WO2023139663A1 - Vibration factor estimating device - Google Patents

Vibration factor estimating device Download PDF

Info

Publication number
WO2023139663A1
WO2023139663A1 PCT/JP2022/001660 JP2022001660W WO2023139663A1 WO 2023139663 A1 WO2023139663 A1 WO 2023139663A1 JP 2022001660 W JP2022001660 W JP 2022001660W WO 2023139663 A1 WO2023139663 A1 WO 2023139663A1
Authority
WO
WIPO (PCT)
Prior art keywords
vibration
motor
factor
vibration factor
axis
Prior art date
Application number
PCT/JP2022/001660
Other languages
French (fr)
Japanese (ja)
Inventor
佑貴 白川
Original Assignee
ファナック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ファナック株式会社 filed Critical ファナック株式会社
Priority to PCT/JP2022/001660 priority Critical patent/WO2023139663A1/en
Publication of WO2023139663A1 publication Critical patent/WO2023139663A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B25/00Accessories or auxiliary equipment for turning-machines
    • B23B25/06Measuring, gauging, or adjusting equipment on turning-machines for setting-on, feeding, controlling, or monitoring the cutting tools or work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • B23Q17/12Arrangements for observing, indicating or measuring on machine tools for indicating or measuring vibration

Definitions

  • the present invention relates to a vibration factor estimation device.
  • Patent Document 1 a system for measuring the vibration of the shaft of a machine tool is known (see Patent Document 1, for example).
  • Vibration factors mainly include (1) resonance and interference of the own axis, (2) vibration of other axes within the same machine tool, vibration of peripheral equipment, disturbances such as noise, and (3) machining load (only during machining).
  • some vibration factors cannot be suppressed by controlling the motor of the machine tool, and it is required to easily identify the vibration factors of industrial machines.
  • a vibration factor estimating device includes: a command creation unit that creates an operation command including a control state of each control axis of an industrial machine; a motor control unit that controls a motor of the industrial machine based on the operation command; a detection unit that detects at least one of position, speed, and acceleration of the motor of the industrial machine as a detected value of the motor;
  • FIG. 4 is a diagram showing the positions of the X-axis, Y-axis, and Z-axis in a normal state;
  • FIG. 4 is a diagram showing the positions of the X-, Y-, and Z-axes when control of the X-axis is disabled;
  • FIG. 4 shows the 2nd example of a process of the vibration factor estimation apparatus which concerns on this embodiment.
  • FIG. 4 is a diagram showing the positions of the X-axis, Y-axis, and Z-axis in a normal state;
  • FIG. 4 is a diagram showing the positions of the X-, Y-, and Z-axes when control of the X-axis is disabled;
  • FIG. 4 is a diagram showing the positions of the X-axis, Y-axis, and Z-axis when control of axes other than the X-axis is disabled; It is a figure which shows the example of the 3rd process of the vibration factor estimation apparatus which concerns on this embodiment.
  • FIG. 4 is a diagram showing the positions of the X-axis, Y-axis, and Z-axis in a normal state;
  • FIG. 4 is a diagram showing the positions of the X-axis, Y-axis, and Z-axis in a normal state;
  • FIG. 4 is a diagram showing the positions of the X-axis, Y-axis, and Z-axis
  • FIG. 4 is a diagram showing the positions of the X-, Y-, and Z-axes when control of the X-axis is disabled;
  • FIG. 4 is a diagram showing the positions of the X-axis, Y-axis, and Z-axis when control of axes other than the X-axis is disabled;
  • FIG. 4 is a diagram showing control states of the X-axis, the Y-axis, and the Z-axis; It is a flow chart which shows processing of a vibration factor estimating device concerning this embodiment. It is a flow chart which shows processing of a vibration factor estimating device concerning this embodiment.
  • FIG. 1 is a diagram showing an overview of a vibration factor estimation device 1 according to this embodiment.
  • the vibration factor estimating device 1 may be, for example, a numerical control device connected to the machine tool 2 as shown in FIG. 1, or may be a computer device connected to the numerical control device.
  • the vibration factor estimation device 1 includes a processor such as a CPU (Central Processing Unit), a ROM (Read Only Memory) that stores an OS (Operating System) and application programs, a RAM (Random Access Memory) that stores various information, and a hard disk drive or SSD (Solid State Drive) that stores various other information. ) and the like.
  • a processor such as a CPU (Central Processing Unit), a ROM (Read Only Memory) that stores an OS (Operating System) and application programs, a RAM (Random Access Memory) that stores various information, and a hard disk drive or SSD (Solid State Drive) that stores various other information. ) and the like.
  • the machine tool 2 is a device for machining a workpiece, and is directly or indirectly connected to the vibration factor estimation device 1.
  • the machine tool 2 has a general configuration for machining tools, spindles, feed axes, and the like.
  • the vibration factor estimation device 1 includes a command generation unit 11, a motor control unit 12, a data storage unit 15, and a vibration factor estimation unit 16. Further, the detection unit 14 may be incorporated in the vibration factor estimation device 1, may be included in the machine tool 2, or may be included in another device. Further, in the present embodiment, the vibration factor estimating device 1 estimates the vibration factor of the servomotor 13, but the vibration factor estimating device 1 can estimate the vibration factor of other industrial machines having servomotors and detection units.
  • the command creation unit 11 creates an operation command including the control state of each control axis of the machine tool 2 (for example, the main axis, X-axis, Y-axis, Z-axis, etc., which will be described later).
  • the command creation unit 11 creates an operation command including control enable or control suppression of the servomotor 13 as the control state.
  • the motor control unit 12 controls the servomotor 13 of the machine tool 2 based on the operation command. Also, the motor control unit 12 detects at least one of position, speed, and acceleration by the detection unit 14 and determines the voltage command value based on the feedback value from the detection unit 14 . The motor control unit 12 controls driving of the motor by applying a voltage modulated by a pulse width modulation (PWM) method.
  • PWM pulse width modulation
  • the servomotor 13 is a motor for driving the main shaft, X-axis, Y-axis, Z-axis, etc. of the machine tool 2 .
  • the amount of rotation, speed, torque, etc. of the servomotor 13 are controlled by the motor control unit 12 .
  • the servomotor 13 includes, for example, a servomotor 13a that drives the X axis, a servomotor 13b that drives the Y axis, a servomotor 13c that drives the Z axis, and a servomotor 13d that drives the main axis.
  • the detection unit 14 includes an encoder, and detects at least one of the position, speed, and acceleration of the servomotor 13 of the machine tool 2 as a detected value of the servomotor 13 .
  • the detection unit 14 includes, for example, a detection unit 14a that detects the detection value of the servomotor 13a, a detection unit 14b that detects the detection value of the servomotor 13b, a detection unit 14c that detects the detection value of the servomotor 13c, and a detection unit 14d that detects the detection value of the servomotor 13d. Then, the detection unit 14 outputs the detection value to the motor control unit 12 as a feedback value.
  • the data storage unit 15 stores the operation command created by the command creation unit 11 and the detection value detected by the detection unit 14 in association with each other.
  • the vibration factor estimator 16 estimates the vibration factor of the servomotor 13 based on the motion command and the detected value corresponding to the motion command.
  • the command creation unit 11 adjusts the gain of the servomotor 13, sets the torque command of the servomotor 13 to 0, cuts off the power to the servomotor 13, etc. as a control state, thereby creating an operation command including enabling or inhibiting control of the servomotor 13.
  • the suppression of control of the servomotor 13 includes, for example, not only the case of completely invalidating the gain but also the case of making the gain extremely small.
  • the vibration factor estimation unit 16 may compare two or more detection values corresponding to different control states, and estimate whether the vibration factor of the servomotor 13 is an internal factor such as resonance or interference of the shaft driven by a certain servomotor 13 or an external factor such as vibration of the shaft of another servomotor 13, vibration of peripheral equipment, or noise based on the difference between the detected values.
  • the internal factor means resonance, interference, or the like that occurs in the own axis (for example, the servomotor 13a) for the axis driven by a certain servomotor 13 (for example, the servomotor 13a).
  • the external factors mean vibrations generated in other servomotors 13 (eg, servomotors 13b, 13c, .
  • the vibration factor estimation unit 16 compares two detection values corresponding to different control states.
  • the vibration factor estimator 16 determines that the vibration has been eliminated when the difference obtained by comparing the detected values is equal to or greater than a predetermined threshold value, and when it is determined from the sign of the detected value and the difference that the vibration in the control disabled state is smaller than the vibration in the control enabled state. Thereby, the vibration factor estimator 16 estimates that the vibration factor is an internal factor.
  • the vibration factor estimating unit 16 determines that the vibration is not eliminated when the difference between the detected values is less than a predetermined threshold value, or when it is determined from the sign of the detected value and the difference that the vibration in the control disabled state is greater than the vibration in the control enabled state. Thereby, the vibration factor estimator 16 estimates that the vibration factor is an external factor.
  • the vibration factor estimator 16 may extract at least one feature quantity of the vibration frequency, amplitude, and phase included in the detected value, compare two or more feature quantities corresponding to different control states, and estimate whether the vibration factor of the servo motor 13 is an internal factor or an external factor based on the difference between the feature quantities.
  • the vibration factor estimation unit 16 may extract the peak value of the detected value, compare two or more peak values corresponding to different control states, and estimate whether the vibration factor of the servomotor 13 is an internal factor or an external factor based on the difference between the peak values.
  • the detection unit 14 detects detection values of a plurality of servo motors 13 (servo motors 13 a, servo motors 13 b, servo motors 13 c, .
  • FIG. 2 is a diagram showing a first processing example of the vibration factor estimation device 1 according to this embodiment.
  • 3A is a diagram showing the positions of the X-, Y-, and Z-axes in a normal state
  • FIG. 3B is a diagram showing the positions of the X-, Y-, and Z-axes when control of the X-axis is disabled.
  • the vibration factor estimation device 1 controls the servomotor 13a that drives the X-axis 17a of the machine tool 2, the servomotor 13b that drives the Y-axis 17b, the servomotor 13c that drives the Z-axis 17c, and the servomotor 13d that drives the main shaft.
  • the detection unit 14a detects the detection value of the servo motor 13a
  • the detection unit 14b detects the detection value of the servo motor 13b
  • the detection unit 14c detects the detection value of the servo motor 13c
  • the detection unit 14d detects the detection value of the servo motor 13d.
  • vibration A1 occurs on the X-axis 17a.
  • the positions of the Y-axis 17b and Z-axis 17c fluctuate according to the command, but the position of the X-axis 17a does not follow the command and is unstable.
  • the vibration factor estimating device 1 disables the control of the X-axis 17a, the position of the X-axis 17a becomes constant and no vibration of the X-axis 17a occurs, as shown in FIG. 3B. Therefore, the vibration factor estimating device 1 estimates that the vibration factor of the X-axis 17a is not an external factor such as other servo motors 13 (servo motor 13b, servo motor 13c, .
  • FIG. 4 is a diagram showing a second processing example of the vibration factor estimation device 1 according to this embodiment.
  • 5A is a diagram showing the positions of the X, Y, and Z axes during normal operation
  • FIG. 5B is a diagram showing the positions of the X, Y, and Z axes when control of the X axis is disabled
  • FIG. 5C is a diagram illustrating the positions of the X, Y, and Z axes when control of axes other than the X axis is disabled.
  • vibration A2 occurs on the X-axis 17a.
  • the positions of the Y-axis 17b and the Z-axis 17c fluctuate according to commands, but the position of the X-axis 17a is unstable.
  • the vibration factor estimation device 1 disables the control of the X-axis 17a, as shown in FIG. 5B, the positions of the Y-axis 17b and Z-axis 17c fluctuate according to the command, but the position of the X-axis 17a is unstable.
  • the vibration factor estimating device 1 disables control of axes other than the X-axis 17a
  • the positions of the Y-axis 17b and Z-axis 17c are constant, but the position of the X-axis 17a is unstable, as shown in FIG. 5C. Therefore, even if the control of the X-axis 17a is disabled, the X-axis 17a still vibrates, and the difference between the vibration frequency, amplitude and phase included in the detected values is small.
  • control axes other than the X-axis 17a do not affect the vibration.
  • the vibration factor estimating device 1 estimates that the vibration factor of the X-axis 17a is an external factor such as other processing machines and peripheral devices other than the other servomotors 13 (servomotors 13b, 13c, . . . ) of the machine tool 2.
  • FIG. 6 is a diagram showing a third processing example of the vibration factor estimation device 1 according to this embodiment.
  • 7A is a diagram showing the positions of the X-, Y-, and Z-axes in a normal state
  • FIG. 7B is a diagram showing the positions of the X-, Y-, and Z-axes when control of the X-axis is disabled
  • FIG. 7C is a diagram showing the positions of the X-, Y-, and Z-axes when control of the Y-axis is disabled.
  • vibration A3 is generated on the Y-axis 17b
  • vibration A4 is generated on the X-axis 17a.
  • FIG. 7A during normal operation, the position of the Z-axis 17c fluctuates according to the command, but the positions of the X-axis 17a and the Y-axis 17b are unstable.
  • the vibration factor estimation device 1 disables the control of the X-axis 17a, as shown in FIG. 7B, the position of the Z-axis 17c fluctuates according to the command, but the positions of the X-axis 17a and Y-axis 17b are unstable.
  • the vibration factor estimation device 1 disables the control of the Y-axis 17b, as shown in FIG. 7C, the position of the Y-axis 17b becomes constant, and the positions of the X-axis 17a and the Z-axis 17c fluctuate according to commands.
  • the vibration factor estimation device 1 estimates that the vibration factor of the Y-axis 17b is the Y-axis 17b itself, and the vibration factor of the X-axis 17a is the Y-axis 17b.
  • FIG. 8 is a diagram showing the control state of the X-axis, Y-axis and Z-axis.
  • 9 and 10 are flowcharts showing the processing of the vibration factor estimation device 1 according to this embodiment. 8 to 10, the vibration factor estimating device 1 estimates X-axis vibration factors in a machine tool 2 having X, Y, and Z axes.
  • control state C1 indicates that control of the X, Y, and Z axes is ON;
  • control state C2 indicates that control of the X axis is OFF and control of the Y and Z axes is ON;
  • control state C3 indicates that control of the X axis is ON and control of the Y and Z axes is OFF; is OFF,
  • control state C5 indicates that control of the X and Y axes is ON and control of the Z axis is OFF,
  • control state C6 indicates that control of the X and Z axes is OFF and control of the Y axis is ON, and
  • control state C7 indicates that control of the X and Y axes is OFF and control of the Z axis is ON.
  • step S1 of FIG. 9 the command creation unit 11 creates an operation command including the control states C1 to C5 of the X-, Y-, and Z-axes of the machine tool 2 in order to estimate the X-axis vibration factor.
  • step S2 the motor control unit 12 controls the servomotors 13 (for example, the servomotors 13a, 13b and 13c described above) corresponding to the X, Y and Z axes of the machine tool 2 based on the operation command.
  • the servomotors 13 for example, the servomotors 13a, 13b and 13c described above
  • step S3 the detection unit 14 detects, as detection values of the servomotor 13, a detection value corresponding to the control state C1, a detection value corresponding to the control state C2, and a detection value corresponding to the control state C3.
  • the data storage unit 15 associates and stores the operation commands including the control states C1 to C3 created in step S1 and the detection values detected in step S2. Specifically, the data storage unit 15 associates and stores an operation command including the control state C1 and a detected value corresponding to the control state C1. Similarly, the data storage unit 15 associates and stores an operation command including the control state C2 and a detected value corresponding to the control state C2, and associates and stores an operation command including the control state C3 and a detected value corresponding to the control state C3.
  • step S4 the vibration factor estimator 16 compares the detected value corresponding to the control state C1 and the detected value corresponding to the control state C2. In step S5, the vibration factor estimator 16 determines whether or not the X-axis vibration has been eliminated in the control state C2. If the X-axis vibration is eliminated (YES), the process proceeds to step S6. On the other hand, if the X-axis vibration is not resolved (NO), the process proceeds to step S7.
  • step S6 the vibration factor estimator 16 estimates the X-axis itself as the vibration factor, and terminates the process.
  • step S7 the vibration factor estimator 16 estimates that the vibration factor is an external factor, and proceeds to step S8.
  • step S8 the vibration factor estimator 16 compares the detected value corresponding to the control state C1 and the detected value corresponding to the control state C3.
  • step S9 the vibration factor estimation unit 16 determines whether or not the X-axis vibration has been eliminated. If the X-axis vibration is not resolved (YES), the process proceeds to step S10. On the other hand, if the X-axis vibration has been eliminated (NO), the process proceeds to step S11.
  • step S10 the vibration factor estimation unit 16 estimates that the vibration factor is an external factor other than the control axis (other processing machines, peripheral devices, etc.), and terminates the process.
  • step S11 the detection unit 14 detects a detection value corresponding to the control state C4 and a detection value corresponding to the control state C5 as the detection values of the servomotor 13.
  • the data storage unit 15 associates and stores the operation commands including the control states C4 and C5 created in step S1 and the detection values detected in step S11.
  • step S12 the vibration factor estimator 16 compares the detected value corresponding to the control state C1 and the detected value corresponding to the control state C4.
  • step S13 the vibration factor estimator 16 determines whether or not the X-axis vibration has been eliminated in the control state C4. If the X-axis vibration is eliminated (YES), the process proceeds to step S14. On the other hand, if the X-axis vibration is not resolved (NO), the process proceeds to step S15.
  • step S14 the vibration factor estimator 16 estimates the Y-axis vibration as the vibration factor, and terminates the process.
  • the vibration factor estimator 16 compares the detected value corresponding to the control state C1 and the detected value corresponding to the control state C5.
  • step S16 the vibration factor estimator 16 determines whether or not the X-axis vibration has been eliminated in the control state C4. If the X-axis vibration has been eliminated (YES), the process proceeds to step S17. On the other hand, if the vibration of the X-axis has not been resolved (NO), then the process ends. In step S17, the vibration factor estimator 16 estimates the Z-axis vibration as the vibration factor, and terminates the process.
  • the vibration factor estimation device 1 estimates the X-axis vibration factor in the machine tool 2 having the X-, Y-, and Z-axes. However, after estimating the Y-axis vibration as the vibration factor in step S14, the vibration factor estimation device 1 may further estimate the Y-axis vibration factor using the control state C6 in FIG. 8 and the detected value corresponding to the control state C6. Further, after estimating the Z-axis vibration as the vibration factor in step S17, the vibration factor estimation device 1 may estimate the Z-axis vibration factor using the control state C7 and the detected value corresponding to the control state C7.
  • the vibration factor estimation device 1 includes the command creation unit 11 that creates an operation command including the control state of each control axis of the machine tool 2; the motor control unit 12 that controls the servo motor 13 of the machine tool 2 based on the operation command; and a vibration factor estimation unit 16 for estimating the vibration factors of No. 3.
  • the vibration factor estimating device 1 can extract disturbance components by analyzing the feedback in a state in which the control of the own axis is disconnected, and can easily identify the vibration factor. Therefore, the vibration factor estimation device 1 can reduce man-hours for identifying the vibration factor of the operator. Furthermore, the vibration factor estimating device 1 can improve the machining accuracy of the machine tool 2 by identifying the vibration factor and improving and eliminating the vibration factor.
  • the data storage unit 15 stores the operation command created by the command creation unit 11 and the detection value detected by the detection unit 14 in association with each other. Thereby, the vibration factor estimation device 1 can specify the vibration factor using the detected value corresponding to the operation command.
  • the command creation unit 11 creates an operation command including control enable or control suppression of the servomotor 13 as the control state.
  • the vibration factor estimation device 1 can estimate the vibration factor by switching between control enablement and control suppression (including control disablement) of the servomotor 13 .
  • the command creation unit 11 adjusts the gain of the servomotor 13, sets the torque command of the servomotor 13 to 0, cuts off the power to the servomotor 13, etc. as a control state, thereby creating an operation command including enabling or inhibiting control of the servomotor 13.
  • the vibration factor estimating device 1 can estimate the vibration factor by adjusting the gain of the servomotor 13, adjusting the torque command, or cutting off the power.
  • the vibration factor estimation unit 16 may compare two or more detection values corresponding to different control states, and estimate whether the vibration factor of the servomotor 13 is an internal factor or an external factor based on the difference between the detected values.
  • the vibration factor estimator 16 may extract at least one feature quantity of the vibration frequency, amplitude, and phase included in the detected value, compare two or more feature quantities corresponding to different control states, and estimate whether the vibration factor of the servo motor 13 is an internal factor or an external factor based on the difference between the feature quantities.
  • the vibration factor estimation unit 16 may extract the peak value of the detected value, compare two or more peak values corresponding to different control states, and estimate whether the vibration factor of the servomotor 13 is an internal factor or an external factor based on the difference between the peak values.
  • the vibration factor estimation unit 16 may compare two or more detection values corresponding to different control states other than a certain motor, and estimate whether the vibration factor of the servo motor 13 is caused by another servo motor 13 in the same machine tool 2 based on the difference between the detected values. By executing such processing, the vibration factor estimating section 16 can suitably estimate the vibration factor.
  • the vibration factor estimation device 1 can be realized by hardware, software, or a combination thereof. Also, the control method performed by the vibration factor estimation device 1 can be realized by hardware, software, or a combination thereof.
  • “implemented by software” means implemented by a computer reading and executing a program.
  • Non-transitory computer-readable media include various types of tangible storage media.
  • Examples of non-transitory computer-readable media include magnetic recording media (e.g., hard disk drives), magneto-optical recording media (e.g., magneto-optical disks), CD-ROM (Read Only Memory), CD-R, CD-R/W, semiconductor memory (e.g., mask ROM, PROM (Programmable ROM), EPROM (Erasable PROM), flash ROM, RAM (random access memory) y)).
  • vibration factor estimation device REFERENCE SIGNS LIST 1 vibration factor estimation device 2 machine tool 11 command generation unit 12 motor control unit 13 servo motor 14 detection unit 15 data storage unit 16 vibration factor estimation unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Numerical Control (AREA)

Abstract

Provided is a vibration factor estimating device that can easily identify a vibration factor. This vibration factor estimating device comprises: a command creating unit that creates a motion command that includes control states of each control axis of an industrial machine; a motor control unit that controls a motor of the industrial machine on the basis of the motion command; a detecting unit that detects, as a detection value of the motor, at least one among the position, the speed, and the acceleration of the motor of the industrial machine; and a vibration factor estimating unit that estimates a vibration factor of the motor on the basis of the motion command and the detection value corresponding to the motion command.

Description

振動要因推定装置Vibration factor estimation device
 本発明は、振動要因推定装置に関する。 The present invention relates to a vibration factor estimation device.
 従来、工作機械の軸の振動を測定するシステムが知られている(例えば、特許文献1参照)。工作機械などのような産業機械の送り軸及び主軸等において発生する振動には様々な要因があり、自軸の共振や干渉に因る振動以外にも外乱による振動の可能性もあるため、特定が困難な場合がある。加工精度を向上させるためには、工作機械の振動要因を特定し、振動要因を改善及び排除することが必要とされる。 Conventionally, a system for measuring the vibration of the shaft of a machine tool is known (see Patent Document 1, for example). There are various factors in the vibration that occurs in the feed shaft and spindle of industrial machines such as machine tools, and there is a possibility of vibration due to external disturbance in addition to vibration due to resonance and interference of the own shaft, so it may be difficult to identify. In order to improve the machining accuracy, it is necessary to identify the vibration factors of the machine tool, and improve and eliminate the vibration factors.
特開2020-159752号公報JP 2020-159752 A
 振動要因は、主に(1)自軸の共振や干渉、(2)同一工作機械内の他の軸の振動や周辺機器の振動、ノイズ等の外乱、(3)加工負荷(加工中のみ)が挙げられる。特に、工作機械の制御下において、振動要因(1)と(2)との切り分けは、困難な場合がある。また、振動要因によっては、工作機械のモータの制御によって抑えることができない場合もあり、産業機械の振動要因を容易に特定することが求められている。  Vibration factors mainly include (1) resonance and interference of the own axis, (2) vibration of other axes within the same machine tool, vibration of peripheral equipment, disturbances such as noise, and (3) machining load (only during machining). In particular, it may be difficult to separate the vibration factors (1) and (2) under the control of the machine tool. Further, some vibration factors cannot be suppressed by controlling the motor of the machine tool, and it is required to easily identify the vibration factors of industrial machines.
 本開示の一態様に係る振動要因推定装置は、産業機械の各制御軸の制御状態を含む動作指令を作成する指令作成部と、前記動作指令に基づいて前記産業機械のモータを制御するモータ制御部と、前記産業機械のモータの位置、速度及び加速度のうちの少なくとも1つを、前記モータの検出値として検出する検出部と、前記動作指令及び前記動作指令に対応する前記検出値に基づいて、前記モータの振動要因を推定する振動要因推定部と、を備える。 A vibration factor estimating device according to an aspect of the present disclosure includes: a command creation unit that creates an operation command including a control state of each control axis of an industrial machine; a motor control unit that controls a motor of the industrial machine based on the operation command; a detection unit that detects at least one of position, speed, and acceleration of the motor of the industrial machine as a detected value of the motor;
 本発明によれば、振動要因を容易に特定することができる。 According to the present invention, it is possible to easily identify the vibration factor.
本実施形態に係る振動要因推定装置の概要を示す図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which shows the outline|summary of the vibration factor estimation apparatus which concerns on this embodiment. 本実施形態に係る振動要因推定装置の第1処理例を示す図である。It is a figure which shows the 1st example of a process of the vibration factor estimation apparatus which concerns on this embodiment. 通常時のX軸、Y軸及びZ軸の位置を示す図である。FIG. 4 is a diagram showing the positions of the X-axis, Y-axis, and Z-axis in a normal state; X軸の制御を無効にした時のX軸、Y軸及びZ軸の位置を示す図である。FIG. 4 is a diagram showing the positions of the X-, Y-, and Z-axes when control of the X-axis is disabled; 本実施形態に係る振動要因推定装置の第2処理例を示す図である。It is a figure which shows the 2nd example of a process of the vibration factor estimation apparatus which concerns on this embodiment. 通常時のX軸、Y軸及びZ軸の位置を示す図である。FIG. 4 is a diagram showing the positions of the X-axis, Y-axis, and Z-axis in a normal state; X軸の制御を無効にした時のX軸、Y軸及びZ軸の位置を示す図である。FIG. 4 is a diagram showing the positions of the X-, Y-, and Z-axes when control of the X-axis is disabled; X軸以外の制御を無効にした時のX軸、Y軸及びZ軸の位置を示す図である。FIG. 4 is a diagram showing the positions of the X-axis, Y-axis, and Z-axis when control of axes other than the X-axis is disabled; 本実施形態に係る振動要因推定装置の第3処理例を示す図である。It is a figure which shows the example of the 3rd process of the vibration factor estimation apparatus which concerns on this embodiment. 通常時のX軸、Y軸及びZ軸の位置を示す図である。FIG. 4 is a diagram showing the positions of the X-axis, Y-axis, and Z-axis in a normal state; X軸の制御を無効にした時のX軸、Y軸及びZ軸の位置を示す図である。FIG. 4 is a diagram showing the positions of the X-, Y-, and Z-axes when control of the X-axis is disabled; X軸以外の制御を無効にした時のX軸、Y軸及びZ軸の位置を示す図である。FIG. 4 is a diagram showing the positions of the X-axis, Y-axis, and Z-axis when control of axes other than the X-axis is disabled; X軸、Y軸及びZ軸の制御状態を示す図である。FIG. 4 is a diagram showing control states of the X-axis, the Y-axis, and the Z-axis; 本実施形態に係る振動要因推定装置の処理を示すフローチャートである。It is a flow chart which shows processing of a vibration factor estimating device concerning this embodiment. 本実施形態に係る振動要因推定装置の処理を示すフローチャートである。It is a flow chart which shows processing of a vibration factor estimating device concerning this embodiment.
 以下、本発明の実施形態の一例について説明する。図1は、本実施形態に係る振動要因推定装置1の概要を示す図である。振動要因推定装置1は、例えば、図1に示すように、工作機械2と接続された数値制御装置であってもよく、又は数値制御装置と接続されたコンピュータ装置であってもよい。 An example of an embodiment of the present invention will be described below. FIG. 1 is a diagram showing an overview of a vibration factor estimation device 1 according to this embodiment. The vibration factor estimating device 1 may be, for example, a numerical control device connected to the machine tool 2 as shown in FIG. 1, or may be a computer device connected to the numerical control device.
 すなわち、振動要因推定装置1は、CPU(Central Processing Unit)等のプロセッサと、OS(Operating System)やアプリケーションプログラム等を格納するROM(Read Only Memory)、RAM(Random Access Memory)、その他の各種情報を格納するハードディスクドライブやSSD(Solid State Drive)等の記憶装置と、を備える。 That is, the vibration factor estimation device 1 includes a processor such as a CPU (Central Processing Unit), a ROM (Read Only Memory) that stores an OS (Operating System) and application programs, a RAM (Random Access Memory) that stores various information, and a hard disk drive or SSD (Solid State Drive) that stores various other information. ) and the like.
 工作機械2は、ワークに対して加工を行うための装置であり、振動要因推定装置1と直接的又は間接的に接続される。工作機械2は、工具、主軸及び送り軸等の加工を行うための一般的な構成を有する。 The machine tool 2 is a device for machining a workpiece, and is directly or indirectly connected to the vibration factor estimation device 1. The machine tool 2 has a general configuration for machining tools, spindles, feed axes, and the like.
 振動要因推定装置1は、指令作成部11と、モータ制御部12と、データ記憶部15と、振動要因推定部16と、を備える。また、検出部14は、振動要因推定装置1に内蔵されてもよく、工作機械2に含まれてもよく、別の装置に含まれてもよい。また、本実施形態では、振動要因推定装置1は、サーボモータ13の振動要因を推定するが、振動要因推定装置1は、サーボモータ及び検出部を有する他の産業機械の振動要因を推定することができる。 The vibration factor estimation device 1 includes a command generation unit 11, a motor control unit 12, a data storage unit 15, and a vibration factor estimation unit 16. Further, the detection unit 14 may be incorporated in the vibration factor estimation device 1, may be included in the machine tool 2, or may be included in another device. Further, in the present embodiment, the vibration factor estimating device 1 estimates the vibration factor of the servomotor 13, but the vibration factor estimating device 1 can estimate the vibration factor of other industrial machines having servomotors and detection units.
 指令作成部11は、工作機械2の振動要因を推定するために、工作機械2の各制御軸(例えば、後述の主軸、X軸、Y軸及びZ軸等)の制御状態を含む動作指令を作成する。また、指令作成部11は、制御状態として、サーボモータ13の制御有効又は制御抑制を含む動作指令を作成する。 In order to estimate the vibration factor of the machine tool 2, the command creation unit 11 creates an operation command including the control state of each control axis of the machine tool 2 (for example, the main axis, X-axis, Y-axis, Z-axis, etc., which will be described later). In addition, the command creation unit 11 creates an operation command including control enable or control suppression of the servomotor 13 as the control state.
 モータ制御部12は、動作指令に基づいて工作機械2のサーボモータ13を制御する。また、モータ制御部12は、位置、速度及び加速度のうちの少なくとも1つを検出部14によって検出し、検出部14からのフィードバック値に基づいて電圧指令値を決定する。モータ制御部12は、パルス幅変調(PWM: Pulse Width Modulation)方式によって、変調した電圧を印加することによって、モータの駆動を制御する。 The motor control unit 12 controls the servomotor 13 of the machine tool 2 based on the operation command. Also, the motor control unit 12 detects at least one of position, speed, and acceleration by the detection unit 14 and determines the voltage command value based on the feedback value from the detection unit 14 . The motor control unit 12 controls driving of the motor by applying a voltage modulated by a pulse width modulation (PWM) method.
 サーボモータ13は、工作機械2の主軸、X軸、Y軸及びZ軸等を駆動するためのモータである。サーボモータ13は、モータ制御部12によって、回転量、速度、トルク等が駆動制御されている。サーボモータ13は、例えば、X軸を駆動するサーボモータ13a、Y軸を駆動するサーボモータ13b、Z軸を駆動するサーボモータ13c、主軸を駆動するサーボモータ13d・・・を備える。 The servomotor 13 is a motor for driving the main shaft, X-axis, Y-axis, Z-axis, etc. of the machine tool 2 . The amount of rotation, speed, torque, etc. of the servomotor 13 are controlled by the motor control unit 12 . The servomotor 13 includes, for example, a servomotor 13a that drives the X axis, a servomotor 13b that drives the Y axis, a servomotor 13c that drives the Z axis, and a servomotor 13d that drives the main axis.
 検出部14は、エンコーダを含み、工作機械2のサーボモータ13の位置、速度及び加速度のうちの少なくとも1つを、サーボモータ13の検出値として検出する。検出部14は、例えば、サーボモータ13aの検出値を検出する検出部14a、サーボモータ13bの検出値を検出する検出部14b、サーボモータ13cの検出値を検出する検出部14c、サーボモータ13dの検出値を検出する検出部14d・・・を備える。そして、検出部14は、検出値をフィードバック値としてモータ制御部12へ出力する。 The detection unit 14 includes an encoder, and detects at least one of the position, speed, and acceleration of the servomotor 13 of the machine tool 2 as a detected value of the servomotor 13 . The detection unit 14 includes, for example, a detection unit 14a that detects the detection value of the servomotor 13a, a detection unit 14b that detects the detection value of the servomotor 13b, a detection unit 14c that detects the detection value of the servomotor 13c, and a detection unit 14d that detects the detection value of the servomotor 13d. Then, the detection unit 14 outputs the detection value to the motor control unit 12 as a feedback value.
 データ記憶部15は、指令作成部11によって作成された動作指令と、検出部14によって検出された検出値とを対応付けて記憶する。 The data storage unit 15 stores the operation command created by the command creation unit 11 and the detection value detected by the detection unit 14 in association with each other.
 振動要因推定部16は、動作指令及び動作指令に対応する検出値に基づいて、サーボモータ13の振動要因を推定する。 The vibration factor estimator 16 estimates the vibration factor of the servomotor 13 based on the motion command and the detected value corresponding to the motion command.
 また、指令作成部11は、制御状態として、サーボモータ13のゲインを調整すること、サーボモータ13のトルク指令を0にすること、又はサーボモータ13への動力を遮断すること等により、サーボモータ13の制御有効又は制御抑制を含む動作指令を作成する。ここで、サーボモータ13の制御抑制とは、例えば、ゲインを完全に無効にする場合だけではなく、ゲインを非常に小さくした場合等を含む。 In addition, the command creation unit 11 adjusts the gain of the servomotor 13, sets the torque command of the servomotor 13 to 0, cuts off the power to the servomotor 13, etc. as a control state, thereby creating an operation command including enabling or inhibiting control of the servomotor 13. Here, the suppression of control of the servomotor 13 includes, for example, not only the case of completely invalidating the gain but also the case of making the gain extremely small.
 また、振動要因推定部16は、異なる制御状態に対応する2以上の検出値を比較し、検出値を比較した差に基づいてあるサーボモータ13の振動要因が、あるサーボモータ13が駆動する軸の共振や干渉などの内部要因、又は他のサーボモータ13の軸の振動や周辺機器の振動、ノイズ等の外部要因であるかを推定してもよい。ここで、本明細書において、内部要因とは、あるサーボモータ13(例えば、サーボモータ13a)が駆動する軸にとって、自軸(例えば、サーボモータ13a)において発生する共振や干渉等を意味する。外部要因とは、あるサーボモータ13(例えば、サーボモータ13a)が駆動する軸にとって、他のサーボモータ13(例えば、サーボモータ13b、サーボモータ13c・・・)において発生する振動、周辺機器の振動及びノイズ等を意味する。 In addition, the vibration factor estimation unit 16 may compare two or more detection values corresponding to different control states, and estimate whether the vibration factor of the servomotor 13 is an internal factor such as resonance or interference of the shaft driven by a certain servomotor 13 or an external factor such as vibration of the shaft of another servomotor 13, vibration of peripheral equipment, or noise based on the difference between the detected values. Here, in this specification, the internal factor means resonance, interference, or the like that occurs in the own axis (for example, the servomotor 13a) for the axis driven by a certain servomotor 13 (for example, the servomotor 13a). The external factors mean vibrations generated in other servomotors 13 (eg, servomotors 13b, 13c, .
 例えば、振動要因推定部16は、異なる制御状態に対応する2つの検出値を比較する。振動要因推定部16は、検出値を比較した差が、所定の閾値以上であり、かつ検出値及び差の正負から、制御有効状態における振動に対して制御無効状態の振動が小さくなると判断される場合、振動が解消されたと判断する。これにより、振動要因推定部16は、振動要因が内部要因であると推定する。また、振動要因推定部16は、検出値を比較した差が、所定の閾値未満、又は検出値及び差の正負から、制御有効状態の振動に対して制御無効状態の振動が大きくなると判断される場合、振動が解消されていないと判断する。これにより、振動要因推定部16は、振動要因が外部要因であると推定する。 For example, the vibration factor estimation unit 16 compares two detection values corresponding to different control states. The vibration factor estimator 16 determines that the vibration has been eliminated when the difference obtained by comparing the detected values is equal to or greater than a predetermined threshold value, and when it is determined from the sign of the detected value and the difference that the vibration in the control disabled state is smaller than the vibration in the control enabled state. Thereby, the vibration factor estimator 16 estimates that the vibration factor is an internal factor. In addition, the vibration factor estimating unit 16 determines that the vibration is not eliminated when the difference between the detected values is less than a predetermined threshold value, or when it is determined from the sign of the detected value and the difference that the vibration in the control disabled state is greater than the vibration in the control enabled state. Thereby, the vibration factor estimator 16 estimates that the vibration factor is an external factor.
 また、振動要因推定部16は、検出値に含まれる振動周波数、振幅及び位相の少なくとも1つの特徴量を抽出し、異なる制御状態に対応する2以上の特徴量を比較し、特徴量を比較した差に基づいてあるサーボモータ13の振動要因が内部要因又は外部要因であるかを推定してもよい。 In addition, the vibration factor estimator 16 may extract at least one feature quantity of the vibration frequency, amplitude, and phase included in the detected value, compare two or more feature quantities corresponding to different control states, and estimate whether the vibration factor of the servo motor 13 is an internal factor or an external factor based on the difference between the feature quantities.
 また、振動要因推定部16は、検出値のピーク値を抽出し、異なる制御状態に対応する2以上のピーク値を比較し、ピーク値を比較した差に基づいてあるサーボモータ13の振動要因が内部要因又は外部要因であるかを推定してもよい。 In addition, the vibration factor estimation unit 16 may extract the peak value of the detected value, compare two or more peak values corresponding to different control states, and estimate whether the vibration factor of the servomotor 13 is an internal factor or an external factor based on the difference between the peak values.
 また、検出部14が、複数のサーボモータ13(サーボモータ13a、サーボモータ13b、サーボモータ13c・・・)の検出値を検出すると、振動要因推定部16は、あるモータ以外の異なる制御状態に対応する2以上の検出値を比較し、検出値を比較した差に基づいてあるサーボモータ13の振動要因が同一の工作機械2内の他のサーボモータ13要因であるかを推定してもよい。 Also, when the detection unit 14 detects detection values of a plurality of servo motors 13 (servo motors 13 a, servo motors 13 b, servo motors 13 c, .
 図2は、本実施形態に係る振動要因推定装置1の第1処理例を示す図である。図3Aは、通常時のX軸、Y軸及びZ軸の位置を示す図であり、図3Bは、X軸の制御を無効にした時のX軸、Y軸及びZ軸の位置を示す図である。 FIG. 2 is a diagram showing a first processing example of the vibration factor estimation device 1 according to this embodiment. 3A is a diagram showing the positions of the X-, Y-, and Z-axes in a normal state, and FIG. 3B is a diagram showing the positions of the X-, Y-, and Z-axes when control of the X-axis is disabled.
 図2に示すように、振動要因推定装置1は、工作機械2のX軸17aを駆動するサーボモータ13a、Y軸17bを駆動するサーボモータ13b、Z軸17cを駆動するサーボモータ13c、及び主軸を駆動するサーボモータ13dを制御する。また、検出部14aは、サーボモータ13aの検出値を検出し、検出部14bは、サーボモータ13bの検出値を検出し、検出部14cは、サーボモータ13cの検出値を検出し、検出部14dは、サーボモータ13dの検出値を検出する。 As shown in FIG. 2, the vibration factor estimation device 1 controls the servomotor 13a that drives the X-axis 17a of the machine tool 2, the servomotor 13b that drives the Y-axis 17b, the servomotor 13c that drives the Z-axis 17c, and the servomotor 13d that drives the main shaft. The detection unit 14a detects the detection value of the servo motor 13a, the detection unit 14b detects the detection value of the servo motor 13b, the detection unit 14c detects the detection value of the servo motor 13c, and the detection unit 14d detects the detection value of the servo motor 13d.
 図2に示す処理例では、X軸17aにおいて振動A1が発生している。図3Aに示すように、Y軸17b及びZ軸17cの位置は、指令に従って変動しているが、X軸17aの位置は、指令に従わず不安定である。そして、振動要因推定装置1によってX軸17aの制御を無効化すると、図3Bに示すように、X軸17aの位置は、一定となり、X軸17aの振動が発生しない。よって、振動要因推定装置1は、X軸17aの振動要因が、工作機械2の他のサーボモータ13(サーボモータ13b、サーボモータ13c・・・)又は他の加工機及び周辺機器等のような外部要因ではなく、X軸17aの共振、干渉等のようなX軸17a自体(内部要因)であると推定する。 In the processing example shown in FIG. 2, vibration A1 occurs on the X-axis 17a. As shown in FIG. 3A, the positions of the Y-axis 17b and Z-axis 17c fluctuate according to the command, but the position of the X-axis 17a does not follow the command and is unstable. When the vibration factor estimating device 1 disables the control of the X-axis 17a, the position of the X-axis 17a becomes constant and no vibration of the X-axis 17a occurs, as shown in FIG. 3B. Therefore, the vibration factor estimating device 1 estimates that the vibration factor of the X-axis 17a is not an external factor such as other servo motors 13 (servo motor 13b, servo motor 13c, .
 図4は、本実施形態に係る振動要因推定装置1の第2処理例を示す図である。図5Aは、通常時のX軸、Y軸及びZ軸の位置を示す図であり、図5Bは、X軸の制御を無効にした時のX軸、Y軸及びZ軸の位置を示す図であり、図5Cは、X軸以外の制御を無効にした時のX軸、Y軸及びZ軸の位置を示す図である。 FIG. 4 is a diagram showing a second processing example of the vibration factor estimation device 1 according to this embodiment. 5A is a diagram showing the positions of the X, Y, and Z axes during normal operation, FIG. 5B is a diagram showing the positions of the X, Y, and Z axes when control of the X axis is disabled, and FIG. 5C is a diagram illustrating the positions of the X, Y, and Z axes when control of axes other than the X axis is disabled.
 図4に示す処理例では、X軸17aにおいて振動A2が発生している。図5Aに示すように、通常時において、Y軸17b及びZ軸17cの位置は、指令に従って変動しているが、X軸17aの位置は、不安定である。振動要因推定装置1によってX軸17aの制御を無効化すると、図5Bに示すように、Y軸17b及びZ軸17cの位置は、指令に従って変動しているが、X軸17aの位置は、不安定である。 In the example of processing shown in FIG. 4, vibration A2 occurs on the X-axis 17a. As shown in FIG. 5A, normally, the positions of the Y-axis 17b and the Z-axis 17c fluctuate according to commands, but the position of the X-axis 17a is unstable. When the vibration factor estimation device 1 disables the control of the X-axis 17a, as shown in FIG. 5B, the positions of the Y-axis 17b and Z-axis 17c fluctuate according to the command, but the position of the X-axis 17a is unstable.
 更に、振動要因推定装置1によってX軸17a以外の制御を無効化すると、図5Cに示すように、Y軸17b及びZ軸17cの位置は、一定となるが、X軸17aの位置は、不安定である。よって、X軸17aの制御を無効化してもX軸17aは、振動しており、検出値に含まれる振動周波数、振幅及び位相を比較しても差が小さい。更に、X軸17a以外の制御軸は、振動に影響を与えていない。したがって、振動要因推定装置1は、X軸17aの振動要因が、工作機械2の他のサーボモータ13(サーボモータ13b、サーボモータ13c・・・)以外の他の加工機及び周辺機器等のような外部要因であると推定する。 Furthermore, when the vibration factor estimating device 1 disables control of axes other than the X-axis 17a, the positions of the Y-axis 17b and Z-axis 17c are constant, but the position of the X-axis 17a is unstable, as shown in FIG. 5C. Therefore, even if the control of the X-axis 17a is disabled, the X-axis 17a still vibrates, and the difference between the vibration frequency, amplitude and phase included in the detected values is small. Furthermore, control axes other than the X-axis 17a do not affect the vibration. Therefore, the vibration factor estimating device 1 estimates that the vibration factor of the X-axis 17a is an external factor such as other processing machines and peripheral devices other than the other servomotors 13 ( servomotors 13b, 13c, . . . ) of the machine tool 2.
 図6は、本実施形態に係る振動要因推定装置1の第3処理例を示す図である。図7Aは、通常時のX軸、Y軸及びZ軸の位置を示す図であり、図7Bは、X軸の制御を無効にした時のX軸、Y軸及びZ軸の位置を示す図であり、図7Cは、Y軸の制御を無効にした時のX軸、Y軸及びZ軸の位置を示す図である。 FIG. 6 is a diagram showing a third processing example of the vibration factor estimation device 1 according to this embodiment. 7A is a diagram showing the positions of the X-, Y-, and Z-axes in a normal state, FIG. 7B is a diagram showing the positions of the X-, Y-, and Z-axes when control of the X-axis is disabled, and FIG. 7C is a diagram showing the positions of the X-, Y-, and Z-axes when control of the Y-axis is disabled.
 図6に示す処理例では、Y軸17bにおいて振動A3が発生しており、X軸17aにおいて振動A4が発生している。図7Aに示すように、通常時において、Z軸17cの位置は、指令に従って変動しているが、X軸17a及びY軸17bの位置は、不安定である。 In the processing example shown in FIG. 6, vibration A3 is generated on the Y-axis 17b, and vibration A4 is generated on the X-axis 17a. As shown in FIG. 7A, during normal operation, the position of the Z-axis 17c fluctuates according to the command, but the positions of the X-axis 17a and the Y-axis 17b are unstable.
 振動要因推定装置1によってX軸17aの制御を無効化すると、図7Bに示すように、Z軸17cの位置は、指令に従って変動しているが、X軸17a及びY軸17bの位置は、不安定である。振動要因推定装置1によってY軸17bの制御を無効化すると、図7Cに示すように、Y軸17bの位置は、一定となり、X軸17a及びZ軸17cの位置は、指令に従って変動している。 When the vibration factor estimation device 1 disables the control of the X-axis 17a, as shown in FIG. 7B, the position of the Z-axis 17c fluctuates according to the command, but the positions of the X-axis 17a and Y-axis 17b are unstable. When the vibration factor estimation device 1 disables the control of the Y-axis 17b, as shown in FIG. 7C, the position of the Y-axis 17b becomes constant, and the positions of the X-axis 17a and the Z-axis 17c fluctuate according to commands.
 よって、X軸17aの制御を無効化してもX軸17aは、振動しており、検出値を比較しても差が小さい。また、Y軸17bの制御を無効化すると、Y軸17bの振動が発生せず、検出値を比較すると差が大きく、更に、X軸の振動も発生しない。したがって、振動要因推定装置1は、Y軸17bの振動要因が、Y軸17b自体であり、X軸17aの振動要因が、Y軸17bであると推定する。 Therefore, even if the control of the X-axis 17a is disabled, the X-axis 17a vibrates, and the difference between the detected values is small. Further, when the control of the Y-axis 17b is invalidated, the Y-axis 17b does not vibrate, the difference is large when the detected values are compared, and furthermore, the X-axis does not vibrate. Therefore, the vibration factor estimation device 1 estimates that the vibration factor of the Y-axis 17b is the Y-axis 17b itself, and the vibration factor of the X-axis 17a is the Y-axis 17b.
 図8は、X軸、Y軸及びZ軸の制御状態を示す図である。図9及び図10は、本実施形態に係る振動要因推定装置1の処理を示すフローチャートである。図8から図10に示す説明において、振動要因推定装置1は、X軸、Y軸及びZ軸を有する工作機械2においてX軸の振動要因を推定する。 FIG. 8 is a diagram showing the control state of the X-axis, Y-axis and Z-axis. 9 and 10 are flowcharts showing the processing of the vibration factor estimation device 1 according to this embodiment. 8 to 10, the vibration factor estimating device 1 estimates X-axis vibration factors in a machine tool 2 having X, Y, and Z axes.
 図8に示すように、制御状態C1は、X軸、Y軸及びZ軸の制御がON状態であることを示し、制御状態C2は、X軸の制御がOFF状態であり、Y軸及びZ軸の制御がON状態であることを示し、制御状態C3は、X軸の制御がON状態であり、Y軸及びZ軸の制御がOFF状態であることを示し、制御状態C4は、X軸及びZ軸の制御がON状態であり、Y軸の制御がOFF状態であることを示し、制御状態C5は、X軸及びY軸の制御がON状態であり、Z軸の制御がOFF状態であることを示し、制御状態C6は、X軸及びZ軸の制御がOFF状態であり、Y軸の制御がON状態であることを示し、制御状態C7は、X軸及びY軸の制御がOFF状態であり、Z軸の制御がON状態であることを示す。 As shown in FIG. 8, control state C1 indicates that control of the X, Y, and Z axes is ON; control state C2 indicates that control of the X axis is OFF and control of the Y and Z axes is ON; control state C3 indicates that control of the X axis is ON and control of the Y and Z axes is OFF; is OFF, control state C5 indicates that control of the X and Y axes is ON and control of the Z axis is OFF, control state C6 indicates that control of the X and Z axes is OFF and control of the Y axis is ON, and control state C7 indicates that control of the X and Y axes is OFF and control of the Z axis is ON.
 図9のステップS1において、指令作成部11は、X軸の振動要因を推定するために、工作機械2のX軸、Y軸及びZ軸の制御状態C1からC5を含む動作指令を作成する。 In step S1 of FIG. 9, the command creation unit 11 creates an operation command including the control states C1 to C5 of the X-, Y-, and Z-axes of the machine tool 2 in order to estimate the X-axis vibration factor.
 ステップS2において、モータ制御部12は、動作指令に基づいて工作機械2のX軸、Y軸及びZ軸に対応するサーボモータ13(例えば、前述のサーボモータ13a、13b及び13c)を制御する。 In step S2, the motor control unit 12 controls the servomotors 13 (for example, the servomotors 13a, 13b and 13c described above) corresponding to the X, Y and Z axes of the machine tool 2 based on the operation command.
 ステップS3において、検出部14は、サーボモータ13の検出値として、制御状態C1に対応する検出値、制御状態C2に対応する検出値、及び制御状態C3に対応する検出値を検出する。データ記憶部15は、ステップS1において作成された制御状態C1からC3を含む動作指令と、ステップS2において検出された検出値とを対応付けて記憶する。
具体的には、データ記憶部15は、制御状態C1を含む動作指令と、制御状態C1に対応する検出値とを対応付けて記憶する。同様に、データ記憶部15は、制御状態C2を含む動作指令と、制御状態C2に対応する検出値とを対応付けて記憶し、制御状態C3を含む動作指令と、制御状態C3に対応する検出値とを対応付けて記憶する。
In step S3, the detection unit 14 detects, as detection values of the servomotor 13, a detection value corresponding to the control state C1, a detection value corresponding to the control state C2, and a detection value corresponding to the control state C3. The data storage unit 15 associates and stores the operation commands including the control states C1 to C3 created in step S1 and the detection values detected in step S2.
Specifically, the data storage unit 15 associates and stores an operation command including the control state C1 and a detected value corresponding to the control state C1. Similarly, the data storage unit 15 associates and stores an operation command including the control state C2 and a detected value corresponding to the control state C2, and associates and stores an operation command including the control state C3 and a detected value corresponding to the control state C3.
 ステップS4において、振動要因推定部16は、制御状態C1に対応する検出値と制御状態C2に対応する検出値とを比較する。
 ステップS5において、振動要因推定部16は、制御状態C2においてX軸の振動が解消したか否かを判定する。X軸の振動が解消した場合(YES)、処理は、ステップS6へ移る。一方、X軸の振動が解消しない場合(NO)、処理は、ステップS7へ移る。
In step S4, the vibration factor estimator 16 compares the detected value corresponding to the control state C1 and the detected value corresponding to the control state C2.
In step S5, the vibration factor estimator 16 determines whether or not the X-axis vibration has been eliminated in the control state C2. If the X-axis vibration is eliminated (YES), the process proceeds to step S6. On the other hand, if the X-axis vibration is not resolved (NO), the process proceeds to step S7.
 ステップS6において、振動要因推定部16は、X軸自体を振動要因として推定し、処理を終了する。 In step S6, the vibration factor estimator 16 estimates the X-axis itself as the vibration factor, and terminates the process.
 ステップS7において、振動要因推定部16は、振動要因が外部要因であると推定し、ステップS8へ移る。
 ステップS8において、振動要因推定部16は、制御状態C1に対応する検出値と制御状態C3に対応する検出値とを比較する。
In step S7, the vibration factor estimator 16 estimates that the vibration factor is an external factor, and proceeds to step S8.
In step S8, the vibration factor estimator 16 compares the detected value corresponding to the control state C1 and the detected value corresponding to the control state C3.
 ステップS9において、振動要因推定部16は、X軸の振動が解消したか否かを判定する。X軸の振動が解消しない場合(YES)、処理は、ステップS10へ移る。一方、X軸の振動が解消した場合(NO)、処理は、ステップS11へ移る。 In step S9, the vibration factor estimation unit 16 determines whether or not the X-axis vibration has been eliminated. If the X-axis vibration is not resolved (YES), the process proceeds to step S10. On the other hand, if the X-axis vibration has been eliminated (NO), the process proceeds to step S11.
 ステップS10において、振動要因推定部16は、振動要因が、制御軸以外の外部要因(他の加工機及び周辺機器等)であると推定し、処理を終了する。 In step S10, the vibration factor estimation unit 16 estimates that the vibration factor is an external factor other than the control axis (other processing machines, peripheral devices, etc.), and terminates the process.
 ステップS11において、検出部14は、サーボモータ13の検出値として、制御状態C4に対応する検出値、及び制御状態C5に対応する検出値検出する。データ記憶部15は、ステップS1において作成された制御状態C4及びC5を含む動作指令と、ステップS11において検出された検出値とを対応付けて記憶する。 In step S11, the detection unit 14 detects a detection value corresponding to the control state C4 and a detection value corresponding to the control state C5 as the detection values of the servomotor 13. The data storage unit 15 associates and stores the operation commands including the control states C4 and C5 created in step S1 and the detection values detected in step S11.
 ステップS12において、振動要因推定部16は、制御状態C1に対応する検出値と制御状態C4に対応する検出値とを比較する。
 ステップS13において、振動要因推定部16は、制御状態C4においてX軸の振動が解消したか否かを判定する。X軸の振動が解消した場合(YES)、処理は、ステップS14へ移る。一方、X軸の振動が解消しない場合(NO)、処理は、ステップS15へ移る。
In step S12, the vibration factor estimator 16 compares the detected value corresponding to the control state C1 and the detected value corresponding to the control state C4.
In step S13, the vibration factor estimator 16 determines whether or not the X-axis vibration has been eliminated in the control state C4. If the X-axis vibration is eliminated (YES), the process proceeds to step S14. On the other hand, if the X-axis vibration is not resolved (NO), the process proceeds to step S15.
 ステップS14において、振動要因推定部16は、Y軸の振動を振動要因として推定し、処理を終了する。
 ステップS15において、振動要因推定部16は、制御状態C1に対応する検出値と制御状態C5に対応する検出値とを比較する。
In step S14, the vibration factor estimator 16 estimates the Y-axis vibration as the vibration factor, and terminates the process.
In step S15, the vibration factor estimator 16 compares the detected value corresponding to the control state C1 and the detected value corresponding to the control state C5.
 ステップS16において、振動要因推定部16は、制御状態C4においてX軸の振動が解消したか否かを判定する。X軸の振動が解消した場合(YES)、処理は、ステップS17へ移る。一方、X軸の振動が解消しない場合(NO)、処理は、その後終了する。
 ステップS17において、振動要因推定部16は、Z軸の振動を振動要因として推定し、処理を終了する。
In step S16, the vibration factor estimator 16 determines whether or not the X-axis vibration has been eliminated in the control state C4. If the X-axis vibration has been eliminated (YES), the process proceeds to step S17. On the other hand, if the vibration of the X-axis has not been resolved (NO), then the process ends.
In step S17, the vibration factor estimator 16 estimates the Z-axis vibration as the vibration factor, and terminates the process.
 上述したフローチャートでは、振動要因推定装置1は、X軸、Y軸及びZ軸を有する工作機械2においてX軸の振動要因を推定した。しかし、振動要因推定装置1は、更に、ステップS14においてY軸の振動を振動要因として推定した後に、図8の制御状態C6及び制御状態C6に対応する検出値を用いて、Y軸の振動要因を推定してもよい。更に、振動要因推定装置1は、ステップS17においてZ軸の振動を振動要因として推定した後に、制御状態C7及び制御状態C7に対応する検出値を用いて、Z軸の振動要因を推定してもよい。 In the flowchart described above, the vibration factor estimation device 1 estimates the X-axis vibration factor in the machine tool 2 having the X-, Y-, and Z-axes. However, after estimating the Y-axis vibration as the vibration factor in step S14, the vibration factor estimation device 1 may further estimate the Y-axis vibration factor using the control state C6 in FIG. 8 and the detected value corresponding to the control state C6. Further, after estimating the Z-axis vibration as the vibration factor in step S17, the vibration factor estimation device 1 may estimate the Z-axis vibration factor using the control state C7 and the detected value corresponding to the control state C7.
 以上説明したように、本実施形態によれば、振動要因推定装置1は、工作機械2の各制御軸の制御状態を含む動作指令を作成する指令作成部11と、動作指令に基づいて工作機械2のサーボモータ13を制御するモータ制御部12と、工作機械2のサーボモータ13の位置、速度及び加速度のうちの少なくとも1つを、サーボモータ13の検出値として検出する検出部14と、動作指令及び動作指令に対応する検出値に基づいて、サーボモータ13の振動要因を推定する振動要因推定部16と、を備える。 As described above, according to the present embodiment, the vibration factor estimation device 1 includes the command creation unit 11 that creates an operation command including the control state of each control axis of the machine tool 2; the motor control unit 12 that controls the servo motor 13 of the machine tool 2 based on the operation command; and a vibration factor estimation unit 16 for estimating the vibration factors of No. 3.
 これにより、振動要因推定装置1は、自軸の制御を切り離した状態におけるフィードバックを解析することによって外乱成分を抽出することができ、振動要因の特定を容易にすることができる。したがって、振動要因推定装置1は、作業者の振動要因の特定に関する工数を削減することができる。更に、振動要因推定装置1は、振動要因を特定し、振動要因を改善及び排除することによって、工作機械2の加工精度向上を図ることができる。 As a result, the vibration factor estimating device 1 can extract disturbance components by analyzing the feedback in a state in which the control of the own axis is disconnected, and can easily identify the vibration factor. Therefore, the vibration factor estimation device 1 can reduce man-hours for identifying the vibration factor of the operator. Furthermore, the vibration factor estimating device 1 can improve the machining accuracy of the machine tool 2 by identifying the vibration factor and improving and eliminating the vibration factor.
 また、データ記憶部15は、指令作成部11によって作成された動作指令と、検出部14によって検出された検出値とを対応付けて記憶する。これにより、振動要因推定装置1は、動作指令に対応する検出値を用いて振動要因を特定することができる。 In addition, the data storage unit 15 stores the operation command created by the command creation unit 11 and the detection value detected by the detection unit 14 in association with each other. Thereby, the vibration factor estimation device 1 can specify the vibration factor using the detected value corresponding to the operation command.
 また、指令作成部11は、制御状態として、サーボモータ13の制御有効又は制御抑制を含む動作指令を作成する。これにより、振動要因推定装置1は、サーボモータ13の制御有効又は制御抑制(制御無効を含む)を切り替えることによって、振動要因を推定することができる。 In addition, the command creation unit 11 creates an operation command including control enable or control suppression of the servomotor 13 as the control state. As a result, the vibration factor estimation device 1 can estimate the vibration factor by switching between control enablement and control suppression (including control disablement) of the servomotor 13 .
 また、指令作成部11は、制御状態として、サーボモータ13のゲインを調整すること、サーボモータ13のトルク指令を0にすること、又はサーボモータ13への動力を遮断すること等により、サーボモータ13の制御有効又は制御抑制を含む動作指令を作成する。これにより、振動要因推定装置1は、サーボモータ13のゲインの調整、トルク指令の調整又は動力の遮断によって、振動要因を推定することができる。 In addition, the command creation unit 11 adjusts the gain of the servomotor 13, sets the torque command of the servomotor 13 to 0, cuts off the power to the servomotor 13, etc. as a control state, thereby creating an operation command including enabling or inhibiting control of the servomotor 13. Thereby, the vibration factor estimating device 1 can estimate the vibration factor by adjusting the gain of the servomotor 13, adjusting the torque command, or cutting off the power.
 また、振動要因推定部16は、異なる制御状態に対応する2以上の検出値を比較し、検出値を比較した差に基づいてあるサーボモータ13の振動要因が内部要因又は外部要因であるかを推定してもよい。 In addition, the vibration factor estimation unit 16 may compare two or more detection values corresponding to different control states, and estimate whether the vibration factor of the servomotor 13 is an internal factor or an external factor based on the difference between the detected values.
 また、振動要因推定部16は、検出値に含まれる振動周波数、振幅及び位相の少なくとも1つの特徴量を抽出し、異なる制御状態に対応する2以上の特徴量を比較し、特徴量を比較した差に基づいてあるサーボモータ13の振動要因が内部要因又は外部要因であるかを推定してもよい。 In addition, the vibration factor estimator 16 may extract at least one feature quantity of the vibration frequency, amplitude, and phase included in the detected value, compare two or more feature quantities corresponding to different control states, and estimate whether the vibration factor of the servo motor 13 is an internal factor or an external factor based on the difference between the feature quantities.
 また、振動要因推定部16は、検出値のピーク値を抽出し、異なる制御状態に対応する2以上のピーク値を比較し、ピーク値を比較した差に基づいてあるサーボモータ13の振動要因が内部要因又は外部要因であるかを推定してもよい。 In addition, the vibration factor estimation unit 16 may extract the peak value of the detected value, compare two or more peak values corresponding to different control states, and estimate whether the vibration factor of the servomotor 13 is an internal factor or an external factor based on the difference between the peak values.
 また、検出部14が、複数のサーボモータ13(サーボモータ13a、サーボモータ13b、サーボモータ13c・・・)の検出値を検出すると、振動要因推定部16は、振動要因推定部16は、あるモータ以外の異なる制御状態に対応する2以上の検出値を比較し、検出値を比較した差に基づいてあるサーボモータ13の振動要因が同一の工作機械2内の他のサーボモータ13要因であるかを推定してもよい。これらのような処理を実行することによって、振動要因推定部16は、振動要因の推定を好適に行うことができる。 Further, when the detection unit 14 detects detection values of a plurality of servo motors 13 (servo motor 13 a, servo motor 13 b, servo motor 13 c . . . ), the vibration factor estimation unit 16 may compare two or more detection values corresponding to different control states other than a certain motor, and estimate whether the vibration factor of the servo motor 13 is caused by another servo motor 13 in the same machine tool 2 based on the difference between the detected values. By executing such processing, the vibration factor estimating section 16 can suitably estimate the vibration factor.
 以上、本発明の実施形態について説明したが、上記の振動要因推定装置1は、ハードウェア、ソフトウェア又はこれらの組み合わせにより実現することができる。また、上記の振動要因推定装置1により行なわれる制御方法も、ハードウェア、ソフトウェア又はこれらの組み合わせにより実現することができる。ここで、ソフトウェアによって実現されるとは、コンピュータがプログラムを読み込んで実行することにより実現されることを意味する。 Although the embodiment of the present invention has been described above, the vibration factor estimation device 1 can be realized by hardware, software, or a combination thereof. Also, the control method performed by the vibration factor estimation device 1 can be realized by hardware, software, or a combination thereof. Here, "implemented by software" means implemented by a computer reading and executing a program.
 プログラムは、様々なタイプの非一時的なコンピュータ可読媒体(non-transitory computer readable medium)を用いて格納され、コンピュータに供給することができる。非一時的なコンピュータ可読媒体は、様々なタイプの実体のある記録媒体(tangible storage medium)を含む。非一時的なコンピュータ可読媒体の例は、磁気記録媒体(例えば、ハードディスクドライブ)、光磁気記録媒体(例えば、光磁気ディスク)、CD-ROM(Read Only Memory)、CD-R、CD-R/W、半導体メモリ(例えば、マスクROM、PROM(Programmable ROM)、EPROM(Erasable PROM)、フラッシュROM、RAM(random access memory))を含む。 Programs can be stored and supplied to computers using various types of non-transitory computer readable media. Non-transitory computer-readable media include various types of tangible storage media. Examples of non-transitory computer-readable media include magnetic recording media (e.g., hard disk drives), magneto-optical recording media (e.g., magneto-optical disks), CD-ROM (Read Only Memory), CD-R, CD-R/W, semiconductor memory (e.g., mask ROM, PROM (Programmable ROM), EPROM (Erasable PROM), flash ROM, RAM (random access memory) y)).
 また、上述した各実施形態は、本発明の好適な実施形態ではあるが、上記各実施形態のみに本発明の範囲を限定するものではなく、本発明の要旨を逸脱しない範囲において種々の変更を施した形態での実施が可能である。 In addition, although each of the above-described embodiments is a preferred embodiment of the present invention, the scope of the present invention is not limited to only the above-described embodiments, and various modifications can be made within the scope of the present invention.
 1 振動要因推定装置
 2 工作機械
 11 指令作成部
 12 モータ制御部
 13 サーボモータ
 14 検出部
 15 データ記憶部
 16 振動要因推定部
REFERENCE SIGNS LIST 1 vibration factor estimation device 2 machine tool 11 command generation unit 12 motor control unit 13 servo motor 14 detection unit 15 data storage unit 16 vibration factor estimation unit

Claims (8)

  1.  産業機械の各制御軸の制御状態を含む動作指令を作成する指令作成部と、
     前記動作指令に基づいて前記産業機械のモータを制御するモータ制御部と、
     前記産業機械のモータの位置、速度及び加速度のうちの少なくとも1つを、前記モータの検出値として検出する検出部と、
     前記動作指令及び前記動作指令に対応する前記検出値に基づいて、前記モータの振動要因を推定する振動要因推定部と、
    を備える振動要因推定装置。
    a command creation unit that creates an operation command including the control state of each control axis of the industrial machine;
    a motor control unit that controls a motor of the industrial machine based on the operation command;
    a detection unit that detects at least one of position, speed, and acceleration of a motor of the industrial machine as a detection value of the motor;
    a vibration factor estimation unit that estimates a vibration factor of the motor based on the operation command and the detected value corresponding to the operation command;
    A vibration factor estimation device comprising:
  2.  前記指令作成部によって作成された前記動作指令と、前記検出部によって検出された前記検出値とを対応付けて記憶するデータ記憶部を更に備える請求項1に記載の振動要因推定装置。 The vibration factor estimation device according to claim 1, further comprising a data storage unit that associates and stores the operation command created by the command creation unit and the detection value detected by the detection unit.
  3.  前記指令作成部は、前記制御状態として、前記モータの制御有効又は制御抑制を含む前記動作指令を作成する、請求項1又は2に記載の振動要因推定装置。 3. The vibration factor estimation device according to claim 1 or 2, wherein the command creation unit creates the operation command including control enable or control suppression of the motor as the control state.
  4.  前記指令作成部は、前記制御状態として、前記モータのゲインを調整すること、前記モータのトルク指令を0にすること、又は前記モータへの動力を遮断することにより、前記モータの制御有効又は制御抑制を含む前記動作指令を作成する、請求項3に記載の振動要因推定装置。  The vibration factor estimating device according to claim 3, wherein the command creation unit creates the operation command including control enable or control suppression of the motor by adjusting the gain of the motor, setting the torque command of the motor to 0, or cutting off the power to the motor as the control state.
  5.  前記振動要因推定部は、異なる前記制御状態に対応する2以上の前記検出値を比較し、前記検出値を比較した差に基づいて前記モータの振動要因が内部要因又は外部要因であるかを推定する、請求項1から4のいずれか一項に記載の振動要因推定装置。 The vibration factor estimating device according to any one of claims 1 to 4, wherein the vibration factor estimation unit compares two or more of the detected values corresponding to the different control states, and estimates whether the vibration factor of the motor is an internal factor or an external factor based on the difference between the detected values.
  6.  前記振動要因推定部は、前記検出値に含まれる振動周波数、振幅及び位相の少なくとも1つの特徴量を抽出し、異なる前記制御状態に対応する2以上の前記特徴量を比較し、前記特徴量を比較した差に基づいて前記モータの振動要因が内部要因又は外部要因であるかを推定する、請求項1から4のいずれか一項に記載の振動要因推定装置。 The vibration factor estimating device according to any one of claims 1 to 4, wherein the vibration factor estimating unit extracts at least one feature quantity of vibration frequency, amplitude, and phase included in the detected value, compares two or more of the feature quantities corresponding to the different control states, and estimates whether the vibration factor of the motor is an internal factor or an external factor based on the difference between the feature quantities.
  7.  前記振動要因推定部は、前記検出値のピーク値を抽出し、異なる前記制御状態に対応する2以上の前記ピーク値を比較し、前記ピーク値を比較した差に基づいて前記モータの振動要因が内部要因又は外部要因であるかを推定する、請求項1から4のいずれか一項に記載の振動要因推定装置。 The vibration factor estimating device according to any one of claims 1 to 4, wherein the vibration factor estimation unit extracts the peak value of the detected value, compares two or more of the peak values corresponding to the different control states, and estimates whether the vibration factor of the motor is an internal factor or an external factor based on the difference between the peak values.
  8.  前記検出部は、複数の前記モータの検出値を検出し、
     前記振動要因推定部は、あるモータ以外の異なる前記制御状態に対応する2以上の前記検出値を比較し、前記検出値を比較した差に基づいて前記モータの振動要因が前記産業機械内の他のモータ要因であるかを推定する、請求項1から4のいずれか一項に記載の振動要因推定装置。
    The detection unit detects detection values of the plurality of motors,
    The vibration factor estimation device according to any one of claims 1 to 4, wherein the vibration factor estimating unit compares two or more of the detected values corresponding to the different control states of a motor other than a certain motor, and estimates whether the vibration factor of the motor is the factor of another motor in the industrial machine based on a difference between the detected values.
PCT/JP2022/001660 2022-01-18 2022-01-18 Vibration factor estimating device WO2023139663A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/001660 WO2023139663A1 (en) 2022-01-18 2022-01-18 Vibration factor estimating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/001660 WO2023139663A1 (en) 2022-01-18 2022-01-18 Vibration factor estimating device

Publications (1)

Publication Number Publication Date
WO2023139663A1 true WO2023139663A1 (en) 2023-07-27

Family

ID=87348178

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/001660 WO2023139663A1 (en) 2022-01-18 2022-01-18 Vibration factor estimating device

Country Status (1)

Country Link
WO (1) WO2023139663A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006155351A (en) * 2004-11-30 2006-06-15 Fanuc Ltd Controller
WO2018012123A1 (en) * 2016-07-12 2018-01-18 三菱電機株式会社 Diagnosis device and diagnosis system
JP2020078841A (en) * 2018-11-13 2020-05-28 ファナック株式会社 Machine tool and vibration diagnosis support method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006155351A (en) * 2004-11-30 2006-06-15 Fanuc Ltd Controller
WO2018012123A1 (en) * 2016-07-12 2018-01-18 三菱電機株式会社 Diagnosis device and diagnosis system
JP2020078841A (en) * 2018-11-13 2020-05-28 ファナック株式会社 Machine tool and vibration diagnosis support method

Similar Documents

Publication Publication Date Title
US8229598B2 (en) Vibration suppressing device for machine tool
JP5160980B2 (en) Vibration suppression method and apparatus
EP2012206B1 (en) Control apparatus
JP6140130B2 (en) Numerical control device for protecting tools and workpieces
JP3545006B2 (en) Two-degree-of-freedom controller and servo controller for electric motor
JP4261470B2 (en) Control device
CN110174873B (en) Servo control device
US10101729B2 (en) Motor control device, motor control method and computer readable recording medium
JP6740199B2 (en) Numerical control device, CNC machine tool, numerical control method, and numerical control program
JP2018139044A (en) Servo motor control device, servo motor control method, and servo motor control program
JPH03152608A (en) Position controller for machine tool
US10175676B2 (en) Servomotor controller, servomotor control method, and computer-readable recording medium
JP4115925B2 (en) Machine tool control method and control device therefor
CN111791087A (en) Control device for machine tool having main spindle and feed spindle
WO2023139663A1 (en) Vibration factor estimating device
JP6336265B2 (en) Machine tool control device, machine tool control method, and program
CN110647109A (en) Numerical controller
JPH04311206A (en) Control method for avoiding abnormality in numerically controlled machine tool
CN109648387B (en) Control device
CN112236729B (en) Numerical control device
WO2020235106A1 (en) Numerical control device
US20230229135A1 (en) Control device and control method for machine tool, and slave shaft control device
US20240227106A9 (en) Machine tool controller
US20240131647A1 (en) Machine tool controller
JP2001154719A (en) Method for interpolating free curve

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22921824

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023574919

Country of ref document: JP