WO2023139570A1 - System and method for characterising lung tumours (solid, part-solid and ground-glass) based on invasion criteria by means of pixel distancing and deep learning algorithms - Google Patents

System and method for characterising lung tumours (solid, part-solid and ground-glass) based on invasion criteria by means of pixel distancing and deep learning algorithms Download PDF

Info

Publication number
WO2023139570A1
WO2023139570A1 PCT/IB2023/052660 IB2023052660W WO2023139570A1 WO 2023139570 A1 WO2023139570 A1 WO 2023139570A1 IB 2023052660 W IB2023052660 W IB 2023052660W WO 2023139570 A1 WO2023139570 A1 WO 2023139570A1
Authority
WO
WIPO (PCT)
Prior art keywords
deep learning
learning algorithms
distance
lung tumors
criteria
Prior art date
Application number
PCT/IB2023/052660
Other languages
Spanish (es)
French (fr)
Other versions
WO2023139570A4 (en
Inventor
Andres Javier Anaya Isaza
Original Assignee
Indigo Technologies S.A.S.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Indigo Technologies S.A.S. filed Critical Indigo Technologies S.A.S.
Publication of WO2023139570A1 publication Critical patent/WO2023139570A1/en
Publication of WO2023139570A4 publication Critical patent/WO2023139570A4/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/02Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computed tomography [CT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B9/00Instruments for examination by percussion; Pleximeters
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T11/002D [Two Dimensional] image generation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/20ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/30ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for calculating health indices; for individual health risk assessment

Definitions

  • the present invention relates to systems and methods for characterizing lung tumors.
  • the present invention refers to systems and methods for characterizing lung tumors (solid, subsolid and ground glass) based on invasive criteria using pixel distance and deep learning algorithms in computed axial tomography (CT scans), with application in the field of bioengineering since it applies physical-mathematical concepts and methods to solve life science problems, using analytical and synthetic engineering methodologies.
  • CT scans computed axial tomography
  • the World Health Organization (WHO) in its 2018 report affirms that cancer in general is the pathology responsible for 9.6 million deaths per year, being the second cause of death in the world, where its prevalence is outlined in low- and middle-income countries, with 70% of the manifestation of said disease.
  • the foregoing exposes alarming figures within the group of diseases with the highest lethality, where lung cancer is the most aggressive pathology and the main cause of deaths related to cancer deaths, with figures of 135,000 deaths in countries like the United States in 2020, as well as evidence of new diagnoses of close to 228,000 cases with a high mortality rate, with prognoses of less than 5 years of survival.
  • the foregoing shows the importance of carrying out processes in early detection, with the motivation of mitigating the metastatic presence of lesions or the excessive advance in the rate of tumor growth.
  • an architecture based on the V-Net network for segmentation is made up of three pairs of encoder-decoder blocks with residual components.
  • the architecture allows addressing the segmentation problem in 3D, a process that is limited with UNet.
  • the investigations focus on discriminating the character of the nodule, that is, if they are potential malignant nodules or not.
  • the research focuses on single path networks or networks as double or triple paths, as indicated by Pontopoulos et al. “Experimenting with Convolutional Neural Network architectures for the automatic characterization of Solitary Pulmonary Nodules' malignancy rating. ArXiv 2020” performs a comparison of various architectures where it determines that node detection is more efficient with single path networks.
  • the application US2017/046839 provides systems and methods that use a hierarchical analysis framework to identify and quantify biological properties / analytes from imaging data and then identify and characterize one or more medical conditions based on the quantified biological properties / analytes.
  • the systems and methods incorporate computerized image analysis and data fusion algorithms with patient blood biomarker and clinical chemistry data to provide a multifactorial panel that can be used to distinguish between different disease subtypes, which makes it complex since it requires not only software and hardware elements but patient blood biomarkers and clinical chemistry which are additional processes to a computer-implemented method.
  • Application US2016/0196648 presents exemplary methods and apparatus that distinguish invasive adenocarcinoma (IA) from non-invasive adenocarcinoma (AI S) in situ depicted in a three-dimensional (3D) computed tomography (CT) image of a region of tissue demonstrating cancerous pathology.
  • the 3D CT image may include representations of ground glass nodules (GGN).
  • the exemplary methods and apparatus perform a 3D histology reconstruction of histology sections of a GGN and record the 3D histology reconstruction with a 3D CT image of the GGN, combining or "fusing" the 3D histology reconstruction with the 3D CT image.
  • Example methods and apparatus map AI regions detected in the 3D histology reconstruction to the 3D CT image and extract texture or shape features associated with AI of the 3D CT image, however, this development does not allow evidencing morphological features of texture or determining the estimation of pixel intensity that allows guaranteeing all the intermediate movements of image processing and its transformation from one state to another.
  • the application WO2019157214 describes systems, methods, devices and means to perform medical diagnoses of diseases and conditions using artificial intelligence or machine learning approaches. Deep learning algorithms enable automated analysis of medical images, such as X-rays, to generate predictions with accuracy comparable to that of clinical experts for various diseases and conditions, including those affecting the lung, such as pneumonia.
  • the transfer learning method further comprises training the pretrained model using a medical image set that is smaller than the large image data set.
  • the method further comprises making a medical treatment recommendation based on the determination.
  • the medical image of the lung is a chest X-ray.
  • the lung disease or disorder is selected from the group consisting of: pneumonia, childhood pneumonia, emphysema, tuberculosis, and lung cancer.
  • the method and system for characterizing lung tumors presents the analysis of densities and morphological features of the nodules, as a response to the calculation of estimates on the invasive factor, since current developments lack the mapping of this important natural characteristic in the practice of radiology in studies of the thorax, applied to the lung.
  • non-linear learning algorithms such as neural networks with deep learning approaches, which work directly to achieve natural characteristics without external processes of increasing pathological traits, with the difference of achieving a new integration between an unsupervised mechanism by virtue of achieving pixel pairs by grouping or clustering, called pixel distance maps, through methods such as; K-means or Boltzmann or similar machines, presented the characterization of tumor structures and thresholding of a new risk scale based on the invasive factor.
  • the characterization of distances by group of pixels allows the final representation of the distance map with a fine conformation of the tumor structure, differentiating the invasive factor from the rest of the structure in density to perform early risk thresholding tasks, establishing management protocols in the face of imminent aggressiveness of a nodule or tumor.
  • This application presents a method to characterize lung tumors based on invasive criteria using pixel distance and deep learning algorithms comprising: i. Receive chest computed tomography images of subjects that show lesions, nodules or lung tumors or any type of anomaly;
  • Yo Determine the volume of the tumor structure from the chest images of the region of interest; iii. Segment the voxel representation by means of a learning algorithm; iv. Determine the projected final volumetry; v. Calculate the distance maps using a second unsupervised classification algorithm; saw. Create the training matrix of the structural characteristics of the nodules or tumors and the distance vector; vii. Determine the biomarker of invasiveness; and viii. Determine the risk of the nodule.
  • Another aspect of the present invention provides a system including an imaging device for imaging a target; at least one processor with a viewer with a file not linked to any CT reconstruction modality or provider (CT scans) in the thorax; a data base; a memory coupled to at least one processor; the memory comprising computer-executable instructions that, when executed by the at least one processor, performs a method comprising: i. Receive chest computed tomography images of subjects showing lung lesions, nodules or tumors or any type of abnormality;
  • Yo Determine the volume of the tumor structure from the chest images of the region of interest; iii. Segment the voxel representation by means of a learning algorithm; iv. Determine the projected final volumetry; v. Calculate the distance maps using a second unsupervised classification algorithm; saw. Create the matrix of characteristics of the structures of the nodules or tumors with the distance vector; vii. Determine the biomarker of invasiveness; and viii. Determine the risk of the nodule.
  • Figure 1 shows the classification of nodular lesions under parameters: geometric, morphological and topological, as well as their correlation with density factors.
  • Figure 2 shows the Indira® VNA viewer for a computed tomography in chest studies in lung cancer pathologies.
  • Figure 3 shows steps 1 to 4 of the method to characterize lung tumors (solid, subsolid, and ground glass) based on invasive criteria using pixel distance and deep learning algorithms in CT scans.
  • Figure 4 shows steps 4 to 7 of the method to characterize lung tumors (solid, subsolid, and ground glass) based on invasive criteria using pixel distance and deep learning algorithms in CT scans.
  • Figure 5 shows stages 7 and 8 of the method to characterize lung tumors (solid, subsolid, and ground glass) based on invasive criteria using pixel distance and deep learning algorithms in CT scans.
  • Figure 6 shows the system for characterizing lung tumors (solid, subsolid, and ground glass) based on invasive criteria using pixel distance and deep learning algorithms in CT scans.
  • the present invention relates to a system and methods to characterize lung tumors (solid, subsolid and ground glass) based on invasive criteria using pixel distance and deep learning algorithms in computed axial tomography (CT scans).
  • CT scans computed axial tomography
  • pulmonary nodule refers to an image of pulmonary or pleural lesions superimposed on normal structures with a more or less similar development in all three dimensions of space. Characterized by presenting an area of increased attenuation, rounded or oval, that does not exceed three centimeters in diameter. This is how, depending on the density Tomographically, these pulmonary nodules can be classified as solid, subsolid, or ground glass.
  • ground glass nodules refers to an area of focal attenuation magnification that does not obscure or obscure the underlying vessels.
  • solid nodules refers to an area of increased attenuation, due to a collapse of the airspace, which prevents seeing the underlying structures of the normal lung parenchyma.
  • solid nodules refers to nodules in which there is a mixed appearance, that is, in addition to the ground glass component, there is a variable solid portion.
  • Intraness refers to the degree of hardness of the tumor structure, given that the more consolidated the group of pixels (greater intensity - evidence of hardness), the higher the correlation of belonging to the category of malignancy of a tumor or nodular structure.
  • Deep learning refers to the paradigm of artificial intelligence, which uses neural networks as an active principle and its great contribution is to have a large set of these networks, with many deep layers to maximize their complex behavior and obtain better performance.
  • CTs refers to the modality or hardware of Computed Axial Tomography, where it outlines the possibility of scanning the structure of the body under study, through several cross sections of the organ, through x-rays, with the great property of delimiting to a scale that allows differentiating tissue, fluid and bone structures, called Hounsfield units.
  • the term “Screening” refers to the set of methods or practices that are applied to the population, with the need to study diseases and detect complications in time.
  • the term “LUNG-RADS” refers to the screening process that is carried out on a group of people to detect pathologies oriented to potential lung cancers in time.
  • predictive biomarker refers to a biological indicator that gives indications of a pathological event, as well as, when these indicators are manifested, it is possible to use statistical or mathematical approximations to predict their behavior.
  • Article Intelligence System refers to an application or software that has an algorithm capable of imitating the intelligent behavior of a specific task.
  • threshold refers to the possibility of delimiting values to a defined threshold or range.
  • Adenocarcinoma structures is a formation of glandular tissue that is located in the internal organs, of which is present in most cancers.
  • Structures of squamous cell cancers refers to the classification of non-small cell cancers, which in this case analyzes the lung, where there is its category and probability of occurrence: Squamous cell carcinoma (25% of lung cancers), adenocarcinoma (40% of lung cancers) and large cell carcinoma (10% of lung cancers).
  • Undifferentiated structures refers to suspected tumor formations, where their characteristics from the point of view of medical images do not have a clear way of differentiation in terms of the intensity of the object of study in relation to its environment, with edges totally diffuse that hardly differs from other formations or organs in its environment.
  • VNA Vehicle Neutral Archive
  • ROI English Region Of Interest
  • Group or Pooling in the artificial intelligence paradigm refers to the process of grouping pixels in an image.
  • MaxPool in the artificial intelligence paradigm refers to obtaining the maximum values of a determined group of pixels.
  • volution refers to a mathematical model with the ability to enhance features of a specific image.
  • Transposed Convolution refers to a mathematical model with the ability to enhance the inverse of the characteristics of a specific image, with criteria of edges, contours, curves and contrasts.
  • Up-conv in the artificial intelligence paradigm is synonymous with convolution.
  • Feature Maps in artificial intelligence is used to refer to an array that stores features of an image, where those features are the set of edges, contours, curves, and other attributes of an image.
  • kernel takes a small segment of a matrix, to later apply some transformation with one of the previously mentioned methods. It is especially useful to avoid the high computational cost of projecting a small segment of the image and mapping the entire image through this movable window or kernel.
  • saccharging stride refers to the movement that maps an image through jumps between pixels with units that can increment every 2, 4, 6, 8, or 1, 3, 5, and 7 pixels.
  • Hadamard Product is a way of operating matrices and vectors mathematically, so that each term is multiplied 1 to 1 with respect to the other.
  • RIS-PACS type systems refers to a system applied to medical imaging units that allows knowing the status of the patient from the moment they enter the hospital unit called RIS, as well as another system that is responsible for storing the images called PACS.
  • the invention is based on the diagnostic markers that are usually used in clinical practice, through screening atlases such as the LUNG-RADS, where the geometric conformation has a risk threshold meaning, by evidencing those circular, ovoid, lobulated, poly-lobulated and spicular formations, as predictive factors in correlation to the benign or malignant index of a nodular or early tumor structure.
  • Figure 1 shows the classification of nodular lesions under parameters: geometric, morphological and topological, as well as their correlation with density factors, evidencing the classification attributes of the Fleischner glossary.
  • the categories that correlate the types of nodules such as: solid, subsolid (not solid or frosted glass, partially solid) are evidenced, with the aim of mapping the transformation process of a nodule and evidencing its different changes of state, in relation to the intensity of pixels that evaluate the degree of invasiveness, as a predictive biomarker that can be densely mapped by an artificial intelligence system, through the calculation of the pixel distance per grouping of pixels, in correlation to the invasiveness index of the nodule or tumor, with the aim of estimating or predicting the intermediate movements of the tumor phases, thresholded to risk classes.
  • the characterization of incidental nodules consists of the dense mapping of pixel distances by clustering, applied to the non-small cell cancer segment, such as: adenocarcinoma structures, squamous cell cancer structures, as well as undifferentiated structures.
  • the non-small cell cancer segment such as: adenocarcinoma structures, squamous cell cancer structures, as well as undifferentiated structures.
  • the dense mapping of the behavior or active process flow of an incidental tumor is made by means An with the aggressiveness and invasiveness of the tumor.
  • the invasive is the group of pixels with the highest intensity, where clinically this measurement must be obtained and often there are inaccuracies in these, with respect to their early phases. If inaccuracies are obtained, said non-solid or ground glass structures tend to decrease said pattern, quickly transforming into an invasive formation at a growth rate of two to three months, doubling its size and reflecting a higher rate of aggressiveness in correlation to its invasive factor, resulting in a high level of risk through the evidence of a solid component, of which the system establishes a distance vector that will be able to obtain new measurements, providing a clear frontier.
  • crim inant or differential of the invasiveness index in early stages to make finer predictions, taking into account the degree of aggressiveness implicit in the invasive factor of a nodule or tumor.
  • This application presents a method to characterize lung tumors based on invasive criteria using pixel distance and deep learning algorithms comprising: i. Receive chest computed tomography images of subjects that show lesions, nodules or lung tumors or any type of anomaly;
  • Yo Determine the volume of the tumor structure from the chest images of the region of interest; iii. Segment the voxel representation by means of a learning algorithm; iv. Determine the projected final volumetry; v. Calculate the distance maps using a second unsupervised classification algorithm; saw. Create the training matrix of the structural characteristics of the nodules or tumors and the distance vector; vii. Determine the biomarker of invasiveness; and viii. Determine the risk of the nodule.
  • Images from CT scans, MRIs, mammograms, and/or chest ultrasounds of subjects that show lesions, nodules or lung tumors or any type of anomaly are stored in a database ( 1 ) where the patient is identified together with his medical history.
  • the images can be viewed with any viewer with a file not linked to any provider (VNA) as shown in Figure 2, where the I NDI RA® viewer is shown, which applies this technology to studies of the thorax in lung oncology pathologies.
  • VNA provider
  • Figure 2 a visual representation with masking segmentation is observed, to make it more evident for the professional in radiology or specialized in oncology.
  • the same functional principle can be applied to respiratory disorders, where viral pneumonias such as COVI D-19, can have diffuse recognition patterns, such as ground glass, as well as lung consolidation and Crazy Paving, where segmentation tests have been performed on non-differentiable regions.
  • VNA viewer is one of the most efficient ways to visualize tomographies, since it connects synergistically with the visual channel of specialists, increasing medical-analytical capabilities in complementary diagnostic processes.
  • the stage of determining the volume of the tumor structure from the chest images is performed by projecting 3D patches of the region of interest (ROI), which takes voxel representation slices guaranteeing the generalized volume of the tumor, showing a 2D square that will be segmented by a learning algorithm.
  • ROI region of interest
  • the deep learning network algorithm performs a segmentation of regions of interest, such as lesions, tumor tissues or any type of anomaly, which are demarcated by a masking biomarker.
  • regions of interest such as lesions, tumor tissues or any type of anomaly
  • an architecture such as the U-Net network is applied, which is the fundamental base in segmentation networks, since it allows preserving the spatial distribution of the image while extracting its characteristics.
  • the U-Net network consists of two main elements: an encoder and a decoder.
  • the encoder takes the input image and convolves it, generating increasingly complex feature maps as it goes further into the network. Furthermore, convolutional layers are combined with pooling layers to reduce the size of the maps and thus the computational load.
  • stage 3 an example of implementation of stage 3 is observed, where the convolutional neural deep network, which, as indicated, can be the U-net network, has an encoder and a decoder, which are divided into substages. Each substage is made up of a number of convolutional layers before resizing the feature maps via pooling (MaxPool) or transposed convolution (Up-conv). The MaxPool and the Up-conv are part of the encoder and decoder respectively.
  • the input image can be represented as three matrices or three feature maps, where said maps correspond to the three intensity matrices of the red, green and blue channels (RGB image). Therefore, each j-th feature map (A j ), generated in the first convolution, would be given by equation ( 1 ) .
  • Ky is the kernel or convolutional filter corresponding to the j-th feature map.
  • the filter is generally 3 x 3 in size and must have the same depth as the input, ie it must have the same number of channels as X ⁇ .
  • b j is the bias added to the convolution of the j-th feature map and f is the activation function of this convolutional layer.
  • a ( ⁇ ) are all the feature maps generated in the Z-th layer of the convolutional neural network.
  • the network uses a cluster operation after two convolutional operations.
  • the pooling operation is similar to convolutional layers, that is, these layers generate a single value for a window ( ⁇ ⁇ x , ⁇ y ) that scrolls through the image.
  • the window can be any size and any scroll step. However, the most widely used size is 2x2 with strides of 2.
  • the operation carried out with these parameters reduces the size of the feature maps in half while preserving the total number of these; this process can be governed by equation (4) for each j-th map.
  • Sx Sy is the window made up of the pixels at the combined positions of 8x and 8y.
  • r and c are the pixel positions that vary up to half the size of the input maps. Consequently, the output of the Z-th clustering layer would be given by the set of all reduced feature maps, as shown in equation (7).
  • m Number of feature or channel maps.
  • the first four substages of the encoder would have the inputs, outputs, and sizes shown in Table 1.
  • Equation (8) can be represented as a matrix operation, converting the matrices to vectors and the filter to the sparse matrix version.
  • equation (9) the equivalent is shown in equation (9), moreover, since the bias b does not affect the dimensions of said operation, it is possible to eliminate it to arrive at the model of the transposed convolution.
  • equation (8) denotes the inverse of a non-square matrix, the process is not carried out since the parameters that make up the filter are unknown, that is, the filter could be replaced by a matrix with the dimensions transposed to the original size and with unknown weights, without having significant repercussions since these would be calculated during training.
  • the result is concatenated with the previous map copies to the pooling layers and resubmitted to the convolutional layers, as illustrated in Figure 3.
  • the process is repeated the same number of times that were pooled using the Max Pooling function.
  • the decoder stages would have the inputs, outputs, and sizes shown in Error! Reference source not found..
  • the final projected volumetry is determined, which comprises segmenting each of the geometric and morphological features of the nodule under study, taking into account the topology of the lesion through masking processes already described, as observed in Figure 4 with the number 4, the total volume is sectioned and then each session is segmented, as well as encoded and decoded, to finally obtain as output the generalized segmented volume of the lesion.
  • This stage makes it possible to close the domain of the focus of invasiveness, with a view to early detection of clustering pixel intensity, clearly defining the borders of the diffuse edges of partially solid and non-solid nodules.
  • the maps of distances by means of a second unsupervised classification algorithm see Figure 4 number 5.
  • the demarcation is taken as input by means of a masking process, as carried out by the Encoder-Decoder type model (Encoder-Decoder) and a second unsupervised classification algorithm, under the modification of some topological criteria by means of K-means or Boltzmann machines, in which the distance maps are obtained by pairs of pixels that can project the quantum values.
  • the automatic segmentation generates an image or a probability map, where the lung nodules can be found.
  • the map is reduced to a binary one considering the pixels with the highest probability as the high binary states and those with the lowest probability as the low states, that is, the ones and zeros of the binary maps.
  • the process is represented mathematically as in equation (1 1 ) .
  • FIG 4 shows how a region of interest (ROI) is defined from the final projected volumetry, that is, a volume with intensity levels (gray levels) and positions on the three ordered axes. Consequently, each voxel that makes up the ROI can be represented as a vector of d dimensions, each dimension being a descriptor or characteristic, as shown in equation (13).
  • ROI region of interest
  • j is the subscript associated with each voxel that makes up the ROI volume.
  • the voxels are grouped into a given number of groups, eg k different groups as shown by equation (14).
  • the k groups of equation (14) are made up of the v ⁇ voxels closest to the centroid ⁇ i of the group.
  • the centroids are computed from all j voxels in such a way that the sum of all the distances to the centroids is the minimum possible. This is expressed mathematically as shown in equation (15).
  • the descriptors and the distance based on K-means make up a feature vector x for each voxel of the node, these descriptors being the input of an artificial neural network.
  • the network is trained for the classification of each voxel, generating a new risk scale.
  • the neural network would have the following output for the first layer with m artificial neurons:
  • x is the n-dimensional feature vector, that is, x ⁇ R n .
  • W (1) is the matrix of weight parameters or training parameters, this being W (1) ⁇ R mxn .
  • b (1) is the bias vector of the neuronal model and f (1) is the activation function.
  • the previous steps obtain a matrix of characteristics of the objective variable of the invasive biomarker, achieving a new AI or deep learning algorithm, with the ability to predict, taking into account most of the biomarkers such as: Class, type, diameter, geometry, map of pixel distances (tumor invasiveness).
  • the objective variable will be the tumor invasiveness that will be projected with this new approach and will be ready to be thresholded to a new risk scale, to make a call to action from the system, correlating the Fleischner glossary.
  • the new risk scale is expressed by means of a probability distribution map of the values found by the distance map, where the new risk scale correlated with Fleischner, will be able to quickly communicate the invasiveness of a tumor, with respect to the transformation in the time of the intensity of the radio opacity in each of the non-solid nodular structures or in ground glass, as well as in the first presences of invasive factor, where it will be possible to map the first invasive findings in situ or the transformation to an invasive adenocarcinoma and its morphological conformations of intensities by degree of neighborhood.
  • the new risk scale is correlated with the Fleischner atlas, which will indicate the invasiveness of a tumor, with respect to the transformation over time of the intensity of the radio opacity in each of the non-solid nodular structures or in ground glass, as well as, in the first presences of invasive factor, where it will be possible to map the first invasive findings in situ or the transformation to an invasive adenocarcinoma and its conformations. morphological intensities by degree of neighborhood.
  • the fully connected artificial neural network follows the same behavior as the convolutional neural network. Therefore, for the following layers, the same model of equation (16) is followed, but with the difference that the input of each layer is the output of the previous layer, as shown in equation 7).
  • each output being a probability value for each category of the new risk scale.
  • Figure 6 shows the system (100) to characterize lung tumors (solid, subsolid and ground glass) based on invasive criteria using pixel distance and deep learning algorithms in CT scans of the present invention includes an imaging device (101) to form images of a target, for example, an axial tomograph computer, radiology equipment, mammographs, etc. ; an input interface ( 103) such as a screen, keyboard, mouse, etc.
  • an imaging device (101) to form images of a target, for example, an axial tomograph computer, radiology equipment, mammographs, etc.
  • an input interface 103 such as a screen, keyboard, mouse, etc.
  • Yo Determine the volume of the tumor structure from the chest images of the region of interest; iii. Segment the voxel representation by means of a learning algorithm; iv. Determine the projected final volumetry; v. Calculate the distance maps using a second unsupervised classification algorithm; saw. Create the matrix of characteristics of the structures of the nodules or tumors with the distance vector; vii. Determine the biomarker of invasiveness; and viii. Determine the risk of the nodule.
  • the processor (104) can execute one or more instructions, such as program modules where the deep learning algorithms that are applied in the development of the method of the invention are found, stored in one or more computer-readable storage media (for example, memory 105), which store instructions for execution by the processor (105).
  • one or more computer-readable storage media for example, memory 105
  • program modules include routines, algorithms, objects, components, data structures, etc. that perform the particular tasks or implement particular data types of the present invention. While the systems and methods of the present disclosure have been particularly shown and described with reference to exemplary embodiments thereof, it will be understood by those skilled in the art that various changes in form and detail may be made without departing from the scope of the present disclosure.
  • the processor with the Indira® VNA viewer downloads the computed axial tomography images on the screen, such as Figure 2, which are stored in the database, and starts executing the instructions that are stored in memory to implement the method that comprises: i. Receive chest computed tomography images of subjects that show lesions, nodules or lung tumors or any type of anomaly;
  • Yo Determine the volume of the tumor structure from the chest images of the region of interest; iii. Segment the voxel representation by means of a learning algorithm; iv. Determine the projected final volumetry; v. Calculate the distance maps using a second unsupervised classification algorithm; saw. Create the matrix of characteristics of the structures of the nodules or tumors with the distance vector; vii. Determine the biomarker of invasiveness; and viii. Determine the risk of the nodule.
  • the characterization of incidental nodes by the characterization of distances per group of pixels allows the final representation of the map of pixel distances per group applied to the non-small cell cancer segment, such as: adenocarcinoma structures, squamous cell cancer structures, as well as undifferentiated structures, to project a fine conformation of the tumor structure, differentiating the invasive factor from the rest of the structure in density to perform early risk thresholding, establishing management protocols in the face of imminent aggressiveness of a nodule or tumor.
  • the present invention has a wide application in bioengineering since it makes projections of physical-mathematical methods, where this development is synergistically articulated with computerized axial tomography modalities, as well as the modification of the subject prioritization processes involved in PACS-type systems, which are usually integrated into these tools.
  • RIS-PACS a system that can exploit this technology the most, since it can act in the workflow of the characterization and description of the pathological event that is usually carried out in a RIS, as well as, it will be able to articulate its outputs to a PACs system, which will be able to manipulate the work list of radiologists, ensuring a list of priorities on an alert process, determined by the output parameter of the system through the invasiveness of a resulting tumor.
  • distance maps are capable of mapping all those intermediate scales that are ignored, especially in non-small cell and squamous cell cancers, where a projection is necessary to help determine the degree of invasiveness and the prognosis of aggressiveness of the structure to be studied, evidencing new patterns to observe those entries that can give more information about the life expectancy of the final patient.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Public Health (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Primary Health Care (AREA)
  • Epidemiology (AREA)
  • Databases & Information Systems (AREA)
  • Data Mining & Analysis (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Molecular Biology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Biophysics (AREA)
  • Surgery (AREA)
  • Radiology & Medical Imaging (AREA)
  • Optics & Photonics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Image Analysis (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

The present invention relates to systems and methods for characterising lung tumours (solid, part-solid and ground-glass) based on criteria of invasiveness by means of pixel distancing and deep learning algorithms in computerised axial tomography (CAT) scans. The system is made up of an image forming device, an input/output interface, at least one processor, a database, and a memory comprising executable instructions to implement a method comprising: i. Receiving computerised axial tomography images of a subject's chest that show lung lesions, nodules or tumours; ii. Determining the volume of the tumour structure from the chest images of the region of interest; iii. Segmenting a representation of voxels by means of a learning algorithm; iv. Determining a projected final volumetry; v. Calculating distance maps by means of a second unsupervised classification algorithm; vi. Creating a matrix of characteristics from the nodule or tumour structures with a distance vector; vii. Determining a biomarker of invasiveness; and viii. Determining the nodule risk.

Description

SI STEMA Y MÉTODO PARA CARACTERI ZAR TUMORES PULMONARES ( SOLI DOS, SUBSÓLI DOS Y VI DRI O ESMERI LADO) BASADO EN CRI TERI OS I NVASI VOS MEDI ANTE DI STANCI A PI XELAR Y ALGORI TMOS DE APREN DI ZAJE PROFUN DO SYSTEM AND METHOD FOR CHARACTERIZING LUNG TUMORS (SOLID, SUBSOLI D AND GROUND GLASS) BASED ON I NVASIVE CRITERIA THROUGH PI XELAR DISTANCE AND DEEP LEARNING ALGORI TMOS
SECTOR TECNOLÓGI CO TECHNOLOGY SECTOR
La presente invención se relaciona con sistemas y métodos para caracterizar tumores pulmonares. Particularmente, la presente invención se refiere a sistemas y métodos para caracterizar tumores pulmonares (sólidos, subsólidos y vidrio esmerilado) basado en criterios invasivos mediante distancia pixelar y algoritmos de aprendizaje profundo en tomografías axiales computarizadas (TACs) , con aplicación en el campo de la bioingeniería dado que aplica conceptos y métodos físico-matemáticos para resolver problemas de las ciencias de la vida, utilizando metodologías analíticas y sintéticas de la ingeniería. The present invention relates to systems and methods for characterizing lung tumors. Particularly, the present invention refers to systems and methods for characterizing lung tumors (solid, subsolid and ground glass) based on invasive criteria using pixel distance and deep learning algorithms in computed axial tomography (CT scans), with application in the field of bioengineering since it applies physical-mathematical concepts and methods to solve life science problems, using analytical and synthetic engineering methodologies.
ANTECEDENTES DE LA I NVENCI ÓN BACKGROUND OF THE I NVENTION
La Organización Mundial de la Salud (OMS) en su reporte del 2018, afirma que el cáncer en general es la patología responsable de 9.6 millones de muertes al año, siendo la segunda causa de muerte en el mundo, donde su prevalencia se esboza en países de ingresos medios y bajos, con un 70% de la manifestación de dicha enfermedad. Lo anterior, expone cifras alarmantes dentro del grupo de enfermedades con mayor letalidad, donde el cáncer de pulmón es la patología más agresiva y principal causante de las muertes pertenecientes a decesos por cáncer, con cifras de 135 mil muertes en países como Estados Unidos en el año 2020, así como también, la evidencia de nuevos diagnósticos cercanos a 228 m il casos con tasa de mortalidad alta, teniendo pronósticos inferiores a 5 años de supervivencia. Lo anterior, manifiesta la importancia de realizar procesos en detección temprana, con la motivación de mitigar la presencia metastásica de las lesiones o el avance desmesurado en la tasa de crecim iento tumoral. The World Health Organization (WHO) in its 2018 report, affirms that cancer in general is the pathology responsible for 9.6 million deaths per year, being the second cause of death in the world, where its prevalence is outlined in low- and middle-income countries, with 70% of the manifestation of said disease. The foregoing exposes alarming figures within the group of diseases with the highest lethality, where lung cancer is the most aggressive pathology and the main cause of deaths related to cancer deaths, with figures of 135,000 deaths in countries like the United States in 2020, as well as evidence of new diagnoses of close to 228,000 cases with a high mortality rate, with prognoses of less than 5 years of survival. The foregoing shows the importance of carrying out processes in early detection, with the motivation of mitigating the metastatic presence of lesions or the excessive advance in the rate of tumor growth.
Es así como, en las tres últimas décadas del siglo XX, así como también, las dos primeras décadas del siglo XXI , la tomografía axial computarizada (TAC o CT en inglés) , ha demostrado un rendimiento superior en la detección temprana del cáncer de pulmón, m itigando hasta un 20% la tasa de mortalidad final, pudiendo caracterizar la severidad mediante la intensidad pixelar. Entonces, con el empleo de la escala Hounsfiel, que define cuales son las unidades de tejido fluido y hueso, donde pueden caracterizar la morfología del tejido o nodulo potencialmente maligno, mostrando que la probabilidad de malignidad está dada por factores que correlacionan la tasa de crecim iento y morfología (sólido, subsólido y vidrio esmerilado) , así como también las características geométricas. This is how, in the last three decades of the 20th century, as well as the first two decades of the 21st century, computerized axial tomography (CT or CT in English) , has shown superior performance in the early detection of lung cancer, mitigating the final mortality rate by up to 20%, being able to characterize severity through pixel intensity. Then, with the use of the Hounsfiel scale, which defines which are the units of fluid tissue and bone, where they can characterize the morphology of the potentially malignant tissue or nodule, showing that the probability of malignancy is given by factors that correlate the rate of growth and morphology (solid, subsolid and ground glass), as well as geometric characteristics.
A pesar de los esfuerzos en la caracterización bajo metodologías de imagenología diagnóstica mediante TAC, dichos procesos por imagen están dados a interpretaciones humanas, del cual, se evidencian sesgos notables por presencia de factores subjetivos y procesos de validación donde difícilmente se llega a consensos. En respuesta a los desafíos anteriores, el advenim iento de la nueva inteligencia artificial mediante algoritmos de aprendizaje de máquina y aprendizaje profundo permite que nuevas metodologías como (CAD - Computer Aided Detection o Sistemas Asistidos por Computadora) , perm iten la mitigación del diagnóstico producto del error humano. Los métodos mencionados anteriormente, han demostrado su potencial en la replicación o sim ulación del comportamiento inteligente, en tareas como clasificación de patologías, segmentación de hallazgos, caracterización de regiones de interés y registro elástico en prospectiva de pronóstico patológico. Despite the efforts in the characterization under diagnostic imaging methodologies through CT, said image processes are given to human interpretations, of which, notable biases are evident due to the presence of subjective factors and validation processes where it is difficult to reach consensus. In response to the previous challenges, the advent of new artificial intelligence through machine learning and deep learning algorithms allows new methodologies such as (CAD - Computer Aided Detection or Computer Aided Systems), allow the mitigation of the diagnosis product of human error. The aforementioned methods have demonstrated their potential in the replication or simulation of intelligent behavior, in tasks such as classification of pathologies, segmentation of findings, characterization of regions of interest, and elastic recording in prospective pathological prognosis.
Solo para la detección de cáncer de pulmón, podemos encontrar un gran número de investigaciones y de revisiones que resaltan el funcionamiento y el desempeño de los sistemas CAD. La mayoría de estos sistemas cuentan con varias etapas para llegar al diagnóstico y generar esta “segunda opinión”. No obstante, todos ellos cuentan con dos elementos fundamentales: ( 1 ) detección de nodulos (incluyendo la eliminación de falsos positivos) y (2) clasificación de los nodulos. Aunque estos dos elementos ya representan un desafió por sí solos y, pese a las constantes investigaciones, hoy en día, no hay un consenso definido para lograr estos objetivos. Por ejemplo, Pérez et al. en “Automated lung cancer diagnosis using three-dimensional convolutional neural networks. Med Biol Eng Comput 2020; 58: 1803-15”, implementan una serie de técnicas de preprocesam iento de imágenes para segmentar y obtener los candidatos a nodulos. Estos se generan a partir de los máximos regionales después un proceso de filtrado, segmentado y de varias operaciones morfológicas. Los nodulos generados y los reales son utilizados para entrenar una CNN de 12 capas para eliminar los falsos positivos. Finalmente, estos se usan para entrenar una segunda red CNN con el objetivo de alcanzar la predicción del tipo de nodulo. Pérez et al. en su desarrollo se basa en redes 3D para lograr las dos últimas tareas. Por otro lado, Zheng et al. en “Automatic Pulmonary Nodule Detection in CT Scans Using Convolutional Neural Networks Based on Maximum Intensity Projection. IEEE Trans Med Imaging 2020; 39:797-805" evitan usar redes 3D en la generación de los nodulos candidatos. En su lugar, él implementa una red CNN 2D sobre imágenes de proyecciones de máxima intensidad MI P (Maximum intensity projection) generadas con cortes secuenciales de la tomografía computarizada. La técnica le perm ite discriminar claramente entre los nodulos y los vasos a través de una red con una arquitectura semejante a una UNet. For lung cancer detection alone, we can find a large number of investigations and reviews that highlight the functioning and performance of CAD systems. Most of these systems have several stages to reach the diagnosis and generate this “second opinion”. However, all of them have two fundamental elements: (1) detection of nodules (including elimination of false positives) and (2) classification of nodules. Although these two elements already represent a challenge on their own and, despite constant research, today, there is no defined consensus to achieve these objectives. For example, Perez et al. in “Automated lung cancer diagnosis using three-dimensional convolutional neural networks. Med Biol Eng Comput 2020; 58: 1803-15”, implement a series of image preprocessing techniques to segment and obtain nodule candidates. These are generated from the regional maximums after a process of filtering, segmentation and various morphological operations. The generated and real nodes are used to train a 12-layer CNN to eliminate false positives. Finally, these are used to train a second CNN in order to achieve node type prediction. Perez et al. in its development it relies on 3D networks to achieve the last two tasks. On the other hand, Zheng et al. in “Automatic Pulmonary Nodule Detection in CT Scans Using Convolutional Neural Networks Based on Maximum Intensity Projection. IEEE Trans Med Imaging 2020; 39:797-805" avoid using 3D networks in the generation of candidate nodules. Instead, he implements a 2D CNN network on MIP (Maximum intensity projection) images generated with sequential slices of computed tomography. The technique allows him to clearly discriminate between nodules and vessels through a network with a UNet-like architecture.
Pese a la efectividad de la UNet, algunas de las investigaciones presentadas recientemente están orientadas en explorar o mejorar nuevas arquitecturas. Por ejemplo, una arquitectura basada en la red V-Net para la segmentación. La red se conforma de tres pares de bloques codificadores-decodificadores con componentes residuales. La arquitectura permite abordar el problema de segmentación en 3D, proceso que se ve limitado con la UNet. Despite the effectiveness of the UNet, some of the recently presented research is aimed at exploring or improving new architectures. For example, an architecture based on the V-Net network for segmentation. The network is made up of three pairs of encoder-decoder blocks with residual components. The architecture allows addressing the segmentation problem in 3D, a process that is limited with UNet.
Ya sean procesos de segmentación o detección de nodulos, muchos de ellos están sujetos a identificar regiones que no corresponden a nodulos reales (falsos positivos) . En consecuencia, la elim inación de los falsos positivos es un proceso inherente a la detección de los nodulos. La mayoría de las investigaciones usan redes convolucionales con conexiones completas, para generar la clasificación del nodulo, es decir, si este es un falso positivo o no. Whether they are segmentation or nodule detection processes, many of them are subject to identifying regions that do not correspond to real nodules (false positives). Consequently, the elimination of false positives is a process inherent to the detection of nodules. Most of the investigations use convolutional networks with complete connections, to generate the classification of the node, that is, if this is a false positive or not.
Con la clara identificación de los nodulos candidatos, las investigaciones se centran en discrim inar el carácter del nodulo, es decir, si estos son potenciales nodulos malignos o no. Para este caso, las investigaciones se enfocan en redes de cam ino simple o redes como trayectorias dobles o triples, tal como lo señala Apostolopoulos et al. “Experimenting with Convolutional Neural Network architectures for the automatic characterization of Solitary Pulmonary Nodules’ malignancy rating. ArXiv 2020” realiza una comparación de varias arquitecturas en donde determina que la detección de nodulos es más eficiente con redes de una única trayectoria. With the clear identification of the candidate nodules, the investigations focus on discriminating the character of the nodule, that is, if they are potential malignant nodules or not. In this case, the research focuses on single path networks or networks as double or triple paths, as indicated by Apostolopoulos et al. “Experimenting with Convolutional Neural Network architectures for the automatic characterization of Solitary Pulmonary Nodules' malignancy rating. ArXiv 2020” performs a comparison of various architectures where it determines that node detection is more efficient with single path networks.
En el estado de la técnica también se encuentran algunas patentes que ha tomado las imágenes para realizar el diagnostico de enfermedades, por el ejemplo la solicitud US2017/046839 proporciona sistemas y métodos que utilizan un marco de análisis jerárquico para identificar y cuantificar propiedades/analitos biológicos a partir de datos de formación de imágenes y luego identificar y caracterizar una o más afecciones médicas basándose en las propiedades/analitos biológicos cuantificados. En algunas realizaciones, los sistemas y métodos incorporan análisis de imágenes computarizados y algoritmos de fusión de datos con datos de biomarcadores sanguíneos y quím ica clínica del paciente para proporcionar un panel m ultifactorial que puede usarse para distinguir entre diferentes subtipos de enfermedad, lo cual hace que sea complejo que ya que no solo necesita elementos de software y hardware sino de biomarcadores sanguíneos y química clínica del paciente que son procesos adicionales a un método implementado por computador. In the state of the art there are also some patents that have taken the images to perform the diagnosis of diseases, for example the application US2017/046839 provides systems and methods that use a hierarchical analysis framework to identify and quantify biological properties / analytes from imaging data and then identify and characterize one or more medical conditions based on the quantified biological properties / analytes. In some embodiments, the systems and methods incorporate computerized image analysis and data fusion algorithms with patient blood biomarker and clinical chemistry data to provide a multifactorial panel that can be used to distinguish between different disease subtypes, which makes it complex since it requires not only software and hardware elements but patient blood biomarkers and clinical chemistry which are additional processes to a computer-implemented method.
La solicitud US2016/0196648 presenta métodos y aparatos de ejemplo que distinguen el adenocarcinoma invasivo ( IA) del adenocarcinoma no invasivo (AI S) in situ representado en una imagen de tomografía computarizada (TC) tridimensional (3D) de una región de tejido que demuestra patología cancerosa. La imagen de TC en 3D puede incluir representaciones de nodulos en vidrio deslustrado (GGN) . Los métodos y aparatos de ejemplo realizan una reconstrucción histológica 3D de cortes histológicos de una GGN y registran la reconstrucción histológica 3D con una imagen 3D CT de la GGN, combinando o “fusionando” la reconstrucción histológica 3D con la imagen 3D CT. Los métodos y aparatos de ejemplo mapean regiones de IA detectadas en la reconstrucción histológica 3D a la imagen 3D CT y extraen características de textura o forma asociadas con IA de la imagen 3D CT, no obstante, este desarrollo no perm ite evidenciar rasgos morfológicos de textura ni determ inar la estimación de intensidad de pixeles que permita garantizar todos los movimientos intermedios del procesam iento de imágenes y su transformación de un estado a otro. Application US2016/0196648 presents exemplary methods and apparatus that distinguish invasive adenocarcinoma (IA) from non-invasive adenocarcinoma (AI S) in situ depicted in a three-dimensional (3D) computed tomography (CT) image of a region of tissue demonstrating cancerous pathology. The 3D CT image may include representations of ground glass nodules (GGN). The exemplary methods and apparatus perform a 3D histology reconstruction of histology sections of a GGN and record the 3D histology reconstruction with a 3D CT image of the GGN, combining or "fusing" the 3D histology reconstruction with the 3D CT image. Example methods and apparatus map AI regions detected in the 3D histology reconstruction to the 3D CT image and extract texture or shape features associated with AI of the 3D CT image, however, this development does not allow evidencing morphological features of texture or determining the estimation of pixel intensity that allows guaranteeing all the intermediate movements of image processing and its transformation from one state to another.
Por su parte, la solicitud WO2019157214 describe sistemas, métodos, dispositivos y medios para realizar diagnósticos médicos de enfermedades y afecciones utilizando inteligencia artificial o enfoques de aprendizaje automático. Los algoritmos de aprendizaje profundo perm iten el análisis automatizado de imágenes médicas, como los rayos X, para generar predicciones de precisión comparable a las de los expertos clínicos para diversas enfermedades y afecciones, incluidas las que afectan al pulmón, como la neumonía. En algunas realizaciones, el procedim iento de aprendizaje por transferencia comprende además entrenar el modelo previamente entrenado usando un conjunto de imágenes médicas que es más pequeño que el conjunto de datos de imágenes grandes. En algunas realizaciones, el método comprende además hacer una recomendación de tratamiento médico basada en la determinación. En algunas realizaciones, la imagen médica del pulmón es una radiografía de tórax. En algunas realizaciones, la enfermedad o trastorno del pulmón se selecciona del grupo que consiste en: neumonía, neumonía infantil, enfisema, tuberculosis y cáncer de pulmón. For its part, the application WO2019157214 describes systems, methods, devices and means to perform medical diagnoses of diseases and conditions using artificial intelligence or machine learning approaches. Deep learning algorithms enable automated analysis of medical images, such as X-rays, to generate predictions with accuracy comparable to that of clinical experts for various diseases and conditions, including those affecting the lung, such as pneumonia. In some embodiments, the transfer learning method further comprises training the pretrained model using a medical image set that is smaller than the large image data set. In some embodiments, the method further comprises making a medical treatment recommendation based on the determination. In some embodiments, the medical image of the lung is a chest X-ray. In some embodiments, the lung disease or disorder is selected from the group consisting of: pneumonia, childhood pneumonia, emphysema, tuberculosis, and lung cancer.
Las tecnologías antecesoras, han pensado en resolver este problema de la caracterización de nodulos en términos de un mapa de probabilidades, sobre representaciones netamente bidimensionales. La dificultad de este tipo de enfoques, son la gran proporción en detalles que se deja de lado, al solamente acotar a procesos de clasificación netamente arbitrarias, del cual, se toma una decisión que entra en dicotomía con el método de diagnóstico de un radiólogo humano, estableciendo una afirmación que deja de lado lo invasivo de un tumor o nodulo, sobre todo en sus fases tempranas. Por lo anterior, se identificó la necesidad de imitar este comportamiento inteligente, derivado del atlas de Fleischner, donde la ingeniería actual ignora un poco las reglas exhaustivas en térm ino de la diferenciación de un tumor, bajo las características más cercanas a la realidad, tal como Fleischner lo indica. De tal modo, las probabilidades se transforman en mapas de distancias agrupadas por pixeles como un nuevo espacio de características, definiendo finalmente las fronteras diferenciadles del grado de invasividad de aquellas estructuras nodulares tempranas, resolviendo el problema de la no diferenciabilidad y obteniendo un biomarcador más confiable y menos arbitrario, para predecir posibles escenarios de tasa de crecim iento y morfología en densidad y sobre todo invasividad in situ. Previous technologies have thought of solving this problem of characterizing nodes in terms of a probability map, on purely two-dimensional representations. The difficulty of this type of approach is the large proportion of details that are left aside, by only delimiting to purely arbitrary classification processes, from which a decision is made that enters into a dichotomy with the diagnostic method of a human radiologist, establishing a statement that leaves aside the invasiveness of a tumor or nodule, especially in its early stages. Due to the above, the need to imitate this intelligent behavior was identified, derived from the Fleischner atlas, where current engineering somewhat ignores the exhaustive rules in terms of differentiating a tumor, under the characteristics closest to reality, as indicated by Fleischner. In this way, the probabilities They are transformed into maps of distances grouped by pixels as a new space of characteristics, finally defining the differential borders of the degree of invasiveness of those early nodular structures, solving the problem of non-differentiability and obtaining a more reliable and less arbitrary biomarker, to predict possible scenarios of growth rate and morphology in density and, above all, invasiveness in situ.
De acuerdo a lo anterior, los métodos empleados en la bioingeniería para hacer frente al reconocim iento de hallazgos de nodulos se centran en la descripción de grandes rasgos en clasificación superficial de estructuras tumorales o nodulares, y precariamente se correlaciona con la patología, por lo tanto, existe la necesidad de desarrollar un método y un sistema que permitan correlacionar las propiedades de causalidad invasiva y llevar a cabo la caracterización patológica desde la fase de adenocarcinoma pre invasivo hasta la invasividad ¡n situ, así como también, incluir otros estándares de diagnóstico temprano que agregan nuevos vectores de características, desde el punto de vista de inteligencia artificial, que incluyan métodos de representación multidimensional que sean capaces de resolver el problema de umbralización de riesgo temprano y salvar vidas. According to the above, the methods used in bioengineering to deal with the recognition of nodule findings focus on the description of broad features in superficial classification of tumor or nodular structures, and poorly correlates with pathology, therefore, there is a need to develop a method and a system that allows correlating the properties of invasive causality and carrying out pathological characterization from the pre-invasive adenocarcinoma phase to invasiveness itself. tu, as well as include other early diagnosis standards that add new feature vectors, from the point of view of artificial intelligence, that include multidimensional representation methods that are capable of solving the early risk thresholding problem and saving lives.
BREVE DESCRI PCI ÓN DE LA I NVENCI ÓN BRIEF DESCRIPTION OF THE I NVENTION
El método y sistema para caracterizar tumores pulmonares (sólidos, subsólidos y vidrio esmerilado) basado en criterios invasivos mediante distancia pixelar y algoritmos de aprendizaje profundo en TACS de la invención presenta los análisis de densidades y rasgos morfológicos de los nodulos, como una respuesta al cálculo de estimaciones sobre el factor invasivo, dado que los desarrollos actuales carecen del mapeo de esta importante característica natural en el ejercicio de la radiología en estudios de tórax, aplicados a pulmón. The method and system for characterizing lung tumors (solid, subsolid and ground glass) based on invasive criteria by means of pixel distance and deep learning algorithms in CT scans of the invention presents the analysis of densities and morphological features of the nodules, as a response to the calculation of estimates on the invasive factor, since current developments lack the mapping of this important natural characteristic in the practice of radiology in studies of the thorax, applied to the lung.
También, involucra la sinergia entre algoritmos de aprendizaje no lineales como las redes neuronales con enfoques aprendizaje profundo, que trabajan directamente en la consecución de características naturales sin procesos externos de aumento de rasgos patológicos, con la diferencia de lograr una nueva la integración entre un mecanismo no supervisado en virtud de lograr los pares de pixeles por agrupamiento o clusterización, denom inado mapas de distancias pixelares, mediante métodos como; K-medias o las máquinas de Boltzmann o afines, presentado la caracterización de las estructuras tumorales y umbralización de una nueva escala de riesgo basada en el factor invasivo. Also, it involves the synergy between non-linear learning algorithms such as neural networks with deep learning approaches, which work directly to achieve natural characteristics without external processes of increasing pathological traits, with the difference of achieving a new integration between an unsupervised mechanism by virtue of achieving pixel pairs by grouping or clustering, called pixel distance maps, through methods such as; K-means or Boltzmann or similar machines, presented the characterization of tumor structures and thresholding of a new risk scale based on the invasive factor.
La caracterización de distancias por grupo de pixeles perm ite la representación final del mapa de distancias con una fina conformación de la estructura tumoral, diferenciando el factor invasivo del resto de la estructura en densidad para realizar labores de umbralización de riesgo temprano, estableciendo protocolos de manejo ante la agresividad inminente de un nodulo o tumor. The characterization of distances by group of pixels allows the final representation of the distance map with a fine conformation of the tumor structure, differentiating the invasive factor from the rest of the structure in density to perform early risk thresholding tasks, establishing management protocols in the face of imminent aggressiveness of a nodule or tumor.
La presente solicitud presenta un método para caracterizar tumores pulmonares basado en criterios invasivos mediante distancia pixelar y algoritmos de aprendizaje profundo que comprende: i. Recibir las imágenes de tomografía axial computarizada de tórax de sujetos que m uestran lesiones, nodulos o tumores pulmonares o cualquier tipo de anomalía; This application presents a method to characterize lung tumors based on invasive criteria using pixel distance and deep learning algorithms comprising: i. Receive chest computed tomography images of subjects that show lesions, nodules or lung tumors or any type of anomaly;
¡i. Determinar el volumen de la estructura tumoral de las imágenes de tórax de la región de interés; iii. Segmentar la representación de voxeles por medio de un algoritmo de aprendizaje; iv. Determinar la volumetría final proyectada; v. Calcular los mapas de distancias mediante un segundo algoritmo de clasificación no supervisada; vi. Crear la matriz de entrenam iento de las características estructurales de los nodulos o tumores y el vector de distancia; vii. Determinar el biomarcador de invasividad; y viii. Determinar el riesgo del nodulo. Yo. Determine the volume of the tumor structure from the chest images of the region of interest; iii. Segment the voxel representation by means of a learning algorithm; iv. Determine the projected final volumetry; v. Calculate the distance maps using a second unsupervised classification algorithm; saw. Create the training matrix of the structural characteristics of the nodules or tumors and the distance vector; vii. Determine the biomarker of invasiveness; and viii. Determine the risk of the nodule.
Otro aspecto de la presente invención proporciona un sistema que incluye un dispositivo de formación de imágenes para formar imágenes de un objetivo; al menos un procesador con un visor con un archivo no vinculado a ningún proveedor o modalidad de reconstrucción de tomografía axial computacional (TACs) en tórax; una base de datos; una memoria acoplada al menos un procesador; comprendiendo la memoria instrucciones ejecutables por computador que, cuando son ejecutadas por el al menos un procesador, realiza un método que comprende: i. Recibir las imágenes de tomografía axial computarizada de tórax de sujetos que muestran lesiones, nodulos o tumores pulmonares o cualquier tipo de anomalía; Another aspect of the present invention provides a system including an imaging device for imaging a target; at least one processor with a viewer with a file not linked to any CT reconstruction modality or provider (CT scans) in the thorax; a data base; a memory coupled to at least one processor; the memory comprising computer-executable instructions that, when executed by the at least one processor, performs a method comprising: i. Receive chest computed tomography images of subjects showing lung lesions, nodules or tumors or any type of abnormality;
¡i. Determinar el volumen de la estructura tumoral de las imágenes de tórax de la región de interés; iii. Segmentar la representación de voxeles por medio de un algoritmo de aprendizaje; iv. Determinar la volumetría final proyectada; v. Calcular los mapas de distancias mediante un segundo algoritmo de clasificación no supervisada; vi. Crear la matriz de características de las estructuras de los nodulos o tumores con el vector de distancia; vii. Determinar el biomarcador de invasividad; y viii. Determinar el riesgo del nodulo. Yo. Determine the volume of the tumor structure from the chest images of the region of interest; iii. Segment the voxel representation by means of a learning algorithm; iv. Determine the projected final volumetry; v. Calculate the distance maps using a second unsupervised classification algorithm; saw. Create the matrix of characteristics of the structures of the nodules or tumors with the distance vector; vii. Determine the biomarker of invasiveness; and viii. Determine the risk of the nodule.
DESCRI PCI ÓN DE LAS Fl GURAS DESCRIPTION OF THE FIGURES
Para poner en claro adicionalmente las ventajas anteriores y otras características de la presente invención, una descripción particular de la invención será presentada con referencia a las modalidades específicas de la m isma que se ¡lustra en las figuras adjuntas. Se aprecia que estas figuras representan únicamente modalidades típicas de la invención y, por lo tanto, no se consideran limitantes de su alcance. In order to further clarify the above advantages and other features of the present invention, a particular description of the invention will be presented with reference to the specific embodiments thereof which are illustrated in the attached figures. It is appreciated that these figures represent only typical embodiments of the invention and are therefore not considered as limiting in scope.
La Figura 1 m uestra la clasificación de lesiones nodulares bajo parámetros: geométricos, morfológicos y topológicos, así como también, su correlación con factores en densidades. Figure 1 shows the classification of nodular lesions under parameters: geometric, morphological and topological, as well as their correlation with density factors.
La Figura 2 muestra el visor VNA de I ndira® para una tomografía axial computarizada en estudios de toráx en patologías oncológicas de pulmón. La Figura 3 m uestra las etapas 1 a 4 del método para caracterizar tumores pulmonares (sólidos, subsólidos y vidrio esmerilado) basado en criterios invasivos mediante distancia pixelar y algoritmos de aprendizaje profundo en TACS. Figure 2 shows the Indira® VNA viewer for a computed tomography in chest studies in lung cancer pathologies. Figure 3 shows steps 1 to 4 of the method to characterize lung tumors (solid, subsolid, and ground glass) based on invasive criteria using pixel distance and deep learning algorithms in CT scans.
La Figura 4 m uestra las etapas 4 a 7 del método para caracterizar tumores pulmonares (sólidos, subsólidos y vidrio esmerilado) basado en criterios invasivos mediante distancia pixelar y algoritmos de aprendizaje profundo en TACS. Figure 4 shows steps 4 to 7 of the method to characterize lung tumors (solid, subsolid, and ground glass) based on invasive criteria using pixel distance and deep learning algorithms in CT scans.
La Figura 5 m uestra las etapas 7 y 8 del método para caracterizar tumores pulmonares (sólidos, subsólidos y vidrio esmerilado) basado en criterios invasivos mediante distancia pixelar y algoritmos de aprendizaje profundo en TACS. Figure 5 shows stages 7 and 8 of the method to characterize lung tumors (solid, subsolid, and ground glass) based on invasive criteria using pixel distance and deep learning algorithms in CT scans.
La Figura 6 m uestra el sistema para caracterizar tumores pulmonares (sólidos, subsólidos y vidrio esmerilado) basado en criterios invasivos mediante distancia pixelar y algoritmos de aprendizaje profundo en TACS. Figure 6 shows the system for characterizing lung tumors (solid, subsolid, and ground glass) based on invasive criteria using pixel distance and deep learning algorithms in CT scans.
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN DETAILED DESCRIPTION OF THE INVENTION
I . INTRODUCCIÓN Y DEFINICIONES YO . INTRODUCTION AND DEFINITIONS
La presente invención se relaciona a sistema y métodos para caracterizar tumores pulmonares (sólidos, subsólidos y vidrio esmerilado) basado en criterios invasivos mediante distancia pixelar y algoritmos de aprendizaje profundo en tomografía axial computarizada (TACs) . The present invention relates to a system and methods to characterize lung tumors (solid, subsolid and ground glass) based on invasive criteria using pixel distance and deep learning algorithms in computed axial tomography (CT scans).
El término “nodulo pulmonar” se refiere a una imagen de lesiones pulmonares o pleurales que se superponen a las estructuras normales con un desarrollo más o menos sim ilar en las tres dimensiones del espacio. Caracterizándose por presentar un área de aumento de atenuación, redondeada u oval, que no supera los tres centímetros de diámetro. Es así como, dependiendo de la densidad tomográfica, estos nodulos pulmonares pueden clasificarse como sólidos, subsólidos o vidrio esmerilado. The term “pulmonary nodule” refers to an image of pulmonary or pleural lesions superimposed on normal structures with a more or less similar development in all three dimensions of space. Characterized by presenting an area of increased attenuation, rounded or oval, that does not exceed three centimeters in diameter. This is how, depending on the density Tomographically, these pulmonary nodules can be classified as solid, subsolid, or ground glass.
El término “nodulos de vidrio esmerilado” se refiere a un área de aumento de atenuación focal que no oculta ni impide ver los vasos subyacentes. The term “ground glass nodules” refers to an area of focal attenuation magnification that does not obscure or obscure the underlying vessels.
El térm ino “nodulos sólidos” se refiere a un área de aumento de atenuación, debido a un colapso del espacio aéreo, que impide ver las estructuras subyacentes del parénquima pulmonar normal. The term “solid nodules” refers to an area of increased attenuation, due to a collapse of the airspace, which prevents seeing the underlying structures of the normal lung parenchyma.
El térm ino “nodulos de subsólidos” se refiere a los nodulos en los cuales se presenta una apariencia mixta, es decir, además del componente de vidrio esmerilado presenta una porción sólida variable. The term "subsolid nodules" refers to nodules in which there is a mixed appearance, that is, in addition to the ground glass component, there is a variable solid portion.
El térm ino “I nvasividad” se refiere a el grado de dureza de la estructura tumoral, dado que m ientras más consolidados estén el grupo de pixeles (mayor intensidad - evidencia de dureza) , tiene más correlación de pertenencia a la categoría de malignidad de una estructura tumoral o nodular. The term "Invasiveness" refers to the degree of hardness of the tumor structure, given that the more consolidated the group of pixels (greater intensity - evidence of hardness), the higher the correlation of belonging to the category of malignancy of a tumor or nodular structure.
El térm ino “Aprendizaje profundo (Deep learning)” se refiere al paradigma de la inteligencia artificial, que usa redes neuronales como principio activo y su gran contribución es disponer de un conjunto grande de estas redes, con m uchas capas profundas para maxim izar su comportamiento complejo y obtener un mejor rendim iento. The term "Deep learning" refers to the paradigm of artificial intelligence, which uses neural networks as an active principle and its great contribution is to have a large set of these networks, with many deep layers to maximize their complex behavior and obtain better performance.
El térm ino “TACs” se refiere a la modalidad o hardware de Tomografía Axial Computarizada, donde esboza la posibilidad de escanear la estructura del cuerpo objeto de estudio, a través de varios cortes transversales al órgano, a través de rayos x, con la gran propiedad de acotar a una escala que perm ite diferenciar estructuras de tejido, fluido y hueso, denominado unidades Hounsfield. The term "CTs" refers to the modality or hardware of Computed Axial Tomography, where it outlines the possibility of scanning the structure of the body under study, through several cross sections of the organ, through x-rays, with the great property of delimiting to a scale that allows differentiating tissue, fluid and bone structures, called Hounsfield units.
El término “Tamizaje” hace referencia al conjunto de métodos o prácticas que se le aplican a la población, con la necesidad de estudiar enfermedades y detectar a tiempo complicaciones. El térm ino “LUNG- RADS” hace referencia al proceso de tamizaje que se le realiza a un conjunto de personas para detectar a tiempo patologías orientadas a potenciales cánceres de pulmón. The term "Screening" refers to the set of methods or practices that are applied to the population, with the need to study diseases and detect complications in time. The term “LUNG-RADS” refers to the screening process that is carried out on a group of people to detect pathologies oriented to potential lung cancers in time.
El término “Glosario o Altas de Fleischner” hace referencia a un atlas de información de buenas prácticas y abordaje de hallazgos, en relación con m últiples patologías orientadas a cánceres entre otros. The term "Glossary or Fleischner Altas" refers to an atlas of information on good practices and approach to findings, in relation to multiple pathologies oriented to cancers, among others.
El término “Biomarcador predictivo” hace referencia a un indicador biológico que da indicios de algún evento patológico, así como también, cuando dichos indicadores se manifiestan es posible utilizar aproximaciones estadísticas o matemáticas, para predecir su comportam iento. The term "predictive biomarker" refers to a biological indicator that gives indications of a pathological event, as well as, when these indicators are manifested, it is possible to use statistical or mathematical approximations to predict their behavior.
El término “Sistema de inteligencia artificial” hace referencia a una aplicación o software, que posee un algoritmo capaz de im itar un comportamiento inteligente de una tarea en concreto. The term "Artificial Intelligence System" refers to an application or software that has an algorithm capable of imitating the intelligent behavior of a specific task.
El térm ino de “Umbralización” hace referencia a la posibilidad de acotar valores a un umbral o rango definido. The term “threshold” refers to the possibility of delimiting values to a defined threshold or range.
El térm ino “Estructuras de adenocarcinoma” es una formación de tejido glandular que se ubica en los órganos internos, del cual está presente en la mayoría de los cánceres. The term “Adenocarcinoma structures” is a formation of glandular tissue that is located in the internal organs, of which is present in most cancers.
El térm ino “Estructuras de cánceres escamocelulares”, hace referencia a la clasificación de los cánceres de célula no pequeña, que para este caso se analiza el pulmón, donde se tiene su categoría y probabilidad de ocurrencia: Carcinoma de células escamosas (25% de los cánceres de pulmón) , adenocarcinoma (40% de los cánceres de pulmón) y carcinoma de células grandes ( 10% de los cánceres de pulmón) . The term "Structures of squamous cell cancers" refers to the classification of non-small cell cancers, which in this case analyzes the lung, where there is its category and probability of occurrence: Squamous cell carcinoma (25% of lung cancers), adenocarcinoma (40% of lung cancers) and large cell carcinoma (10% of lung cancers).
El térm ino “Estructuras indiferenciadas”, hace referencia a las formaciones de sospecha tumoral, donde sus características desde el punto de vista de las imágenes médicas no tienen una manera de diferenciación clara en el término de la intensidad del objeto de estudio en relación con su entorno, con bordes totalmente difusos que difícilmente se diferencia de otras formaciones u órganos de su entorno. The term "Undifferentiated structures" refers to suspected tumor formations, where their characteristics from the point of view of medical images do not have a clear way of differentiation in terms of the intensity of the object of study in relation to its environment, with edges totally diffuse that hardly differs from other formations or organs in its environment.
“Archivo no vinculado a ningún proveedor en ingles Vendor Neutral Archive (VNA)” se trata de una aplicación que almacena imágenes médicas en un formato estándar con una interfaz estándar. Por lo tanto, se puede acceder a las imágenes almacenadas en VNA a través de cualquier estación de trabajo, independientemente del proveedor. “Vendor Neutral Archive (VNA) is an application that stores medical images in a standard format with a standard interface. Therefore, images stored in VNA can be accessed through any workstation, regardless of vendor.
“Región de interés del inglés Region Of I nterest (ROI)” es un volumen con niveles de intensidad (niveles de gris) y posiciones en los tres ejes ordenados. “English Region Of Interest (ROI)” is a volume with intensity levels (gray levels) and positions on the three ordered axes.
El térm ino “Agrupación o Pooling” en el paradigma de la inteligencia artificial, hace referencia al proceso de agrupar píxeles en una imagen. The term “Group or Pooling” in the artificial intelligence paradigm refers to the process of grouping pixels in an image.
El término “MaxPool” en el paradigma de la inteligencia artificial, hace referencia a obtener los valores máximos de un grupo de pixeles determ inado. The term "MaxPool" in the artificial intelligence paradigm refers to obtaining the maximum values of a determined group of pixels.
El término “convolución” hace referencia a un modelo matemático con la capacidad de realzar características de una imagen específica. The term "convolution" refers to a mathematical model with the ability to enhance features of a specific image.
El término “Convolución transpuesta” hace referencia a un modelo matemático con la capacidad de realzar el inverso de las características de una imagen específica, con criterios de bordes, contornos, curvas y contrastes. The term "Transposed Convolution" refers to a mathematical model with the ability to enhance the inverse of the characteristics of a specific image, with criteria of edges, contours, curves and contrasts.
El térm ino “Up-conv” en el paradigma de la inteligencia artificial es el sinónimo de la convolución. The term “Up-conv” in the artificial intelligence paradigm is synonymous with convolution.
El térm ino “Mapas de características” en inteligencia artificial se utiliza para referirse a una matriz que almacena características de una imagen, donde aquellas características son el grupo de bordes, contornos, curvas y demás atributos de una imagen. El término “kernel”, toma un pequeño segmento de una matriz, para posteriormente aplicar alguna transformación con alguno de los métodos anteriormente mencionados. Es especialmente útil para evitar el alto coste computacional al proyectar un pequeño segmento de la imagen e ir mapeando toda la imagen mediante esta ventana o kernel movible. The term “Feature Maps” in artificial intelligence is used to refer to an array that stores features of an image, where those features are the set of edges, contours, curves, and other attributes of an image. The term "kernel" takes a small segment of a matrix, to later apply some transformation with one of the previously mentioned methods. It is especially useful to avoid the high computational cost of projecting a small segment of the image and mapping the entire image through this movable window or kernel.
El térm ino “zancada de desplazam iento”, hace referencia al movimiento que mapea una imagen a través de saltos entre píxeles con unidades que pueden incrementar cada 2, 4, 6, 8, o 1 , 3, 5 y 7 píxeles. The term “scrolling stride” refers to the movement that maps an image through jumps between pixels with units that can increment every 2, 4, 6, 8, or 1, 3, 5, and 7 pixels.
El térm ino “strides”, es el sinónimo o la manera de llamarlo en inglés del término anterior denom inado “zancada de desplazam iento”. The term “strides” is the synonym or the way of calling it in English of the previous term called “displacement stride”.
El térm ino “Producto Hadamard”, es una manera de operar matrices y vectores matemáticamente, de forma que cada térm ino se m ultiplique 1 a 1 respecto al otro. The term “Hadamard Product” is a way of operating matrices and vectors mathematically, so that each term is multiplied 1 to 1 with respect to the other.
El térm ino “sistemas de tipo RIS-PACS”, hace referencia a un sistema aplicado a unidades de imágenes médicas que perm ite saber el estatus del paciente desde que entra en la unidad hospitalaria denominada RIS, así como también, otro sistema que se encarga de almacenar las imágenes denominado PACS. The term "RIS-PACS type systems" refers to a system applied to medical imaging units that allows knowing the status of the patient from the moment they enter the hospital unit called RIS, as well as another system that is responsible for storing the images called PACS.
1 1 . MÉTODO PARA CARACTERI ZAR TUMORES PULMONARES eleven . METHOD FOR CHARACTERIZING LUNG TUMORS
La invención tiene como fundamento los marcadores de diagnóstico que se utilizan usualmente en la práctica clínica, mediante los atlas de tam izaje como el LUNG-RADS, donde la conformación geométrica tiene un significado de umbral de riesgo, al evidenciar aquellas formaciones circulares, ovoides, lobuladas, poli-lobuladas y espiculares, como factores predictivos en correlación al índice de benignidad o malignidad de una estructura nodular o tumoral temprana. En la Figura 1 se m uestra la clasificación de lesiones nodulares bajo parámetros: geométricos, morfológicos y topológicos, así como también, su correlación con factores en densidades, evidenciando los atributos de clasificación del glosario de Fleischner. De Io anterior, se evidencia las categorías que correlacionan los tipos de nodulos tales como: sólido, subsólido (no sólido o vidrio esmerilado, parcialmente sólido) , con el ánimo de mapear el proceso de transformación de un nodulo y evidenciar sus diferentes cambios de estado, en relación a la intensidad de pixeles que evalúan el grado de invasividad, como un biomarcador predictivo que puede ser mapeado densamente por un sistema de inteligencia artificial, a través del cálculo de la distancia pixelar por agrupación de pixeles, en correlación al índice de invasividad del nodulo o tumor, con la motivación de realizar una estimación o predicción de los movim ientos intermedios de las fases del tumor, umbralizado a clases de riesgo. The invention is based on the diagnostic markers that are usually used in clinical practice, through screening atlases such as the LUNG-RADS, where the geometric conformation has a risk threshold meaning, by evidencing those circular, ovoid, lobulated, poly-lobulated and spicular formations, as predictive factors in correlation to the benign or malignant index of a nodular or early tumor structure. Figure 1 shows the classification of nodular lesions under parameters: geometric, morphological and topological, as well as their correlation with density factors, evidencing the classification attributes of the Fleischner glossary. From the above, the categories that correlate the types of nodules such as: solid, subsolid (not solid or frosted glass, partially solid) are evidenced, with the aim of mapping the transformation process of a nodule and evidencing its different changes of state, in relation to the intensity of pixels that evaluate the degree of invasiveness, as a predictive biomarker that can be densely mapped by an artificial intelligence system, through the calculation of the pixel distance per grouping of pixels, in correlation to the invasiveness index of the nodule or tumor, with the aim of estimating or predicting the intermediate movements of the tumor phases, thresholded to risk classes.
La caracterización de nodulos incidentales consiste en el mapeo denso de las distancias pixelares por agrupación, aplicadas al segmento de cáncer de célula no pequeña, como: estructuras de adenocarcinoma, estructuras de cánceres escamocelulares, así como también las estructuras indiferenciadas. Lo anterior, se realiza con la motivación de reconocim iento de patrones tempranos, donde se explota las propiedades más reproducidles de las volumetrías en TACs, así como también, los rasgos morfológicos y geométricos, dado que las distancias de agrupam iento de cada categoría de una estructura tumoral, implementando una frontera de decisión bastante evidente y robusta, obteniendo un nuevo umbral de riesgo basado en la interpretación de dicho grupo de pixeles, mediante el atlas de Fleischner, donde los desarrollos actuales de inteligencia artificial, sientan sus bases sobre procesos de tamizaje tal como LUNG-RADS. The characterization of incidental nodules consists of the dense mapping of pixel distances by clustering, applied to the non-small cell cancer segment, such as: adenocarcinoma structures, squamous cell cancer structures, as well as undifferentiated structures. The foregoing is done with the motivation of recognizing early patterns, where the most reproducible properties of the volumetrics in CTs are exploited, as well as the morphological and geometric features, given that the grouping distances of each category of a tumor structure, implementing a fairly evident and robust decision border, obtaining a new risk threshold based on the interpretation of said group of pixels, through the Fleischner atlas, where current developments in artificial intelligence establish its bases on screening processes such as LUNG-RADS.
El mapeo denso del comportam iento o flujo de proceso activo de un tumor incidental, se realiza mediante mapas de distancia que dejan al descubierto el patrón de invasividad de dicha estructura, del cual usualmente se tiene un nodulo no sólido o con densidad de vidrio esmerilado, evidenciando un aumento de tamaño en la trazabilidad, apareciendo un componente subsólido como una característica de adenocarcinoma invasivo, haciendo evidente algunos patrones morfológicos que se correlacionan con la agresividad e invasividad del tumor. Morfológicamente, lo invasivo es el grupo de pixeles con mayor intensidad, donde clínicamente se debe obtener esta medida y muchas veces hay imprecisiones en éstas, respecto a sus fases tempranas. Si se obtienen imprecisiones, dichas estructuras no sólidas o en vidrio esmerilado, tiende a dism inuir dicho patrón transformándose rápidamente en una formación invasiva a razón de una tasa de crecim iento de dos a tres meses, aumentando su tamaño al doble y reflejando un mayor índice de agresividad en correlación a su factor invasivo, teniendo como resultado un alto nivel de riesgo por medio de la evidencia de un componente sólido, del cual, el sistema establece un vector de distancias que será capaz de obtener nuevas medidas, brindando una frontera discrim inante o diferenciadle, del índice de invasividad en estadios tempranos para realizar predicciones más finas, teniendo en cuenta el grado de agresividad implícito en el factor invasivo de un nodulo o tumor. The dense mapping of the behavior or active process flow of an incidental tumor is made by means An with the aggressiveness and invasiveness of the tumor. Morphologically, the invasive is the group of pixels with the highest intensity, where clinically this measurement must be obtained and often there are inaccuracies in these, with respect to their early phases. If inaccuracies are obtained, said non-solid or ground glass structures tend to decrease said pattern, quickly transforming into an invasive formation at a growth rate of two to three months, doubling its size and reflecting a higher rate of aggressiveness in correlation to its invasive factor, resulting in a high level of risk through the evidence of a solid component, of which the system establishes a distance vector that will be able to obtain new measurements, providing a clear frontier. crim inant or differential, of the invasiveness index in early stages to make finer predictions, taking into account the degree of aggressiveness implicit in the invasive factor of a nodule or tumor.
La presente solicitud presenta un método para caracterizar tumores pulmonares basado en criterios invasivos mediante distancia pixelar y algoritmos de aprendizaje profundo que comprende: i. Recibir las imágenes de tomografía axial computarizada de tórax de sujetos que m uestran lesiones, nodulos o tumores pulmonares o cualquier tipo de anomalía; This application presents a method to characterize lung tumors based on invasive criteria using pixel distance and deep learning algorithms comprising: i. Receive chest computed tomography images of subjects that show lesions, nodules or lung tumors or any type of anomaly;
¡i. Determinar el volumen de la estructura tumoral de las imágenes de tórax de la región de interés; iii. Segmentar la representación de voxeles por medio de un algoritmo de aprendizaje; iv. Determinar la volumetría final proyectada; v. Calcular los mapas de distancias mediante un segundo algoritmo de clasificación no supervisada; vi. Crear la matriz de entrenam iento de las características estructurales de los nodulos o tumores y el vector de distancia; vii. Determinar el biomarcador de invasividad; y viii. Determinar el riesgo del nodulo. Yo. Determine the volume of the tumor structure from the chest images of the region of interest; iii. Segment the voxel representation by means of a learning algorithm; iv. Determine the projected final volumetry; v. Calculate the distance maps using a second unsupervised classification algorithm; saw. Create the training matrix of the structural characteristics of the nodules or tumors and the distance vector; vii. Determine the biomarker of invasiveness; and viii. Determine the risk of the nodule.
Las imágenes de las tomografías axiales computarizadas (TACs) , resonancias magnéticas, mamografías y/o ecografías de tórax de sujetos que m uestran lesiones, nodulos o tumores pulmonares o cualquier tipo de anomalía se almacenan en una base de datos ( 1 ) en donde se tiene identificado al paciente junto con su historia clínica. Images from CT scans, MRIs, mammograms, and/or chest ultrasounds of subjects that show lesions, nodules or lung tumors or any type of anomaly are stored in a database ( 1 ) where the patient is identified together with his medical history.
En relación con las imágenes de tórax estas deben cumplir con unas características iniciales de tener un área de proyección del pulmón y tejidos blandos circundantes, sin proyecciones de máxima intensidad o demás filtros, ya que esto puede conducir a errores en la siguiente etapa. In relation to the chest images, these must comply with some initial characteristics of having a projection area of the lung and surrounding soft tissues, without maximum intensity projections or other filters, since this can lead to errors in the next stage.
Las imágenes podrán visualizarse con cualquier visor con un archivo no vinculado a ningún proveedor (VNA) tal como se m uestra en la Figura 2, donde se expone el visor de I NDI RA®, que aplica dicha tecnología a estudios de tórax en patologías oncológicas de pulmón, en esta figura se observa una representación visual con una segmentación de enmascaramiento, para que sea más evidente para el profesional en radiología o especializado en oncología. The images can be viewed with any viewer with a file not linked to any provider (VNA) as shown in Figure 2, where the I NDI RA® viewer is shown, which applies this technology to studies of the thorax in lung oncology pathologies. In this figure, a visual representation with masking segmentation is observed, to make it more evident for the professional in radiology or specialized in oncology.
El m ismo principio funcional podrá ser aplicado para trastornos de vías respiratorias, donde las neumonías virales como COVI D- 19, puede tener patrones de reconocimiento difusos, como el vidrio esmerilado, así como también, la consolidación pulmonar y patrón de empedrado (Crazy Paving) , donde se han realizado pruebas de segmentación sobre regiones no diferenci ables. The same functional principle can be applied to respiratory disorders, where viral pneumonias such as COVI D-19, can have diffuse recognition patterns, such as ground glass, as well as lung consolidation and Crazy Paving, where segmentation tests have been performed on non-differentiable regions.
Por lo anterior, un visor VNA es una de las formas más eficientes de visualizar las tomografías, dado que se conecta de una manera sinérgica con el canal visual de los especialistas, aumentando las capacidades médico-analíticas en procesos de diagnóstico complementario. Therefore, a VNA viewer is one of the most efficient ways to visualize tomographies, since it connects synergistically with the visual channel of specialists, increasing medical-analytical capabilities in complementary diagnostic processes.
Continuando con la descripción de las etapas del método de la invención, tal como se observa en la Figura 3, se tiene que la etapa de determ inar el volumen de la estructura tumoral de las imágenes de tórax se realiza mediante la proyección de parches 3D de la región de interés (ROI) , la cual toma cortes de representación en vóxeles garantizando el volumen generalizado del tumor, mostrando un cuadrado en 2D que será segmentado por un algoritmo de aprendizaje. Continuing with the description of the stages of the method of the invention, as can be seen in Figure 3, the stage of determining the volume of the tumor structure from the chest images is performed by projecting 3D patches of the region of interest (ROI), which takes voxel representation slices guaranteeing the generalized volume of the tumor, showing a 2D square that will be segmented by a learning algorithm.
En la misma Figura 3, se muestra en una realización preferida, la etapa de segmentar la representación de voxeles por medio de un algoritmo de aprendizaje, en la que se aplica un algoritmo de redes de aprendizaje profundo de tipo codificador-decodificador (Encoder - Decoder) , donde el apilamiento de los filtros convolucionales perm ite destacar las características del nodulo en relación con su morfología y contorno. In the same Figure 3, it is shown in a preferred embodiment, the stage of segmenting the representation of voxels by means of a learning algorithm, in which a deep learning network algorithm of the encoder-decoder type (Encoder - Decoder) is applied, where the stacking of the convolutional filters allows highlighting the characteristics of the node in relation to its morphology and contour.
El algoritmo de redes de aprendizaje profundo realiza una segmentación de regiones de interés, tales como lesiones, tejidos tumorales o cualquier tipo de anomalía, las cuales se demarcan mediante un biomarcador de enmascaramiento. En esta realización preferida, se aplica una arquitectura como la red U-Net, la cual es la base fundamental en las redes de segmentación, dado que perm ite preservar la distribución espacial de la imagen al tiempo que extrae las características de esta. The deep learning network algorithm performs a segmentation of regions of interest, such as lesions, tumor tissues or any type of anomaly, which are demarcated by a masking biomarker. In this preferred embodiment, an architecture such as the U-Net network is applied, which is the fundamental base in segmentation networks, since it allows preserving the spatial distribution of the image while extracting its characteristics.
La red U-Net consta de dos elementos principales: un codificador y un decodificador. El codificador toma la imagen de entrada y la convoluciona, generando mapas de características cada vez más complejos a medida que se adentra en la red. Además, las capas convolucionales se combinan con capas de agrupación para reducir el tamaño de los mapas y, por tanto, la carga computacional. The U-Net network consists of two main elements: an encoder and a decoder. The encoder takes the input image and convolves it, generating increasingly complex feature maps as it goes further into the network. Furthermore, convolutional layers are combined with pooling layers to reduce the size of the maps and thus the computational load.
Asim ismo, en la Figura 3, se observa un ejemplo de realización de la etapa 3, donde la red profunda neuronal convolucional, que tal como se ha indicado puede ser la red U-net, cuenta con un codificador y un decodificador, que se dividen en subetapas. Cada subetapa se conforma por una serie de capas convolucionales antes de cambiar el tamaño de los mapas de características a través del agrupamiento (MaxPool) o la convolución transpuesta (Up-conv) . El MaxPool y el Up-conv hacen parte del codificador y decodificador respectivamente. En la primera subetapa y en la primera convolución, la imagen de entrada se puede representar como tres matrices o tres mapas de características, donde dichos mapas corresponden a las tres matrices de intensidad de los canales rojo, verde y azul (imagen RGB) . Por consiguiente, cada j-ésimo mapa de característica (Aj), generado en la primera convolución, estaría dado por la ecuación ( 1 ) .
Figure imgf000020_0001
Likewise, in Figure 3, an example of implementation of stage 3 is observed, where the convolutional neural deep network, which, as indicated, can be the U-net network, has an encoder and a decoder, which are divided into substages. Each substage is made up of a number of convolutional layers before resizing the feature maps via pooling (MaxPool) or transposed convolution (Up-conv). The MaxPool and the Up-conv are part of the encoder and decoder respectively. In the first substep and in the first convolution, the input image can be represented as three matrices or three feature maps, where said maps correspond to the three intensity matrices of the red, green and blue channels (RGB image). Therefore, each j-th feature map (A j ), generated in the first convolution, would be given by equation ( 1 ) .
Figure imgf000020_0001
Donde, es la imagen de entrada en el Z-ésimo mapa de características de los M canales que la conforman (En este caso, M = 3) . Ky es el kernel o filtro convolucional correspondiente al j-ésimo mapa de características. El filtro generalmente cuenta con un tamaño de 3 x 3 y debe tener la m isma profundidad que la entrada, es decir, debe tener el m ismo número de canales que X¡. bj es el sesgo adicionado a la convolución del j-ésimo mapa de características y f es la función de activación de esta capa convolucional. Where, is the input image in the Z-th feature map of the M channels that make it up (In this case, M = 3). Ky is the kernel or convolutional filter corresponding to the j-th feature map. The filter is generally 3 x 3 in size and must have the same depth as the input, ie it must have the same number of channels as . b j is the bias added to the convolution of the j-th feature map and f is the activation function of this convolutional layer.
En la segunda subetapa de la etapa de segmentar la representación de voxeles por medio de un algoritmo de aprendizaje, se tiene una segunda capa convolucional, a la que se aplica las mismas condiciones de la anterior subetapa, no obstante, la entrada de dicha capa es la salida de la capa anterior. El proceso iterativo del algoritmo de aprendizaje se repite de manera similar a lo largo de todas las convoluciones, por consiguiente, se puede representar el j-ésimo mapa de características de la Z-ésima capa convolucional como se muestra en las ecuaciones (2) y (3) .
Figure imgf000020_0002
In the second substage of the stage of segmenting the voxel representation by means of a learning algorithm, there is a second convolutional layer, to which the same conditions of the previous substage are applied, however, the input of said layer is the output of the previous layer. The iterative process of the learning algorithm is repeated in a similar way throughout all the convolutions, therefore, the j-th feature map of the Z-th convolutional layer can be represented as shown in equations (2) and (3).
Figure imgf000020_0002
Donde A(ɩ) son todos los mapas de características generados en la capa Z-ésima de la red neuronal convolucional. Entonces, en la primera subetapa, la red utiliza una operación de agrupamiento después de dos operaciones convolucionales. La operación de agrupamiento (Pooling) es sim ilar a las capas convolucionales, es decir, estas capas generan un único valor para una ventana (αճx ,ճy) que se desplaza por la imagen. La ventana puede tener cualquier tamaño y zancada de desplazam iento. Sin embargo, el tamaño más utilizado es el de 2x 2 con zancadas de 2. La operación realizada con estos parámetros reduce a la m itad el tamaño de los mapas de características conservando el número total de estos, dicho proceso se puede regir por la ecuación (4) para cada j-ésimo mapa.
Figure imgf000021_0001
Where A (ɩ) are all the feature maps generated in the Z-th layer of the convolutional neural network. So, in the first substage, the network uses a cluster operation after two convolutional operations. The pooling operation (Pooling) is similar to convolutional layers, that is, these layers generate a single value for a window (α τx , τy ) that scrolls through the image. The window can be any size and any scroll step. However, the most widely used size is 2x2 with strides of 2. The operation carried out with these parameters reduces the size of the feature maps in half while preserving the total number of these; this process can be governed by equation (4) for each j-th map.
Figure imgf000021_0001
Donde aSx Sy es la ventana conformada por los pixeles de las posiciones combinadas de 8x y 8y. Además, r y c son las posiciones de los pixeles que varían hasta la m itad del tamaño de los mapas de entrada. Por consiguiente, la salida de la Z-ésima capa de agrupam iento estaría dada por el conjunto de todos los mapas de características reducidos, tal como se m uestra en la ecuación (7) .
Figure imgf000021_0002
m : Número de mapas de características o canales.
Where a Sx Sy is the window made up of the pixels at the combined positions of 8x and 8y. Also, r and c are the pixel positions that vary up to half the size of the input maps. Consequently, the output of the Z-th clustering layer would be given by the set of all reduced feature maps, as shown in equation (7).
Figure imgf000021_0002
m : Number of feature or channel maps.
Por lo tanto, para la realización preferida, las cuatro primeras subetapas del codificador tendrían las entradas, salidas y tamaños mostrados en la Tabla 1 . Therefore, for the preferred embodiment, the first four substages of the encoder would have the inputs, outputs, and sizes shown in Table 1.
Tabla 1 . Arquitectura del codificador UNet1
Figure imgf000021_0003
Figure imgf000022_0004
Table 1 . UNet 1 encoder architecture
Figure imgf000021_0003
Figure imgf000022_0004
En el decodificador, las características deben ser convolucionadas en mapas del doble de tamaño. Sin embargo, en el espacio discreto, la convolución reduce las dimensiones de la imagen. Es decir, suponga que se tiene una imagen de un solo canal de tamaño n x n (X e Rn x n con n par) y se convoluciona con un filtro de tamaño 2 x 2 con zancada de desplazam iento (strides) de 2. El resultado generaría una salida con la m itad de tamaño como la dada en la ecuación (8) .
Figure imgf000022_0001
In the decoder, the features must be convolved into maps of twice the size. However, in discrete space, convolution reduces the dimensions of the image. That is, suppose you have a single-channel image of size nxn (X e R nxn with n even) and convolve it with a filter of size 2 x 2 with strides of 2. The result would generate an output half the size as given in equation (8).
Figure imgf000022_0001
La convolución de la ecuación (8) puede representarse como una operación matricial, convirtiendo las matrices en vectores y el filtro en la versión de la matriz dispersa. El equivalente se muestra en la ecuación (9) , además, ya que el sesgo b no afecta las dimensiones de dicha operación, es posible elim inarlo para llegar al modelo de la convolución transpuesta.
Figure imgf000022_0002
The convolution of equation (8) can be represented as a matrix operation, converting the matrices to vectors and the filter to the sparse matrix version. The equivalent is shown in equation (9), moreover, since the bias b does not affect the dimensions of said operation, it is possible to eliminate it to arrive at the model of the transposed convolution.
Figure imgf000022_0002
En este sentido, m ultiplicando por la inversa de la matriz dispersa en ambos lados de la ecuación, se genera el resultado de la ecuación ( 10) .
Figure imgf000022_0003
Si se invierten los argumentos de este resultado, es decir, si se pone la imagen de entrada a la izquierda y la de salida a la derecha, se tendrá una operación equivalente a una convolución, pero aumentando las dimensiones de la imagen como se buscaba inicialmente. El proceso se conoce como convolución transpuesta o se denota como Up-Conv, tal como se observa en la Figura 3, que m uestra una convolución ascendente.
In this sense, multiplying by the inverse of the sparse matrix on both sides of the equation, the result of equation (10) is generated.
Figure imgf000022_0003
If the arguments of this result are inverted, that is, if the input image is placed on the left and the output image is placed on the right, we will have an operation equivalent to a convolution, but increasing the dimensions of the image as initially sought. The process is known as transposed convolution or is denoted as Up-Conv, as shown in Figure 3, which shows an upward convolution.
Hay que tener en cuenta que, aunque la ecuación (8) denota la inversa de una matriz no cuadrada, el proceso no se realiza ya que se desconocen los parámetros que componen el filtro, es decir, se podría sustituir el filtro por una matriz con las dimensiones transpuestas al tamaño original y con pesos desconocidos, sin tener repercusiones significativas ya que éstos se calcularían durante el entrenamiento. It must be taken into account that, although equation (8) denotes the inverse of a non-square matrix, the process is not carried out since the parameters that make up the filter are unknown, that is, the filter could be replaced by a matrix with the dimensions transposed to the original size and with unknown weights, without having significant repercussions since these would be calculated during training.
Después de la convolución transpuesta, el resultado se concatena con las copias de los mapas anteriores a las capas de agrupación y se vuelve a someter a las capas convolucionales, como se ¡lustra en la Figura 3. El proceso se repite el m ismo número de veces que se agruparon mediante la función de Max Pooling. After the transposed convolution, the result is concatenated with the previous map copies to the pooling layers and resubmitted to the convolutional layers, as illustrated in Figure 3. The process is repeated the same number of times that were pooled using the Max Pooling function.
Por lo tanto, para la realización preferida, las etapas del decodificador tendrían las entradas, salidas y tamaños que se muestran en la Error! Reference source not found.. Therefore, for the preferred embodiment, the decoder stages would have the inputs, outputs, and sizes shown in Error! Reference source not found..
Tabla 2. Arquitectura del decodificador UNet
Figure imgf000023_0001
Figure imgf000024_0001
Table 2. Architecture of the UNet decoder
Figure imgf000023_0001
Figure imgf000024_0001
Luego, en la etapa 4 del método de la presente invención, se determ ina la volumetría final proyectada, la cual comprende segmentar cada uno de los rasgos geométricos y morfológicos del nodulo en estudio, teniendo en cuenta la topología de la lesión a través de procesos de enmascaram iento ya descritos, tal como se observa en la Figura 4 con el número 4, el volumen total es seccionado y luego cada sesión es segmentada, así como también se codifica y decodifica, para finalmente obtener como salida el volumen segmentado generalizado de la lesión. Then, in stage 4 of the method of the present invention, the final projected volumetry is determined, which comprises segmenting each of the geometric and morphological features of the nodule under study, taking into account the topology of the lesion through masking processes already described, as observed in Figure 4 with the number 4, the total volume is sectioned and then each session is segmented, as well as encoded and decoded, to finally obtain as output the generalized segmented volume of the lesion.
Esta etapa permite cerrar el dom inio del foco de invasividad, de cara a la detección temprana de la intensidad pixelar de agrupam iento, definiendo claramente las fronteras de los bordes difusos de nodulos parcialmente sólidos y no sólidos. This stage makes it possible to close the domain of the focus of invasiveness, with a view to early detection of clustering pixel intensity, clearly defining the borders of the diffuse edges of partially solid and non-solid nodules.
En la siguiente etapa del método para caracterizar tumores pulmonares (sólidos, subsólidos y vidrio esmerilado) basado en criterios invasivos mediante distancia pixelar y algoritmos de aprendizaje profundo en TACs se calcula los mapas de distancias mediante un segundo algoritmo de clasificación no supervisada, ver Figura 4 número 5. En esta etapa se tiene como entrada la demarcación mediante un proceso de enmascaram iento, tal como lo realiza el modelo de tipo Codificador-Decodificador (Enconder-Decoder) y un segundo algoritmo de clasificación no supervisada, bajo la modificación de algunos criterios topológicos mediante K-medias o las máquinas de Boltzmann, en el que se obtiene los mapas de distancias por pares de pixeles que podrán proyectar los valores cuantitativos que demarcarán los nuevos umbrales de riesgo, donde se acota al límite superior e inferior de cada medida umbralizada respecto a la intensidad de distancias, entendiéndose como la nueva medida de invasividad que podrá proyectarse como un nuevo descriptor invasivo del potencial adenocarcinoma in situ o invasivo. In the next stage of the method to characterize lung tumors (solid, subsolid and ground glass) based on invasive criteria using pixel distance and deep learning algorithms in CTs, the maps of distances by means of a second unsupervised classification algorithm, see Figure 4 number 5. In this stage, the demarcation is taken as input by means of a masking process, as carried out by the Encoder-Decoder type model (Encoder-Decoder) and a second unsupervised classification algorithm, under the modification of some topological criteria by means of K-means or Boltzmann machines, in which the distance maps are obtained by pairs of pixels that can project the quantum values. criteria that will demarcate the new risk thresholds, where it is delimited to the upper and lower limit of each thresholded measure with respect to the intensity of distances, understood as the new measure of invasiveness that can be projected as a new invasive descriptor of potential adenocarcinoma in situ or invasive.
La segmentación automática genera una imagen o un mapa de probabilidad, donde se podrán encontrar los nodulos pulmonares. El mapa se reduce a uno binario considerando los pixeles de mayor probabilidad como los estados binarios en alto y los de menor probabilidad como los estados bajos, es decir, los unos y ceros de los mapas binarios. El proceso se representa matemáticamente como en la ecuación (1 1 ) .
Figure imgf000025_0001
The automatic segmentation generates an image or a probability map, where the lung nodules can be found. The map is reduced to a binary one considering the pixels with the highest probability as the high binary states and those with the lowest probability as the low states, that is, the ones and zeros of the binary maps. The process is represented mathematically as in equation (1 1 ) .
Figure imgf000025_0001
Multiplicando el mapa binario con la imagen original, a través del producto Hadamard, se obtienen únicamente los pixeles del nodulo pulmonar, es decir, cada nodulo se extrae automáticamente como una región de interés (ROI) . La anterior operación se representa matemáticamente tal como se m uestra en la ecuación ( 12) .
Figure imgf000025_0002
Multiplying the binary map with the original image, through the Hadamard product, only the pixels of the lung nodule are obtained, that is, each nodule is automatically extracted as a region of interest (ROI). The above operation is represented mathematically as shown in equation (12).
Figure imgf000025_0002
En la Figura 4, se observa como de la volumetría final proyectada, se define una región de interés (ROI ) , es decir, un volumen con niveles de intensidad (niveles de gris) y posiciones en los tres ejes ordenados. Por consiguiente, cada voxel que conforman la ROI se puede representar como un vector de d dimensiones, siendo cada dimensión un descriptor o característica, tal como m uestra la ecuación ( 13) .
Figure imgf000026_0001
Figure 4 shows how a region of interest (ROI) is defined from the final projected volumetry, that is, a volume with intensity levels (gray levels) and positions on the three ordered axes. Consequently, each voxel that makes up the ROI can be represented as a vector of d dimensions, each dimension being a descriptor or characteristic, as shown in equation (13).
Figure imgf000026_0001
Donde j es el subíndice asociado a cada voxel que conforman al volumen de la ROI . Where j is the subscript associated with each voxel that makes up the ROI volume.
Los vóxeles se agrupan en un número determinado de grupos, por ejemplo, k grupos diferentes como lo muestra la ecuación ( 14) .
Figure imgf000026_0002
The voxels are grouped into a given number of groups, eg k different groups as shown by equation (14).
Figure imgf000026_0002
Es decir, los k grupos de la ecuación ( 14) están conformados por los v¡ vóxeles más cercanos al centroide μ i del grupo. Los centroides se calculan a partir de todos los j vóxeles de tal manera que la suma de todas las distancias a los centroides sea la mínima posible. Lo anterior se expresa matemáticamente como se muestra en la ecuación ( 15) .
Figure imgf000026_0003
That is, the k groups of equation (14) are made up of the v¡ voxels closest to the centroid μ i of the group. The centroids are computed from all j voxels in such a way that the sum of all the distances to the centroids is the minimum possible. This is expressed mathematically as shown in equation (15).
Figure imgf000026_0003
El anterior modelo se soluciona como un problema de optimización y, una vez establecidos los centroides, cada voxel tendrá una distancia al centroide más cercano. The previous model is solved as an optimization problem and, once the centroids have been established, each voxel will have a distance to the nearest centroid.
Luego, en la etapa de crear la matriz de características de las estructuras de los nodulos o tumores con el vector de distancia que se observa en la Figura 4 con el número 6, donde cada una de las características de cada nodulo se adjuntará a la matriz de características que conformarán la matriz de entrenam iento, con los valores que caracterizan las estructuras tumorales en beneficio del censado de los atributos de invasividad en nodulos y tumores, definiendo así un vector distancia que estará umbralizado a la escala de riesgo final. Then, in the stage of creating the matrix of characteristics of the structures of the nodules or tumors with the distance vector that is observed in Figure 4 with the number 6, where each one of the characteristics of each nodule will be attached to the matrix of characteristics that will make up the training matrix, with the values that characterize the tumor structures for the benefit of the census of the attributes of invasiveness in nodules and tumors, thus defining a distance vector that will be thresholded to the final risk scale.
Los descriptores y la distancia basada en K-medias conforman un vector x de características para cada voxel del nodulo, siendo dichos descriptores la entrada de una red neuronal artificial. La red se entrena para la clasificación de cada voxel, generando una nueva escala de riesgo. La red neuronal tendría la siguiente salida para la primera capa con m neuronas artificiales:
Figure imgf000027_0001
The descriptors and the distance based on K-means make up a feature vector x for each voxel of the node, these descriptors being the input of an artificial neural network. The network is trained for the classification of each voxel, generating a new risk scale. The neural network would have the following output for the first layer with m artificial neurons:
Figure imgf000027_0001
Donde x es del vector de características de n dimensiones, es decir, x ∈ Rn . W(1) es la matriz de parámetros de pesos o parámetros de entrenamiento, siendo esta W(1) ∈ Rm x n. b(1) es el vector de sesgos del modelo neuronal y f(1) la función de activación. Where x is the n-dimensional feature vector, that is, x ∈ R n . W (1) is the matrix of weight parameters or training parameters, this being W (1) ∈ R mxn . b (1) is the bias vector of the neuronal model and f (1) is the activation function.
En la etapa de determinar el biomarcador de invasividad que se observa en la Figura 5 con el número 7, se tiene que la nueva matriz de características por medio del algoritmo de aprendizaje profundo permite predecir la variable objetiva que será el biomarcador de invasividad tumoral teniendo en cuenta la mayoría de los biomarcadores como: clase, tipo, diámetro, geometría, mapa de distancias pixelares (invasividad tumoral), entre otros. In the stage of determining the biomarker of invasiveness that is observed in Figure 5 with number 7, it is found that the new matrix of characteristics by means of the deep learning algorithm makes it possible to predict the objective variable that will be the biomarker of tumor invasiveness, taking into account most of the biomarkers such as: class, type, diameter, geometry, map of pixel distances (tumor invasiveness), among others.
En la etapa de determinar el riesgo del nodulo que se observa en la Figura 5 con el número 8, se realiza un mapa de distribución de probabilidad de los valores encontrados por el mapa de distancias, obteniéndose una nueva escala de riesgo. In the stage of determining the risk of the nodule that is observed in Figure 5 with the number 8, a probability distribution map of the values found by the distance map is made, obtaining a new risk scale.
Básicamente, los pasos anteriores obtienen una matriz de características de la variable objetiva del biomarcador de invasividad, logrando una nueva IA o algoritmo de aprendizaje profundo, con capacidad de predecir, teniendo en cuenta la mayoría de los biomarcadores como: Clase, tipo, diámetro, geometría, mapa de distancias pixelares (invasividad tumoral). De acuerdo con esto, la variable objetiva será la invasividad tumoral que será proyectada con este nuevo enfoque y estará lista para ser umbralizada a una nueva escala de riesgo, para realizar un llamado a la acción desde el sistema, correlacionando el glosario de Fleischner. Basically, the previous steps obtain a matrix of characteristics of the objective variable of the invasive biomarker, achieving a new AI or deep learning algorithm, with the ability to predict, taking into account most of the biomarkers such as: Class, type, diameter, geometry, map of pixel distances (tumor invasiveness). Accordingly, the objective variable will be the tumor invasiveness that will be projected with this new approach and will be ready to be thresholded to a new risk scale, to make a call to action from the system, correlating the Fleischner glossary.
Por último, la nueva escala de riesgo se expresa mediante un mapa de distribución de probabilidad de los valores encontrados por el mapa de distancias, donde la nueva escala de riesgo correlacionada con Fleischner, podrá comunicar rápidamente lo invasivo de un tumor, respecto a la transformación en el tiempo de la intensidad de la radio opacidad en cada una de las estructuras nodulares no sólidas o en vidrio esmerilado, así como también, en las primeras presencias de factor invasivo, donde se logrará mapear los primeros hallazgos invasivos in situ o la transformación a un adenocarcinoma invasivo y sus conformaciones morfológicas de intensidades por grado de vecindad. Finally, the new risk scale is expressed by means of a probability distribution map of the values found by the distance map, where the new risk scale correlated with Fleischner, will be able to quickly communicate the invasiveness of a tumor, with respect to the transformation in the time of the intensity of the radio opacity in each of the non-solid nodular structures or in ground glass, as well as in the first presences of invasive factor, where it will be possible to map the first invasive findings in situ or the transformation to an invasive adenocarcinoma and its morphological conformations of intensities by degree of neighborhood.
En otras palabras, la nueva escala de riesgo se correlacionada con atlas Fleischner, la cual indicará lo invasivo de un tumor, respecto a la transformación en el tiempo de la intensidad de la radio opacidad en cada una de las estructuras nodulares no sólidas o en vidrio esmerilado, así como también, en las primeras presencias de factor invasivo, donde se logrará mapear los primeros hallazgos invasivos in situ o la transformación a un adenocarcinoma invasivo y sus conformaciones morfológicas de intensidades por grado de vecindad. In other words, the new risk scale is correlated with the Fleischner atlas, which will indicate the invasiveness of a tumor, with respect to the transformation over time of the intensity of the radio opacity in each of the non-solid nodular structures or in ground glass, as well as, in the first presences of invasive factor, where it will be possible to map the first invasive findings in situ or the transformation to an invasive adenocarcinoma and its conformations. morphological intensities by degree of neighborhood.
La red neuronal artificial completamente conectada sigue el m ismo comportamiento de la red neuronal convolucional. Por tanto, para las siguientes capas, se sigue el m ismo modelo de la ecuación ( 16) , pero con la diferencia de que la entrada de cada capa es la salida de la capa anterior, tal como se m uestra en la ecuación 7) .
Figure imgf000028_0001
The fully connected artificial neural network follows the same behavior as the convolutional neural network. Therefore, for the following layers, the same model of equation (16) is followed, but with the difference that the input of each layer is the output of the previous layer, as shown in equation 7).
Figure imgf000028_0001
Por consiguiente, para una red totalmente conectada de p capas y de q salidas, se tendría la forma expresada en la ecuación ( 18) .
Figure imgf000028_0002
Consequently, for a fully connected network with p layers and q outputs, it would have the form expressed in equation (18).
Figure imgf000028_0002
Donde ysaiida Rq, Siendo cada salida un valor de probabilidad para cada categoría de la nueva escala de riesgo. Where yout R q , each output being a probability value for each category of the new risk scale.
I I I . SI STEMA PARA CARACTERIZAR TUMORES PULMONARES I I I . SI SYSTEM TO CHARACTERIZE LUNG TUMORS
En la Figura 6 se m uestra el sistema (100) para caracterizar tumores pulmonares (sólidos, subsólidos y vidrio esmerilado) basado en criterios invasivos mediante distancia pixelar y algoritmos de aprendizaje profundo en TACs de la presente invención incluye un dispositivo de formación de imágenes ( 101 ) para formar imágenes de un objetivo, por ejemplo, un tomógrafo axial computacional, equipos de radiología, mamógrafos, etc. ; una interfaz de entrada ( 103) tal como una pantalla, un teclado, un mouse, etc. ; al menos un procesador ( 104) con un visor con un archivo no vinculado a ningún proveedor (VNA) o modalidad de reconstrucción de tomografía axial computacional en tórax; una base de datos ( 102) donde se almacena la información que identifica a cada sujeto, tal como su historia clínica, los estudios de toráx, entre otros; una memoria ( 105) acoplada al menos un procesador, una interfaz de salida ( 106) , donde la memoria tiene instrucciones ejecutables para implementar en al menos un procesador el método que comprende: i. Recibir las imágenes de tomografía axial computarizada de tórax de sujetos que muestran lesiones, nodulos o tumores pulmonares o cualquier tipo de anomalía; Figure 6 shows the system (100) to characterize lung tumors (solid, subsolid and ground glass) based on invasive criteria using pixel distance and deep learning algorithms in CT scans of the present invention includes an imaging device (101) to form images of a target, for example, an axial tomograph computer, radiology equipment, mammographs, etc. ; an input interface ( 103) such as a screen, keyboard, mouse, etc. ; at least one processor ( 104) with a viewer with a vendor-unrelated (VNA) file or thoracic computed axial tomography reconstruction modality; a database (102) where the information that identifies each subject is stored, such as their medical history, chest studies, among others; a memory (105) coupled to at least one processor, an output interface (106), where the memory has executable instructions to implement in at least one processor the method comprising: i. Receive chest computed tomography images of subjects showing lung lesions, nodules or tumors or any type of abnormality;
¡i. Determ inar el volumen de la estructura tumoral de las imágenes de tórax de la región de interés; iii. Segmentar la representación de voxeles por medio de un algoritmo de aprendizaje; iv. Determ inar la volumetría final proyectada; v. Calcular los mapas de distancias mediante un segundo algoritmo de clasificación no supervisada; vi. Crear la matriz de características de las estructuras de los nodulos o tumores con el vector de distancia; vii. Determ inar el biomarcador de invasividad; y viii. Determ inar el riesgo del nodulo. Yo. Determine the volume of the tumor structure from the chest images of the region of interest; iii. Segment the voxel representation by means of a learning algorithm; iv. Determine the projected final volumetry; v. Calculate the distance maps using a second unsupervised classification algorithm; saw. Create the matrix of characteristics of the structures of the nodules or tumors with the distance vector; vii. Determine the biomarker of invasiveness; and viii. Determine the risk of the nodule.
Para realizar cualquiera de las funciones descritas en este documento, el procesador ( 104) puede ejecutar una o más instrucciones, como módulos del programa donde se encuentran los algoritmos de aprendizaje profundo que se aplican en el desarrollo del método de la invención, almacenados en uno o más medios de almacenamiento legibles por computadora (por ejemplo, la memoria 105), que almacenan instrucciones para su ejecución por el procesador ( 105). To perform any of the functions described in this document, the processor (104) can execute one or more instructions, such as program modules where the deep learning algorithms that are applied in the development of the method of the invention are found, stored in one or more computer-readable storage media (for example, memory 105), which store instructions for execution by the processor (105).
Generalmente, los módulos de programa incluyen las rutinas, algoritmos, objetos, componentes, estructuras de datos, etc. que realizan las tareas particulares o implementan tipos de datos particulares de la presente invención. Si bien los sistemas y métodos de la presente divulgación se han mostrado y descrito particularmente con referencia a realizaciones de ejemplo de los m ismos, los expertos en la técnica entenderán que se pueden realizar varios cambios en la forma y detalles sin apartarse del alcance de la presente descripción. Generally, program modules include routines, algorithms, objects, components, data structures, etc. that perform the particular tasks or implement particular data types of the present invention. While the systems and methods of the present disclosure have been particularly shown and described with reference to exemplary embodiments thereof, it will be understood by those skilled in the art that various changes in form and detail may be made without departing from the scope of the present disclosure.
EJEMPLO EXAMPLE
Se inicia con la realización de una tomografía axial computarizada por medio de un tomógrafo, a sujetos que m uestran lesiones, nodulos o tumores pulmonares o cualquier tipo de anomalía, almacenando las imágenes y sus historias clínicas en la base de datos. It begins with the performance of a computerized axial tomography by means of a tomograph, to subjects that show lesions, nodules or lung tumors or any type of anomaly, storing the images and their clinical histories in the database.
El procesador con el visor VNA de I ndira® descarga en la pantalla las imágenes de tomografía axial computarizada, tal como la Figura 2, que se encuentran almacenadas de la base de datos, e inicia a ejecutar las instrucciones que se encuentran almacenadas en la memoria para implementar por el procesador el método que comprende: i. Recibir las imágenes de tomografía axial computarizada de tórax de sujetos que m uestran lesiones, nodulos o tumores pulmonares o cualquier tipo de anomalía; The processor with the Indira® VNA viewer downloads the computed axial tomography images on the screen, such as Figure 2, which are stored in the database, and starts executing the instructions that are stored in memory to implement the method that comprises: i. Receive chest computed tomography images of subjects that show lesions, nodules or lung tumors or any type of anomaly;
¡i. Determinar el volumen de la estructura tumoral de las imágenes de tórax de la región de interés; iii. Segmentar la representación de voxeles por medio de un algoritmo de aprendizaje; iv. Determinar la volumetría final proyectada; v. Calcular los mapas de distancias mediante un segundo algoritmo de clasificación no supervisada; vi. Crear la matriz de características de las estructuras de los nodulos o tumores con el vector de distancia; vii. Determinar el biomarcador de invasividad; y viii. Determinar el riesgo del nodulo. Yo. Determine the volume of the tumor structure from the chest images of the region of interest; iii. Segment the voxel representation by means of a learning algorithm; iv. Determine the projected final volumetry; v. Calculate the distance maps using a second unsupervised classification algorithm; saw. Create the matrix of characteristics of the structures of the nodules or tumors with the distance vector; vii. Determine the biomarker of invasiveness; and viii. Determine the risk of the nodule.
De hecho, la caracterización de nodulos incidentales por la caracterización de distancias por grupo de pixeles perm ite la representación final del mapa de distancias pixelares por agrupación aplicadas al segmento de cáncer de célula no pequeña, como: estructuras de adenocarcinoma, estructuras de canceres escamocelulares, así como también las estructuras indiferenciadas, para proyectar una fina conformación de la estructura tumoral, diferenciando el factor invasivo del resto de la estructura en densidad para realizar la umbralización de riesgo temprano, estableciendo protocolos de manejo ante la agresividad inm inente de un nodulo o tumor. In fact, the characterization of incidental nodes by the characterization of distances per group of pixels allows the final representation of the map of pixel distances per group applied to the non-small cell cancer segment, such as: adenocarcinoma structures, squamous cell cancer structures, as well as undifferentiated structures, to project a fine conformation of the tumor structure, differentiating the invasive factor from the rest of the structure in density to perform early risk thresholding, establishing management protocols in the face of imminent aggressiveness of a nodule or tumor.
La presente invención tiene una amplia aplicación en la bioingeniería dado que realiza proyecciones de métodos físico-matemáticos, donde este desarrollo se articula de manera sinérgica a modalidades de tomografía axial computarizada, así como también a la modificación de los procesos de priorización de sujetos que intervienen en los sistemas de tipo PACS, que usualmente se integran a estas herramientas. The present invention has a wide application in bioengineering since it makes projections of physical-mathematical methods, where this development is synergistically articulated with computerized axial tomography modalities, as well as the modification of the subject prioritization processes involved in PACS-type systems, which are usually integrated into these tools.
También, en los sistemas de tipo RIS-PACS, son uno de los artefactos tecnológicos que más uso podrá explotar de esta tecnología, dado que puede actuar en el flujo de trabajo de la caracterización y descripción del evento patológico que usualmente se realiza en un RIS, así como también, podrá articular sus salidas a un sistema de PACs, que podrá manipular la lista de trabajo de los radiólogos, asegurando un listado de prioridades sobre un proceso de alertas, determinado por el parámetro de salida del sistema mediante la invasividad de un tumor resultante. Also, in RIS-PACS type systems, they are one of the technological artifacts that can exploit this technology the most, since it can act in the workflow of the characterization and description of the pathological event that is usually carried out in a RIS, as well as, it will be able to articulate its outputs to a PACs system, which will be able to manipulate the work list of radiologists, ensuring a list of priorities on an alert process, determined by the output parameter of the system through the invasiveness of a resulting tumor.
En los visores de imágenes médicas, son un excelente nicho de desarrollo, donde dicho mecanismo puede ser utilizado como un proceso de segunda opinión, aumentando el coeficiente de certeza en la búsqueda de hallazgos incidentales en canceres de pulmón, así como también describiendo finalmente el llamado a la acción mediante el umbral de riesgo mediante la invasividad del tumor o nodulo. In medical image viewers, they are an excellent development niche, where this mechanism can be used as a second opinion process, increasing the certainty coefficient in the search for incidental findings in lung cancers, as well as finally describing the call to action through the risk threshold through the invasiveness of the tumor or nodule.
Además, en el post-procesam iento avanzado se puede utilizar como herram ienta de realce de características de rasgos patológicos invasivos, que ayuden a diferenciar mediante un mapa de distancias, aquellos grupos de pixeles que han sido descubiertos, a través del sistema y sirviendo como reporte a un médico radiólogo para sus fines de diagnóstico. In addition, in advanced post-processing it can be used as a tool to enhance the characteristics of invasive pathological traits, which help to differentiate, through a distance map, those groups of pixels that have been discovered, through the system and serving as a report to a radiologist for diagnostic purposes.
Finalmente, en la investigación tumoral se evidencia que los mapas de distancias, están en la capacidad de cartografiar todas aquellas escalas intermedias que se ignoran sobre todo en los canceres de célula no pequeña y escamo celular, donde es necesario una proyección que ayude a determinar el grado de invasividad y el pronóstico de agresividad de la estructura a estudiar, evidenciando nuevos patrones para observar aquellas entradas que puedan dar mayor información sobre la expectativa de vida del paciente final. Finally, in tumor research it is evident that distance maps are capable of mapping all those intermediate scales that are ignored, especially in non-small cell and squamous cell cancers, where a projection is necessary to help determine the degree of invasiveness and the prognosis of aggressiveness of the structure to be studied, evidencing new patterns to observe those entries that can give more information about the life expectancy of the final patient.

Claims

REI VI N DI CACI ON ES REI VI N DI CATI ON ES
1 . Un sistema ( 100) para caracterizar tumores pulmonares basado en criterios invasivos mediante distancia pixelar y algoritmos de aprendizaje profundo que comprende: 1 . A system (100) to characterize lung tumors based on invasive criteria using pixel distance and deep learning algorithms comprising:
Un dispositivo de formación de imágenes (101 ) para formar imágenes de un objetivo; An imaging device (101) for imaging a target;
Una base de datos ( 102) donde se almacena la información que identifica a cada sujeto; A database (102) where the information that identifies each subject is stored;
Una interfaz de entrada ( 103) ; an input interface ( 103);
Al menos un procesador ( 104) programado para caracterizar tumores pulmonares (sólidos, subsum idos y vidrio esmerilado) basado en criterios invasivos mediante distancia pixelar y algoritmos de aprendizaje profundo; At least one processor (104) programmed to characterize lung tumors (solid, subsumed, and ground glass) based on invasive criteria using pixel distance and deep learning algorithms;
Una memoria (105) acoplada al menos un procesador; A memory (105) coupled to at least one processor;
Una interfaz de salida (106) ; an exit interface (106);
En donde la caracterización de los tumores pulmonares comprende recibir las imágenes de tomografía axial computarizada de tórax de sujetos que m uestran lesiones, nodulos o tumores pulmonares o cualquier tipo de anomalía; determinar el volumen de la estructura tumoral de las imágenes de tórax de la región de interés; segmentar la representación de voxeles por medio de un algoritmo de aprendizaje; determinar la volumetría final proyectada; calcular los mapas de distancias mediante un segundo algoritmo de clasificación no supervisada; crear la matriz de características de las estructuras de los nodulos o tumores con el vector de distancia; determinar el biomarcador de invasividad; y determinar el riesgo del nodulo. Wherein the characterization of lung tumors comprises receiving computed tomography images of the chest from subjects that show lesions, nodules or lung tumors or any type of anomaly; determine the volume of the tumor structure from the chest images of the region of interest; segmenting the voxel representation by means of a learning algorithm; determine the projected final volumetry; calculate the distance maps by means of a second unsupervised classification algorithm; create the matrix of characteristics of the structures of the nodules or tumors with the distance vector; determine the biomarker of invasiveness; and determine the risk of the nodule.
2. Un sistema ( 100) para caracterizar tumores pulmonares basado en criterios invasivos mediante distancia pixelar y algoritmos de aprendizaje profundo de acuerdo con la reivindicación 1 , caracterizado porque el dispositivo para formar imágenes comprende un tomógrafo axial computacional, equipos de radiología, mamógrafos, etc. 2. A system (100) to characterize lung tumors based on invasive criteria using pixel distance and deep learning algorithms according to claim 1, characterized in that the imaging device comprises a computational axial tomograph, radiology equipment, mammographs, etc.
3. Un sistema ( 100) para caracterizar tumores pulmonares basado en criterios invasivos mediante distancia pixelar y algoritmos de aprendizaje profundo de acuerdo con la reivindicación 1 , caracterizado porque al menos un procesador comprende un visor con un archivo no vinculado a ningún proveedor o modalidad de reconstrucción de una tomografía axial computacional en tórax. 3. A system (100) to characterize lung tumors based on invasive criteria using pixel distance and deep learning algorithms according to claim 1, characterized in that at least a processor comprises a viewer with a file not linked to any provider or modality of reconstruction of a thoracic computed axial tomography.
4. Un método para caracterizar tumores pulmonares basado en criterios invasivos mediante distancia pixelar y algoritmos de aprendizaje profundo que comprende: i. Recibir las imágenes de tórax de sujetos que m uestran lesiones, nodulos o tumores pulmonares o cualquier tipo de anomalía; 4. A method to characterize lung tumors based on invasive criteria using pixel distance and deep learning algorithms comprising: i. Receive chest images of subjects that show lesions, nodules or lung tumors or any type of anomaly;
¡i. Determinar el volumen de la estructura tumoral de las imágenes de tórax de la región de interés; iii. Segmentar la representación de voxeles por medio de un algoritmo de aprendizaje; iv. Determinar la volumetría final proyectada; v. Calcular los mapas de distancias mediante un segundo algoritmo de clasificación no supervisada; vi. Crear la matriz de entrenam iento de las características estructurales de los nodulos o tumores y el vector de distancia; vii. Determinar el biomarcador de invasividad; y viii. Determinar el riesgo del nodulo. Yo. Determine the volume of the tumor structure from the chest images of the region of interest; iii. Segment the voxel representation by means of a learning algorithm; iv. Determine the projected final volumetry; v. Calculate the distance maps using a second unsupervised classification algorithm; saw. Create the training matrix of the structural characteristics of the nodules or tumors and the distance vector; vii. Determine the biomarker of invasiveness; and viii. Determine the risk of the nodule.
5. Un método para caracterizar tumores pulmonares basado en criterios invasivos mediante distancia pixelar y algoritmos de aprendizaje profundo de acuerdo con la reivindicación 4 caracterizado porque las imágenes de toráx son tomografías axiales computarizadas (TACs), resonancias magnéticas, mam ografías y/ o ecografías. 5. A method for characterizing lung tumors based on invasive criteria using pixel distance and deep learning algorithms according to claim 4, characterized in that the chest images are computed tomography (CT), magnetic resonance imaging, mammography and/or ultrasound.
6. Un método para caracterizar tumores pulmonares basado en criterios invasivos mediante distancia pixelar y algoritmos de aprendizaje profundo de acuerdo con la reivindicación 4 caracterizado porque la determ inación del volumen de la estructura tumoral de las imágenes de tórax se realiza mediante la proyección de parches 3D de la región de interés (ROI) , la cual toma cortes de representación en vóxeles garantizando el volumen generalizado del tumor. 6. A method to characterize lung tumors based on invasive criteria using pixel distance and deep learning algorithms according to claim 4, characterized in that the determination of the volume of the tumor structure of the thorax images is carried out by means of the projection of 3D patches of the region of interest (ROI), which takes representation slices in voxels guaranteeing the generalized volume of the tumor.
7. Un método para caracterizar tumores pulmonares basado en criterios invasivos mediante distancia pixelar y algoritmos de aprendizaje profundo de acuerdo con la reivindicación 4 caracterizado porque la segmentación de la representación de voxeles por medio de un algoritmo de aprendizaje se realiza mediante un algoritmo de redes de aprendizaje profundo de tipo codificador-decodificador, donde el apilamiento de los filtros convolucionales permite destacar las características del nodulo en relación con su morfología y contorno. 7. A method for characterizing lung tumors based on invasive criteria by means of pixel distance and deep learning algorithms according to claim 4, characterized in that the segmentation of the voxel representation by means of a learning algorithm is carried out by means of an encoder-decoder type deep learning network algorithm, where the stacking of convolutional filters allows highlighting the characteristics of the nodule in relation to its morphology and contour.
8. Un método para caracterizar tumores pulmonares, basado en criterios invasivos mediante distancia pixelar y algoritmos de aprendizaje profundo de acuerdo con la reivindicación 7 caracterizado porque la segmentación de la representación de voxeles por medio de un algoritmo de aprendizaje profundo aplica una arquitectura de tipo codificador-decodificador como la red U-Net, la cual permite preservar la distribución pixelar mediante geometrías y morfologías de la imagen, proyectando un nuevo dom inio espacial de representación matricial, perteneciente al grupo de pixeles que componen la segmentación en correlación a las categorías patológicas de nodulos y tumores. 8. A method for characterizing lung tumors, based on invasive criteria using pixel distance and deep learning algorithms according to claim 7, characterized in that the segmentation of the voxel representation by means of a deep learning algorithm applies an encoder-decoder type architecture such as the U-Net network, which allows preserving the pixel distribution through image geometries and morphologies, projecting a new spatial domain of matrix representation, belonging to the pix group. The elements that make up the segmentation in correlation to the pathological categories of nodules and tumors.
9. Un método para caracterizar tumores pulmonares basado en criterios invasivos mediante distancia pixelar y algoritmos de aprendizaje profundo de acuerdo con la reivindicación 7 caracterizado porque la red U-Net, consta de con un codificador y un decodificador, que se dividen en subetapas, cada subetapa se conforma por una serie de filtros convolucionales antes de cambiar el tamaño de los mapas de características a través del agrupamiento en el codificador o la convolución transpuesta en el decodificador. 9. A method for characterizing lung tumors based on invasive criteria using pixel distance and deep learning algorithms according to claim 7, characterized in that the U-Net network consists of an encoder and a decoder, which are divided into substages, each substage is made up of a series of convolutional filters before changing the size of the feature maps through clustering in the encoder or transposed convolution in the decoder.
10. Un método para caracterizar tumores pulmonares basado en criterios invasivos mediante distancia pixelar y algoritmos de aprendizaje profundo de acuerdo con la reivindicación 4 caracterizado por calcular los mapas de distancias, se realiza mediante un segundo algoritmo de clasificación no supervisada con la modificación de algunos criterios topológicos con K- medias o las máquinas de Boltzmann en el que se obtiene los mapas de distancias por pares de pixeles que podrán proyectar los valores cuantitativos que demarcarán los nuevos umbrales de riesgo. 10. A method for characterizing lung tumors based on invasive criteria using pixel distance and deep learning algorithms according to claim 4, characterized by calculating the distance maps, is performed using a second unsupervised classification algorithm with the modification of some topological criteria with K-means or Boltzmann machines in which the distance maps are obtained by pairs of pixels that can project the quantitative values that will demarcate the new risk thresholds.
1 1 . Un método para caracterizar tumores pulmonares basado en criterios invasivos mediante distancia pixelar y algoritmos de aprendizaje profundo de acuerdo con la reivindicación 4 caracterizado porque crear la matriz de características de las estructuras de los nodulos o tumores con el vector de distancia se realiza mediante los descriptores y la distancia basada en K- medias conforman un vector x de características para cada voxel del nodulo, siendo dichos descriptores la entrada de una red neuronal artificial. eleven . A method for characterizing lung tumors based on invasive criteria using pixel distance and deep learning algorithms according to claim 4, characterized in that creating the matrix of characteristics of the structures of the nodules or tumors with the distance vector is done using the descriptors and the distance based on K-means make up a vector x of characteristics for each voxel of the nodule, said descriptors being the input of an artificial neural network.
12. Un método para caracterizar tumores pulmonares basado en criterios invasivos mediante distancia pixelar y algoritmos de aprendizaje profundo de acuerdo con la reivindicación 4 caracterizado porque la determ inación del biomarcador de invasividad tumoral se determ ina por medio del algoritmo de aprendizaje profundo teniendo en cuenta los biomarcadores de clase, tipo, diámetro, geometría, mapa de distancias pixelares (invasividad tumoral) , entre otros. 12. A method for characterizing lung tumors based on invasive criteria using pixel distance and deep learning algorithms according to claim 4, characterized in that the determination of the biomarker of tumor invasiveness is determined by means of the deep learning algorithm taking into account biomarkers of class, type, diameter, geometry, map of pixel distances (tumor invasiveness), among others.
13. Un método para caracterizar tumores pulmonares basado en criterios invasivos mediante distancia pixelar y algoritmos de aprendizaje profundo de acuerdo con la reivindicación 4 caracterizado porque la determ inación del riesgo del nodulo se realiza con un mapa de distribución de probabilidad de los valores encontrados por el mapa de distancias y la correlación con el atlas Fleischner. 13. A method to characterize lung tumors based on invasive criteria using pixel distance and deep learning algorithms according to claim 4, characterized in that the determination of the risk of the nodule is carried out with a probability distribution map of the values found by the distance map and the correlation with the Fleischner atlas.
PCT/IB2023/052660 2022-01-21 2023-03-18 System and method for characterising lung tumours (solid, part-solid and ground-glass) based on invasion criteria by means of pixel distancing and deep learning algorithms WO2023139570A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CONC2022/0000507 2022-01-21
CONC2022/0000507A CO2022000507A1 (en) 2022-01-21 2022-01-21 System and method to characterize lung tumors (solid, subsolid and ground glass) based on invasive criteria using pixel distance and deep learning algorithms

Publications (2)

Publication Number Publication Date
WO2023139570A1 true WO2023139570A1 (en) 2023-07-27
WO2023139570A4 WO2023139570A4 (en) 2023-09-14

Family

ID=79917259

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2023/052660 WO2023139570A1 (en) 2022-01-21 2023-03-18 System and method for characterising lung tumours (solid, part-solid and ground-glass) based on invasion criteria by means of pixel distancing and deep learning algorithms

Country Status (2)

Country Link
CO (1) CO2022000507A1 (en)
WO (1) WO2023139570A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2812866C1 (en) * 2023-10-31 2024-02-05 Общество С Ограниченной Ответственностью "Компания "Стрим Лабс" Method for processing computer tomography images (ct images)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200074634A1 (en) * 2017-04-11 2020-03-05 Kheiron Medical Technologies Ltd Recist assessment of tumour progression
US20200160997A1 (en) * 2018-11-02 2020-05-21 University Of Central Florida Research Foundation, Inc. Method for detection and diagnosis of lung and pancreatic cancers from imaging scans
WO2021142449A1 (en) * 2020-01-11 2021-07-15 Nantcell, Inc. Deep learning models for tumor evaluation
WO2022015700A1 (en) * 2020-07-13 2022-01-20 20/20 GeneSystems Universal pan cancer classifier models, machine learning systems and methods of use

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200074634A1 (en) * 2017-04-11 2020-03-05 Kheiron Medical Technologies Ltd Recist assessment of tumour progression
US20200160997A1 (en) * 2018-11-02 2020-05-21 University Of Central Florida Research Foundation, Inc. Method for detection and diagnosis of lung and pancreatic cancers from imaging scans
WO2021142449A1 (en) * 2020-01-11 2021-07-15 Nantcell, Inc. Deep learning models for tumor evaluation
WO2022015700A1 (en) * 2020-07-13 2022-01-20 20/20 GeneSystems Universal pan cancer classifier models, machine learning systems and methods of use

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MOMIN SHADAB, LEI YANG, TIAN ZHEN, WANG TONGHE, ROPER JUSTIN, KESARWALA APARNA H., HIGGINS KRISTIN, BRADLEY JEFFREY D., LIU TIAN, : "Lung tumor segmentation in 4D CT images using motion convolutional neural networks", MEDICAL PHYSICS., AIP, MELVILLE, NY., US, vol. 48, no. 11, 1 November 2021 (2021-11-01), US , pages 7141 - 7153, XP093081769, ISSN: 0094-2405, DOI: 10.1002/mp.15204 *
WANG YIFAN, ZHOU CHUAN, CHAN HEANG‐PING, HADJIISKI LUBOMIR M., CHUGHTAI AAMER, KAZEROONI ELLA A.: "Hybrid U‐Net‐based deep learning model for volume segmentation of lung nodules in CT images", MEDICAL PHYSICS., AIP, MELVILLE, NY., US, vol. 49, no. 11, 1 November 2022 (2022-11-01), US , pages 7287 - 7302, XP093081772, ISSN: 0094-2405, DOI: 10.1002/mp.15810 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2812866C1 (en) * 2023-10-31 2024-02-05 Общество С Ограниченной Ответственностью "Компания "Стрим Лабс" Method for processing computer tomography images (ct images)

Also Published As

Publication number Publication date
CO2022000507A1 (en) 2022-01-28
WO2023139570A4 (en) 2023-09-14

Similar Documents

Publication Publication Date Title
Su et al. Lung nodule detection based on faster R-CNN framework
US11120312B2 (en) Quantitative imaging for cancer subtype
Balagurunathan et al. Reproducibility and prognosis of quantitative features extracted from CT images
Fan et al. Computer-aided detection of mass in digital breast tomosynthesis using a faster region-based convolutional neural network
Taşcı et al. Shape and texture based novel features for automated juxtapleural nodule detection in lung CTs
US9230320B2 (en) Computer aided diagnostic system incorporating shape analysis for diagnosing malignant lung nodules
CN112567378A (en) Method and system for utilizing quantitative imaging
US11896407B2 (en) Medical imaging based on calibrated post contrast timing
Araújo et al. An automatic method for segmentation of liver lesions in computed tomography images using deep neural networks
EP3047415A1 (en) Biopsy-free detection and staging of cancer using a virtual staging score
CN112529834A (en) Spatial distribution of pathological image patterns in 3D image data
KR20180022607A (en) Determination of result data on the basis of medical measurement data from various measurements
CN116546916A (en) System and method for virtual pancreatic radiography pipeline
Cifci SegChaNet: a novel model for lung cancer segmentation in CT scans
Midya et al. Computerized diagnosis of liver tumors from CT scans using a deep neural network approach
CN115631387B (en) Method and device for predicting lung cancer pathology high-risk factor based on graph convolution neural network
Dandıl et al. A Mask R-CNN based Approach for Automatic Lung Segmentation in Computed Tomography Scans
US11817204B2 (en) Specialized computer-aided diagnosis and disease characterization with a multi-focal ensemble of convolutional neural networks
WO2023139570A1 (en) System and method for characterising lung tumours (solid, part-solid and ground-glass) based on invasion criteria by means of pixel distancing and deep learning algorithms
Mousavi Moghaddam et al. Lung parenchyma segmentation from CT images with a fully automatic method
Pöhlmann et al. Three-dimensional segmentation of breast masses from digital breast tomosynthesis images
Rodriguez Ruiz Artificial intelligence and tomosynthesis for breast cancer detection
Haq An overview of deep learning in medical imaging
AlShowarah Breast Cancer Detection System using Deep Learning Based on Fusion Features and Statistical Operations.
Nannapaneni et al. Enhanced Image-based Histopathology Lung Cancer Detection

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23743067

Country of ref document: EP

Kind code of ref document: A1