WO2023138430A1 - 深部含瓦斯煤体失稳灾变时的顶板弹性能贡献率估算方法 - Google Patents

深部含瓦斯煤体失稳灾变时的顶板弹性能贡献率估算方法 Download PDF

Info

Publication number
WO2023138430A1
WO2023138430A1 PCT/CN2023/071366 CN2023071366W WO2023138430A1 WO 2023138430 A1 WO2023138430 A1 WO 2023138430A1 CN 2023071366 W CN2023071366 W CN 2023071366W WO 2023138430 A1 WO2023138430 A1 WO 2023138430A1
Authority
WO
WIPO (PCT)
Prior art keywords
coal
elastic energy
rock
roof
gas
Prior art date
Application number
PCT/CN2023/071366
Other languages
English (en)
French (fr)
Inventor
田成林
胡千庭
孙海涛
Original Assignee
山东科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东科技大学 filed Critical 山东科技大学
Priority to US18/571,767 priority Critical patent/US20240264054A1/en
Priority to JP2023577316A priority patent/JP7568333B2/ja
Publication of WO2023138430A1 publication Critical patent/WO2023138430A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/08Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/02Details
    • G01N3/06Special adaptations of indicating or recording means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/02Details
    • G01N3/06Special adaptations of indicating or recording means
    • G01N3/066Special adaptations of indicating or recording means with electrical indicating or recording means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/08Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces
    • G01N3/10Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces generated by pneumatic or hydraulic pressure
    • G01N3/12Pressure testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/24Earth materials
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/18Complex mathematical operations for evaluating statistical data, e.g. average values, frequency distributions, probability functions, regression analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0058Kind of property studied
    • G01N2203/006Crack, flaws, fracture or rupture
    • G01N2203/0067Fracture or rupture

Definitions

  • the invention belongs to the technical field of coal mine safety, and relates to a theoretical calculation method for deep coal-rock gas composite dynamic disasters, in particular to a method for estimating the elastic energy contribution rate of a roof when a deep gas-containing coal body is destabilized and catastrophic.
  • the deep composite coal-rock dynamic disaster is a complex mechanical process affected by the dual effects of "high stress (earth stress) + dynamic disturbance (mining pressure relief)".
  • high stress earth stress
  • dynamic disturbance mining pressure relief
  • the interweaving of various factors in the disaster occurrence process may lead to mutual inducement, mutual reinforcement, or "resonance” effect in the process of accident breeding, occurrence, and development, which makes the occurrence mechanism of the composite dynamic disaster more complicated. It is more important to clarify the specific participation of roof elastic energy in the catastrophe process.
  • the present invention provides a method for estimating the elastic energy contribution rate of the roof during a deep gas-containing coal body instability disaster. Based on this method, the energy contribution rate of the roof can be obtained, and the calculation method is simple and easy to operate.
  • the method for estimating the contribution rate of elastic energy of the roof in the event of a deep gas-containing coal body instability disaster includes the following steps:
  • the first step is to obtain the gas pressure p , thickness h C and roof thickness h R of the gas-containing coal seam respectively;
  • the second step is to take cores from the gas-containing coal seam and the roof respectively, process them into cylindrical or rectangular standard specimens, and obtain the elastic modulus of the roof through mechanical tests E R and gas pressure p Coal seam elastic modulus under the influence of E C
  • the mechanical testing method is as follows: open a drill hole in the center of the bottom surface of the prepared standard coal sample, wherein the set depth of the drill hole is 3-5 mm, and the diameter is 1-2 mm; insert the inverted T-shaped gas injection kit into the drill hole opened at the bottom of the coal sample sample and seal the hole, and seal the contact surface between the bottom of the coal sample sample and the gas injection kit, and then put it into a high-pressure resistant sealed cavity, vacuumize, and fill the hole with a pressure of p
  • the gas and adsorption equilibrium of the coal sample is balanced by using a rigid testing machine at a set loading rate until the coal sample is destroyed, and the stress and strain of the coal sample are recorded simultaneously, and the elastic modulus of the coal seam is obtained by dividing the stress
  • the third step is the preparation and pretreatment of standard specimens of coal-rock combination; specifically: processing pure coal and pure rock specimens according to the coal-rock height ratio and grinding the specimen surface; opening a drill hole in the center of the bottom surface of each coal specimen, and the set depth of the drill hole is 3-5 mm, with a diameter of 1-2 mm, insert the inverted T-shaped gas injection kit into the drill hole opened at the bottom of the coal sample and seal the hole, and at the same time seal the contact surface between the bottom of the coal sample and the gas injection kit; paste ultra-thin transparent polyethylene film on the bottom of each rock sample, and paste three sets of strain gauges at equal intervals in the middle of the side of each rock sample; bond the bottom of the rock with the ultra-thin transparent polyethylene film and the upper surface of the coal sample with super glue. Apply 705# silica gel evenly on the surface and dry it for later use;
  • the prepared standard specimen of coal-rock combination is tested under gas pressure p
  • the specific test method is as follows: put the test piece prepared in the third step into the high-pressure sealed cavity, vacuumize, and fill it with a pressure of p
  • the gas and adsorption balance of the gas and adsorption balance use the rigid testing machine to load at the set loading rate until the specimen is destroyed, and simultaneously record the overall stress and strain of the standard specimen of the combination and the strain of the rock in the standard specimen of the combination; respectively obtain the elastic modulus of the standard specimen of the combination E Z , the first stress-strain curve of the rock and the second stress-strain curve of the composite standard specimen; where, h and c , E R and E C as well as E Z and E R Satisfy the relation (I):
  • the fifth step is to draw the first stress-strain curve and the second stress-strain curve in the same coordinate system to analyze and estimate the roof elastic energy contribution rate ⁇ .
  • the specific estimation method is:
  • Sub-step 5.1 calculate the elastic energy released by the coal-rock combination
  • the ratio of the elastic energy released by the top plate to the elastic energy released by the assembly is the contribution rate ⁇ of the elastic energy of the top plate;
  • Equation (II) is the contribution rate of elastic energy of the roof in the event of a deep gas-containing coal mass instability catastrophe obtained through estimation.
  • the present invention proposes a method for estimating the elastic energy contribution rate of the roof in the event of a deep gas-containing coal mass instability catastrophe according to the actual situation on site, which is a beneficial supplement to the coal-rock gas dynamic disaster in terms of energy, and also provides data support for further understanding the disaster-pregnant and disaster-causing mechanism of dynamic disasters in theory;
  • the present invention can respectively obtain the energy contribution rate of the roof by measuring and calculating the relevant mechanical indexes of the roof rock, gas-containing coal and coal-rock combination, and the calculation method is simple and easy to operate;
  • the present invention fully considers the influence of roof elastic energy for coal rock gas dynamic disasters, has important theoretical significance and engineering practical value, and has positive significance for the prediction and prevention of mine compound dynamic disasters such as rock burst-coal and gas outburst induced by deep mining.
  • Fig. 1 is a flow chart of the method for estimating the elastic energy contribution rate of the roof in the event of a deep gas-containing coal mass destabilization catastrophe according to the present invention.
  • Fig. 2 is a schematic diagram of a coal-rock two-body model of the present invention
  • Fig. 3 is the overall schematic diagram of the roof elastic energy contribution rate estimation model of the present invention.
  • Fig. 4 is a schematic diagram of elastic energy calculation of the roof and coal-rock combination of the present invention.
  • the first stress-strain curve 2.
  • the second stress-strain curve 3.
  • Straight line I 4.
  • Straight line II 5.
  • Straight line III 6.
  • Straight line IV 7.
  • Straight line V 7.
  • the method for estimating the contribution rate of elastic energy of the roof in the event of a deep gas-containing coal body instability catastrophe is characterized by including the following steps:
  • the first step S 1 is to obtain the gas pressure p , thickness h C and roof thickness h R of the gas-bearing coal seam respectively;
  • the second step 2 the gas-containing coal seam and the roof are cored separately, processed into cylindrical or rectangular standard specimens, and the elastic modulus of the roof is obtained through mechanical tests E R and gas pressure p Coal seam elastic modulus under the influence of E C
  • the specific test method of the mechanical test is: open a drill hole in the center of the bottom surface of the prepared standard coal sample, wherein the set depth of the drill hole is 3-5 mm, and the diameter is 1-2 mm; insert the inverted T-shaped gas injection kit into the drill hole opened at the bottom of the coal sample sample and seal the hole, and seal the contact surface between the bottom of the coal sample sample and the gas injection kit, and then put it into a high-pressure sealed cavity, vacuumize, and fill the hole with a pressure of p
  • the gas and adsorption equilibrium of the coal sample was loaded by a rigid testing machine at a set loading rate until the coal sample was destroyed, and the stress and strain of the coal sample were recorded simultaneously.
  • the third step 3 the preparation and pretreatment of standard specimens of coal-rock combination; the specific operations are: process pure coal and pure rock specimens according to the coal-rock height ratio and polish the surface of the specimens; drill holes in the center of the bottom surface of each coal specimen, and the set depth of the drill holes is 3-5 mm, with a diameter of 1-2 mm, insert the inverted T-shaped gas injection kit into the drill hole opened at the bottom of the coal sample and seal the hole, and seal the contact surface between the bottom of the coal sample and the gas injection kit; paste ultra-thin transparent polyethylene film on the bottom of each rock sample, and paste three sets of strain gauges at equal intervals in the middle of the side of each rock sample; bond the bottom of the rock with the ultra-thin transparent polyethylene film and the upper surface of the coal sample with super glue. Apply 705# silica gel evenly on the surface and dry it for later use.
  • the mechanical test is carried out on the prepared standard specimen of the coal-rock combination under the gas pressure p .
  • the specific test method is as follows: put the prepared specimen in the third step into a high-pressure sealed cavity, vacuumize it, fill it with gas with a pressure of p , and absorb it to balance. Use a rigid testing machine to load at a set loading rate until the specimen is destroyed. Simultaneously record the overall stress and strain of the combined standard specimen and the strain of the rock in the combined standard specimen.
  • the fifth step S 5 is to draw the first stress-strain curve 1 and the second stress-strain curve 2 in the same coordinate system to analyze and estimate the elastic energy contribution rate ⁇ of the roof.
  • the specific estimation method is:
  • Sub-step 5.1 calculate the elastic energy released by the coal-rock combination
  • the point corresponding to the peak value of the combination is the starting point for the release of the elastic energy of the combination
  • the point corresponding to the residual strength of the combination is the end point of the elastic energy release of the combination
  • a straight line I 3 parallel to the elastic modulus of the combination is drawn through the starting point
  • a straight line II 4 perpendicular to the horizontal axis is drawn through the starting point
  • the ratio of the elastic energy released by the top plate to the elastic energy released by the assembly is the contribution rate ⁇ of the elastic energy of the top plate;
  • the peak stress of the standard specimen of the combination is ⁇ m
  • the peak value should be ⁇ 8
  • the residual strength and residual strain of the standard specimen of the composite are respectively ⁇ r , ⁇ r
  • the strain corresponding to the rock part is ⁇ 5
  • the residual strain of the rock part in the standard specimen of the post-peak assembly is ⁇ 3
  • the post-peak intensity ⁇ p is the starting point where the elastic energy of the rock really acts on the coal body.
  • the corresponding strains of the standard specimen of the combination and the rock are respectively ⁇ 9 , ⁇ 4 ,Pass m Points draw a straight line parallel to the elastic modulus of the rock (unloading line- ma go through p point) and residual stress ⁇ r
  • the intersection point is a , a point corresponds to ⁇ 3 , the intersection point with the coordinate axis ⁇ 0 Represents the self-dissipative strain in the rock loading process, over no Points to draw a straight line parallel to the elastic modulus of the standard specimen of the combination (unloading line- nd ) and the residual stress at the intersection of d , d point corresponds to ⁇ 6 , the intersection point with the coordinate axis ⁇ 1 Represents the self-dissipative strain of the standard specimen in the loading process of the combination, over q Points to draw a straight line parallel to the elastic modulus of the standard specimen of the combination (unloading line- qe ) and the residual stress at the
  • Step 6 S 6 Based on the estimated method of step 5 and combined with the formula (i), the quantitative expression of the elasticity contribution rate of the top board is obtained:
  • the combination is destroyed, the energy part comes from the release of elastic strain energy accumulated by the coal body.
  • Equation (3) S R is the accumulated elastic energy of the standard pure rock specimen.
  • Equation (II) is the expression of the roof elastic energy contribution rate obtained by using this estimation method in the event of a deep gas-containing coal mass instability catastrophe.

Landscapes

  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Data Mining & Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Physics (AREA)
  • Computational Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Geology (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Remote Sensing (AREA)
  • Algebra (AREA)
  • Probability & Statistics with Applications (AREA)
  • Operations Research (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Evolutionary Biology (AREA)
  • Databases & Information Systems (AREA)
  • Software Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)

Abstract

一种深部含瓦斯煤体失稳灾变时的顶板弹性能贡献率估算方法,具体步骤为:获取煤层瓦斯压力;根据钻孔柱状图获取煤层及顶板厚度;现场取芯,将煤岩样加工并预处理,通过室内力学试验分别获取顶板、含瓦斯煤及含瓦斯煤岩组合标准件的弹性模量;借助应力应变曲线用图形面积推导顶板弹性能的贡献量,并基于顶板及含瓦斯煤的弹性模量、厚度获得顶板弹性能贡献率的量化表达式。充分考虑了煤岩瓦斯动力灾害中顶板弹性能的作用,给出了计算方法及具体的量化计算式,可对顶板弹性能在灾变中的作用有更加清晰的认识,为矿井煤岩瓦斯动力灾害的精准防控提供有益参考。

Description

深部含瓦斯煤体失稳灾变时的顶板弹性能贡献率估算方法 技术领域
本发明属于煤矿安全技术领域,涉及深井煤岩瓦斯复合动力灾害理论计算方法,特别涉及一种深部含瓦斯煤体失稳灾变时的顶板弹性能贡献率估算方法。
背景技术
我国是世界上最大的煤炭生产国和消费国,煤炭在我国能源结构中占有重要地位。尽管采取了相应的系列防控措施,但涉及煤岩瓦斯的矿井动力灾害仍有发生,归根结底是对煤岩瓦斯灾变的机理认识尚不够清晰完善。
技术问题
目前针对矿井动力灾害(煤与瓦斯突出、冲击地压)的研究通常集中于煤体本身以及瓦斯的作用,相关研究一方面仅基于煤层应力与瓦斯情况开展分析直接将顶板的弹性能忽略,另一方面仅给出了粗略估计,但实际上鲜有针对顶板弹性能的具体量化研究,尤其是在深部开采条件下,深部开采面临高地应力、高温、高瓦斯等问题使得煤与瓦斯突出危险性增加,煤岩冲击性增强,进一步导致一些高瓦斯矿井、煤与瓦斯突出矿井发生复合型煤岩动力灾害的概率显著增大,此类灾害既表现出煤与瓦斯突出的部分特征,又有冲击地压的部分特征,两种动力灾害互为共存、互相影响、相互复合。同时,深部复合煤岩动力灾害是受“高应力(地应力)+动力扰动(开采卸压)”双重作用的复杂力学过程,灾害发生过程中多种因素的相互交织,导致在事故孕育、发生、发展过程中可能互为诱因,互为强化,或产生“共振”效应,进而使得复合动力灾害的发生机理更为复杂,而厘清顶板弹性能在灾变过程中具体参与作用显得更为重要。
技术解决方案
针对现有技术的不足,本发明提供一种深部含瓦斯煤体失稳灾变时的顶板弹性能贡献率估算方法,基于本方法可获取顶板的能量贡献率,计算方法简便、易操作。
深部含瓦斯煤体失稳灾变时的顶板弹性能贡献率估算方法,包括以下步骤:
第一步,分别获取含瓦斯煤层瓦斯压力 p、厚度 h C 及顶板厚度 h R
第二步,对含瓦斯煤层及顶板分别进行取芯,加工成圆柱形或矩形标准试件,通过力学试验获得顶板弹性模量 E R 及瓦斯压力 p影响下的煤层弹性模量 E C ;力学测试方法为:在制备好的标准煤样试件底面中心开设钻孔,其中钻孔设定深度为3-5 mm,直径为1-2 mm;将倒T形注气套件嵌入煤样试件底部开设的钻孔中并封孔,同时将煤样试件底部与注气套件的接触面密封,之后装入耐高压密封腔体,抽真空,充入压力为 p的瓦斯并吸附平衡,利用刚性试验机在设定加载速率下加载直至煤样试件破坏,同步记录煤样试件的应力和应变,应力除以应变得到煤层弹性模量;
第三步,煤岩组合体标准试件的制备及预处理;具体为:按照煤岩高度比加工纯煤、纯岩试件并将试件表面打磨;在每个煤体试件底面中心开设钻孔,其中钻孔设定深度为3-5 mm,直径为1-2 mm,将倒T形注气套件嵌入煤样试件底部开设的钻孔中并封孔,同时将煤样试件底部与注气套件的接触面密封;在每个岩石试件底面粘贴超薄透明聚乙烯薄膜,同时在每个岩石试件侧面中部等间距粘贴三组应变片;将粘贴有超薄透明聚乙烯薄膜的岩石底面与煤体试件上端面用强力胶粘接为一个整体;将制备好的煤岩组合体标准试件侧面及上端面均匀涂抹705#硅胶并干燥备用;
第四步,对制备好的煤岩组合体标准试件在瓦斯压力 p下进行力学测试,具体测试方法为:将第三步制备好的试件装入耐高压密封腔体,抽真空,充入压力为 p的瓦斯并吸附平衡,利用刚性试验机在设定加载速率下加载直至试件破坏,同步记录组合体标准试件整体的应力应变及组合体标准试件中岩石的应变;分别获取组合体标准试件的弹性模量 E Z 、岩石的第一应力-应变曲线及组合体标准试件的第二应力-应变曲线;其中, h R h C E R E C 以及 E Z E R 满足关系式(I):
h R = mh C
E R = nE C
E Z = λ( m+1)  E R /( m+ n)                      (I)
式(I)中, m>0且 n>0, λ为修正系数且0< λ≤1;
第五步,将第一应力-应变曲线、第二应力-应变曲线绘制于同一坐标系下分析并估算顶板弹性能贡献率β,具体估算方法为:
第5.1分步,计算煤岩组合体释放的弹性能;
在组合体标准试件的第二应力-应变曲线中,以组合体峰值对应点为组合体弹性能释放起始点,以组合体残余强度对应点为组合体弹性能释放结束点,过起始点作平行于组合体弹性模量的直线I,过起始点作垂直于横轴的直线II,过结束点作平行于横轴的直线III并与第一应力-应变曲线相交,直线I、直线II及直线III围成的面积为组合体释放的弹性能;
第5.2分步,计算顶板释放的弹性能;
过组合体峰值对应点作平行于横轴直线与岩石的第一应力-应变曲线相交,交点为顶板弹性能释放起始点,过组合体残余强度对应点作平行于横轴直线与岩石的第一应力-应变曲线相交,交点为顶板弹性能释放结束点,过顶板弹性能释放起始点作平行于顶板弹性模量的直线IV,过顶板弹性能释放起始点作垂直于横轴的直线V,直线III、直线IV及直线V围成的面积为顶板释放的弹性能;
第5.3分步,估算顶板弹性能贡献率;
顶板释放的弹性能与组合体释放的弹性能之比为顶板弹性能贡献率β;
第六步,根据第五步的估算方法并结合式(I),获得顶板弹性能贡献率β的定量表达式:
β = λ m /( m+ n)                       (II)
式(II)为通过估算获得的深部含瓦斯煤体失稳灾变时的顶板弹性能贡献率。
有益效果
本发明具有如下有益效果
1)本发明根据现场实际情况提出了一种深部含瓦斯煤体失稳灾变时的顶板弹性能贡献率估算方法,是对煤岩瓦斯动力灾害在能量方面的有益补充,同时在理论方面也为进一步弄清动力灾害孕灾致灾机理提供数据支撑;
2)本发明通过测算顶板岩石、含瓦斯煤及煤岩组合体的相关力学指标即可分别获取顶板的能量贡献率,计算方法简便、易操作;
3)本发明针对煤岩瓦斯动力灾害充分考虑了顶板弹性能的影响,具有重要的理论意义和工程实际价值,而且对于深部开采诱发的冲击地压-煤与瓦斯突出等矿井复合动力灾害的预测预防具有积极意义。
附图说明
图1是本发明深部含瓦斯煤体失稳灾变时的顶板弹性能贡献率估算方法的流程图。
图2是本发明煤岩两体模型示意图;
图3是本发明顶板弹性能贡献率估算模型整体示意图;
图4是本发明顶板及煤岩组合体弹性能计算示意图;
其中,1. 第一应力-应变曲线,2. 第二应力-应变曲线,3. 直线I,4. 直线II,5. 直线III,6. 直线IV,7. 直线V。
本发明的实施方式
为充分体现本发明的特征与优点,下面将结合附图及具体实施例予以详细叙述。
如图1及图2所示,深部含瓦斯煤体失稳灾变时的顶板弹性能贡献率估算方法,其特征是,包括以下步骤:
第一步S 1,分别获取含瓦斯煤层瓦斯压力 p、厚度 h C 及顶板厚度 h R
第二步S 2,对含瓦斯煤层及顶板分别进行取芯,加工成圆柱形或矩形标准试件,通过力学试验获得顶板弹性模量 E R 及瓦斯压力 p影响下的煤层弹性模量 E C ;其中力学试验具体测试方法为:在制备好的标准煤样试件底面中心开设钻孔,其中钻孔设定深度为3-5 mm,直径为1-2 mm;将倒T形注气套件嵌入煤样试件底部开设的钻孔中并封孔,同时将煤样试件底部与注气套件的接触面密封,之后装入耐高压密封腔体,抽真空,充入压力为 p的瓦斯并吸附平衡,利用刚性试验机在设定加载速率下加载直至煤样试件破坏,同步记录煤样试件的应力应变。
第三步S 3,煤岩组合体标准试件的制备及预处理;具体操作为:按照煤岩高度比加工纯煤、纯岩试件并将试件表面打磨;在每个煤体试件底面中心开设钻孔,其中钻孔设定深度为3-5 mm,直径为1-2 mm,将倒T形注气套件嵌入煤样试件底部开设的钻孔中并封孔,同时将煤样试件底部与注气套件的接触面密封;在每个岩石试件底面粘贴超薄透明聚乙烯薄膜,同时在每个岩石试件侧面中部等间距粘贴三组应变片;将粘贴有超薄透明聚乙烯薄膜的岩石底面与煤体试件上端面用强力胶粘接为一个整体;将制备好的煤岩组合体标准试件侧面及上端面均匀涂抹705#硅胶并干燥备用。
第四步S 4,对制备好的煤岩组合体标准试件在瓦斯压力 p下进行力学测试,具体测试方法为:将第三步制备好的试件装入耐高压密封腔体,抽真空,充入压力为 p的瓦斯并吸附平衡,利用刚性试验机在设定加载速率下加载直至试件破坏,同步记录组合体标准试件整体的应力应变及组合体标准试件中岩石的应变。通过力学测试分别获取组合体标准试件的弹性模量 E Z 、岩石的第一应力-应变曲线1及组合体标准试件的第二应力-应变曲线2;其中, h R h C E R E C 以及 E Z E R 满足关系式(I):
h R = mh C
E R = nE C
E Z = λ( m+1)  E R /( m+ n)                      (I)
式(I)中, m>0且 n>0, λ为修正系数且0< λ≤1。
第五步S 5,将第一应力-应变曲线1、第二应力-应变曲线2绘制于同一坐标系下分析并估算顶板弹性能贡献率β,具体估算方法为:
第5.1分步,计算煤岩组合体释放的弹性能;
如图4所示,在组合体标准试件的第二应力-应变曲线2中,以组合体峰值对应点为组合体弹性能释放起始点,以组合体残余强度对应点为组合体弹性能释放结束点,过起始点作平行于组合体弹性模量的直线I 3,过起始点作垂直于横轴的直线II 4,过结束点作平行于横轴的直线III 5并与第一应力-应变曲线1相交,直线I 3、直线II 4及直线III 5围成的面积为组合体释放的弹性能;
第5.2分步,计算顶板释放的弹性能;
过组合体峰值对应点作平行于横轴直线与岩石的第一应力-应变曲线1相交,交点为顶板弹性能释放起始点,过组合体残余强度对应点作平行于横轴直线与岩石的第一应力-应变曲线1相交,交点为顶板弹性能释放结束点,过顶板弹性能释放起始点作平行于顶板弹性模量的直线IV,过顶板弹性能释放起始点作垂直于横轴的直线V 7,直线III 5、直线IV 6及直线V 7围成的面积为顶板释放的弹性能;
第5.3分步,估算顶板弹性能贡献率;
顶板释放的弹性能与组合体释放的弹性能之比为顶板弹性能贡献率β;
详细推导过程如下:假设同时满足条件1.设定瓦斯压力 p影响下的组合体标准试件破坏失稳时仅发生煤体部分的破坏,岩石部分相对保持完整且表面无明显裂纹;从能量耗散角度分析,岩石耗散能仅为峰前自身耗散,其余全部为积聚的弹性应变能,即岩石在组合体峰前处于弹性储能阶段;2. 基于第一应力-应变曲线1及第二应力-应变曲线2分析,峰值处煤、岩能量积聚达到极限,峰值与峰后某点为试件稳态破坏至非稳态破坏的转折点,此点之后,岩石弹性能开始作用于煤体,加速煤的破坏,弹性能真正发挥作用;将峰后能量作用点 p q分别上移至峰值处 m n(点 p与点 m重合,点 q与点 n重合),得到图4所示附图,即认为岩石积聚的弹性能在组合体峰值处便开始作用于煤体,也即顶板弹性能释放速率伊始便大于煤体内部裂纹扩展速率,自峰值处开始下部煤体便失去顶板的约束,顶板弹性能释放且立刻作用于煤体,加速煤体的破坏;
建立如图3所示顶板弹性能贡献率估算模型,其中,组合体标准试件峰值应力为 σ m ,峰值应变为 ε 8,组合体标准试件残余强度及残余应变分别为 σ r ε r ;组合体标准试件达到峰值时对应岩石部分的应变为 ε 5,峰后组合体标准试件中岩石部分的残余应变为 ε 3,峰后强度 σ p 为岩石弹性能真正作用于煤体的起始点,此时组合体标准试件及岩石对应的应变分别为 ε 9ε 4,过 m点作平行于岩石弹性模量的直线(卸载线- ma经过 p点)与残余应力 σ r 的交点为 aa点对应应变为 ε 3,与坐标轴交点 ε 0代表岩石加载过程中自身耗散应变,过 n点作平行于组合体标准试件弹性模量的直线(卸载线- nd)与残余应力的交点为 dd点对应应变为 ε 6,与坐标轴交点 ε 1代表组合体标准试件加载过程中的自身耗散应变,过 q点作平行于组合体标准试件弹性模量的直线(卸载线- qe)与残余应力的交点为 e e点对应应变为 ε 7,与坐标轴交点 ε 2代表组合体标准试件失稳前的总耗散应变,分别过 p m n q作垂直于坐标轴直线,与残余应力交点分别为 b c f g,点 h对应组合体标准试件残余应力-残余应变点;根据前述分析可知,组合体标准试件中岩石积聚的弹性能全部作用于煤体时,此时为最危险情况即满足△ pab与△ mac重合,顶点位于 m,即 s 1s 3重合,假设 s 1= s 3= s R ,同理可得,△ qeg与△ ndf重合,顶点位于 n,即 s 2s 4重合,同样假设 s 2= s 4= s C ;显然,此时计算得到的顶板弹性能数值无论是积聚的总量还是真正作用于煤体加速其破坏的量均是最大值,利用此值即可估算顶板弹性能贡献率;
第六步S 6,根据第五步的估算方法并结合式(I),获得顶板弹性能贡献率β的定量表达式:组合体破坏时,能量部分来自煤体自身积聚的可释放弹性应变能,另一部分来自岩石积聚的可释放弹性应变能中的起破坏作用的部分,显然,该部分越多,对煤体加剧破坏的作用越明显,煤体的破坏越剧烈;因此,利用顶板弹性能贡献率β来表征岩石弹性能的作用,其中定义β满足下式:
β=( s R / s C )× 100%                                                                  (2)
                                            (3)
                                                                ε 5= σ m / E R                         (4)
                                                                ε 3= σ r / E R                          (5)
式(3)中 S R 为标准纯岩试件积聚的弹性能,将式(4)、式(5)代入式(3)得:
             (6)
同理可得: s C =( σ 2 m - σ 2 r )/ 2 E Z      (7)
将式(6)、式(7)代入式(2)可得:
                                                  (8)
将式(I)代入式(8)可得:
β = λ m /( m+ n)                       (II)                                                                             
式(II)为利用本估算方法获得的深部含瓦斯煤体失稳灾变时的顶板弹性能贡献率表达式。
上述虽然结合附图对本发明的具体实施方式进行了描述,但并非对本发明保护范围的限制,所属领域技术人员应该明白,在本发明的技术方案的基础上,本领域技术人员不需要付出创造性劳动即可做出的各种修改或变形仍在本发明的保护范围以内。

Claims (4)

  1. 深部含瓦斯煤体失稳灾变时的顶板弹性能贡献率估算方法,其特征是,包括以下步骤:
    第一步,分别获取含瓦斯煤层瓦斯压力 p、厚度 h C 及顶板厚度 h R
    第二步,对含瓦斯煤层及顶板分别进行取芯,加工成圆柱形或矩形标准试件,通过力学试验获得顶板弹性模量 E R 及瓦斯压力 p影响下的煤层弹性模量 E C
    第三步,煤岩组合体标准试件的制备及预处理;
    第四步,对制备好的煤岩组合体标准试件在瓦斯压力 p下进行力学测试,分别获取组合体标准试件的弹性模量 E Z 、岩石的第一应力-应变曲线及组合体标准试件的第二应力-应变曲线;其中, h R h C E R E C 以及 E Z E R 满足关系式(I):
    h R = mh C
    E R = nE C
    E Z = λ( m+1) E R /( m+ n)                      (I)
    式(I)中, m>0且 n>0, λ为修正系数且0< λ≤1;
    第五步,将第一应力-应变曲线、第二应力-应变曲线绘制于同一坐标系下分析并估算顶板弹性能贡献率β,具体估算方法为:
    第5.1分步,计算煤岩组合体释放的弹性能;
    在组合体标准试件的第二应力-应变曲线中,以组合体峰值对应点为组合体弹性能释放起始点,以组合体残余强度对应点为组合体弹性能释放结束点,过起始点作平行于组合体弹性模量的直线I,过起始点作垂直于横轴的直线II,过结束点作平行于横轴的直线III并与第一应力-应变曲线相交,直线I、直线II及直线III围成的面积为组合体释放的弹性能;
    第5.2分步,计算顶板释放的弹性能;
    过组合体峰值对应点作平行于横轴直线与岩石的第一应力-应变曲线相交,交点为顶板弹性能释放起始点,过组合体残余强度对应点作平行于横轴直线与岩石的第一应力-应变曲线相交,交点为顶板弹性能释放结束点,过顶板弹性能释放起始点作平行于顶板弹性模量的直线IV,过顶板弹性能释放起始点作垂直于横轴的直线V,直线III、直线IV及直线V围成的面积为顶板释放的弹性能;
    第5.3分步,估算顶板弹性能贡献率;
    顶板释放的弹性能与组合体释放的弹性能之比为顶板弹性能贡献率β;
    第六步,根据第五步的估算方法并结合式(I),获得顶板弹性能贡献率β的定量表达式:
    β = λm /( m+ n)                       (II)
    式(II)为通过估算获得的深部含瓦斯煤体失稳灾变时的顶板弹性能贡献率。
  2. 根据权利要求1所述深部含瓦斯煤体失稳灾变时的顶板弹性能贡献率估算方法,其特征是,所述第二步通过力学试验获得瓦斯压力 p影响下的煤层弹性模量 E C ,具体测试方法为:在制备好的标准煤样试件底面中心开设钻孔,其中钻孔设定深度为3-5 mm,直径为1-2 mm;将倒T形注气套件嵌入煤样试件底部开设的钻孔中并封孔,同时将煤样试件底部与注气套件的接触面密封,之后装入耐高压密封腔体,抽真空,充入压力为 p的瓦斯并吸附平衡,利用刚性试验机在设定加载速率下加载直至煤样试件破坏,同步记录煤样试件的应力和应变,应力除以应变得到煤层弹性模量。
  3. 根据权利要求1所述深部含瓦斯煤体失稳灾变时的顶板弹性能贡献率估算方法,其特征是,所述第三步煤岩组合体标准试件的制备及预处理,具体为:按照煤岩高度比加工纯煤、纯岩试件并将试件表面打磨;在每个煤体试件底面中心开设钻孔,其中钻孔设定深度为3-5 mm,直径为1-2 mm,将倒T形注气套件嵌入煤样试件底部开设的钻孔中并封孔,同时将煤样试件底部与注气套件的接触面密封;在每个岩石试件底面粘贴超薄透明聚乙烯薄膜,同时在每个岩石试件侧面中部等间距粘贴三组应变片;将粘贴有超薄透明聚乙烯薄膜的岩石底面与煤体试件上端面用强力胶粘接为一个整体;将制备好的煤岩组合体标准试件侧面及上端面均匀涂抹705#硅胶并干燥备用。
  4. 根据权利要求1-3任意一项所述深部含瓦斯煤体失稳灾变时的顶板弹性能贡献率估算方法,其特征是,所述第四步对制备好的煤岩组合体标准试件在瓦斯压力 p下进行力学测试,具体测试方法为:将经过所述第三步处理后的试件装入耐高压密封腔体,抽真空,充入压力为 p的瓦斯并吸附平衡,利用刚性试验机在设定加载速率下加载直至试件破坏,同步记录组合体标准试件整体的应力应变及组合体标准试件中岩石的应变。
PCT/CN2023/071366 2022-01-20 2023-01-09 深部含瓦斯煤体失稳灾变时的顶板弹性能贡献率估算方法 WO2023138430A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US18/571,767 US20240264054A1 (en) 2022-01-20 2023-01-09 Method for estimating contribution rate of elastic energy of top plate during instability catastrophe of deep gas-containing coal body
JP2023577316A JP7568333B2 (ja) 2022-01-20 2023-01-09 深部のガス含有石炭が不安定で災害が発生するときの頂板の弾性エネルギー寄与率の推定方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210063522.0 2022-01-20
CN202210063522.0A CN116106091B (zh) 2022-01-20 2022-01-20 深部含瓦斯煤体失稳灾变时的顶板弹性能贡献率估算方法

Publications (1)

Publication Number Publication Date
WO2023138430A1 true WO2023138430A1 (zh) 2023-07-27

Family

ID=86260373

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/071366 WO2023138430A1 (zh) 2022-01-20 2023-01-09 深部含瓦斯煤体失稳灾变时的顶板弹性能贡献率估算方法

Country Status (4)

Country Link
US (1) US20240264054A1 (zh)
JP (1) JP7568333B2 (zh)
CN (1) CN116106091B (zh)
WO (1) WO2023138430A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117744010A (zh) * 2024-02-07 2024-03-22 煤炭科学研究总院有限公司 一种小数据驱动的煤矿支架压力异常实时定位方法
CN118111798A (zh) * 2024-03-06 2024-05-31 中国矿业大学 一种基于声发射能量释放速率的煤岩冲击倾向性评价方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140019047A1 (en) * 2011-03-30 2014-01-16 China University Of Mining And Technology Multi-information coupling prediction method of coal and gas outburst danger
CN105866373A (zh) * 2016-03-25 2016-08-17 安徽理工大学 一种煤与瓦斯动力灾害的新型判别方法
CN110261220A (zh) * 2018-12-05 2019-09-20 田成林 一种考虑顶板影响的矿井复合型动力灾害模拟试验方法
CN111665135A (zh) * 2020-07-13 2020-09-15 中煤科工集团重庆研究院有限公司 顶板岩体弹性能对煤岩组合体失稳破坏能量贡献度的试验装置及方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101581229A (zh) * 2009-06-25 2009-11-18 抚顺矿业集团有限责任公司 煤矿井下高压注水钻孔封孔方法
CN102243223B (zh) * 2011-04-22 2014-04-30 河南理工大学 一种煤岩瓦斯动力灾害模拟装置
EP2833118B1 (en) 2012-03-31 2016-07-20 China University Of Mining & Technology (Beijing) Simulated impact-type rock burst experiment apparatus
US9613253B2 (en) * 2013-06-27 2017-04-04 Cgg Services Sas Pore-space measurement method apparatus and system
CN103912310B (zh) * 2014-04-15 2016-05-25 辽宁工程技术大学 一种矿井动力灾害预测方法
WO2016022301A1 (en) * 2014-08-04 2016-02-11 Schlumberger Canada Limited In situ stress properties
DE102014112161A1 (de) * 2014-08-26 2016-03-03 Karlsruher Institut für Technologie Biaxiale Messvorrichtung und Verfahren zur Bestimmung von normal- und schubspannungskorrelierten Werkstoffparametern
EP3256885B1 (en) * 2015-02-13 2020-12-30 Services Petroliers Schlumberger Diagenetic and depositional rock analysis
CN105021457B (zh) 2015-07-02 2018-04-06 山东科技大学 一种用于深部坚硬顶板煤层冲击倾向性的测试与评估方法
CN111272544A (zh) 2018-12-05 2020-06-12 山东科技大学 一种基于煤矿深部开采诱发复合型动力灾害的试验方法
CN110390152B (zh) * 2019-07-15 2021-04-02 中国矿业大学 一种模拟巷道围岩裂隙演化的离散元方法
CN111238939A (zh) 2020-03-17 2020-06-05 中联煤层气有限责任公司 一种岩石脆性指数的确定方法及装置
CN111289388B (zh) 2020-03-24 2022-04-29 山东科技大学 一种考虑损伤效应的煤岩组合体冲击倾向性评价方法
CN113240154A (zh) * 2021-04-14 2021-08-10 国网江苏省电力有限公司营销服务中心 考虑弹性能量云模型的多能源系统不确定性优化调度方法、装置及系统
CN113361131B (zh) 2021-06-25 2024-10-18 中国矿业大学 一种原生结构煤的静态力学参数计算方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140019047A1 (en) * 2011-03-30 2014-01-16 China University Of Mining And Technology Multi-information coupling prediction method of coal and gas outburst danger
CN105866373A (zh) * 2016-03-25 2016-08-17 安徽理工大学 一种煤与瓦斯动力灾害的新型判别方法
CN110261220A (zh) * 2018-12-05 2019-09-20 田成林 一种考虑顶板影响的矿井复合型动力灾害模拟试验方法
CN111665135A (zh) * 2020-07-13 2020-09-15 中煤科工集团重庆研究院有限公司 顶板岩体弹性能对煤岩组合体失稳破坏能量贡献度的试验装置及方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LAI XINGPING;ZHANG SHUAI;CUI FENG;WANG ZEYANG;XU HUICONG;FANG XIANWEI: "Energy release law during the damage evolution of water-bearing coal and rock and pick-up of AE signals of key pregnancy disasters", CHINESE JOURNAL OF ROCK MECHANICS AND ENGINEERING, vol. 39, no. 3, 17 March 2020 (2020-03-17), pages 433 - 444, XP093079459, ISSN: 1000-6915, DOI: 10.13722/j.cnki.jrme.2019.1028 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117744010A (zh) * 2024-02-07 2024-03-22 煤炭科学研究总院有限公司 一种小数据驱动的煤矿支架压力异常实时定位方法
CN117744010B (zh) * 2024-02-07 2024-04-30 煤炭科学研究总院有限公司 一种小数据驱动的煤矿支架压力异常实时定位方法
CN118111798A (zh) * 2024-03-06 2024-05-31 中国矿业大学 一种基于声发射能量释放速率的煤岩冲击倾向性评价方法

Also Published As

Publication number Publication date
CN116106091B (zh) 2023-07-07
JP7568333B2 (ja) 2024-10-16
US20240264054A1 (en) 2024-08-08
JP2024522713A (ja) 2024-06-21
CN116106091A (zh) 2023-05-12

Similar Documents

Publication Publication Date Title
WO2023138430A1 (zh) 深部含瓦斯煤体失稳灾变时的顶板弹性能贡献率估算方法
CN110296892B (zh) 基于能量分析的岩石损伤演化过程中特征应力确定方法
Li et al. Mechanical properties and energy evolution of jointed rock specimens containing an opening under uniaxial loading
CN110926941B (zh) 一种页岩脆性指数评价方法、装置及系统
CN111444461B (zh) 高水压下围岩大变形灾害等级预测方法
WO2023197824A1 (zh) 一种基于变形模量的岩石蠕变模型粘、弹性参数获取方法
CN111665135B (zh) 顶板岩体弹性能对煤岩组合体失稳破坏能量贡献度的试验装置及方法
Wang et al. Analysis of Failure Characteristics and Strength Criterion of Coal‐Rock Combined Body with Different Height Ratios
Blanton Deformation of chalk under confining pressure and pore pressure
CN109064016B (zh) 一种低渗煤层水力压裂增透效果评价方法
Zhang et al. Experimental research on permeability variation from the process of hydraulic fracturing of high-rank coal
WO2023138431A1 (zh) 一种煤体灾变时顶板弹性能贡献率影响因素的分析方法
CN116187050A (zh) 一种高地应力围岩三轴条件下强度预测方法
CN111855412B (zh) 一种基于应力能量比的岩爆倾向性等级判别方法
CN210347334U (zh) 高孔隙压力和应力波复合作用下岩石破坏的试验装置
CN112067437A (zh) 一种各向同性材料拉压不对称失效准则的建立方法
Geng et al. Experimental study on the evolution characteristics of gas pressure field for true triaxial cyclic mining
Tamaki et al. 67. ESTIMATING IN-SITU STRESS FIELD FROM BASALTIC ROCK CORE SAMPLES OF HOLE 794C, YAMATO BASIN, JAPAN SEA1
Cain et al. Triaxial testing of brittle sandstone using a multiple failure state method
Wang et al. Effect of Gas on Burst Proneness and Energy Dissipation of Loaded Coal: An Experimental Study Using a Novel Gas‐Solid Coupling Loading Apparatus
Jiefang et al. Energy dissipation characteristics of red sandstone with different water content during impact loading
Coker et al. Cleavage tests of timber
CN113324837B (zh) 一种煤岩液固耦合原位加载实验装置及方法
ZA202400713B (en) Immediate rockburst tendency grade discrimination method
Zhang et al. Experimental Study on the Characteristics of Energy Accumulation before Peak in Coal Rock Combinations with Different Dip Angles

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23742745

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023577316

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE