WO2023137685A1 - 巴伦结构及电子设备 - Google Patents

巴伦结构及电子设备 Download PDF

Info

Publication number
WO2023137685A1
WO2023137685A1 PCT/CN2022/073100 CN2022073100W WO2023137685A1 WO 2023137685 A1 WO2023137685 A1 WO 2023137685A1 CN 2022073100 W CN2022073100 W CN 2022073100W WO 2023137685 A1 WO2023137685 A1 WO 2023137685A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission line
coupling
coupling part
line
balun structure
Prior art date
Application number
PCT/CN2022/073100
Other languages
English (en)
French (fr)
Inventor
郭昊
贾皓程
陆岩
丁屹
马文学
周维思
王静
王晓波
车春城
Original Assignee
京东方科技集团股份有限公司
北京京东方传感技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方传感技术有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US18/017,049 priority Critical patent/US20240250400A1/en
Priority to CN202280000048.5A priority patent/CN116802929A/zh
Priority to PCT/CN2022/073100 priority patent/WO2023137685A1/zh
Publication of WO2023137685A1 publication Critical patent/WO2023137685A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/08Coupling devices of the waveguide type for linking dissimilar lines or devices
    • H01P5/10Coupling devices of the waveguide type for linking dissimilar lines or devices for coupling balanced lines or devices with unbalanced lines or devices
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/42Networks for transforming balanced signals into unbalanced signals and vice versa, e.g. baluns

Definitions

  • the present disclosure relates to the technical field of microwave communication, in particular to a balun structure and electronic equipment.
  • Balun is a three-port device, as a conversion device between balanced ports and unbalanced ports, it can realize mutual conversion between differential signals and single-ended signals, and is widely used in balanced layouts in the field of microwave communications.
  • the flux coupling transformer balun is the most common type of balun. It is basically composed of a magnetic core and two different wires wound on the magnetic core.
  • the classic transformer balun which has two separate coil windings wound around a transformer core.
  • the autotransformer balun has one coil or has two coils or more than two coils, and the electrical connections of these coils are also wound on the ring core.
  • a first grounding conductive layer located on one side of the dielectric substrate
  • a first transmission line located on a side of the dielectric substrate away from the first grounding conductive layer; wherein, a first end of the first transmission line is electrically connected to an unbalanced signal port;
  • the second transmission line is located on the side of the dielectric substrate away from the first grounding conductive layer; wherein, the first end of the second transmission line is electrically connected to the second end of the first transmission line, and the second end of the second transmission line is electrically connected to the first balanced signal port;
  • a third transmission line located on a side of the dielectric substrate away from the first grounding conductive layer; wherein, the first end of the third transmission line is electrically connected to the second end of the first transmission line, and the second end of the third transmission line is electrically connected to the second balanced signal port;
  • At least one coupling structure is connected in series between the first end and the second end of the third transmission line;
  • the coupling structure includes a first coupling part and a second coupling part; wherein, in the same coupling structure, the end of the first coupling part facing the second coupling part has at least one first branch line, and the end of the second coupling part facing the first coupling part has at least one second branch line;
  • one end of the first branch line close to the second coupling part is electrically connected to the first ground conductive layer through a first through hole
  • one end of the second branch line close to the first coupling part is electrically connected to the first ground conductive layer through a second through hole
  • the first branch line of the first coupling part is coupled and connected to the second branch line of the second coupling part.
  • the first branch lines and the second branch lines are arranged alternately and at intervals on the orthographic projection of the dielectric substrate.
  • first coupling part and the second coupling part in each of the coupling structures are arranged in the same layer.
  • the first transmission line, the second transmission line, the third transmission line and each of the coupling structures are located in the same film layer.
  • the first coupling part and the second coupling part in at least one of the coupling structures are arranged in different layers.
  • the first transmission line, the second transmission line and the first coupling part are located in the same film layer;
  • the second coupling part is located between the first coupling part and the dielectric substrate;
  • the balun structure also includes:
  • a first insulating layer located between the second coupling portion and the first coupling portion
  • the first through hole also penetrates through the first insulating layer.
  • the first transmission line, the second transmission line and the first coupling part are located in the same film layer;
  • the second coupling portion is located on a side of the first coupling portion away from the dielectric substrate;
  • the balun structure also includes:
  • a second insulating layer located between the second coupling portion and the first coupling portion
  • the second through hole also penetrates through the second insulating layer.
  • the balun structure also includes:
  • a third insulating layer covering the first transmission line, the second transmission line and the third transmission line;
  • one end of the first bifurcated line close to the second coupling part is electrically connected to the second grounded conductive layer through a third through hole
  • one end of the second bifurcated line close to the first coupling part is electrically connected to the second grounded conductive layer through a fourth through hole; wherein, the third through hole and the fourth through hole respectively penetrate through the third insulating layer.
  • the fourth via hole also penetrates the first insulating layer
  • the third through hole also penetrates the second insulating layer.
  • At least one coupling structure is connected in series between the first end and the second end of at least one of the first transmission line and the second transmission line.
  • shapes of the orthographic projections of the first branch line and the second branch line on the dielectric substrate include straight lines, bent lines, wavy lines and curves.
  • the balun structure also includes:
  • At least one resistor is electrically connected between the second end of the second transmission line and the second end of the third transmission line.
  • An electronic device is also provided in an embodiment of the present disclosure, including the above-mentioned balun structure.
  • Fig. 1a is some top view structural schematic diagrams of the balun structure provided by the embodiment of the present disclosure
  • Fig. 1b is some sectional structural schematic diagrams of the balun structure shown in Fig. 1a along the direction AA';
  • Fig. 1c is some sectional structural schematic diagrams of the balun structure shown in Fig. 1a along the BB' direction;
  • Fig. 1d is another top view structural schematic diagram of the balun structure provided by the embodiment of the present disclosure.
  • 2a is a schematic diagram of the return loss of the balun structure in the embodiment of the present disclosure when it is applied to the transmission of radio frequency signals in the 12GHz frequency band;
  • FIG. 2b is a schematic diagram of the insertion loss of the balun structure in the embodiment of the present disclosure when it is applied to the transmission of radio frequency signals in the 12GHz frequency band;
  • FIG. 2c is a schematic diagram of the phase of the signal when the balun structure in the embodiment of the present disclosure is applied to radio frequency signal transmission in the 12GHz frequency band;
  • Fig. 3 is another schematic structural diagram of top view of the balun structure provided by the embodiment of the present disclosure.
  • Fig. 4a is the other cross-sectional structural schematic diagrams of the balun structure shown in Fig. 1a along the direction AA';
  • Fig. 4 b is the other cross-sectional structural schematic diagrams of the balun structure shown in Fig. 1 a along the BB' direction;
  • Fig. 5 a is another sectional structural schematic diagram of the balun structure shown in Fig. 1 a along the direction AA';
  • Fig. 5 b is another cross-sectional structural schematic diagram of the balun structure shown in Fig. 1 a along the BB' direction;
  • Fig. 6a is another schematic cross-sectional structure diagram of the balun structure shown in Fig. 1a along the direction AA';
  • Fig. 6 b is another sectional structural schematic diagram of the balun structure shown in Fig. 1 a along the BB' direction;
  • Fig. 7 is another sectional structural schematic diagram of the balun structure shown in Fig. 1a along the direction AA';
  • Fig. 8 is another sectional structural schematic diagram of the balun structure shown in Fig. 1a along the BB' direction;
  • Fig. 9 is a schematic diagram of some other top views of the balun structure provided by the embodiment of the present disclosure.
  • Fig. 10a is another schematic diagram of the top view of the balun structure provided by the embodiment of the present disclosure.
  • Fig. 10b is another schematic top view of the balun structure provided by the embodiments of the present disclosure.
  • differential circuits and baluns are widely used in communication base station products, mobile products, and chip design.
  • differential signals are used to eliminate common-mode noise, and the mutual conversion between single-ended signals and differential signals is realized through baluns.
  • the differential signal is composed of a pair of power division signals with opposite phases.
  • the balun structure provided by the embodiment of the present disclosure may include: a dielectric substrate 100, a first grounded conductive layer 210 located on one side of the dielectric substrate 100, a first transmission line 310, a second transmission line 320, and a third transmission line 330 located on the side of the dielectric substrate 100 away from the first grounded conductive layer 210.
  • the dielectric substrate 100 may be formed by a dielectric layer.
  • the dielectric layer can be formed by insulating materials.
  • the first end of the first transmission line 310 may be electrically connected to the unbalanced signal port 01 .
  • the first end of the second transmission line 320 is electrically connected to the second end of the first transmission line 310
  • the second end of the second transmission line 320 is electrically connected to the first balanced signal port 021 .
  • the first end 330 - a of the third transmission line 330 is electrically connected to the second end of the first transmission line 310
  • the second end 330 - b of the third transmission line 330 is electrically connected to the second balanced signal port 022 .
  • At least one coupling structure 400 is connected in series between the first end 330 - a and the second end 330 - b of the third transmission line 330 .
  • the coupling structure 400 may include a first coupling part 410 and a second coupling part 420 .
  • one end of the first coupling part 410 facing the second coupling part 420 has at least two first bifurcated lines (such as 411, 412), and the second coupling part 420 has at least two second bifurcated lines (such as 421, 422) at one end facing the first coupling part 410.
  • one end of the first branch line (such as 411, 412) close to the second coupling part 420 is electrically connected to the first ground conductive layer 210 through the first through hole GK1
  • one end of the second branch line (such as 421, 422) close to the first coupling part 410 is electrically connected to the first ground conductive layer 210 through the second through hole GK2; and, in the same coupling structure 400, the first branch line of the first coupling part 410 and the second coupling part 42 0 for the second forked line coupling connection.
  • the signal transmitted to the first branch line (such as 411, 412) can be transmitted to the second branch line (such as 421, 422) through coupling, so as to be transmitted to the connected device through the second end 330-b of the third transmission line 330.
  • the signal transmitted to the second branched line can be transmitted to the first branched line (such as 411, 412) through coupling, so as to be transmitted to the device connected to the first transmission line 310 through the first end 330-a of the third transmission line 330.
  • a layer of metal material (for example, Cu, Ag, Au, Al, etc.) may be plated on the sidewalls of the first through hole and the second through hole, or a metal material (for example, Cu, Ag, Au, Al, etc.) may be first filled in the first through hole and the second through hole, and then the first branch line is connected with the metal material filled in the first through hole, and the second branch line is connected with the metal material filled in the second through hole.
  • the unbalanced signal port 01 can be connected to an unbalanced transmission line such as a coaxial line, a microstrip line, etc.
  • the first balanced signal port 021 and the second balanced signal port 022 can be connected to components such as a push-pull amplifier, a balanced mixer, a balanced antenna, or a balanced transmission line. It is also possible to apply the balun structure to the liquid crystal phase shifter of the liquid crystal phased array antenna system.
  • the device connected to the unbalanced signal port 01 when the device connected to the unbalanced signal port 01 inputs an unbalanced signal through the unbalanced signal port 01, it can be converted into a differential signal through the above-mentioned balun structure, and output to the connected device from the first balanced signal port 021 and the second balanced signal port 022.
  • a device connected to the first balanced signal port 021 and the second balanced signal port 022 inputs a differential signal through the first balanced signal port 021 and the second balanced signal port 022, it is converted into an unbalanced signal through the above-mentioned balun structure and output from the unbalanced signal port 01 to the connected device.
  • This balun structure is used, for example, for switching a coaxial connection to a balanced antenna. This produces a 180° phase offset and provides balanced inputs.
  • one end of the first coupling part 410 facing the second coupling part 420 has at least one first forked line
  • one end of the second coupling part 420 facing the first coupling part 410 has at least one second forked line
  • the first forked line of the first coupling part 410 and the second forked line of the second coupling part 420 are coupled and connected, so that a coupling effect is generated between the first forked line and the second forked line.
  • the effect produces a phase delay, so that the phase difference between the signal transmitted by the first balanced signal port 021 and the signal transmitted by the second balanced signal port 022 can be 180°.
  • the length of the second transmission line 320 and the third transmission line 330 can be about a quarter of the medium wavelength, and the width can be an appropriate size that meets the impedance matching requirements), so that the output power of the first balanced signal port 021 and the output power of the second balanced signal port 022 can be the same.
  • the first grounding conductive layer 210 is grounded.
  • the end of the first branched line close to the second coupling part 420 is electrically connected to the first grounding conductive layer 210 through the first through hole GK1
  • the end of the second branched line close to the first coupling part 410 is electrically connected to the first grounding conductive layer 210 through the second through hole GK2, which can improve electromagnetic shielding and suppress noise interference.
  • the design of the balun structure provided by the embodiments of the present disclosure is relatively simple, which is convenient for manufacture and integration.
  • the first forked lines and the second forked lines can be alternately arranged at intervals in the orthographic projection of the dielectric substrate 100 .
  • the orthographic projection of the first forked line 411 on the dielectric substrate 100, the orthographic projection of the second forked line 421 on the dielectric substrate 100, the orthographic projection of the first forked line 412 on the dielectric substrate 100, and the orthographic projection of the second forked line 422 on the dielectric substrate 100 are alternately arranged at intervals.
  • the coupling structure 400 can be formed to form an interdigitated line structure, so that a phase delay can be generated through the coupling effect between the interleaved first branch line and the second branch line in the same coupling structure 400, so that the phase difference between the signal transmitted by the first balanced signal port 021 and the signal transmitted by the second balanced signal port 022 can be 180°.
  • the material of the first transmission line 310 may be a metal material, such as Cu, Ag, Au, Al and the like.
  • the first transmission line 310 may be configured in a linear routing form.
  • the shape of the orthographic projection of the first transmission line 310 on the dielectric substrate 100 may be set as a straight line.
  • the shape of the orthographic projection of the first transmission line 310 on the dielectric substrate 100 can also be set as a meander line, a wavy line, or a curve, which can be determined according to actual application requirements, and is not limited here.
  • the material of the second transmission line 320 may be a metal material, such as Cu, Ag, Au, Al, and the like.
  • the second transmission line 320 may also be configured in a linear routing form.
  • the shape of the orthographic projection of the second transmission line 320 on the dielectric substrate 100 may be set as a straight line.
  • the shape of the orthographic projection of the second transmission line 320 on the dielectric substrate 100 may also be set as a bent line, a wavy line, or a curve, which may be determined according to actual application requirements, and is not limited here.
  • the material of the first branch line (such as 411, 412) and the second branch line (such as 421, 422) can be a metal material, such as Cu, Ag, Au, Al, etc.
  • the shapes of the orthographic projections of the first branch line (such as 411, 412) and the second branch line (such as 421, 422) on the dielectric substrate 100 may be set as straight lines.
  • the shape of the orthographic projection of the first branch line (such as 411, 412) and the second branch line (such as 421, 422) on the dielectric substrate 100 can also be set as a bent line to further reduce the size.
  • the shapes of the orthographic projections of the first branch line and the second branch line on the dielectric substrate 100 may also be configured as wavy lines, curves and other structures, which are not limited here.
  • the first coupling part 410 and the second coupling part 420 in each coupling structure 400 may be arranged in the same layer. In this way, the patterns of the first coupling portion 410 and the second coupling portion 420 in each coupling structure 400 can be formed through one patterning process, which can simplify the manufacturing process, save production cost, and improve production efficiency.
  • the first transmission line 310, the second transmission line 320, the third transmission line 330 and the coupling structures 400 can be located in the same film layer, so that the balun structure can be prepared in the form of a microstrip line.
  • the patterns of the first transmission line 310, the second transmission line 320, the third transmission line 330 and each coupling structure 400 can be formed through one patterning process, which can simplify the preparation process, save production cost and improve production efficiency.
  • the balun structure may further include: at least one resistor RS.
  • Each resistor RS is electrically connected between the second end of the second transmission line 320 and the second end 330 - b of the third transmission line 330 . This can improve the matching of the output ports of the balun structure and the isolation between the output ports.
  • the balun structure can be provided with a resistor.
  • the balun structure can also be provided with two resistors.
  • the balun structure can be provided with three or more resistors.
  • the balun structure may not be provided with the resistor RS. In practical applications, the number of resistors can be determined according to requirements in practical applications, which is not limited here.
  • the return loss of the unbalanced signal port 01 is shown in Figure 2a (the abscissa represents the frequency, and the ordinate represents the return loss).
  • the insertion loss from the unbalanced signal port 01 to the first balanced signal port 021 and the second balanced signal port 022 is shown in FIG. Coordinates represent phase) as shown. It can be seen from FIG. 2a that the return loss of the unbalanced signal port 01 is less than -20dB in the range of 11GHz-12GHz. It can be seen from FIG.
  • Embodiments of the present disclosure provide structural schematic diagrams of other balun structures, as shown in FIG. 4 a and FIG. 4 b , which are modified for the implementation manners in the above embodiments. The following only describes the differences between this embodiment and the above-mentioned embodiments, and the similarities will not be repeated here.
  • the first coupling part 410 and the second coupling part 420 in at least one coupling structure 400 may be arranged in different layers.
  • a plurality of coupling structures 400 can be provided in the third transmission line 330, and the first coupling part 410 and the second coupling part 420 in one of the coupling structures 400 can be arranged in different layers, and the first coupling part 410 and the second coupling part 420 in the remaining coupling structures 400 can be arranged in the same layer.
  • the first coupling part 410 and the second coupling part 420 in the two coupling structures 400 may be arranged in different layers, and the first coupling part 410 and the second coupling part 420 in the remaining coupling structures 400 may be arranged in the same layer.
  • first coupling parts 410 and the second coupling parts 420 in the three coupling structures 400 may be arranged in different layers, and the first coupling parts 410 and the second coupling parts 420 in the remaining coupling structures 400 may be arranged in the same layer.
  • a coupling structure 400 can be provided in the third transmission line 330, and the first coupling part 410 (including the first branch lines 411, 412) and the second coupling part 420 (including the second branch lines 421, 422) in the coupling structure 400 can be arranged in different layers.
  • the first transmission line 310 , the second transmission line 320 and the first coupling part 410 may be located in the same film layer.
  • the second coupling part 420 (including the second branch lines 421 , 422 ) is located between the first coupling part 410 (including the first branch lines 411 , 412 ) and the dielectric substrate 100 .
  • the balun structure further includes: a first insulating layer 510 located between the second coupling part 420 and the first coupling part 410 , and the first through hole GK1 also penetrates the first insulating layer 510 .
  • the first insulating layer 510 may be formed using a dielectric layer. It should be noted that the first coupling part 410 (including the first bifurcated lines 411 , 412 ) and the first end 330 - a of the third transmission line 330 are integral structures arranged on the same layer.
  • the second coupling part 420 (including the second bifurcated lines 421 and 422 ) and the second end 330 - b of the third transmission line 330 are an integral structure arranged on the same layer. That is to say, the first coupling part 410 (including the first bifurcated lines 411, 412) and the first end 330-a of the third transmission line 330 serve as one film layer, and the second coupling part 420 (including the second bifurcated lines 421, 422) and the second end 330-b of the third transmission line 330 serve as another film layer, with the first insulating layer 510 between the two film layers.
  • Embodiments of the present disclosure provide structural schematic diagrams of some other balun structures, as shown in FIG. 5 a and FIG. 5 b , which are modified for the implementation manners in the above embodiments. The following only describes the differences between this embodiment and the above-mentioned embodiments, and the similarities will not be repeated here.
  • a coupling structure 400 may be provided in the third transmission line 330 , and the first coupling part 410 and the second coupling part 420 in the coupling structure 400 may be arranged in different layers.
  • the first transmission line 310, the second transmission line 320 and the first coupling part 410 can be located on the same film layer, and the second coupling part 420 is located on the side of the first coupling part 410 away from the dielectric substrate.
  • the balun structure further includes: a second insulating layer 520 located between the second coupling portion 420 and the first coupling portion 410 , and the second through hole GK2 also penetrates the second insulating layer 520 .
  • the second insulating layer 520 may be formed using a dielectric layer. It should be noted that the first coupling part 410 (including the first bifurcated lines 411 , 412 ) and the first end 330 - a of the third transmission line 330 are integral structures arranged on the same layer. And, the second coupling part 420 (including the second bifurcated lines 421 and 422 ) and the second end 330 - b of the third transmission line 330 are an integral structure disposed on the same layer.
  • the first coupling part 410 (including the first bifurcated lines 411, 412) and the first end 330-a of the third transmission line 330 are used as one film layer
  • the second coupling part 420 (including the second bifurcated lines 421, 422) and the second end 330-b of the third transmission line 330 are used as another film layer, with the second insulating layer 520 between the two film layers.
  • Embodiments of the present disclosure provide structural schematic diagrams of some other balun structures, as shown in FIG. 6 a and FIG. 6 b , which are modified for the implementation manners in the above embodiments. The following only describes the differences between this embodiment and the above-mentioned embodiments, and the similarities will not be repeated here.
  • the balun structure may further include: a third insulating layer 530 covering the first transmission line 310 , the second transmission line 320 and the third transmission line 330 , and a second grounding conductive layer 220 located on the side of the third insulating layer 530 away from the dielectric substrate 100 .
  • one end of the first branch line (such as 411) close to the second coupling part 420 is electrically connected to the second ground conductive layer 320 through the third through hole GK3
  • one end of the second branch line (such as 421) close to the first coupling part 410 is electrically connected to the second ground conductive layer 220 through the fourth through hole GK4.
  • the balun structure can be formed in the form of a strip line. Since the first grounding conductive layer 210 and the second grounding conductive layer 220 are provided, there are metal layers on both sides of the first transmission line 310, the second transmission line 320, the third transmission line 330 and the coupling structure 400, so that crosstalk and electromagnetic interference radiation can be reduced, and signal transmission is more stable. Since the second grounding conductive layer 220 is grounded, the end of the first branching line (such as 411) close to the second coupling part 420 is electrically connected to the second grounding conductive layer 220 through the third through hole GK3.
  • the end of the first branching line (such as 411) close to the second coupling part 420 through the first through hole GK1 can be grounded through the third through hole GK3. Performance, to further ensure the grounding performance of the first branch line (such as 411).
  • the grounding performance of the end of the first branch line (such as 411) close to the second coupling part 420 through the third through hole GK3 is poor, the end of the first branch line (such as 411) close to the second coupling part 420 can be grounded through the first through hole GK1 to further ensure the grounding performance of the first branch line (such as 411).
  • the end of the second branched line (such as 421) close to the first coupling part 410 electrically connected to the second grounding conductive layer 220 through the fourth through hole GK4, when the grounding performance of the second branched line (such as 421) close to the first coupling part 410 through the second through hole GK2 is not good, the end of the second branched line (such as 421) close to the first coupling part 410 can also be grounded through the fourth through hole GK4 to further ensure the second branched line (such as 421) grounding performance.
  • the end of the second branch line (such as 421) close to the first coupling part 410 through the second through hole GK2 can be grounded through the fourth through hole GK4 to further ensure the grounding performance of the second branch line (such as 421).
  • the third insulating layer 530 may cover the first transmission line 310 , the second transmission line 320 , the first end 330 - a and the second end 330 - b of the third transmission line 330 and the coupling structure 400 .
  • a layer of metal material (for example, Cu, Ag, Au, Al, etc.) may be plated on the sidewalls of the third through hole and the fourth through hole, or a metal material (for example, Cu, Ag, Au, Al, etc.) may be first filled in the third through hole and the fourth through hole, and then the first branch line is connected with the metal material filled in the third through hole, and the second branch line is connected with the metal material filled in the fourth through hole.
  • the fourth through hole GK4 also penetrates the first insulating layer 510 .
  • the third through hole GK3 also penetrates the second insulating layer 520 .
  • Embodiments of the present disclosure provide structural schematic diagrams of some other balun structures, as shown in FIG. 9 , which are modified for the implementation manners in the foregoing embodiments. The following only describes the differences between this embodiment and the above-mentioned embodiments, and the similarities will not be repeated here.
  • a coupling structure 400 may be connected in series between the first end and the second end of the second transmission line 320 .
  • the implementation manner of the coupling structure provided between the first end and the second end of the second transmission line 320 may be basically the same as the implementation manner of the coupling structure provided between the first end and the second end of the third transmission line 330, which will not be repeated here.
  • a coupling structure 400 may also be connected in series between the first end and the second end of the first transmission line 310 .
  • the implementation manner of the coupling structure provided between the first end and the second end of the first transmission line 310 may be basically the same as the implementation manner of the coupling structure provided between the first end and the second end of the third transmission line 330, which will not be repeated here.
  • Embodiments of the present disclosure provide some structural schematic diagrams of balun structures, as shown in FIG. 10 a and FIG. 10 b , which are modified for the implementation manners in the above embodiments. The following only describes the differences between this embodiment and the above-mentioned embodiments, and the similarities will not be repeated here.
  • the end of the first coupling part 410 facing the second coupling part 420 has two first bifurcation lines (such as 411, 412), and the end of the second coupling part 420 facing the first coupling part 410 has a second bifurcation line (such as 421).
  • one end of the first branch line (such as 411, 412) close to the second coupling part 420 is electrically connected to the first ground conductive layer 210 through the first through hole GK1
  • one end of the second branch line (such as 421) near the first coupling part 410 is electrically connected to the first ground conductive layer 210 through the second through hole GK2
  • the first branch line of the first coupling part 410 and the second branch of the second coupling part 420 Cross-line coupling connection.
  • the signal transmitted to the first branch line can be transmitted to the second branch line (such as 421) through coupling, and then transmitted to the connected device through the second end 330-b of the third transmission line 330.
  • the signal transmitted to the second branch line can be transmitted to the first branch line (such as 411, 412) through coupling, so as to be transmitted to the device connected to the first transmission line 310 through the first end 330-a of the third transmission line 330.
  • the end of the first coupling part 410 facing the second coupling part 420 has a first bifurcation line (such as 411), and the end of the second coupling part 420 facing the first coupling part 410 has a second bifurcation line (such as 421).
  • one end of the first branch line (such as 411) close to the second coupling part 420 is electrically connected to the first ground conductive layer 210 through the first through hole GK1
  • one end of the second branch line (such as 421) close to the first coupling part 410 is electrically connected to the first ground conductive layer 210 through the second through hole GK2
  • the first branch line of the first coupling part 410 is coupled to the second branch line of the second coupling part 420 .
  • the signal transmitted to the first branch line can be transmitted to the second branch line (such as 421 ) through coupling, so as to be transmitted to the connected device through the second end 330 - b of the third transmission line 330 .
  • the signal transmitted to the second branch line (such as 421) can be transmitted to the first branch line (such as 411) through coupling, so as to be transmitted to the device connected to the first transmission line 310 through the first end 330-a of the third transmission line 330.
  • the number of first bifurcated lines in the first coupling part may be 3, 4, etc., which may be determined according to requirements of practical applications, and is not limited here.
  • the number of second bifurcated lines in the second coupling portion may be 3, 4, etc., which may be determined according to requirements of practical applications, and is not limited here.
  • An embodiment of the present disclosure also provides an electronic device, including any one of the above-mentioned balun structures.
  • the problem-solving principle of the electronic device is similar to the above-mentioned balun structure, so the implementation of the electronic device can refer to the implementation of the above-mentioned balun structure, and the repetition will not be repeated here.
  • the electronic device may be, for example, a communication base station product, a mobile product, and a product of other structures provided with components such as a chip and a balanced antenna, which are not limited herein.

Landscapes

  • Coils Or Transformers For Communication (AREA)

Abstract

本公开实施例提供的巴伦结构及电子设备,包括:介质基板;第一接地导电层,第一传输线,第二传输线,第三传输线,其中,第三传输线的第一端和第二端之间串联连接有至少一个耦合结构;耦合结构包括第一耦合部和第二耦合部;其中,同一耦合结构中,第一耦合部面向第二耦合部的一端具有至少一条第一分叉线,第二耦合部面向第一耦合部的一端具有至少一条第二分叉线;并且,同一耦合结构中,第一分叉线靠近第二耦合部的一端通过第一通孔与第一接地导电层电连接,第二分叉线靠近第一耦合部的一端通过第二通孔与第一接地导电层电连接;以及,同一耦合结构中,第一耦合部的第一分叉线和第二耦合部的第二分叉线耦合连接。

Description

巴伦结构及电子设备 技术领域
本公开涉及微波通信技术领域,特别涉及巴伦结构及电子设备。
背景技术
巴伦(balun)是一种三端口器件,作为平衡端口和不平衡端口之间的转换器件,可以实现差分信号与单端信号之间的互相转换,广泛地应用于微波通信领域的平衡布局中。随着电子设备向小型化、轻量化和高性能方向不断发展,对巴伦的尺寸及性能提出更高的要求。比如,磁通耦合变压器巴伦是最常见的一类巴伦,其基本上由磁芯及缠绕于磁芯上的两条不同导线构成,体积较大,而这种巴伦最合适的工作只在1GHz以下。再比如,经典变压器巴伦,其内具有两个缠绕于变压器芯上的独立线圈绕组。再比如,自耦变压器巴伦具有一个线圈或具有两个线圈或两个以上线圈,这些线圈的电接线也缠绕于环芯上。此外还有延迟线巴伦、自谐振巴伦等,但是这些巴伦的形式体积都比较大。
发明内容
本公开实施例提供的巴伦结构,包括:
介质基板;
第一接地导电层,位于所述介质基板的一侧;
第一传输线,位于所述介质基板背离所述第一接地导电层的一侧;其中,所述第一传输线的第一端与非平衡信号端口电连接;
第二传输线,位于所述介质基板背离所述第一接地导电层的一侧;其中,所述第二传输线的第一端与所述第一传输线的第二端电连接,所述第二传输线的第二端与第一平衡信号端口电连接;
第三传输线,位于所述介质基板背离所述第一接地导电层的一侧;其中, 所述第三传输线的第一端与所述第一传输线的第二端电连接,所述第三传输线的第二端与第二平衡信号端口电连接;
其中,所述第三传输线的第一端和第二端之间串联连接有至少一个耦合结构;所述耦合结构包括第一耦合部和第二耦合部;其中,同一所述耦合结构中,所述第一耦合部面向所述第二耦合部的一端具有至少一条第一分叉线,所述第二耦合部面向所述第一耦合部的一端的具有至少一条第二分叉线;
并且,同一所述耦合结构中,所述第一分叉线靠近所述第二耦合部的一端通过第一通孔与所述第一接地导电层电连接,所述第二分叉线靠近所述第一耦合部的一端通过第二通孔与所述第一接地导电层电连接;以及,同一所述耦合结构中,所述第一耦合部的第一分叉线和所述第二耦合部的第二分叉线耦合连接。
在一些示例中,同一所述耦合结构中,所述第一分叉线和所述第二分叉线在所述介质基板的正投影交替间隔排列设置。
在一些示例中,各所述耦合结构中的第一耦合部和第二耦合部同层设置。
在一些示例中,所述第一传输线、所述第二传输线、所述第三传输线以及各所述耦合结构位于同一膜层。
在一些示例中,至少一个所述耦合结构中的第一耦合部和第二耦合部异层设置。
在一些示例中,所述第一传输线、所述第二传输线以及所述第一耦合部位于同一膜层;
所述第二耦合部位于所述第一耦合部与所述介质基板之间;
所述巴伦结构还包括:
第一绝缘层,位于所述第二耦合部和所述第一耦合部之间;
所述第一通孔还贯穿所述第一绝缘层。
在一些示例中,所述第一传输线、所述第二传输线以及所述第一耦合部位于同一膜层;
所述第二耦合部位于所述第一耦合部背离所述介质基板一侧;
所述巴伦结构还包括:
第二绝缘层,位于所述第二耦合部和所述第一耦合部之间;
所述第二通孔还贯穿所述第二绝缘层。
在一些示例中,所述巴伦结构还包括:
第三绝缘层,覆盖于所述第一传输线、所述第二传输线以及所述第三传输线上;
第二接地导电层,位于所述第三绝缘层背离所述介质基板一侧;
其中,所述第一分叉线靠近所述第二耦合部的一端通过第三通孔与所述第二接地导电层电连接,所述第二分叉线靠近所述第一耦合部的一端通过第四通孔与所述第二接地导电层电连接;其中,所述第三通孔与所述第四通孔分别贯穿所述第三绝缘层。
在一些示例中,在所述巴伦结构还包括第一绝缘层时,所述第四通孔还贯穿所述第一绝缘层;
在所述巴伦结构还包括第二绝缘层时,所述第三通孔还贯穿所述第二绝缘层。
在一些示例中,所述第一传输线和所述第二传输线中的至少一个的第一端和第二端之间串联连接有至少一个所述耦合结构。
在一些示例中,同一所述耦合结构中,所述第一分叉线和所述第二分叉线在所述介质基板的正投影的形状包括直线、弯折线、波浪线以及曲线。
在一些示例中,所述巴伦结构还包括:
至少一个电阻,电连接于所述第二传输线的第二端和所述第三传输线的第二端之间。
本公开实施例中还提供了电子设备,包括如上述巴伦结构。
附图说明
图1a为本公开实施例提供的巴伦结构的一些俯视结构示意图;
图1b为图1a所示的巴伦结构在沿AA’方向上的一些剖视结构示意图;
图1c为图1a所示的巴伦结构在沿BB’方向上的一些剖视结构示意图;
图1d为本公开实施例提供的巴伦结构的另一些俯视结构示意图;
图2a为本公开实施例中的巴伦结构在应用于12GHz频段的射频信号传输时的回波损耗示意图;
图2b为本公开实施例中的巴伦结构在应用于12GHz频段的射频信号传输时的插入损耗示意图;
图2c为本公开实施例中的巴伦结构在应用于12GHz频段的射频信号传输时的信号的相位示意图;
图3为本公开实施例提供的巴伦结构的又一些俯视结构示意图;
图4a为图1a所示的巴伦结构在沿AA’方向上的另一些剖视结构示意图;
图4b为图1a所示的巴伦结构在沿BB’方向上的另一些剖视结构示意图;
图5a为图1a所示的巴伦结构在沿AA’方向上的又一些剖视结构示意图;
图5b为图1a所示的巴伦结构在沿BB’方向上的又一些剖视结构示意图;
图6a为图1a所示的巴伦结构在沿AA’方向上的又一些剖视结构示意图;
图6b为图1a所示的巴伦结构在沿BB’方向上的又一些剖视结构示意图;
图7为图1a所示的巴伦结构在沿AA’方向上的又一些剖视结构示意图;
图8为图1a所示的巴伦结构在沿BB’方向上的又一些剖视结构示意图;
图9为本公开实施例提供的巴伦结构的又一些俯视结构示意图;
图10a为本公开实施例提供的巴伦结构的又一些俯视结构示意图;
图10b为本公开实施例提供的巴伦结构的又一些俯视结构示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例的附图,对本发明实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。并且在不冲突的情况下,本发明中的实施例及实施例中的特征可以相互组合。基于所描述的本发明的实施例,本领域普通技术人员在无需创造性劳动的前提下所 获得的所有其他实施例,都属于本发明保护的范围。
除非另外定义,本发明使用的技术术语或者科学术语应当为本发明所属领域内具有一般技能的人士所理解的通常意义。本发明中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。
需要注意的是,附图中各图形的尺寸和形状不反映真实比例,目的只是示意说明本发明内容。并且自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。
在微波射频领域,差分电路和巴伦广泛应用于通信基站产品、移动产品以及芯片设计中,一般使用差分信号消除共模噪声,并通过巴伦实现单端信号和差分信号之间的相互转化,差分信号是由一对相位相反的功分信号构成。
如图1a至图1c所示,本公开实施例提供的巴伦结构,可以包括:介质基板100、位于介质基板100的一侧的第一接地导电层210,位于介质基板100背离第一接地导电层210的一侧的第一传输线310、第二传输线320以及第三传输线330。示例性地,介质基板100可以通过介质层形成。该介质层可以采用绝缘材料形成。
在本公开实施例中,如图1a至图1c所示,第一传输线310的第一端可以与非平衡信号端口01电连接。第二传输线320的第一端与第一传输线310的第二端电连接,第二传输线320的第二端与第一平衡信号端口021电连接。以及,第三传输线330的第一端330-a与第一传输线310的第二端电连接,第三传输线330的第二端330-b与第二平衡信号端口022电连接。其中,第三传输线330的第一端330-a和第二端330-b之间串联连接有至少一个耦合结构400。其中,耦合结构400可以包括第一耦合部410和第二耦合部420。
示例性地,如图1a所示,同一耦合结构400中,第一耦合部410面向第 二耦合部420的一端具有至少两条第一分叉线(如411、412),第二耦合部420面向第一耦合部410的一端的具有至少两条第二分叉线(如421、422)。以及,同一耦合结构400中,第一分叉线(如411、412)靠近第二耦合部420的一端通过第一通孔GK1与第一接地导电层210电连接,第二分叉线(如421、422)靠近第一耦合部410的一端通过第二通孔GK2与第一接地导电层210电连接;以及,同一耦合结构400中,第一耦合部410的第一分叉线和第二耦合部420的第二分叉线耦合连接。例如,第一分叉线411和第二分叉线421之间具有间隙并通过耦合连接,第二分叉线421和第一分叉线411、412之间具有间隙并通过耦合连接,第一分叉线412和第二分叉线421、422之间具有间隙并通过耦合连接。这样可以使传输到第一分叉线(如411、412)上的信号,可以通过耦合的作用传输到第二分叉线(如421、422)上,从而通过第三传输线330的第二端330-b传输到连接的器件中。或者,使传输到第二分叉线(如421、422)上的信号,可以通过耦合的作用传输到第一分叉线(如411、412)上,从而通过第三传输线330的第一端330-a传输到第一传输线310连接的器件中。
在本公开实施例中,可以在第一通孔和第二通孔的侧壁上镀一层金属材料(例如,Cu,Ag、Au、Al等),也可以在第一通孔和第二通孔中先填充上金属材料(例如,Cu,Ag、Au、Al等),之后再将第一分叉线与该第一通孔中填充的金属材料连接,以及将第二分叉线与该第二通孔中填充的金属材料连接。或者,也可以是制备第一分叉线和第二分叉线的同时,将制备第一分叉线和第二分叉线的材料填充到第一通孔和第二通孔中。
示例性地,在本公开实施例提供的巴伦结构中,非平衡信号端口01可以与同轴线、微带线等非平衡传输线相连接,第一平衡信号端口021和第二平衡信号端口022可以与推挽放大器、平衡混频器、平衡天线等器件或者平衡传输线相连接。也可以使巴伦结构应用于液晶相控阵天线系统的液晶移相器。这样可以在非平衡信号端口01连接的器件通过非平衡信号端口01输入非平衡信号时,通过上述巴伦结构转换为差分信号,并从第一平衡信号端口021 和第二平衡信号端口022输出到连接的器件中。或者,在第一平衡信号端口021和第二平衡信号端口022连接的器件通过第一平衡信号端口021和第二平衡信号端口022输入差分信号时,通过上述巴伦结构转换为非平衡信号并从非平衡信号端口01输出到连接的器件中。例如,该巴伦结构例如用于同轴连接向平衡天线的转接。这样可以产生180°的相位偏移且提供平衡输入。
本公开实施例提供的巴伦结构,在同一耦合结构400中,通过设置第一耦合部410面向第二耦合部420的一端具有至少一条第一分叉线,第二耦合部420面向第一耦合部410的一端的具有至少一条第二分叉线,并将同一耦合结构400中,第一耦合部410的第一分叉线和第二耦合部420的第二分叉线耦合连接,以使第一分叉线和第二分叉线之间产生耦合效应,该耦合效应产生了相位延迟,从而可以使得第一平衡信号端口021传输的信号和第二平衡信号端口022传输的信号之间的相位相差180°。并且,可以通过适当设计第一传输线310、第二传输线320、第三传输线330、第一分叉线以及第二分叉线的尺寸(例如,第二传输线320、第三传输线330的长度大约可以为四分之一介质波长,其宽度可以为满足阻抗匹配要求的适当尺寸),可以使第一平衡信号端口021的输出功率和第二平衡信号端口022的输出功率相同。以及,第一接地导电层210进行接地设置,通过将同一耦合结构400中,第一分叉线靠近第二耦合部420的一端通过第一通孔GK1与第一接地导电层210电连接,第二分叉线靠近第一耦合部410的一端通过第二通孔GK2与第一接地导电层210电连接,可以提高电磁屏蔽性,抑制噪声干扰。并且,本公开实施例提供的巴伦结构的设计比较简单,便于制造和集成。
在本公开实施例中,如图1a至图1c所示,在同一耦合结构400中,可以使第一分叉线和第二分叉线在介质基板100的正投影交替间隔排列设置。例如,第一分叉线411在介质基板100的正投影、第二分叉线421在介质基板100的正投影、第一分叉线412在介质基板100的正投影、第二分叉线422在介质基板100的正投影交替间隔排列设置。这样可以形成耦合结构400形成交指线型结构,从而可以通过同一耦合结构400中互相交错的第一分叉线和 第二分叉线之间的耦合效应,可以产生相位延迟,从而可以使得第一平衡信号端口021传输的信号和第二平衡信号端口022传输的信号之间的相位相差180°。
在本公开实施例中,如图1a所示,第一传输线310的材料可以为金属材料,例如,Cu,Ag、Au、Al等。第一传输线310可以设置为线型的走线形式。例如,如图1a所示,第一传输线310在介质基板100的正投影的形状可以设置为直线的形状。当然,第一传输线310在介质基板100的正投影的形状也可以设置为弯折线、波浪线以及曲线等方式,其可以根据实际应用的需求进行确定,在此不作限定。
在本公开实施例中,如图1a所示,第二传输线320的材料可以为金属材料,例如,Cu,Ag、Au、Al等。第二传输线320也可以设置为线型的走线形式。例如,如图1a所示,第二传输线320在介质基板100的正投影的形状可以设置为直线的形状。当然,第二传输线320在介质基板100的正投影的形状也可以设置为弯折线、波浪线以及曲线等方式,其可以根据实际应用的需求进行确定,在此不作限定。
在本公开实施例中,如图1a所示,第一分叉线(如411、412)和第二分叉线(如421、422)的材料可以为金属材料,例如,Cu,Ag、Au、Al等。同一耦合结构400中,第一分叉线(如411、412)和第二分叉线(如421、422)在介质基板100的正投影的形状可以设置为直线的形状。或者,如图3所示,同一耦合结构400中,第一分叉线(如411、412)和第二分叉线(如421、422)在介质基板100的正投影的形状也可以设置为弯折线,以进一步缩小尺寸。当然,同一耦合结构400中,第一分叉线和第二分叉线在介质基板100的正投影的形状也可以设置为波浪线以及曲线等结构,在此不作限定。
在本公开实施例中,如图1a与图1c所示,各耦合结构400中的第一耦合部410和第二耦合部420可以同层设置。这样可以通过一次构图工艺即可形成各耦合结构400中的第一耦合部410和第二耦合部420的图形,能够简化制备工艺,节省生产成本,提高生产效率。
在本公开实施例中,如图1a至图1c所示,可以使第一传输线310、第二传输线320、第三传输线330以及各耦合结构400位于同一膜层,以使巴伦结构采用微带线的形式进行制备。这样可以通过一次构图工艺即可形成第一传输线310、第二传输线320、第三传输线330以及各耦合结构400的图形,能够简化制备工艺,节省生产成本,提高生产效率。
在本公开实施例中,如图1d所示,巴伦结构还可以包括:至少一个电阻RS。各电阻RS电连接于第二传输线320的第二端和第三传输线330的第二端330-b之间。这样可以提高巴伦结构的输出端口的匹配以及输出端口之间的隔离。示例性地,巴伦结构可以设置一个电阻。或者,巴伦结构也可以设置两个电阻。或者,巴伦结构可以设置三个或更多个电阻。当然,在本公开实施例中,如图1a所示,巴伦结构也可以不设置电阻RS。在实际应用中,电阻的数量可以根据实际应用中的需求进行确定,在此不作限定。
在将本公开实施例中的巴伦结构应用于12GHz频段的射频信号传输时,非平衡信号端口01的回波损耗如图2a(横坐标代表频率,纵坐标代表回波损耗)所示,非平衡信号端口01到第一平衡信号端口021和第二平衡信号端口022的插入损耗如图2b(横坐标代表频率,纵坐标代表插入损耗)所示,第一平衡信号端口021和第二平衡信号端口022的信号的相位如图2c(横坐标代表频率,纵坐标代表相位)所示。通过图2a可知,非平衡信号端口01的回波损耗在11GHz-12GHz范围内小于-20dB。通过图2b可知,非平衡信号端口01到第一平衡信号端口021和第二平衡信号端口022的插入损耗在12GHz分别为-3.02dB和-3.32dB。通过图2c可知,第一平衡信号端口021和第二平衡信号端口022的信号相位相差180.9°。
本公开实施例提供了另一些巴伦结构的结构示意图,如图4a与图4b所示,其针对上述实施例中的实施方式进行了变形。下面仅说明本实施例与上述实施例的区别之处,其相同之处在此不作赘述。
在本公开实施例中,可以使至少一个耦合结构400中的第一耦合部410和第二耦合部420异层设置。示例性地,可以在第三传输线330中设置多个 耦合结构400,可以使其中一个耦合结构400中的第一耦合部410和第二耦合部420异层设置,其余耦合结构400中的第一耦合部410和第二耦合部420同层设置。或者,可以使其中两个耦合结构400中的第一耦合部410和第二耦合部420异层设置,其余耦合结构400中的第一耦合部410和第二耦合部420同层设置。或者,可以使其中三个耦合结构400中的第一耦合部410和第二耦合部420异层设置,其余耦合结构400中的第一耦合部410和第二耦合部420同层设置。当然,如图4a与图4b所示,可以在第三传输线330中设置一个耦合结构400,可以使该耦合结构400中的第一耦合部410(包括第一分叉线411、412)和第二耦合部420(包括第二分叉线421、422)异层设置。示例性地,可以使第一传输线310、第二传输线320以及第一耦合部410位于同一膜层。并且,第二耦合部420(包括第二分叉线421、422)位于第一耦合部410(包括第一分叉线411、412)与介质基板100之间。以及,巴伦结构还包括:位于第二耦合部420和第一耦合部410之间的第一绝缘层510,第一通孔GK1还贯穿第一绝缘层510。示例性地,第一绝缘层510可以采用介质层形成。需要说明的是,第一耦合部410(包括第一分叉线411、412)与第三传输线330的第一端330-a是同层设置的一体结构。以及,第二耦合部420(包括第二分叉线421、422)与第三传输线330的第二端330-b是同层设置的一体结构。也就是说,第一耦合部410(包括第一分叉线411、412)与第三传输线330的第一端330-a作为一个膜层,第二耦合部420(包括第二分叉线421、422)与第三传输线330的第二端330-b作为另一个膜层,这两个膜层之间具有第一绝缘层510。
本公开实施例提供了又一些巴伦结构的结构示意图,如图5a与图5b所示,其针对上述实施例中的实施方式进行了变形。下面仅说明本实施例与上述实施例的区别之处,其相同之处在此不作赘述。
在本公开实施例中,如图5a与图5b所示,可以在第三传输线330中设置一个耦合结构400,可以使该耦合结构400中的第一耦合部410和第二耦合部420异层设置。示例性地,可以使第一传输线310、第二传输线320以及第 一耦合部410位于同一膜层,第二耦合部420位于第一耦合部410背离介质基板一侧。并且,巴伦结构还包括:位于第二耦合部420和第一耦合部410之间的第二绝缘层520,第二通孔GK2还贯穿第二绝缘层520。示例性地,第二绝缘层520可以采用介质层形成。需要说明的是,第一耦合部410(包括第一分叉线411、412)与第三传输线330的第一端330-a是同层设置的一体结构。以及,第二耦合部420(包括第二分叉线421、422)与第三传输线330的第二端330-b是同层设置的一体结构。也就是说,第一耦合部410(包括第一分叉线411、412)与第三传输线330的第一端330-a作为一个膜层,第二耦合部420(包括第二分叉线421、422)与第三传输线330的第二端330-b作为另一个膜层,这两个膜层之间具有第二绝缘层520。
本公开实施例提供了又一些巴伦结构的结构示意图,如图6a与图6b所示,其针对上述实施例中的实施方式进行了变形。下面仅说明本实施例与上述实施例的区别之处,其相同之处在此不作赘述。
在本公开实施例中,如图6a与图6b所示,巴伦结构还可以包括:覆盖于第一传输线310、第二传输线320以及第三传输线330上的第三绝缘层530,位于第三绝缘层530背离介质基板100一侧的第二接地导电层220。并且,第一分叉线(如411)靠近第二耦合部420的一端通过第三通孔GK3与第二接地导电层320电连接,第二分叉线(如421)靠近第一耦合部410的一端通过第四通孔GK4与第二接地导电层220电连接。其中,第三通孔GK3与第四通孔GK4分别贯穿第三绝缘层530。这样可以使巴伦结构采用带状线的形式形成,由于设置有第一接地导电层210和第二接地导电层220,可以使第一传输线310、第二传输线320、第三传输线330以及耦合结构400的两侧都有金属层,从而可以使串扰和电磁干扰辐射小,信号传输更稳定。由于第二接地导电层220进行接地设置,通过使第一分叉线(如411)靠近第二耦合部420的一端通过第三通孔GK3与第二接地导电层220电连接,这样在第一分叉线(如411)靠近第二耦合部420的一端通过第一通孔GK1实现的接地性能不佳时,还可以使第一分叉线(如411)靠近第二耦合部420的一端通过第三通孔GK3 实现接地性能,进一步保证第一分叉线(如411)的接地性能。或者,在第一分叉线(如411)靠近第二耦合部420的一端通过第三通孔GK3实现的接地性能不佳时,还可以使第一分叉线(如411)靠近第二耦合部420的一端通过第一通孔GK1实现接地性能,进一步保证第一分叉线(如411)的接地性能。并且,通过使第二分叉线(如421)靠近第一耦合部410的一端通过第四通孔GK4与第二接地导电层220电连接,这样在第二分叉线(如421)靠近第一耦合部410的一端通过第二通孔GK2实现的接地性能不佳时,还可以使第二分叉线(如421)靠近第一耦合部410的一端通过第四通孔GK4实现接地性能,进一步保证第二分叉线(如421)的接地性能。或者,在第二分叉线(如421)靠近第一耦合部410的一端通过第二通孔GK2实现的接地性能不佳时,还可以使第二分叉线(如421)靠近第一耦合部410的一端通过第四通孔GK4实现接地性能,进一步保证第二分叉线(如421)的接地性能。
需要说明的是,第三绝缘层530可以覆盖在第一传输线310、第二传输线320、第三传输线330的第一端330-a和第二端330-b以及耦合结构400上。
在本公开实施例中,可以在第三通孔和第四通孔的侧壁上镀一层金属材料(例如,Cu,Ag、Au、Al等),也可以在第三通孔和第四通孔中先填充上金属材料(例如,Cu,Ag、Au、Al等),之后再将第一分叉线与该第三通孔中填充的金属材料连接,以及将第二分叉线与该第四通孔中填充的金属材料连接。
在本公开实施例中,如图7所示,在巴伦结构还包括第一绝缘层510时,第四通孔GK4还贯穿第一绝缘层510。
在本公开实施例中,如图8所示,在巴伦结构还包括第二绝缘层520时,第三通孔GK3还贯穿第二绝缘层520。
本公开实施例提供了又一些巴伦结构的结构示意图,如图9所示,其针对上述实施例中的实施方式进行了变形。下面仅说明本实施例与上述实施例的区别之处,其相同之处在此不作赘述。
在本公开实施例中,如图9所示,可以使第二传输线320的第一端和第 二端之间串联连接有耦合结构400。示例性地,该耦合结构可以为一个、两个、三个或更多个,其可以根据实际应用的需求进行确定,在此不作限定。需要说明的是,第二传输线320的第一端和第二端之间设置的耦合结构的实施方式可以与第三传输线330的第一端和第二端之间设置的耦合结构的实施方式基本相同,在此不作赘述。
在本公开实施例中,如图9所示,可以使第一传输线310的第一端和第二端之间也串联连接有耦合结构400。示例性地,该耦合结构可以为一个、两个、三个或更多个,其可以根据实际应用的需求进行确定,在此不作限定。需要说明的是,第一传输线310的第一端和第二端之间设置的耦合结构的实施方式可以与第三传输线330的第一端和第二端之间设置的耦合结构的实施方式基本相同,在此不作赘述。
本公开实施例提供了又一些巴伦结构的结构示意图,如图10a与图10b所示,其针对上述实施例中的实施方式进行了变形。下面仅说明本实施例与上述实施例的区别之处,其相同之处在此不作赘述。
示例性地,如图10a所示,同一耦合结构400中,第一耦合部410面向第二耦合部420的一端具有两条第一分叉线(如411、412),第二耦合部420面向第一耦合部410的一端的具有一条第二分叉线(如421)。以及,同一耦合结构400中,第一分叉线(如411、412)靠近第二耦合部420的一端通过第一通孔GK1与第一接地导电层210电连接,第二分叉线(如421)靠近第一耦合部410的一端通过第二通孔GK2与第一接地导电层210电连接;以及,同一耦合结构400中,第一耦合部410的第一分叉线和第二耦合部420的第二分叉线耦合连接。例如,第二分叉线421和第一分叉线411、412之间具有间隙并通过耦合连接。这样可以使传输到第一分叉线(如411、412)上的信号,可以通过耦合的作用传输到第二分叉线(如421)上,从而通过第三传输线330的第二端330-b传输到连接的器件中。或者,使传输到第二分叉线(如421)上的信号,可以通过耦合的作用传输到第一分叉线(如411、412)上,从而通过第三传输线330的第一端330-a传输到第一传输线310连接的器件中。
示例性地,如图10b所示,同一耦合结构400中,第一耦合部410面向第二耦合部420的一端具有一条第一分叉线(如411),第二耦合部420面向第一耦合部410的一端的具有一条第二分叉线(如421)。以及,同一耦合结构400中,第一分叉线(如411)靠近第二耦合部420的一端通过第一通孔GK1与第一接地导电层210电连接,第二分叉线(如421)靠近第一耦合部410的一端通过第二通孔GK2与第一接地导电层210电连接;以及,同一耦合结构400中,第一耦合部410的第一分叉线和第二耦合部420的第二分叉线耦合连接。例如,第二分叉线421和第一分叉线411之间具有间隙并通过耦合连接。这样可以使传输到第一分叉线(如411)上的信号,可以通过耦合的作用传输到第二分叉线(如421)上,从而通过第三传输线330的第二端330-b传输到连接的器件中。或者,使传输到第二分叉线(如421)上的信号,可以通过耦合的作用传输到第一分叉线(如411)上,从而通过第三传输线330的第一端330-a传输到第一传输线310连接的器件中。
需要说明的是,在实际应用中,第一耦合部中的第一分叉线的数量可以为3条、4条等,可以根据实际应用的需求进行确定,在此不作限定。
需要说明的是,在实际应用中,第二耦合部中的第二分叉线的数量可以为3条、4条等,可以根据实际应用的需求进行确定,在此不作限定。
本公开实施例还提供了电子设备,包括上述任一种巴伦结构。该电子设备解决问题的原理与前述巴伦结构相似,因此该电子设备的实施可以参见前述巴伦结构的实施,重复之处在此不再赘述。
在本公开实施例中,电子设备例如可以为通信基站产品、移动产品以及设置有芯片、平衡天线等器件的其他结构的产品,在此不作限定。
尽管已描述了本公开的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本公开范围的所有变更和修改。
显然,本领域的技术人员可以对本公开实施例进行各种改动和变型而不脱离本公开实施例的精神和范围。这样,倘若本公开实施例的这些修改和变 型属于本公开权利要求及其等同技术的范围之内,则本公开也意图包含这些改动和变型在内。

Claims (13)

  1. 一种巴伦结构,包括:
    介质基板;
    第一接地导电层,位于所述介质基板的一侧;
    第一传输线,位于所述介质基板背离所述第一接地导电层的一侧;其中,所述第一传输线的第一端与非平衡信号端口电连接;
    第二传输线,位于所述介质基板背离所述第一接地导电层的一侧;其中,所述第二传输线的第一端与所述第一传输线的第二端电连接,所述第二传输线的第二端与第一平衡信号端口电连接;
    第三传输线,位于所述介质基板背离所述第一接地导电层的一侧;其中,所述第三传输线的第一端与所述第一传输线的第二端电连接,所述第三传输线的第二端与第二平衡信号端口电连接;
    其中,所述第三传输线的第一端和第二端之间串联连接有至少一个耦合结构;所述耦合结构包括第一耦合部和第二耦合部;其中,同一所述耦合结构中,所述第一耦合部面向所述第二耦合部的一端具有至少一条第一分叉线,所述第二耦合部面向所述第一耦合部的一端的具有至少一条第二分叉线;
    并且,同一所述耦合结构中,所述第一分叉线靠近所述第二耦合部的一端通过第一通孔与所述第一接地导电层电连接,所述第二分叉线靠近所述第一耦合部的一端通过第二通孔与所述第一接地导电层电连接;以及,同一所述耦合结构中,所述第一耦合部的第一分叉线和所述第二耦合部的第二分叉线耦合连接。
  2. 如权利要求1所述的巴伦结构,其中,同一所述耦合结构中,所述第一分叉线和所述第二分叉线在所述介质基板的正投影交替间隔排列设置。
  3. 如权利要求2所述的巴伦结构,其中,各所述耦合结构中的第一耦合部和第二耦合部同层设置。
  4. 如权利要求3所述的巴伦结构,其中,所述第一传输线、所述第二传 输线、所述第三传输线以及各所述耦合结构位于同一膜层。
  5. 如权利要求2所述的巴伦结构,其中,至少一个所述耦合结构中的第一耦合部和第二耦合部异层设置。
  6. 如权利要求5所述的巴伦结构,其中,所述第一传输线、所述第二传输线以及所述第一耦合部位于同一膜层;
    所述第二耦合部位于所述第一耦合部与所述介质基板之间;
    所述巴伦结构还包括:
    第一绝缘层,位于所述第二耦合部和所述第一耦合部之间;
    所述第一通孔还贯穿所述第一绝缘层。
  7. 如权利要求5所述的巴伦结构,其中,所述第一传输线、所述第二传输线以及所述第一耦合部位于同一膜层;
    所述第二耦合部位于所述第一耦合部背离所述介质基板一侧;
    所述巴伦结构还包括:
    第二绝缘层,位于所述第二耦合部和所述第一耦合部之间;
    所述第二通孔还贯穿所述第二绝缘层。
  8. 如权利要求1-7任一项所述的巴伦结构,其中,所述巴伦结构还包括:
    第三绝缘层,覆盖于所述第一传输线、所述第二传输线以及所述第三传输线上;
    第二接地导电层,位于所述第三绝缘层背离所述介质基板一侧;
    其中,所述第一分叉线靠近所述第二耦合部的一端通过第三通孔与所述第二接地导电层电连接,所述第二分叉线靠近所述第一耦合部的一端通过第四通孔与所述第二接地导电层电连接;其中,所述第三通孔与所述第四通孔分别贯穿所述第三绝缘层。
  9. 如权利要求8所述的巴伦结构,其中,在所述巴伦结构还包括第一绝缘层时,所述第四通孔还贯穿所述第一绝缘层;
    在所述巴伦结构还包括第二绝缘层时,所述第三通孔还贯穿所述第二绝缘层。
  10. 如权利要求1-9任一项所述的巴伦结构,其中,所述第一传输线和所述第二传输线中的至少一个的第一端和第二端之间串联连接有至少一个所述耦合结构。
  11. 如权利要求1-8任一项所述的巴伦结构,其中,同一所述耦合结构中,所述第一分叉线和所述第二分叉线在所述介质基板的正投影的形状包括直线、弯折线、波浪线以及曲线。
  12. 如权利要求1-11任一项所述的巴伦结构,其中,所述巴伦结构还包括:
    至少一个电阻,电连接于所述第二传输线的第二端和所述第三传输线的第二端之间。
  13. 一种电子设备,其中,包括如权利要求1-12任一项所述的巴伦结构。
PCT/CN2022/073100 2022-01-21 2022-01-21 巴伦结构及电子设备 WO2023137685A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US18/017,049 US20240250400A1 (en) 2022-01-21 2022-01-21 Balun structure and electronic device
CN202280000048.5A CN116802929A (zh) 2022-01-21 2022-01-21 巴伦结构及电子设备
PCT/CN2022/073100 WO2023137685A1 (zh) 2022-01-21 2022-01-21 巴伦结构及电子设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/073100 WO2023137685A1 (zh) 2022-01-21 2022-01-21 巴伦结构及电子设备

Publications (1)

Publication Number Publication Date
WO2023137685A1 true WO2023137685A1 (zh) 2023-07-27

Family

ID=87347696

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/073100 WO2023137685A1 (zh) 2022-01-21 2022-01-21 巴伦结构及电子设备

Country Status (3)

Country Link
US (1) US20240250400A1 (zh)
CN (1) CN116802929A (zh)
WO (1) WO2023137685A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117497990A (zh) * 2024-01-02 2024-02-02 上海安其威微电子科技有限公司 慢波延时线和芯片

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030001710A1 (en) * 2001-06-27 2003-01-02 Ching-Wen Tang Multi-layer radio frequency chip balun
US20040135647A1 (en) * 2002-04-30 2004-07-15 Philip Cheung Multi-layer balun transformer
US20080252393A1 (en) * 2007-04-16 2008-10-16 Tdk Corporation Balun circuit suitable for integration with chip antenna
US20140240056A1 (en) * 2013-02-26 2014-08-28 Raytheon Company Symmetric Baluns and Isolation Techniques
CN113764851A (zh) * 2021-10-11 2021-12-07 杭州泛利科技有限公司 基于ipd的小型化低插损宽带巴伦

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030001710A1 (en) * 2001-06-27 2003-01-02 Ching-Wen Tang Multi-layer radio frequency chip balun
US20040135647A1 (en) * 2002-04-30 2004-07-15 Philip Cheung Multi-layer balun transformer
US20080252393A1 (en) * 2007-04-16 2008-10-16 Tdk Corporation Balun circuit suitable for integration with chip antenna
US20140240056A1 (en) * 2013-02-26 2014-08-28 Raytheon Company Symmetric Baluns and Isolation Techniques
CN113764851A (zh) * 2021-10-11 2021-12-07 杭州泛利科技有限公司 基于ipd的小型化低插损宽带巴伦

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117497990A (zh) * 2024-01-02 2024-02-02 上海安其威微电子科技有限公司 慢波延时线和芯片
CN117497990B (zh) * 2024-01-02 2024-03-08 上海安其威微电子科技有限公司 慢波延时线和芯片

Also Published As

Publication number Publication date
CN116802929A (zh) 2023-09-22
US20240250400A1 (en) 2024-07-25

Similar Documents

Publication Publication Date Title
US6388551B2 (en) Method of making a laminated balun transform
EP0885469B1 (en) A high frequency balun provided in a multilayer substrate
US5742210A (en) Narrow-band overcoupled directional coupler in multilayer package
US8471646B2 (en) Wideband, differential signal balun for rejecting common mode electromagnetic fields
US9300022B2 (en) Vaisman baluns and microwave devices employing the same
Guo et al. Mode composite waveguide
JP3691710B2 (ja) 無線およびrf用途のための広帯域平衡不平衡変成器
US9564868B2 (en) Balun
Wang et al. Substrate integrated suspended slot line and its application to differential coupler
WO2024007717A1 (zh) 强耦合带状线和含有强耦合带状线的微波元件
CN108123196B (zh) 基于竖直双面平行带线的宽带滤波集成立体巴伦
Lin et al. General compensation method for a Marchand balun with an arbitrary connecting segment between the balance ports
WO2023137685A1 (zh) 巴伦结构及电子设备
Wei et al. A balanced filtering directional coupler based on slotline using asymmetric parallel loaded branches
TWI633702B (zh) 可調輸出功率之混合式枝幹耦合器
US4749969A (en) 180° hybrid tee
CN218677535U (zh) 一种无源元件的强耦合带状线结构
Sheta et al. A new class of miniature quadrature couplers for MIC and MMIC applications
US11405012B2 (en) Balun and method for manufacturing the same
JP4586282B2 (ja) 積層型バラントランス
CN111106420B (zh) 一种微带共面波导混合结构的巴伦电路及设计方法
Liu et al. Novel Coupled Line 180$^{\circ} $ Hybrid With Non-Interspersed Input and Output Ports
Moghaddam et al. 180 hybrid using a novel planar balun on suspended substrate for beam forming network applications
Dai et al. A LTCC miniaturized broadband modified Marchand balun
Priyalatha et al. Low Insertion Loss Compact Quadrature Coupler for Conformal Space Applications

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202280000048.5

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 18017049

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22921128

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE