WO2023136695A1 - 환자의 가상 폐 모델을 생성하는 장치 및 방법 - Google Patents

환자의 가상 폐 모델을 생성하는 장치 및 방법 Download PDF

Info

Publication number
WO2023136695A1
WO2023136695A1 PCT/KR2023/000766 KR2023000766W WO2023136695A1 WO 2023136695 A1 WO2023136695 A1 WO 2023136695A1 KR 2023000766 W KR2023000766 W KR 2023000766W WO 2023136695 A1 WO2023136695 A1 WO 2023136695A1
Authority
WO
WIPO (PCT)
Prior art keywords
lung
image data
data during
patient
model
Prior art date
Application number
PCT/KR2023/000766
Other languages
English (en)
French (fr)
Inventor
정정운
김성재
차동필
Original Assignee
(주)휴톰
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)휴톰 filed Critical (주)휴톰
Publication of WO2023136695A1 publication Critical patent/WO2023136695A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/10Computer-aided planning, simulation or modelling of surgical operations
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T19/00Manipulating 3D models or images for computer graphics
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T19/00Manipulating 3D models or images for computer graphics
    • G06T19/003Navigation within 3D models or images
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00681Aspects not otherwise provided for
    • A61B2017/00707Dummies, phantoms; Devices simulating patient or parts of patient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00743Type of operation; Specification of treatment sites
    • A61B2017/00809Lung operations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/10Computer-aided planning, simulation or modelling of surgical operations
    • A61B2034/101Computer-aided simulation of surgical operations
    • A61B2034/105Modelling of the patient, e.g. for ligaments or bones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/10Computer-aided planning, simulation or modelling of surgical operations
    • A61B2034/107Visualisation of planned trajectories or target regions

Definitions

  • the present invention relates to an apparatus and method for generating a virtual lung model of a patient.
  • a surgical simulation device that allows medical staff to perform training in a situation similar to the real one.
  • a surgical simulation device is manufactured in a similar way to a patient's situation and then trained.
  • the surgical simulation can play a role as a rehearsal only when training is performed under the same conditions as during actual surgery, but it is difficult with current technology.
  • lung cancer will be the number one cancer mortality in 2032.
  • lung surgery is also increasing, and the need for a surgical simulation device for lung surgery is also increasing.
  • lung surgery may include pneumonectomy for removing the entire lung, lobectomy for removing a certain size of the lung, and segmentectomy for lung segmentation.
  • pneumonectomy a surgical method that removes the entire lung on one side, 50% of the lung parenchyma is lost, resulting in decreased lung function, and restrictions exist in daily activities such as exercise after surgery.
  • lobectomy a surgery to remove one lobe of the lung, the lung function after the operation is reduced to 80% or less, and daily life such as light exercise is possible after the operation.
  • segmentectomy is an operation in which only a part of the lung parenchyma with a tumor is removed, and it is possible to preserve the lung parenchyma as much as possible so that daily life is no different from an operating table after surgery.
  • An object of the present invention to solve the above problems is to generate a virtual lung model of the patient based on lung image data during inspiration, lung image data during expiration, and lung image data during surgery.
  • the method in the method, acquiring lung image data during surgery of the patient, lungs and chest wall during surgery of the patient Identifying information including at least one of the distance between the liver and the length of a specific part of the lung, predicting the size of the lung based on the identified information, and using a pre-equipped learning model based on the prediction result.
  • the method may include dividing the lung into a plurality of regions and generating a virtual lung model reflecting the result of the division.
  • the dividing step may include acquiring lung image data during inhalation and lung image data during expiration of the patient, and dividing the lung image data during inspiration and lung image data during expiration into the plurality of regions through the learning model. can do.
  • the lung image data during inspiration is divided into a first middle classification region according to a first criterion
  • the first middle classification region is divided into a first small classification region according to a second criterion.
  • divides the lung image data during expiration into a second middle classification region according to the first criterion calculates a size change ratio between the first middle classification region and the second middle classification region, Dividing the second middle classification region into second subclass regions based on the size change ratio, and generating the virtual lung model divided into subclasses according to the predicted result and the size change ratio. Can be generated.
  • the first criterion is a criterion for dividing the lung image data during inspiration or the lung image data during expiration into the first middle classification region or the second middle classification region according to lobes
  • the second criterion is , may be a criterion for dividing the first medium-class region into the first small-class region according to blood vessels.
  • the learning model builds a learning data set based on lung image data during inspiration, lung image data during expiration, and lung image data during surgery for each of a plurality of existing patients, and machine learning is performed based on the built learning data set.
  • a communication unit for solving the above problems and a processor for generating a virtual lung model of the patient are included, wherein the processor acquires lung image data during surgery of the patient and lungs during surgery of the patient. Identifying information including at least one of the distance between the chest wall and the length of a specific part of the lung, predicting the size of the lung based on the identified information, and using a pre-equipped learning model based on the prediction result.
  • the lung may be divided into a plurality of regions, and a virtual lung model reflecting the division result may be generated.
  • the processor obtains lung image data during inhalation and lung image data during expiration of the patient during the division, and converts the lung image data during inhalation and lung image data during expiration through the learning model to the plurality of lung images.
  • the processor divides the lung image data during inspiration into a first middle classification region based on the learning model, and divides the first middle classification region into a first subclass region according to a second criterion. and, based on the learning model, divides the lung image data during expiration into a second middle classification region according to the first criterion, calculates a size change ratio between the first middle classification region and the second middle classification region, and The second middle classification region may be divided into second subclass regions based on the size change ratio, and the virtual lung model divided into subclasses according to the predicted result and the size change ratio may be generated.
  • the first criterion is a criterion for dividing the lung image data during inspiration or the lung image data during expiration into the first middle classification region or the second middle classification region according to lobes
  • the second criterion is , may be a criterion for dividing the first medium-class region into the first small-class region according to blood vessels.
  • the learning model builds a learning data set based on lung image data during inspiration, lung image data during expiration, and lung image data during surgery for each of a plurality of existing patients, and machine learning is performed based on the built learning data set.
  • the present invention by generating a virtual lung model of the patient based on the patient's lung image data during inspiration, lung image data during expiration, and lung image data during surgery, the patient's lung size and segmentation area during surgery.
  • FIG. 1 is a diagram for explaining an apparatus for generating a virtual lung model of a patient according to the present invention.
  • FIG. 2 is a diagram showing lung image data during inspiration and lung image data during expiration of a patient according to the present invention.
  • FIG. 3 is a diagram for explaining the division of lung image data into a first middle category region and a first small category region during inspiration of a patient according to the present invention.
  • FIG. 4 is a diagram for explaining the division of lung image data into a second middle category region and a second small category region during expiration of a patient according to the present invention.
  • FIG. 5 is a flowchart illustrating a process of generating a virtual lung model of a patient according to the present invention.
  • FIG. 1 is a diagram for explaining an apparatus 10 for generating a virtual lung model of a patient according to the present invention.
  • FIG. 2 is a diagram showing lung image data during inspiration and lung image data during expiration of a patient according to the present invention.
  • FIG. 3 is a diagram for explaining the division of lung image data into a first middle category region and a first small category region during inspiration of a patient according to the present invention.
  • FIG. 4 is a diagram for explaining the division of lung image data into a second middle category region and a second small category region during expiration of a patient according to the present invention.
  • the apparatus 10 acquires lung image data during surgery of a patient, and based on the lung image data, determines the distance between the lungs and the chest wall and specific parts of the lung (Fissure line, Lobe, etc.) during surgery of the patient. At least one piece of information that can be confirmed from a radiographic image and a surgical image, such as a length, may be grasped.
  • the device 10 predicts the size of the lung based on the at least one piece of the identified information, and divides the lung into a plurality of regions through a pre-equipped learning model based on the prediction result to obtain the segmented lung size.
  • a virtual lung model reflecting the results can be created.
  • the device 10 creates a virtual lung model of the same type as the actual lung surgery when the medical staff wants to secure a countermeasure against various variables that may occur during the actual lung surgery by performing the surgery simulation in advance before the actual lung surgery.
  • a virtual surgical simulation environment can be provided.
  • the device 10 creates a virtual lung model of the patient based on the patient's lung image data during inspiration, lung image data during expiration, and lung image data during surgery, thereby determining the size and segmentation of the patient's lungs during surgery.
  • the virtual lung model which has a high degree of similarity to the actual lung divided up to , to the virtual surgical simulation environment.
  • the device 10 may include all of various devices capable of performing calculation processing and providing results to the user.
  • the device 10 may be in the form of a computer. More specifically, the computer may include all of various devices capable of providing results to users by performing calculation processing.
  • a computer includes not only a desktop PC and a notebook (Note Book) but also a smart phone, a tablet PC, a cellular phone, a PCS phone (Personal Communication Service phone), synchronous/asynchronous A mobile terminal of IMT-2000 (International Mobile Telecommunication-2000), a Palm Personal Computer (Palm PC), and a Personal Digital Assistant (PDA) may also be applicable.
  • a Head Mounted Display (HMD) device includes a computing function, the HMD device may become a computer.
  • the computer may correspond to a server that receives a request from a client and performs information processing.
  • the device 10 may include a communication unit 110 , a memory 120 and a processor 130 .
  • the device 10 may include fewer or more components than those shown in FIG. 1 .
  • the communication unit 110 includes one or more devices that enable wireless communication between the device 10 and an external device (not shown), between the device 10 and an external server (not shown), or between the device 10 and a communication network (not shown). modules may be included.
  • the external device may be a medical imaging equipment for imaging the lungs.
  • the external device may acquire lung image data by photographing the lungs.
  • Such lung image data may include all medical images capable of implementing a 3D model of the patient's lungs.
  • the lung image data may include at least one of a computed tomography (CT) image, a magnetic resonance imaging (MRI) image, and a positron emission tomography (PET) image.
  • CT computed tomography
  • MRI magnetic resonance imaging
  • PET positron emission tomography
  • the external server (not shown) may be a server that stores state information for each patient for a plurality of patients.
  • a communication network may transmit and receive various information between the device 10, an external device (not shown), and an external server (not shown).
  • Various types of communication networks may be used as the communication network, for example, wireless communication methods such as WLAN (Wireless LAN), Wi-Fi, Wibro, Wimax, and HSDPA (High Speed Downlink Packet Access)
  • wireless communication methods such as WLAN (Wireless LAN), Wi-Fi, Wibro, Wimax, and HSDPA (High Speed Downlink Packet Access)
  • a wired communication method such as Ethernet, xDSL (ADSL, VDSL), HFC (Hybrid Fiber Coax), FTTC (Fiber to The Curb), FTTH (Fiber To The Home) may be used.
  • the communication network is not limited to the communication methods presented above, and may include all other types of communication methods that are widely known or will be developed in the future in addition to the above communication methods.
  • the communication unit 110 may include one or more modules that connect the device 10 to one or more networks.
  • the memory 120 may store data supporting various functions of the device 10 .
  • the memory 120 may store a plurality of application programs (application programs or applications) running in the device 10 , data for operation of the device 10 , and commands. At least some of these applications may exist for basic functions of the device 10 . Meanwhile, the application program may be stored in the memory 120, installed on the device 10, and driven by the processor 130 to perform an operation (or function) of the device 10.
  • the memory 120 may store a learning model for generating a patient's virtual lung model.
  • the processor 130 may control general operations of the device 10 in addition to operations related to the application program.
  • the processor 130 may provide or process appropriate information or functions to a user by processing signals, data, information, etc. input or output through the components described above or by running an application program stored in the memory 120.
  • the processor 130 may control at least some of the components discussed in conjunction with FIG. 1 in order to drive an application program stored in the memory 120 . Furthermore, the processor 130 may combine and operate at least two or more of the elements included in the device 10 to drive the application program.
  • the processor 130 may acquire lung image data during a patient's surgery.
  • lung image data during surgery may be acquired through a camera (Endoscope) inserted during lung surgery of the patient.
  • Camera Endoscope
  • the processor 130 may grasp at least one piece of information including the distance between the lungs and the chest wall and/or the length of a specific part of the lung during the operation of the patient.
  • At least one piece of information including the distance between the lungs and the chest wall and/or the length of a specific part of the lungs may be obtained using a thread or a surgical tool inserted during lung surgery of the patient.
  • At least one piece of information including the distance between the lung and the chest wall and/or the length of a specific part of the lung may be determined by the processor 130 based on the lung image data during the operation.
  • the processor 130 can grasp at least one information including the shortest distance between the boundary area of a specific part of the lung and the chest wall and/or the length of the specific part of the lung based on the lung image data during the operation. .
  • the processor 130 may predict the size of the lung based on the identified at least one piece of information.
  • the size of the lung can be predicted to be larger as the length of the specific part of the lung increases as the shortest distance from the specific part of the lung to the chest wall decreases.
  • the processor 130 may recognize a lesion in the lung image data during the operation.
  • the processor 130 may recognize at least one of the size, location, and shape of the lesion in the lung image data during the operation.
  • the processor 130 may divide the lung into a plurality of regions through a pre-trained learning model based on the prediction result.
  • the learning model is to construct a learning data set based on lung image data during inspiration, lung image data during expiration, and lung image data during surgery for each of a plurality of existing patients, and machine learning is performed based on the built learning data set.
  • the processor 130 may obtain lung image data during inspiration and lung image data during expiration of the patient.
  • lung image data during inspiration may be captured through the external device (not shown) in a state in which the patient breathes in.
  • the lung image data during expiration may be captured through the external device (not shown) while the patient exhales.
  • the lung size of the lung image data during inhalation may be larger than the lung size of the lung image data during expiration, which is captured in a state where the lungs are reduced as air is discharged, since the lung size is captured in a state in which the lungs are expanded as air enters the lungs.
  • the processor 130 may divide the lung image data during inspiration and the lung image data during expiration into the plurality of regions through the learning model.
  • the processor 130 may generate a virtual lung model in which the result of the division is reflected.
  • the processor 130 divides the lung image data during inspiration into a first middle classification region according to a first criterion based on the learning model, and divides the first middle classification region into a first middle classification region according to a second criterion. It can be divided into subcategory areas.
  • the first criterion may be a criterion for dividing the lung image data during inspiration or the lung image data during expiration into the first middle classification region or the second middle classification region according to lobes.
  • the second criterion may be a criterion for dividing the first middle-class region into the first small-class region according to blood vessels.
  • the processor 130 may divide the lung image data during inspiration into the first middle classification region according to lobes based on the learning model.
  • the processor 130 converts the lung image data during inspiration into the first lobe including the right upper lobe region, the right middle lobe region, and the right lower lobe region of the right lung, and the left upper lobe region and the left lower lobe region of the left lung according to the lobe as the first reference. It can be divided into middle class areas.
  • the processor 130 may divide the lung image data during inspiration into the first sub-category region according to the connection portion of blood vessels or bronchi based on the learning model.
  • the processor 130 may divide the lung image data during expiration into a second middle classification region according to the first criterion based on the learning model.
  • the processor 130 may divide the lung image data during expiration into the second middle classification region according to the lobe based on the learning model.
  • the processor 130 converts the lung image data during expiration into the second region including the right upper lobe region, the right middle lobe region, and the right lower lobe region of the right lung, and the left upper lobe region and the left lower lobe region of the left lung according to the lobe as the first criterion. It can be divided into middle class areas.
  • the processor 130 may calculate a size change ratio between the first middle classification area and the second middle classification area.
  • the processor 130 may divide the second middle classification area into a second small classification area based on the size change ratio.
  • the size of the lungs in the lung image data during expiration is smaller than the size of the lungs in the lung image data during inspiration, it is possible to divide up to the second middle classification area according to the lobe, which is the first criterion, but up to the small classification area according to the blood vessel or bronchial connection. Since classification is difficult, it may be divided into the second small classification area based on the size change ratio.
  • the processor 130 may divide the second small classification area based on the size change ratio for each second middle classification area.
  • the processor 130 divides the upper right lobe region into at least one subclass region based on the first size change ratio of the upper right lobe region among the second middle classification regions in the right lung, and the right middle lobe region among the second middle classification regions.
  • the right middle lobe region is divided into at least one sub-classified region based on the second size change ratio of the right lower lobe region, and the right lower lobe region is classified into at least one small category based on the third size change ratio of the right lower lobe region among the second middle classified regions. can be divided into regions.
  • the processor 130 divides the left upper lobe region into at least one subclass region based on the fourth size change ratio of the upper left lobe region among the second middle classification regions in the left lung, and divides the left lower lobe region among the second middle classification regions.
  • the left lower lobe region may be divided into at least one subclass region based on the fifth size change ratio of .
  • the first size change rate to the fifth size change rate may be the same or different.
  • the processor 130 may generate the virtual lung model divided into subclasses according to the lesion recognized from the lung image data during the surgery, the prediction result of predicting the size of the lung, and the size change ratio.
  • the processor 130 determines the size of the lung from the lesion recognized in the lung image data during surgery and the lung image data during surgery, at least including the distance between the lung and the chest wall and/or the length of a specific part of the lung.
  • the virtual lung model may be generated according to the prediction result predicted based on one information and the size change ratio calculated through the learning model for the lung image data during inspiration and the lung image data during expiration. .
  • the virtual lung model may be divided and displayed up to the subclass region, and the actual lesion of the patient may be displayed at the same location.
  • the device 10 secures lung image data during surgery, lung image data during inspiration, and lung image data during expiration of the patient, the virtual lungs substantially similar to the lungs during surgery of the patient through the learning model. There is an effect that can generate a model.
  • the apparatus 10 may provide the virtual surgical simulation environment having a high degree of similarity to the actual surgical environment by providing the virtual lung model substantially similar to the patient's lung during surgery to the virtual surgical simulation environment.
  • FIG. 5 is a flowchart illustrating a process of generating a virtual lung model of a patient according to the present invention.
  • the operation of the processor 130 may be equally performed in the device 10 .
  • FIG. 5 is limited to the case of using at least one of the distance between the lung and the chest wall and the length of a specific part of the lung as information for predicting the size of the lung. Information may be further used, and the number and type of information to be used are not limited.
  • the processor 130 may obtain lung image data during the operation of the patient (S501).
  • the processor 130 may acquire lung image data during surgery through a camera (Endoscope) inserted during lung surgery of the patient.
  • a camera Endoscope
  • the processor 130 may determine information including at least one of the distance between the lungs and the chest wall and the length of a specific part of the lung during the operation of the patient (S502).
  • the distance between the lung and the chest wall and/or the length of a specific part of the lung may be determined using a thread or a surgical tool inserted during lung surgery of the patient.
  • the processor 130 may determine the distance between the lung and the chest wall and/or the length of a specific part of the lung based on the lung image data during the operation.
  • the processor 130 may determine information including at least one of the shortest distance between the boundary area of the specific part of the lung and the chest wall and the length of the specific part of the lung based on the lung image data during the operation.
  • the processor 130 may predict the size of the lung based on the identified information (S503).
  • the size of the lung can be predicted to be larger as the length of the specific part of the lung increases as the shortest distance from the specific part of the lung to the chest wall decreases.
  • the processor 130 may recognize a lesion from the lung image data during the operation (S504).
  • the processor 130 may recognize at least one of the size, location, and shape of the lesion in the lung image data during the surgery.
  • the processor 130 may divide the lung into a plurality of regions through a pre-trained learning model based on the prediction result (S505).
  • the learning model is to construct a learning data set based on lung image data during inspiration, lung image data during expiration, and lung image data during surgery for each of a plurality of existing patients, and machine learning is performed based on the built learning data set.
  • the processor 130 obtains lung image data during inspiration and lung image data during expiration of the patient, and divides the lung image data during inspiration and lung image data during expiration into the plurality of regions through the learning model. can do.
  • lung image data during inhalation may be captured through the external device (not shown) in a state in which the patient breathes in.
  • the lung image data during expiration may be captured through the external device (not shown) while the patient exhales.
  • the processor 130 divides the lung image data during inspiration into a first middle classification region according to a first criterion based on the learning model, and divides the first middle classification region into a first middle classification region according to a second criterion. It can be divided into subcategory areas.
  • the first criterion is a criterion for dividing the lung image data during inspiration or the lung image data during expiration into the first middle classification region or the second middle classification region according to lobes
  • the second criterion is the It may be a criterion for dividing the first middle classification region into the first small classification region according to blood vessels.
  • the processor 130 may divide the lung image data during expiration into a second middle classification region according to the first criterion based on the learning model.
  • the processor 130 may calculate a size change ratio between the first middle classification area and the second middle classification area.
  • the processor 130 may divide the second middle classification area into second small classification areas based on the size change ratio.
  • the processor 130 may divide the second small classification area based on the size change ratio for each second middle classification area.
  • the processor 130 may generate a virtual lung model in which the recognized lesion and the divided result are reflected (S506).
  • the processor 130 may generate the virtual lung model divided into subclasses according to the lesion recognized from the lung image data during the operation, the prediction result of predicting the size of the lung, and the size change ratio. .
  • FIG. 5 describes that steps S501 to S506 are sequentially executed, but this is merely an example of the technical idea of this embodiment, and those skilled in the art to which this embodiment belongs will Since it will be possible to change and execute the order described in FIG. 5 without departing from the essential characteristics or to perform various modifications and variations by executing one or more steps of steps S501 to S506 in parallel, FIG. 5 is shown in a time-series order. It is not limited.
  • the method according to an embodiment of the present invention described above may be implemented as a program (or application) to be executed in combination with a computer, which is hardware, and stored in a medium.
  • the computer may be the device 10 described above.
  • the aforementioned program is C, C++, JAVA, machine language, etc. It may include a code coded in a computer language of. These codes may include functional codes related to functions defining necessary functions for executing the methods, and include control codes related to execution procedures necessary for the processor of the computer to execute the functions according to a predetermined procedure. can do. In addition, these codes may further include memory reference related codes for which location (address address) of the computer's internal or external memory should be referenced for additional information or media required for the computer's processor to execute the functions. there is. In addition, when the processor of the computer needs to communicate with any other remote computer or server in order to execute the functions, the code uses the computer's communication module to determine how to communicate with any other remote computer or server. It may further include communication-related codes for whether to communicate, what kind of information or media to transmit/receive during communication, and the like.
  • Steps of a method or algorithm described in connection with an embodiment of the present invention may be implemented directly in hardware, implemented in a software module executed by hardware, or implemented by a combination thereof.
  • a software module may include random access memory (RAM), read only memory (ROM), erasable programmable ROM (EPROM), electrically erasable programmable ROM (EEPROM), flash memory, hard disk, removable disk, CD-ROM, or It may reside in any form of computer readable recording medium well known in the art to which the present invention pertains.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Software Systems (AREA)
  • Public Health (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Veterinary Medicine (AREA)
  • Computer Hardware Design (AREA)
  • Computer Graphics (AREA)
  • Robotics (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

본 발명은 환자의 가상 폐 모델을 생성하는 장치에 의해 수행되는, 방법에 있어서, 상기 환자의 수술시 폐 영상데이터를 획득하는 단계, 상기 환자의 수술시 폐와 흉벽 간의 거리 및 폐의 특정 부위의 길이 중 적어도 하나를 포함하는 정보를 파악하는 단계, 상기 파악된 정보를 기반으로 상기 폐의 크기를 예측하는 단계, 상기 예측 결과를 기반으로 기 구비된 학습모델을 통해 상기 폐를 복수의 영역으로 분할하는 단계 및 상기 분할된 결과가 반영된 가상 폐 모델을 생성하는 단계를 포함할 수 있다.

Description

환자의 가상 폐 모델을 생성하는 장치 및 방법
본 발명은 환자의 가상 폐 모델을 생성하는 장치 및 방법에 관한 것이다.
최근 의료진들이 실제와 유사한 상황에서 훈련을 수행할 수 있도록 하는 수술 시뮬레이션 장치의 필요성이 높아지고 있다. 일반적으로 수술 시뮬레이션 장치는 환자의 상황과 유사하게 제작한 후 훈련을 수행하는 방식이다.
그러나, 이러한 시뮬레이션 장치들은 환자에게 발생하는 여러가지 상황을 제공하지 못하며 시뮬레이션 시에 현실감이 떨어지는 문제점이 존재한다. 또한, 외과적 수술의 경우, 의료진이 실제 수술과 동일한 조건에서 시뮬레이션을 할 수 없는 문제가 존재한다.
즉, 가상현실을 이용하여 수술 시뮬레이션을 수행하는 경우, 실제 수술시와 동일한 조건에서 훈련을 수행하여야 수술 시뮬레이션이 리허설로서의 역할을 수행할 수 있지만 현재의 기술로는 어려운 상황이다.
한편, 2015년 사망자 중 암으로 사망한 사람은 총 76,855명, 전체 사망자의 27.9%가 암으로 사망하였고, 그 중 폐암이 전체 암 사망자의 22.6%인 17,399명을 차지했다. 또한, 2032년에도 암 사망률 1위는 폐암일 것으로 예측되고 있다.
이에 따라, 폐 수술 또한 증가하고 있으며, 폐 수술에 대한 수술 시뮬레이션 장치의 필요성 또한 높아지고 있다.
여기서, 폐 수술은 전체 폐를 절제하는 전폐 절제술(Pneumonectomy), 폐의 일정 크기를 절제하는 폐엽 절제술(Lobectomy) 및 폐구역 절제술(Segmentectomy)을 포함할 수 있다. 전폐 절제술의 경우, 한쪽 폐 전부를 제거하는 수술법으로 폐실질의 50%가 소실되며 폐 기능 저하가 초래되고, 수술 후 운동등의 일상 활동에 제약이 존재하게 된다. 또한, 폐엽 절제술의 경우, 폐엽 하나를 제거하는 수술로, 수술 후 폐기능이 80% 이하로 감소하며, 수술 후 가벼운 운동 등 일상 생활을 가능하다. 또한, 폐구역 절제술(Segmentectomy)의 경우, 종양이 있는 폐 실질의 일부만 절제하는 수술로, 폐 실질을 최대한 보존 가능하여 수술 후 수술정과 다름없는 일상 생활이 가능한 수술이다.
하지만, 폐의 경우, 흡기시와 호기시의 크기가 다르며, 실제 환자의 수술시 폐의 크기 또한 다르다.
따라서, 폐 수술을 수술 시뮬레이션 장치를 통해 가상환경에서 수술을 진행하기 위해서는 실제 환자의 수술시 폐의 크기를 예측하여 이를 가상 모델로 구현할 필요가 있다.
상술한 바와 같은 문제점을 해결하기 위한 본 발명은 환자의 흡기시 폐 영상데이터, 호기시 폐 영상데이터 및 수술시 폐 영상데이터를 기반으로 상기 환자의 가상 폐 모델을 생성하는 것을 그 목적으로 한다.
본 발명이 해결하고자 하는 과제들은 이상에서 언급된 과제로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 통상의 기술자에게 명확하게 이해될 수 있을 것이다.
상술한 과제를 해결하기 위한 본 발명에 따른 환자의 가상 폐 모델을 생성하는 장치에 의해 수행되는, 방법에 있어서, 상기 환자의 수술시 폐 영상데이터를 획득하는 단계, 상기 환자의 수술시 폐와 흉벽 간의 거리 및 폐의 특정 부위의 길이 중 적어도 하나를 포함하는 정보를 파악하는 단계, 상기 파악된 정보를 기반으로 상기 폐의 크기를 예측하는 단계, 상기 예측 결과를 기반으로 기 구비된 학습모델을 통해 상기 폐를 복수의 영역으로 분할하는 단계 및 상기 분할된 결과가 반영된 가상 폐 모델을 생성하는 단계를 포함할 수 있다.
또한, 상기 분할 단계는, 상기 환자의 흡기 시 폐 영상데이터 및 호기 시 폐 영상데이터를 획득하고, 상기 학습모델을 통해, 상기 흡기 시 폐 영상데이터 및 호기 시 폐 영상데이터를 상기 복수의 영역으로 분할할 수 있다.
또한, 상기 분할 단계는, 상기 학습모델을 기반으로, 상기 흡기시 폐 영상데이터를 제1 기준에 따라 제1 중분류 영역으로 분할하고, 상기 제1 중분류 영역을 제2 기준에 따라 제1 소분류 영역으로 분할하고, 상기 학습모델을 기반으로, 상기 호기시 폐 영상데이터를 상기 제1 기준에 따라 제2 중분류 영역으로 분할하고, 상기 제1 중분류 영역 및 상기 제2 중분류 영역 간의 크기 변화 비율을 산출하고, 상기 크기 변화 비율을 기반으로 상기 제2 중분류 영역을 제2 소분류 영역으로 분할하고, 상기 생성 단계는, 상기 예측 결과 및 상기 크기 변화 비율에 따라 소분류까지 분할된 상기 가상 폐 모델을 생성할 수 있다.
또한, 상기 제1 기준은, 상기 흡기시 폐 영상데이터 또는 상기 호기시 폐 영상데이터를 엽(Lobe)에 따라 상기 제1 중분류 영역 또는 상기 제2 중분류 영역으로 분할하는 기준이고, 상기 제2 기준은, 상기 제1 중분류 영역을 혈관에 따라 상기 제1 소분류 영역으로 분할하는 기준일 수 있다.
또한, 상기 학습모델은, 복수의 기존 환자 별 흡기시 폐 영상데이터, 호기시 폐 영상데이터 및 수술시 폐 영상데이터에 기초한 학습데이터 세트를 구축하고, 상기 구축된 학습데이터 세트를 기반으로 기계 학습되는 것일 수 있다.
또한, 상술한 과제를 해결하기 위한 본 발명에 따른 통신부 및 환자의 가상 폐 모델을 생성하는 프로세서를 포함하고, 상기 프로세서는, 상기 환자의 수술시 폐 영상데이터를 획득하고, 상기 환자의 수술시 폐와 흉벽 간의 거리 및 폐의 특정 부위의 길이 중 적어도 하나를 포함하는 정보를 파악하고, 상기 파악된 정보를 기반으로 상기 폐의 크기를 예측하고, 상기 예측 결과를 기반으로 기 구비된 학습모델을 통해 상기 폐를 복수의 영역으로 분할하고, 상기 분할된 결과가 반영된 가상 폐 모델을 생성할 수 있다.
또한, 상기 프로세서는, 상기 분할할 때, 상기 환자의 흡기 시 폐 영상데이터 및 호기 시 폐 영상데이터를 획득하고, 상기 학습모델을 통해, 상기 흡기 시 폐 영상데이터 및 호기 시 폐 영상데이터를 상기 복수의 영역으로 분할할 수 있다.
또한, 상기 프로세서는, 상기 학습모델을 기반으로, 상기 흡기시 폐 영상데이터를 제1 기준에 따라 제1 중분류 영역으로 분할하고, 상기 제1 중분류 영역을 제2 기준에 따라 제1 소분류 영역으로 분할하고, 상기 학습모델을 기반으로, 상기 호기시 폐 영상데이터를 상기 제1 기준에 따라 제2 중분류 영역으로 분할하고, 상기 제1 중분류 영역 및 상기 제2 중분류 영역 간의 크기 변화 비율을 산출하고, 상기 크기 변화 비율을 기반으로 상기 제2 중분류 영역을 제2 소분류 영역으로 분할하고, 상기 예측 결과 및 상기 크기 변화 비율에 따라 소분류까지 분할된 상기 가상 폐 모델을 생성할 수 있다.
또한, 상기 제1 기준은, 상기 흡기시 폐 영상데이터 또는 상기 호기시 폐 영상데이터를 엽(Lobe)에 따라 상기 제1 중분류 영역 또는 상기 제2 중분류 영역으로 분할하는 기준이고, 상기 제2 기준은, 상기 제1 중분류 영역을 혈관에 따라 상기 제1 소분류 영역으로 분할하는 기준일 수 있다.
또한, 상기 학습모델은, 복수의 기존 환자 별 흡기시 폐 영상데이터, 호기시 폐 영상데이터 및 수술시 폐 영상데이터에 기초한 학습데이터 세트를 구축하고, 상기 구축된 학습데이터 세트를 기반으로 기계 학습되는 것일 수 있다.
이 외에도, 본 발명을 구현하기 위한 다른 방법, 다른 장치, 다른 시스템 및 상기 방법을 실행하기 위한 컴퓨터 프로그램을 기록하는 컴퓨터 판독 가능한 기록 매체가 더 제공될 수 있다.
상기와 같은 본 발명에 따르면, 환자의 흡기시 폐 영상데이터, 호기시 폐 영상데이터 및 수술시 폐 영상데이터를 기반으로 상기 환자의 가상 폐 모델을 생성함으로써 상기 환자의 수술시 폐의 크기와 분할 구역까지 분할된 실제 폐와 유사도가 높은 상기 가상 폐 모델을 수술 시뮬레이션 환경에 제공할 수 있는 효과가 있다.
본 발명의 효과들은 이상에서 언급된 효과로 제한되지 않으며, 언급되지 않은 또 다른 효과들은 아래의 기재로부터 통상의 기술자에게 명확하게 이해될 수 있을 것이다.
도 1은 본 발명에 따른 환자의 가상 폐 모델을 생성하기 위한 장치를 설명하기 위한 도면이다.
도 2는 본 발명에 따른 환자의 흡기시 폐 영상데이터와 호기시 폐 영상데이터를 나타낸 도면이다.
도 3은 본 발명에 따른 환자의 흡기시 폐 영상데이터를 제1 중분류 영역과 제1 소분류 영역으로 분할하는 것을 설명하기 위한 도면이다.
도 4는 본 발명에 따른 환자의 호기시 폐 영상데이터를 제2 중분류 영역과 제2 소분류 영역으로 분할하는 것을 설명하기 위한 도면이다.
도 5는 본 발명에 따른 환자의 가상 폐 모델을 생성하는 과정을 나타낸 흐름도이다.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나, 본 발명은 이하에서 개시되는 실시예들에 제한되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하고, 본 발명이 속하는 기술 분야의 통상의 기술자에게 본 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다.
본 명세서에서 사용된 용어는 실시예들을 설명하기 위한 것이며 본 발명을 제한하고자 하는 것은 아니다. 본 명세서에서, 단수형은 문구에서 특별히 언급하지 않는 한 복수형도 포함한다. 명세서에서 사용되는 "포함한다(comprises)" 및/또는 "포함하는(comprising)"은 언급된 구성요소 외에 하나 이상의 다른 구성요소의 존재 또는 추가를 배제하지 않는다. 명세서 전체에 걸쳐 동일한 도면 부호는 동일한 구성 요소를 지칭하며, "및/또는"은 언급된 구성요소들의 각각 및 하나 이상의 모든 조합을 포함한다. 비록 "제1", "제2" 등이 다양한 구성요소들을 서술하기 위해서 사용되나, 이들 구성요소들은 이들 용어에 의해 제한되지 않음은 물론이다. 이들 용어들은 단지 하나의 구성요소를 다른 구성요소와 구별하기 위하여 사용하는 것이다. 따라서, 이하에서 언급되는 제1 구성요소는 본 발명의 기술적 사상 내에서 제2 구성요소일 수도 있음은 물론이다.
다른 정의가 없다면, 본 명세서에서 사용되는 모든 용어(기술 및 과학적 용어를 포함)는 본 발명이 속하는 기술분야의 통상의 기술자에게 공통적으로 이해될 수 있는 의미로 사용될 수 있을 것이다. 또한, 일반적으로 사용되는 사전에 정의되어 있는 용어들은 명백하게 특별히 정의되어 있지 않는 한 이상적으로 또는 과도하게 해석되지 않는다.
이하, 첨부된 도면을 참조하여 본 발명의 실시예를 상세하게 설명한다.
도 1은 본 발명에 따른 환자의 가상 폐 모델을 생성하기 위한 장치(10)를 설명하기 위한 도면이다.
도 2는 본 발명에 따른 환자의 흡기시 폐 영상데이터와 호기시 폐 영상데이터를 나타낸 도면이다.
도 3은 본 발명에 따른 환자의 흡기시 폐 영상데이터를 제1 중분류 영역과 제1 소분류 영역으로 분할하는 것을 설명하기 위한 도면이다.
도 4는 본 발명에 따른 환자의 호기시 폐 영상데이터를 제2 중분류 영역과 제2 소분류 영역으로 분할하는 것을 설명하기 위한 도면이다.
이하, 도 1 내지 도 4를 참조하여, 본 발명에 따른 환자의 가상 폐 모델을 생성하기 위한 장치(10)에 대해서 설명하도록 한다.
본 발명에 따른 장치(10)는 환자의 수술시 폐 영상데이터를 획득하고, 상기 폐 영상데이터를 기반으로 상기 환자의 수술시 폐와 흉벽 간의 거리 및 폐의 특정 부위(Fissure line, Lobe 등)의 길이 등 방사선 영상과 수술 영상에서 확인 가능한 적어도 하나의 정보를 파악할 수 있다.
그리고, 장치(10)는 상기 파악된 적어도 하나의 정보를 기반으로 상기 폐의 크기를 예측하고, 상기 예측 결과를 기반으로 기 구비된 학습모델을 통해 상기 폐를 복수의 영역으로 분할하여 상기 분할된 결과가 반영된 가상 폐 모델을 생성할 수 있다.
이에 따라, 장치(10)는 의료진이 실제 폐 수술 전에 미리 수술을 시뮬레이션 수행하여 실제 폐 수술 시에 발생할 수 있는 다양한 변수에 대한 대비책을 확보하길 원할 때, 실제 폐 수술과 동일한 형태의 가상 폐 모델을 가상의 수술 시뮬레이션 환경에 제공할 수 있다.
구체적으로, 장치(10)는 환자의 흡기시 폐 영상데이터, 호기시 폐 영상데이터 및 수술시 폐 영상데이터를 기반으로 상기 환자의 가상 폐 모델을 생성함으로써 상기 환자의 수술시 폐의 크기와 분할 구역까지 분할된 실제 폐와 유사도가 높은 상기 가상 폐 모델을 상기 가상의 수술 시뮬레이션 환경에 제공할 수 있는 효과가 있다.
이러한, 장치(10)는 연산처리를 수행하여 사용자에게 결과를 제공할 수 있는 다양한 장치들이 모두 포함될 수 있다.
여기서, 장치(10)는 컴퓨터의 형태가 될 수 있다. 보다 상세하게는, 상기 컴퓨터는 연산처리를 수행하여 사용자에게 결과를 제공할 수 있는 다양한 장치들이 모두 포함될 수 있다.
예를 들어, 컴퓨터는 데스크 탑 PC, 노트북(Note Book) 뿐만 아니라 스마트폰(Smart phone), 태블릿 PC, 셀룰러폰(Cellular phone), 피씨에스폰(PCS phone; Personal Communication Service phone), 동기식/비동기식 IMT-2000(International Mobile Telecommunication-2000)의 이동 단말기, 팜 PC(Palm Personal Computer), 개인용 디지털 보조기(PDA; Personal Digital Assistant) 등도 해당될 수 있다. 또한, 헤드마운트 디스플레이(Head Mounted Display; HMD) 장치가 컴퓨팅 기능을 포함하는 경우, HMD장치가 컴퓨터가 될 수 있다.
또한, 컴퓨터는 클라이언트로부터 요청을 수신하여 정보처리를 수행하는 서버가 해당될 수 있다.
그리고, 장치(10)는 통신부(110), 메모리(120) 및 프로세서(130)를 포함할 수 있다. 여기서, 장치(10)는 도 1에 도시된 구성요소보다 더 적은 수의 구성요소나 더 많은 구성요소를 포함할 수 있다.
통신부(110)는 장치(10)와 외부 장치(미도시), 장치(10)와 외부 서버(미도시) 사이 또는 장치(10)와 통신망(미도시) 사이의 무선 통신을 가능하게 하는 하나 이상의 모듈을 포함할 수 있다.
여기서, 외부 장치(미도시)는 폐를 촬영하는 의료영상 촬영장비일 수 있다. 여기서, 외부 장치는 폐를 촬영하여 폐 영상데이터를 획득할 수 있다. 이러한 폐 영상데이터는 상기 환자의 폐를 3차원 모델로 구현 가능한 모든 의료영상을 포함할 수 있다.
또한, 폐 영상데이터는 컴퓨터 단층촬영(Computed Tomography; CT)영상, 자기공명영상(Magnetic Resonance Imaging; MRI), 양전자 단층촬영(Positron Emission Tomography; PET) 영상 중 적어도 하나를 포함할 수 있다.
또한, 외부 서버(미도시)는 복수의 환자에 대한 환자별 상태정보를 저장하는 서버일 수 있다.
또한, 통신망(미도시)은 장치(10), 외부 장치(미도시) 및 외부 서버(미도시) 간의 다양한 정보를 송수신할 수 있다. 통신망은 다양한 형태의 통신망이 이용될 수 있으며, 예컨대, WLAN(Wireless LAN), 와이파이(Wi-Fi), 와이브로(Wibro), 와이맥스(Wimax), HSDPA(High Speed Downlink Packet Access) 등의 무선 통신방식 또는 이더넷(Ethernet), xDSL(ADSL, VDSL), HFC(Hybrid Fiber Coax), FTTC(Fiber to The Curb), FTTH(Fiber To The Home) 등의 유선 통신방식이 이용될 수 있다.
한편, 통신망은 상기에 제시된 통신방식에 한정되는 것은 아니며, 상술한 통신방식 이외에도 기타 널리 공지되었거나 향후 개발될 모든 형태의 통신 방식을 포함할 수 있다.
통신부(110)는 장치(10)를 하나 이상의 네트워크에 연결하는 하나 이상의 모듈을 포함할 수 있다.
메모리(120)는 장치(10)의 다양한 기능을 지원하는 데이터를 저장할 수 있다. 메모리(120)는 장치(10)에서 구동되는 다수의 응용 프로그램(application program 또는 애플리케이션(application)), 장치(10)의 동작을 위한 데이터들, 명령어들을 저장할 수 있다. 이러한 응용 프로그램 중 적어도 일부는, 장치(10)의 기본적인 기능을 위하여 존재할 수 있다. 한편, 응용 프로그램은, 메모리(120)에 저장되고, 장치(10) 상에 설치되어, 프로세서(130)에 의하여 상기 장치(10)의 동작(또는 기능)을 수행하도록 구동될 수 있다.
여기서, 메모리(120)는 환자의 가상 폐 모델을 생성하기 위한 학습모델을 저장할 수 있다.
프로세서(130)는 상기 응용 프로그램과 관련된 동작 외에도, 통상적으로 장치(10)의 전반적인 동작을 제어할 수 있다. 프로세서(130)는 위에서 살펴본 구성요소들을 통해 입력 또는 출력되는 신호, 데이터, 정보 등을 처리하거나 메모리(120)에 저장된 응용 프로그램을 구동함으로써, 사용자에게 적절한 정보 또는 기능을 제공 또는 처리할 수 있다.
또한, 프로세서(130)는 메모리(120)에 저장된 응용 프로그램을 구동하기 위하여, 도 1과 함께 살펴본 구성요소들 중 적어도 일부를 제어할 수 있다. 나아가, 프로세서(130)는 상기 응용 프로그램의 구동을 위하여, 장치(10)에 포함된 구성요소들 중 적어도 둘 이상을 서로 조합하여 동작 시킬 수 있다.
프로세서(130)는 환자의 수술시 폐 영상데이터를 획득할 수 있다. 여기서, 수술시 폐 영상데이터는 상기 환자의 폐 수술시 삽입되는 카메라(Endoscope)를 통해 획득될 수 있다.
프로세서(130)는 상기 환자의 수술시 폐와 흉벽 간의 거리 및/또는 폐의 특정 부위의 길이 등을 포함하는 적어도 하나의 정보를 파악할 수 있다.
여기서, 폐와 흉벽 간의 거리 및/또는 폐의 특정 부위의 길이 등을 포함하는 적어도 하나의 정보는, 상기 환자의 폐 수술시 삽입되는 실 또는 수술도구를 이용하여 파악될 수 있다.
또는, 폐와 흉벽 간의 거리 및/또는 폐의 특정 부위의 길이 등을 포함하는 적어도 하나의 정보는, 프로세서(130)가 상기 수술시 폐 영상데이터를 기반으로 파악할 수 있다.
즉, 프로세서(130)는 상기 수술시 폐 영상데이터를 기반으로 폐의 특정 부분의 경계 영역과 상기 흉벽 간의 최단 거리 및/또는 폐의 특정 부위의 길이 등을 포함하는 적어도 하나의 정보를 파악할 수 있다.
프로세서(130)는 상기 파악된 적어도 하나의 정보를 기반으로 상기 폐의 크기를 예측할 수 있다.
여기서, 폐의 크기는 상기 폐의 특정 부분에 상기 흉벽까지의 최단 거리가 짧을수록 폐의 특정 부위의 길이가 길수록 크다고 예측될 수 있다.
또한, 프로세서(130)는 상기 수술시 폐 영상데이터에서 병변을 인식할 수 있다.
즉, 프로세서(130)는 상기 수술시 폐 영상데이터에서 상기 병변의 크기, 위치 및 형태 중 적어도 하나를 인식할 수 있다.
프로세서(130)는 상기 예측 결과를 기반으로 기 구비된 학습모델을 통해 상기 폐를 복수의 영역으로 분할할 수 있다.
여기서, 학습모델은, 복수의 기존 환자 별 흡기시 폐 영상데이터, 호기시 폐 영상데이터 및 수술시 폐 영상데이터에 기초한 학습데이터 세트를 구축하고, 상기 구축된 학습데이터 세트를 기반으로 기계 학습되는 것일 수 있다.
구체적으로, 프로세서(130)는 상기 환자의 흡기시 폐 영상데이터 및 호기시 폐 영상데이터를 획득할 수 있다.
도 2를 참조하면, 흡기시 폐 영상데이터는 환자가 숨을 들이마신 상태에서 상기 외부 장치(미도시)를 통해 촬영된 것일 수 있다. 또한, 호기시 폐 영상데이터는 환자가 숨을 내쉰 상태에서 상기 외부 장치(미도시)를 통해 촬영된 것일 수 있다.
여기서, 흡기시 폐 영상데이터의 폐 크기는 공기가 폐로 들어가면서 폐가 확장된 상태에서 촬영되었기 때문에 공기가 배출되면서 폐가 줄어든 상태에서 촬영된 호기시 폐 영상데이터의 폐 크기보다 클 수 있다.
여기서, 프로세서(130)는 상기 학습모델을 통해 상기 흡기시 폐 영상데이터 및 호기시 폐 영상데이터를 상기 복수의 영역으로 분할할 수 있다.
이에 따라, 프로세서(130)는 상기 분할된 결과가 반영된 가상 폐 모델을 생성할 수 있다.
보다 상세하게는, 프로세서(130)는 상기 학습모델을 기반으로, 상기 흡기시 폐 영상데이터를 제1 기준에 따라 제1 중분류 영역으로 분할하고, 상기 제1 중분류 영역을 제2 기준에 따라 제1 소분류 영역으로 분할할 수 있다.
여기서, 제1 기준은, 상기 흡기시 폐 영상데이터 또는 상기 호기시 폐 영상데이터를 엽(Lobe)에 따라 상기 제1 중분류 영역 또는 상기 제2 중분류 영역으로 분할하는 기준일 수 있다.
또한, 제2 기준은, 상기 제1 중분류 영역을 혈관에 따라 상기 제1 소분류 영역으로 분할하는 기준일 수 있다.
도 3을 보면, 프로세서(130)는 상기 학습모델을 기반으로 상기 흡기시 폐 영상데이터를 엽(Lobe)에 따라 상기 제1 중분류 영역으로 분할할 수 있다.
일 예로, 프로세서(130)는 상기 흡기시 폐 영상데이터를 상기 제1 기준인 엽에 따라 우폐는 우상엽 영역, 우중엽 영역 및 우하엽 영역, 좌폐는 좌상엽 영역 및 좌하엽 영역을 포함한 상기 제1 중분류 영역으로 분할할 수 있다.
그리고, 프로세서(130)는 상기 학습모델을 기반으로 상기 흡기시 폐 영상데이터를 혈관 또는 기관지의 연결부분에 따라 상기 제1 소분류 영역으로 분할할 수 있다.
그리고, 프로세서(130)는 상기 학습모델을 기반으로, 상기 호기시 폐 영상데이터를 상기 제1 기준에 따라 제2 중분류 영역으로 분할할 수 있다.
도 4를 보면, 프로세서(130)는 상기 학습모델을 기반으로 상기 호기시 폐 영상데이터를 엽에 따라 상기 제2 중분류 영역으로 분할할 수 있다.
일 예로, 프로세서(130)는 상기 호기시 폐 영상데이터를 상기 제1 기준인 엽에 따라 우폐는 우상엽 영역, 우중엽 영역 및 우하엽 영역, 좌폐는 좌상엽 영역 및 좌하엽 영역을 포함한 상기 제2 중분류 영역으로 분할할 수 있다.
여기서, 프로세서(130)는 상기 제1 중분류 영역 및 상기 제2 중분류 영역 간의 크기 변화 비율을 산출할 수 있다.
그리고, 프로세서(130)는 상기 크기 변화 비율을 기반으로 상기 제2 중분류 영역을 제2 소분류 영역으로 분할할 수 있다.
호기시 폐 영상데이터의 폐의 크기는 흡기시 폐 영상데이터의 폐의 크기보다 작으므로 상기 제1 기준인 엽에 따라 상기 제2 중분류 영역까지는 분할이 가능하지만 혈관이나 기관지 연결부분에 따라 소분류 영역까지 분류가 어렵기 때문에 상기 크기 변화 비율을 기반으로 상기 제2 소분류 영역으로 분할할 수 있다.
즉, 프로세서(130)는 상기 제2 중분류 영역 별 크기 변화 비율을 기반으로 제2 소분류 영역을 분할할 수 있다.
일 예로, 먼저, 프로세서(130)는 우폐에서 제2 중분류 영역 중 우상엽 영역의 제1 크기 변화 비율을 기반으로 상기 우상엽 영역을 적어도 하나의 소분류 영역으로 분할하고, 상기 제2 중분류 영역 중 우중엽 영역의 제2 크기 변화 비율을 기반으로 상기 우중엽 영역을 적어도 하나의 소분류 영역으로 분할하고, 상기 제2 중분류 영역 중 우하엽 영역의 제3 크기 변화 비율을 기반으로 상기 우하엽 영역을 적어도 하나의 소분류 영역으로 분할할 수 있다.
다음으로, 프로세서(130)는 좌폐에서 제2 중분류 영역 중 좌상엽 영역의 제4 크기 변화 비율을 기반으로 상기 좌상엽 영역을 적어도 하나의 소분류 영역으로 분할하고, 상기 제2 중분류 영역 중 좌하엽 영역의 제5 크기 변화 비율을 기반으로 상기 좌하엽 영역을 적어도 하나의 소분류 영역으로 분할할 수 있다.
여기서, 제1 크기 변화 비율 내지 제5 크기 변화 비율을 동일하거나 각각 다를 수 있다.
이후, 프로세서(130)는 상기 수술시 폐 영상데이터에서 인식한 상기 병변, 상기 폐의 크기를 예측한 상기 예측 결과 및 상기 크기 변화 비율에 따라 소분류까지 분할된 상기 가상 폐 모델을 생성할 수 있다.
구체적으로, 프로세서(130)는 상기 수술시 폐 영상데이터에서 인식한 상기 병변, 상기 수술시 폐 영상데이터에서 폐의 크기를 폐와 흉벽 간의 거리 및/또는 폐의 특정 부위의 길이 등을 포함하는 적어도 하나의 정보를 기반으로 예측한 상기 예측 결과, 및 상기 흡기시 폐 영상데이터와 상기 호기시 폐 영상데이터에 대해 상기 학습모델을 통해 산출한 상기 크기 변화 비율에 따라 상기 가상 폐 모델을 생성할 수 있다.
여기서, 가상 폐 모델은 상기 소분류 영역까지 분할되어 표시되고, 상기 환자의 실제 병변까지 동일한 위치에 표시될 수 있다.
이에 따라, 장치(10)는 상기 환자의 수술시 폐 영상데이터, 흡기시 폐 영상데이터 및 호기시 폐 영상데이터를 확보하는 경우, 상기 학습모델을 통해 상기 환자의 수술시 폐와 거의 유사한 상기 가상 폐 모델을 생성할 수 있는 효과가 있다.
따라서, 장치(10)는 상기 환자의 수술시 폐와 거의 유사한 상기 가상 폐 모델을 상기 가상의 수술 시뮬레이션 환경에 제공함으로써, 실제 수술 환경과 유사도가 높은 상기 가상의 수술 시뮬레이션 환경을 제공할 수 있다.
도 5는 본 발명에 따른 환자의 가상 폐 모델을 생성하는 과정을 나타낸 흐름도이다. 여기서, 프로세서(130)의 동작은 장치(10)에서 동일하게 수행 가능할 수 있다. 다만, 도 5는 폐의 크기를 예측하기 위한 정보로서 폐와 흉벽 간의 거리 및 폐의 특정 부위의 길이 중 적어도 하나를 이용하는 경우로 한정한 일 실시예로서, 폐 영상데이터를 통해 파악 가능한 그 외 다른 정보들을 더 이용하도록 할 수도 있으며, 그 이용하는 정보의 개수 및 종류는 한정하지 않는다.
프로세서(130)는 상기 환자의 수술시 폐 영상데이터를 획득할 수 있다(S501).
여기서, 프로세서(130)는 수술시 폐 영상데이터는 상기 환자의 폐 수술시 삽입되는 카메라(Endoscope)를 통해 획득될 수 있다.
프로세서(130)는 상기 환자의 수술 시 폐와 흉벽 간의 거리 및 폐의 특정 부위의 길이 중 적어도 하나를 포함하는 정보를 파악할 수 있다(S502).
여기서, 폐와 흉벽 간의 거리 및/또는 폐의 특정 부위의 길이는, 상기 환자의 폐 수술시 삽입되는 실 또는 수술도구를 이용하여 파악될 수 있다.
또는, 폐와 흉벽 간의 거리 및/또는 폐의 특정 부위의 길이는, 프로세서(130)가 상기 수술시 폐 영상데이터를 기반으로 파악할 수 있다.
즉, 프로세서(130)는 상기 수술시 폐 영상데이터를 기반으로 폐의 특정 부분의 경계 영역과 상기 흉벽 간의 최단 거리 및 폐의 특정 부위의 길이 중 적어도 하나를 포함하는 정보를 파악할 수 있다.
프로세서(130)는 상기 파악된 정보를 기반으로 상기 폐의 크기를 예측할 수 있다(S503).
여기서, 폐의 크기는 상기 폐의 특정 부분에 상기 흉벽까지의 최단 거리가 짧을수록 폐의 특정 부위의 길이가 길수록 크다고 예측될 수 있다.
프로세서(130)는 상기 수술시 폐 영상데이터에서 병변을 인식할 수 있다(S504).
구체적으로, 프로세서(130)는 상기 수술시 폐 영상데이터에서 상기 병변의 크기, 위치 및 형태 중 적어도 하나를 인식할 수 있다.
프로세서(130)는 상기 예측 결과를 기반으로 기 구비된 학습모델을 통해 상기 폐를 복수의 영역으로 분할할 수 있다(S505).
여기서, 학습모델은, 복수의 기존 환자 별 흡기시 폐 영상데이터, 호기시 폐 영상데이터 및 수술시 폐 영상데이터에 기초한 학습데이터 세트를 구축하고, 상기 구축된 학습데이터 세트를 기반으로 기계 학습되는 것일 수 있다.
구체적으로, 프로세서(130)는 상기 환자의 흡기시 폐 영상데이터 및 호기시 폐 영상데이터를 획득하고, 상기 학습모델을 통해 상기 흡기시 폐 영상데이터 및 호기시 폐 영상데이터를 상기 복수의 영역으로 분할할 수 있다.
여기서, 흡기시 폐 영상데이터는 환자가 숨을 들이마신 상태에서 상기 외부 장치(미도시)를 통해 촬영된 것일 수 있다. 또한, 호기시 폐 영상데이터는 환자가 숨을 내쉰 상태에서 상기 외부 장치(미도시)를 통해 촬영된 것일 수 있다.
보다 상세하게는, 프로세서(130)는 상기 학습모델을 기반으로, 상기 흡기시 폐 영상데이터를 제1 기준에 따라 제1 중분류 영역으로 분할하고, 상기 제1 중분류 영역을 제2 기준에 따라 제1 소분류 영역으로 분할할 수 있다.
여기서, 제1 기준은, 상기 흡기시 폐 영상데이터 또는 상기 호기시 폐 영상데이터를 엽(Lobe)에 따라 상기 제1 중분류 영역 또는 상기 제2 중분류 영역으로 분할하는 기준이고, 제2 기준은, 상기 제1 중분류 영역을 혈관에 따라 상기 제1 소분류 영역으로 분할하는 기준일 수 있다.
그리고, 프로세서(130)는 상기 학습모델을 기반으로, 상기 호기시 폐 영상데이터를 상기 제1 기준에 따라 제2 중분류 영역으로 분할할 수 있다.
여기서, 프로세서(130)는 상기 제1 중분류 영역 및 상기 제2 중분류 영역 간의 크기 변화 비율을 산출할 수 있다.
이후, 프로세서(130)는 상기 크기 변화 비율을 기반으로 상기 제2 중분류 영역을 제2 소분류 영역으로 분할할 수 있다.
즉, 프로세서(130)는 상기 제2 중분류 영역 별 크기 변화 비율을 기반으로 제2 소분류 영역을 분할할 수 있다.
프로세서(130)는 상기 인식된 병변 및 상기 분할된 결과가 반영된 가상 폐 모델을 생성할 수 있다(S506).
구체적으로, 프로세서(130)는 상기 수술시 폐 영상데이터에서 인식한 상기 병변, 상기 폐의 크기를 예측한 상기 예측 결과 및 상기 크기 변화 비율에 따라 소분류까지 분할된 상기 가상 폐 모델을 생성할 수 있다.
도 5는 단계 S501 내지 단계 S506를 순차적으로 실행하는 것으로 기재하고 있으나, 이는 본 실시예의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 실시예가 속하는 기술분야에서 통상의 지식을 가진 자라면 본 실시예의 본질적인 특성에서 벗어나지 않는 범위에서 도 5에 기재된 순서를 변경하여 실행하거나 단계 S501 내지 단계 S506 중 하나 이상의 단계를 병렬적으로 실행하는 것으로 다양하게 수정 및 변형하여 적용 가능할 것이므로, 도 5는 시계열적인 순서로 한정되는 것은 아니다.
이상에서 전술한 본 발명의 일 실시예에 따른 방법은, 하드웨어인 컴퓨터와 결합되어 실행되기 위해 프로그램(또는 어플리케이션)으로 구현되어 매체에 저장될 수 있다. 여기서, 컴퓨터는 앞에서 설명한 장치(10)일 수 있다.
상기 전술한 프로그램은, 상기 컴퓨터가 프로그램을 읽어 들여 프로그램으로 구현된 상기 방법들을 실행시키기 위하여, 상기 컴퓨터의 프로세서(CPU)가 상기 컴퓨터의 장치 인터페이스를 통해 읽힐 수 있는 C, C++, JAVA, 기계어 등의 컴퓨터 언어로 코드화된 코드(Code)를 포함할 수 있다. 이러한 코드는 상기 방법들을 실행하는 필요한 기능들을 정의한 함수 등과 관련된 기능적인 코드(Functional Code)를 포함할 수 있고, 상기 기능들을 상기 컴퓨터의 프로세서가 소정의 절차대로 실행시키는데 필요한 실행 절차 관련 제어 코드를 포함할 수 있다. 또한, 이러한 코드는 상기 기능들을 상기 컴퓨터의 프로세서가 실행시키는데 필요한 추가 정보나 미디어가 상기 컴퓨터의 내부 또는 외부 메모리의 어느 위치(주소 번지)에서 참조되어야 하는지에 대한 메모리 참조관련 코드를 더 포함할 수 있다. 또한, 상기 컴퓨터의 프로세서가 상기 기능들을 실행시키기 위하여 원격(Remote)에 있는 어떠한 다른 컴퓨터나 서버 등과 통신이 필요한 경우, 코드는 상기 컴퓨터의 통신 모듈을 이용하여 원격에 있는 어떠한 다른 컴퓨터나 서버 등과 어떻게 통신해야 하는지, 통신 시 어떠한 정보나 미디어를 송수신해야 하는지 등에 대한 통신 관련 코드를 더 포함할 수 있다.
본 발명의 실시예와 관련하여 설명된 방법 또는 알고리즘의 단계들은 하드웨어로 직접 구현되거나, 하드웨어에 의해 실행되는 소프트웨어 모듈로 구현되거나, 또는 이들의 결합에 의해 구현될 수 있다. 소프트웨어 모듈은 RAM(Random Access Memory), ROM(Read Only Memory), EPROM(Erasable Programmable ROM), EEPROM(Electrically Erasable Programmable ROM), 플래시 메모리(Flash Memory), 하드 디스크, 착탈형 디스크, CD-ROM, 또는 본 발명이 속하는 기술 분야에서 잘 알려진 임의의 형태의 컴퓨터 판독가능 기록매체에 상주할 수도 있다.
이상, 첨부된 도면을 참조로 하여 본 발명의 실시예를 설명하였지만, 본 발명이 속하는 기술분야의 통상의 기술자는 본 발명이 그 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로, 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며, 제한적이 아닌 것으로 이해해야만 한다.

Claims (10)

  1. 환자의 가상 폐 모델을 생성하는 장치에 의해 수행되는, 방법에 있어서,
    상기 환자의 수술시 폐 영상데이터를 획득하는 단계;
    상기 환자의 수술시 폐와 흉벽 간의 거리 및 폐의 특정 부위의 길이 중 적어도 하나를 포함하는 정보를 파악하는 단계;
    상기 파악된 정보를 기반으로 상기 폐의 크기를 예측하는 단계;
    상기 예측 결과를 기반으로 기 구비된 학습모델을 통해 상기 폐를 복수의 영역으로 분할하는 단계; 및
    상기 분할된 결과가 반영된 가상 폐 모델을 생성하는 단계;
    를 포함하는, 환자의 가상 폐 모델 생성 방법.
  2. 제1항에 있어서,
    상기 분할 단계는,
    상기 환자의 흡기시 폐 영상데이터 및 호기시 폐 영상데이터를 획득하고,
    상기 학습모델을 통해, 상기 흡기시 폐 영상데이터 및 호기시 폐 영상데이터를 상기 복수의 영역으로 분할하는, 환자의 가상 폐 모델 생성 방법.
  3. 제2항에 있어서,
    상기 분할 단계는,
    상기 학습모델을 기반으로, 상기 흡기시 폐 영상데이터를 제1 기준에 따라 제1 중분류 영역으로 분할하고, 상기 제1 중분류 영역을 제2 기준에 따라 제1 소분류 영역으로 분할하고,
    상기 학습모델을 기반으로, 상기 호기시 폐 영상데이터를 상기 제1 기준에 따라 제2 중분류 영역으로 분할하고,
    상기 제1 중분류 영역 및 상기 제2 중분류 영역 간의 크기 변화 비율을 산출하고,
    상기 크기 변화 비율을 기반으로 상기 제2 중분류 영역을 제2 소분류 영역으로 분할하고,
    상기 생성 단계는,
    상기 예측 결과 및 상기 크기 변화 비율에 따라 소분류까지 분할된 상기 가상 폐 모델을 생성하는, 환자의 가상 폐 모델 생성 방법.
  4. 제3항에 있어서,
    상기 제1 기준은,
    상기 흡기시 폐 영상데이터 또는 상기 호기시 폐 영상데이터를 엽(Lobe)에 따라 상기 제1 중분류 영역 또는 상기 제2 중분류 영역으로 분할하는 기준이고,
    상기 제2 기준은,
    상기 제1 중분류 영역을 혈관에 따라 상기 제1 소분류 영역으로 분할하는 기준인, 환자의 가상 폐 모델 생성 방법.
  5. 제3항에 있어서,
    상기 학습모델은,
    복수의 기존 환자 별 흡기시 폐 영상데이터, 호기시 폐 영상데이터 및 수술시 폐 영상데이터에 기초한 학습데이터 세트를 구축하고,
    상기 구축된 학습데이터 세트를 기반으로 기계 학습되는 것인, 환자의 가상 폐 모델 생성 방법.
  6. 통신부; 및
    환자의 가상 폐 모델을 생성하는 프로세서;를 포함하고,
    상기 프로세서는,
    상기 환자의 수술시 폐 영상데이터를 획득하고,
    상기 환자의 수술시 폐와 흉벽 간의 거리 및 폐의 특정 부위의 길이 중 적어도 하나를 포함하는 정보를 파악하고,
    상기 파악된 정보를 기반으로 상기 폐의 크기를 예측하고,
    상기 예측 결과를 기반으로 기 구비된 학습모델을 통해 상기 폐를 복수의 영역으로 분할하고,
    상기 분할된 결과가 반영된 가상 폐 모델을 생성하는, 환자의 가상 폐 모델을 생성하는 장치.
  7. 제6항에 있어서,
    상기 프로세서는,
    상기 분할할 때, 상기 환자의 흡기 시 폐 영상데이터 및 호기 시 폐 영상데이터를 획득하고,
    상기 학습모델을 통해, 상기 흡기 시 폐 영상데이터 및 호기 시 폐 영상데이터를 상기 복수의 영역으로 분할하는, 환자의 가상 폐 모델을 생성하는 장치.
  8. 제7항에 있어서,
    상기 프로세서는,
    상기 학습모델을 기반으로, 상기 흡기시 폐 영상데이터를 제1 기준에 따라 제1 중분류 영역으로 분할하고, 상기 제1 중분류 영역을 제2 기준에 따라 제1 소분류 영역으로 분할하고,
    상기 학습모델을 기반으로, 상기 호기시 폐 영상데이터를 상기 제1 기준에 따라 제2 중분류 영역으로 분할하고,
    상기 제1 중분류 영역 및 상기 제2 중분류 영역 간의 크기 변화 비율을 산출하고,
    상기 크기 변화 비율을 기반으로 상기 제2 중분류 영역을 제2 소분류 영역으로 분할하고,
    상기 예측 결과 및 상기 크기 변화 비율에 따라 소분류까지 분할된 상기 가상 폐 모델을 생성하는, 환자의 가상 폐 모델을 생성하는 장치.
  9. 제8항에 있어서,
    상기 제1 기준은,
    상기 흡기시 폐 영상데이터 또는 상기 호기시 폐 영상데이터를 엽(Lobe)에 따라 상기 제1 중분류 영역 또는 상기 제2 중분류 영역으로 분할하는 기준이고,
    상기 제2 기준은,
    상기 제1 중분류 영역을 혈관에 따라 상기 제1 소분류 영역으로 분할하는 기준인, 환자의 가상 폐 모델을 생성하는 장치.
  10. 제8항에 있어서,
    상기 학습모델은,
    복수의 기존 환자 별 흡기시 폐 영상데이터, 호기시 폐 영상데이터 및 수술시 폐 영상데이터에 기초한 학습데이터 세트를 구축하고,
    상기 구축된 학습데이터 세트를 기반으로 기계 학습되는 것인, 환자의 가상 폐 모델을 생성하는 장치.
PCT/KR2023/000766 2022-01-17 2023-01-17 환자의 가상 폐 모델을 생성하는 장치 및 방법 WO2023136695A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2022-0006757 2022-01-17
KR1020220006757A KR102694614B1 (ko) 2022-01-17 2022-01-17 환자의 가상 폐 모델을 생성하는 장치 및 방법

Publications (1)

Publication Number Publication Date
WO2023136695A1 true WO2023136695A1 (ko) 2023-07-20

Family

ID=87279488

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/000766 WO2023136695A1 (ko) 2022-01-17 2023-01-17 환자의 가상 폐 모델을 생성하는 장치 및 방법

Country Status (2)

Country Link
KR (1) KR102694614B1 (ko)
WO (1) WO2023136695A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117830302A (zh) * 2024-03-04 2024-04-05 瀚依科技(杭州)有限公司 肺段分割的优化方法及装置、电子设备和存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109544528A (zh) * 2018-11-19 2019-03-29 上海馨孚科技有限公司 一种肺小结节图像识别方法及装置
KR102013814B1 (ko) * 2018-02-20 2019-08-23 (주)휴톰 수술영상을 이용한 가상신체모델 생성 방법 및 장치
CN112450960A (zh) * 2020-12-21 2021-03-09 周永 基于vr/ar联合数字肺技术的虚拟内窥镜显示方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2017213639B2 (en) * 2016-02-05 2021-03-11 Pulmonx Corporation Methods, systems, and devices for analyzing lung imaging data
US11011077B2 (en) 2017-06-29 2021-05-18 Verb Surgical Inc. Virtual reality training, simulation, and collaboration in a robotic surgical system
EP3633612A4 (en) * 2017-06-30 2020-06-03 Shanghai United Imaging Healthcare Co., Ltd. IMAGE SEGMENTATION METHOD AND SYSTEM
US11348250B2 (en) * 2019-11-11 2022-05-31 Ceevra, Inc. Image analysis system for identifying lung features

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102013814B1 (ko) * 2018-02-20 2019-08-23 (주)휴톰 수술영상을 이용한 가상신체모델 생성 방법 및 장치
KR102013863B1 (ko) * 2018-02-20 2019-08-23 (주)휴톰 가상 신체 모델 구축 방법 및 프로그램
CN109544528A (zh) * 2018-11-19 2019-03-29 上海馨孚科技有限公司 一种肺小结节图像识别方法及装置
CN112450960A (zh) * 2020-12-21 2021-03-09 周永 基于vr/ar联合数字肺技术的虚拟内窥镜显示方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHEN HSIN-JUI, RUAN SHANQ-JANG, HUANG SHA-WO, PENG YAN-TSUNG: "Lung X-ray Segmentation using Deep Convolutional Neural Networks on Contrast-Enhanced Binarized Images", MATHEMATICS, vol. 8, no. 545, XP093081110, DOI: 10.3390/math8040545 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117830302A (zh) * 2024-03-04 2024-04-05 瀚依科技(杭州)有限公司 肺段分割的优化方法及装置、电子设备和存储介质

Also Published As

Publication number Publication date
KR102694614B1 (ko) 2024-08-13
KR20230111043A (ko) 2023-07-25

Similar Documents

Publication Publication Date Title
WO2019132168A1 (ko) 수술영상데이터 학습시스템
WO2021049729A1 (ko) 인공지능 모델을 이용한 폐암 발병 가능성 예측 방법 및 분석 장치
WO2017051945A1 (ko) 질환 모델 기반의 의료 정보 서비스 제공 방법 및 장치
WO2018106005A1 (ko) 뉴럴 네트워크를 이용한 질병의 진단 시스템 및 그 방법
WO2014208971A1 (en) Ultrasound image display method and apparatus
WO2023136695A1 (ko) 환자의 가상 폐 모델을 생성하는 장치 및 방법
WO2019132169A1 (ko) 수술영상 재생제어 방법, 장치 및 프로그램
WO2019132165A1 (ko) 수술결과에 대한 피드백 제공방법 및 프로그램
WO2021206517A1 (ko) 수술 중 혈관 네비게이션 방법 및 시스템
WO2022131642A1 (ko) 의료 영상 기반 질환 중증도 결정 장치 및 방법
WO2019132244A1 (ko) 수술 시뮬레이션 정보 생성방법 및 프로그램
WO2021206518A1 (ko) 수술 후 수술과정 분석 방법 및 시스템
WO2023058942A1 (ko) 구강 건강 분석 서비스를 제공하는 장치 및 방법
WO2021201582A1 (ko) 피부 병변의 원인 분석 방법 및 장치
WO2024101466A1 (ko) 속성 기반 실종자 추적 장치 및 방법
WO2020159276A1 (ko) 수술 분석 장치, 수술영상 분석 및 인식 시스템, 방법 및 프로그램
WO2022145988A1 (ko) 인공지능을 이용한 안면부 골절 판독 장치 및 방법
WO2022108387A1 (ko) 임상 기록 데이터 생성 방법 및 장치
WO2022019514A1 (ko) 병원의 의사결정 장치, 방법 및 컴퓨터 판독 가능한 기록매체
WO2022055158A1 (ko) 치아 영상 부분 변환 방법 및 이를 위한 장치
WO2023018138A1 (ko) 환자의 가상 기복 모델을 생성하는 장치 및 방법
WO2023003389A1 (ko) 환자의 3차원 가상 기복 모델 상에 트로카의 삽입 위치를 결정하는 장치 및 방법
WO2024147472A1 (ko) 복수의 인공지능 모델을 이용하여 환자의 조기 신경학적 악화를 예측하는 방법 및 장치
WO2024111846A1 (ko) 시공간 특징 퓨전 모델을 통해 수술 중 출혈을 검출하는 방법 및 장치
WO2019164279A1 (ko) 수술영상의 인식도 평가 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23740538

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE