ammonia in the polishing composition is A3 (unit: mass %) and the content of the amine compound B in the polishing composition is B3 (unit: mass %), the content C3 of the amine compound B represented by the following formula (3) is more than 0% and 35% or less;
10.前記アミン化合物Bの含有率C3は、1.0%以上15.0%以下である、上記9.に記載の研磨用組成物;
11.前記アミン化合物Bは、ピペリジン、N-メチルピペリジン、トリエチルアミン、およびN-メチルピロリジンからなる群より選択される少なくとも1種である、上記9.または10.に記載の研磨用組成物;
12.分散媒をさらに含む、上記9.~11.のいずれかに記載の研磨用組成物;
13.シリコン材料からなる表面を有する基板の研磨に用いられる、上記1.~12.のいずれかに記載の研磨用組成物;
14.上記1.~13.のいずれかに記載の研磨用組成物の濃縮液;
15.上記1.~13.のいずれかに記載の研磨用組成物を用いて研磨対象物を研磨することを含む、研磨方法。
10. 9. The content C3 of the amine compound B is 1.0% or more and 15.0% or less. The polishing composition according to;
11. 9. The amine compound B is at least one selected from the group consisting of piperidine, N-methylpiperidine, triethylamine, and N-methylpyrrolidine. or 10. The polishing composition according to;
12. 9. above, further comprising a dispersion medium. ~ 11. The polishing composition according to any one of;
13. The above 1. used for polishing a substrate having a surface made of a silicon material. ~12. The polishing composition according to any one of;
14. 1 above. ~ 13. A concentrate of the polishing composition according to any one of;
15. 1 above. ~ 13. A polishing method comprising polishing an object to be polished using the polishing composition according to any one of the above.
 本発明を、以下の実施例および比較例を用いてさらに詳細に説明する。ただし、本発明の技術的範囲が以下の実施例のみに制限されるわけではない。なお、特記しない限り、「%」および「部」は、それぞれ、「質量%」および「質量部」を意味する。また、下記実施例において、特記しない限り、操作は室温(25℃)/相対湿度40%RH以上50%RH以下の条件下で行われた。 The present invention will be explained in more detail using the following examples and comparative examples. However, the technical scope of the present invention is not limited only to the following examples. Unless otherwise specified, "%" and "parts" mean "% by mass" and "parts by mass" respectively. Moreover, in the following examples, unless otherwise specified, the operations were carried out under the conditions of room temperature (25° C.)/relative humidity of 40% RH or more and 50% RH or less.
 <シリカの平均一次粒子径>
 シリカの平均一次粒子径は、マイクロメリテックス社製の表面積測定装置、商品名「Flow Sorb II 2300」を用いて測定されたBET法によるコロイダルシリカの比表面積と、コロイダルシリカの真密度とから算出した。
<Average primary particle size of silica>
The average primary particle size of silica was calculated from the specific surface area of colloidal silica measured by the BET method using a surface area measuring device manufactured by Micromeritex under the trade name “Flow Sorb II 2300” and the true density of colloidal silica.
 <研磨用組成物のpH>
 pHは、pHメーター(株式会社堀場製作所製のガラス電極式水素イオン濃度指示計(型番F-2372))を使用して測定した。より具体的には、標準緩衝液(フタル酸塩pH緩衝液 pH:4.01(25℃)、中性リン酸塩pH緩衝液 pH:6.86(25℃)、炭酸塩pH緩衝液 pH:10.01(25℃))を用いて3点校正した後で、ガラス電極を測定対象の研磨用組成物に入れて、2分以上経過して安定した後の値を測定した。
<pH of Polishing Composition>
The pH was measured using a pH meter (glass electrode type hydrogen ion concentration indicator (model number F-2372) manufactured by Horiba, Ltd.). More specifically, standard buffer solutions (phthalate pH buffer pH: 4.01 (25 ° C.), neutral phosphate pH buffer pH: 6.86 (25 ° C.), carbonate pH buffer pH: 10.01 (25 ° C.)) were used to perform three-point calibration, the glass electrode was placed in the polishing composition to be measured, and the value after 2 minutes or more had passed and stabilized was measured.
 <重量平均分子量の測定>
 水溶性高分子および界面活性剤の重量平均分子量は、GPC法を用いて以下の条件にて測定した:
 ≪GPC測定条件≫
 測定装置:HLC-8320GPC(東ソー株式会社製)
 サンプル濃度:0.1質量%
 カラム:TSKgel GMPWXL
 検出器:示差屈折計
 溶離液:100mM 硝酸ナトリウム水溶液/アセトニトリル=10~8/0~2
 流速:1mL/分
 測定温度:40℃
 分子量換算:ポリエチレングリコール換算
 サンプル注入量:100μL。
<Measurement of weight average molecular weight>
The weight average molecular weights of water-soluble polymers and surfactants were measured using the GPC method under the following conditions:
≪GPC measurement conditions≫
Measuring device: HLC-8320GPC (manufactured by Tosoh Corporation)
Sample concentration: 0.1% by mass
Column: TSKgel GMPWXL
Detector: Differential refractometer Eluent: 100 mM sodium nitrate aqueous solution/acetonitrile = 10 to 8/0 to 2
Flow rate: 1 mL/min Measurement temperature: 40°C
Molecular weight conversion: Polyethylene glycol conversion Sample injection volume: 100 μL.
 <アミン化合物のpKa>
 アミン化合物のpKaは、平沼自動滴定装置(株式会社日立ハイテク製)を用い、アミン化合物の0.1質量%水溶液を、0.5M(mol/L)塩酸で滴定した際に得られる中和滴定曲線から算出した。なお、本方法により算出されるアンモニアのpKaは、9.35である。
<pKa of amine compound>
The pKa of the amine compound was calculated from a neutralization titration curve obtained by titrating a 0.1% by mass aqueous solution of the amine compound with 0.5M (mol/L) hydrochloric acid using a Hiranuma automatic titrator (manufactured by Hitachi High-Tech Co., Ltd.). The pKa of ammonia calculated by this method is 9.35.
 (実施例1~22、比較例1~13)
 各成分(砥粒、分散媒、アンモニア、ピペラジン化合物、アミン化合物A、アミン化合物B)を混合して、実施例1~22、および比較例1~13の研磨用組成物の濃縮液を調製した。得られた濃縮液を水で希釈することにより実施例1~22、および比較例1~13の研磨用組成物を得た。研磨用組成物の組成は下記表1~3に示す通りである。表1は、第1の研磨用組成物に係る実施例および比較例であり、表2は、第2の研磨用組成物に係る実施例および比較例であり、表3は、第3の研磨用組成物に係る実施例および比較例である。
(Examples 1 to 22, Comparative Examples 1 to 13)
Each component (abrasive grains, dispersion medium, ammonia, piperazine compound, amine compound A, amine compound B) was mixed to prepare concentrated solutions of the polishing compositions of Examples 1 to 22 and Comparative Examples 1 to 13. Polishing compositions of Examples 1 to 22 and Comparative Examples 1 to 13 were obtained by diluting the obtained concentrates with water. The composition of the polishing composition is as shown in Tables 1 to 3 below. Table 1 shows Examples and Comparative Examples relating to the first polishing composition, Table 2 shows Examples and Comparative Examples relating to the second polishing composition, and Table 3 shows Examples and Comparative Examples relating to the third polishing composition.
 砥粒としては平均一次粒子径25nmのコロイダルシリカを使用した。砥粒の含有量は0.169質量%である。分散媒としては水を使用した。 Colloidal silica with an average primary particle diameter of 25 nm was used as abrasive grains. The content of abrasive grains is 0.169% by mass. Water was used as a dispersion medium.
 アンモニアの含有量、およびピペラジン化合物、アミン化合物A、またはアミン化合物Bの種類および含有量の詳細は、下記の表1~3の通りである。なお、比較例5はピペラジン化合物を添加せず、塩基性化合物としてアンモニアのみを添加した例であり、比較例6、10は、アンモニアを添加しなかった例である。実施例1~22、および比較例1~13の研磨用組成物のpHは、下記表1~3の通りである。 The details of the ammonia content and the type and content of the piperazine compound, amine compound A, or amine compound B are shown in Tables 1 to 3 below. Comparative Example 5 is an example in which no piperazine compound is added and only ammonia is added as a basic compound, and Comparative Examples 6 and 10 are examples in which ammonia is not added. The pH values of the polishing compositions of Examples 1 to 22 and Comparative Examples 1 to 13 are shown in Tables 1 to 3 below.
 [エッチング速度の評価]
 〔エッチング速度測定〕
 ウェーハ種として、p-型 COPフリーであり、結晶方位が<100>であり、サイズが3cm×6cmであるシリコンウェーハを準備した。
[Evaluation of Etching Rate]
[Etching rate measurement]
As a wafer seed, a p-type COP-free silicon wafer having a <100> crystal orientation and a size of 3 cm×6 cm was prepared.
 浸漬前のシリコンウェーハの重量を測定した後、ウェーハをNHOH(29%):H(31%):脱イオン水(DIW)=1:1:8(体積比)の洗浄液に30秒浸漬させ、超純水で洗浄した。 After measuring the weight of the silicon wafer before immersion, the wafer was immersed in a cleaning solution of NH 4 OH (29%): H 2 O 2 (31%): deionized water (DIW) = 1:1:8 (volume ratio) for 30 seconds and washed with ultrapure water.
 その後、HF(3質量%)に30秒浸漬させてから、超純水で洗浄し、ウェーハを各スラリーに浸漬させて、25℃で40時間静置した。ウェーハを取り出し、超純水で洗浄後、乾燥させた。 After that, the wafer was immersed in HF (3% by mass) for 30 seconds, washed with ultrapure water, immersed in each slurry, and allowed to stand at 25°C for 40 hours. The wafer was taken out, washed with ultrapure water, and dried.
 浸漬後のシリコンウェーハの重量を測定した。浸漬前後のウェーハの重量、ウェーハの表面積、およびシリコンの比重から、下記式(A)~(C)に基づき、エッチング速度Rを算出した。シリコンの比重は2.33を使用した。 The weight of the silicon wafer after immersion was measured. From the weight of the wafer before and after immersion, the surface area of the wafer, and the specific gravity of silicon, the etching rate R was calculated based on the following equations (A) to (C). The specific gravity of silicon used was 2.33.
 なお、下記表1~3には、比較例5のエッチング速度に対する各実施例および比較例のエッチング速度の相対値を示した。 Tables 1 to 3 below show the relative values of the etching rate of each example and comparative example with respect to the etching rate of comparative example 5.
 上記表1~3から明らかなように、実施例1~22の研磨用組成物は、比較例1~13の研磨用組成物に比べてエッチング速度が高くなり、研磨対象物を高い研磨速度で研磨できることがわかった。 As is clear from Tables 1 to 3 above, the polishing compositions of Examples 1 to 22 have a higher etching rate than the polishing compositions of Comparative Examples 1 to 13, and the object to be polished can be polished at a high polishing rate.
 (実施例23~26、比較例14)
 各成分(砥粒、分散媒、アンモニア、ピペラジン化合物、水溶性高分子、界面活性剤)を混合して実施例23~26、および比較例14の研磨用組成物の濃縮液を調製した。得られた濃縮液を水で希釈することにより実施例23~26、および比較例14の研磨用組成物を得た。研磨用組成物の組成は下記に示す通りである:
 砥粒:平均一次粒子径25nmのコロイダルシリカ 0.169質量%
 分散媒:水
 第1水溶性高分子:重量平均分子量(Mw)が4.7×10であるポリN-アクリロイルモルホリン(PACMO) 0.008質量%
 第2水溶性高分子:重量平均分子量(Mw)が1.0×10であるアセタール化された変性ポリビニルアルコール(PVA) 0.0025質量%
 第1界面活性剤:ポリオキシエチレンデシルエーテル(エチレンオキサイド付加モル数5、分子量378) 0.0008質量%
 第2界面活性剤:重量平均分子量(Mw)が3×10であるポリエチレンオキサイド(PEO)-ポリプロピレンオキサイド(PPO)-ポリエチレンオキサイド(PEO)型のトリブロック共重合体 0.0004質量%
 アンモニアの含有量、ならびにピペラジン化合物の種類および含有量の詳細は、下記の表4の通りである。なお、比較例14は、ピペラジン化合物を添加せず、塩基性化合物としてアンモニアのみを添加した例である。また、実施例23~26、および比較例14の研磨用組成物のpHは下記の表4の通りである。
(Examples 23 to 26, Comparative Example 14)
Concentrated solutions of the polishing compositions of Examples 23 to 26 and Comparative Example 14 were prepared by mixing each component (abrasive grains, dispersion medium, ammonia, piperazine compound, water-soluble polymer, surfactant). Polishing compositions of Examples 23 to 26 and Comparative Example 14 were obtained by diluting the obtained concentrates with water. The composition of the polishing composition is as shown below:
Abrasive grains: 0.169% by mass of colloidal silica with an average primary particle diameter of 25 nm
Dispersion medium: water First water-soluble polymer: Poly N-acryloylmorpholine (PACMO) having a weight average molecular weight (Mw) of 4.7×10 5 0.008% by mass
Second water-soluble polymer: 0.0025% by mass of acetalized modified polyvinyl alcohol (PVA) having a weight average molecular weight (Mw) of 1.0×10 4
First surfactant: polyoxyethylene decyl ether (ethylene oxide addition mole number 5, molecular weight 378) 0.0008% by mass
Second surfactant: polyethylene oxide (PEO)-polypropylene oxide (PPO)-polyethylene oxide (PEO) type triblock copolymer having a weight average molecular weight (Mw) of 3×10 3 0.0004% by mass
Details of the content of ammonia and the type and content of the piperazine compound are shown in Table 4 below. Comparative Example 14 is an example in which no piperazine compound was added and only ammonia was added as a basic compound. The pH values of the polishing compositions of Examples 23 to 26 and Comparative Example 14 are shown in Table 4 below.
 〔表面品質(ヘイズ)および研磨速度〕
 <ヘイズの測定>
 ウェーハ種として、p-型 COP(Crystal Orginated Particle)フリーであり、結晶方位が<100>であり、サイズが300mmであるシリコンウェーハを準備した。ここで、COPとは、シリコンウェーハ表面に形成されている凹状欠陥のことであり、シリコンウェーハを形成する単結晶シリコンの結晶欠陥や研磨材(砥粒)による一定の幅および深さを超える引掻き傷(スクラッチ)に起因している。
[Surface quality (haze) and polishing speed]
<Measurement of haze>
As a wafer type, a p-type COP (Crystal Orginated Particle)-free silicon wafer having a <100> crystal orientation and a size of 300 mm was prepared. Here, a COP is a concave defect formed on the surface of a silicon wafer, and is caused by a crystal defect of single crystal silicon forming the silicon wafer or a scratch exceeding a certain width and depth caused by an abrasive (abrasive grain).
 ≪予備研磨≫
 下記の予備研磨の条件にて、上記のシリコンウェーハの研磨を行った:
 (予備研磨の条件)
 研磨装置:株式会社岡本工作機械製作所製の枚葉研磨機、型式「PNX-332B」
 研磨荷重:20kPa
 定盤回転数:20rpm
 キャリア回転数:20rpm
 研磨パッド:ニッタ・デュポン株式会社製 製品名「SUBA400」
 研磨用組成物供給レート:1L/min
 研磨用組成物の温度:20℃
 定盤冷却水の温度:20℃
 研磨時間:3分
 予備研磨の研磨用組成物:コロイダルシリカ(平均一次粒子径35nm)1.0質量%、KOH 0.068質量%、分散媒:水。
≪Preliminary Polishing≫
The above silicon wafers were polished under the following pre-polishing conditions:
(Conditions for preliminary polishing)
Polishing device: Sheet-fed polishing machine manufactured by Okamoto Machine Tool Co., Ltd., model "PNX-332B"
Polishing load: 20kPa
Surface plate rotation speed: 20 rpm
Carrier rotation speed: 20 rpm
Polishing pad: Product name “SUBA400” manufactured by Nitta DuPont Co., Ltd.
Polishing composition supply rate: 1 L/min
Temperature of polishing composition: 20°C
Surface plate cooling water temperature: 20°C
Polishing time: 3 minutes Polishing composition for preliminary polishing: 1.0% by mass of colloidal silica (average primary particle diameter: 35 nm), 0.068% by mass of KOH, dispersion medium: water.
 ≪仕上げ研磨≫
 上記の予備研磨にて研磨されたシリコンウェーハを下記の仕上げ研磨の条件にて、シリコンウェーハの研磨を行った:
 (仕上げ研磨の条件)
 研磨装置:株式会社岡本工作機械製作所製の枚葉研磨機、型式「PNX-332B」
 研磨荷重:10kPa
 定盤回転数:52rpm
 キャリア回転数:50rpm
 研磨パッド:フジボウ愛媛株式会社製 商品名「POLYPAS275NX」
 研磨用組成物供給レート:1.5L/min
 研磨用組成物の温度:20℃
 定盤冷却水の温度:20℃
 研磨時間:4分
 仕上げ研磨の研磨用組成物:下記表4に記載の実施例23~26および比較例14の研磨用組成物。
≪Finish polishing≫
Silicon wafers polished by the above preliminary polishing were polished under the following final polishing conditions:
(Conditions for final polishing)
Polishing device: Sheet-fed polishing machine manufactured by Okamoto Machine Tool Co., Ltd., model "PNX-332B"
Polishing load: 10kPa
Surface plate rotation speed: 52 rpm
Carrier rotation speed: 50 rpm
Polishing pad: Product name “POLYPAS275NX” manufactured by Fujibo Ehime Co., Ltd.
Polishing composition supply rate: 1.5 L/min
Temperature of polishing composition: 20°C
Surface plate cooling water temperature: 20°C
Polishing time: 4 minutes Polishing composition for final polishing: Polishing compositions of Examples 23 to 26 and Comparative Example 14 shown in Table 4 below.
 上記の仕上げ研磨にて研磨されたシリコンウェーハを下記の洗浄条件にて洗浄を行った:
 (洗浄条件)
 NHOH(29%):H(31%):脱イオン水(DIW)=2:5.3:48(体積比)の洗浄液を入れた第1の洗浄槽と、25℃の超純水を入れた第2の洗浄槽とを用意した。研磨後のシリコンウェーハを第1の洗浄槽に6分間浸漬させた後、第2の洗浄槽に15分間浸漬させた。その後、再びシリコンウェーハを第1の洗浄槽に6分間浸漬させ、第2の洗浄槽に16分間浸漬させた後、乾燥させた。
The silicon wafers polished by the above final polishing were cleaned under the following cleaning conditions:
(Washing conditions)
A first cleaning bath containing a cleaning solution of NH 4 OH (29%):H 2 O 2 (31%):deionized water (DIW)=2:5.3:48 (volume ratio) and a second cleaning bath containing ultrapure water at 25° C. were prepared. The polished silicon wafer was immersed in the first cleaning bath for 6 minutes and then immersed in the second cleaning bath for 15 minutes. After that, the silicon wafer was again immersed in the first cleaning bath for 6 minutes, immersed in the second cleaning bath for 16 minutes, and then dried.
 乾燥後のシリコンウェーハのヘイズは、ウェーハ検査装置(ケーエルエー・テンコール株式会社製、品名「SURFSCAN SP5」)を用い、DW2Oモードで測定した。なお、下記表4には、比較例14のヘイズに対する実施例23~26のヘイズの相対値を示した。 The haze of the silicon wafer after drying was measured in DW2O mode using a wafer inspection device (manufactured by KLA-Tencor Co., Ltd., product name "SURFSCAN SP5"). Table 4 below shows the haze values of Examples 23 to 26 relative to those of Comparative Example 14.
 <研磨速度の測定>
 ウェーハ種として、p-型 COP(Crystal Orginated Particle)フリーであり、結晶方位が<100>であり、サイズが200mmであるシリコンウェーハを準備した。準備したシリコンウェーハに対して、下記の研磨条件により研磨を行った。
<Measurement of Polishing Rate>
As a wafer seed, a p-type COP (Crystal Orginated Particle) free silicon wafer having a <100> crystal orientation and a size of 200 mm was prepared. The prepared silicon wafer was polished under the following polishing conditions.
 (研磨条件)
 研磨装置:株式会社岡本工作機械製作所製の枚葉研磨機、型式「PNX-322」
 研磨荷重:10kPa
 定盤回転数:30rpm
 キャリア回転数:30rpm
 研磨パッド:フジボウ愛媛株式会社製 商品名「POLYPAS275NX」
 研磨用組成物供給レート:0.4L/min
 研磨用組成物の温度:20℃
 定盤冷却水の温度:20℃
 研磨時間:10分
 研磨用組成物:下記表4に記載の実施例23~26および比較例14の研磨用組成物。
(polishing conditions)
Polishing device: Sheet-fed polishing machine manufactured by Okamoto Machine Tool Co., Ltd., model "PNX-322"
Polishing load: 10kPa
Surface plate rotation speed: 30 rpm
Carrier rotation speed: 30 rpm
Polishing pad: Product name “POLYPAS275NX” manufactured by Fujibo Ehime Co., Ltd.
Polishing composition supply rate: 0.4 L/min
Temperature of polishing composition: 20°C
Surface plate cooling water temperature: 20°C
Polishing time: 10 minutes Polishing composition: Polishing compositions of Examples 23 to 26 and Comparative Example 14 shown in Table 4 below.
 上記の研磨条件にて研磨されたシリコンウェーハを、下記の洗浄条件にて洗浄を行った:
 (洗浄条件)
 研磨後、シリコンウェーハを、NHOH(29%):H(31%):脱イオン水(DIW)=1:1:12(体積比)の洗浄液に5分間浸漬することにより洗浄した(SC-1洗浄)。その後、超音波発振器を作動した状態で、超純水にシリコンウェーハを浸漬し、スピンドライヤーにて乾燥させた。
The silicon wafers polished under the above polishing conditions were washed under the following washing conditions:
(Washing condition)
After polishing, the silicon wafer was cleaned by immersing it in a cleaning solution of NH 4 OH (29%):H 2 O 2 (31%):deionized water (DIW)=1:1:12 (volume ratio) for 5 minutes (SC-1 cleaning). After that, the silicon wafer was immersed in ultrapure water and dried with a spin drier while the ultrasonic oscillator was in operation.
 研磨速度は、研磨前後のシリコンウェーハの重量差およびシリコンの比重から算出した。なお、下記表4には、比較例14の研磨速度に対する実施例23~26の研磨速度の相対値を示した。 The polishing rate was calculated from the difference in weight of the silicon wafer before and after polishing and the specific gravity of silicon. Table 4 below shows the relative values of the polishing rates of Examples 23 to 26 with respect to the polishing rate of Comparative Example 14.
 上記表4から明らかなように、実施例23~26の研磨用組成物を用いた場合、比較例14の研磨用組成物に比べて、研磨対象物を高い研磨速度で研磨できることがわかった。また、実施例23~26の研磨用組成物を用いた場合、研磨後の研磨対象物の表面品質を良好に維持できることが分かった。 As is clear from Table 4 above, when the polishing compositions of Examples 23 to 26 were used, compared to the polishing composition of Comparative Example 14, it was found that the object to be polished could be polished at a higher polishing rate. Moreover, it was found that when the polishing compositions of Examples 23 to 26 were used, the surface quality of the object to be polished after polishing could be maintained satisfactorily.
 (実施例27~39、比較例15)
 各成分(砥粒、分散媒、アンモニア、ピペラジン化合物、アミン化合物A、アミン化合物B、水溶性高分子、界面活性剤)を混合して実施例27~39、および比較例15の研磨用組成物の濃縮液を調製した。得られた濃縮液を水で希釈することにより実施例27~39、および比較例15の研磨用組成物を得た。研磨用組成物の組成は下記に示す通りである:
 砥粒:平均一次粒子径25nmのコロイダルシリカ 0.17質量%
 分散媒:水
 第1水溶性高分子:重量平均分子量(Mw)が4.7×10であるポリN-アクリロイルモルホリン(PACMO) 0.008質量%
 第2水溶性高分子:重量平均分子量(Mw)が1.0×10であるアセタール化された変性ポリビニルアルコール(PVA) 0.003質量%
 第1界面活性剤:ポリオキシエチレンデシルエーテル(エチレンオキサイド付加モル数5、分子量378) 0.0008質量%
 第2界面活性剤:重量平均分子量(Mw)が3×10であるポリエチレンオキサイド(PEO)-ポリプロピレンオキサイド(PPO)-ポリエチレンオキサイド(PEO)型のトリブロック共重合体 0.0004質量%。
(Examples 27 to 39, Comparative Example 15)
Each component (abrasive grain, dispersion medium, ammonia, piperazine compound, amine compound A, amine compound B, water-soluble polymer, surfactant) was mixed to prepare a concentrated solution of the polishing composition of Examples 27 to 39 and Comparative Example 15. Polishing compositions of Examples 27 to 39 and Comparative Example 15 were obtained by diluting the obtained concentrates with water. The composition of the polishing composition is as shown below:
Abrasive grains: 0.17% by mass of colloidal silica with an average primary particle diameter of 25 nm
Dispersion medium: water First water-soluble polymer: Poly N-acryloylmorpholine (PACMO) having a weight average molecular weight (Mw) of 4.7×10 5 0.008% by mass
Second water-soluble polymer: 0.003% by mass of acetalized modified polyvinyl alcohol (PVA) having a weight average molecular weight (Mw) of 1.0×10 4
First surfactant: polyoxyethylene decyl ether (ethylene oxide addition mole number 5, molecular weight 378) 0.0008% by mass
Second surfactant: Polyethylene oxide (PEO)-polypropylene oxide (PPO)-polyethylene oxide (PEO) type triblock copolymer having a weight average molecular weight (Mw) of 3×10 3 0.0004% by mass.
 アンモニアの含有量、ならびにピペラジン化合物、アミン化合物A、およびアミン化合物Bの種類および含有量の詳細は、下記の表5の通りである。なお、比較例15は、ピペラジン化合物を添加せず、塩基性化合物としてアンモニアのみを添加した例である。また、実施例27~39、および比較例15の研磨用組成物のpHは、下記の表5の通りである。 Details of the content of ammonia, and the types and content of the piperazine compound, amine compound A, and amine compound B are shown in Table 5 below. Comparative Example 15 is an example in which no piperazine compound was added and only ammonia was added as a basic compound. The pH values of the polishing compositions of Examples 27 to 39 and Comparative Example 15 are shown in Table 5 below.
 〔表面品質(ヘイズ)および研磨速度〕
 <ヘイズの測定>
 ウェーハ種として、p-型 COP(Crystal Orginated Particle)フリーであり、結晶方位が<100>であり、サイズが300mmであるシリコンウェーハを準備した。
[Surface quality (haze) and polishing speed]
<Measurement of haze>
As a wafer type, a p-type COP (Crystal Orginated Particle)-free silicon wafer having a <100> crystal orientation and a size of 300 mm was prepared.
 ≪予備研磨≫
 下記の予備研磨の条件にて、上記のシリコンウェーハの研磨を行った:
 (予備研磨の条件)
 研磨装置:株式会社岡本工作機械製作所製の枚葉研磨機、型式「PNX-332B」
 研磨荷重:20kPa
 定盤回転数:20rpm
 キャリア回転数:20rpm
 研磨パッド:ニッタ・デュポン株式会社製 製品名「SUBA400」
 研磨用組成物供給レート:1L/min
 研磨用組成物の温度:20℃
 定盤冷却水の温度:20℃
 研磨時間:3分
 予備研磨の研磨用組成物:コロイダルシリカ(平均一次粒子径35nm)1.0質量%、KOH 0.068質量%、分散媒:水。
≪Preliminary Polishing≫
The above silicon wafers were polished under the following pre-polishing conditions:
(Conditions for preliminary polishing)
Polishing device: Sheet-fed polishing machine manufactured by Okamoto Machine Tool Co., Ltd., model "PNX-332B"
Polishing load: 20kPa
Surface plate rotation speed: 20 rpm
Carrier rotation speed: 20 rpm
Polishing pad: Product name “SUBA400” manufactured by Nitta DuPont Co., Ltd.
Polishing composition supply rate: 1 L/min
Temperature of polishing composition: 20°C
Surface plate cooling water temperature: 20°C
Polishing time: 3 minutes Polishing composition for preliminary polishing: 1.0% by mass of colloidal silica (average primary particle diameter: 35 nm), 0.068% by mass of KOH, dispersion medium: water.
 ≪仕上げ研磨≫
 上記の予備研磨にて研磨されたシリコンウェーハを下記の仕上げ研磨の条件にて、シリコンウェーハの研磨を行った:
 (仕上げ研磨の条件)
 研磨装置:株式会社岡本工作機械製作所製の枚葉研磨機、型式「PNX-332B」
 研磨荷重:20kPa
 定盤回転数:52rpm
 キャリア回転数:50rpm
 研磨パッド:フジボウ愛媛株式会社製 商品名「POLYPAS275NX」
 研磨用組成物供給レート:1.5L/min
 研磨用組成物の温度:20℃
 定盤冷却水の温度:20℃
 研磨時間:4分
 仕上げ研磨の研磨用組成物:下記表5に記載の実施例27~39および比較例15の研磨用組成物。
≪Finish polishing≫
Silicon wafers polished by the above preliminary polishing were polished under the following final polishing conditions:
(Conditions for final polishing)
Polishing device: Sheet-fed polishing machine manufactured by Okamoto Machine Tool Co., Ltd., model "PNX-332B"
Polishing load: 20kPa
Surface plate rotation speed: 52 rpm
Carrier rotation speed: 50 rpm
Polishing pad: Product name “POLYPAS275NX” manufactured by Fujibo Ehime Co., Ltd.
Polishing composition supply rate: 1.5 L/min
Temperature of polishing composition: 20°C
Surface plate cooling water temperature: 20°C
Polishing time: 4 minutes Polishing composition for final polishing: Polishing compositions of Examples 27 to 39 and Comparative Example 15 shown in Table 5 below.
 上記の仕上げ研磨にて研磨されたシリコンウェーハを下記の洗浄条件にて洗浄を行った:
 (洗浄条件)
 研磨後のシリコンウェーハを研磨装置から取り外し、枚葉式ウェーハ洗浄装置を用いて、オゾン水洗浄液で洗浄し(60秒)、次いでSC-1洗浄液とブラシを用いて洗浄し(110秒)、次いでオゾン水洗浄液による洗浄(20秒)とフッ酸洗浄液による洗浄(15秒)を1セットとして計3セット行い、さらにオゾン水洗浄液で洗浄した(20秒)。その後、シリコンウェーハを乾燥させた。
The silicon wafers polished by the above final polishing were cleaned under the following cleaning conditions:
(Washing conditions)
After polishing, the silicon wafer was removed from the polishing apparatus, washed with an ozone water cleaning solution (60 seconds) using a single wafer cleaning apparatus, then cleaned with an SC-1 cleaning solution and a brush (110 seconds), then washed with an ozone water cleaning solution (20 seconds) and with a hydrofluoric acid cleaning solution (15 seconds) as one set. The silicon wafer was then dried.
 乾燥後のシリコンウェーハのヘイズは、ウェーハ検査装置(ケーエルエー・テンコール株式会社製、品名「SURFSCAN SP5」)を用い、DW2Oモードで測定した。なお、下記表5には、比較例15のヘイズに対する実施例27~39のヘイズの相対値を示した。 The haze of the silicon wafer after drying was measured in DW2O mode using a wafer inspection device (manufactured by KLA-Tencor Co., Ltd., product name "SURFSCAN SP5"). Table 5 below shows the haze values of Examples 27 to 39 relative to those of Comparative Example 15.
 <研磨速度の測定>
 ウェーハ種として、p-型 COP(Crystal Orginated Particle)フリーであり、結晶方位が<100>であり、サイズが300mmであるシリコンウェーハを準備した。準備したシリコンウェーハに対して、下記の研磨条件により研磨を行った。
<Measurement of Polishing Rate>
As a wafer type, a p-type COP (Crystal Orginated Particle)-free silicon wafer having a <100> crystal orientation and a size of 300 mm was prepared. The prepared silicon wafer was polished under the following polishing conditions.
 (研磨条件)
 研磨装置:株式会社岡本工作機械製作所製の枚葉研磨機、型式「PNX-322」
 研磨荷重:20kPa
 定盤回転数:52rpm
 キャリア回転数:50rpm
 研磨パッド:フジボウ愛媛株式会社製 商品名「POLYPAS275NX」
 研磨用組成物供給レート:0.75L/min
 研磨用組成物の温度:20℃
 定盤冷却水の温度:20℃
 研磨時間:10分
 研磨用組成物:下記表5に記載の実施例27~39および比較例15の研磨用組成物。
(polishing conditions)
Polishing device: Sheet-fed polishing machine manufactured by Okamoto Machine Tool Co., Ltd., model "PNX-322"
Polishing load: 20kPa
Surface plate rotation speed: 52 rpm
Carrier rotation speed: 50 rpm
Polishing pad: Product name “POLYPAS275NX” manufactured by Fujibo Ehime Co., Ltd.
Polishing composition supply rate: 0.75 L/min
Temperature of polishing composition: 20°C
Surface plate cooling water temperature: 20°C
Polishing time: 10 minutes Polishing composition: Polishing compositions of Examples 27 to 39 and Comparative Example 15 shown in Table 5 below.
 上記の研磨条件にて研磨されたシリコンウェーハを、下記の洗浄条件にて洗浄を行った:
 (洗浄条件)
 研磨後、シリコンウェーハをオゾン水に15分間浸漬した後、超純水に浸漬し、その後スピンドライヤーにて乾燥させた。
The silicon wafers polished under the above polishing conditions were washed under the following washing conditions:
(Washing condition)
After polishing, the silicon wafer was immersed in ozone water for 15 minutes, then immersed in ultrapure water, and then dried with a spin dryer.
 研磨速度は、研磨前後のシリコンウェーハの重量差およびシリコンの比重から算出した。なお、下記表5には、比較例15の研磨速度に対する実施例27~39の研磨速度の相対値を示した。 The polishing rate was calculated from the difference in weight of the silicon wafer before and after polishing and the specific gravity of silicon. Table 5 below shows the relative values of the polishing rates of Examples 27 to 39 with respect to the polishing rate of Comparative Example 15.
 上記表5から明らかなように、実施例27~39の研磨用組成物を用いた場合、比較例15の研磨用組成物に比べて、研磨対象物を高い研磨速度で研磨できることがわかった。また、実施例27~39の研磨用組成物を用いた場合、研磨後の研磨対象物の表面品質を良好に維持できることが分かった。 As is clear from Table 5 above, when the polishing compositions of Examples 27 to 39 were used, the object to be polished could be polished at a higher polishing rate than the polishing composition of Comparative Example 15. Moreover, it was found that when the polishing compositions of Examples 27 to 39 were used, the surface quality of the object to be polished after polishing could be maintained in good condition.
 本出願は、2022年1月21日に出願された日本特許出願第2022-007831号、および2022年9月29日に出願された日本特許出願第2022-156141号に基づいており、その開示内容は、参照により全体として引用されている。 This application is based on Japanese Patent Application No. 2022-007831 filed on January 21, 2022 and Japanese Patent Application No. 2022-156141 filed on September 29, 2022, the disclosure of which is incorporated by reference in its entirety.

Claims (13)

  1.  砥粒と、塩基性化合物と、を含み、
     前記塩基性化合物は、アンモニアおよびピペラジン化合物を含有し、
     前記アンモニアの研磨用組成物中の含有量をA1(単位:質量%)とし、前記ピペラジン化合物の研磨用組成物中の含有量をB1(単位:質量%)としたとき、下記式(1)で表される前記ピペラジン化合物の含有率C1が0%超5.5%以下である、研磨用組成物。
    including abrasive grains and a basic compound,
    The basic compound contains ammonia and a piperazine compound,
    When the content of the ammonia in the polishing composition is A1 (unit: mass %) and the content of the piperazine compound in the polishing composition is B1 (unit: mass %), the content C1 of the piperazine compound represented by the following formula (1) is more than 0% and 5.5% or less.
  2.  前記ピペラジン化合物の含有率C1は、1.0%以上4.0%以下である、請求項1に記載の研磨用組成物。 The polishing composition according to claim 1, wherein the piperazine compound content C1 is 1.0% or more and 4.0% or less.
  3.  前記ピペラジン化合物は、1-メチルピペラジン、1-(2-アミノエチル)ピペラジン、1,4-ジメチルピペラジン、および1,4-ビス(3-アミノプロピル)ピペラジンからなる群より選択される少なくとも1種である、請求項1に記載の研磨用組成物。 The polishing composition according to claim 1, wherein the piperazine compound is at least one selected from the group consisting of 1-methylpiperazine, 1-(2-aminoethyl)piperazine, 1,4-dimethylpiperazine, and 1,4-bis(3-aminopropyl)piperazine.
  4.  分散媒をさらに含む、請求項1に記載の研磨用組成物。 The polishing composition according to claim 1, further comprising a dispersion medium.
  5.  砥粒と、塩基性化合物と、を含み、
     前記塩基性化合物は、アンモニア、および窒素原子を2つ以上有しかつpKaが前記アンモニアよりも高いアミン化合物Aを含有し、
     前記アンモニアの研磨用組成物中の含有量をA2(単位:質量%)とし、前記アミン化合物Aの研磨用組成物中の含有量をB2(単位:質量%)としたとき、下記式(2)で表される前記アミン化合物Aの含有率C2が0%超5.5%以下である、研磨用組成物。
    including abrasive grains and a basic compound,
    The basic compound contains ammonia and an amine compound A having two or more nitrogen atoms and a pKa higher than that of the ammonia,
    When the content of the ammonia in the polishing composition is A2 (unit: mass %) and the content of the amine compound A in the polishing composition is B2 (unit: mass %), the following formula (2) A polishing composition in which the content C2 of the amine compound A is more than 0% and 5.5% or less.
  6.  前記アミン化合物Aの含有率C2は、1.0%以上4.0%以下である、請求項5に記載の研磨用組成物。 The polishing composition according to claim 5, wherein the content C2 of the amine compound A is 1.0% or more and 4.0% or less.
  7.  分散媒をさらに含む、請求項5に記載の研磨用組成物。 The polishing composition according to claim 5, further comprising a dispersion medium.
  8.  砥粒と、塩基性化合物と、を含み、
     前記塩基性化合物は、アンモニアおよび窒素原子を1つ有しかつpKaが前記アンモニアよりも高いアミン化合物Bを含有し、
     前記アミン化合物Bは第2級アミンまたは第3級アミンであり、
     前記アンモニアの研磨用組成物中の含有量をA3(単位:質量%)とし、前記アミン化合物Bの研磨用組成物中の含有量をB3(単位:質量%)としたとき、下記式(3)で表される前記アミン化合物Bの含有率C3が0%超35%以下である、研磨用組成物。
    including abrasive grains and a basic compound,
    The basic compound contains ammonia and an amine compound B that has one nitrogen atom and has a higher pKa than the ammonia,
    The amine compound B is a secondary amine or a tertiary amine,
    When the content of the ammonia in the polishing composition is A3 (unit: mass%) and the content of the amine compound B in the polishing composition is B3 (unit: mass%), the following formula (3) A polishing composition in which the content C3 of the amine compound B is more than 0% and 35% or less.
  9.  前記アミン化合物Bの含有率C3は、1.0%以上15.0%以下である、請求項8に記載の研磨用組成物。 The polishing composition according to claim 8, wherein the content C3 of the amine compound B is 1.0% or more and 15.0% or less.
  10.  分散媒をさらに含む、請求項8に記載の研磨用組成物。 The polishing composition according to claim 8, further comprising a dispersion medium.
  11.  シリコン材料からなる表面を有する基板の研磨に用いられる、請求項1~10のいずれか1項に記載の研磨用組成物。 The polishing composition according to any one of claims 1 to 10, which is used for polishing a substrate having a surface made of a silicon material.
  12.  請求項1~10のいずれか1項に記載の研磨用組成物の濃縮液。 A concentrated liquid of the polishing composition according to any one of claims 1 to 10.
  13.  請求項1~10のいずれか1項に記載の研磨用組成物を用いて研磨対象物を研磨することを含む、研磨方法。 A polishing method comprising polishing an object to be polished using the polishing composition according to any one of claims 1 to 10.
PCT/JP2023/000300 2022-01-21 2023-01-10 Polishing composition, concentrated solution of polishing composition, and polishing method WO2023140146A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023575205A JPWO2023140146A1 (en) 2022-01-21 2023-01-10

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2022007831 2022-01-21
JP2022-007831 2022-01-21
JP2022-156141 2022-09-29
JP2022156141 2022-09-29

Publications (1)

Publication Number Publication Date
WO2023140146A1 true WO2023140146A1 (en) 2023-07-27

Family

ID=87348730

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/000300 WO2023140146A1 (en) 2022-01-21 2023-01-10 Polishing composition, concentrated solution of polishing composition, and polishing method

Country Status (3)

Country Link
JP (1) JPWO2023140146A1 (en)
TW (1) TW202342689A (en)
WO (1) WO2023140146A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008147651A (en) * 2006-12-05 2008-06-26 Cheil Industries Inc Slurry composition for final polishing of silicon wafer, and method for final polishing of silicon wafer using the same
JP2017197693A (en) * 2016-04-28 2017-11-02 株式会社トクヤマ Dispersion liquid, and production method of the same and polishing agent for cmp using the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008147651A (en) * 2006-12-05 2008-06-26 Cheil Industries Inc Slurry composition for final polishing of silicon wafer, and method for final polishing of silicon wafer using the same
JP2017197693A (en) * 2016-04-28 2017-11-02 株式会社トクヤマ Dispersion liquid, and production method of the same and polishing agent for cmp using the same

Also Published As

Publication number Publication date
TW202342689A (en) 2023-11-01
JPWO2023140146A1 (en) 2023-07-27

Similar Documents

Publication Publication Date Title
JP6892434B2 (en) Polishing composition and polishing method using it
KR102226441B1 (en) Polishing composition, production method for polishing composition, and production method for polished article
JP2022118024A5 (en)
JP7148506B2 (en) Polishing composition and polishing method using the same
US9944838B2 (en) Polishing composition and method for producing same
KR20150002797A (en) Composition for silicon wafer polishing liquid
WO2014196299A1 (en) Composition for silicon wafer polishing
JP6279593B2 (en) Polishing composition, method for producing polishing composition, and method for producing silicon wafer
JP7534283B2 (en) Polishing composition
JP7185533B2 (en) Silicon substrate intermediate polishing composition and silicon substrate polishing composition set
JP7330676B2 (en) Silicon wafer polishing composition
JP7534282B2 (en) Polishing composition
JP7349309B2 (en) Polishing composition for silicon wafers
JP5859055B2 (en) Silicon wafer polishing composition
WO2023140146A1 (en) Polishing composition, concentrated solution of polishing composition, and polishing method
JPWO2018096991A1 (en) Polishing composition
JP5859054B2 (en) Silicon wafer polishing composition
JP7450532B2 (en) polishing composition
WO2024190532A1 (en) Polishing composition, concentrated liquid of polishing composition, and polishing method
WO2022209758A1 (en) Polishing method, and polishing composition set
WO2024070831A1 (en) Polishing composition
WO2023181928A1 (en) Polishing composition
WO2024070832A1 (en) Composition for finish polishing
TW202330820A (en) Method for producing polishing composition comprising modified polyvinyl alcohol composition, and polishing composition comprising modified polyvinyl alcohol composition
WO2024071086A1 (en) Manufacturing method for polishing composition, and polishing composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23743141

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023575205

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE