WO2023137925A1 - 并联机器人系统 - Google Patents

并联机器人系统 Download PDF

Info

Publication number
WO2023137925A1
WO2023137925A1 PCT/CN2022/090968 CN2022090968W WO2023137925A1 WO 2023137925 A1 WO2023137925 A1 WO 2023137925A1 CN 2022090968 W CN2022090968 W CN 2022090968W WO 2023137925 A1 WO2023137925 A1 WO 2023137925A1
Authority
WO
WIPO (PCT)
Prior art keywords
parallel robot
force
robot system
moving platform
points
Prior art date
Application number
PCT/CN2022/090968
Other languages
English (en)
French (fr)
Inventor
朱罡
田伟
穆克文
白川
许珂
赵向蕊
Original Assignee
北京罗森博特科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京罗森博特科技有限公司 filed Critical 北京罗森博特科技有限公司
Priority to US18/548,280 priority Critical patent/US20240227178A9/en
Publication of WO2023137925A1 publication Critical patent/WO2023137925A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1615Programme controls characterised by special kind of manipulator, e.g. planar, scara, gantry, cantilever, space, closed chain, passive/active joints and tendon driven manipulators
    • B25J9/1623Parallel manipulator, Stewart platform, links are attached to a common base and to a common platform, plate which is moved parallel to the base
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/50Supports for surgical instruments, e.g. articulated arms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/10Programme-controlled manipulators characterised by positioning means for manipulator elements
    • B25J9/106Programme-controlled manipulators characterised by positioning means for manipulator elements with articulated links
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/10Programme-controlled manipulators characterised by positioning means for manipulator elements
    • B25J9/12Programme-controlled manipulators characterised by positioning means for manipulator elements electric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1694Programme controls characterised by use of sensors other than normal servo-feedback from position, speed or acceleration sensors, perception control, multi-sensor controlled systems, sensor fusion
    • B25J9/1697Vision controlled systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2046Tracking techniques
    • A61B2034/2055Optical tracking systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • A61B2034/304Surgical robots including a freely orientable platform, e.g. so called 'Stewart platforms'

Definitions

  • the invention belongs to the field of intelligent medical equipment and relates to surgical robot technology, in particular to a parallel robot system and a control method thereof.
  • a surgical robot has been increasingly used in clinical operations to assist doctors in completing complex operations.
  • a surgical robot can accurately associate the patient's image data with the patient's physiological and anatomical structure, assist doctors in performing surgical planning, and guide doctors to operate surgical instruments or complete certain surgical operations independently.
  • the existing surgical robots are relatively large in size, and usually include multiple sets of equipment such as a trolley, a passive arm, a front-end tool, a display device, and an upper computer operating platform.
  • the space in the operating room is limited, especially around the operating bed. Doctors, nurses, and surgical robot equipment are surrounded by the operating bed. The space is very cramped and it is not convenient for doctors to operate freely. At this time, if surgical robots are required to complete other auxiliary tasks, it is difficult to have space to accommodate traditional surgical robots.
  • the invention provides a parallel robot system, comprising:
  • the parallel robot includes a mounting base and a moving platform, and a driving device arranged between the mounting base and the moving platform, the driving device is used to drive the moving platform to achieve multi-degree-of-freedom movement relative to the mounting base, wherein the driving device receives a control signal from the control device;
  • a tracer arranged on the moving platform
  • the mounting seat of the parallel robot is connected to one end of the passive arm;
  • the optical position tracking device is used to track the spatial position of the tracker in real time, and send the spatial position data of the tracker to the control device.
  • a passive arm is also included, and the passive arm includes:
  • a second joint structure disposed at the end of said upper arm and/or forearm;
  • the mounting seat of the parallel robot is connected with the end of the forearm of the passive arm.
  • first joint structure includes a first force releasing device and a first locking member
  • second joint structure includes a second force releasing device and a second locking member
  • first driving mechanism and the second driving mechanism apply force to the first locking member and/or the second locking member through the first force releasing device and/or the second force releasing device.
  • first force releasing device and/or the second force releasing device is a lever structure.
  • first driving mechanism and the second driving mechanism are electric push rods, which are electrically connected with the control device.
  • the drive device includes six telescopic devices
  • Three supporting points are respectively formed on the mounting seat and the moving platform, and the three supporting points are arranged in a triangle;
  • Two of the six expansion devices form a group, one end of each group of expansion devices is hinged to one of the three support points of the mounting seat, and the other end of each group of expansion devices is respectively hinged to two adjacent support points of the moving platform, and each group of expansion devices is formed into a triangular arrangement.
  • the telescoping device is an electric push rod, and each electric push rod includes a micro servo motor, and the micro servo motor is electrically connected with the control device.
  • a display screen which is arranged on the parallel robot and is electrically connected with the control device.
  • the tracer includes a bracket and a plurality of optical indicating points, and the optical indicating points are arranged on the bracket.
  • the plurality of optical indication points are luminous or reflective balls, and are located on the same plane;
  • Multiple optical indication points satisfy that the distance between two points is not less than 30mm, and the difference between the distances is not less than 5mm.
  • the parallel robot system of the present invention is small in size and easy to install, can connect various tools through the tool interface, and can provide various functions such as auxiliary drilling, implantation, and positioning.
  • the use of the parallel robot with the passive arm increases the flexibility and use space of the parallel robot.
  • the optical positioning and tracking device in the surgical robot system can be used to track the spatial position of the parallel robot in real time to achieve precise positioning.
  • Fig. 1 is a schematic diagram of a parallel robot according to an embodiment of the present invention.
  • Fig. 2 is a schematic structural diagram of a six-degree-of-freedom motion platform according to an embodiment of the present invention.
  • Fig. 3 is an exploded schematic diagram of a six-degree-of-freedom motion platform according to an embodiment of the present invention.
  • Fig. 4 is a schematic diagram of the connection between the passive arm and the parallel robot according to the embodiment of the present invention.
  • Fig. 5 is a schematic structural diagram of a tracer according to an embodiment of the present invention.
  • Fig. 6 is a schematic structural diagram of a passive arm according to an embodiment of the present invention.
  • Fig. 7 is a cross-sectional view of the structure of the first joint of the passive arm according to the embodiment of the present invention.
  • Fig. 8 is a sectional view of the structure of the second joint of the passive arm according to the embodiment of the present invention, showing the sectional view of the connection between the second force releasing device and the driving device.
  • Fig. 9 is a schematic diagram of the application of the parallel robot system according to the embodiment of the present invention.
  • connection should be understood in a broad sense, for example, it may be a fixed connection, a detachable connection, or an integral connection; it may be a mechanical connection or an electrical connection; it may be a direct connection or an indirect connection through an intermediate medium, or it may be an internal connection between two components.
  • installation should be understood in a broad sense, for example, it may be a fixed connection, a detachable connection, or an integral connection; it may be a mechanical connection or an electrical connection; it may be a direct connection or an indirect connection through an intermediate medium, or it may be an internal connection between two components.
  • the invention provides a parallel robot system, comprising:
  • the parallel robot includes a mounting base and a moving platform, and a driving device arranged between the mounting base and the moving platform, the driving device is used to drive the moving platform to achieve multi-degree-of-freedom movement relative to the mounting base, wherein the driving device receives a control signal from the control device;
  • a tracer arranged on the moving platform
  • the mounting seat of the parallel robot is connected to one end of the passive arm;
  • the optical position tracking device is used to track the spatial position of the tracker in real time, and send the spatial position data of the tracker to the control device.
  • the parallel robot is small in size and saves space.
  • the parallel robot is used together with the passive arm, which increases the flexibility and range of motion of the parallel robot.
  • the passive arm includes: an upper arm and a forearm; a first joint structure, the upper arm and the forearm are hinged together through the first joint structure; a second joint structure is arranged at the end of the upper arm and/or the forearm; a first driving mechanism is arranged in the upper arm; a second driving mechanism is arranged in the forearm.
  • the first driving device and the second driving device respectively provide locking forces for the second joint structures at both ends.
  • the passive arm has at least six degrees of freedom, so that the passive arm can provide flexible movement of the surgical tool in any degree of freedom in space.
  • the driving mechanism can realize fast locking of the entire driven arm and provide a large locking load. Compared with the traditional mechanical connection lock, it has the advantages of more convenient installation and positioning, and faster locking.
  • the tracker of the present invention is used in conjunction with the optical positioning and tracking device, and the spatial position of the tracker is tracked in real time through the optical positioning and tracking device, so that the precise position of the front-end tool of the parallel robot can be determined, and path planning and surgical operations can be performed.
  • the movable platform of the parallel robot can move with multiple degrees of freedom, and the driving device can move under the control of the control device, so that the movable platform can complete a predetermined trajectory.
  • a variety of driving methods can be used, as long as the multi-degree-of-freedom movement of the moving platform can be realized.
  • the parallel robot can choose a six-degree-of-freedom motion platform. Its principle is composed of six actuators, six upper and lower universal hinges, and two platforms.
  • the mounting seat and the moving platform are star-shaped structures with three branches, and each branch is provided with a support point, so three support points are respectively formed on the mounting seat and the moving platform, and the three support points are arranged in a triangle.
  • the driving device is six telescopic devices, two of which form a group, one end of each group of telescopic devices is hinged to one of the three support points of the mounting base, and the other end of each group of telescopic devices is respectively hinged to two adjacent support points of the moving platform, and each group of telescopic devices is formed into a triangular arrangement.
  • the two ends of the telescopic device are provided with ball joints, through which the ball joints are hinged to the mounting seat and the moving platform.
  • the telescopic device can adopt various actuation forms such as electric, hydraulic, and pneumatic.
  • Each electric push rod includes a separate micro servo motor.
  • the high precision of the micro servo motor can ensure the smooth and accurate movement.
  • Each electric push rod is connected to the control device to realize individual control. Changing the length of each electric push rod can change the position and attitude of the moving platform.
  • the parallel robot can have a shell, including an upper shell, a lower shell and a flexible shell.
  • the upper shell is installed outside the moving platform, the lower shell is installed on the mounting seat, and the flexible shell is arranged between the upper shell and the lower shell so that the upper shell can move relative to the lower shell.
  • the parallel robot is small in size, preferably in the shape of a truncated cone.
  • the diameter of the upper shell is 7-12cm
  • the diameter of the lower shell 8 is 11-16cm
  • the height is less than 11-16cm (not including the interface height).
  • the volume is small and naked.
  • the tracer of the present invention may include a bracket and a plurality of optical indication points mounted on the bracket.
  • the bracket can be a hollowed-out frame body, and the shape can be an irregular polygon or a plurality of bifurcated structures.
  • a plurality of installation holes are provided on the bracket for installing optical indication points.
  • the optical indicator point is protrudingly mounted on the bracket, so as to increase the visible range captured by the optical positioning tracking device.
  • the multiple optical indicating points are located on the same plane, but not on the same straight line.
  • setting more than three optical indicating points can determine the plane where the optical indicating points are located. More preferably, setting four optical indicating points can more accurately calculate and calibrate the spatial position of the tracer.
  • the plurality of optical indication points satisfy that the distance between two points is not less than 30mm, and the difference in distance is not less than 5mm.
  • the optical indicator point can be a luminous or reflective ball with a diameter of 5mm-20mm.
  • the tracer can be directly set on the moving platform, or detachably installed on the moving platform through a tool interface.
  • the parallel robot can have a shell, including an upper shell, a lower shell and a flexible shell, the upper shell is installed outside the moving platform, the lower shell is mounted on the mounting seat, and the flexible shell is arranged between the upper shell and the lower shell so that the upper shell can move relative to the lower shell.
  • the parallel robot of the present invention is in the shape of a truncated cone, and the diameter of the upper shell is smaller than that of the lower shell.
  • the first joint structure in the passive arm includes a first force releasing device and a first locking member
  • the second joint structure includes a second force releasing device and a second locking member
  • the first driving mechanism and the second driving mechanism apply force to the first locking member and/or the second locking member through the first force releasing device and/or the second force releasing device.
  • the passive arm of the present invention is respectively provided with a force release device in the joint structure.
  • the locking force of the passive arm is greatly improved by adding the force release device, which meets the application requirements of relatively large loads.
  • it can be realized to lock the driven arm by electric or pneumatic means, which improves the convenience of the operator compared with the mechanical locking method.
  • the first driving mechanism is arranged in the upper arm, and the first driving mechanism can provide driving force to both ends at the same time, for example, it can apply a force to the force receiving end of the first force releasing device in the first joint structure at one end, and simultaneously apply force to the force receiving end of the second force releasing device in the second joint structure at the other end.
  • the second driving mechanism is arranged in the forearm, and the second driving mechanism can also provide driving force to both ends at the same time, for example, it can apply a force to the stressed end of the first force releasing device in the first joint structure at one end, and simultaneously apply a force to the stressed end of the second force releasing device in the second joint structure at the other end.
  • both the first driving mechanism and the second driving mechanism apply force to the force receiving end of the first force releasing device in the first joint structure
  • two first force releasing devices are arranged in the first joint structure, which are respectively arranged on both sides of the first locking member.
  • a first force releasing device is arranged in the first joint structure, which is arranged on one side of the first locking member, close to the side of the driving device that provides the driving force.
  • the first joint structure includes: a first joint head and a second joint head; a hinge shaft, the first joint head and the second joint head are connected through the hinge shaft; wherein, the first locking member is arranged between the first joint head and the second joint head, for locking the first joint head and the second joint head; the first force releasing device is arranged on one side and/or both sides of the first locking member, and is used for applying an enlarged force to the first locking member.
  • the first force releasing device may be a lever structure.
  • the lever-type power release device has a simple structure, and by setting the proportional relationship of the force arm, it is easy to adjust the multiple of the force release, and the force release effect is remarkable.
  • the first force releasing device may include a first rotating shaft and a first force releasing rod, the distance between the force receiving end of the first rod and the first rotating shaft is greater than the distance between the force applying end and the first rotating shaft. Therefore, the force on the force receiving end can be amplified at the force applying end and applied to the first locking member.
  • a first force releasing device may be provided on one side of the first locking member, the force applying end of the first force releasing device abuts against one side of the first locking member, and the force receiving end of the first force releasing device is connected to the driving device.
  • a first force releasing device may be respectively provided on both sides of the first locking member, and the force receiving end of each first force releasing device is respectively connected with the first driving device or the second driving device.
  • the force receiving end of one of the first force releasing devices is connected to the driving device, and the force receiving end of the other first force releasing device leans against the inner wall of the joint head.
  • the first locking member includes a plurality of friction plates sleeved on the hinge shaft.
  • the friction plate can be made of rubber material, and the friction coefficient of the material and the number of friction plates can be selected according to the load to be borne.
  • one end of the hinge shaft may be fixed on one of the first joint head and the second joint head, and the other joint head is hinged on the hinge shaft, so that the relative rotation between the first joint head and the second joint head can be realized.
  • the first joint head and the second joint head are all hinged on the hinge shaft, and the two joint heads can rotate around the hinge shaft, and can rotate relatively between the two joint heads.
  • the first joint structure includes a stopper, sleeved on the end of the hinge shaft, and embedded in the end of the first and/or second joint head.
  • the connection mode of the blocking plate allows relative rotation between the first and second joint heads, and at the same time prevents the two joint heads from detaching from the ends of the hinge shaft.
  • the first joint structure further includes a slider, sleeved on the hinge shaft, and located between the first locking member and the first force releasing device.
  • the slide block can move along the hinge shaft, and the force application end of the first force release device abuts against the slide block, so as to apply force evenly on the first locking member.
  • the force-applying end does not directly exert force on the first locking member, which can prevent the first locking member from being damaged due to excessive local force.
  • the force application end of the first force release rod has an outwardly protruding arc-shaped end surface.
  • the arc-shaped end surface is in contact with the slide block, so it is easier to generate relative movement, and it is convenient to apply force to push the slide block to move along the hinge axis, thereby compressing the first locking member.
  • the top block also includes a top block, which is slidably arranged in the cavity of the first and/or second joint head.
  • the bottom end of the top block is in contact with the driving device, and the top end is in contact with the force receiving end of the first force release device.
  • the jacking block is mainly used to transmit the force of the driving device to the force receiving end of the first force releasing device.
  • the top end of the top block is in point contact with the force receiving end of the first force releasing device.
  • the top of the top block is spherical, and the force-receiving end of the first force release device has an arc-shaped end surface, so that a point contact can be formed between the two.
  • the spherical structure is in contact with the arc-shaped end surface, and the two are prone to relative movement, so that the force-receiving end of the first force release device rotates around the rotating shaft, and drives the force-applying end to move toward the slider or the first locking member to apply force.
  • the second joint structure includes: a joint shell; a third joint head, arranged in the joint shell; wherein the second locking member is arranged in contact with the third joint head, for locking the third joint head; the second force release device is arranged at one end of the second locking member, and is used for applying an enlarged force to the second locking member.
  • the second force release device is a lever structure.
  • the lever-type power release device has a simple structure, and by setting the proportional relationship of the force arm, it is easy to adjust the multiple of the force release, and the force release effect is remarkable.
  • the second force release device includes a second rotating shaft and a second force releasing rod
  • the second force releasing rod is arranged on the second rotating shaft
  • the distance between the force receiving end of the second force releasing rod and the second rotating shaft is greater than the distance between the force applying end and the second rotating shaft.
  • the second rotating shaft can be arranged on the casing, so that the second force release lever can rotate around the second rotating shaft.
  • the distance from the force-bearing end to the hinge point is greater than the distance from the hinge point to the force-applying end, which can amplify the force received by the force-bearing end, thereby exerting a greater force on the locking member at the force-applying end, and the locking effect is good.
  • the second force release device includes two second force release rods, and the two second force release rods are connected together through a second rotating shaft.
  • the two second force releasing rods are connected together through the second rotating shaft to form a structure similar to scissors, and at this time the second rotating shaft does not need to be arranged on the housing.
  • the force receiving end of the second force releasing rod has an arc-shaped end surface.
  • the part of the drive mechanism in contact with the force receiving end of the second force release rod also has an arc-shaped end surface, and the two can form a point contact to facilitate relative movement.
  • the arc-shaped end surface can have a certain inclination angle, or have a concave radian, which can enable the end of the driving mechanism to move preset relative to the force receiving end of the second force releasing rod, so that the force receiving end of the second force releasing rod will undergo preset rotation.
  • the force application end of the second force release rod has an outwardly protruding arc-shaped end surface.
  • the relative movement between the force applying end and the second locking member is facilitated, so that the amplified force is applied to the second locking member.
  • the force applying end presses the second locking member.
  • one end of the third joint head has an at least partially spherical structure.
  • One end of the second locking member has a partially concave spherical structure, which cooperates with the contacting part of the third joint head.
  • the other end of the third joint head has a ball stud protruding from the joint shell.
  • Ball studs can be used to attach aids or fix tools.
  • the side wall of the joint housing has a plurality of U-shaped openings.
  • the ball stud can be turned into the U-shaped opening, thereby expanding the movement range and degree of freedom of the ball stud.
  • the second joint structure of the present invention amplifies the locking force of the joint through the second force release device, so it can be used for passive passive arms, and can also be used for passive arms of surgical robots.
  • the above second joint structure can also be provided only at one end of the passive arm.
  • the driving mechanism may be one of telescopic rods, electric push rods, lead screws, hydraulic cylinders and pneumatic cylinders. It is preferably an electric push rod, which is convenient for users to manipulate.
  • the first and second drive mechanism can be controlled via an external switch.
  • the control device can be connected to the outside of the driven arm, and an external signal can be sent to control the drive mechanism by setting a switch (foot switch, key switch or a group of switches).
  • the driving mechanism can provide thrust to the joint structures at both ends, and the locking force can be amplified by the force release device to promote the fast locking of the joint structure; the switch can also control the retraction of the driving mechanism, and the thrust is reduced to loosen the passive arm joints.
  • the front end of the parallel robot of the present invention has a tool interface, and various tools can be installed to meet different surgical requirements.
  • the tracer is installed near the tool, and the accurate spatial position of the tool can be determined through the tracer, so the tool can be used to achieve precise drilling, nailing, implantation and other operations.
  • the moving platform of the parallel robot of the present invention is suitable for small-range movement to adjust the precise position of the front-end tool, and the large-range movement needs to cooperate with the passive arm to realize.
  • the first joint structure of the passive arm of the present invention is used to connect two arms as a joint between the two arms.
  • the second joint structure is arranged at both ends of the driven arm, and is respectively connected to the ball stud of the forearm and the connecting rod of the upper arm.
  • the passive arm has multiple degrees of freedom, and the position of the parallel robot can be adjusted manually. After the parallel robot is adjusted to a suitable position, the driven arm can be quickly locked through the action of the driving mechanism, and a large locking load can be provided.
  • the traditional mechanical connection lock it has the advantages of more convenient installation and positioning, and faster locking.
  • the parallel robot system of the present invention utilizes the advantages of large movable range, high flexibility, simple operation, and one-button locking of the passive arm, and at the same time combines the advantages of high motion accuracy within a small range of the moving platform of the parallel robot to achieve high-precision navigation planning and precise positioning.
  • the parallel robot system of the present invention is small in size and convenient in arrangement, and can partially replace traditional surgical robots to complete surgical operations.
  • control device can be arranged inside the casing of the parallel robot.
  • control device can also be arranged outside the parallel robot to control the parallel robot and the passive arm through wired or wireless means.
  • the parallel robot 1 of the embodiment of the present invention includes a six-degree-of-freedom motion platform, and an upper shell 6, a flexible shell 7, and a lower shell 8 arranged outside the six-degree-of-freedom motion platform.
  • the flexible shell 7 is connected between the upper shell 6 and the lower shell 8.
  • the shape of the parallel robot 1 is substantially in the shape of a truncated cone.
  • the six-degree-of-freedom motion platform includes a moving platform 2 , a mount 3 and six telescopic devices 4 .
  • the mounting base 3 and the moving platform 2 are star-shaped structures with three branches, and each branch is provided with a supporting point, so three supporting points are respectively formed on the moving platform 2 and the mounting base 3, and the three supporting points are arranged in a triangle.
  • Six telescopic devices 4 form a group in pairs, one end of each group of telescopic devices is hinged to one of the three support points of the mounting base 3, and the other end of each group of telescopic devices 4 is respectively hinged to two adjacent support points of the moving platform 2, so the two telescopic devices 4 in each group are formed into a triangular arrangement.
  • the six-degree-of-freedom motion range of the moving platform 2 is:
  • the telescopic device 4 is an electric push rod, and a ball joint 5 is provided at both ends of the electric push rod.
  • the lower end of the base of the ball joint 5 is open and has an internal thread.
  • the moving platform 2 and the mounting seat 3 are provided with a mounting screw 12, and the base of the ball joint 5 is threadedly connected to the mounting screw 12, so that the telescopic device 4 is hinged to the mounting seat 3 and the moving platform 2.
  • the parallel robot 1 of this embodiment also includes a display screen 9 , one end of which is arranged on the mounting base 3 , and preferably can be rotated relative to the mounting base 3 .
  • the display screen 9 is electrically connected with the control device, and is used for displaying the working state of the parallel robot 1 or displaying prompt information.
  • the prompt information may include, but is not limited to, target location information, planned route information, and the like.
  • the parallel robot 1 also includes a control switch 13 , electrically connected to the control device, for starting or stopping the parallel robot 1 .
  • the control switch 13 is arranged on the upper casing 6, and when the operator holds the front end of the parallel robot 1 with one hand, it is convenient to operate the control switch 13 with the thumb.
  • the control switch 13 can also control the locking and releasing of the passive arm 17 .
  • the robot 1 also includes a tool interface 10 located on the moving platform 2.
  • the tool interface 10 can be a quick plug interface, which is convenient for connecting various tools or adapters.
  • the connecting piece 11 can be connected to the tool interface 10, and the connecting piece 11 can be connected to surgical tools, tracers and other devices.
  • the parallel robot 1 is installed on the driven arm 17
  • the mounting seat 3 of the parallel robot 1 is installed on the ball stud 19 of the forearm of the driven arm 17 .
  • the tracer is set on the moving platform 2, and includes a bracket 14 and an optical indicator point 15.
  • the bracket 14 is a polygonal frame with four optical indicator points 15, which are four reflective balls.
  • the four optical indicating points 15 are arranged in the same plane, but not on the same straight line.
  • the bracket 14 may be a star-shaped bracket, provided with four optical indicating points 15, which are four reflective balls.
  • the optical indicator spot 15 has a diameter of 10 mm.
  • the four optical indication points 15 meet the requirement that the distance between two points is not less than 30 mm, and the difference between the distances is not less than 5 mm.
  • the passive arm 17 of the embodiment of the present invention includes an upper arm 31 and a forearm 32, a first joint structure 33 is arranged between the upper arm 31 and the forearm 32, the end of the upper arm 31 is provided with a first joint head 20, and the end of the forearm 32 is provided with a second joint head 21.
  • the first joint head 20 and the second joint head 21 are hinged together through the hinge shaft 22 , so that the first joint head 20 and the second joint head 21 can rotate relative to each other.
  • the hinge shaft 22 is fixedly arranged on the first joint head 20, the second joint head 21 is hinged on the hinge shaft 22, and the end of the hinge shaft 22 is provided with a catch 27, and the catch 27 is embedded in the groove at the end of the second joint head 21 to prevent the second joint head 21 from falling off from the hinge shaft 22.
  • a spring 30 is provided at the end of the hinge shaft 22 .
  • the spring 30 is sheathed on the hinge shaft 22, and its two ends respectively abut against the stop piece 27 and the end of the second joint head 21, which can provide a preload between the first joint head 20 and the second joint head 21, so that the joint will not be excessively loose in the unlocked state.
  • a first locking member 23 is arranged between the first joint head 20 and the second joint head 21.
  • a plurality of friction plates are used as the first locking member 23, and the plurality of friction plates are sleeved on the hinge shaft 22.
  • the first joint structure 33 of the present embodiment also includes a first force releasing device.
  • the first force releasing device is a lever structure, including a first force releasing rod 25 and a first rotating shaft 24. The distance from the force receiving end of the first force releasing rod 25 to the first rotating shaft 24 is greater than the distance from the force applying end of the first force releasing rod 25 to the first rotating shaft 24 .
  • a first force release device is provided inside the first joint head 20 .
  • the first joint structure 33 in this embodiment further includes a slider 26 , sleeved on the hinge shaft 22 , and located between the first force releasing device and the first locking member 23 .
  • the force applying end of the first force releasing rod 25 abuts against the slider 26 , and the force is evenly applied to the first locking member 23 through the slider 26 .
  • a first driving device 29 is disposed inside the upper arm 31 , and in this embodiment, an electric push rod is used as the first driving device 29 .
  • the top of the driving device 29 is provided with a top block 28 , and the top of the top block 28 is spherical and leans against the force receiving end of the first force releasing rod 25 .
  • the driving device 29 rotates, and the top block 28 moves to the stressed end of the first force releasing rod 25. After the stressed end of the first force releasing rod 25 is subjected to the force, it rotates around the first rotating shaft 24. There is no rotation between the first joint head 20 and the second joint head 21 .
  • the electric push rod rotates in the opposite direction, and the top block 28 moves away from the force end of the first force release rod 25, thereby reducing or canceling the force applied to the force end of the first force release rod 25, and then reducing or canceling the force at the end of the slider 26, so that the first joint head 20 and the second joint head 21 are unlocked and can be relatively rotated.
  • the first force release rod 25 is a sheet structure, and the force receiving end may have a concave arc-shaped end surface.
  • the end of the top block 28 is a spherical surface, so that the top block 28 and the force receiving end of the first force releasing rod 25 can form a point contact, so as to facilitate relative movement.
  • the end face of the stressed end of the first power release rod 25 can have a certain angle of inclination, so that when the end of the top block 28 moves towards the first force release rod 25, it can easily move relative to the stressed end of the first force release rod 25.
  • the force application end of the first force releasing rod 25 may have an outwardly protruding arc-shaped end surface.
  • the second joint structure 34 of the present embodiment is arranged on the ends of the upper arm 31 and the forearm 32 , and includes a ball joint housing 35 and a ball joint 36 .
  • One spherical end of the ball joint 36 is rotatably disposed in the ball joint housing 35 , and the other end of the ball joint 36 is provided with a ball stud pin 19 for connecting the mounting seat 3 of the parallel robot 1 .
  • the ball stud shell 35 is provided with an opening for the ball stud 19 to pass through, and has a U-shaped opening, which increases the range of movement of the ball stud 19 .
  • the joint structure also includes a ball bowl 37 disposed on the spherical end of the ball head 36 , the ball bowl 37 having a partially concave spherical surface matching the shape of the ball head 36 .
  • the second joint structure 34 of this embodiment also includes a second force release device.
  • the second force release device is a lever structure, including a pair of second force release rods 38 , which are hinged together through a second rotating shaft 39 .
  • the force application end of the second force release rod 38 is close to the end of the ball bowl 37 for applying force to the ball bowl 37 .
  • the force receiving end of the second force releasing rod 38 is in contact with the protrusion of the second driving device 40 .
  • the driving device is an electric push rod, which is arranged in the casing of the passive arm.
  • the electric push rod rotates, and the second driving device 40 moves to the stressed end of the second force releasing rod 38.
  • the electric push rod reversely rotates, and the protruding head of the second driving device 40 moves away from the force end of the second force release rod 38, thereby reducing or canceling the force applied to the force end of the second force release rod 38, and then reducing or canceling the force at the end of the ball bowl 37, so that the ball head 36 can move relative to the ball bowl 37.
  • the second force releasing rod 38 is a sheet structure, and the force receiving end has a concave arc-shaped end surface.
  • the protruding head end of the second driving device 40 is a spherical surface, so that the protruding head and the force-receiving end of the second force release rod 38 can form a point contact to facilitate relative movement.
  • the end face of the stressed end of the second power release bar 38 can have a certain angle of inclination, so that when the end of the protruding head moves toward the second force release bar 38, it can easily move along the second force release bar 38 stressed ends, so that the stressed ends of the two second force release bars 38 are far away from each other, thereby producing a motion closer to the ball bowl 37 at the force application ends of the two second force release bars 38, and applying an enlarged active force to the ball bowl 37.
  • the force applying end of the second force releasing rod 38 has an outwardly protruding arc-shaped end surface. By setting the arc-shaped end surface, the relative movement between the force application end and the ball bowl 37 is facilitated, so that the amplified force is applied to the ball bowl 37 .
  • the spherical second joint structure 34 of the passive arm 17 has three degrees of freedom. Therefore, when the passive arm provided with the second joint structure 34 is used to connect the parallel robot 1 , its operation is flexible and its range of motion is large.
  • FIG. 9 an application schematic diagram of the parallel robot system of the present invention is given.
  • the parallel robot 1 is connected to the end of the passive arm 17 , and the other end of the passive arm 17 is set on the operating bed 16 .
  • the optical point 15 of the tracer is set on the front end of the parallel robot 1 , and the optical positioning tracking device 18 can capture the optical point 15 , so it can accurately track the front end position of the parallel robot 1 , that is, the position of the surgical tool.
  • the control device locates the front end position of the tool to the spatial coordinates of the position where the guide pin is set, and calculates the motion and posture required to move the tool to the target position of the moving platform 2 of the parallel robot 1. Start the parallel robot 1, and the moving platform 2 moves the tool to the setting position of the guide pin under the drive of the driving device.
  • the tool can automatically or assist the operator to complete the guide pin setting operation.
  • the moving platform 2 of the parallel robot 1 can be locked to keep it at a predetermined position, and the moving platform 2 of the parallel robot 1 can also be started to dynamically adjust its posture to keep it at a predetermined position to prevent position deviation during the operation process.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Robotics (AREA)
  • Surgery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biomedical Technology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Pathology (AREA)
  • Manipulator (AREA)

Abstract

一种并联机器人系统,包括:控制装置;并联机器人(1),包括安装座(3)和动平台(2),以及设置在安装座(3)和动平台(2)之间的驱动装置,驱动装置用于驱动动平台(2)相对于安装座(3)实现多自由度运动,其中驱动装置接收控制装置的控制信号;示踪器,设置在动平台(2)上;被动臂(17),并联机器人(1)的安装座(3)连接到被动臂(17)的一端;光学定位跟踪装置(18),用于实时跟踪示踪器的空间位置,并将示踪器的空间位置数据发送至控制装置。该并联机器人系统体积小、安装方便,可以通过工具接口连接多种工具,能够提供辅助打孔、植入、定位等多种功能。

Description

并联机器人系统 技术领域
本发明属于智能医疗器械领域,涉及手术机器人技术,尤其涉及并联机器人系统及其控制方法。
背景技术
目前,手术机器人已经越来越多地应用在临床手术中,辅助医生完成复杂的手术。例如,手术机器人可以将患者的影像数据与患者生理解剖结构准确关联,辅助医生执行手术规划,并且可以引导医生操作手术器械或者可以独立完成某些手术操作。
但是,现有的手术机器人体积比较大,通常包括台车、被动臂、前端工具、显示设备以及上位机操作平台等多台套设备。而手术室空间有限,尤其是手术床周围空间有限,医生、护士、手术机器人设备等围在手术床周围,空间非常局促,也不便于医生自由操作。此时如果还需要手术机器人完成其他辅助工作时,很难有空间容纳传统的手术机器人。
因此,需要设计一种小型的并联机器人系统,占用空间小,且能够完成多种手术操作或辅助工作。
发明内容
为了解决上述技术问题,本发明提供了一种并联机器人系统,包括:
控制装置;
并联机器人,包括安装座和动平台,以及设置在所述安装座和动平台之间的驱动装置,所述驱动装置用于驱动所述动平台相对于所述安装座实现多自由度运动,其中所述驱动装置接收所述控制装置的控制信号;
示踪器,设置在所述动平台上;
被动臂,所述并联机器人的安装座连接到所述被动臂的一端;
光学定位跟踪装置,用于实时跟踪所述示踪器的空间位置,并将所述示踪器的空间位置数据发送至所述控制装置。
进一步地,还包括被动臂,所述被动臂包括:
上臂和前臂;
第一关节结构,所述上臂和前臂通过第一关节结构铰接在一起;
第二关节结构,设置在所述上臂和/或前臂的端部;
第一驱动机构,设置在所述上臂内;
第二驱动机构,设置在所述前臂内;
其中,所述并联机器人的安装座与所述被动臂的前臂端部连接。
进一步地,所述第一关节结构包括第一力放装置和第一锁紧件,所述第二关节结构包括第二力放装置和第二锁紧件,所述第一驱动机构和第二驱动机构通过所述第一力放装置和/或第二力放装置向所述第一锁紧件和/或第二锁紧件施加作用力。
进一步地,所述第一力放装置和/或第二力放装置为杠杆式结构。
进一步地,第一驱动机构和第二驱动机构为电推杆,与所述控制装置电性连接。
进一步地,所述驱动装置包括六个伸缩装置;
所述安装座和动平台上分别形成有三个支撑点,且三个所述支撑点呈三角形布置;
所述六个伸缩装置两两为一组,每组伸缩装置的一端与所述安装座的三个所述支撑点中的一个相铰接,每组伸缩装置的另一端分别铰接到所述动平台的相邻两个支撑点上,每组伸缩装置形成为三角形布置。
进一步地,所述伸缩装置为电推杆,每个电推杆包括一个微型伺服电机,所述微型伺服电机与所述控制装置电性连接。
进一步地,还包括显示屏,设置在所述并联机器人上,与所述控制装置电性连接。
进一步地,所述示踪器包括支架和多个光学指示点,所述光学指示点设置在所述支架上。
进一步地,所述多个光学指示点为发光或反光的小球,且位于同一个平面上;
多个光学指示点满足两点之间距离不小于30mm,且距离的差值不小于5mm。
本发明的并联机器人系统,体积小、安装方便,可以通过工具接口连接多种工具,能够提供辅助打孔、植入、定位等多种功能。此外,并联机器人配合被动臂使用,增加了并联机器人的灵活度和使用空间。通过在并联机器人前端设置示踪器,可以利用手术机器人系统中的光学定位跟踪装置,实时追踪并联机器人的空间位置,实现精准定位。
除了上面所描述的本发明解决的技术问题、构成的技术方案的技术特征以及有这些技术方案的技术特征所带来的优点之外,本发明的其他技术特征及这些技术特征带来的优点,将结合附图作出进一步说明。
附图说明
图1是本发明实施例的并联机器人的示意图。
图2是本发明实施例的六自由度运动平台的结构示意图。
图3是本发明实施例的六自由度运动平台的分解示意图。
图4是本发明实施例的被动臂与并联机器人的连接示意图。
图5是本发明实施例的示踪器的结构示意图。
图6是本发明实施例的被动臂的示意性结构图。
图7是本发明实施例的被动臂第一关节结构的剖面图。
图8是本发明实施例的被动臂第二关节结构的剖面图,示出了第二力放装置与驱动装置连接的剖面图。
图9是本发明实施例的并联机器人系统应用示意图。
图中:
1、并联机器人;2、动平台;3、安装座;4、伸缩装置;5、球头铰链;6、上壳体;7、柔性壳体;8、下壳体;9、显示屏;10、工具接口;11、连接件;12、安装螺杆;13、控制开关;14、支架;15、光学指示点;16、手术床;17、被动臂;18、光学定位跟踪装置;19、球头销;20、第一关节头;21、第二关节头;22、铰接轴;23、第一锁紧件;24、第一转轴;25、第一力放杆;26、滑块;27、挡片;28、顶块;29、第一驱动装置;30、弹簧;31、上臂;32、前臂;33、第一关节结构;34、第二关节结构;35、球头外壳;36、球头;37、球碗;38、第二力放杆,39、第二转轴;40、第二驱动装置。
具体实施方式
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
此外,在本发明的描述中,除非另有说明,“多个”、“多根”、“多组”的含义是两个或两个以上,“若干个”、“若干根”、“若干组”的含义是一个或一个以上。
本发明提供了一种并联机器人系统,包括:
控制装置;
并联机器人,包括安装座和动平台,以及设置在所述安装座和动平台之间的驱动装置, 所述驱动装置用于驱动所述动平台相对于所述安装座实现多自由度运动,其中所述驱动装置接收所述控制装置的控制信号;
示踪器,设置在所述动平台上;
被动臂,所述并联机器人的安装座连接到所述被动臂的一端;
光学定位跟踪装置,用于实时跟踪所述示踪器的空间位置,并将所述示踪器的空间位置数据发送至所述控制装置。
本发明的并联机器人系统,并联机器人体积小巧,节省空间。并联机器人配合被动臂一起使用,增加了并联机器人的灵活度和活动范围。
被动臂包括:上臂和前臂;第一关节结构,所述上臂和前臂通过第一关节结构铰接在一起;第二关节结构,设置在所述上臂和/或前臂的端部;第一驱动机构,设置在所述上臂内;第二驱动机构,设置在所述前臂内。
当在被动臂的两端均设置本发明的第二关节结构时,第一驱动装置和第二驱动装置分别为两端的第二关节结构提供锁紧力。此时被动臂具有至少六个自由度,使得被动臂可以提供手术工具在空间中任意自由度的灵活运动。在被动臂到达合适位置后,通过驱动机构的作用,可以实现整个被动臂的快速锁定,并提供较大的锁定负载。相较传统的机械连接锁定,具有安装和定位更方便,锁定更快速的优点。
进一步地,本发明的示踪器与光学定位跟踪装置配合使用,通过光学定位跟踪装置实时追踪示踪器的空间位置,从而可以确定并联机器人前端工具的精确位置,进而可以执行路径规划和手术操作。
可选地,并联机器人的动平台是可以多自由度运动的活动平台,驱动装置可以在控制装置的控制下运动,从而使得活动平台完成预定的运动轨迹。可以采用多种驱动方式,只要能够实现动平台的多自由度运动即可。
优选地,并联机器人可选择六自由度运动平台,其原理是由六支作动筒,上、下各六只万向铰链和上、下两个平台组成,下平台固定在基础上,借助六支作动筒的伸缩运动,完成动平台在空间六个自由度(X,Y,Z,α,β,γ)的运动,从而可以模拟出各种空间运动姿态。
进一步地,安装座和动平台为具有三个分支的星形结构,每个分支上设置有一个支撑点,因此安装座和动平台上分别形成有三个支撑点,且三个所述支撑点呈三角形布置。
优选地,驱动装置为六个伸缩装置,两两为一组,每组伸缩装置的一端与所述安装座的三个所述支撑点中的一个相铰接,每组伸缩装置的另一端分别铰接到所述动平台的相邻两个 支撑点上,每组伸缩装置形成为三角形布置。
进一步地,伸缩装置的两端设置有球头铰链,通过所述球头铰链铰接到所述安装座与动平台。
伸缩装置可以采用电动、液压、气动等多种作动形式。本发明中采用电推杆作为伸缩装置。每个电推杆包括单独的微型伺服电机,微型伺服电机具有较高的精度可以保证运动的平稳和准确,每个电推杆连接到控制装置,实现单独控制,改变每个电推杆的长度可以改变动平台的位置和姿态。
并联机器人可以具有外壳,包括上壳体、下壳体以及柔性壳体,上壳体安装在动平台外部,下壳体安装在安装座上,柔性壳体设置在上壳体和下壳体之间,以便于上壳体可以相对于下壳体运动。并联机器人体积小巧,优选为圆锥台形状,上壳体的直径为7-12cm,下壳体8的直径为11-16cm,高度小于11-16cm(不包括接口高度),体积小巧。
可选地,本发明的示踪器可以包括支架以及安装在支架上的多个光学指示点。可选地,支架可以是镂空的框架体,形状可以是不规则的多边形,也可以是多个分叉结构。在支架上设置多个安装孔,用于安装光学指示点。优选地,光学指示点凸出安装于支架上,以便增大被光学定位跟踪装置拍摄的可视范围。
优选地,多个光学指示点位于同一个平面上,但是不位于同一直线上。优选地,设置三个以上的光学指示点,可以确定光学指示点所处的平面,更优选地,设置四个光学指示点,可以更精准地计算和校准示踪器所处的空间位置。
优选地,多个光学指示点满足两点之间距离不小于30mm,且距离的差值不小于5mm。光学指示点可以为发光或反光的小球,直径为5mm-20mm。
可选地,示踪器可以直接设置在动平台上,或者通过工具接口可拆卸地安装在动平台上。
此外,并联机器人可以具有外壳,包括上壳体、下壳体以及柔性壳体,上壳体安装在动平台外部,下壳体安装在安装座上,柔性壳体设置在上壳体和下壳体之间,以便于上壳体可以相对于下壳体运动。优选地,本发明的并联机器人为圆锥台的形状,上壳体的直径小于下壳体的直径。
优选地,被动臂中的第一关节结构包括第一力放装置和第一锁紧件,第二关节结构包括第二力放装置和第二锁紧件,第一驱动机构和第二驱动机构通过第一力放装置和/或第二力放装置向第一锁紧件和/或第二锁紧件施加作用力。
本发明的被动臂分别在关节结构中设置了力放装置,在驱动装置施加同等锁紧力的情况下,通过增加力放装置,极大地提高了被动臂的锁紧力,满足了较大负载的应用需求。尤其 是在被动臂微型条件下,能够实现利用电动或者气动的方式锁紧被动臂,相比于机械式锁紧方式,提高了操作者使用的便利性。
可选地,第一驱动机构设置在上臂内,第一驱动机构可以同时向两端提供驱动力,例如可以向一端的第一关节结构内第一力放装置的受力端施加作用力,同时向另一端的第二关节结构内第二力放装置的受力端施加作用力。可选地,第二驱动机构设置在前臂内,第二驱动机构也可以同时向两端提供驱动力,例如可以向一端的第一关节结构内第一力放装置的受力端施加作用力,同时向另一端的第二关节结构内第二力放装置的受力端施加作用力。当第一驱动机构和第二驱动机构都向第一关节结构内第一力放装置的受力端施加作用力时,此种情况下第一关节结构内设置有两个第一力放装置,分别设置在第一锁紧件的两侧。当第一驱动机构或第二驱动机构之一向第一关节结构内第一力放装置的受力端施加作用力时,此种情况下第一关节结构内设置有一个第一力放装置,设置在第一锁紧件的一侧,靠近提供驱动力的驱动装置一侧。
进一步地,第一关节结构包括:第一关节头和第二关节头;铰接轴,所述第一关节头和第二关节头通过铰接轴连接;其中,所述第一锁紧件设置在所述第一关节头和第二关节头之间,用于锁紧所述第一关节头和第二关节头;所述第一力放装置设置在所述第一锁紧件的一侧和/或两侧,用于向所述第一锁紧件施加放大的作用力。
优选地,第一力放装置可以为杠杆式结构。杠杆式力放装置,结构简单,通过设置力臂的比例关系,容易调整力放的倍数,力放效果显著。
第一力放装置可包括第一转轴和第一力放杆,第一杆的受力端距离第一转轴的距离大于施力端距离第一转轴的距离。因此,可以将受力端所受的作用力在施力端放大后施加到第一锁紧件上。
可选地,可以在第一锁紧件的一侧设置一个第一力放装置,第一力放装置的施力端抵靠在第一锁紧件的一侧,第一力放装置的受力端与驱动装置连接。或者,可以在第一锁紧件的两侧分别设置一个第一力放装置,每个第一力放装置的受力端分别与第一驱动装置或第二驱动装置连接。或者可选地,其中一个第一力放装置的受力端与驱动装置连接,另一个第一力放装置的受力端抵靠在关节头的内壁上。
优选地,第一锁紧件包括多个摩擦片,套设在铰接轴上。摩擦片可以采用橡胶材料制成,可以根据需要承受的负载选择材料的摩擦系数和摩擦片的数量。
可选地,铰接轴的一端可以固设在第一关节头和第二关节头其中之一上,另一个关节头铰接在铰接轴上,从而可以实现第一和第二关节头之间的相对转动。或者,第一关节头和第 二关节头都铰接在铰接轴上,两个关节头都可以围绕铰接轴转动,两个关节头之间可以相对转动,本领域技术人员可以根据需要选择具体的安装形式。
优选地,第一关节结构包括挡片,套设在铰接轴的端部,并嵌设在第一和/或第二关节头的端部。挡片的连接方式允许第一和第二关节头之间相对转动,同时阻止两个关节头从铰接轴的端部脱离。
可选地,第一关节结构还包括滑块,套设在铰接轴上,位于第一锁紧件与第一力放装置之间。滑块可以沿着铰接轴移动,第一力放装置的施力端抵靠在滑块上,便于在第一锁紧件上均匀的施加作用力。施力端不直接在第一锁紧件上施加作用力,可防止第一锁紧件局部受力过大而损坏。
优选地,第一力放杆的施力端具有向外突出的弧形端面。弧形端面与滑块接触,更容易产生相对移动,便于施加作用力,推动滑块沿着铰接轴移动,从而压紧第一锁紧件。
进一步地,还包括顶块,滑动地设置在第一和/或第二关节头的空腔内。顶块的底端与驱动装置接触,顶端与第一力放装置的受力端接触。顶块主要用于向第一力放装置的受力端传递驱动装置的作用力。优选地,顶块的顶端与第一力放装置的受力端为点接触。例如,顶块的顶端为球形结构,第一力放装置的受力端具有弧形端面,从而可在二者间形成点接触。球形的结构与弧形端面接触,二者容易产生相对运动,从而使得第一力放装置的受力端围绕转轴转动,带动施力端向滑块或第一锁紧件移动从而施加作用力。
进一步地,第二关节结构包括:关节外壳;第三关节头,设置在所述关节外壳内;其中所述第二锁紧件与所述第三关节头接触设置,用于锁紧所述第三关节头;所述第二力放装置设置在所述第二锁紧件的一端,用于向所述第二锁紧件施加放大的作用力。
进一步地,所述第二力放装置为杠杆式结构。杠杆式力放装置,结构简单,通过设置力臂的比例关系,容易调整力放的倍数,力放效果显著。
优选地,第二力放装置包括第二转轴和第二力放杆,第二力放杆设置在第二转轴上,第二力放杆的受力端距离第二转轴的距离大于施力端距离第二转轴的距离。第二转轴可以设置在外壳上,使得第二力放杆可以围绕第二转轴转动。受力端到铰接点的距离大于铰接点到施力端的距离,能够对受力端受到的作用力进行放大,从而在施力端对锁紧件施加更大的作用力,锁紧效果好。
更优选地,第二力放装置包括两个第二力放杆,两个第二力放杆通过第二转轴连接在一起。例如,两个第二力放杆通过第二转轴连接在一起,形成类似剪刀形式结构,此时第二转轴并不需要设置在外壳上。
优选地,第二力放杆的受力端具有弧形的端面。相配合地,驱动机构与第二力放杆的受力端接触的部分也具有弧形的端面,二者可形成点接触,便于发生相对移动。此外,弧形的端面可具有一定的倾斜角度,或者具有内凹的弧度,可以使得驱动机构的端部能够沿着第二力放杆受力端的发生预设的相对移动,因此第二力放杆的受力端会发生预设的转动。
优选地,第二力放杆的施力端具有向外突出的弧形端面。通过设置弧形端面,便于施力端与第二锁紧件之间发生相对移动,从而将放大的作用力施加到第二锁紧件。而且,通过设置向外突出的弧形端面,可以使得施力端与第二锁紧件之间发生相对移动时,施力端压紧第二锁紧件。
优选地,第三关节头的一端具有至少部分球形的结构。第二锁紧件的一端具有部分内凹的球形结构,与第三关节头接触的部分配合。
优选地,第三关节头的另一端具有球头销,伸出关节外壳。球头销可用于连接辅助工具或固定工具。
优选地,关节外壳的侧壁具有多个U型开口。球头销可以转动到U型开口内,从而扩大了球头销的移动范围和自由度。
本发明的第二关节结构通过第二力放装置放大关节的锁紧力,因此可以用于被动式被动臂,也可用于手术机器人的被动臂。
当然,也可以仅在被动臂的其中一端设置以上第二关节结构。
进一步地,驱动机构可以为伸缩杆、电推杆、丝杠、液压缸和气压缸中的一种。优选地为电推杆,方便使用者操控。
此外,可以通过外部的开关控制第一和第二驱动机构。可以在被动臂外部连接控制装置,通过设置开关(脚踏开关、按键开关或者一组开关)发出外部信号控制驱动机构。驱动机构可以向两端的关节结构提供推力,并通过力放装置放大锁紧力,推动关节结构快速锁紧;开关同样可以控制驱动机构回缩,推力减小使得被动臂关节松开。
本发明的并联机器人的前端具有工具接口,可以安装多种工具,以满足不同手术需求。示踪器安装在工具附近,通过示踪器可以确定工具的准确空间位置,因此可以利用工具实现精确打孔、打钉、植入等操作。本发明的并联机器人的动平台适合小范围运动来调整前端工具的精确位置,大范围运动需要配合被动臂实现。
优选地,本发明被动臂的第一关节结构用于连接两个臂,作为两个臂之间的关节。第二关节结构设置在被动臂的两端,分别连接至前臂的球头销和上臂的连接杆。使用时,先松开第一关节结构和第二关节结构,此时被动臂具有多自由度,可以手动调整并联机器人的位置, 在并联机器人调整到达合适位置后,通过驱动机构的作用,快速锁紧被动臂,并可提供较大的锁定负载。相较传统的机械连接锁定,具有安装和定位更方便,锁定更快速的优点。
因此本发明的并联机器人系统利用了被动臂活动范围大、灵活度高、操作简单、一键锁死的优点,同时结合并联机器人的动平台小范围内运动精度高的优点,实现高精度的导航规划及精准定位。本发明的并联机器人系统体积小,布置方便,可以部分取代传统手术机器人完成手术操作。
可选地,控制装置可以设置在并联机器人的壳体内,为了进一步缩小体积,控制装置也可以设置在并联机器人的外部,通过有线或无线的方式控制并联机器人及被动臂。
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
如图1和图2所示,本发明实施例的并联机器人1包括六自由度运动平台,以及设置在六自由度运动平台外部的上壳体6、柔性壳体7和下壳体8,柔性壳体7连接在上壳体6和下壳体8之间。本实施例中,并联机器人1的外形为大致圆锥台形状。
六自由度运动平台包括动平台2、安装座3和六个伸缩装置4。安装座3和动平台2为具有三个分支的星形结构,每个分支上设置有一个支撑点,因此在动平台2、安装座3分别形成有三个支撑点,且三个所述支撑点呈三角形布置。
六个伸缩装置4两两为一组,每组伸缩装置的一端与安装座3的三个所述支撑点中的一个相铰接,每组伸缩装置4的另一端分别铰接到动平台2的相邻两个支撑点上,因此每组内的两个伸缩装置4形成为三角形布置。
本实施例中,动平台2的六自由度运动范围为:
平移:
X方向[40mm,-34mm]
Y方向[35mm,-35mm]
Z方向[16mm,-13mm]
旋转:
X方向[25°,-25°]
Y方向[25°,-25°]
Z方向[64°,-64°]
如图3所示,本实施例中,伸缩装置4为电推杆,电推杆的两端设置有球头铰链5,球头铰链5的基座下端开口且具有内螺纹,动平台2和安装座3上设置有安装螺杆12,球头铰链5的基座螺纹连接到安装螺杆12,从而将伸缩装置4铰接到安装座3和动平台2。
本实施例的并联机器人1还包括显示屏9,一端设置在安装座3上,优选地可以相对于安装座3转动角度。显示屏9与控制装置电性连接,用于显示并联机器人1的工作状态,或者显示提示信息。提示信息可以包括但不限于,目标位置信息,规划路径信息等。
并联机器人1还包括控制开关13,与控制装置电性连接,用于启动或者停止并联机器人1的工作。控制开关13设置在上壳体6上,当操作人员单手把持并联机器人1前端时,便于拇指操作控制开关13。控制开关13还可以控制被动臂17的锁紧和松开。
联机器人1还包括工具接口10,位于动平台2上,工具接口10可以是快速插接口,方便连接各种工具或者转接件。例如,连接件11可以连接到工具接口10上,连接件11可以连接手术工具、示踪器等装置。
如图4所示,并联机器人1安装在被动臂17上,并联机器人1的安装座3安装到被动臂17的前臂的球头销19上。示踪器设置在动平台2上,包括支架14和光学指示点15,本实施例中,支架14为多边形框架,设置有4个光学指示点15,为4个反光小球。4个光学指示点15设置在同一个平面内,但是不位于同一条直线上。
如图5所示,支架14可以是星形支架,设置有4个光学指示点15,为4个反光小球。光学指示点15的直径为10mm。4个光学指示点15满足两点之间距离不小于30mm,且距离的差值不小于5mm。
如图6和图7所示,本发明实施例的被动臂17包括上臂31与前臂32,第一关节结构33设置在上臂31与前臂32之间,上臂31的端部设置有第一关节头20,前臂32的端部设置有第二关节头21。第一关节头20和第二关节头21通过铰接轴22铰接在一起,从而第一关节头20和第二关节头21之间可以相对转动。
铰接轴22固定设置在第一关节头20上,第二关节头21铰接在铰接轴22上,在铰接轴22的端部设置有挡片27,挡片27嵌设在第二关节头21端部的凹槽内,用于阻止第二关节头21从铰接轴22脱落。
本实施例中,在铰接轴22的端部设置有弹簧30。弹簧30套设在铰接轴22上,两端分别抵靠在挡片27和第二关节头21的端部,能够在第一关节头20和第二关节头21之间提供预压力,使得关节在解锁状态下不会过分松弛。
在第一关节头20和第二关节头21之间设置有第一锁紧件23,本实施例中,采用多个摩 擦片作为第一锁紧件23,多个摩擦片套设在铰接轴22上。
本实施例的第一关节结构33还包括第一力放装置,本实施例中第一力放装置为杠杆式结构,包括第一力放杆25和第一转轴24,第一转轴24的两端可以设置在关节头的内壁上,第一力放杆25可围绕第一转轴24转动。第一力放杆25的受力端到第一转轴24的距离大于第一力放杆25的施力端到第一转轴24的距离。本实施例中设置了一个第一力放装置,设置于第一关节头20内。
本实施例的第一关节结构33还包括滑块26,套设在铰接轴22上,位于第一力放装置与第一锁紧件23之间。第一力放杆25的施力端抵在滑块26上,通过滑块26将作用力均匀施加到第一锁紧件23上。上臂31内设置有第一驱动装置29,本实施例中,采用电推杆作为第一驱动装置29。驱动装置29的顶端设置有顶块28,顶块28的顶部为球形,抵靠在第一力放杆25的受力端。
当需要锁紧第一关节结构33时,驱动装置29转动,顶块28向第一力放杆25的受力端运动,第一力放杆25的受力端受到作用力后,围绕第一转轴24转动,第一力放杆25的施力端在滑块26的端部施加放大的作用力,滑块26沿着铰接轴22移动(不发生转动),在第一锁紧件23的表面施加锁紧力,从而锁紧第一关节结构33,此时第一关节头20和第二关节头21之间不发生转动。当需要松开第一关节结构33时,电推杆反向转动,顶块28向远离第一力放杆25的受力端方向运动,从而减小或取消施加在第一力放杆25受力端的作用力,进而减小或取消滑块26端部的作用力,使得第一关节头20和第二关节头21之间解锁,可以相对转动。
优选地,第一力放杆25为片状结构,受力端可具有内凹的弧形端面。相配合地,顶块28的端部为球面,使得顶块28和第一力放杆25的受力端可形成点接触,便于发生相对移动。而且第一力放杆25的受力端的端面可具有一定的倾斜角度,使得顶块28的端部朝向第一力放杆25运动时,能够容易沿着第一力放杆25的受力端的发生相对移动。优选地,第一力放杆25的施力端可具有向外突出的弧形端面。通过设置弧形端面,便于施力端与滑块26之间发生相对移动,从而将放大的作用力施加到第一锁紧件23。
如图8所示,本实施例的第二关节结构34设置在上臂31和前臂32的端部,包括球头外壳35和球头36,球头36的球形一端可转动地设置在球头外壳35内,球头36的另一端设置有球头销19,用于连接并联机器人1的安装座3。球头外壳35上开设有供球头销19穿出的开口,且具有U型开口,增大了球头销19的活动范围。关节结构还包括球碗37,设置在球头36的球形端部上,球碗37具有部分内凹的球形表面,与球头36的形状相配合。
本实施例的第二关节结构34还包括第二力放装置,本实施例中第二力放装置为杠杆式结构,包括一对第二力放杆38,通过第二转轴39铰接在一起。第二力放杆38的施力端靠近球碗37的端部,用于向球碗37施加作用力。第二力放杆38的受力端与第二驱动装置40的凸头接触。驱动装置为电推杆,设置在被动臂外壳内。
当需要锁紧第二关节结构34时,电推杆转动,第二驱动装置40向第二力放杆38的受力端运动,第二力放杆38的受力端受到作用力后,通过杠杆放大,第二力放杆38的施力端在球碗37的端部施加放大的作用力,球碗37在球头36的表面施加锁紧力,从而锁紧第二关节结构34。当需要松开第二关节结构34时,电推杆反向转动,第二驱动装置40的凸头向远离第二力放杆38的受力端方向运动,从而减小或取消施加在第二力放杆38受力端的作用力,进而减小或取消球碗37端部的作用力,使得球头36能够相对于球碗37运动。
在本实施例中,如图所示,第二力放杆38为片状结构,受力端具有内凹的弧形端面。相配合地,第二驱动装置40的凸头端部为球面,使得凸头和第二力放杆38的受力端可形成点接触,便于发生相对移动。而且第二力放杆38的受力端的端面可具有一定的倾斜角度,使得凸头的端部朝向第二力放杆38运动时,能够容易沿着第二力放杆38受力端的发生相对移动,使得两个第二力放杆38的受力端互相远离,从而在两个第二力放杆38的施力端产生更加靠近球碗37的运动,向球碗37施加放大的作用力。本实施例中,第二力放杆38的施力端具有向外突出的弧形端面。通过设置弧形端面,便于施力端与球碗37之间发生相对移动,从而将放大的作用力施加到球碗37。
本实施例中,被动臂17中球头性的第二关节结构34拥有三个自由度。因此当设置有第二关节结构34的被动臂用于连接并联机器人1时候,其操作灵活,活动范围大。
如图9所示,给出了本发明的并联机器人系统的应用示意图。并联机器人1连接到被动臂17的端部,被动臂17的另一端设置在手术床16上。示踪器的光学指示点15设置在并联机器人1的前端,光学定位跟踪装置18能够拍摄到光学指示点15,因此能够精确地追踪并联机器人1的前端位置,即手术工具的位置。
下面以利用本实施例的并联机器人系统完成导针设置为例,来说明并联机器人系统的工作过程。
首先,确定导针设置位置的空间坐标。操作人员手持并联机器人1,松开被动臂17,并将并联机器人1移动到靠近导针设置位置的区域,然后锁紧被动臂17。由于光学定位跟踪装置18能够拍摄到示踪器的光学指示点15,因此可以实时追踪并联机器人1前端工具的空间位置,因此控制装置通过将工具的前端位置定位至导针设置位置的空间坐标上,并计算出将 工具移动至目标位置并联机器人1的动平台2所需的运动和姿态。启动并联机器人1,动平台2在驱动装置的驱动下将工具移动至导针设置位置。此时,工具可自动或者辅助操作人员完成导针设置操作。操作过程中,可以锁定并联机器人1的动平台2,使其保持在预定位置,也可以启动并联机器人1的动平台2,使其动态调整姿态,保持在预定位置,防止操作工程中出现位置偏移。
最后应说明的是,以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (10)

  1. 一种并联机器人系统,其特征在于,包括:
    控制装置;
    并联机器人,包括安装座和动平台,以及设置在所述安装座和动平台之间的驱动装置,所述驱动装置用于驱动所述动平台相对于所述安装座实现多自由度运动,其中所述驱动装置接收所述控制装置的控制信号;
    示踪器,设置在所述动平台上;
    被动臂,所述并联机器人的安装座连接到所述被动臂的一端;
    光学定位跟踪装置,用于实时跟踪所述示踪器的空间位置,并将所述示踪器的空间位置数据发送至所述控制装置。
  2. 如权利要求1所述的并联机器人系统,其特征在于,所述被动臂包括:
    上臂和前臂;
    第一关节结构,所述上臂和前臂通过第一关节结构铰接在一起;
    第二关节结构,设置在所述上臂和/或前臂的端部;
    第一驱动机构,设置在所述上臂内;
    第二驱动机构,设置在所述前臂内;
    其中,所述并联机器人的安装座与所述被动臂的前臂端部连接。
  3. 如权利要求2所述的并联机器人系统,其特征在于,所述第一关节结构包括第一力放装置和第一锁紧件,所述第二关节结构包括第二力放装置和第二锁紧件,所述第一驱动机构和第二驱动机构通过所述第一力放装置和/或第二力放装置向所述第一锁紧件和/或第二锁紧件施加作用力。
  4. 根据权利要求3所述的并联机器人系统,其特征在于,所述第一力放装置和/或第二力放装置为杠杆式结构。
  5. 根据权利要求2所述的并联机器人系统,其特征在于,第一驱动机构和第二驱动机构为电推杆,与所述控制装置电性连接。
  6. 如权利要求1所述的并联机器人系统,其特征在于,所述驱动装置包括六个伸缩装置;
    所述安装座和动平台上分别形成有三个支撑点,且三个所述支撑点呈三角形布置;
    所述六个伸缩装置两两为一组,每组伸缩装置的一端与所述安装座的三个所述支撑点中 的一个相铰接,每组伸缩装置的另一端分别铰接到所述动平台的相邻两个支撑点上,每组伸缩装置形成为三角形布置。
  7. 如权利要求6所述的并联机器人系统,其特征在于,所述伸缩装置为电推杆,每个电推杆包括一个微型伺服电机,所述微型伺服电机与所述控制装置电性连接。
  8. 如权利要求1所述的并联机器人系统,其特征在于,还包括显示屏,设置在所述并联机器人上,与所述控制装置电性连接。
  9. 如权利要求1所述的并联机器人系统,其特征在于,所述示踪器包括支架和多个光学指示点,所述光学指示点设置在所述支架上。
  10. 如权利要求9所述的并联机器人系统,其特征在于,所述多个光学指示点为发光或反光的小球,且位于同一个平面上;
    多个光学指示点满足两点之间距离不小于30mm,且距离的差值不小于5mm。
PCT/CN2022/090968 2022-01-19 2022-05-05 并联机器人系统 WO2023137925A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/548,280 US20240227178A9 (en) 2022-01-19 2022-05-05 Parallel robot system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210060033.X 2022-01-19
CN202210060033.XA CN114404043A (zh) 2022-01-19 2022-01-19 并联机器人系统

Publications (1)

Publication Number Publication Date
WO2023137925A1 true WO2023137925A1 (zh) 2023-07-27

Family

ID=81275733

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/090968 WO2023137925A1 (zh) 2022-01-19 2022-05-05 并联机器人系统

Country Status (4)

Country Link
US (1) US20240227178A9 (zh)
CN (1) CN114404043A (zh)
LU (1) LU504894B1 (zh)
WO (1) WO2023137925A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114404043A (zh) * 2022-01-19 2022-04-29 北京罗森博特科技有限公司 并联机器人系统
CN116269783B (zh) * 2023-03-28 2023-12-19 北京维卓致远医疗科技发展有限责任公司 引导架和手术机器人

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102429726A (zh) * 2011-08-03 2012-05-02 哈尔滨工业大学 基于图像导航的并联机器人辅助人工颈椎间盘置换手术定位方法
CN103610555A (zh) * 2013-11-26 2014-03-05 中国科学院深圳先进技术研究院 球关节锁紧方法及装置
CN106976104A (zh) * 2017-05-11 2017-07-25 华志微创医疗科技(北京)有限公司 一种空间五自由度机械臂
EP3241518A2 (en) * 2016-04-11 2017-11-08 Globus Medical, Inc Surgical tool systems and methods
CN109350241A (zh) * 2018-10-18 2019-02-19 北京罗森博特科技有限公司 一种手动式手术导航定位系统
CN209269875U (zh) * 2018-11-19 2019-08-20 上海交通大学医学院附属第九人民医院 一种基于光学导航的颅颌面外科手术并联机器人
CN111012499A (zh) * 2018-12-29 2020-04-17 华科精准(北京)医疗科技有限公司 一种医疗辅助机器人
CN210811697U (zh) * 2019-07-30 2020-06-23 汉沙莱斯医疗科技江苏有限公司 一种牙科综合治疗台助手架多功能臂
CN111920651A (zh) * 2020-09-29 2020-11-13 上海傅利叶智能科技有限公司 一种外骨骼关节自锁机构、膝关节和仿生康复机器人
CN112754670A (zh) * 2020-01-23 2021-05-07 诺创智能医疗科技(杭州)有限公司 手术机械臂及手术机器人
WO2021094448A1 (en) * 2019-11-12 2021-05-20 Surgivisio Surgical robotic system
US20210236207A1 (en) * 2018-04-19 2021-08-05 Mobius Imaging, Llc Methods And Systems For Controlling A Surgical Robot
CN114179121A (zh) * 2021-12-23 2022-03-15 北京罗森博特科技有限公司 一种机械臂
CN114404043A (zh) * 2022-01-19 2022-04-29 北京罗森博特科技有限公司 并联机器人系统

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102429726A (zh) * 2011-08-03 2012-05-02 哈尔滨工业大学 基于图像导航的并联机器人辅助人工颈椎间盘置换手术定位方法
CN103610555A (zh) * 2013-11-26 2014-03-05 中国科学院深圳先进技术研究院 球关节锁紧方法及装置
EP3241518A2 (en) * 2016-04-11 2017-11-08 Globus Medical, Inc Surgical tool systems and methods
CN106976104A (zh) * 2017-05-11 2017-07-25 华志微创医疗科技(北京)有限公司 一种空间五自由度机械臂
US20210236207A1 (en) * 2018-04-19 2021-08-05 Mobius Imaging, Llc Methods And Systems For Controlling A Surgical Robot
CN109350241A (zh) * 2018-10-18 2019-02-19 北京罗森博特科技有限公司 一种手动式手术导航定位系统
CN209269875U (zh) * 2018-11-19 2019-08-20 上海交通大学医学院附属第九人民医院 一种基于光学导航的颅颌面外科手术并联机器人
CN111012499A (zh) * 2018-12-29 2020-04-17 华科精准(北京)医疗科技有限公司 一种医疗辅助机器人
CN210811697U (zh) * 2019-07-30 2020-06-23 汉沙莱斯医疗科技江苏有限公司 一种牙科综合治疗台助手架多功能臂
WO2021094448A1 (en) * 2019-11-12 2021-05-20 Surgivisio Surgical robotic system
CN112754670A (zh) * 2020-01-23 2021-05-07 诺创智能医疗科技(杭州)有限公司 手术机械臂及手术机器人
CN111920651A (zh) * 2020-09-29 2020-11-13 上海傅利叶智能科技有限公司 一种外骨骼关节自锁机构、膝关节和仿生康复机器人
CN114179121A (zh) * 2021-12-23 2022-03-15 北京罗森博特科技有限公司 一种机械臂
CN114404043A (zh) * 2022-01-19 2022-04-29 北京罗森博特科技有限公司 并联机器人系统

Also Published As

Publication number Publication date
CN114404043A (zh) 2022-04-29
US20240131697A1 (en) 2024-04-25
LU504894B1 (en) 2023-12-11
US20240227178A9 (en) 2024-07-11
LU504894A1 (en) 2023-09-18

Similar Documents

Publication Publication Date Title
WO2023137925A1 (zh) 并联机器人系统
JP7025134B2 (ja) 外科用ツールシステム
EP3278758B1 (en) Surgical robotic automation with tracking markers
KR102703297B1 (ko) 툴 포즈를 유지하는 시스템 및 방법
CN109549706B (zh) 一种外科手术辅助系统及其使用方法
CN106456263B (zh) 用于远程手术工作台配准的方法和设备
WO2019200773A1 (zh) 一种腹腔镜手术持镜机器人系统
EP3269322B1 (en) Articulating camera stand
JPH02504244A (ja) ロボットに用いる関節装置
JP2013086206A (ja) 操作入力装置および操作入力装置の初期化方法
US20210307850A1 (en) Robotic surgical manipulation systems and methods
JPWO2017077755A1 (ja) 支持アーム装置
LU504895B1 (en) Robotic arm
US20170303957A1 (en) System for controlling displacement of an intervention device
CN113693726A (zh) 固定在骨骼上的机器人辅助关节置换手术系统和使用方法
CN110279470A (zh) 动态调节装置、动态调节系统及其使用方法
US20220401168A1 (en) Slave Device and Control Method Therefor, and Eye Surgery Device and Control Method Therefor
CN217660126U (zh) 并联机器人系统
CN118265497A (zh) 具有直观的控制的医学机器人和控制方法
CN113598815B (zh) 一种用于远程超声诊断的末端装置及主从控制方法
CN211723419U (zh) 手术机械臂及手术机器人
CN117357267A (zh) 一种手术机器人及其控制方法、装置、以及手术系统
CN217414061U (zh) 一种机械臂
WO2024001725A1 (zh) 一种手术系统、控制方法、以及可读存储介质
CN216967827U (zh) 一种机械臂的关节结构

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 18548280

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22921356

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE