WO2023138196A1 - Pet成像组件、成像装置及检测方法 - Google Patents
Pet成像组件、成像装置及检测方法 Download PDFInfo
- Publication number
- WO2023138196A1 WO2023138196A1 PCT/CN2022/132847 CN2022132847W WO2023138196A1 WO 2023138196 A1 WO2023138196 A1 WO 2023138196A1 CN 2022132847 W CN2022132847 W CN 2022132847W WO 2023138196 A1 WO2023138196 A1 WO 2023138196A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- pet imaging
- layer
- detector
- imaging assembly
- assembly according
- Prior art date
Links
- 238000001514 detection method Methods 0.000 title claims abstract description 56
- 238000003384 imaging method Methods 0.000 title abstract description 39
- 238000012879 PET imaging Methods 0.000 claims abstract description 77
- 239000013078 crystal Substances 0.000 claims description 12
- 239000000523 sample Substances 0.000 claims description 12
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 11
- 229910052710 silicon Inorganic materials 0.000 claims description 11
- 239000010703 silicon Substances 0.000 claims description 11
- 238000009434 installation Methods 0.000 claims description 4
- 230000003247 decreasing effect Effects 0.000 claims description 2
- 238000002600 positron emission tomography Methods 0.000 description 23
- 210000004556 brain Anatomy 0.000 description 11
- 238000010586 diagram Methods 0.000 description 10
- 239000003814 drug Substances 0.000 description 8
- 229940079593 drug Drugs 0.000 description 8
- 241000282414 Homo sapiens Species 0.000 description 7
- 230000035945 sensitivity Effects 0.000 description 6
- 208000014644 Brain disease Diseases 0.000 description 5
- 230000033001 locomotion Effects 0.000 description 5
- 238000002347 injection Methods 0.000 description 4
- 239000007924 injection Substances 0.000 description 4
- 230000004060 metabolic process Effects 0.000 description 4
- 238000002610 neuroimaging Methods 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 201000010099 disease Diseases 0.000 description 3
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 230000036544 posture Effects 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 208000003174 Brain Neoplasms Diseases 0.000 description 2
- 239000008280 blood Substances 0.000 description 2
- 210000004369 blood Anatomy 0.000 description 2
- 230000037396 body weight Effects 0.000 description 2
- 210000003169 central nervous system Anatomy 0.000 description 2
- 208000026106 cerebrovascular disease Diseases 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 210000000056 organ Anatomy 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 239000000700 radioactive tracer Substances 0.000 description 2
- CVOFKRWYWCSDMA-UHFFFAOYSA-N 2-chloro-n-(2,6-diethylphenyl)-n-(methoxymethyl)acetamide;2,6-dinitro-n,n-dipropyl-4-(trifluoromethyl)aniline Chemical compound CCC1=CC=CC(CC)=C1N(COC)C(=O)CCl.CCCN(CCC)C1=C([N+]([O-])=O)C=C(C(F)(F)F)C=C1[N+]([O-])=O CVOFKRWYWCSDMA-UHFFFAOYSA-N 0.000 description 1
- 208000016285 Movement disease Diseases 0.000 description 1
- 208000018737 Parkinson disease Diseases 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000005842 biochemical reaction Methods 0.000 description 1
- 230000003925 brain function Effects 0.000 description 1
- 210000005013 brain tissue Anatomy 0.000 description 1
- 206010008118 cerebral infarction Diseases 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- WQZGKKKJIJFFOK-UKLRSMCWSA-N dextrose-2-13c Chemical compound OC[C@H]1OC(O)[13C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-UKLRSMCWSA-N 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 238000002059 diagnostic imaging Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 206010015037 epilepsy Diseases 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 230000005714 functional activity Effects 0.000 description 1
- 230000004886 head movement Effects 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000003902 lesion Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000002503 metabolic effect Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 210000000653 nervous system Anatomy 0.000 description 1
- 230000004770 neurodegeneration Effects 0.000 description 1
- 208000015122 neurodegenerative disease Diseases 0.000 description 1
- 230000009251 neurologic dysfunction Effects 0.000 description 1
- 208000015015 neurological dysfunction Diseases 0.000 description 1
- 230000000926 neurological effect Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000002285 radioactive effect Effects 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/02—Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
- A61B6/03—Computed tomography [CT]
- A61B6/037—Emission tomography
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/42—Arrangements for detecting radiation specially adapted for radiation diagnosis
- A61B6/4208—Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector
- A61B6/4233—Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector using matrix detectors
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/42—Arrangements for detecting radiation specially adapted for radiation diagnosis
- A61B6/4266—Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a plurality of detector units
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/42—Arrangements for detecting radiation specially adapted for radiation diagnosis
- A61B6/4275—Arrangements for detecting radiation specially adapted for radiation diagnosis using a detector unit almost surrounding the patient, e.g. more than 180°
Definitions
- the present application relates to the technical field of PET imaging, in particular to a PET imaging component, imaging device and detection method.
- Positron Emission Tomography is a large-scale and cutting-edge nuclear medical imaging device.
- PET Positron Emission Tomography
- the detector of the PET system can convert the above-mentioned gamma photon pair into a visible light signal and then convert it into an electrical signal output. Through the processing, analysis and reconstruction of the signal, the spatial distribution of the radiotracer in the living body can be obtained, so as to visualize the functional metabolism of various tissues and organs in the living body.
- PET can non-invasively, quantitatively and dynamically evaluate metabolic levels, biochemical reactions and functional activities in vivo, so lesions can be detected by PET before they develop into obvious anatomical changes.
- realizing early detection and early treatment plays an extremely important role in reducing the mortality of major diseases such as the nervous system.
- Brain diseases are serious hazards to human health, such as cerebrovascular diseases, brain tumors, and Parkinson's disease. The morbidity and disability rates of these diseases are very high.
- Corresponding treatment plans can be formulated according to the imaging of neurological brain functions of patients. Therefore, improving the imaging quality of brain regions can play a positive guiding role in the treatment of patients with brain diseases.
- PET can provide good guidance for the diagnosis of brain diseases such as brain tumors, cerebral infarction, and epilepsy, and can also be used for research and exploration of brain tissue responses to external stimuli.
- the head contains the most important central nervous system of human beings, and its tissue structure is precise, so the quality of brain imaging is high.
- the resolution of clinical PET system is low, and the single scan time is long, so it is not suitable for imaging patients with brain diseases; and it is difficult for patients with brain diseases to keep still for a long time, and the head movement affects the imaging quality, so it is difficult to meet the requirements of high-precision brain imaging.
- the aperture of the detector ring is relatively large, and when it is used for brain imaging, the signal-to-noise ratio of the equipment is low, and the image accuracy is relatively poor.
- some research has reduced the aperture of the PET detector ring layer by layer to form a hemispherical detector ring.
- there are large gaps in the above design which seriously affects the effective detection area of the detector ring (First prototyping of a dedicated PET system with the hemisphere detector arrangement. [J]. Physics in Medicine & Biology, 2019).
- the current research on neurodegenerative diseases requires PET systems with extremely high sensitivity to achieve fast dynamic PET imaging and accurately obtain dynamic quantitative parameters of brain metabolism. Therefore, there is an urgent need for a dynamic PET scanning device dedicated to the brain for dynamic imaging of patients to explore the relationship between movement disorders and neurological dysfunction in patients.
- the purpose of this application is to provide a PET imaging component, imaging device and detection method, which avoids the space limitation caused by the fixed PET instrument, and realizes that the patient can perform PET scanning in various postures such as sitting, lying, and standing.
- a PET imaging assembly including multi-layer detector rings, the multi-layer detector rings have the same axis of symmetry and are stacked.
- the inner diameter of each layer of the detector rings is sequentially increased or decreased to enclose a space with an opening, wherein each layer of the detector ring includes a plurality of detectors arranged in a circumferential array, and the detection direction of each detector points to the interior of the space of the opening.
- the angles between the detection directions of different detector rings and the planes where the openings are located are not exactly the same.
- the PET imaging assembly further includes a casing, and the detector is disposed on the casing.
- the shape of the housing includes hemispherical, ellipsoidal, cuboid, and cube.
- the PET imaging assembly further includes a fixing sheet to fix the detector on the casing.
- the detector includes at least one probe and a back-end electronic circuit, and the at least one probe is connected to the back-end electronic circuit through a flexible cable.
- the probe includes a plurality of crystals arranged in an array and a plurality of silicon photomultipliers arranged in an array, and the plurality of crystals are coupled and connected to the plurality of silicon photomultipliers.
- the plurality of crystals and the plurality of silicon photomultipliers are arranged in an M ⁇ N array, where M and N are both natural numbers.
- both the plurality of crystals and the plurality of silicon photomultipliers are arranged in a 6 ⁇ 6 array.
- the number of the multi-layer detector rings is more than 6 layers.
- the number of detectors on the multi-layer detector ring is at least 65.
- the multi-layer detector ring includes: a first-layer detector ring, a second-layer detector ring, a third-layer detector ring, a fourth-layer detector ring, a fifth-layer detector ring, and a sixth-layer detector ring arranged sequentially in a direction perpendicular to the plane where the opening is located; wherein the first-layer detector ring is arranged near the opening, and the sixth-layer detector ring is arranged away from the opening.
- the ring inner diameter of the detector ring of the first layer is 0-237mm.
- the first and second layer detector rings each comprise at least 28 detectors.
- the included angle between the detection direction of the detectors of the first layer of detector ring and the plane where the opening is located is 0.
- the ring inner diameter of the second-layer detector ring is 0-232.6 mm.
- the included angle between the detection direction of the detectors of the second-layer detector ring and the plane where the opening is located is 0-10°.
- the ring inner diameter of the third-layer detector ring is 0-219.8 mm.
- said third layer detector ring comprises at least 26 detectors.
- the included angle between the detection direction of the detectors of the third-layer detector ring and the plane where the opening is located is 0-18.8°.
- the ring inner diameter of the detector ring of the fourth layer is 0-196.2 mm.
- said fourth layer of detector ring comprises at least 20 detectors.
- the included angle between the detection direction of the detectors of the fourth-layer detector ring and the plane where the opening is located is 0-35.8°.
- the ring inner diameter of the fifth-layer detector ring is 0-161.2mm.
- said fifth layer of detector ring comprises at least 16 detectors.
- the included angle between the detection direction of the detectors of the fifth-layer detector ring and the plane where the opening is located is 0-49.4°.
- the ring inner diameter of the sixth layer detector ring is 0-118.2 mm.
- said sixth layer detector ring comprises at least 12 detectors.
- the included angle between the detection direction of the detectors of the sixth-layer detector ring and the plane where the opening is located is 0-62.4°.
- the inner diameter of the multi-layer detector ring is adjustable.
- the installation angle of the multi-layer detector ring is adjustable.
- a PET imaging device comprising: the PET imaging assembly as described above, a rotating assembly, a lifting assembly and a control assembly, the rotating assembly is used to adjust the angle of the PET imaging assembly; the lifting assembly is connected to the rotating assembly and/or the PET imaging assembly, and is used to adjust the height of the PET imaging assembly; the control assembly is used to control the PET imaging assembly, the rotating assembly and the lifting assembly.
- a detection method using the above-mentioned PET imaging device including: the control component receives terminal instructions; the control component controls the lifting component to rise and fall to adapt to the height of the person to be detected; the control component controls the rotation of the rotation component to adjust the angle of the PET imaging component.
- the detectors are arranged according to a hemispherical structure, and the structural shape fits the head without fully covering the head.
- the open structure increases the solid angle coverage of the detector surface, which can not only adapt to different detection requirements, but also improve the spatial resolution of the imaging device.
- the PET imaging device uses a small number of detectors to achieve high sensitivity, has low production cost, and has a flexible structure, and the scanning position can be adjusted according to the actual situation of the patient.
- Fig. 1 shows a schematic perspective view of an imaging assembly according to an exemplary embodiment of the present application.
- FIG. 2 illustrates a top view of an imaging assembly according to an example embodiment of the present application.
- FIG. 3 illustrates a front view of an imaging assembly according to an example embodiment of the present application.
- Fig. 4 shows a schematic structural diagram of a detector according to an exemplary embodiment of the present application.
- Fig. 5 shows a schematic structural diagram of a fixing sheet according to an exemplary embodiment of the present application.
- 6-9 show schematic diagrams of swinging imaging components according to exemplary embodiments of the present application.
- FIGS. 10-11 show schematic diagrams of rotation of a rotation assembly according to an exemplary embodiment of the present application.
- FIG 12-13 show schematic diagrams of the lifting assembly according to an example embodiment of the present application.
- first and second are used for descriptive purposes only, and cannot be understood as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features.
- a feature defined as “first” or “second” may explicitly or implicitly include one or more of said features.
- “plurality” means two or more, unless otherwise specifically defined.
- connection should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integral connection: it can be a mechanical connection, it can also be an electrical connection, or it can communicate with each other; it can be a direct connection or an indirect connection through an intermediary, and it can be the internal communication of two components or the interaction relationship between two components.
- installation can be a fixed connection, a detachable connection, or an integral connection: it can be a mechanical connection, it can also be an electrical connection, or it can communicate with each other; it can be a direct connection or an indirect connection through an intermediary, and it can be the internal communication of two components or the interaction relationship between two components.
- “on” or “under” a second feature may include that the first and second features are in direct contact, or may include that the first and second features are not in direct contact but are in contact with another feature between them.
- “on”, “above” and “above” the first feature on the second feature include that the first feature is directly above and obliquely above the second feature, or simply means that the level of the first feature is higher than that of the second feature.
- "Below”, “below” and “under” the first feature to the second feature include that the first feature is directly above and obliquely above the second feature, or simply means that the first feature has a lower horizontal height than the second feature.
- FIG. 1 shows a schematic perspective view of an imaging assembly according to an exemplary embodiment of the present application.
- FIG. 2 illustrates a top view of an imaging assembly according to an example embodiment of the present application.
- FIG. 3 illustrates a front view of an imaging assembly according to an example embodiment of the present application.
- Fig. 4 shows a schematic structural diagram of a detector according to an exemplary embodiment of the present application.
- Fig. 5 shows a schematic structural diagram of a fixing sheet according to an exemplary embodiment of the present application.
- the present application discloses a PET imaging assembly 10, including a hemispherical housing 100 and a multi-layer detector ring 200, wherein the multi-layer detector ring 200 is sequentially arranged on the hemispherical housing 100, the center of each layer of detector ring is collinear with the spherical center of the hemispherical housing 100, each layer of detector ring includes a plurality of detectors 201 arranged in a circumferential array along the surface of the hemispherical housing 100, and the detection direction of each detector 201 points to the hemispherical housing 10 0 inside, but the detection directions of detectors in different layers of detector rings are not completely different.
- the present application realizes a compact, flexible, and movable portable dynamic PET imaging assembly 10, which enables patients to perform PET scanning in various postures such as sitting, lying, and standing, and reduces the amount of drug injection for patients to realize dynamic PET imaging.
- the structure and size of the PET imaging component 10 fit the human head.
- the detectors are arranged in a hemispherical structure, and the structural shape fits the head, increasing the solid angle coverage of the detector surface.
- the detector ring is set to be rotatable to adapt to different detection requirements.
- the number of multi-layer detector rings 200 is more than 6 layers.
- the multi-layer detector ring 200 comprises: along the direction perpendicular to the opening plane of the hemispherical shell 100, the first layer of detector ring 210, the second layer of detector ring 220, the third layer of detector ring 230, the fourth layer of detector ring 240, the fifth layer of detector ring 250 and the sixth layer of detector ring 260; Top 100.
- the number of detectors 201 on the multi-layer detector ring 200 is at least 65. Of course, the application does not limit the specific number of layers of the detector ring 200 and the specific number of detectors 201 .
- the ideal distance between the detection surfaces of the detectors 201 of each detector ring is zero, that is, there is an angle between different detectors 201 in the same ring, so as to ensure that the detection surfaces of the detectors 201 form an approximately closely connected ring, so that the detectors 201 cover the entire hemispherical housing 100 for PET scanning.
- the detector 201 includes at least one probe 2002 and a back-end electronic circuit 2003, and at least one probe 2002 is connected to the back-end electronic circuit 2003 through a flexible cable.
- the backend electronics circuit 2003 includes two spaced apart electronics output interfaces 20031 .
- the probe 2002 includes a plurality of crystals arranged in an array and a plurality of silicon photomultipliers arranged in an array, and the plurality of crystals are coupled and connected to the plurality of silicon photomultipliers.
- the detection direction usually refers to the extension direction of the crystal strip in the probe, and there are different angles between the detection direction and the opening plane of the hemispherical shell 100, and usually for different detectors in the same detector ring, the angles between the detection direction and the opening plane are the same.
- a plurality of crystals and a plurality of silicon photomultipliers are arranged in an M ⁇ N array, wherein M and N are both natural numbers.
- the PET imaging assembly 10 further includes a fixing piece 202 for fixing the detector 201 on the hemispherical housing 100 .
- the fixing piece 202 includes bolt parts and fixing parts at both ends.
- the fixing part is located between two spaced electronic output interfaces 20031.
- the bolt parts of the fixing piece 202 have bolt holes 2021 respectively, and the hemispherical housing 100 has fixing holes.
- the fixing holes can be set as threaded holes, and the bolt parts are fixed in the fixing holes of the hemispherical housing 100 by bolts. Therefore, the detector 201 is clamped between the fixed piece 202 and the hemispherical housing 100 through the fixed piece 202 . Since a certain distance is required between the fixing holes on the surface of the hemispherical housing 100 , the above-mentioned distances appear between the detectors 201 of each detector ring.
- the centers of the bolt holes 2021 between two adjacent detectors 201 are on the same plane, and mutual interference is avoided between two adjacent fixing holes.
- the bolt portion at one end of one fixing piece 202 is offset upwards, and the bolt portion at the adjacent end of the other adjacent fixing piece 202 is offset downwards.
- the detector is fixed by the fixed plate, on the one hand, it is convenient to quickly replace the probes with different resolutions according to different detection and imaging resolution requirements, and on the other hand, it is convenient to replace the probes during maintenance and testing.
- the inner diameter of the multilayer detector ring 200 can be adjusted.
- the installation angle of the multilayer detector ring 200 can be adjusted. By adjusting the inner diameter and angle of the detector ring, it can adapt to different patients for different detection.
- the hemispherical housing 100 can also be configured to be adjustable in size, so as to adapt to different patient head sizes.
- the housing 100 in the above embodiment adopts a hemispherical design. On the one hand, it is to ensure that the centers of the detector rings of each layer are on the same straight line, and at the same time, the detectors of each layer of detector rings form a separate detection ring.
- the structure of the detector 201 invented by the present application is flexible and changeable.
- the number of detector rings, the number of detectors 201 in each ring and the rotation angle can be flexibly changed.
- the detector ring structure includes but is not limited to a hemispherical shape, and can also be a cuboid, cube, ellipsoid, etc.
- the detector ring does not need to cover the head completely.
- the solid angle coverage of the detector surface is increased through an open structure. Not only can it adapt to different detection requirements, improve the spatial resolution of the imaging device, but also can significantly reduce the number of detectors and significantly reduce costs.
- the ring inner diameter of the first-layer detector ring 210 is 0-237 mm.
- the detection direction of the detectors 201 of the first detector ring 210 is parallel to the opening plane of the hemispherical housing 100 .
- the ring inner diameter of the second-layer detector ring 220 is 0-232.6 mm.
- the included angle between the detection direction of the detectors 201 of the second-layer detector ring 220 and the opening plane of the hemispherical housing 100 is 0-10°.
- Both the first-layer detector ring 210 and the second-layer detector ring 220 include at least 28 detectors 201 .
- the ring inner diameter of the third-layer detector ring 230 is 0-219.8 mm.
- the detector ring 230 of the third layer includes at least 26 detectors 201 .
- the included angle between the detection direction of the detectors 201 of the third-layer detector ring 230 and the opening plane of the hemispherical housing 100 is 0-18.8°.
- the ring inner diameter of the fourth-layer detector ring 240 is 0-196.2 mm.
- the fourth detector ring 240 includes at least 20 detectors 201 .
- the included angle between the detection direction of the detectors 201 of the fourth-layer detector ring 240 and the opening plane of the hemispherical housing 100 is 0-35.8°.
- the ring inner diameter of the fifth-layer detector ring 250 is 0-161.2 mm.
- the detector ring 250 of the fifth layer includes at least 16 detectors 201 .
- the included angle between the detection direction of the detectors 201 of the fifth-layer detector ring 250 and the opening plane of the hemispherical housing 100 is 0-49.4°.
- the ring inner diameter of the sixth layer detector ring 260 is 0-118.2 mm.
- the sixth layer detector ring 260 includes at least 12 detectors 201 .
- the included angle between the detection direction of the detectors 201 of the sixth-layer detector ring 260 and the opening plane of the hemispherical housing 100 is 0-62.4°.
- the PET imaging component 10 of the present application uses a relatively small number of detectors 201.
- the size of the detector ring and the housing is relatively reduced, which fits the head better, and the solid angle coverage of the detection surface is greatly improved, thereby improving the detection sensitivity of PET imaging.
- PET detectors are quite expensive, the number of detectors is significantly reduced without sacrificing detection accuracy, and the system cost is greatly saved.
- 6-9 are schematic diagrams illustrating a first type of rotational movement of an imaging assembly according to an exemplary embodiment of the present application.
- 10-11 show schematic diagrams of the second rotation movement of the rotation assembly according to an exemplary embodiment of the present application.
- 12-13 show schematic diagrams of the lifting assembly according to an example embodiment of the present application.
- a PET imaging device 1 including: the above PET imaging assembly 10 , a rotating assembly 30 , a lifting assembly 40 and a control assembly.
- the rotating assembly 30 is used to adjust the angle of the PET imaging assembly 10 ;
- the lifting assembly 40 is connected to the rotating assembly 30 and/or the PET imaging assembly 10 for adjusting the height of the PET imaging assembly 10 ;
- the imaging assembly 10 in the PET imaging device of the present application can adjust the angle, that is, the opening direction of the hemispherical housing 100 of the imaging assembly 10 is vertically downward, and the rotating assembly 30 can make the imaging assembly 10 swing a certain angle around a horizontal axis, and can also make the imaging assembly 10 rotate a certain angle around a vertical axis.
- the lifting assembly 40 can adjust the height of the imaging assembly 10 .
- the angle of the imaging assembly 10, the angle of rotation of the rotating assembly 30, and the lifting height of the lifting assembly 40 can all be adjusted through the control assembly.
- a manual calibration function can also be set to make the imaging device 1 of the present application more user-friendly.
- the bottom end of the PET imaging device 1 of the present application also includes universal wheels 12 for facilitating its movement.
- a handle 11 is provided on the rear side near the top end for moving the imaging device 1 , and the operator can hold the handle 11 to facilitate its movement.
- an emergency stop button 13 which is used to terminate the detection work of the PET imaging device 1 in case of an emergency.
- the PET imaging device 1 of the present application is portable, flexible, and low in cost, so that patients can scan in different postures such as sitting, lying, and standing when performing brain PET imaging, meeting the needs of brain PET scanning in different scenarios, and solving the problems that existing brain imaging equipment cannot be moved and the system sensitivity is low.
- the size of the device is small and easy to use, and the cost of the device is low. Only a small number of detectors are needed to achieve high sensitivity.
- the structure of the device is flexible, and the scanning position can be adjusted according to the actual situation of the patient.
- a detection method using the above-mentioned PET imaging device 1 including: the control component receives terminal instructions; the control component controls the lifting component 40 to rise and fall to adapt to the height of the person to be detected; the control component controls the rotation of the rotation component 30 to adjust the angle of the PET imaging component 10.
- the imaging device 1 can adjust the opening direction of the imaging assembly 10 toward the head of the patient in the vertical direction and rotate the imaging assembly 10 to the angle required for detection by the rotating assembly 30, and then adjust the height of the imaging assembly 10 through the lifting assembly 40 to adapt to the position of the patient's head to complete the PET scan.
- the imaging device 1 can adjust the opening direction of the imaging assembly 10 toward the patient's head in the horizontal direction and rotate the imaging assembly 10 to the angle required for detection by the rotating assembly 30, and then adjust the height of the imaging assembly 10 through the lifting assembly 40 to adapt to the position of the patient's head to complete the PET scan.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Medical Informatics (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Pathology (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Optics & Photonics (AREA)
- Veterinary Medicine (AREA)
- Radiology & Medical Imaging (AREA)
- High Energy & Nuclear Physics (AREA)
- Heart & Thoracic Surgery (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Mathematical Physics (AREA)
- Nuclear Medicine (AREA)
Abstract
一种PET成像组件(10)、成像装置(1)及检测方法,PET成像组件(10)包括多层探测器环(200),多层探测器环(200)具有相同的对称轴线且堆叠布置,每层探测器环的内径依次递增或者递减以围成一具有开口的空间,其中,每层探测器环包括沿周向阵列设置的多个探测器(201),每个探测器(201)的探测方向均指向开口空间内部,不同探测器环之间的探测方向与开口所在平面之间的夹角不完全相同。以少量的探测器(201)实现了极大的立体角覆盖面,在不牺牲探测精度的前提下大幅节约了系统成本。
Description
本申请涉及PET成像技术领域,具体涉及一种PET成像组件、成像装置及检测方法。
正电子发射计算机断层成像(Positron Emission Tomography,以下简称PET)作为一种大型、尖端的核医学影像设备,通过将具有生物活性的放射性示踪剂注射入活体并参与活体内的代谢,放射性核素衰变产生的正电子在活体内随即与组织中的负电子结合发生湮灭,辐射出两个具有相同能量,运动方向相反的γ光子。
PET系统的探测器可以在探测到上述γ光子对后将其转变为可见光信号并进一步转换成电信号输出,通过对该信号的处理分析及重建可以获得放射性示踪剂在活体内的空间分布,从而可视化活体内各组织器官的功能代谢情况。综上,PET能无创、定量、动态地评估活体内的代谢水平、生化反应和功能活动,因而病变在发展到出现明显的解剖学上的改变之前就能被PET检测出来。从而实现早发现,早治疗,对降低神经系统等重大疾病的死亡率具有极其重要的作用。
对于脑部检测,目前临床上采用常规临床PET-CT系统进行脑部扫描。患者需按照要求测量身高,以确保不超过PET检查床的最大载重量和PET-CT扫描仪的扫描孔径,以保证感兴趣区得到最佳显示。此外,患者还需测量体重以确认药物使用剂量。由于注射的药物为放射性同位素标记的葡萄糖,因此患者还需要测量血糖以保证药物注射时医生可控制患者体内血糖含量在一个合适的范围。上述检查完成后,患者需接受放射性药物注射,注射后在指定地点安静休息,以保证药物能充分运输到脑部,最后在医生的指导下躺在PET-CT设备扫描床上检查。
目前,人类大脑的质量虽然仅约占人体重的2%,但它是人体的最高中枢神经,消耗的能量占全身能量的20%~25%,是人体新陈代谢中最旺盛的组织器官。脑科疾病对人类的健康有严重的危害,如脑血管疾病、脑肿瘤、帕金森氏症,这些疾病的发病率和致残率非常高,可根据患者神经性脑功能的成像制定相应的治疗方案,因而提高脑部区域的成像质量可以对脑科疾病患者的治疗起到积极的指导作用。
PET可以对脑肿瘤、脑梗塞和癫痫等脑科疾病的诊断提供良好指导作用,也可用于脑组织对于外部刺激响应的研究探索。头部含有人类最重要的中枢神经系统,组织结构精密,因此对脑部成像的质量要求较高。临床PET系统的分辨率较低,单 次扫描时间较长,不适用于为脑科疾病患者成像;并且脑科疾病患者很难保持长时间不动,头部运动影响成像质量,很难满足高精度脑部成像的要求。
由于目前临床PET设备主要用于人体全身检测,探测器环的孔径较大,在用于脑部成像时设备信噪比较低,图像精度相对较差。目前有研究将PET探测器环孔径逐层减小搭建成一个类似半球形的探测器环,然而上述设计存在较大空隙,严重影响了探测器环的有效探测面积(First prototyping of a dedicated PET system with the hemisphere detector arrangement.[J].Physics in Medicine&Biology,2019)。而目前针对神经退行性疾病的研究需要PET系统具有极高的灵敏度,以实现快速动态PET成像,精确获取脑部代谢的动态定量参数。因此迫切需要一种脑部专用的动态PET扫描设备,用于患者动态成像,以探究患者运动障碍与神经功能障碍之间的关系。
现有用于临床脑部扫描的PET设备存在体积大,不灵活,无法移动,患者必须躺卧才能进行脑部扫描,无法适应一些特殊情况如患者发病后无法进行移动或体位变动,或在手术室进行PET扫描等问题。由于临床PET设备的孔径较大,系统灵敏度低,存在扫描时间相对较长,患者药物注射剂剂量较高,无法动态成像等问题。
背景技术部分的内容仅仅是公开发明人所知晓的技术,并不当然代表本领域的现有技术。
发明内容
本申请旨在提供一种PET成像组件、成像装置及检测方法,避免了PET仪器固定带来的场地限制,实现了患者在坐、卧、立等多种姿势下均可进行PET扫描。
根据本申请的一方面,提出一种PET成像组件,包括多层探测器环,所述多层探测器环具有相同的对称轴线且堆叠布置,每层所述探测器环的内径依次递增或者递减以围成一具有开口的空间,其中,每层所述探测器环包括沿周向阵列设置的多个探测器,每个所述探测器的探测方向均指向所述开口的空间内部,不同所述探测器环之间的探测方向与所述开口所在平面之间的夹角不完全相同。
根据一些实施例,所述PET成像组件还包括壳体,所述探测器设置于所述壳体上。
根据一些实施例,所述壳体的形状包括半球形、椭球形、长方体、正方体。
根据一些实施例,所述PET成像组件还包括固定片,使所述探测器固定于所述壳体上。
根据一些实施例,所述探测器包括至少一个探头和后端电子学电路,所述至少一个探头通过软排线连接于所述后端电子学电路。
根据一些实施例,所述探头包括阵列设置的多个晶体和阵列设置的多个硅光电倍增器,所述多个晶体耦合连接于所述多个硅光电倍增器。
根据一些实施例,所述多个晶体和所述多个硅光电倍增器均为M×N阵列布置,其中M、N均为自然数。
根据一些实施例,所述多个晶体和所述多个硅光电倍增器均为6×6阵列布置。
根据一些实施例,所述多层探测器环的数量为6层以上。
根据一些实施例,所述多层探测器环上的探测器数量为至少65个。
根据一些实施例,所述多层探测器环包括:沿垂直于所述开口所在平面的方向上依次堆叠布置的第一层探测器环、第二层探测器环、第三层探测器环、第四层探测器环、第五层探测器环和第六层探测器环;其中,所述第一层探测器环布置于靠近所述开口处,所述第六层探测器环布置于远离所述开口处。
根据一些实施例,所述第一层探测器环的环内径为0~237mm。
根据一些实施例,所述第一层探测器环和第二层探测器环均包括至少28个探测器。
根据一些实施例,所述第一层探测器环的探测器的探测方向与所述开口所在平面的夹角为0。
根据一些实施例,所述第二层探测器环的环内径为0~232.6mm。
根据一些实施例,所述第二层探测器环的探测器的探测方向与所述开口所在平面的夹角为0~10°。
根据一些实施例,所述第三层探测器环的环内径为0~219.8mm。
根据一些实施例,所述第三层探测器环包括至少26个探测器。
根据一些实施例,所述第三层探测器环的探测器的探测方向与所述开口所在平面的夹角为0~18.8°。
根据一些实施例,所述第四层探测器环的环内径为0~196.2mm。
根据一些实施例,所述第四层探测器环包括至少20个探测器。
根据一些实施例,所述第四层探测器环的探测器的探测方向与所述开口所在平 面的夹角为0~35.8°。
根据一些实施例,所述第五层探测器环的环内径为0~161.2mm。
根据一些实施例,所述第五层探测器环包括至少16个探测器。
根据一些实施例,所述第五层探测器环的探测器的探测方向与所述开口所在平面的夹角为0~49.4°。
根据一些实施例,所述第六层探测器环的环内径为0~118.2mm。
根据一些实施例,所述第六层探测器环包括至少12个探测器。
根据一些实施例,所述第六层探测器环的探测器的探测方向与所述开口所在平面的夹角为0~62.4°。
根据一些实施例,所述多层探测器环的内径能够调节。
根据一些实施例,所述多层探测器环的安装角度能够调节。
根据本申请的一方面,提出一种PET成像装置,包括:如上所述的PET成像组件、旋转组件、升降组件和控制组件,旋转组件用于调节所述PET成像组件的角度;升降组件连接所述旋转组件和/或所述PET成像组件,用于调节PET成像组件的高度;控制组件用于控制所述PET成像组件、所述旋转组件和升降组件。
根据本申请的一方面,提出一种利用上述PET成像装置的检测方法,包括:所述控制组件接收终端指令;所述控制组件控制所述升降组件升降,用于适配待检测者的高度;所述控制组件控制所述旋转组件旋转,以调节PET成像组件的角度。
基于上述的一种PET成像组件、成像装置及检测方法,探测器根据半球形的结构进行排列,结构形状贴合头部,无需对头部进行全覆盖,通过开放式结构增大探测器面的立体角覆盖面,不仅能够适应不同的探测需求,而且可以提升成像装置的空间分辨率。PET成像装置使用了少量探测器即可达到较高的灵敏度,生产成本低,且结构灵活,可根据患者实际情况调整扫描体位。
为能更进一步了解本申请的特征及技术内容,请参阅以下有关本申请的详细说明与附图,但是此说明和附图仅用来说明本申请,而非对本申请的保护范围作任何的限制。
下面结合附图详细说明本公开的实施方式。这里,构成本公开一部分的附图用来提供对本公开的进一步理解。本公开的示意性实施例及其说明用于解释本公开, 并不构成对本公开的不当限定。附图中:
图1示出根据本申请示例实施例的成像组件的立体结构示意图。
图2示出根据本申请示例实施例的成像组件的俯视图。
图3示出根据本申请示例实施例的成像组件的前视图。
图4示出根据本申请示例实施例的探测器的结构示意图。
图5示出根据本申请示例实施例的固定片的结构示意图。
图6-图9示出根据本申请示例实施例的成像组件的摆动示意图。
图10-图11示出根据本申请示例实施例的旋转组件的旋转示意图。
图12-图13示出根据本申请示例实施例的升降组件的升降示意图。
在下文中,仅简单地描述了某些示例性实施例。正如本领域技术人员可认识到的那样,在不脱离本发明的精神或范围的情况下,可通过各种不同方式修改所描述的实施例。因此,附图和描述被认为本质上是示例性的而非限制性的。
在本发明的描述中,需要理解的是,术语"中心"、"纵向"、"横向"、"长度"、"宽度"、"厚度"、"上"、"下"、"前"、"后"、"左"、"右"、"坚直"、"水平"、"顶"、"底"、"内"、"外"、"顺时针"、"逆时针"等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语"第一"、"第二"仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有"第一"、"第二"的特征可以明示或者隐含地包括一个或者更多个所述特征。在本发明的描述中,"多个"的含义是两个或两个以上,除非另有明确具体的限定。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语"安装"、"相连"、"连接"应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接:可以是机械连接,也可以是电连接或可以相互通讯;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征之"上"或之" 下"可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。而且,第一特征在第二特征"之上"、"上方"和"上面"包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征"之下"、"下方"和"下面"包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度小于第二特征。
下文的公开提供了许多不同的实施方式或例子用来实现本发明的不同结构。为了简化本发明的公开,下文中对特定例子的部件和设置进行描述。当然,它们仅仅为示例,并且目的不在于限制本发明。此外,本发明可以在不同例子中重复参考数字和/或参考字母,这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施方式和/或设置之间的关系。此外,本发明提供了的各种特定的工艺和材料的例子,但是本领域普通技术人员可以意识到其他工艺的应用和/或其他材料的使用。
以下结合附图对本发明的优选实施例进行说明,应当理解,此处所描述的优选实施例仅用于说明和解释本发明,并不用于限定本申请。
图1示出根据本申请示例实施例的成像组件的立体结构示意图。图2示出根据本申请示例实施例的成像组件的俯视图。图3示出根据本申请示例实施例的成像组件的前视图。图4示出根据本申请示例实施例的探测器的结构示意图。图5示出根据本申请示例实施例的固定片的结构示意图。
如图1-图5所示,根据本申请示例实施例,本申请公开一种PET成像组件10,包括半球形壳体100和多层探测器环200,其中,多层探测器环200依次布置于半球形壳体100上,每层探测器环的中心与半球形壳体100的球心共线,每层探测器环包括沿半球形壳体100表面周向阵列设置的多个探测器201,每个探测器201的探测方向均指向半球形壳体100内部,但不同层探测器环的探测器的探测方向不完全不同。
本申请实现了一种小巧,灵活,可移动的便携式动态PET成像组件10,实现了患者在坐、卧、立等多种姿势下均可进行PET扫描,并降低患者药物注射量,实现动态PET成像。PET成像组件10的结构及尺寸贴合人类头部探测器按照半球形的结构进行排列,结构形状贴合头部,增大探测器面的立体角覆盖面。探测器环设置为可旋转,适应不同的探测需求。
参图1可见,根据本申请实施例,多层探测器环200的数量为6层以上。在图1所示的实施例中,多层探测器环200包括:沿垂直于半球形壳体100的开口平面的方向上依次布置第一层探测器环210、第二层探测器环220、第三层探测器环230、第四层探测器环240、第五层探测器环250和第六层探测器环260;其中,第一层探测器环210布置于靠近半球形壳体100的开口端,第六层探测器环260,位于靠 近半球形壳体100的顶端。
多层探测器环200上的探测器201数量为至少65个,当然本申请并不限定探测器环200的具体层数以及探测器201的具体数量。每层探测器环的探测器201的探测面之间的理想距离为零,即同一个环内的不同探测器201之间具有夹角,从而保证探测器201的探测面围成一个近似紧密接合的圆环,以实现探测器201覆盖整个半球形壳体100进行PET扫描。
参图4可见,根据本申请实施例,探测器201包括至少一个探头2002和后端电子学电路2003,至少一个探头2002通过软排线连接于后端电子学电路2003。
后端电子学电路2003包括两个间隔的电子学输出接口20031。
探头2002包括阵列设置的多个晶体和阵列设置的多个硅光电倍增器,多个晶体耦合连接于多个硅光电倍增器。探测方向通常指探头中晶体条的延伸方向,该探测方向与半球形壳体100的开口平面之间具有不同的夹角,通常对于同一个探测器环内的不同探测器,其探测方向与开口平面之间的夹角是相同的。
多个晶体和多个硅光电倍增器均为M×N阵列布置,其中,M、N均为自然数。可选地,多个晶体和多个硅光电倍增器均为6×6阵列布置,此时,M=N=6。
参图5可见,根据本申请实施例,PET成像组件10还包括固定片202,使探测器201固定于半球形壳体100上。固定片202包括两端的螺栓部和固定部,固定部位于两个间隔的电子学输出接口20031之间,固定片202的螺栓部,分别具有螺栓孔2021,半球形壳体100上具有固定孔,固定孔可以设置为螺纹孔,通过螺栓将螺栓部固定于半球形壳体100的固定孔内。故,通过固定片202将探测器201卡接于固定片202与半球形壳体100之间。由于半球形壳体100的表面上的固定孔与固定孔之间需要一定距离,所以每层探测器环的探测器201之间出现了上述的距离。
每层探测器环上的探测器201为了缩小它们之间的距离,相邻两个探测器201之间的螺栓孔2021的圆心在同一平面上,相邻两个固定孔之间避免互相干涉,其中一个固定片202一端的螺栓部向上偏移设置,则相邻的另一固定片202的相邻的一端的螺栓部向下偏移设置。
通过固定片固定探测器,一方面便于根据不同的探测成像分辨率需求快速更换不同分辨率的探头,另一方面便于维修检测时更换探头。
根据本申请实施例,多层探测器环200的内径能够调节。多层探测器环200的安装角度能够调节。通过调节探测器环的内径以及角度,以适应不同患者进行不同的检测。
另外,半球形壳体100也可以设置为可调节大小,用于适应不同患者头部的尺寸。本领域技术人员需要注意的是,上述实施例中壳体100采用半球形设计,一方面是为了保证各层探测器环的中心位于同一直线上,同时使得每层探测器环的探测器形成一个单独的探测圆环,另一方面使得相同的探测器环上基本上无开口,从而保证了采集符合事件的准确性,同时使得探测器的立体角覆盖更广,有助于提升重建的图像质量。
本申请所发明的探测器201结构排布灵活多变,探测器环数,各环探测器201数量及旋转角度均可灵活变化,探测器环结构包含但不限于半球形,也可以是长方体,正方体,椭球形等,探测器环无需对头部进行全覆盖,通过开放式结构增大探测器面的立体角覆盖面,不仅能够适应不同的探测需求,提升成像装置的空间分辨率,而且可以显著降低探测器数量,显著降低成本。
根据本申请实施例,第一层探测器环210的环内径为0~237mm。第一层探测器环210的探测器201的探测方向平行于半球形壳体100的开口平面。
根据本申请实施例,第二层探测器环220的环内径为0~232.6mm。第二层探测器环220的探测器201的探测方向与半球形壳体100的开口平面的夹角为0~10°。第一层探测器环210和第二层探测器环220均包括至少28个探测器201。
根据本申请实施例,第三层探测器环230的环内径为0~219.8mm。第三层探测器环230包括至少26个探测器201。第三层探测器环230的探测器201的探测方向与半球形壳体100的开口平面的夹角为0~18.8°。
根据本申请实施例,第四层探测器环240的环内径为0~196.2mm。第四层探测器环240包括至少20个探测器201。第四层探测器环240的探测器201的探测方向与半球形壳体100的开口平面的夹角为0~35.8°。
根据本申请实施例,第五层探测器环250的环内径为0~161.2mm。第五层探测器环250包括至少16个探测器201。第五层探测器环250的探测器201的探测方向与半球形壳体100的开口平面的夹角为0~49.4°。
根据本申请实施例,第六层探测器环260的环内径为0~118.2mm。第六层探测器环260包括至少12个探测器201。第六层探测器环260的探测器201的探测方向与半球形壳体100的开口平面的夹角为0~62.4°。
本申请的PET成像组件10使用了相对较少的探测器201,一方面使得探测器环和壳体的尺寸相对缩小,更加贴合头部,极大地提高了探测面构成的立体角覆盖面,从而提升了PET成像的探测灵敏度;另一方面,由于PET探测器相当昂贵,在不牺牲探测精度的前提下显著的降低了探测器数量,大幅节约了系统成本。
图6-图9示出根据本申请示例实施例的成像组件的第一种旋转运动示意图。图10-图11示出根据本申请示例实施例的旋转组件的第二种旋转运动示意图。图12-图13示出根据本申请示例实施例的升降组件的升降示意图。
如图6-图13所示,根据本申请的一方面,提出一种PET成像装置1,包括:如上的PET成像组件10、旋转组件30、升降组件40和控制组件,旋转组件30用于调节PET成像组件10的角度;升降组件40连接旋转组件30和/或PET成像组件10,用于调节PET成像组件10的高度;控制组件用于控制PET成像组件10、旋转组件30和升降组件40。
本申请的PET成像装置中的成像组件10可以调节角度,即,成像组件10的半球形壳体100的开口方向竖直向下,旋转组件30既可以使成像组件10围绕一水平轴线摆动一定角度,也可以使成像组件10围绕一竖直轴线旋转一定角度。升降组件40可以调节成像组件10的高度。成像组件10的角度、旋转组件30旋转的角度以及升降组件40的升降高度都可以通过控制组件调节,当也可以在自动调节的基础上,设置手动校准功能,使本申请的成像装置1更加人性化。
本申请的PET成像装置1的底端还包括万向轮12,用于方便其移动。其靠近顶端的后侧设置有把手11,用于移动成像装置1,操作员可以手握把手11方便其移动。以及其还包括急停按钮13,用于突发紧急情况下,终止PET成像装置1的检测工作。
本申请的PET成像装置1便携、灵活、成本低,使得患者在进行脑部PET成像时可采用坐、卧、立等不同姿势进行扫描,满足不同场景的脑部PET扫描需求,解决现有脑部成像设备无法移动,系统灵敏度低的问题。设备尺寸小巧便于使用,设备成本低,仅需使用少量探测器即可达到较高的灵敏度,设备结构灵活,可根据患者实际情况调整扫描体位。
根据本申请的一方面,提出一种利用上述PET成像装置1的检测方法,包括:控制组件接收终端指令;控制组件控制升降组件40升降,用于适配待检测者的高度;控制组件控制旋转组件30旋转,以调节PET成像组件10的角度。
当患者是站立或坐立时,成像装置1可以通过调节成像组件10的开口方向在竖直方向上朝向患者的头部以及通过旋转组件30将成像组件10旋转至检测需要的角度,再通过升降组件40调节成像组件10的高度,以适应患者的头部位置,以完成PET扫描。
当患者是躺卧时,成像装置1可以通过调节成像组件10的开口方向在水平方向上朝向患者的头部以及通过旋转组件30将成像组件10旋转至检测需要的角度, 再通过升降组件40调节成像组件10的高度,以适应患者的头部位置,以完成PET扫描。
最后应说明的是:以上所述仅为本公开的示例实施例而已,并不用于限制本公开,尽管参照前述实施例对本公开进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换。凡在本公开的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。
Claims (31)
- 一种PET成像组件,其特征在于,包括:多层探测器环,所述多层探测器环具有相同的对称轴线且堆叠布置,每层所述探测器环的内径依次递增或者递减以围成一具有开口的空间,其中,每层所述探测器环包括沿周向阵列设置的多个探测器,每个所述探测器的探测方向均指向所述开口的空间内部,不同所述探测器环之间的探测方向与所述开口所在平面之间的夹角不完全相同。
- 根据权利要求1所述的PET成像组件,其特征在于,所述PET成像组件还包括壳体,所述探测器设置于所述壳体上。
- 根据权利要求2所述的PET成像组件,其特征在于,所述壳体的形状包括半球形、椭球形、长方体、正方体。
- 根据权利要求2所述的PET成像组件,其特征在于,所述PET成像组件还包括固定片,使所述探测器固定于所述壳体上。
- 根据权利要求1所述的PET成像组件,其特征在于,所述探测器包括至少一个探头和后端电子学电路,所述至少一个探头通过软排线连接于所述后端电子学电路。
- 根据权利要求5所述的PET成像组件,其特征在于,所述探头包括阵列设置的多个晶体和阵列设置的多个硅光电倍增器,所述多个晶体耦合连接于所述多个硅光电倍增器。
- 根据权利要求6所述的PET成像组件,其特征在于,所述多个晶体和所述多个硅光电倍增器均为M×N阵列布置,其中,M、N均为自然数。
- 根据权利要求1所述的PET成像组件,其特征在于,所述多层探测器环的数量为6层以上。
- 根据权利要求1所述的PET成像组件,其特征在于,所述多层探测器环上的探测器数量为至少65个。
- 根据权利要求1所述的PET成像组件,其特征在于,所述多层探测器环包括:沿垂直于所述开口所在平面的方向上依次堆叠布置的第一层探测器环、第二层探测器环、第三层探测器环、第四层探测器环、第五层探测器环和第六层探测器环;其中,所述第一层探测器环布置于靠近所述开口处,所述第六层探测器环布置于远离所述开口处。
- 根据权利要求10所述的PET成像组件,其特征在于,所述第一层探测器环的环内径为0~237mm。
- 根据权利要求10所述的PET成像组件,其特征在于,所述第一层探测器环和第二层探测器环均包括至少28个探测器。
- 根据权利要求10所述的PET成像组件,其特征在于,所述第一层探测器环的探测器的探测方向与所述开口所在平面的夹角为0。
- 根据权利要求10所述的PET成像组件,其特征在于,所述第二层探测器环的环内径为0~232.6mm。
- 根据权利要求10所述的PET成像组件,其特征在于,所述第二层探测器环的探测器的探测方向与所述开口所在平面的夹角为0~10°。
- 根据权利要求10所述的PET成像组件,其特征在于,所述第三层探测器环的环内径为0~219.8mm。
- 根据权利要求10所述的PET成像组件,其特征在于,所述第三层探测器环包括至少26个探测器。
- 根据权利要求10所述的PET成像组件,其特征在于,所述第三层探测器环的探测器的探测方向与所述开口所在平面的夹角为0~18.8°。
- 根据权利要求10所述的PET成像组件,其特征在于,所述第四层探测器环的环内径为0~196.2mm。
- 根据权利要求10所述的PET成像组件,其特征在于,所述第四层探测器环包括至少20个探测器。
- 根据权利要求10所述的PET成像组件,其特征在于,所述第四层探测器环的探测器的探测方向与所述开口所在平面的夹角为0~35.8°。
- 根据权利要求10所述的PET成像组件,其特征在于,所述第五层探测器环的环内径为0~161.2mm。
- 根据权利要求10所述的PET成像组件,其特征在于,所述第五层探测器环包括至少16个探测器。
- 根据权利要求10所述的PET成像组件,其特征在于,所述第五层探测器环的探测器的探测方向与所述开口所在平面的夹角为0~49.4°。
- 根据权利要求10所述的PET成像组件,其特征在于,所述第六层探测器环的环内径为0~118.2mm。
- 根据权利要求10所述的PET成像组件,其特征在于,所述第六层探测器环包括至少12个探测器。
- 根据权利要求10所述的PET成像组件,其特征在于,所述第六层探测器环的探测器的探测方向与所述开口所在平面的夹角为0~62.4°。
- 根据权利要求1所述的PET成像组件,其特征在于,所述多层探测器环的内径能够调节。
- 根据权利要求1所述的PET成像组件,其特征在于,所述多层探测器环的 安装角度能够调节。
- 一种PET成像装置,其特征在于,包括:如权利要求1-29中任一项所述的PET成像组件;旋转组件,用于调节所述PET成像组件的角度;升降组件,连接所述旋转组件和/或所述PET成像组件,用于调节PET成像组件的高度;控制组件,用于控制所述PET成像组件、所述旋转组件和升降组件。
- 一种利用如权利要求30所述的PET成像装置的检测方法,其特征在于,包括:所述控制组件接收终端指令;所述控制组件控制所述升降组件升降,用于适配待检测者的高度;所述控制组件控制所述旋转组件旋转,以调节PET成像组件的角度。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210069472.7A CN114081522B (zh) | 2022-01-21 | 2022-01-21 | Pet成像组件、成像装置及检测方法 |
CN202210069472.7 | 2022-01-21 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023138196A1 true WO2023138196A1 (zh) | 2023-07-27 |
Family
ID=80308989
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/132847 WO2023138196A1 (zh) | 2022-01-21 | 2022-11-18 | Pet成像组件、成像装置及检测方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN114081522B (zh) |
WO (1) | WO2023138196A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114081522B (zh) * | 2022-01-21 | 2022-08-02 | 苏州瑞派宁科技有限公司 | Pet成像组件、成像装置及检测方法 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150115162A1 (en) * | 2013-10-30 | 2015-04-30 | National Institute Of Radiological Sciences | Helmet-type pet device |
US20150378035A1 (en) * | 2013-05-27 | 2015-12-31 | Sogang University Research Foundation | Positron emission tomography detector and positron emission tomography system using same |
CN107595316A (zh) * | 2017-10-30 | 2018-01-19 | 山东麦德盈华科技有限公司 | 一种用于快速成像的头部pet装置及成像方法 |
CN109864751A (zh) * | 2018-07-17 | 2019-06-11 | 山东麦德盈华科技有限公司 | 一种三部分分体全角度符合脑部pet探测器及整体设备 |
US20200305811A1 (en) * | 2016-04-25 | 2020-10-01 | General Equipment For Medical Imaging, S.A. | PET Imaging Device for Observing the Brain |
CN111938683A (zh) * | 2020-07-03 | 2020-11-17 | 南昌大学 | 一种全数字的4Pi立体角PET成像方法及系统 |
WO2021211941A1 (en) * | 2020-04-16 | 2021-10-21 | West Virginia University | Mobile configurable pet for in-room bedside imaging |
CN114081522A (zh) * | 2022-01-21 | 2022-02-25 | 苏州瑞派宁科技有限公司 | Pet成像组件、成像装置及检测方法 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7884331B2 (en) * | 2008-09-19 | 2011-02-08 | Jefferson Science Associates Llc | Compact and mobile high resolution PET brain imager |
-
2022
- 2022-01-21 CN CN202210069472.7A patent/CN114081522B/zh active Active
- 2022-11-18 WO PCT/CN2022/132847 patent/WO2023138196A1/zh unknown
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150378035A1 (en) * | 2013-05-27 | 2015-12-31 | Sogang University Research Foundation | Positron emission tomography detector and positron emission tomography system using same |
US20150115162A1 (en) * | 2013-10-30 | 2015-04-30 | National Institute Of Radiological Sciences | Helmet-type pet device |
US20200305811A1 (en) * | 2016-04-25 | 2020-10-01 | General Equipment For Medical Imaging, S.A. | PET Imaging Device for Observing the Brain |
CN107595316A (zh) * | 2017-10-30 | 2018-01-19 | 山东麦德盈华科技有限公司 | 一种用于快速成像的头部pet装置及成像方法 |
CN109864751A (zh) * | 2018-07-17 | 2019-06-11 | 山东麦德盈华科技有限公司 | 一种三部分分体全角度符合脑部pet探测器及整体设备 |
WO2021211941A1 (en) * | 2020-04-16 | 2021-10-21 | West Virginia University | Mobile configurable pet for in-room bedside imaging |
CN111938683A (zh) * | 2020-07-03 | 2020-11-17 | 南昌大学 | 一种全数字的4Pi立体角PET成像方法及系统 |
CN114081522A (zh) * | 2022-01-21 | 2022-02-25 | 苏州瑞派宁科技有限公司 | Pet成像组件、成像装置及检测方法 |
Also Published As
Publication number | Publication date |
---|---|
CN114081522B (zh) | 2022-08-02 |
CN114081522A (zh) | 2022-02-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
González et al. | Organ-dedicated molecular imaging systems | |
US6242743B1 (en) | Non-orbiting tomographic imaging system | |
US9072451B2 (en) | Compact, hybrid and integrated GAMMA/RF system used to form simultaneous PET or SPECT and MR images | |
US7671340B2 (en) | Adjustable-focal-length collimators method and system | |
US7332722B1 (en) | Simultaneous multi-headed imager geometry calibration method | |
JP3176221U (ja) | 三次元解剖学的および機能的画像化のための画像化デバイスおよびその方法 | |
US20040251419A1 (en) | Device and system for enhanced SPECT, PET, and Compton scatter imaging in nuclear medicine | |
WO2015124023A1 (zh) | 一种局部专用的平板pet成像装置及方法、放疗机 | |
CN103654835B (zh) | 一种评估spect针孔准直器性能的测试装置及其测试方法 | |
US20080073541A1 (en) | Mobile camera for organ targeted imaging | |
WO2023138196A1 (zh) | Pet成像组件、成像装置及检测方法 | |
JP2012515920A (ja) | 挿入可能な経直腸プローブを有する専用のモバイル高解像前立腺petイメージャ | |
US20140275965A1 (en) | Apparatus and Implementation Method of a Set of Universal Compact Portable MR-Compatible PET Inserts to Convert Whole-Body MRI Scanners Into Organ-Specific Hybrid PET/MRI Imagers | |
US20120061581A1 (en) | Mixed resolution and multiplexing imaging method and system | |
Ozsahin et al. | The clinical utilities of multi-pinhole single photon emission computed tomography | |
US20080048124A1 (en) | Multi-modality imaging system | |
CN103619246B (zh) | 医用图像诊断装置 | |
JP2010101666A (ja) | 核医学診断装置 | |
CN111557679A (zh) | 用于脑部的多孔准直器、探头及核医学设备 | |
WO2017083611A1 (en) | System and method for improved performance in nuclear medicine imaging | |
CN110840475A (zh) | 模体及具有该模体的多模态医学成像系统 | |
CN212816282U (zh) | 用于脑部的多孔准直器、探头及核医学设备 | |
CN211723203U (zh) | 一种pet检测设备 | |
Azman et al. | A nuclear radiation detector system with integrated readout for SPECT/MR small animal imaging | |
US6617582B2 (en) | Scintillation camera having multiple fields of view |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22921620 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |