WO2023137811A1 - 一种蒸汽增压方法及设备 - Google Patents

一种蒸汽增压方法及设备 Download PDF

Info

Publication number
WO2023137811A1
WO2023137811A1 PCT/CN2022/076409 CN2022076409W WO2023137811A1 WO 2023137811 A1 WO2023137811 A1 WO 2023137811A1 CN 2022076409 W CN2022076409 W CN 2022076409W WO 2023137811 A1 WO2023137811 A1 WO 2023137811A1
Authority
WO
WIPO (PCT)
Prior art keywords
steam
pressurized
pressure
buffer tank
intake
Prior art date
Application number
PCT/CN2022/076409
Other languages
English (en)
French (fr)
Inventor
杨牧
朱天瑞
Original Assignee
猎能通用技术(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 猎能通用技术(上海)有限公司 filed Critical 猎能通用技术(上海)有限公司
Publication of WO2023137811A1 publication Critical patent/WO2023137811A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B31/00Free-piston pumps specially adapted for elastic fluids; Systems incorporating such pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B37/00Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00
    • F04B37/10Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for special use
    • F04B37/12Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for special use to obtain high pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/06Cooling; Heating; Prevention of freezing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B41/00Pumping installations or systems specially adapted for elastic fluids
    • F04B41/02Pumping installations or systems specially adapted for elastic fluids having reservoirs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B41/00Pumping installations or systems specially adapted for elastic fluids
    • F04B41/06Combinations of two or more pumps

Definitions

  • the invention relates to the field of energy technology, in particular to a steam supercharging method and equipment.
  • the heat source steam for heating is mainly produced by the combustion of other energy sources, such as coal-fired, gas-fired steam boilers, etc.
  • the higher the steam pressure the more occasions where its heat energy can be utilized.
  • the first type is centrifugal or volumetric compression equipment driven by electric energy. Because steam has the inherent physical properties that the pressure increases and the temperature rises synchronously with the pressure, so to obtain higher pressure steam, the compression equipment needs to withstand high pressure and withstand higher temperature at the same time. Due to the constraints of the sealing and materials of the manufacturing equipment, the existing electric energy-driven centrifugal or volumetric compression equipment directly compresses the steam with a pressure lower than 1.0Mpa and a temperature lower than 200°C, and cannot compress the steam to a higher pressure and temperature. At the same time, also because of the inherent physical properties of steam, the temperature of steam cannot be lower than the saturation temperature at a certain pressure, otherwise the steam will condense and produce liquid.
  • the present invention provides a steam boosting method, which can reduce the energy consumption of the steam compression process, so that the compressed steam can be reused more economically; and can achieve higher pressure and temperature after steam compression, expand the occasions for compressed steam reuse, and save the consumption of other energy sources.
  • a steam supercharging method adopts a pneumatic cylinder, and the two sides of the free piston in the pneumatic cylinder are set as the side to be boosted and the side for applying pressure, when supercharging:
  • the pressure gas pushes the free piston to move to the side to be pressurized, and the pressurized steam is pressurized.
  • the steam to be pressurized is a vapor phase substance that is vaporized after receiving heat energy from a liquid substance;
  • the pressure gas is a gas whose condensation temperature is lower than the saturation temperature of the steam to be pressurized by more than 50°C under the same pressure parameters as the steam to be pressurized.
  • the pressure range of the steam to be pressurized before the pressurization is 0.01Mpa to 20Mpa, and the pressure range after the pressurization is 0.1Mpa to 30Mpa, and the temperature of the steam to be pressurized before and after the pressurization is not lower than the vapor-liquid phase equilibrium temperature of the steam to be pressurized under the same pressure.
  • the pressurized sides of several pneumatic cylinders are connected in series; the pressurized steam to be discharged from the pressurized side of the previous stage is used as the pressurized steam to be pressurized on the pressurized side of the subsequent stage.
  • the pressurized side of the pneumatic cylinder is provided with a steam inlet valve and a steam outlet valve.
  • the steam to be pressurized is passed into the pressurized side through the steam inlet valve, and the pressurized steam to be pressurized is discharged from the pressurized side through the steam outlet valve.
  • the pressurized side of a single pneumatic cylinder is provided with an intake control valve and an exhaust control valve.
  • a first air intake buffer tank and a first exhaust buffer tank are provided on the pressure application side of a single pneumatic cylinder, and pressure gas enters the pressure application side from the first air intake buffer tank through the intake control valve, and is discharged from the pressure application side to the first exhaust buffer tank through the exhaust control valve.
  • a first pressurized air circuit is provided between the first intake buffer tank and the first exhaust buffer tank, and the first pressurized air circuit includes a first heat exchanger, a first cooler and a first compressor;
  • the first exhaust buffer tank is communicated with the first cooler by the first exhaust pipeline
  • the first cooler is communicated with the first compressor
  • the first compressor is communicated with the first intake buffer tank by the first intake pipeline
  • the first intake pipeline and the first exhaust pipeline pass through the first heat exchanger at the same time
  • the pressure gas discharged from the first exhaust buffer tank and the pressure gas boosted by the first compressor are heat-exchanged and cooled in the first heat exchanger, and then further cooled by the first cooler before entering the first compressor, and the pressurized gas is circulated and pressurized in the first pressurized gas circuit ;
  • the pressurized gas is circulated and pressurized in the first pressurized air circuit connected to the pneumatic cylinders of each stage.
  • the pressurizing sides of several pneumatic cylinders are connected in series to form a second pressurized air circuit, and the pressurized gas is circulated and pressurized in the second pressurized air circuit;
  • the second pressurized gas circuit also includes a second intake buffer tank, a second exhaust buffer tank, a second heat exchanger, a second cooler and a second compressor.
  • the intake control valve of each stage of pneumatic cylinder is connected with the second intake buffer tank
  • the exhaust control valve of the first stage of pneumatic cylinder is connected with the second exhaust buffer tank
  • the second exhaust buffer tank is communicated with the second cooler by the second exhaust pipeline
  • the second cooler is communicated with the second compressor
  • the second compressor is communicated with the second intake buffer tank of the last stage of pneumatic cylinder through the second intake pipeline.
  • the second air intake buffer tank communicated with the pneumatic cylinder is communicated, and the second air intake pipeline and the second exhaust pipeline pass through the second heat exchanger at the same time.
  • the quality of steam after steam boosting and compression can reach that of steam boilers, and the highest pressure is close to the highest pressure that can be achieved by conventional gas compression, and the temperature is not lower than the gas-liquid phase equilibrium temperature under this pressure, which cannot be achieved by the prior art. If the existing technology achieves the same pressure and temperature, it will not only need a compressor that can withstand higher pressure and higher temperature, but also will generate huge energy consumption. By adopting the steam pressurization method provided in this embodiment, the steam pressure can be increased to above 30Mpa only by using the existing compression equipment.
  • the present invention overcomes the principle defect that the temperature of the inhaled steam cannot be lower than the saturation temperature under the pressure of the existing compression equipment when compressing steam, so that the efficiency of compressing steam is greatly improved, thereby effectively saving energy consumption.
  • the present invention has a higher upper limit for steam pressure and temperature raising.
  • the free piston only needs to overcome the frictional force between the piston and the casing, and the pressure difference the piston bears during the compression process is small, and there is no need to bear higher pressure and higher temperature, so the reliability of operation is high.
  • the geometric dimensions of the free piston and the housing can be enlarged according to the load requirement, which can meet the large-scale industrial production.
  • the present invention also provides a steam boosting device, including a pneumatic cylinder, a steam inlet valve, a steam outlet valve and a control valve,
  • the two sides of the free piston in the pneumatic cylinder are set as the side to be boosted and the pressure side, the steam inlet valve and the steam outlet valve are arranged on the side to be boosted, and the steam to be boosted passes through the steam inlet valve into the side to be boosted;
  • the control valve is arranged on the pressure side, and the pressure gas is passed into the pressure side through the control valve until the air pressure on the side to be boosted is greater than the air pressure on the pressure side;
  • the pressurized gas pushes the free piston to pressurize the steam to be pressurized, and the pressurized steam to be pressurized is discharged from the pneumatic cylinder through the steam outlet valve.
  • the steam booster device further includes a control system
  • the control system includes a control unit and a sensor
  • the control valve is connected to the control unit
  • the control unit is connected to the sensor
  • the sensor collects pressure data on the side to be boosted and the side to be pressurized and/or the position data of the free piston on the side to be boosted and the side to be pressurized
  • the control unit receives the position data and/or pressure data collected by the sensor, calculates the pressure difference between the side to be boosted and the side to be pressurized, and controls the control valve according to the pressure difference and/or position data.
  • the steam inlet valve is a low-pressure steam inlet one-way valve
  • the steam outlet valve is a high-pressure steam outlet one-way valve; or, both the steam inlet valve and the steam outlet valve are driving valves.
  • the pneumatic cylinder is provided with at least one, and when the number of the pneumatic cylinders is greater than 1, the steam outlet valve of the previous stage of the pneumatic cylinder communicates with the steam inlet valve of the subsequent stage of the pneumatic cylinder, so that the sides to be boosted of several of the pneumatic cylinders are connected in series; the supercharged steam to be discharged from the side of the previous stage to be boosted is used as the steam to be pressurized on the side to be boosted of the latter stage.
  • control valve includes an intake control valve and an exhaust control valve
  • the pressurized gas is passed into the pressure application side through the intake control valve, and is discharged from the pressure application side through the exhaust control valve.
  • a first air intake buffer tank and a first exhaust buffer tank are provided on the pressure applying side of a single pneumatic cylinder, and pressure gas enters the pressure applying side from the first air intake buffer tank through the intake control valve, and is discharged from the pressure applying side to the first exhaust buffer tank through the exhaust control valve.
  • a first pressurized air circuit is provided between the first intake buffer tank and the first exhaust buffer tank, and the first pressurized air circuit includes a first heat exchanger, a first cooler and a first compressor;
  • the first exhaust buffer tank is communicated with the first cooler by the first exhaust pipeline
  • the first cooler is communicated with the first compressor
  • the first compressor is communicated with the first intake buffer tank by the first intake pipeline
  • the first intake pipeline and the first exhaust pipeline pass through the first heat exchanger at the same time
  • the pressure gas discharged from the first exhaust buffer tank and the pressure gas boosted by the first compressor are heat-exchanged and cooled in the first heat exchanger, and then further cooled by the first cooler before entering the first compressor
  • the pressurized gas is circulated and pressurized in the first pressurized gas circuit .
  • the first compressor is a centrifugal compressor or a displacement compressor.
  • pressurized gas is circulated and pressurized in the first pressurized air circuit connected to the pneumatic cylinders of each stage.
  • the pressurizing sides of several pneumatic cylinders are connected in series to form a second pressurized air circuit, and the pressurized gas is circulated and pressurized in the second pressurized air circuit;
  • the second pressurized air path also includes a second intake buffer tank, a second exhaust buffer tank, a second heat exchanger, a second cooler and a second compressor.
  • the intake control valve of each stage of pneumatic cylinder is connected with the second intake buffer tank.
  • the exhaust control valve of the first stage of pneumatic cylinder is connected with the second exhaust buffer tank.
  • the second air intake buffer tank communicated with the first-stage pneumatic cylinder is communicated, and the second air intake pipeline and the second exhaust pipeline pass through the second heat exchanger at the same time.
  • the second compressor is a centrifugal compressor or a displacement compressor.
  • the steam boosting device further includes a buffer tank, the buffer tank communicates with the pneumatic cylinder through the steam outlet valve, and the pressurized steam enters the buffer tank through the steam outlet valve after being pressurized.
  • the beneficial effect of the steam supercharging equipment provided by the present invention is similar to the reasoning process of the beneficial effect of the aforementioned steam supercharging method, and will not be repeated here.
  • Fig. 1 is the schematic diagram of embodiment four of the present invention.
  • Fig. 2 is the schematic diagram of Embodiment 5 of the present invention.
  • Embodiment 6 of the present invention is a schematic diagram of Embodiment 6 of the present invention.
  • references in this specification to "one embodiment” or “example” or “example” mean that a particular feature, structure or characteristic described in connection with the embodiment itself may be included in at least one embodiment of the present patent disclosure.
  • the appearances of the phrase “in one embodiment” in various places in the specification are not necessarily all referring to the same embodiment.
  • the steam to be pressurized mentioned in all the embodiments of the specific embodiment refers to the vapor phase material formed by the vaporization of the liquid material after receiving the heat energy, specifically, refers to the vapor phase material of a certain pressure and temperature after the liquid material receives the heat energy, and its temperature is equal to or higher than the saturation temperature of the phase equilibrium. After a certain amount of heat energy is removed, the vapor-phase substance will condense to form the same liquid-phase substance.
  • This substance can be a single pure substance or a mixture of two or more substances with the same characteristics, which is not limited here.
  • the pressure range of the steam to be pressurized before pressurization is 0.01Mpa to 20Mpa, and the pressure range after pressurization is 0.1Mpa to 30Mpa, and the temperature of the steam to be pressurized before and after pressurization is not lower than the vapor-liquid phase equilibrium temperature of the steam to be pressurized under the same pressure.
  • the pressure gas mentioned in all the examples of specific embodiments refers to a gas whose condensing temperature is lower than the saturation temperature of the steam to be pressurized by 50°C or higher under the same pressure parameters as the steam to be pressurized, and does not produce liquid during the condensation process, such as nitrogen, oxygen, hydrogen, helium, carbon dioxide gas and other single pure substance gases, or a mixed substance gas of two or more substances with similar characteristics, which is not limited here.
  • This embodiment provides a steam boosting method, using a pneumatic cylinder, and setting the two sides of the free piston in the pneumatic cylinder as the side to be boosted and the side to be pressurized.
  • the side of the pneumatic cylinder to be boosted is provided with a steam inlet valve and a steam outlet valve.
  • the steam to be boosted is passed into the side to be boosted through the inlet valve, and the steam to be boosted after being pressurized is discharged from the side to be boosted through the steam outlet valve.
  • An intake control valve and an exhaust control valve are arranged on the pressure applying side, the intake control valve is connected with the first intake buffer tank, and the exhaust control valve is connected with the first exhaust buffer tank.
  • the free piston is located at the extreme position of the side to be boosted. Close the pressure gas inlet control valve on the pressure side, open the exhaust control valve, and the pressure gas is exhausted into the exhaust buffer tank.
  • the pressure on the pressure side is lower than the pressure of the steam to be boosted, the steam to be boosted enters the side to be boosted through the steam inlet check valve, pushing the free piston to move to the pressure side.
  • the free piston moves to the limit position of the pressure side, the steam intake of the side to be boosted is completed;
  • the pressure range of the steam to be pressurized after completion of pressurization is 0.1Mpa to 30Mpa, and the temperature of the steam to be pressurized before and after pressurization is not lower than the vapor-liquid phase equilibrium temperature of the steam to be pressurized at the same pressure. After the pressurized steam is pressurized, it is discharged from the side to be pressurized, and the pressurized steam is provided to the outside world.
  • a first booster gas path is provided between the first intake buffer tank and the first exhaust buffer tank, and the first booster gas path includes a first heat exchanger, a first cooler, and a first compressor; the first exhaust buffer tank communicates with the first cooler through a first exhaust pipeline, the first cooler communicates with the first compressor, and the first compressor communicates with the first intake buffer tank through a first intake pipeline.
  • the pressurized gas is discharged from the pressure-applying side to the first exhaust buffer tank through the exhaust control valve, enters the first cooler from the first exhaust buffer tank for cooling, enters the first compressor for pressurization, and enters the first intake buffer tank after pressurization, and then enters the pressure-applying side from the first intake buffer tank, so as to pressurize and reuse the pressurized gas cycle.
  • the first air intake pipeline and the first exhaust pipeline pass through the first heat exchanger at the same time, and the pressure gas discharged from the first exhaust buffer tank and the pressure gas boosted by the first compressor exchange heat to cool down in the first heat exchanger, and then enter the first compressor after being further cooled by the first cooler, so that the pressure gas is circulated and pressurized in the first pressurized gas circuit.
  • the quality of the steam after steam supercharging and compression can reach that of a steam boiler, and the maximum pressure is close to the maximum pressure that can be achieved by conventional gas compression, and the temperature is not lower than the gas-liquid phase equilibrium temperature under this pressure, which cannot be achieved by the prior art. If the existing technology achieves the same pressure and temperature, it will not only need a compressor that can withstand higher pressure and higher temperature, but also will generate huge energy consumption. By adopting the steam pressurization system provided in this embodiment, the steam pressure can be increased to more than 30Mpa only by using the existing compression equipment.
  • the steam boosting system provided by this embodiment has a higher upper limit for steam pressure increase.
  • the free piston only needs to overcome the friction between the piston and the housing, and the pressure difference that the piston bears during the compression process is small, so it does not need to bear higher pressure and higher temperature, and the reliability of operation is high.
  • the geometric dimensions of the free piston and the housing can be enlarged according to the load requirement, which can meet the large-scale industrial production.
  • This embodiment provides a steam pressurization method.
  • the steam boosting method provided in this embodiment uses a plurality of pneumatic cylinders, and the sides to be boosted of the used pneumatic cylinders are connected in series, that is, the pressurized steam discharged from the side of the previous-stage pneumatic cylinder to be boosted enters the side of the subsequent-stage pneumatic cylinder to be pressurized, and is used as the steam to be pressurized in the latter-stage pneumatic cylinder to achieve multi-stage supercharging of the steam to be pressurized.
  • the last stage of the pneumatic cylinder discharges its side to be pressurized to provide the pressurized steam to the outside world.
  • each pneumatic cylinder is connected with a first pressurized air circuit, and the pressurized gas is circulated and pressurized in the first pressurized air circuit connected to the pneumatic cylinders of each stage.
  • the connected first pressurized gas path is the same as that provided in the first embodiment, and will not be repeated here.
  • the compression ratio of the steam in the single-stage pneumatic cylinder in this example is 1.5-8.5.
  • the steam supercharging method provided in this embodiment on the basis of the steam supercharging in the first embodiment, further increases the pressure of the steam by means of multi-stage series connection.
  • This embodiment provides a steam pressurization method.
  • a plurality of pneumatic cylinders capable of withstanding high pressure and high temperature are also connected in series.
  • the first pneumatic cylinder that enters the pressurized steam provided by the outside is used as the first stage, and the pneumatic cylinder that provides pressurized steam to the outside is used as the last stage.
  • the pressurizing side of the pneumatic cylinder used in this embodiment is connected in series to form a second pressurized air passage.
  • the second pressurized air path also includes a second intake buffer tank, a second exhaust buffer tank, a second heat exchanger, a second cooler and a second compressor.
  • the second exhaust buffer tank is only used.
  • the number of second air buffer jars is the same as the number of air pressure cylinders.
  • the intake control valve of each level of the air pressure cylinder is connected to the second air buffer can.
  • the pipeline is connected to the second intake buffer tank connected to the last level of the air pressure cylinder, and the exhaust control valve of the rear -level air pressure cylinder is connected to the second intake buffer tank connected to the previous level of air pressure cylinder.
  • the pressurized gas is discharged from the pressurizing side of the first-stage pneumatic cylinder through the exhaust control valve to the second exhaust buffer tank, enters the second cooler from the second exhaust buffer tank for cooling, then enters the second compressor for pressurization, and enters the second intake buffer tank connected to the last-stage pneumatic cylinder after pressurization.
  • the second air intake buffer tank enters the pressure side of the last stage of the pneumatic cylinder, and then the pressure side of the last stage of the pneumatic cylinder supplies pressure gas step by step to the pressure side of the preceding pneumatic cylinder, that is, the exhaust gas from the pressure side of the latter stage is used as the intake air of the pressure side of the previous stage, and the exhaust gas from the pressure side of the first stage is used as the intake air of the pressurized air circuit of the last stage pressure side.
  • the second intake pipeline and the second exhaust pipeline pass through the second heat exchanger at the same time, and the pressure gas boosted by the second compressor is coupled with the pressure gas discharged from the second exhaust buffer tank in the second heat exchanger. In this way, the pressurized gas is realized to be circulated and pressurized in the second pressurized gas passage.
  • the compression ratio of the steam in the single-stage pneumatic cylinder in this example is 1.5-8.5.
  • the beneficial effects of the steam supercharging method provided in this embodiment are similar to the reasoning process of the beneficial effects of the steam supercharging method provided in Embodiment 2, and will not be repeated here.
  • this embodiment provides a steam booster device, which is used to implement the steam booster method described in the first embodiment above.
  • the device includes a pneumatic cylinder 1, a steam inlet valve 2, a steam outlet valve 3, a control valve 4, a buffer tank 5, a control system 6, a first intake buffer tank 7, a first exhaust buffer tank 8 and a first pressurized gas path 9.
  • the pneumatic cylinder 1 is divided into a pressurized side 12 and a pressurized side 13 by a free piston 11.
  • the steam inlet valve 2 and the steam outlet valve 3 are arranged on the pressurized side 12 at the same time.
  • the control valve 4 includes an intake control valve 41 and an exhaust control valve 42.
  • the control system 6 adopts negative feedback control, including a control unit 61 and a sensor (not shown in the figure).
  • the intake control valve 41 and the exhaust control valve 42 are connected to the control unit 61 respectively, and the control unit 61 is connected to the sensor.
  • the sensors acquire pressure data on the side to be pressurized 12 and the side 13 on which the pressure is applied.
  • the control unit 61 receives the position data and/or pressure data collected by the sensor and calculates the pressure difference between the side to be pressurized 12 and the pressure applying side 13 , and controls the control valve 4 according to the pressure difference and/or position data.
  • the steam inlet valve 2 is a low-pressure steam inlet one-way valve
  • the steam outlet valve 3 is a high-pressure steam outlet one-way valve, so as to save the cost of the steam booster system.
  • the steam inlet valve 2 and the steam outlet valve 3 can also be driving valves.
  • the drive valve When the drive valve is used, the steam inlet valve 2 sets the inlet steam pressure threshold, and the steam outlet valve 3 sets the outlet steam pressure threshold.
  • the inlet steam pressure threshold refers to the passing pressure of the low-pressure inlet steam check valve
  • the outlet steam pressure threshold refers to the passing pressure of the high-pressure steam outlet check valve.
  • the drive valve mentioned in this embodiment is an electric, hydraulic or pneumatically operated valve, which is a common and existing mature technology in the field. Those skilled in the art can flexibly choose according to the actual use scene requirements, and there is no limitation here.
  • the intake control valve 41 communicates with the first intake buffer tank 7, and the exhaust control valve 42 communicates with the first exhaust buffer tank 8.
  • a first booster air path 9 is provided between the first intake buffer tank 7 and the first exhaust buffer tank 8.
  • the first booster air path 9 includes a first heat exchanger 91, a first cooler 92 and a first compressor 93.
  • the first exhaust buffer tank 8 is communicated with the first cooler 92 by the first exhaust pipeline, the first cooler 92 is communicated with the first compressor 93, the first compressor 93 is communicated with the first intake buffer tank 7 by the first air intake pipeline, and the first air intake pipeline and the first exhaust pipeline pass through the first heat exchanger 91 at the same time.
  • the first heat exchanger 91 may be a floating head heat exchanger, a fixed tube-sheet heat exchanger, a U-shaped tube-sheet heat exchanger, a plate heat exchanger, etc., which is not limited herein.
  • the first compressor 93 is a centrifugal compressor or a displacement compressor, which is not limited here. When the pressure after compression and boosting is greater than 1.0Mpa, a positive displacement compressor is preferred.
  • the steam outlet valve 3 communicates with the buffer tank 5 through the exhaust pipe, and the buffer tank 5 provides pressurized steam to the outside of the system through the buffer tank control valve 51 .
  • the control unit 61 controls the intake pressure control valve 41 on the pressurized side to close and the exhaust pressure control valve 42 to open. bit moves to the limit position.
  • the pressurized side 12 stops steam intake, and the steam intake of the pneumatic cylinder 1 is completed.
  • the control unit 61 controls the intake control valve 41 to open and the exhaust control valve 42 to close, the first pressurized air circuit 9 pressurizes the pressure gas, and continuously injects the pressure gas from the first exhaust buffer tank 7 into the pressure application side 13 through the intake control valve 41, so that the pressure in the pressure application side 13 is continuously increased.
  • the pressurized gas pushes the free piston 11 to move towards the pressurized side 12 , and pressurizes the steam to be pressurized in the pressurized side 12 .
  • the pressurized steam enters the buffer tank 5 through the exhaust pipe 31 through the steam outlet valve 3 for storage, or provides pressure steam to the outside of the steam booster equipment under the control of the buffer tank control valve.
  • the control unit 61 controls the intake control valve 41 to close, the exhaust control valve 42 to open, and the pressurizing side 13 stops intake and starts to exhaust.
  • the pressurized gas is discharged from the pressurizing side 13, whose pressure is slightly lower than the pressure of the compressed steam.
  • the pressurized gas is discharged from the pressurizing side through the exhaust control valve 42 to the first exhaust buffer tank 8.
  • the first cooler 92 After being cooled by the first exhaust buffer tank 8, it enters the first cooler 92 for cooling, and then enters the first compressor 93 for pressurization.
  • the first intake pipeline and the first exhaust pipeline pass through the first heat exchanger 91 at the same time, and the pressure gas discharged from the first exhaust buffer tank 8 and the pressure gas compressed and boosted by the first compressor 93 undergo heat exchange in the first heat exchanger 91 to cool down, and then enter the first compressor 93 after being further cooled by the first cooler 92. Then it enters the pressurizing side 13 again through the intake control valve 41 , so that the pressurized gas can be circulated in the first booster circuit 9 .
  • the beneficial effect of the steam supercharging device provided in this embodiment is similar to the reasoning process of the beneficial effect of the steam supercharging method provided in Embodiment 1, and will not be repeated here.
  • This embodiment provides a steam boosting device for implementing the steam boosting method described in the second embodiment above.
  • the steam boosting equipment provided in this embodiment uses a plurality of pneumatic cylinders 1, as shown in Figure 2.
  • Figure 2 shows the first-stage pneumatic cylinder 1, the second-stage pneumatic cylinder 1 and the last-stage pneumatic cylinder 1, and several stages of pneumatic cylinders 1 are omitted in the middle.
  • the number of stages of the pneumatic cylinder 1 can be flexibly selected according to actual needs, which is not limited here.
  • the pressurized side 12 of the used pneumatic cylinder 1 is connected in series, that is, the pressurized steam discharged from the pressurized side 12 of the previous-stage pneumatic cylinder 1 enters the pressurized side 12 of the subsequent-stage pneumatic cylinder 1 as the steam to be pressurized by the subsequent-stage pneumatic cylinder 1 to realize multi-stage pressurization of the steam to be pressurized.
  • the pressurizing side 13 of each pneumatic cylinder 1 is connected with a first pressurized air passage 9 , and the pressurized gas is circulated and pressurized in the first pressurized air passage 9 connected to the pneumatic cylinders 1 of each stage.
  • the connected first pressurized air passage 9 is the same as the first pressurized air passage 9 provided in Embodiment 4, and will not be repeated here.
  • the compression ratio of the steam in the single-stage pneumatic cylinder in this example is 1.5-8.5.
  • This embodiment provides a steam boosting device for implementing the steam boosting method described in the third embodiment above.
  • the first-stage pneumatic cylinder 1, the second-stage pneumatic cylinder 1, and the last-stage pneumatic cylinder 1 are shown in FIG.
  • the number of stages of the pneumatic cylinder 1 can be flexibly selected according to actual needs, which is not limited here.
  • Embodiment 5 although a plurality of pneumatic cylinders 1 are also connected in series in this embodiment, only one second exhaust buffer tank 81 is used in this embodiment, and multiple second intake buffer tanks 71 are used at the same time, and the number of second intake buffer tanks 71 is the same as the number of pneumatic cylinders 1.
  • the pressurizing side 13 of the used pneumatic cylinder 1 is connected in series to form a second pressurized air passage 94 .
  • the pressurized gas on the pressurizing side 13 is circulated and pressurized in the second pressurization circuit 94 and provided to the pressurizing side 13 of each stage of the pneumatic cylinder 1 .
  • the second pressurized gas path 94 also includes a second intake buffer tank 71 , a second exhaust buffer tank 81 , a second heat exchanger 95 , a second cooler 96 and a second compressor 97 .
  • the intake control valve 41 of each stage of pneumatic cylinder 1 is connected to the second intake buffer tank 71
  • the exhaust control valve 42 of the first stage of pneumatic cylinder 1 is connected to the second exhaust buffer tank 81
  • the second exhaust buffer tank 81 is communicated with the second cooler 96 by the second exhaust pipeline
  • the second cooler 96 is communicated with the second compressor 97
  • the second compressor 97 is communicated with the second intake buffer tank 71 communicated with the last stage of pneumatic cylinder 1 through the second intake pipeline
  • the exhaust control valve 42 of the rear stage of pneumatic cylinder 1 is communicated with the second intake buffer tank 7 of the previous stage of pneumatic cylinder 1. 1 connected.
  • the pressurized gas is discharged from the pressure-applying side 13 of the first-stage pneumatic cylinder 1 to the second exhaust buffer tank 81 through the exhaust control valve 42, and enters the second cooler 96 from the second exhaust buffer tank 81 for cooling.
  • the second intake buffer tank 71 enters the pressure side of the last-stage pneumatic cylinder 1, and then the pressure gas is delivered step by step from the pressure side of the last-stage pneumatic cylinder 1 to the pressure-applying side 13 of the preceding pneumatic cylinder 1, that is, the exhaust gas from the pressure-applying side of the latter stage is used as the intake air of the pressure-applying side of the previous stage, and the exhaust gas from the pressure-applying side of the first stage is used as the intake air of the supercharging air circuit of the pressure-applying side of the last stage.
  • the second intake pipeline and the second exhaust pipeline pass through the second heat exchanger 95 at the same time, and the pressure gas boosted by the second compressor 97 is coupled with the pressure gas discharged from the second exhaust buffer tank 81 in the second heat exchanger 95 .
  • the pressurized gas is realized to be circulated and pressurized in the second pressurized gas passage.
  • the compression ratio of the steam in the single-stage pneumatic cylinder in this example is 1.5-8.5.
  • the beneficial effect of the steam supercharging device provided in this embodiment is similar to the reasoning process of the beneficial effect of the steam supercharging method provided in Embodiment 3, and will not be repeated here.

Abstract

一种蒸汽增压方法及设备,涉及能源技术领域,采用气压缸,气压缸被自由活塞分为待增压侧和施压侧,所述蒸汽增压方法包括如下步骤:待增压蒸汽进入待增压侧,压力气体进入施压侧,直至施压侧的气压大于待增压侧的气压;压力气体推动自由活塞对待增压蒸汽增压。该方法和装置降低了蒸汽压缩过程的耗能,使压缩的蒸汽回用有更好的经济性,并且提高了蒸汽压缩后能达到的压力和温度。

Description

一种蒸汽增压方法及设备 【技术领域】
本发明涉及能源技术领域,具体涉及一种蒸汽增压方法及设备。
【背景技术】
蒸汽是工业生产中常见的物流相态,也是重要的加热热源。加热用的热源蒸汽主要是通过其它能源的燃烧产生,如燃煤、燃气蒸汽锅炉等。蒸汽压力越高,可以利用其热能的场合就越多。为了充分利用工业生产中的低压蒸汽热能,尽可能多的减少燃煤、燃气锅炉的碳排放,非常有必要对工业生产中的低压蒸汽进行增压,提升压力和温度,使其适应更多的热能利用场合。
现有蒸汽增压的方法通常有两种,一种是利用电能驱动的压缩设备,如离心式或容积式压缩机,直接将蒸汽压缩,提升蒸汽的压力;另一种是利用更高压力的蒸汽,通过降压喷射吸入低压蒸汽,产生低于喷射蒸汽压力、高于吸入蒸汽压力的中压混合蒸汽。
第一种方式电能驱动的离心式或容积式压缩设备,因为蒸汽有压力升高温度也随压力同步升高的固有物理性质,因此要得到更高压力的蒸汽,压缩设备需要在耐受高压的同时耐受更高的温度。现有电能驱动的离心式或容积式压缩设备,因受制造设备的密封、材料等条件制约,直接将蒸汽压缩后的压力通常低于1.0Mpa,温度低于200℃,无法将蒸汽压缩至更高的压力和温度。同时,也是因为蒸汽的固有物性,蒸汽的温度不能低于特定压力下的饱和温度否则蒸汽就会冷凝,产生液体。现有电能驱动的离心式或容积式压缩设备,在压缩蒸汽时,吸入蒸汽的温度不能低于其压力下的饱和温度。由于蒸汽入口温度不能进一步降低,这类设备压缩蒸汽的效率要低于压缩其它可以进一步降低温度的气体,也就是说压缩蒸汽的耗能远高于压缩可进一步降温的气体。第二种方式蒸汽喷射提升压力的方法,需要使用更高压力的蒸汽降压喷射来提升低压力蒸汽的压力,得到中等压力的混合蒸汽。此方法可用于某些特殊的应用场合,但无法将蒸汽压缩提升到比喷射蒸汽高的压力和温度。
【发明内容】
为解决前述问题,本发明提供了一种蒸汽增压方法,降低蒸汽压缩过程的耗能,使压缩的蒸汽回用有更好的经济性;并使蒸汽压缩后能达到更高的压力和温度,扩大压缩蒸汽回用的场合,节省其它能源的消耗。
为了达到上述目的,本发明采用如下技术方案:
一种蒸汽增压方法,所述蒸汽增压方法采用气压缸,将所述气压缸中自由活塞两侧设置为待增压侧和施压侧,在增压时:
当施压侧的气压小于待增压蒸汽的压力时,自由活塞向施压侧移动,待增压蒸汽通入待增压侧;
将压力气体通入施压侧,直至施压侧的气压大于待增压侧的气压;
压力气体推动自由活塞向待增压侧移动,对待增压蒸汽增压。
可选的,待增压蒸汽为液态物质接受热能后汽化而成的汽相物质;压力气体为与待增压蒸汽相同压力参数下,其冷凝温度低于待增压蒸汽饱和温度50℃以上的气体。
可选的,待增压蒸汽在增压前的压力区间为0.01Mpa至20Mpa,增压后的压力区间为 0.1Mpa至30Mpa,待增压蒸汽在增压前和增压后的温度不低于相同压力下待增压蒸汽的汽-液相平衡温度。
可选的,所述气压缸设有至少1个,所述气压缸的数量大于1时,若干所述气压缸的待增压侧串联连通;前一级待增压侧排出的增压后的待增压蒸汽作为后一级待增压侧的待增压蒸汽。
可选的,所述气压缸的待增压侧设有进汽阀和出汽阀,待增压蒸汽由所述进汽阀通入所述待增压侧,增压后的待增压蒸汽由所述出汽阀排出所述待增压侧,单个气压缸的施压侧设有进气控制阀和排气控制阀,压力气体由所述进气控制阀通入所述施压侧,由所述排气控制阀排出所述施压侧。
可选的,单个气压缸的施压侧设有第一进气缓冲罐和第一排气缓冲罐,压力气体从所述第一进气缓冲罐经所述进气控制阀进入所述施压侧,从施压侧经排气控制阀排出至所述第一排气缓冲罐。
可选的,所述第一进气缓冲罐和所述第一排气缓冲罐之间设有第一增压气路,所述第一增压气路包括第一换热器、第一冷却器和第一压缩机;
所述第一排气缓冲罐与所述第一冷却器由第一排气管路连通,所述第一冷却器与所述第一压缩机连通,所述第一压缩机与所述第一进气缓冲罐由第一进气管路连通,所述第一进气管路和所述第一排气管路同时经过所述第一换热器,所述第一排气缓冲罐排出的压力气体与所述第一压缩机升压后的压力气体在所述第一换热器中热交换降温,再经所述第一冷却器进一步降温冷却后,进入所述第一压缩机,压力气体在所述第一增压气路内循环增压;
所述气压缸的数量大于1时,压力气体在各级所述气压缸所连接的所述第一增压气路中循环增压。
可选的,所述气压缸的数量大于1时,若干所述气压缸的施压侧串联连通形成第二增压气路,压力气体在所述第二增压气路内循环增压;
所述第二增压气路还包括第二进气缓冲罐、第二排气缓冲罐、第二换热器、第二冷却器和第二压缩机,每级气压缸的进气控制阀均连通有所述第二进气缓冲罐,第一级气压缸的排气控制阀连通所述第二排气缓冲罐,所述第二排气缓冲罐与所述第二冷却器由第二排气管路连通,所述第二冷却器与所述第二压缩机连通,所述第二压缩机通过第二进气管路与最后一级气压缸所连通的第二进气缓冲罐连通,后一级气压缸的排气控制阀与前一级气压缸所连通的第二进气缓冲罐连通,所述第二进气管路和所述第二排气管路同时经过所述第二换热器。
本发明具有如下有益效果:
本发明所提供的蒸汽增压方法,蒸汽增压压缩后的蒸汽品质可以达到蒸汽锅炉的出汽品质,并且最高压力接近于气体常规压缩能达到的最高压力,温度不低于该压力下的气液相平衡温度,这是现有技术无法达到的。现有技术如果达到同样的压力和温度,那么不仅需要能够承受更高压力更高温度的压缩机,并且将产生巨大的能耗。而采用本实施例所提供的蒸汽增压方法,仅使用现有的压缩设备即可将蒸汽压力提升至30Mpa以上,同时,克服了现有的压缩设备在压缩蒸汽时吸入蒸汽的温度不能低于其压力下的饱和温度这一原理性缺陷,使得压缩蒸汽的效率得到大幅提高,进而有效节约了能耗。相比于采用蒸汽喷射提升压力的方法,本发明对于蒸汽压力和温度提升的上限更高。与此同时,自由活塞移动仅需克服和壳体 间的摩擦力,活塞在压缩过程中承受的压力差小,无需承受更高的压力、更高的温度,运行的可靠性高。自由活塞和壳体的几何尺寸可以根据负荷需求放大,可以满足大规模工业的生产。
此外,本发明还提供了一种蒸汽增压设备,包括气压缸、进汽阀、出汽阀和控制阀,
将所述气压缸中自由活塞两侧设置为待增压侧和施压侧,所述进汽阀和所述出汽阀设置于所述待增压侧,待增压蒸汽通过所述进汽阀通入所述待增压侧;所述控制阀设于所述施压侧,压力气体通过所述控制阀通入施压侧,直至待增压侧的气压大于施压侧的气压;
压力气体推动自由活塞对待增压蒸汽增压,完成增压的待增压蒸汽通过所述出汽阀排出所述气压缸。
可选的,所述蒸汽增压设备还包括控制系统,所述控制系统包括控制单元和传感器,所述控制阀与所述控制单元连接,所述控制单元与所述传感器连接,所述传感器采集待增压侧和施压侧的压力数据和/或所述自由活塞在待增压侧和施压侧的位置数据;所述控制单元接收所述传感器采集的位置数据和/或压力数据,并计算待增压侧和施压侧的压差,根据所述压差和/或位置数据控制所述控制阀。
可选的,所述进汽阀为低压进汽单向阀,所述出汽阀为高压出汽单向阀;或,所述进汽阀和所述出汽阀均为驱动阀。
可选的,所述气压缸设有至少1个,所述气压缸的数量大于1时,前一级气压缸的出汽阀与后一级气压缸的进汽阀连通,使若干所述气压缸的待增压侧串联;前一级待增压侧排出的增压后的待增压蒸汽作为后一级待增压侧的待增压蒸汽。
可选的,所述控制阀包括进气控制阀和排气控制阀,压力气体由所述进气控制阀通入所述施压侧,由所述排气控制阀排出所述施压侧。
可选的,单个气压缸的施压侧设有第一进气缓冲罐和第一排气缓冲罐,压力气体从所述第一进气缓冲罐经所述进气控制阀进入所述施压侧,从施压侧经排气控制阀排出至第一排气缓冲罐。
可选的,所述第一进气缓冲罐和所述第一排气缓冲罐之间设有第一增压气路,所述第一增压气路包括第一换热器、第一冷却器和第一压缩机;
所述第一排气缓冲罐与所述第一冷却器由第一排气管路连通,所述第一冷却器与所述第一压缩机连通,所述第一压缩机与所述第一进气缓冲罐由第一进气管路连通,所述第一进气管路和所述第一排气管路同时经过所述第一换热器,所述第一排气缓冲罐排出的压力气体与所述第一压缩机升压后的压力气体在所述第一换热器中热交换降温,再经所述第一冷却器进一步降温冷却后,进入所述第一压缩机,压力气体在所述第一增压气路内循环增压。
可选的,所述第一压缩机为离心式压缩机或容积式压缩机。
可选的,所述气压缸的数量大于1时,压力气体在各级所述气压缸所连接的所述第一增压气路中循环增压。
可选的,所述气压缸的数量大于1时,若干所述气压缸的施压侧串联连通形成第二增压气路,压力气体在所述第二增压气路内循环增压;
所述第二增压气路还包括第二进气缓冲罐、第二排气缓冲罐、第二换热器、第二冷却器和第二压缩机,每级气压缸的进气控制阀均连通有所述第二进气缓冲罐,第一级气压缸的排气 控制阀连通所述第二排气缓冲罐,所述第二排气缓冲罐与所述第二冷却器由第二排气管路连通,所述第二冷却器与所述第二压缩机连通,所述第二压缩机通过第二进气管路与最后一级气压缸所连通的第二进气缓冲罐连通,后一级气压缸的排气控制阀与前一级气压缸所连通的第二进气缓冲罐连通,所述第二进气管路和所述第二排气管路同时经过所述第二换热器。
可选的,所述第二压缩机为离心式压缩机或容积式压缩机。
可选的,所述蒸汽增压设备还包括缓冲罐,所述缓冲罐通过所述出汽阀与所述气压缸连通,待增压蒸汽增压后通过所述出汽阀进入所述缓冲罐。
本发明所提供的蒸汽增压设备的有益效果,与前述蒸汽增压方法的有益效果推理过程相类似,在此不再赘述。
本发明的这些特点和优点将会在下面的具体实施方式以及附图中进行详细的揭露。本发明最佳的实施方式或手段将结合附图来详尽表现,但并非是对本发明技术方案的限制。另外在每个下文和附图中出现的这些特征、要素和组件是具有多个,并且为了表示方便而标记了不同的符号或数字,但均表示相同或相似构造或功能的部件。
【附图说明】
下面结合附图对本发明作进一步说明:
图1为本发明实施例四的示意图;
图2为本发明实施例五的示意图;
图3为本发明实施例六的示意图;
其中,1-气压缸,11-自由活塞,12-待增压侧,13-施压侧;2-进气阀,21-进气管;3-出气阀;4-控制阀,41-进气控制阀,42-排气控制阀;5-缓冲罐,51-缓冲罐控制阀;6-控制系统,61-控制单元;7-第一进气缓冲罐,71-第二进气缓冲罐;8-第一排气缓冲罐,81-第二排气缓冲罐;9-第一增压气路,91-第一换热器,92-第一冷却器,93-第一压缩机,94-第二增压气路,95-第二换热器,96-第二冷却器,97-第二压缩机。
【具体实施方式】
下面结合本发明实施例的附图对本发明实施例的技术方案进行解释和说明,但下述实施例仅为本发明的优选实施例,并非全部。基于实施方式中的实施例,本领域技术人员在没有做出创造性劳动的前提下所获得其他实施例,都属于本发明的保护范围。
在本说明书中引用的“一个实施例”或“实例”或“例子”意指结合实施例本身描述的特定特征、结构或特性可被包括在本专利公开的至少一个实施例中。短语“在一个实施例中”在说明书中的各位置的出现不必都是指同一个实施例。
在具体实施方式的所有实施例中所提到的待增压蒸汽,均是指液态物质接受热能后汽化而成的汽相物质,具体而言,是指液态物质接受热能后汽化成一定的压力和温度的汽相物质其温度等于或高于相平衡的饱和温度。移出一定的热能后,汽相物质将会冷凝生成同类的液相物质,此物质可以是单一的纯物质,也可以是两种或多种具有同类特征的混合物质,在此不作限定。待增压蒸汽在增压前的压力区间为0.01Mpa至20Mpa,增压后的压力区间为0.1Mpa至30Mpa,并且,待增压蒸汽在增压前和增压后的温度不低于相同压力下待增压蒸汽的汽-液相平衡温度。
在具体实施方式的所有实施例中所提到的压力气体,均是指与待增压蒸汽相同压力参数下,其冷凝温度低于待增压蒸汽饱和温度50℃以上的气体,并且,在冷凝过程中不产生液体,如氮气、氧气、氢气、氦气、二氧化碳气体等单一的纯物质气体,也可以是两种或多种物质具有同类特征的混合物质气体,在此亦不做限定。
实施例一:
本实施例提供了一种蒸汽增压方法,采用了一个气压缸,将所采用的气压缸中自由活塞两侧设置为待增压侧和施压侧。
气压缸的待增压侧设有进汽阀和出汽阀,待增压蒸汽由进汽阀通入待增压侧,增压后的待增压蒸汽由出汽阀排出待增压侧。施压侧设有进气控制阀和排气控制阀,进气控制阀连通有第一进气缓冲罐,排气控制阀连通有第一排气缓冲罐。
本实施例所提供的蒸汽增压方法在增压时:
1、自由活塞位于待增压侧端极限位置,关闭施压侧压力气体进气控制阀、打开排气控制阀,压力气体排气至排气缓冲罐中,当施压侧压力低于待增压蒸汽压力时,待增压蒸汽通过进汽单向阀进入待增压侧,推动自由活塞向施压侧端移动,当自由活塞移动到施压侧端极限位置时,待增压侧蒸汽进汽完成;
2、关闭施压侧排气控制阀、打开进气控制阀,比待增压蒸汽压力高的压力气体从进气缓冲罐进入施压侧,当施压侧气压高于待压侧时,施压侧压力气体推动自由活塞向待增压侧端移动,对待增压侧中的待增压蒸汽增压;
3、当待增压侧气压高于出汽缓冲罐的压力时,增压后的蒸汽通过出汽单向阀排到出汽缓冲罐中,直至自由活塞位于待增压侧端极限位置。
待增压蒸汽完成增压后的压力区间为0.1Mpa至30Mpa,并且,待增压蒸汽在增压前和增压后的温度不低于相同压力下待增压蒸汽的汽-液相平衡温度。待增压蒸汽完成增压后排出待增压侧,向外界提供增压后的蒸汽。
第一进气缓冲罐和第一排气缓冲罐之间设有第一增压气路,第一增压气路包括第一换热器、第一冷却器和第一压缩机;第一排气缓冲罐与第一冷却器由第一排气管路连通,第一冷却器与第一压缩机连通,第一压缩机与第一进气缓冲罐由第一进气管路连通。完成对待增压蒸汽的增压后,压力气体从施压侧经排气控制阀排出至第一排气缓冲罐,由第一排气缓冲罐进入第一冷却器进行冷却后,进入第一压缩机进行增压,增压后进入第一进气缓冲罐,再由第一进气缓冲罐进入施压侧,以对压力气体的循环增压复用。同时,第一进气管路和第一排气管路同时经过第一换热器,由第一排气缓冲罐排出的压力气体与第一压缩机升压后的压力气体在第一换热器中热交换降温,再经第一冷却器进一步降温冷却后,方才进入第一压缩机以此,实现了压力气体在第一增压气路内循环增压。
重复1至3的步骤,实现气压缸的进汽-压缩-排汽的循环过程。
本实施例所提供的蒸汽增压方法,蒸汽增压压缩后的蒸汽品质可以达到蒸汽锅炉的出汽品质,并且最高压力接近于气体常规压缩能达到的最高压力,温度不低于该压力下的气液相平衡温度,这是现有技术无法达到的。现有技术如果达到同样的压力和温度,那么不仅需要能够承受更高压力更高温度的压缩机,并且将产生巨大的能耗。而采用本实施例所提供的蒸汽增压系统,仅使用现有的压缩设备即可将蒸汽压力提升至30Mpa以上,同时,克服了现 有的压缩设备在压缩蒸汽时吸入蒸汽的温度不能低于其压力下的饱和温度这一原理性缺陷,使得压缩蒸汽的效率得到大幅提高,进而有效节约了能耗。相比于采用蒸汽喷射提升压力的方法,本实施例所提供的蒸汽增压系统对于蒸汽压力提升的上限更高。与此同时,自由活塞移动仅需克服和壳体间的摩擦力,活塞在压缩过程中承受的压力差小,无需承受更高的压力更高的温度,运行的可靠性高。自由活塞和壳体的几何尺寸可以根据负荷需求放大,可以满足大规模工业的生产。
实施例二
本实施例提供了一种蒸汽增压方法。与实施例一不同的是,本实施例所提供的蒸汽增压方法,使用了多个气压缸,所使用的气压缸的待增压侧串联连通,即前一级气压缸的待增压侧排出的经过增压的蒸汽,进入后一级气压缸的待增压侧,作为后一级气压缸的待增压蒸汽实现对待增压蒸汽的多级增压。待增压蒸汽完成增压后,由最后一级气压缸排出其待增压侧向外界提供增压后的蒸汽。
本实施例中,每个气压缸的施压侧均连接有第一增压气路,压力气体在各级气压缸所连接的第一增压气路中循环增压。所连接的第一增压气路,与实施例一中所提供的第一增压气路相同,在此不再赘述。
优选的,本实例单级气压缸蒸汽的压缩比为1.5-8.5。
本实施例所提供的蒸汽增压方法,在实施例一所进行的蒸汽增压的基础上,通过多级串联的方式,进一步提升蒸汽的压力。
实施例三
本实施例提供了一种蒸汽增压方法。与实施例二不同的是,本实施例中同样串联了多个能承受高压和高温的气压缸,由外界提供的待增压蒸汽进入的第一个气压缸作为第一级,向外界提供增压后的蒸汽的气压缸作为最后一级。但是,本实施例所使用的气压缸的施压侧串联联通,形成第二增压气路。具体而言:
第二增压气路还包括第二进气缓冲罐、第二排气缓冲罐、第二换热器、第二冷却器和第二压缩机。本实施例中,第二排气缓冲罐仅用一个,第二进气缓冲罐的数量与气压缸的数量相同,每级气压缸的进气控制阀均连通第二进气缓冲罐,第一级气压缸的排气控制阀连通第二排气缓冲罐,第二排气缓冲罐与第二冷却器由第二排气管路连通,第二冷却器与第二压缩机连通,第二压缩机通过第二进气管路与最后一级气压缸所连通的第二进气缓冲罐连通,并且后一级气压缸的排气控制阀与前一级气压缸所连通的第二进气缓冲罐连通。
完成对待增压蒸汽的增压后,压力气体从第一级气压缸的施压侧经排气控制阀排出至第二排气缓冲罐,由第二排气缓冲罐进入第二冷却器进行冷却后,进入第二压缩机进行增压,增压后进入最后一级气压缸所连通的第二进气缓冲罐。再由该第二进气缓冲罐进入最后一级气压缸的施压侧,再由最后一级气压缸的施压侧逐级向在前的气压缸的施压侧输送压力气体即后一级施压侧的排气作为前一级施压侧的进气,第一级施压侧排出气体作为最后一级施压侧增压气路的进气。与此同时,第二进气管路和第二排气管路同时经过第二换热器,由第二压缩机升压后的压力气体与第二排气缓冲罐排出的压力气体在第二换热器中耦合。以此,实现了压力气体在第二增压气路内循环增压。
优选的,本实例单级气压缸蒸汽的压缩比为1.5-8.5。
本实施例所提供的蒸汽增压方法的有益效果,与实施例二所提供的蒸汽增压方法的有益 效果推理过程相类似,在此不再赘述。
实施例四
如图1所示,本实施例提供了一种蒸汽增压设备,蒸汽增压设备用以执行前述实施例一所述的蒸汽增压方法,设备包括气压缸1、进汽阀2、出汽阀3、控制阀4、缓冲罐5、控制系统6、第一进气缓冲罐7、第一排气缓冲罐8和第一增压气路9。
气压缸1由自由活塞11分为待增压侧12和施压侧13,进汽阀2和出汽阀3同时设置于待增压侧12,控制阀4包括进气控制阀41和排气控制阀42,进气控制阀41和排气控制阀42同时设置于施压侧13。
控制系统6采用负反馈控制,包括控制单元61和传感器(图中未示出),进气控制阀41和排气控制阀42各自与控制单元61连接,控制单元61与传感器连接,实施例中,传感器为位置传感器和/或压力传感器,可单独使用位置传感器,也可单独使用压力传感器,也可二者同时使用,在此不作限定,单独使用位置传感器时,位置传感器采集活塞11在待增压侧12和施压侧13的位置数据,单独使用压力传感器时,压力传感器采集待增压侧12和施压侧13的压力数据。控制单元61接收传感器采集的位置数据和/或压力数据并计算待增压侧12和施压侧13的压差,根据压差和/或位置数据控制控制阀4。
本实施例中,进汽阀2为低压进汽单向阀,出汽阀3为高压出汽单向阀,以节约蒸汽增压系统的成本。在其他实施例中,进汽阀2和出汽阀3还可为驱动阀。当采用驱动阀时,进汽阀2设置进汽气压阈值,出汽阀3设置出汽气压阈值。进汽气压阈值参照低压进汽单向阀的通过压力,出汽气压阈值参照高压出汽单向阀的通过压力。本实施例中所提及的驱动阀为电动、液动或气动操纵动作的阀门,此为本领域常见的现有成熟技术,本领域技术人员可根据实际使用场景需求灵活选择,在此不作限定。
进气控制阀41与第一进气缓冲罐7连通,排气控制阀42与第一排气缓冲罐8连通,第一进气缓冲罐7和第一排气缓冲罐8之间设有第一增压气路9,第一增压气路9包括第一换热器91、第一冷却器92和第一压缩机93。第一排气缓冲罐8与第一冷却器92由第一排气管路连通,第一冷却器92与第一压缩机93连通,第一压缩机93与第一进气缓冲罐7由第一进气管路连通,第一进气管路和所述第一排气管路同时经过第一换热器91。本实施例中,第一换热器91可以为浮头式换热器、固定管板式换热器、U形管板换热器、板式换热器等,在此不作限定。第一压缩机93为离心式压缩机或容积式压缩机,在此亦不作限定。当压缩升压后的压力大于1.0Mpa时,优选容积式压缩机。
出汽阀3通过排气管与缓冲罐5连通,缓冲罐5通过缓冲罐控制阀51向系统外提供增压后的蒸汽。
本实施例在工作时,当自由活塞11位于气压缸1中待增压侧12的极限位置,待增压侧12和施压侧13的压差达到设定值后,控制单元61控制施压侧进气压力控制阀41关闭、排气压力控制阀42打开,当施压侧13内的压力低于待增压侧12内的压力时,待增压蒸汽由进汽管21通过进汽阀2进入待增压侧12,推动自由活塞11向施压侧13端位移动直至极限位置。当自由活塞11移动到施压侧13端的极限位置时,待增压侧12和施压侧13的压差达到设 定值后,待增压侧12停止进汽,完成气压缸1的进汽。同时,控制单元61控制进气控制阀41打开、排气控制阀42关闭,第一增压气路9对压力气体增压,并将压力气体从第一排气缓冲罐7经进气控制阀41不断注入施压侧13,使施压侧13内的压力不断升高。当施压侧13内的压力高于待增压侧12的压力时,压力气体推动自由活塞11向待增压侧12方向运动,对待增压侧12内的待增压蒸汽进行增压。当待增压侧12内的蒸汽压力高于缓冲罐5的压力时,完成增压的蒸汽通过排汽管31由出汽阀3进入缓冲罐5储存备用,或在缓冲罐控制阀的控制下向蒸汽增压设备外提供压力蒸汽。当自由活塞11到达待增压侧12的极限位置,此时控制单元61控制进气控制阀41关闭,排气控制阀42打开,施压侧13停止进气并开始排气,当施压侧13的压力低于待增压侧12的压力时,自由活塞11向施压侧13方向移动,待增压蒸汽进入气压缸1的待增压侧12,重复进入一个进汽、压缩、排汽的循环过程。
排气控制阀42打开后,压力气体排出施压侧13,其压力已稍低于被压缩的蒸汽的压力,压力气体从施压侧经排气控制阀42排出至第一排气缓冲罐8,由第一排气缓冲罐8进入第一冷却器92进行冷却后,进入第一压缩机93进行增压,增压后进入第一进气缓冲罐7,再由第一进气缓冲罐7进入施压侧13,以对压力气体的循环增压复用。同时,第一进气管路和第一排气管路同时经过第一换热器91,由第一排气缓冲罐8排出的压力气体与第一压缩机93压缩升压后的压力气体在第一换热器91中热交换降温,再经第一冷却器92进一步降温冷却后,方才进入第一压缩机93。然后经进气控制阀41再次进入施压侧13,以实现压力气体在第一增压回路9内循环使用。
本实施例所提供的蒸汽增压设备的有益效果,与实施例一所提供的蒸汽增压方法的有益效果推理过程相类似,在此不再赘述。
实施例五
本实施例提供了一种蒸汽增压设备,用以执行前述实施例二所述的蒸汽增压方法。与实施例四不同的是,本实施例所提供的蒸汽增压设备,使用了多个气压缸1,如图2所示,图2中示出了第一级气压缸1、第二级气压缸1以及最后一级气压缸1,中间省略了若干级气压缸1,由外界提供的待增压蒸汽进入的第一个气压缸1作为第一级,向外界提供增压后的蒸汽的气压缸1作为最后一级。本实施例在实施时,气压缸1的级数可根据实际需求灵活选择,在此不作限定。
本实施例中,所使用的气压缸1的待增压侧12串联连通,即前一级气压缸1的待增压侧12排出的经过增压的蒸汽,进入后一级气压缸1的待增压侧12,作为后一级气压缸1的待增压蒸汽,实现对待增压蒸汽的多级增压,最后一级气压缸1的出汽阀3通过排气管与缓冲罐5连通,缓冲罐5通过缓冲罐控制阀51向系统外提供增压后的蒸汽。
本实施例中,每个气压缸1的施压侧13均连接有第一增压气路9,压力气体在各级气压缸1所连接的第一增压气路9中循环增压。所连接的第一增压气路9,与实施例四中所提供的第一增压气路9相同,在此不再赘述。
优选的,本实例单级气压缸蒸汽的压缩比为1.5-8.5。
本实施例所提供的蒸汽增压设备,其有益效果与实施例二所提供的蒸汽增压方法的有益 效果推理过程相类似,在此不再赘述。
实施例六
本实施例提供了一种蒸汽增压设备,用以执行前述实施例三所述的蒸汽增压方法,如图3所示,图3中示出了第一级气压缸1、第二级气压缸1、以及最后一级气压缸1,中间省略了若干级气压缸1,同样以由外界提供的待增压蒸汽进入的第一个气压缸1作为第一级,向外界提供增压后的蒸汽的气压缸1作为最后一级。本实施例在实施时,气压缸1的级数可根据实际需求灵活选择,在此不作限定。
与实施例五不同的是,虽然本实施例中同样串联了多个气压缸1,但是,本实施例仅使用了一个第二排气缓冲罐81,同时使用了多个第二进气缓冲罐71,第二进气缓冲罐71的数量与气压缸1的数量相同。本实施例中,所使用的气压缸1的施压侧13串联联通,形成第二增压气路94。施压侧13的压力气体在第二增压回路94进行循环增压,提供给每一级气压缸1的施压侧13。
第二增压气路94还包括第二进气缓冲罐71、第二排气缓冲罐81、第二换热器95、第二冷却器96和第二压缩机97。每级气压缸1的进气控制阀41均连通第二进气缓冲罐71,第一级气压缸1的排气控制阀42连通第二排气缓冲罐81,第二排气缓冲罐81与第二冷却器96由第二排气管路连通,第二冷却器96与第二压缩机97连通,第二压缩机97通过第二进气管路与最后一级气压缸1所连通的第二进气缓冲罐71连通,并且后一级气压缸1的排气控制阀42与前一级气压缸1所连通的第二进气缓冲罐71连通。
完成对待增压蒸汽的增压后,压力气体从第一级气压缸1的施压侧13经排气控制阀42排出至第二排气缓冲罐81,由第二排气缓冲罐81进入第二冷却器96进行冷却后,进入第二压缩机97进行增压,增压后进入最后一级气压缸1所连通的第二进气缓冲罐71。再由该第二进气缓冲罐71进入最后一级气压缸1的施压侧,再由最后一级气压缸1的施压侧逐级向在前的气压缸1的施压侧13输送压力气体,即后一级施压侧的排气作为前一级施压侧的进气,第一级施压侧排出气体作为最后一级施压侧增压气路的进气。与此同时,第二进气管路和第二排气管路同时经过第二换热器95,由第二压缩机97升压后的压力气体与第二排气缓冲罐81排出的压力气体在第二换热器95中耦合。以此,实现了压力气体在第二增压气路内循环增压。
优选的,本实例单级气压缸蒸汽的压缩比为1.5-8.5。
本实施例所提供的蒸汽增压设备的有益效果,与实施例三所提供的蒸汽增压方法的有益效果推理过程相类似,在此不再赘述。
以上,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,熟悉本领域的技术人员应该明白本发明包括但不限于附图和上面具体实施方式中描述的内容。任何不偏离本发明的功能和结构原理的修改都将包括在权利要求书的范围中。

Claims (20)

  1. 一种蒸汽增压方法,所述蒸汽增压方法采用气压缸,其特征在于,将所述气压缸中自由活塞两侧设置为待增压侧和施压侧,在增压时:
    当施压侧的气压小于待增压蒸汽的压力时,自由活塞向施压侧移动,待增压蒸汽通入待增压侧;
    将压力气体通入施压侧,直至施压侧的气压大于待增压侧的气压;
    压力气体推动自由活塞向待增压侧移动,对待增压蒸汽增压。
  2. 根据权利要求1所述的蒸汽增压方法,其特征在于,待增压蒸汽为液态物质接受热能后汽化而成的汽相物质;压力气体为与待增压蒸汽相同压力参数下,其冷凝温度低于待增压蒸汽饱和温度50℃以上的气体。
  3. 根据权利要求1所述的蒸汽增压方法,其特征在于,待增压蒸汽在增压前的压力区间为0.01Mpa至20Mpa,增压后的压力区间为0.1Mpa至30Mpa,待增压蒸汽在增压前和增压后的温度不低于相同压力下待增压蒸汽的汽-液相平衡温度。
  4. 根据权利要求1至3中任意一项所述的蒸汽增压方法,其特征在于,所述气压缸设有至少1个,所述气压缸的数量大于1时,若干所述气压缸的待增压侧串联连通;前一级待增压侧排出的增压后的待增压蒸汽作为后一级待增压侧的待增压蒸汽。
  5. 根据权利要求4所述的蒸汽增压方法,其特征在于,所述气压缸的待增压侧设有进汽阀和出汽阀,待增压蒸汽由所述进汽阀通入所述待增压侧,增压后的待增压蒸汽由所述出汽阀排出所述待增压侧,单个气压缸的施压侧设有进气控制阀和排气控制阀,压力气体由所述进气控制阀通入所述施压侧,由所述排气控制阀排出所述施压侧。
  6. 根据权利要求5所述的蒸汽增压方法,其特征在于,单个气压缸的施压侧设有第一进气缓冲罐和第一排气缓冲罐,压力气体从所述第一进气缓冲罐经所述进气控制阀进入所述施压侧,从施压侧经排气控制阀排出至所述第一排气缓冲罐。
  7. 根据权利要求6所述的蒸汽增压方法,其特征在于,所述第一进气缓冲罐和所述第一排气缓冲罐之间设有第一增压气路,所述第一增压气路包括第一换热器、第一冷却器和第一压缩机;
    所述第一排气缓冲罐与所述第一冷却器由第一排气管路连通,所述第一冷却器与所述第一压缩机连通,所述第一压缩机与所述第一进气缓冲罐由第一进气管路连通,所述第一进气管路和所述第一排气管路同时经过所述第一换热器,所述第一排气缓冲罐排出的压力气体与所述第一压缩机升压后的压力气体在所述第一换热器中热交换降温,再经所述第一冷却器进一步降温冷却后,进入所述第一压缩机,压力气体在所述第一增压气路内循环增压;
    所述气压缸的数量大于1时,压力气体在各级所述气压缸所连接的所述第一增压气路中循环增压。
  8. 根据权利要求4所述的蒸汽增压方法,其特征在于,所述气压缸的数量大于1时,若干所述气压缸的施压侧串联连通形成第二增压气路,压力气体在所述第二增压气路内循环增压;
    所述第二增压气路还包括第二进气缓冲罐、第二排气缓冲罐、第二换热器、第二冷却器和第二压缩机,每级气压缸的进气控制阀均连通有所述第二进气缓冲罐,第一级气压缸的排气控制阀连通所述第二排气缓冲罐,所述第二排气缓冲罐与所述第二冷却器由第二排气管 路连通,所述第二冷却器与所述第二压缩机连通,所述第二压缩机通过第二进气管路与最后一级气压缸所连通的第二进气缓冲罐连通,后一级气压缸的排气控制阀与前一级气压缸所连通的第二进气缓冲罐连通,所述第二进气管路和所述第二排气管路同时经过所述第二换热器。
  9. 一种蒸汽增压设备,包括气压缸、进汽阀、出汽阀和控制阀,其特征在于,
    将所述气压缸中自由活塞两侧设置为待增压侧和施压侧,所述进汽阀和所述出汽阀设置于所述待增压侧,待增压蒸汽通过所述进汽阀通入所述待增压侧;所述控制阀设于所述施压侧,压力气体通过所述控制阀通入施压侧,直至待增压侧的气压大于施压侧的气压;
    压力气体推动自由活塞对待增压蒸汽增压,完成增压的待增压蒸汽通过所述出汽阀排出所述气压缸。
  10. 根据权利要求9所述的蒸汽增压设备,其特征在于,所述蒸汽增压设备还包括控制系统,所述控制系统包括控制单元和传感器,所述控制阀与所述控制单元连接,所述控制单元与所述传感器连接,所述传感器采集待增压侧和施压侧的压力数据和/或所述自由活塞在待增压侧和施压侧的位置数据;所述控制单元接收所述传感器采集的位置数据和/或压力数据,并计算待增压侧和施压侧的压差,根据所述压差和/或位置数据控制所述控制阀。
  11. 根据权利要求9所述的蒸汽增压设备,其特征在于,所述进汽阀为低压进汽单向阀,所述出汽阀为高压出汽单向阀;
    或,所述进汽阀和所述出汽阀均为驱动阀。
  12. 根据权利要求9至11中任意一项所述的蒸汽增压设备,其特征在于,所述气压缸设有至少1个,所述气压缸的数量大于1时,前一级气压缸的出汽阀与后一级气压缸的进汽阀连通,使若干所述气压缸的待增压侧串联;前一级待增压侧排出的增压后的待增压蒸汽作为后一级待增压侧的待增压蒸汽。
  13. 根据权利要求12所述的蒸汽增压设备,其特征在于,所述控制阀包括进气控制阀和排气控制阀,压力气体由所述进气控制阀通入所述施压侧,由所述排气控制阀排出所述施压侧。
  14. 根据权利要求13所述的蒸汽增压设备,其特征在于,单个气压缸的施压侧设有第一进气缓冲罐和第一排气缓冲罐,压力气体从所述第一进气缓冲罐经所述进气控制阀进入所述施压侧,从施压侧经排气控制阀排出至第一排气缓冲罐。
  15. 根据权利要求14所述的蒸汽增压设备,其特征在于,所述第一进气缓冲罐和所述第一排气缓冲罐之间设有第一增压气路,所述第一增压气路包括第一换热器、第一冷却器和第一压缩机;
    所述第一排气缓冲罐与所述第一冷却器由第一排气管路连通,所述第一冷却器与所述第一压缩机连通,所述第一压缩机与所述第一进气缓冲罐由第一进气管路连通,所述第一进气管路和所述第一排气管路同时经过所述第一换热器,所述第一排气缓冲罐排出的压力气体与所述第一压缩机升压后的压力气体在所述第一换热器中热交换降温,再经所述第一冷却器进一步降温冷却后,进入所述第一压缩机,压力气体在所述第一增压气路内循环增压。
  16. 根据权利要求15所述的蒸汽增压设备,其特征在于,所述第一压缩机为离心式压缩 机或容积式压缩机。
  17. 根据权利要求15所述的蒸汽增压设备,其特征在于,所述气压缸的数量大于1时,压力气体在各级所述气压缸所连接的所述第一增压气路中循环增压。
  18. 根据权利要求12所述的蒸汽增压设备,其特征在于,所述气压缸的数量大于1时,若干所述气压缸的施压侧串联连通形成第二增压气路,压力气体在所述第二增压气路内循环增压;
    所述第二增压气路还包括第二进气缓冲罐、第二排气缓冲罐、第二换热器、第二冷却器和第二压缩机,每级气压缸的进气控制阀均连通有所述第二进气缓冲罐,第一级气压缸的排气控制阀连通所述第二排气缓冲罐,所述第二排气缓冲罐与所述第二冷却器由第二排气管路连通,所述第二冷却器与所述第二压缩机连通,所述第二压缩机通过第二进气管路与最后一级气压缸所连通的第二进气缓冲罐连通,后一级气压缸的排气控制阀与前一级气压缸所连通的第二进气缓冲罐连通,所述第二进气管路和所述第二排气管路同时经过所述第二换热器。
  19. 根据权利要求18所述的蒸汽增压设备,其特征在于,所述第二压缩机为离心式压缩机或容积式压缩机。
  20. 根据权利要求9至11所述的蒸汽增压设备,其特征在于,所述蒸汽增压设备还包括缓冲罐,所述缓冲罐通过所述出汽阀与所述气压缸连通,待增压蒸汽增压后通过所述出汽阀进入所述缓冲罐。
PCT/CN2022/076409 2022-01-24 2022-02-16 一种蒸汽增压方法及设备 WO2023137811A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210085484.9 2022-01-24
CN202210085484.9A CN114483522B (zh) 2022-01-24 2022-01-24 一种蒸汽增压方法及设备

Publications (1)

Publication Number Publication Date
WO2023137811A1 true WO2023137811A1 (zh) 2023-07-27

Family

ID=81475048

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/076409 WO2023137811A1 (zh) 2022-01-24 2022-02-16 一种蒸汽增压方法及设备

Country Status (3)

Country Link
CN (1) CN114483522B (zh)
TW (1) TW202331100A (zh)
WO (1) WO2023137811A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005207660A (ja) * 2004-01-22 2005-08-04 Shin Meiwa Ind Co Ltd 超低温冷凍装置
CN101191080A (zh) * 2006-11-30 2008-06-04 中国石油化工股份有限公司 一种催化剂可连续再生的低辛烷值汽油改质方法
CN102165159A (zh) * 2008-09-30 2011-08-24 美国国家环境保护局 具有底循环的提高效率的涡轮增压式发动机系统及工作方法
CN104675463A (zh) * 2015-02-14 2015-06-03 彭万旺 一种低压水蒸气循环利用发电系统
CN106523323A (zh) * 2015-09-11 2017-03-22 自贡通达机器制造有限公司 无活塞杆连接的液压主机缸及液压压缩机
CN112833580A (zh) * 2021-01-20 2021-05-25 重庆科技学院 一种工业余热余压综合回收系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005207660A (ja) * 2004-01-22 2005-08-04 Shin Meiwa Ind Co Ltd 超低温冷凍装置
CN101191080A (zh) * 2006-11-30 2008-06-04 中国石油化工股份有限公司 一种催化剂可连续再生的低辛烷值汽油改质方法
CN102165159A (zh) * 2008-09-30 2011-08-24 美国国家环境保护局 具有底循环的提高效率的涡轮增压式发动机系统及工作方法
CN104675463A (zh) * 2015-02-14 2015-06-03 彭万旺 一种低压水蒸气循环利用发电系统
CN106523323A (zh) * 2015-09-11 2017-03-22 自贡通达机器制造有限公司 无活塞杆连接的液压主机缸及液压压缩机
CN112833580A (zh) * 2021-01-20 2021-05-25 重庆科技学院 一种工业余热余压综合回收系统

Also Published As

Publication number Publication date
CN114483522B (zh) 2023-08-18
CN114483522A (zh) 2022-05-13
TW202331100A (zh) 2023-08-01

Similar Documents

Publication Publication Date Title
EP0150990B1 (en) Process for producing power
CN109173558B (zh) 一种低能耗二氧化碳捕集及封存技术和系统
CN110986414A (zh) 一种采用喷射器增效的多温区和大温跨热泵循环系统
WO2023137811A1 (zh) 一种蒸汽增压方法及设备
US20200386155A1 (en) Cold recycle process for gas turbine inlet air cooling
CN114349195A (zh) 一种兼顾二氧化碳回收的船用海水淡化系统及工作方法
CN213807777U (zh) 火力发电系统和压缩空气储能系统的耦合系统
CN209990560U (zh) 一种基于热声技术的冷能梯级利用系统
CN116575989A (zh) 二氧化碳捕集封存与储能发电一体化系统及控制方法
CN109667633B (zh) 应用于尿素装置的能量输出系统及方法
CN114382562B (zh) 分流再压缩纯氧燃烧循环系统
CN115539161A (zh) 二氧化碳储能系统
CN212293372U (zh) 煤制乙二醇工艺节能真空系统
CN115013194A (zh) 一种船舶废气再循环内燃机零排放系统及方法
CN101787930A (zh) 一种基于纯氧或富氧燃烧的燃气轮机热工循环工艺
CN112833580B (zh) 一种工业余热余压综合回收系统
CN201818358U (zh) 流体气相工质压缩系统
CN114776411A (zh) 一种集成储热的燃煤发电系统及工作方法
CN210829422U (zh) 一种透平驱动气体压缩系统
CN110671164A (zh) 一种透平驱动气体压缩系统及其工作方法
CN113187621A (zh) 基于lng冷却的跨临界co2循环内燃机余热发电系统及方法
CN1249418A (zh) 增压闪蒸制冷方法和装置
CN104879178A (zh) 利用高压低温流体发电及回收低品位废热和冷却压缩机进口气体的方法和系统
CN204827566U (zh) 利用高压低温流体发电及回收低品位废热和冷却压缩机进口气体的系统
CN104389680A (zh) 基于sofc/gt和膜分离技术的低碳排放功冷联供系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22921247

Country of ref document: EP

Kind code of ref document: A1