WO2023139982A1 - Engine electricity generating system control device - Google Patents

Engine electricity generating system control device Download PDF

Info

Publication number
WO2023139982A1
WO2023139982A1 PCT/JP2022/045906 JP2022045906W WO2023139982A1 WO 2023139982 A1 WO2023139982 A1 WO 2023139982A1 JP 2022045906 W JP2022045906 W JP 2022045906W WO 2023139982 A1 WO2023139982 A1 WO 2023139982A1
Authority
WO
WIPO (PCT)
Prior art keywords
engine
power generation
generation system
hydrogen
control device
Prior art date
Application number
PCT/JP2022/045906
Other languages
French (fr)
Japanese (ja)
Inventor
賢吾 熊野
敦史 島田
暁史 高橋
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2023139982A1 publication Critical patent/WO2023139982A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/02Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with gaseous fuels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/08Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed simultaneously using pluralities of fuels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/08Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed simultaneously using pluralities of fuels
    • F02D19/10Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed simultaneously using pluralities of fuels peculiar to compression-ignition engines in which the main fuel is gaseous
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/06Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving electric generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D45/00Electrical control not provided for in groups F02D41/00 - F02D43/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Definitions

  • the present invention relates to an engine power generation system control device compatible with fuel derived from renewable energy.
  • RE fuel renewable energy-derived fuels such as hydrogen
  • a distributed power generation system that utilizes engine generators compatible with RE fuel is promising as a system that can respond to fluctuations in renewable energy while utilizing RE fuel that is ubiquitous in the region.
  • Patent Document 1 is known regarding such an engine power generation system control device.
  • Patent Document 1 describes a hydrogen engine, supply amount determining means for determining a target fuel supply amount so that an air-fuel ratio in which the amount of NOx emissions emitted from the hydrogen engine is near 0 and fuel efficiency is near an optimum point according to the operating state of the hydrogen engine; fuel supply means for supplying hydrogen fuel to the hydrogen engine based on the target fuel supply amount determined by the supply amount determining means; NOx detection means for detecting the NOx emission amount; a deterioration determining means for determining the deterioration of the fuel supply means based on the above-described deterioration determination means, the deterioration determining means sets a deterioration determination supply amount obtained by adding a preset additional amount to the target fuel supply amount determined by the supply amount determination means, causes the fuel supply means to execute hydrogen fuel supply based on the deterioration determination supply amount, and determines that the fuel supply means is deteriorated when the NOx emission amount becomes a predetermined value or more
  • RE fuels such as hydrogen
  • failures and deterioration are more likely to occur than when conventional fuels such as gasoline are used.
  • a power generation module that utilizes multiple engines is composed of engines with different usage conditions or engine specifications and performance. Therefore, when using RE fuel such as hydrogen (single combustion of RE fuel or mixed combustion of conventional fuel and RE fuel), problems such as deterioration of exhaust gas and abnormal combustion occur from some engines, and the operation rate of the power generation system decreases due to maintenance.
  • Patent Document 1 With the technology described in Patent Document 1, it is difficult to deal with failures and deterioration of engine parts other than the fuel injection device, and measures for suppressing engine deterioration and exhaust deterioration in a generator system that utilizes multiple engines are not considered.
  • the present invention has been made in view of this situation, and aims to suppress the deterioration of exhaust gas and improve the operating rate in a power generation system composed of multiple engines capable of supplying RE fuel.
  • an engine power generation system control device that is applied to a power generation system that generates power by a plurality of engines that are supplied with two or more types of fuel and that are capable of co-firing, comprising engine means for detecting the current state of each engine, and controlling the amount of at least one type of fuel supplied to each engine based on the comparison result of the state of each engine detected by the engine state detection means.
  • the present invention when driving multiple engines, it is possible to adjust the supply amount of RE fuel such as hydrogen according to the state of each engine, including deterioration. Therefore, it is possible to avoid deterioration of exhaust emissions and abnormal combustion from a specific engine, and to extend the maintenance period of the power generation system and improve the operating rate by adjusting the deterioration state of each engine.
  • RE fuel such as hydrogen
  • FIG. 1 is a schematic configuration diagram showing an example in which a power generation system control device according to a first embodiment of the present invention is applied to a power generation system including a plurality of engine generators using hydrogen and gasoline as fuel;
  • FIG. FIG. 2 is a block diagram showing a hardware configuration example of the power generation system control device according to the first embodiment;
  • FIG. 4 is a graph showing the relationship between the hydrogen co-firing ratio, the maximum in-cylinder pressure, the amount of NOx emissions, and the speed at which engine deterioration progresses according to the first embodiment of the present invention
  • FIG. 4 is a graph showing changes in maximum in-cylinder pressure and NOx emissions during deterioration according to Embodiment 1 of the present invention
  • 4 is a flowchart showing an example of engine generator control according to Embodiment 1 of the present invention
  • FIG. 4 is a diagram for explaining the relationship between the degree of deterioration of the engine, resistance to hydrogen, and hydrogen ratio setting values according to the first embodiment of the present invention; The figure which shows the time chart of the deterioration degree of the engine which concerns on Example 1 of this invention.
  • FIG. 5 is a flowchart showing an example of engine generator control according to Embodiment 2 of the present invention
  • FIG. 6 is a time chart showing an example of engine generator control according to Embodiment 2 of the present invention
  • At least one of the fuels in the mixed combustion performed in the present invention is renewable energy-derived fuel (hereinafter referred to as RE fuel), and hydrogen is taken up in the following examples.
  • RE fuel renewable energy-derived fuel
  • gasoline is exemplified as the other fuel for mixed combustion in the embodiments
  • light oil or natural gas liquefied natural gas or compressed natural gas
  • This combination can be selected as appropriate.
  • FIG. 1 is a schematic configuration diagram showing an example in which a power generation system control device according to Embodiment 1 of the present invention is applied to a power generation system comprising a plurality of engine generators using hydrogen and gasoline as fuel.
  • the power generation system 100 is configured by connecting a plurality of sets (GM1 to GMn) of power generation modules GM, each of which is composed of an engine 11, a power generator 12, and a power converter 13, in parallel.
  • the engine 11 is equipped with an electronic control unit (ECU) 15 for controlling each engine.
  • the engine 11 is connected to the hydrogen generator 2 via the hydrogen supply device 14 and is capable of supplying hydrogen fuel. Also, although not shown, it is connected to a gasoline tank so that gasoline can be supplied, so that hydrogen fuel, gasoline, or a mixed fuel of hydrogen and gasoline can be combusted. Outputs of these power generation modules GM are electrically connected to the load side device 3 .
  • the minimum configuration of the power generation module GM applicable to the present invention must include the engine 11 and the generator 12, and the power converter 13 may be provided as appropriate depending on whether the load is an AC load or a DC load.
  • the generator 12 may be either an AC generator or a DC generator.
  • the power generation system control device 1 is mounted on the power generation system 100 .
  • the power generation system control device 1 calculates the required load of the power generation system based on the load information Sg1 from the load side device 3 . Further, it receives suppliable hydrogen amount information Sg2 from the hydrogen generator 2 . Further, from the engine 11, it receives information (engine state) Sg3 on sensors and actuators of each engine. Based on these pieces of information (Sg1, Sg2, Sg3), the power generation system control device 1 sends a command Sd1 regarding the required engine output and the presence or absence of driving (hereinafter simply referred to as the required output) to the ECU 15 of each engine 11, and controls each hydrogen supply device 14 so as to achieve the desired hydrogen supply amount (hydrogen supply target amount) Sd2.
  • the ECU 15 controls the output of the engine 11 based on the required output Sd1 from the power generation system control device 1. Specifically, the ECU 15 controls a gasoline fuel injection section, an ignition section, a throttle valve, and a starter.
  • the engine 11 is, for example, a four-cylinder engine using spark ignition combustion, and is an example of an internal combustion engine.
  • the driving force of the engine 11 causes the generator 12 to generate power to achieve a desired power load.
  • the power converter 13 adjusts the voltage and phase of the power generated by the generator 12 and supplies the power to the load-side device.
  • FIG. 2 is a block diagram showing a hardware configuration example of the power generation system control device 1. As shown in FIG. The power generation system control device 1 is configured using a computer device.
  • the input circuit 1a of the power generation system control device 1 receives the required load Sg1, the suppliable hydrogen amount Sg2, and the engine state Sg3 output from the load side device 3, the hydrogen generator 2, and the ECU 15, respectively.
  • the input signal is not limited to these.
  • Each signal input to the input circuit 1a is sent to an input port (not shown) in the input/output port 1b.
  • the value sent to the input port is stored in RAM (1c) and processed by CPU (1e).
  • a control program describing the contents of arithmetic processing is written in the ROM (1d) in advance.
  • the value indicating the operating amount of the controlled object (engine 11, hydrogen supply device 14, etc.) calculated according to the control program is stored in the RAM (1c), then sent to the output port (not shown) in the input/output port 1b, and sent to each device (ECU 15, hydrogen supply device 14) via each output section (engine torque control output section 1f, hydrogen supply amount control output section 1g) as a required output Sd1 and a desired hydrogen supply amount (hydrogen supply target amount) Sd2.
  • a control device (ECU 15) for each engine is separately provided for the power generation system control device 1, but the present invention is not limited to this form, and the power generation system control device 1 may include a functional unit corresponding to the control device for each device.
  • FIG. 3 is a diagram showing an example of the configuration of the engine 11 according to the first embodiment.
  • the engine 11 is modified to be able to supply hydrogen to a four-cylinder gasoline engine for automobiles that implements spark ignition type combustion.
  • An airflow sensor 21 for measuring the amount of intake air and an electronically controlled throttle 20 for adjusting the intake pipe pressure are provided at appropriate positions in each of the intake pipes 19 .
  • the engine 11 is provided with a spark plug 18 for supplying ignition energy to the combustion chamber 17 of each cylinder for each cylinder, and a cooling water temperature sensor 25 for measuring the temperature of the cooling water of the engine is provided at an appropriate position of the cylinder head.
  • a gasoline fuel injection device 22 for injecting gasoline as fuel is provided in the combustion chamber 17, and a high-pressure fuel pump 23 for supplying high-pressure fuel to the gasoline fuel injection device 22 is connected to the gasoline fuel injection device 22 by a fuel pipe.
  • the high-pressure fuel pump 23 is connected to the gasoline tank by a fuel pipe.
  • a flow path for supplying hydrogen is provided in the intake pipe 19, and is connected to a hydrogen supply device 14 that controls the amount of hydrogen supplied.
  • the hydrogen supply device 24 is connected to the hydrogen generator 2 by a hydrogen pipe.
  • a three-way catalyst 27 that purifies the exhaust, a catalyst temperature sensor 28 that measures the temperature of the three-way catalyst 27, and an air-fuel ratio sensor 29 that detects the air-fuel ratio of the exhaust on the upstream side of the three-way catalyst 27 are provided at appropriate positions in each of the exhaust pipes 26.
  • FIG. 4 is a diagram showing another configuration example of the engine 11 according to the first embodiment.
  • the engine 11 is modified to be able to supply hydrogen to a four-cylinder gasoline engine for automobiles that implements spark ignition type combustion.
  • An airflow sensor 21 for measuring the amount of intake air and an electronically controlled throttle 20 for adjusting the intake pipe pressure are provided at appropriate positions in each of the intake pipes 19 .
  • the engine 11 is provided with a spark plug 18 for supplying ignition energy to the combustion chamber 17 of each cylinder for each cylinder, and a cooling water temperature sensor 25 for measuring the temperature of the cooling water of the engine is provided at an appropriate position of the cylinder head.
  • a gasoline fuel injection device 22 for injecting gasoline as fuel is provided in the intake pipe 19 .
  • the gasoline fuel injector 22 is connected to the gasoline tank by a fuel line. Furthermore, a flow path for supplying hydrogen to the combustion chamber 17 is provided and connected to a hydrogen supply device 14 for controlling the amount of hydrogen supplied.
  • the hydrogen supply device 24 is connected to the hydrogen generator 2 by a hydrogen pipe.
  • a three-way catalyst 27 that purifies the exhaust, a catalyst temperature sensor 28 that measures the temperature of the three-way catalyst 27, and an air-fuel ratio sensor 29 that detects the air-fuel ratio of the exhaust on the upstream side of the three-way catalyst 27 are provided at appropriate positions in each of the exhaust pipes 26.
  • FIG. 5 is a diagram showing the relationship between the hydrogen co-firing ratio and the combustion pressure (horizontal axis: crank angle, vertical axis: cylinder internal pressure) according to Example 1 of the present invention.
  • the hydrogen co-firing ratio is the ratio of the amount of hydrogen to the total amount of fuel (gasoline and hydrogen combined) supplied to each engine.
  • the figure shows the in-cylinder pressure history near the compression top dead center in the compression-expansion stroke. As the hydrogen co-firing ratio increases, the timing of combustion advances and the maximum in-cylinder pressure rises. Although not shown here, increasing the hydrogen co-firing ratio may cause abnormal combustion such as knocking and pre-ignition, which may lead to engine performance degradation and engine failure.
  • FIG. 6 is a diagram showing the relationship between the hydrogen co-firing ratio, the maximum in-cylinder pressure, the amount of NOx emissions, and the speed at which engine deterioration progresses according to Example 1 of the present invention.
  • the hydrogen co-firing ratio on the horizontal axis increases, the combustion timing advances and the maximum in-cylinder pressure rises. If it exceeds a certain value, abnormal combustion occurs and stable operation becomes impossible.
  • the maximum in-cylinder pressure rises the in-cylinder temperature also rises, so the amount of NOx produced in the exhaust gas (especially thermal NOx, which is strongly affected by the combustion temperature) increases.
  • the increase in the maximum pressure and the occurrence of abnormal combustion due to the increase in the hydrogen co-firing ratio accelerate the wear and deterioration of each part (piston, intake and exhaust valves, fuel injection device, spark plug) inside the engine combustion chamber. In other words, the speed at which engine deterioration progresses increases.
  • FIG. 7 is a diagram showing changes in maximum in-cylinder pressure and NOx emissions during deterioration according to Example 1 of the present invention.
  • FIG. 8 is a flowchart showing an example of engine generator control according to Embodiment 1 of the present invention.
  • the power generation system control device 1 first reads information Sg1 from the connected load device 3 (processing step S1).
  • the information Sg1 from the load device 3 is, for example, current power consumption (voltage and current) of the device occurring on the load side and future predicted values. Also, when the output of the power generation system is connected to the power grid, it is the current or future power demand value from the grid side.
  • the power generation system control device 1 reads information Sg3 of each engine from each ECU 15 and engine 11 (processing step S2).
  • the information Sg3 from the ECU 15 and the engine 11 is, for example, the current engine speed, torque, engine conditions such as engine temperature (catalyst temperature, cooling water temperature, intake air temperature, etc.) and engine specifications (displacement, compression ratio, fuel supply position, etc.).
  • the power generation system control device 1 reads the hydrogen generation information Sg2 from the hydrogen generator 2 (processing step S3).
  • the hydrogen generator is, for example, a water electrolyzer that generates hydrogen from renewable energy.
  • the power generation system control device 1 calculates the load required for the power generation system based on the information Sg1 from the load device 3 (processing step S4).
  • the total required output for the engine is calculated in consideration of the losses of the power converter 13 and the generator 12, and the like.
  • the power generation system control device 1 distributes the calculated total required output Sd1 to each engine power generation module to obtain individual required outputs Sd11, Sd12, . . . Sd1n (processing step S5). For example, from the total required output Sd1 and the rated output of each engine power generation module, the required number of engine power generation modules to be driven is calculated, and the total required output Sd1 is evenly distributed among the engine power generation modules to be driven.
  • the power generation system control device 1 calculates the degree of deterioration of the engine based on the information Sg3 from the ECU 15 and the engine 11 (processing step S6).
  • the degree of deterioration in each engine is calculated from the accumulated engine driving time and accumulated output, or the combustion state of the engine (combustion timing, combustion stability, exhaust performance).
  • the power generation system control device 1 calculates the hydrogen co-firing ratio in each engine based on the calculated degree of deterioration in each engine and the hydrogen generation information Sg2 from the hydrogen generator 2 (processing step S7).
  • the higher the degree of deterioration the higher the maximum in-cylinder pressure even under the same hydrogen co-firing ratio condition, the higher the probability of occurrence of abnormal combustion and the more NOx emissions.
  • the required amount of hydrogen for the power generation system as a whole is set so as to be equal to or not exceed the hydrogen-producible amount obtained from the hydrogen generator.
  • the power generation system control device 1 sends the torque command values for each engine (individual required outputs Sd11, Sd12, . . . Sd1n) calculated in processing step S5 to each ECU 15 (processing step S8).
  • the power generation system control device 1 executes hydrogen supply amount control so as to realize the hydrogen co-firing ratio of each engine calculated in processing step S7 (processing step S9).
  • the individual hydrogen supply amount command values (Sd21, Sd22, .
  • FIG. 9 is a diagram for explaining the relationship between the degree of deterioration of the engine, hydrogen resistance, and the hydrogen ratio set value according to the first embodiment of the present invention.
  • a power generation system in which five different engines, engine A, engine B, engine C, engine D, and engine E, are connected in parallel will be described.
  • the engine A, engine B, and engine C are of the in-cylinder injection type in which hydrogen is directly supplied into the cylinder, and are highly resistant to hydrogen (engine configuration shown in FIG. 3).
  • the engine D and the engine E are of the intake pipe injection type in which hydrogen is supplied into the intake pipe and have low resistance to hydrogen (engine configuration shown in FIG. 4).
  • FIG. 9 shows the degree of deterioration of each engine obtained by the power generation system control device 1.
  • engine A has the lowest degree of deterioration, followed by engines C and E, and engine B and engine D have the highest degree of deterioration.
  • the lower part of FIG. 9 shows the hydrogen co-firing ratio of each engine set by the power generation system control device 1 based on the degree of deterioration of the engine and the resistance to hydrogen of the engine.
  • the hydrogen co-firing ratio of engine A which has the lowest degree of deterioration, is set to be the highest, and the hydrogen co-firing ratios of the other engines are set to be low as the degree of deterioration increases.
  • the degree of deterioration is the same (for example, engine B and engine D, engine C and engine E)
  • the hydrogen co-firing rate is set higher for the engine with higher resistance to hydrogen.
  • the dotted line indicates the required average hydrogen co-firing ratio.
  • the required average hydrogen co-firing ratio is the average hydrogen co-firing ratio of each engine calculated based on the amount of hydrogen generated by the hydrogen generator 2.
  • the hydrogen supply amount is controlled so that the actual average of the hydrogen co-firing ratio of each engine matches the required average hydrogen co-firing ratio.
  • FIG. 10 is a diagram showing a time chart of the degree of deterioration of the engine according to Example 1 of the present invention. From the top, the deterioration degree of the engine A, the deterioration degree of the engine B, the deterioration degree of the engine C, the deterioration degree of the engine D, and the deterioration degree of the engine E (time scale in units of months and years).
  • the solid line indicates the degree of deterioration when the present invention is applied, and the dotted line indicates the conventional degree of deterioration.
  • the deterioration degree reaches the deterioration limit value (Limit), it means that maintenance or repair is required.
  • the initial value of the degree of deterioration of each engine at time 0 conforms to the assumption in FIG.
  • engine B which has the highest degree of deterioration at the earliest stage, reaches the deterioration limit earliest at time ta, requiring maintenance of power generation system 100 .
  • the hydrogen co-firing ratio is controlled and adjusted based on the degree of deterioration of each engine.
  • the hydrogen co-firing ratio is set low, so the pressure in the cylinder is kept low as shown in FIG. As a result, it is possible to delay the timing of reaching the deterioration limit.
  • the hydrogen co-firing ratio is set high, so the degree of deterioration progresses and the deterioration limit is reached earlier.
  • the deterioration limit reaching times of all the engines (A to E) are aggregated around the time tb, the maintenance time of the power generation system 100 is extended, and maintenance can be performed on each engine at once. Therefore, maintenance frequency and cost can be suppressed, and the operating rate can be improved.
  • the deterioration limit reaching timing of each engine may be intentionally varied to continue the operation of the power generation system 100 (to suppress the complete shutdown of the power generation system) even during the maintenance of each power generation module, thereby improving the operation rate.
  • the hydrogen resistance of each engine is evaluated by the hydrogen supply position, but it may be evaluated by the specifications of each engine (compression ratio, displacement) and the combustion state during hydrogen co-combustion.
  • the present invention is an engine power generation system control device 1 that is applied to a power generation system 100 that generates power by a plurality of engines 11 capable of supplying two or more types of fuel, comprising state detection means (e.g., ECU) for detecting the current state of each engine, and controlling the amount of at least one type of fuel supplied to each engine based on the comparison result of each engine state (e.g., the degree of deterioration in FIG. 9) detected by the state detection means ECU.
  • the present invention determines the fuel for each engine based on the relative condition of the engines.
  • Example 2 of the present invention will be described.
  • engine start and stop control is performed.
  • the system configuration and hardware configuration are the same as those of the first embodiment.
  • the system configuration and hardware configuration according to this embodiment are the same as those of the first embodiment.
  • FIG. 11 is a diagram showing an example of catalyst temperature and degree of deterioration of the engine according to Embodiment 2 of the present invention.
  • the assumption of the degree of deterioration of each engine (A to E) shown in the lower part of FIG. 11 is the same as in FIG.
  • FIG. 11 shows the three-way catalyst temperature in the exhaust gas obtained from the ECU 15 or the engine 11 of each engine.
  • the three-way catalyst can achieve its original purification performance when the temperature exceeds a certain temperature (catalyst activation temperature), but below the catalyst activation temperature, the purification performance is insufficient, and NOx etc. can not be purified and will be discharged from the engine. Since the three-way catalyst is warmed by the engine exhaust, the catalyst temperature rises as the engine runs.
  • the catalyst temperature gradually decreases due to heat radiation to the surrounding gas.
  • the catalyst temperatures of engine B, engine D, and engine E are equal to or higher than the catalyst activation temperature
  • engine A and engine C are lower than the catalyst activation temperature.
  • FIG. 12 is a flowchart showing an example of start and stop control of an engine generator according to Embodiment 2 of the present invention.
  • the power generation system control device 1 first reads information Sg1 from the connected load device 3 (processing step S11).
  • the information Sg1 from the load device 3 is, for example, current power consumption (voltage and current) of the device occurring on the load side and future predicted values. Also, when the output of the power generation system is connected to the power grid, it is the current or future power demand value from the grid side.
  • the power generation system control device 1 calculates the load Sd1 required for the power generation system based on the information Sg1 from the load device 3 (processing step S12).
  • the total required output Sd1 for the engine is calculated in consideration of the losses of the power converter 13 and the generator 12, and the like.
  • the power generation system control device 1 reads information Sg3 of each engine from each ECU 15 and engine 11 (processing step S13).
  • the information Sg3 from the ECU 15 and the engine 11 is, for example, the current engine speed, torque, engine conditions such as engine temperature (catalyst temperature, cooling water temperature, intake air temperature, etc.) and engine specifications (displacement, compression ratio, fuel supply position, etc.).
  • the power generation system control device 1 calculates the degree of deterioration of the engine based on the information Sg3 from the ECU 15 and the engine 11 (processing step S14). For example, the degree of deterioration in each engine is calculated from the accumulated engine driving time and accumulated output, or the combustion state of the engine (combustion timing, combustion stability, exhaust performance).
  • the power generation system control device 1 determines the starting order of each engine based on the catalyst temperature of the engine and the degree of deterioration of the engine (processing step S15). After that, a start command is sent to each engine (processing step S16), and the series of control ends.
  • FIG. 13 is a time chart showing an example of start and stop control of the engine generator according to Embodiment 2 of the present invention. From the top of FIG. 13, when the system is started from the stopped state, the required output of the power generation system, the output of engine A, the output of engine B, the output of engine C, the output of engine D, the output of engine E, and the NOx emission amount transition from the power generation system.
  • a solid line indicates the case where the present invention is applied, and a dotted line indicates the conventional control.
  • the catalyst temperature of all engines used for power generation is equal to or higher than the catalyst activation temperature, the exhaust purification efficiency is high even immediately after engine start (time ta, time tb, and time tc), and NOx can be significantly reduced compared to conventional control.
  • the power generation system control device 1 determines the engine start order using the catalyst temperature as the engine temperature, but may determine the instruction order based on the cooling water temperature of the engine.
  • each of the above-described embodiments is a detailed and specific description of the configuration of the device and system in order to explain the present invention in an easy-to-understand manner, and is not necessarily limited to those having all the configurations described. Further, it is possible to replace part of the configuration of the embodiment described here with the configuration of another embodiment, and furthermore, it is possible to add the configuration of another embodiment to the configuration of one embodiment. Moreover, it is also possible to add, delete, or replace a part of the configuration of each embodiment with another configuration.
  • control lines and information lines indicate what is considered necessary for explanation, and not all control lines and information lines are necessarily indicated on the product. In practice, it may be considered that almost all configurations are interconnected.

Abstract

The objective of the present invention is to suppress a deterioration in exhaust gases and to improve availability in an electricity generating system configured from a plurality of engines capable of being supplied with renewable energy-derived fuel (RE fuel). This engine electricity generating system control device, applied to an electricity generating system in which electricity is generated by a plurality of engines capable of performing co-firing by being supplied with two or more types of fuel, is characterized by being provided with an engine state detecting means for detecting a current state of each engine, wherein a supply quantity of at least one type of fuel for each engine is controlled on the basis of a comparison result of each engine state detected by the engine state detecting means.

Description

エンジン発電システム制御装置Engine power generation system controller
 本発明は、再生可能エネルギー由来燃料に対応したエンジン発電システム制御装置に関する。 The present invention relates to an engine power generation system control device compatible with fuel derived from renewable energy.
 エネルギーの脱炭素化に向けて、再生可能エネルギーの拡大が進むに伴い、その電力変動に対応するために水素などの再生可能エネルギー由来燃料(以下、RE燃料という)を用いた調整用発電システムの重要性が増している。 With the expansion of renewable energy toward the decarbonization of energy, the importance of regulating power generation systems using renewable energy-derived fuels such as hydrogen (hereinafter referred to as RE fuel) is increasing in order to respond to power fluctuations.
 大規模ガス火力発電は調整電力として活用可能である一方で、その出力調整幅が定格運転の30%から100%の範囲に限られており、十分な調整力にはならない。また、設備設置場所が固定されるため、電力線増強が必要となり、設備コストが大きくなる。更に、大規模火力発電は利用する燃料の調達範囲が限定されるので、地域に遍在するRE燃料を有効活用することが難しい。 While large-scale gas-fired power generation can be used as regulating power, its output adjustment range is limited to a range of 30% to 100% of rated operation, and does not provide sufficient regulating power. In addition, since the installation location of the equipment is fixed, it is necessary to reinforce the power line, increasing the equipment cost. Furthermore, since large-scale thermal power generation is limited in the range of procurement of fuel to be used, it is difficult to make effective use of RE fuel, which is ubiquitous in the region.
 RE燃料に対応したエンジン発電機を活用した分散発電システムは、地域に遍在するRE燃料を活用しながら再生可能エネルギーの変動に対応可能なシステムとして有望である。特に既存の自動車用エンジンや産業用エンジンなど量産エンジンを活用し、それらを複数組み合わせて定置式発電システムとして用いることにより、初期の設備コストを最小化することが可能である。 A distributed power generation system that utilizes engine generators compatible with RE fuel is promising as a system that can respond to fluctuations in renewable energy while utilizing RE fuel that is ubiquitous in the region. In particular, it is possible to minimize the initial equipment cost by utilizing mass-produced engines such as existing automobile engines and industrial engines and combining them into a stationary power generation system.
 係るエンジン発電システム制御装置に関して、特許文献1が知られている。特許文献1には、「水素エンジンと、上記水素エンジンの運転状態に応じて、該水素エンジンから排出されるNOx排出量が0近傍でかつ燃費効率が最適点近傍である空燃比となるように目標燃料供給量を決定する供給量決定手段と、上記供給量決定手段によって決定された目標燃料供給量に基づいて、上記水素エンジンに水素燃料を供給する燃料供給手段と、上記NOx排出量を検出するNOx検出手段と、所定の実行条件下において、上記NOx検出手段の検出値に基づいて上記燃料供給手段の劣化判定を行う劣化判定手段と、を備え、上記劣化判定手段は、上記供給量決定手段によって決定された目標燃料供給量に対し予め設定された追加量を加えた劣化判定用供給量を設定して、上記燃料供給手段に対し該劣化判定用供給量に基づく水素燃料供給を実行させると共に、その劣化判定用供給量に基づく水素燃料供給によって上記NOx排出量が所定値以上となったときに、上記燃料供給手段が劣化していると判定する水素燃料供給装置」が開示されている。 Patent Document 1 is known regarding such an engine power generation system control device. Patent Document 1 describes a hydrogen engine, supply amount determining means for determining a target fuel supply amount so that an air-fuel ratio in which the amount of NOx emissions emitted from the hydrogen engine is near 0 and fuel efficiency is near an optimum point according to the operating state of the hydrogen engine; fuel supply means for supplying hydrogen fuel to the hydrogen engine based on the target fuel supply amount determined by the supply amount determining means; NOx detection means for detecting the NOx emission amount; a deterioration determining means for determining the deterioration of the fuel supply means based on the above-described deterioration determination means, the deterioration determining means sets a deterioration determination supply amount obtained by adding a preset additional amount to the target fuel supply amount determined by the supply amount determination means, causes the fuel supply means to execute hydrogen fuel supply based on the deterioration determination supply amount, and determines that the fuel supply means is deteriorated when the NOx emission amount becomes a predetermined value or more due to the hydrogen fuel supply based on the deterioration determination supply amount.
特開2006-250056号公報JP 2006-250056 A
 既存の自動車用エンジンもしくは産業用エンジンを、水素などRE燃料に対応した定置式発電に活用すると、ガソリンなど従来燃料を利用する場合と比較して、故障や劣化が発生しやすい。複数のエンジンを活用した発電モジュールにおいては、異なる使用状態もしくはエンジン仕様・性能のエンジンから構成されているため、水素などRE燃料を活用(RE燃料の専焼もしくは従来燃料とRE燃料との混焼)した際に、一部のエンジンから排気悪化や異常燃焼などなどの不具合が発生し、メンテナンスのため発電システムの稼働率が低下するという課題がある。 When existing automobile engines or industrial engines are used for stationary power generation compatible with RE fuels such as hydrogen, failures and deterioration are more likely to occur than when conventional fuels such as gasoline are used. A power generation module that utilizes multiple engines is composed of engines with different usage conditions or engine specifications and performance. Therefore, when using RE fuel such as hydrogen (single combustion of RE fuel or mixed combustion of conventional fuel and RE fuel), problems such as deterioration of exhaust gas and abnormal combustion occur from some engines, and the operation rate of the power generation system decreases due to maintenance.
 この点に関して、特許文献1に記載の技術では、燃料噴射装置以外のエンジン部品の故障や劣化への対応が困難であるとともに、複数エンジンを活用した発電機システムにおけるエンジン劣化や排気悪化抑制のための方策については考慮されていない。 Regarding this point, with the technology described in Patent Document 1, it is difficult to deal with failures and deterioration of engine parts other than the fuel injection device, and measures for suppressing engine deterioration and exhaust deterioration in a generator system that utilizes multiple engines are not considered.
 本発明はこのような状況に鑑みて成されたものであり、RE燃料を供給可能な複数のエンジンから構成される発電システムにおいて、排気悪化抑制および稼働率向上を目的とする。 The present invention has been made in view of this situation, and aims to suppress the deterioration of exhaust gas and improve the operating rate in a power generation system composed of multiple engines capable of supplying RE fuel.
 以上のことから本発明においては、「二種類以上の燃料を供給されて混焼が可能な複数のエンジンにより発電を行う発電システムに適用されるエンジン発電システム制御装置であって、各エンジンの現在の状態を検知するエンジン手段を備え、エンジン状態検出手段により検出された各エンジン状態の比較結果に基づいて、各エンジンの少なくとも一種類の燃料供給量を制御することを特徴とするエンジン発電システム制御装置。」としたものである。 Based on the above, the present invention is defined as "an engine power generation system control device that is applied to a power generation system that generates power by a plurality of engines that are supplied with two or more types of fuel and that are capable of co-firing, comprising engine means for detecting the current state of each engine, and controlling the amount of at least one type of fuel supplied to each engine based on the comparison result of the state of each engine detected by the engine state detection means."
 本発明によれば、複数のエンジンを駆動する際に、劣化を含む各エンジンの状態に応じて、水素などRE燃料の供給量を調整することが可能であるため、特定のエンジンからの排気悪化や異常燃焼を回避するとともに、各エンジンの劣化状態を調整することで発電システムのメンテナンス時期を延ばし、稼働率を向上することが可能である。 According to the present invention, when driving multiple engines, it is possible to adjust the supply amount of RE fuel such as hydrogen according to the state of each engine, including deterioration. Therefore, it is possible to avoid deterioration of exhaust emissions and abnormal combustion from a specific engine, and to extend the maintenance period of the power generation system and improve the operating rate by adjusting the deterioration state of each engine.
 上記した以外の課題、構成及び効果は、以下の実施の形態の説明により明らかにされる。 Problems, configurations, and effects other than those described above will be clarified by the following description of the embodiments.
本発明の実施例1に係る発電システム制御装置を、水素とガソリンを燃料とする複数のエンジン発電機からなる発電システムに適用した例を示す概略構成図。1 is a schematic configuration diagram showing an example in which a power generation system control device according to a first embodiment of the present invention is applied to a power generation system including a plurality of engine generators using hydrogen and gasoline as fuel; FIG. 実施例1に係る発電システム制御装置のハードウェア構成例を示すブロック図。FIG. 2 is a block diagram showing a hardware configuration example of the power generation system control device according to the first embodiment; FIG. 本発明の実施例1に係るエンジン構成の一例を示す図。The figure which shows an example of the engine structure which concerns on Example 1 of this invention. 本発明の実施例1に係るエンジン構成の別の例を示す図。The figure which shows another example of the engine structure which concerns on Example 1 of this invention. 本発明の実施例1に係る水素混焼割合と燃焼圧力の関係を示す図。The figure which shows the relationship between the hydrogen co-firing ratio and combustion pressure which concern on Example 1 of this invention. 本発明の実施例1に係る水素混焼割合と最大筒内圧力、NOx排出量、エンジン劣化進行速度の関係を示す図。FIG. 4 is a graph showing the relationship between the hydrogen co-firing ratio, the maximum in-cylinder pressure, the amount of NOx emissions, and the speed at which engine deterioration progresses according to the first embodiment of the present invention; 本発明の実施例1に係る劣化時の最大筒内圧力およびNOx排出量の変化を示す図。FIG. 4 is a graph showing changes in maximum in-cylinder pressure and NOx emissions during deterioration according to Embodiment 1 of the present invention; 本発明の実施例1に係るエンジン発電機制御の例を示すフローチャート。4 is a flowchart showing an example of engine generator control according to Embodiment 1 of the present invention; 本発明の実施例1に係るエンジンの劣化度、水素耐性と水素割合設定値の関係を説明する図。FIG. 4 is a diagram for explaining the relationship between the degree of deterioration of the engine, resistance to hydrogen, and hydrogen ratio setting values according to the first embodiment of the present invention; 本発明の実施例1に係るエンジンの劣化度のタイムチャートを示す図。The figure which shows the time chart of the deterioration degree of the engine which concerns on Example 1 of this invention. 本発明の実施例2に係るエンジンの触媒温度と劣化度の一例を示す図。The figure which shows an example of the catalyst temperature and deterioration degree of the engine which concern on Example 2 of this invention. 本発明の実施例2に係るエンジン発電機制御の例を示すフローチャート。FIG. 5 is a flowchart showing an example of engine generator control according to Embodiment 2 of the present invention; FIG. 本発明の実施例2に係るエンジン発電機制御の例を示すタイムチャート。6 is a time chart showing an example of engine generator control according to Embodiment 2 of the present invention;
 以下、本発明の実施例について、図面を参照して説明する。本明細書及び図面において、実質的に同一の機能又は構成を有する構成要素については、同一の符号を付することにより重複する説明を省略する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the present specification and drawings, constituent elements having substantially the same function or configuration are denoted by the same reference numerals, thereby omitting redundant description.
 なお本発明において行われる混合燃焼の少なくとも一方の燃料は再生可能エネルギー由来燃料(以下、RE燃料という)であり、以下の実施例では水素を取り上げている。また混合燃焼の他方の燃料として実施例ではガソリンを例示しているが、軽油、或は天然ガス(液化天然ガスや圧縮天然ガス)であってもよい。この組み合わせは、適宜に選定することができる。 It should be noted that at least one of the fuels in the mixed combustion performed in the present invention is renewable energy-derived fuel (hereinafter referred to as RE fuel), and hydrogen is taken up in the following examples. In addition, although gasoline is exemplified as the other fuel for mixed combustion in the embodiments, light oil or natural gas (liquefied natural gas or compressed natural gas) may be used. This combination can be selected as appropriate.
 図1は、本発明の実施例1に係る発電システム制御装置を、水素とガソリンを燃料とする複数のエンジン発電機からなる発電システムに適用した例を示す概略構成図である。 FIG. 1 is a schematic configuration diagram showing an example in which a power generation system control device according to Embodiment 1 of the present invention is applied to a power generation system comprising a plurality of engine generators using hydrogen and gasoline as fuel.
 発電システム100は、エンジン11、発電機12、電力変換器13から構成される発電モジュールGMを複数組並列接続(GM1~GMn)して構成され、エンジン11には各エンジンを制御するための電子制御装置(ECU)15を備えている。エンジン11は、水素供給装置14を介して水素生成装置2に接続され、水素燃料を供給可能とされている。また図示していないがガソリンタンクに接続され、ガソリンを供給可能とされていることで、水素燃料、ガソリン、あるいは水素とガソリンの混合燃料により燃焼可能とされている。これら発電モジュールGMの出力は、負荷側機器3と電気的に接続されている。 The power generation system 100 is configured by connecting a plurality of sets (GM1 to GMn) of power generation modules GM, each of which is composed of an engine 11, a power generator 12, and a power converter 13, in parallel. The engine 11 is equipped with an electronic control unit (ECU) 15 for controlling each engine. The engine 11 is connected to the hydrogen generator 2 via the hydrogen supply device 14 and is capable of supplying hydrogen fuel. Also, although not shown, it is connected to a gasoline tank so that gasoline can be supplied, so that hydrogen fuel, gasoline, or a mixed fuel of hydrogen and gasoline can be combusted. Outputs of these power generation modules GM are electrically connected to the load side device 3 .
 なお本発明に適用可能な発電モジュールGMの最小の構成としては、エンジン11と発電機12を備える必要があり、負荷が交流負荷であるか、直流負荷であるかにより、適宜電力変換器13を備えればよい。また発電機12は交流発電機、直流発電機のいずれであってもよい。 It should be noted that the minimum configuration of the power generation module GM applicable to the present invention must include the engine 11 and the generator 12, and the power converter 13 may be provided as appropriate depending on whether the load is an AC load or a DC load. Also, the generator 12 may be either an AC generator or a DC generator.
 発電システム制御装置1は、発電システム100に搭載される。発電システム制御装置1は、負荷側機器3からの負荷情報Sg1により発電システムの要求負荷を演算する。さらに水素生成装置2から供給可能水素量情報Sg2を受け取る。さらにエンジン11から、各エンジンのセンサやアクチュエータの情報(エンジン状態)Sg3を受け取る。発電システム制御装置1は、これらの情報(Sg1、Sg2、Sg3)に基づき、各エンジン11のECU15にエンジン要求出力や駆動有無の指令(以下単に要求出力という)Sd1を送るとともに、所望の水素供給量(水素供給目標量)Sd2を実現するように各水素供給装置14を制御する。 The power generation system control device 1 is mounted on the power generation system 100 . The power generation system control device 1 calculates the required load of the power generation system based on the load information Sg1 from the load side device 3 . Further, it receives suppliable hydrogen amount information Sg2 from the hydrogen generator 2 . Further, from the engine 11, it receives information (engine state) Sg3 on sensors and actuators of each engine. Based on these pieces of information (Sg1, Sg2, Sg3), the power generation system control device 1 sends a command Sd1 regarding the required engine output and the presence or absence of driving (hereinafter simply referred to as the required output) to the ECU 15 of each engine 11, and controls each hydrogen supply device 14 so as to achieve the desired hydrogen supply amount (hydrogen supply target amount) Sd2.
 ECU15は、発電システム制御装置1からの要求出力Sd1に基づいてエンジン11の出力を制御する。具体的には、ECU15は、ガソリン燃料噴射部、点火部、スロットルバルブ、スタータの制御を実施する。エンジン11は、例えば火花点火式燃焼を用いる4気筒エンジンであり、内燃機関の一例である。エンジン11の駆動力により発電機12は所望の電力負荷を実現するよう発電する。電力変換器13により、発電機12により発生した電力の電圧や位相を調整し負荷側機器に電力を供給する。 The ECU 15 controls the output of the engine 11 based on the required output Sd1 from the power generation system control device 1. Specifically, the ECU 15 controls a gasoline fuel injection section, an ignition section, a throttle valve, and a starter. The engine 11 is, for example, a four-cylinder engine using spark ignition combustion, and is an example of an internal combustion engine. The driving force of the engine 11 causes the generator 12 to generate power to achieve a desired power load. The power converter 13 adjusts the voltage and phase of the power generated by the generator 12 and supplies the power to the load-side device.
 次に、実施例1に係る発電システム制御装置1の内部構成例について説明する。図2は、発電システム制御装置1のハードウェア構成例を示すブロック図である。なお発電システム制御装置1は、計算機装置を用いて構成されている。 Next, an internal configuration example of the power generation system control device 1 according to the first embodiment will be described. FIG. 2 is a block diagram showing a hardware configuration example of the power generation system control device 1. As shown in FIG. The power generation system control device 1 is configured using a computer device.
 図2において、発電システム制御装置1の入力回路1aには、負荷側機器3、水素生成装置2、ECU15からそれぞれ出力された要求負荷Sg1、供給可能水素量Sg2、エンジン状態Sg3が入力される。ただし、入力信号は、これらに限られるものではない。
入力回路1aに入力された各信号は、入出力ポート1b内の入力ポート(不図示)に送られる。入力ポートに送られた値は、RAM(1c)に保管され、CPU(1e)で演算処理される。演算処理の内容を記述した制御プログラムは、ROM(1d)に予め書き込まれている。
In FIG. 2, the input circuit 1a of the power generation system control device 1 receives the required load Sg1, the suppliable hydrogen amount Sg2, and the engine state Sg3 output from the load side device 3, the hydrogen generator 2, and the ECU 15, respectively. However, the input signal is not limited to these.
Each signal input to the input circuit 1a is sent to an input port (not shown) in the input/output port 1b. The value sent to the input port is stored in RAM (1c) and processed by CPU (1e). A control program describing the contents of arithmetic processing is written in the ROM (1d) in advance.
 制御プログラムに従って演算された制御対象(エンジン11、水素供給装置14等)の作動量を示す値は、RAM(1c)に保管された後、入出力ポート1b内の出力ポート(不図示)に送られ、各出力部(エンジントルク制御出力部1f、水素供給量制御出力部1g)を経て各装置(ECU15、水素供給装置14)に、要求出力Sd1、所望の水素供給量(水素供給目標量)Sd2として送られる。なお図2では、発電システム制御装置1に対し、各エンジンの制御装置(ECU15)を別に設けたが、この形態に限定されるものではなく、各装置の制御装置に該当する機能部を発電システム制御装置1内に備えてもよい。 The value indicating the operating amount of the controlled object (engine 11, hydrogen supply device 14, etc.) calculated according to the control program is stored in the RAM (1c), then sent to the output port (not shown) in the input/output port 1b, and sent to each device (ECU 15, hydrogen supply device 14) via each output section (engine torque control output section 1f, hydrogen supply amount control output section 1g) as a required output Sd1 and a desired hydrogen supply amount (hydrogen supply target amount) Sd2. In FIG. 2, a control device (ECU 15) for each engine is separately provided for the power generation system control device 1, but the present invention is not limited to this form, and the power generation system control device 1 may include a functional unit corresponding to the control device for each device.
 図3は、実施例1に係るエンジン11の構成の一例を示す図である。エンジン11は、火花点火式燃焼を実施する自動車用の4気筒ガソリンエンジンに水素を供給可能とするように改造したものである。吸入空気量を計測するエアフロセンサ21と、吸気管圧力を調整する電子制御スロットル20が、吸気管19の各々の適宜位置に備えられている。また、エンジン11には、各気筒の燃焼室17の中に点火エネルギーを供給する点火プラグ18が気筒ごとに備えられ、エンジンの冷却水の温度を計測する冷却水温度センサ25がシリンダヘッドの適宜位置に備えられている。 FIG. 3 is a diagram showing an example of the configuration of the engine 11 according to the first embodiment. The engine 11 is modified to be able to supply hydrogen to a four-cylinder gasoline engine for automobiles that implements spark ignition type combustion. An airflow sensor 21 for measuring the amount of intake air and an electronically controlled throttle 20 for adjusting the intake pipe pressure are provided at appropriate positions in each of the intake pipes 19 . In addition, the engine 11 is provided with a spark plug 18 for supplying ignition energy to the combustion chamber 17 of each cylinder for each cylinder, and a cooling water temperature sensor 25 for measuring the temperature of the cooling water of the engine is provided at an appropriate position of the cylinder head.
 燃料となるガソリンを噴射するためのガソリン燃料噴射装置22を燃焼室17内に備えており、ガソリン燃料噴射装置22に高圧燃料を供給するための高圧燃料ポンプ23が燃料配管によってガソリン燃料噴射装置22と接続されている。高圧燃料ポンプ23は燃料配管によりガソリンタンクへ接続されている。さらに、吸気管19内に水素を供給するための流路が備えられており、水素の供給量を制御する水素供給装置14と接続されている。水素供給装置24は水素用配管によって水素生成装置2に接続されている。 A gasoline fuel injection device 22 for injecting gasoline as fuel is provided in the combustion chamber 17, and a high-pressure fuel pump 23 for supplying high-pressure fuel to the gasoline fuel injection device 22 is connected to the gasoline fuel injection device 22 by a fuel pipe. The high-pressure fuel pump 23 is connected to the gasoline tank by a fuel pipe. Furthermore, a flow path for supplying hydrogen is provided in the intake pipe 19, and is connected to a hydrogen supply device 14 that controls the amount of hydrogen supplied. The hydrogen supply device 24 is connected to the hydrogen generator 2 by a hydrogen pipe.
 さらに、排気を浄化する三元触媒27と、三元触媒27の温度を計測する触媒温度センサ28と、空燃比検出器の一態様であって、三元触媒27の上流側にて排気の空燃比を検出する空燃比センサ29とが排気管26の各々の適宜位置に備えられる。 Furthermore, a three-way catalyst 27 that purifies the exhaust, a catalyst temperature sensor 28 that measures the temperature of the three-way catalyst 27, and an air-fuel ratio sensor 29 that detects the air-fuel ratio of the exhaust on the upstream side of the three-way catalyst 27 are provided at appropriate positions in each of the exhaust pipes 26.
 以上の構成によって、ガソリンを用いたエンジン駆動(ガソリン専焼)と、水素を用いたエンジン駆動(水素専焼)、水素とガソリンを同時に用いたエンジン駆動(ガソリン-水素混焼)を切り替えて使用することが可能となっている。 With the above configuration, it is possible to switch between engine drive using gasoline (gasoline-only combustion), engine drive using hydrogen (hydrogen-only combustion), and engine drive using hydrogen and gasoline at the same time (gasoline-hydrogen mixed combustion).
 図4は、実施例1に係るエンジン11の別の構成例を示す図である。エンジン11は、火花点火式燃焼を実施する自動車用の4気筒ガソリンエンジンに水素を供給可能とするように改造したものである。吸入空気量を計測するエアフロセンサ21と、吸気管圧力を調整する電子制御スロットル20が、吸気管19の各々の適宜位置に備えられている。また、エンジン11には、各気筒の燃焼室17の中に点火エネルギーを供給する点火プラグ18が気筒ごとに備えられ、エンジンの冷却水の温度を計測する冷却水温度センサ25がシリンダヘッドの適宜位置に備えられている。 FIG. 4 is a diagram showing another configuration example of the engine 11 according to the first embodiment. The engine 11 is modified to be able to supply hydrogen to a four-cylinder gasoline engine for automobiles that implements spark ignition type combustion. An airflow sensor 21 for measuring the amount of intake air and an electronically controlled throttle 20 for adjusting the intake pipe pressure are provided at appropriate positions in each of the intake pipes 19 . In addition, the engine 11 is provided with a spark plug 18 for supplying ignition energy to the combustion chamber 17 of each cylinder for each cylinder, and a cooling water temperature sensor 25 for measuring the temperature of the cooling water of the engine is provided at an appropriate position of the cylinder head.
 燃料となるガソリンを噴射するためのガソリン燃料噴射装置22を吸気管19内に備えている。ガソリン燃料噴射装置22は燃料配管によりガソリンタンクへ接続されている。
さらに、燃焼室17内に水素を供給するための流路が備えられており、水素の供給量を制御する水素供給装置14と接続されている。水素供給装置24は水素用配管によって水素生成装置2に接続されている。
A gasoline fuel injection device 22 for injecting gasoline as fuel is provided in the intake pipe 19 . The gasoline fuel injector 22 is connected to the gasoline tank by a fuel line.
Furthermore, a flow path for supplying hydrogen to the combustion chamber 17 is provided and connected to a hydrogen supply device 14 for controlling the amount of hydrogen supplied. The hydrogen supply device 24 is connected to the hydrogen generator 2 by a hydrogen pipe.
 さらに、排気を浄化する三元触媒27と、三元触媒27の温度を計測する触媒温度センサ28と、空燃比検出器の一態様であって、三元触媒27の上流側にて排気の空燃比を検出する空燃比センサ29とが排気管26の各々の適宜位置に備えられる。 Furthermore, a three-way catalyst 27 that purifies the exhaust, a catalyst temperature sensor 28 that measures the temperature of the three-way catalyst 27, and an air-fuel ratio sensor 29 that detects the air-fuel ratio of the exhaust on the upstream side of the three-way catalyst 27 are provided at appropriate positions in each of the exhaust pipes 26.
 以上の構成によって、ガソリンを用いたエンジン駆動(ガソリン専焼)と、水素を用いたエンジン駆動(水素専焼)、水素とガソリンを同時に用いたエンジン駆動(ガソリン-水素混焼)を切り替えて使用することが可能となっている。 With the above configuration, it is possible to switch between engine drive using gasoline (gasoline-only combustion), engine drive using hydrogen (hydrogen-only combustion), and engine drive using hydrogen and gasoline at the same time (gasoline-hydrogen mixed combustion).
 図5は、本発明の実施例1に係る水素混焼割合と燃焼圧力の関係(横軸:クランク角、縦軸:シリンダ内圧力)を示す図である。水素混焼割合とは、各エンジンに供給する合計燃料量(ガソリンおよび水素お合算)に対する水素量の割合である。図は圧縮-膨張行程における圧縮上死点近傍での筒内圧力履歴である。水素混焼割合を増加させていくに伴い燃焼の時期が早期化するとともに、最大筒内圧力が上昇している。ここで図示してはいないが、さらに水素混焼割合を高めることでノッキングやプレイグニッションといった異常燃焼が発生し、エンジン性能低下やエンジンの故障に繋がる恐れがある。 FIG. 5 is a diagram showing the relationship between the hydrogen co-firing ratio and the combustion pressure (horizontal axis: crank angle, vertical axis: cylinder internal pressure) according to Example 1 of the present invention. The hydrogen co-firing ratio is the ratio of the amount of hydrogen to the total amount of fuel (gasoline and hydrogen combined) supplied to each engine. The figure shows the in-cylinder pressure history near the compression top dead center in the compression-expansion stroke. As the hydrogen co-firing ratio increases, the timing of combustion advances and the maximum in-cylinder pressure rises. Although not shown here, increasing the hydrogen co-firing ratio may cause abnormal combustion such as knocking and pre-ignition, which may lead to engine performance degradation and engine failure.
 図6は、本発明の実施例1に係る水素混焼割合と最大筒内圧力、NOx排出量、エンジン劣化進行速度の関係を示す図である。図5にも示した通り、横軸の水素混焼割合が増加すると燃焼時期が早期化し、最大筒内圧力が上昇する。ある一定値を超えると異常燃焼が発生し安定した運転が不可能となる。最大筒内圧力が上昇すると、それに伴って筒内温度も上昇するため、排気中のNOx生成量(特に燃焼温度の影響を強く受けるサーマルNOx)が増加する。さらに、水素混焼割合増加による最大圧力の上昇および異常燃焼の発生は、エンジン燃焼室内部の各部品(ピストン、吸排気バルブ、燃料噴射装置、点火プラグ)の摩耗や劣化を促進する。つまりエンジン劣化進行速度が高くなる。 FIG. 6 is a diagram showing the relationship between the hydrogen co-firing ratio, the maximum in-cylinder pressure, the amount of NOx emissions, and the speed at which engine deterioration progresses according to Example 1 of the present invention. As shown in FIG. 5, as the hydrogen co-firing ratio on the horizontal axis increases, the combustion timing advances and the maximum in-cylinder pressure rises. If it exceeds a certain value, abnormal combustion occurs and stable operation becomes impossible. When the maximum in-cylinder pressure rises, the in-cylinder temperature also rises, so the amount of NOx produced in the exhaust gas (especially thermal NOx, which is strongly affected by the combustion temperature) increases. Furthermore, the increase in the maximum pressure and the occurrence of abnormal combustion due to the increase in the hydrogen co-firing ratio accelerate the wear and deterioration of each part (piston, intake and exhaust valves, fuel injection device, spark plug) inside the engine combustion chamber. In other words, the speed at which engine deterioration progresses increases.
 図7は、本発明の実施例1に係る劣化時の最大筒内圧力およびNOx排出量の変化を示す図である。エンジンが劣化すると、劣化前と同じ水素混焼割合で運転を実施した場合でも、前述のようなエンジン燃焼室内部の部品の摩耗や劣化によって、エンジン内部に堆積物やデポジットが生成し、最大筒内圧の上昇や、それに伴う異常燃焼の発生頻度が高くなる。また最大筒内圧の上昇により筒内温度も上昇し、劣化前と比較してNOx排出量も増加する。つまりエンジンの劣化によって、安定運転が可能で排気性能を満足するための最適な水素混焼割合が変化する。従って、発電システムの安定かつ高性能な運転を維持するためには、各エンジンの劣化度をリアルタイムで検出し各エンジンを最適な水素混焼割合に制御する必要がある。 FIG. 7 is a diagram showing changes in maximum in-cylinder pressure and NOx emissions during deterioration according to Example 1 of the present invention. When the engine deteriorates, even if the engine is operated at the same hydrogen co-firing ratio as before deterioration, the wear and deterioration of the parts inside the engine combustion chamber as described above will cause deposits and deposits to form inside the engine, resulting in an increase in the maximum cylinder pressure and the frequency of abnormal combustion that accompanies it. In addition, the increase in the maximum in-cylinder pressure causes the in-cylinder temperature to rise, and the amount of NOx emissions also increases compared to before deterioration. In other words, depending on engine deterioration, the optimum hydrogen co-firing ratio that enables stable operation and satisfies exhaust performance changes. Therefore, in order to maintain stable and high-performance operation of the power generation system, it is necessary to detect the degree of deterioration of each engine in real time and control each engine to the optimum hydrogen co-firing ratio.
 図8は、本発明の実施例1に係るエンジン発電機制御の例を示すフローチャートである。発電システム制御装置1は、まず接続されている負荷機器3からの情報Sg1を読み込む(処理ステップS1)。負荷機器3からの情報Sg1は、例えば、負荷側に発生している機器の現在の消費電力(電圧および電流)や将来の予測値である。また、発電システムの出力が電力系統に接続されている場合は、系統側のからの現在もしくは将来の電力要求値となる。 FIG. 8 is a flowchart showing an example of engine generator control according to Embodiment 1 of the present invention. The power generation system control device 1 first reads information Sg1 from the connected load device 3 (processing step S1). The information Sg1 from the load device 3 is, for example, current power consumption (voltage and current) of the device occurring on the load side and future predicted values. Also, when the output of the power generation system is connected to the power grid, it is the current or future power demand value from the grid side.
 次に、発電システム制御装置1は、各ECU15やエンジン11から、各エンジンの情報Sg3を読み込む(処理ステップS2)。ECU15やエンジン11からの情報Sg3は、例えば、現在のエンジン回転数やトルク、エンジン温度(触媒温度、冷却水温度、吸気温度など)といったエンジン状態やエンジン仕様(排気量、圧縮比、燃料供給位置など)である。 Next, the power generation system control device 1 reads information Sg3 of each engine from each ECU 15 and engine 11 (processing step S2). The information Sg3 from the ECU 15 and the engine 11 is, for example, the current engine speed, torque, engine conditions such as engine temperature (catalyst temperature, cooling water temperature, intake air temperature, etc.) and engine specifications (displacement, compression ratio, fuel supply position, etc.).
 次に、発電システム制御装置1は、水素生成装置2から、水素生成情報Sg2を読み込む(処理ステップS3)。ここで水素生成装置は、例えば再生可能エネルギーから水素を生成する水電解槽であり、水電解槽への入力可能電力や、出力効率などの情報を、発電システム1に読み込む。 Next, the power generation system control device 1 reads the hydrogen generation information Sg2 from the hydrogen generator 2 (processing step S3). Here, the hydrogen generator is, for example, a water electrolyzer that generates hydrogen from renewable energy.
 次に、発電システム制御装置1は、負荷機器3からの情報Sg1に基づき、発電システムに要求されている負荷を演算する(処理ステップS4)。ここで、電力変換器13や発電機12の損失などを考慮してエンジンに対するトータルの要求出力が演算される。 Next, the power generation system control device 1 calculates the load required for the power generation system based on the information Sg1 from the load device 3 (processing step S4). Here, the total required output for the engine is calculated in consideration of the losses of the power converter 13 and the generator 12, and the like.
 次に、発電システム制御装置1は、演算したトータルの要求出力Sd1を、各エンジン発電モジュールに分配し、個別要求出力Sd11、Sd12、・・・Sd1nを得る(処理ステップS5)。例えば、トータルの要求出力Sd1と各エンジン発電モジュールの定格出力から、必要なエンジン発電モジュールの駆動台数を算出し、駆動するエンジン発電モジュールでトータル要求出力Sd1を均等に配分する。 Next, the power generation system control device 1 distributes the calculated total required output Sd1 to each engine power generation module to obtain individual required outputs Sd11, Sd12, . . . Sd1n (processing step S5). For example, from the total required output Sd1 and the rated output of each engine power generation module, the required number of engine power generation modules to be driven is calculated, and the total required output Sd1 is evenly distributed among the engine power generation modules to be driven.
 次に、発電システム制御装置1は、ECU15やエンジン11からの情報Sg3に基づき、エンジンの劣化度を演算する(処理ステップS6)。例えば、これまでのエンジン駆動累積時間や累積出力、もしくはエンジンの燃焼状態(燃焼時期、燃焼安定性、排気性能)から、各々のエンジンでの劣化度が演算される。 Next, the power generation system control device 1 calculates the degree of deterioration of the engine based on the information Sg3 from the ECU 15 and the engine 11 (processing step S6). For example, the degree of deterioration in each engine is calculated from the accumulated engine driving time and accumulated output, or the combustion state of the engine (combustion timing, combustion stability, exhaust performance).
 次に、発電システム制御装置1は、演算した各エンジンでの劣化度および水素生成装置2からの水素生成情報Sg2に基づき、各エンジンにおける水素混焼割合を演算する(処理ステップS7)。図7に示したように、劣化度が高いほど同じ水素混焼割合条件においても最大筒内圧力の上昇することで、異常燃焼発生確率が高くなり、またNOx排出量が増加することから、発電システム制御装置1は各エンジンの劣化度を比較し、劣化度の高いエンジンほど、水素混焼割合が低くなるように、水素混焼割合を設定する。ここで、発電システムトータルの水素必要量が、水素生成装置から得られた水素生成可能量と同等になるもしくは超えないように設定される。 Next, the power generation system control device 1 calculates the hydrogen co-firing ratio in each engine based on the calculated degree of deterioration in each engine and the hydrogen generation information Sg2 from the hydrogen generator 2 (processing step S7). As shown in FIG. 7, the higher the degree of deterioration, the higher the maximum in-cylinder pressure even under the same hydrogen co-firing ratio condition, the higher the probability of occurrence of abnormal combustion and the more NOx emissions. Here, the required amount of hydrogen for the power generation system as a whole is set so as to be equal to or not exceed the hydrogen-producible amount obtained from the hydrogen generator.
 次に、発電システム制御装置1は、処理ステップS5にて演算されたエンジン別のトルク指令値(個別要求出力Sd11、Sd12、・・・Sd1n)を各ECU15に送る(処理ステップS8)。 Next, the power generation system control device 1 sends the torque command values for each engine (individual required outputs Sd11, Sd12, . . . Sd1n) calculated in processing step S5 to each ECU 15 (processing step S8).
 次に、発電システム制御装置1は、処理ステップS7にて演算された各エンジンの水素混焼割合を実現するよう水素供給量制御を実行する(処理ステップS9)。個別水素供給量指令値(Sd21、Sd22、・・・Sd2n)を各エンジンに送り(処理ステップS9)、一連の制御を終了する。 Next, the power generation system control device 1 executes hydrogen supply amount control so as to realize the hydrogen co-firing ratio of each engine calculated in processing step S7 (processing step S9). The individual hydrogen supply amount command values (Sd21, Sd22, .
 図9は、本発明の実施例1に係るエンジンの劣化度、水素耐性と水素割合設定値の関係を説明する図である。ここでは例えばエンジンA、エンジンB、エンジンC、エンジンD、エンジンEの5つの異なるエンジンが並列接続されている発電システムを想定して説明する。エンジンA、エンジンB、エンジンCは、水素を直接筒内に供給する筒内噴射式のもので水素耐性が高いエンジン(図3に示したエンジン構成)である。一方で、エンジンDおよびエンジンEは、水素を吸気管内に供給する吸気管噴射式のもので水素耐性が低いエンジン(図4に示したエンジン構成)である。 FIG. 9 is a diagram for explaining the relationship between the degree of deterioration of the engine, hydrogen resistance, and the hydrogen ratio set value according to the first embodiment of the present invention. Here, for example, a power generation system in which five different engines, engine A, engine B, engine C, engine D, and engine E, are connected in parallel will be described. The engine A, engine B, and engine C are of the in-cylinder injection type in which hydrogen is directly supplied into the cylinder, and are highly resistant to hydrogen (engine configuration shown in FIG. 3). On the other hand, the engine D and the engine E are of the intake pipe injection type in which hydrogen is supplied into the intake pipe and have low resistance to hydrogen (engine configuration shown in FIG. 4).
 図9上に、発電システム制御装置1によって得られた各エンジンの劣化度を示している。ここではエンジンAの劣化度が最も低く、次いでエンジンC、エンジンEの順に高くなり、劣化度が最も高いのがエンジンB、エンジンDである。 The top of FIG. 9 shows the degree of deterioration of each engine obtained by the power generation system control device 1. Here, engine A has the lowest degree of deterioration, followed by engines C and E, and engine B and engine D have the highest degree of deterioration.
 図9下に、上記エンジンの劣化度およびエンジンの水素耐性に基づいて発電システム制御装置1が設定した各エンジンの水素混焼割合を示している。劣化度が最も低いエンジンAの水素混焼割合が最も高く設定され、劣化度の上昇に伴い、その他のエンジンの水素混焼割合は低く設定される。同等の劣化度の場合(例えばエンジンBとエンジンD、エンジンCとエンジンE)、水素耐性が高いエンジンの方が、水素混焼率が高く設定される。点線は要求平均水素混焼割合を示している。要求平均水素混焼割合は、水素生成装置2が生成する水素量に基づいて演算される各エンジンの平均水素混焼割合であり、実際の各エンジンの水素混焼割合の平均が、要求平均水素混焼割合と合致するように、水素供給量が制御される。 The lower part of FIG. 9 shows the hydrogen co-firing ratio of each engine set by the power generation system control device 1 based on the degree of deterioration of the engine and the resistance to hydrogen of the engine. The hydrogen co-firing ratio of engine A, which has the lowest degree of deterioration, is set to be the highest, and the hydrogen co-firing ratios of the other engines are set to be low as the degree of deterioration increases. When the degree of deterioration is the same (for example, engine B and engine D, engine C and engine E), the hydrogen co-firing rate is set higher for the engine with higher resistance to hydrogen. The dotted line indicates the required average hydrogen co-firing ratio. The required average hydrogen co-firing ratio is the average hydrogen co-firing ratio of each engine calculated based on the amount of hydrogen generated by the hydrogen generator 2. The hydrogen supply amount is controlled so that the actual average of the hydrogen co-firing ratio of each engine matches the required average hydrogen co-firing ratio.
 図10は、本発明の実施例1に係るエンジンの劣化度のタイムチャートを示す図である。上からエンジンAの劣化度、エンジンBの劣化度、エンジンCの劣化度、エンジンDの劣化度、エンジンEの劣化度の推移(月・年単位の時間スケール)である。実線が本発明適用時、点線が従来の劣化度を示している。劣化度が劣化限界値(Limit)に到達するとメンテナンスや修理が必要になることを意味する。時刻0における各エンジンの劣化度の初期値は、図9の想定に準ずる。 FIG. 10 is a diagram showing a time chart of the degree of deterioration of the engine according to Example 1 of the present invention. From the top, the deterioration degree of the engine A, the deterioration degree of the engine B, the deterioration degree of the engine C, the deterioration degree of the engine D, and the deterioration degree of the engine E (time scale in units of months and years). The solid line indicates the degree of deterioration when the present invention is applied, and the dotted line indicates the conventional degree of deterioration. When the deterioration degree reaches the deterioration limit value (Limit), it means that maintenance or repair is required. The initial value of the degree of deterioration of each engine at time 0 conforms to the assumption in FIG.
 従来においては、各エンジンの劣化度の初期値にばらつきがあるため、同等な使用頻度で運用していくと、劣化度限界に到達する時期にもばらつきが発生する。この例では、最も初期の劣化度の高いエンジンBが時刻taにおいて最も早く劣化限界に到達し、発電システム100のメンテナンスが必要となる。 In the past, there were variations in the initial value of the degree of deterioration of each engine, so if they were used with the same frequency of use, there would be variations in the timing of reaching the limit of deterioration. In this example, engine B, which has the highest degree of deterioration at the earliest stage, reaches the deterioration limit earliest at time ta, requiring maintenance of power generation system 100 .
 一方で、本発明を適用したシステムでは、各エンジンの劣化度に基づいて、水素混焼割合が制御・調整される。例えば、初期劣化度の高いエンジンBにおいては、水素混焼割合が低く設定されるため、図6で示したように筒内の圧力が低く抑えられ、劣化進行速度が低下する。その結果、劣化限界に到達する時期を遅らせることが可能となる。逆に初期劣化度が低いエンジンAは、水素混焼割合が高く設定されるため、劣化進行度が増加し、劣化限界に到達する時期が早期化する。以上の制御により、全てのエンジン(A~E)の劣化限界到達時期が時刻tb付近に集約され、発電システム100のメンテナンス時期を延ばすとともに、各エンジンに対して一度にメンテナンスを実施できることから、メンテナンス頻度やコストを抑制し、稼働率を向上することが可能となる。 On the other hand, in the system to which the present invention is applied, the hydrogen co-firing ratio is controlled and adjusted based on the degree of deterioration of each engine. For example, in engine B, which has a high degree of initial deterioration, the hydrogen co-firing ratio is set low, so the pressure in the cylinder is kept low as shown in FIG. As a result, it is possible to delay the timing of reaching the deterioration limit. Conversely, for engine A with a low initial deterioration degree, the hydrogen co-firing ratio is set high, so the degree of deterioration progresses and the deterioration limit is reached earlier. With the above control, the deterioration limit reaching times of all the engines (A to E) are aggregated around the time tb, the maintenance time of the power generation system 100 is extended, and maintenance can be performed on each engine at once. Therefore, maintenance frequency and cost can be suppressed, and the operating rate can be improved.
 本実施例では、各エンジンの劣化度に基づき劣化限界時期を均一化させ、発電システム100の一斉メンテナンスを効率的に実施する方法を記述したが、エンジン発電モジュールごとにメンテナンスが可能な発電システム100においては、各エンジンの劣化限界到達時期を意図的にばらつかせて、各発電モジュールのメンテナンス中にも発電システム100の運用を継続させ(発電システムの全面停止を抑制し)、稼働率を向上してもよい。 In the present embodiment, a method of uniformizing the deterioration limit timing based on the degree of deterioration of each engine and efficiently performing simultaneous maintenance of the power generation system 100 has been described. However, in the power generation system 100 in which maintenance can be performed for each engine power generation module, the deterioration limit reaching timing of each engine may be intentionally varied to continue the operation of the power generation system 100 (to suppress the complete shutdown of the power generation system) even during the maintenance of each power generation module, thereby improving the operation rate.
 また、本実施例では、各エンジンの水素耐性を、水素供給位置により評価しているが、各エンジンの仕様(圧縮比、排気量)や、水素混焼時の燃焼状態によって評価してもよい。 Also, in this embodiment, the hydrogen resistance of each engine is evaluated by the hydrogen supply position, but it may be evaluated by the specifications of each engine (compression ratio, displacement) and the combustion state during hydrogen co-combustion.
 以上の説明から明らかなように、本発明は二種類以上の燃料を供給可能な複数のエンジン11により発電を行う発電システム100に適用されるエンジン発電システム制御装置1であって、各エンジンの現在の状態を検知する状態検出手段(例えばECU)を備え、前記状態検出手段ECUにより検出された各エンジン状態(例えば図9の劣化度)の比較結果に基づいて、各エンジンの少なくとも一種類の燃料供給量を制御することを特徴とするエンジン発電システム制御装置としたものである。つまり本発明では、エンジンの相対的な状態に基づいて、各エンジンの燃料を定めたものである。 As is clear from the above description, the present invention is an engine power generation system control device 1 that is applied to a power generation system 100 that generates power by a plurality of engines 11 capable of supplying two or more types of fuel, comprising state detection means (e.g., ECU) for detecting the current state of each engine, and controlling the amount of at least one type of fuel supplied to each engine based on the comparison result of each engine state (e.g., the degree of deterioration in FIG. 9) detected by the state detection means ECU. In other words, the present invention determines the fuel for each engine based on the relative condition of the engines.
 本発明の実施例2について説明する。本実施例では、エンジンの始動および停止制御を実施する。システム構成、ハードウェア構成については実施例1と同一である。本実施形態に係る、システム構成、ハードウェア構成については実施例1と同一である。 Example 2 of the present invention will be described. In this embodiment, engine start and stop control is performed. The system configuration and hardware configuration are the same as those of the first embodiment. The system configuration and hardware configuration according to this embodiment are the same as those of the first embodiment.
 図11は、本発明の実施例2に係るエンジンの触媒温度と劣化度の一例を示す図である。図11下に示した各エンジン(A~E)の劣化度の想定は図9と同様である。図11上には各エンジンのECU15もしくはエンジン11から得た排気中の三元触媒温度を示している。三元触媒は、特定の温度(触媒活性温度)を超えると本来の浄化性能が実現できるが、触媒活性温度以下では、浄化性能が不十分であり、NOxなどを浄化できずにエンジンから排出してしまうことになる。三元触媒はエンジンの排気によって温められるため、エンジン稼働時間と共に触媒温度は上昇する。エンジンが停止すると、周囲のガスへの放熱によって触媒温度は緩やかに低下していく。この例においては、エンジンB、エンジンD、エンジンEの触媒温度は、触媒活性温度以上となっており、エンジンA、エンジンCにおいては、触媒活性温度未満となっている。 FIG. 11 is a diagram showing an example of catalyst temperature and degree of deterioration of the engine according to Embodiment 2 of the present invention. The assumption of the degree of deterioration of each engine (A to E) shown in the lower part of FIG. 11 is the same as in FIG. FIG. 11 shows the three-way catalyst temperature in the exhaust gas obtained from the ECU 15 or the engine 11 of each engine. The three-way catalyst can achieve its original purification performance when the temperature exceeds a certain temperature (catalyst activation temperature), but below the catalyst activation temperature, the purification performance is insufficient, and NOx etc. can not be purified and will be discharged from the engine. Since the three-way catalyst is warmed by the engine exhaust, the catalyst temperature rises as the engine runs. When the engine stops, the catalyst temperature gradually decreases due to heat radiation to the surrounding gas. In this example, the catalyst temperatures of engine B, engine D, and engine E are equal to or higher than the catalyst activation temperature, and engine A and engine C are lower than the catalyst activation temperature.
 図12は、本発明の実施例2に係るエンジン発電機の始動および停止制御の例を示すフローチャートである。 FIG. 12 is a flowchart showing an example of start and stop control of an engine generator according to Embodiment 2 of the present invention.
 発電システム制御装置1は、まず接続されている負荷機器3からの情報Sg1を読み込む(処理ステップS11)。負荷機器3からの情報Sg1は、例えば、負荷側に発生している機器の現在の消費電力(電圧および電流)や将来の予測値である。また、発電システムの出力が電力系統に接続されている場合は、系統側のからの現在もしくは将来の電力要求値となる。 The power generation system control device 1 first reads information Sg1 from the connected load device 3 (processing step S11). The information Sg1 from the load device 3 is, for example, current power consumption (voltage and current) of the device occurring on the load side and future predicted values. Also, when the output of the power generation system is connected to the power grid, it is the current or future power demand value from the grid side.
 次に、発電システム制御装置1は、負荷機器3からの情報Sg1に基づき、発電システムに要求されている負荷Sd1を演算する(処理ステップS12)。ここで、電力変換器13や発電機12の損失などを考慮してエンジンに対するトータルの要求出力Sd1が演算される。 Next, the power generation system control device 1 calculates the load Sd1 required for the power generation system based on the information Sg1 from the load device 3 (processing step S12). Here, the total required output Sd1 for the engine is calculated in consideration of the losses of the power converter 13 and the generator 12, and the like.
 次に、発電システム制御装置1は、各ECU15やエンジン11から、各エンジンの情報Sg3を読み込む(処理ステップS13)。ECU15やエンジン11からの情報Sg3は、例えば、現在のエンジン回転数やトルク、エンジン温度(触媒温度、冷却水温度、吸気温度など)といったエンジン状態やエンジン仕様(排気量、圧縮比、燃料供給位置など)である。 Next, the power generation system control device 1 reads information Sg3 of each engine from each ECU 15 and engine 11 (processing step S13). The information Sg3 from the ECU 15 and the engine 11 is, for example, the current engine speed, torque, engine conditions such as engine temperature (catalyst temperature, cooling water temperature, intake air temperature, etc.) and engine specifications (displacement, compression ratio, fuel supply position, etc.).
 次に、発電システム制御装置1は、ECU15やエンジン11からの情報Sg3に基づき、エンジンの劣化度を演算する(処理ステップS14)。例えば、これまでのエンジン駆動累積時間や累積出力、もしくはエンジンの燃焼状態(燃焼時期、燃焼安定性、排気性能)から、各々のエンジンでの劣化度が演算される。 Next, the power generation system control device 1 calculates the degree of deterioration of the engine based on the information Sg3 from the ECU 15 and the engine 11 (processing step S14). For example, the degree of deterioration in each engine is calculated from the accumulated engine driving time and accumulated output, or the combustion state of the engine (combustion timing, combustion stability, exhaust performance).
 次に、発電システム制御装置1は、エンジンの触媒温度と、エンジンの劣化度に基づいて、各エンジンの始動順序を決定する(処理ステップS15)。その後、各エンジンに始動指令を送り(処理ステップS16)、一連の制御を終了する。 Next, the power generation system control device 1 determines the starting order of each engine based on the catalyst temperature of the engine and the degree of deterioration of the engine (processing step S15). After that, a start command is sent to each engine (processing step S16), and the series of control ends.
 図13は、本発明の実施例2に係るエンジン発電機の始動および停止制御の例を示すタイムチャートである。図13の上から、システム停止状態から始動する際の、発電システム要求出力、エンジンAの出力、エンジンBの出力、エンジンCの出力、エンジンDの出力、エンジンEの出力、発電システムからのNOx排出量積算値の推移である。本発明を適用した場合を実線で、従来の制御を点線で示している。 FIG. 13 is a time chart showing an example of start and stop control of the engine generator according to Embodiment 2 of the present invention. From the top of FIG. 13, when the system is started from the stopped state, the required output of the power generation system, the output of engine A, the output of engine B, the output of engine C, the output of engine D, the output of engine E, and the NOx emission amount transition from the power generation system. A solid line indicates the case where the present invention is applied, and a dotted line indicates the conventional control.
 点線で示す従来制御においては、時刻taにおいて発電要求が開始すると、予め定められた序列に基づいてエンジンAが始動し発電を開始する。さらに要求出力が増加して時刻tbとなるとエンジンBが始動、その後tcにてエンジンCが始動する。その後発電要求出力の低下に伴い時刻tdにてエンジンCが、時刻teにてエンジンBが停止する。ここで、図12で示した通り、エンジンAおよびエンジンCは触媒温度が触媒活性温度以下であることから、始動(時刻taおよび時刻tc)直後には排気成分が浄化できず、多くのNOxを輩出してしまうことになる。 In the conventional control indicated by the dotted line, when the power generation request starts at time ta, the engine A starts and starts power generation based on a predetermined order. When the required output further increases and reaches time tb, engine B starts, and then engine C starts at time tc. After that, the engine C stops at the time td and the engine B stops at the time te as the requested power generation output decreases. Here, as shown in FIG. 12, since the catalyst temperature of engine A and engine C is lower than the catalyst activation temperature, exhaust components cannot be purified immediately after starting (time ta and time tc), and a large amount of NOx is produced.
 一方で、本制御を適用した場合には、時刻taにおいて発電要求が開始すると、触媒温度が触媒活性温度以上、かつ劣化度の低いエンジンEから優先的に始動される。さらに要求出力が増加して時刻tbとなると、やはり触媒温度が触媒活性温度以上であるエンジンDが始動、その後tcにてエンジンBが始動する。その後発電要求出力の低下に伴い時刻tdにてエンジンBが、時刻teにてエンジンDが停止する。発電に利用したエンジンすべてが、触媒温度が触媒活性温度以上であることから、エンジン始動(時刻ta、時刻tb、および時刻tc)直後においても排気浄化効率が高く、従来制御と比較してNOxを大幅に削減できる。 On the other hand, when this control is applied, when the power generation request starts at time ta, the engine E whose catalyst temperature is equal to or higher than the catalyst activation temperature and whose degree of deterioration is low is preferentially started. When the required output further increases and reaches time tb, engine D whose catalyst temperature is equal to or higher than the catalyst activation temperature is started, and then engine B is started at tc. After that, the engine B stops at the time td and the engine D stops at the time te as the requested power generation output decreases. Since the catalyst temperature of all engines used for power generation is equal to or higher than the catalyst activation temperature, the exhaust purification efficiency is high even immediately after engine start (time ta, time tb, and time tc), and NOx can be significantly reduced compared to conventional control.
 本実施例では、発電システム制御装置1は、エンジン温度として触媒温度を用いてエンジン始動の順序を決定したが、エンジンの冷却水温度に基づいて指導順序を決定してもよい。 In this embodiment, the power generation system control device 1 determines the engine start order using the catalyst temperature as the engine temperature, but may determine the instruction order based on the cooling water temperature of the engine.
 本発明は上述した各実施の形態に限られるものではなく、特許請求の範囲に記載した本発明の要旨を逸脱しない限りその他種々の応用例、変形例を取り得ることは勿論である。 The present invention is not limited to the above-described embodiments, and it goes without saying that various other application examples and modifications are possible as long as they do not depart from the gist of the present invention described in the claims.
 例えば、上述した各実施の形態は本発明を分かりやすく説明するために装置及びシステムの構成を詳細かつ具体的に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されない。また、ここで説明した実施の形態の構成の一部を他の実施の形態の構成に置き換えることは可能であり、さらにはある実施の形態の構成に他の実施の形態の構成を加えることも可能である。また、各実施の形態の構成の一部について、他の構成の追加、削除、置換をすることも可能である。 For example, each of the above-described embodiments is a detailed and specific description of the configuration of the device and system in order to explain the present invention in an easy-to-understand manner, and is not necessarily limited to those having all the configurations described. Further, it is possible to replace part of the configuration of the embodiment described here with the configuration of another embodiment, and furthermore, it is possible to add the configuration of another embodiment to the configuration of one embodiment. Moreover, it is also possible to add, delete, or replace a part of the configuration of each embodiment with another configuration.
 また、制御線や情報線は説明上必要と考えられるものを示しており、製品上必ずしも全ての制御線や情報線を示しているとは限らない。実際には殆ど全ての構成が相互に接続されていると考えてもよい。 In addition, the control lines and information lines indicate what is considered necessary for explanation, and not all control lines and information lines are necessarily indicated on the product. In practice, it may be considered that almost all configurations are interconnected.
1:発電システム制御装置、1a:入力回路、1b:入出力ポート、1c:RAM、1d:ROM、1e:CPU、1f:エンジントルク制御出力部、1g:水素供給量制御出力部、2:水素生成装置、3:負荷側機器、11:エンジン、12:発電機、13:電力変換器、14:水素供給装置、15:ECU、17:燃焼室、18:点火プラグ、19:吸気管、20:スロットル、21:エアフロセンサ、22:ガソリン用燃料噴射装置、23:高圧燃料ポンプ、24:ガス用燃料供給装置、25:冷却水温度センサ、26:排気管、27:三元触媒、28:触媒温度センサ、29:空燃比センサ 1: power generation system control device, 1a: input circuit, 1b: input/output port, 1c: RAM, 1d: ROM, 1e: CPU, 1f: engine torque control output unit, 1g: hydrogen supply amount control output unit, 2: hydrogen generation device, 3: load side device, 11: engine, 12: generator, 13: power converter, 14: hydrogen supply device, 15: ECU, 17: combustion chamber, 18: spark plug, 19: intake pipe, 20: throttle, 21: Air flow sensor 22: Gasoline fuel injection device 23: High pressure fuel pump 24: Gas fuel supply device 25: Cooling water temperature sensor 26: Exhaust pipe 27: Three-way catalyst 28: Catalyst temperature sensor 29: Air-fuel ratio sensor

Claims (9)

  1.  二種類以上の燃料を供給されて混焼が可能な複数のエンジンにより発電を行う発電システムに適用されるエンジン発電システム制御装置であって、
     各エンジンの現在の状態を検知するエンジン状態検出手段を備え、前記エンジン状態検出手段により検出された各エンジン状態の比較結果に基づいて、各エンジンの少なくとも一種類の燃料供給量を制御することを特徴とするエンジン発電システム制御装置。
    An engine power generation system control device applied to a power generation system that generates power by a plurality of engines that are supplied with two or more types of fuel and are capable of co-firing,
    An engine power generation system control device comprising engine state detection means for detecting a current state of each engine, and controlling at least one type of fuel supply amount for each engine based on a comparison result of each engine state detected by the engine state detection means.
  2.  請求項1に記載のエンジン発電システム制御装置であって、
     前記エンジン状態検出手段は、各エンジンの劣化度を検出することを特徴とするエンジン発電システム制御装置。
    The engine power generation system control device according to claim 1,
    The engine power generation system control device, wherein the engine state detection means detects the degree of deterioration of each engine.
  3.  請求項2に記載のエンジン発電システム制御装置であって、
     前記エンジン状態検出手段は、各エンジンの温度を検出することを特徴とするエンジン発電システム制御装置。
    The engine power generation system control device according to claim 2,
    The engine power generation system control device, wherein the engine state detection means detects the temperature of each engine.
  4.  請求項2に記載のエンジン発電システム制御装置であって、
     前記エンジン状態検出手段により検出された各エンジンの劣化度によって、各エンジンに供給する二種類以上の燃料量の割合を制御することを特徴とするエンジン発電システム制御装置。
    The engine power generation system control device according to claim 2,
    An engine power generation system control device, characterized in that the ratio of two or more types of fuel supplied to each engine is controlled according to the degree of deterioration of each engine detected by the engine state detection means.
  5.  請求項2に記載のエンジン発電システム制御装置であって、
     供給する燃料の一つが水素であり、前記エンジン状態検出手段により検出されたエンジンの劣化度が高いエンジンほど、総供給燃料量にしめる水素量の割合を低く設定することを特徴とするエンジン発電システム制御装置。
    The engine power generation system control device according to claim 2,
    One of the fuels to be supplied is hydrogen, and the ratio of the amount of hydrogen to the total amount of supplied fuel is set lower for an engine with a higher deterioration degree of the engine detected by the engine state detection means.
  6.  請求項2に記載のエンジン発電システム制御装置であって、
     前記エンジン状態検出手段は、前記エンジンの稼働時間、シリンダ内圧力、回転速度、点火信号のうち少なくとも一つからエンジン劣化度を検出することを特徴とするエンジン発電システム制御装置。
    The engine power generation system control device according to claim 2,
    The engine power generation system control device, wherein the engine state detection means detects the degree of engine deterioration from at least one of an operating time of the engine, an internal cylinder pressure, a rotation speed, and an ignition signal.
  7.  請求項3に記載のエンジン発電システム制御装置であって、
     前記エンジンの温度とは、各エンジンの排気管に備えられた排気浄化用触媒の温度であり、前記排気浄化用触媒の温度が、所定温度以上であるエンジンを優先して起動すること、を特徴とするエンジン発電システム制御装置。
    The engine power generation system control device according to claim 3,
    The temperature of the engine is the temperature of the exhaust purification catalyst provided in the exhaust pipe of each engine, and the engine power generation system control device characterized in that the temperature of the exhaust purification catalyst preferentially starts the engine whose temperature is equal to or higher than a predetermined temperature.
  8.  請求項2に記載のエンジン発電システム制御装置であって、
     前記発電システムは、水素を含む二種類以上の燃料を供給可能な複数のエンジンから構成され、
     各エンジンの水素燃料適応性を評価する水素適応性評価手段を備え、前記水素適応性評価手段から得られた各エンジンの水素適応度が高いエンジンほど、総供給燃料量にしめる水素量の割合を高く設定することを特徴とするエンジン発電システム制御装置。
    The engine power generation system control device according to claim 2,
    The power generation system is composed of a plurality of engines capable of supplying two or more types of fuel including hydrogen,
    An engine power generation system control device comprising hydrogen adaptability evaluation means for evaluating the hydrogen fuel adaptability of each engine, wherein the higher the hydrogen adaptability of each engine obtained from the hydrogen adaptability evaluation means, the higher the ratio of the amount of hydrogen to the total amount of fuel supplied is set.
  9.  請求項8に記載のエンジン発電システム制御装置であって、
     前記水素適応性評価手段は、前記エンジンの燃料供給方法、前記エンジンの圧縮比、前記エンジンの排気量、から水素適応度を決定することを特徴とするエンジン発電システム制御装置。
    The engine power generation system control device according to claim 8,
    The engine power generation system control device, wherein the hydrogen adaptability evaluation means determines the hydrogen adaptability from a fuel supply method of the engine, a compression ratio of the engine, and a displacement of the engine.
PCT/JP2022/045906 2022-01-21 2022-12-13 Engine electricity generating system control device WO2023139982A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022007593A JP2023106703A (en) 2022-01-21 2022-01-21 Engine power generation system controller
JP2022-007593 2022-01-21

Publications (1)

Publication Number Publication Date
WO2023139982A1 true WO2023139982A1 (en) 2023-07-27

Family

ID=87348127

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/045906 WO2023139982A1 (en) 2022-01-21 2022-12-13 Engine electricity generating system control device

Country Status (2)

Country Link
JP (1) JP2023106703A (en)
WO (1) WO2023139982A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10309099A (en) * 1997-04-28 1998-11-17 Toshiba Corp Combined cycle power plant controller
JP2017008800A (en) * 2015-06-22 2017-01-12 株式会社Gpe Biomass utilization engine and power generating system
JP2017522219A (en) * 2014-07-18 2017-08-10 デウ シップビルディング アンド マリン エンジニアリング カンパニー リミテッド Operation method of marine engine
JP2018204594A (en) * 2017-06-09 2018-12-27 株式会社ルネッサンス・エナジー・リサーチ Engine type power generation device and its manufacturing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10309099A (en) * 1997-04-28 1998-11-17 Toshiba Corp Combined cycle power plant controller
JP2017522219A (en) * 2014-07-18 2017-08-10 デウ シップビルディング アンド マリン エンジニアリング カンパニー リミテッド Operation method of marine engine
JP2017008800A (en) * 2015-06-22 2017-01-12 株式会社Gpe Biomass utilization engine and power generating system
JP2018204594A (en) * 2017-06-09 2018-12-27 株式会社ルネッサンス・エナジー・リサーチ Engine type power generation device and its manufacturing method

Also Published As

Publication number Publication date
JP2023106703A (en) 2023-08-02

Similar Documents

Publication Publication Date Title
JP6476295B2 (en) Engine control device
US10774773B2 (en) Autonomous operation of electronically controlled internal combustion engines on a variety of fuels and/or other variabilities using ion current and/or other combustion sensors
DK2652293T3 (en) METHOD OF OPERATING A Piston Incinerator in Transient Load Change, a Control System to Operate the Function of an Internal Combustion Engine, and a Piston Engine
US20140182560A1 (en) Variable speed dual fueled engine and electrical power management apparatus and methods
US6325044B1 (en) Apparatus and method for suppressing diesel engine emissions
WO2023139982A1 (en) Engine electricity generating system control device
US20170204802A1 (en) Process of controlling operation in a multi-cylinder engine
EP2984322B1 (en) Method of operating an electric power generator set and an electric power generator set
JP4681511B2 (en) Engine misfire output or load limit operation method and apparatus
US11499496B2 (en) Engine control system and method
WO2018131407A1 (en) Control device for internal combustion engine
US7051715B2 (en) Apparatus and method for suppressing diesel engine emissions
CN114526167A (en) Method and system for an engine
JP6904274B2 (en) Internal combustion engine control system
GB2608057A (en) Gas engine power generating system
JP2011122460A (en) Control device for internal combustion engine
Tsunoda et al. Mitsubishi lean-burn gas engine with world's highest thermal efficiency
US11434842B1 (en) Derating operating strategy and gaseous fuel engine control system
JP2009191853A (en) High pressure fuel supply device for internal combustion engine
CN115875142B (en) Large two-stroke turbocharged uniflow scavenged internal combustion engine and method of operating the same
WO2023105890A1 (en) Hydrogen mixed-combustion electronic control device and power generation system using same
WO2022259771A1 (en) Electronic control device for mixed hydrogen combustion, and method for controlling hydrogen mixing ratio
US11973404B2 (en) Gas engine power generation system
WO2024018575A1 (en) Internal combustion engine control device
JP2012112266A (en) Heating control device of internal combustion engine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22922133

Country of ref document: EP

Kind code of ref document: A1