WO2023136492A1 - Method for determining e-commerce data-based credit assessment scorecard and device performing same method - Google Patents

Method for determining e-commerce data-based credit assessment scorecard and device performing same method Download PDF

Info

Publication number
WO2023136492A1
WO2023136492A1 PCT/KR2022/020815 KR2022020815W WO2023136492A1 WO 2023136492 A1 WO2023136492 A1 WO 2023136492A1 KR 2022020815 W KR2022020815 W KR 2022020815W WO 2023136492 A1 WO2023136492 A1 WO 2023136492A1
Authority
WO
WIPO (PCT)
Prior art keywords
scorecard
credit evaluation
candidate
artificial intelligence
data
Prior art date
Application number
PCT/KR2022/020815
Other languages
French (fr)
Korean (ko)
Inventor
강정석
Original Assignee
주식회사 에이젠글로벌
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 에이젠글로벌 filed Critical 주식회사 에이젠글로벌
Publication of WO2023136492A1 publication Critical patent/WO2023136492A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q30/00Commerce
    • G06Q30/06Buying, selling or leasing transactions
    • G06Q30/0601Electronic shopping [e-shopping]
    • G06Q30/0609Buyer or seller confidence or verification
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q30/00Commerce
    • G06Q30/02Marketing; Price estimation or determination; Fundraising
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q30/00Commerce
    • G06Q30/02Marketing; Price estimation or determination; Fundraising
    • G06Q30/0201Market modelling; Market analysis; Collecting market data
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q30/00Commerce
    • G06Q30/06Buying, selling or leasing transactions
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q40/00Finance; Insurance; Tax strategies; Processing of corporate or income taxes
    • G06Q40/02Banking, e.g. interest calculation or account maintenance
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q40/00Finance; Insurance; Tax strategies; Processing of corporate or income taxes
    • G06Q40/03Credit; Loans; Processing thereof

Definitions

  • the present invention relates to a method for determining a credit evaluation score card based on e-commerce data and an apparatus for performing the method. More particularly, it relates to a method for determining a credit rating scorecard for credit rating of a seller based on e-commerce data and an apparatus for performing the method.
  • the financial big data infrastructure consists of big data open systems, data exchanges, and data specialized institutions.
  • the object of the present invention is to solve all of the above problems.
  • an object of the present invention is to provide a customized financial service to a seller by performing a more accurate credit evaluation of a seller through e-commerce data-based credit evaluation score card determination.
  • the present invention provides a customized financial service tailored to the seller by performing a step-by-step scorecard determination step in consideration of seller characteristic information and weight adjustment, scale adjustment, or creation time adjustment for a plurality of credit evaluation basic data included in the scorecard. intended to provide
  • a method for determining a credit rating scorecard based on e-commerce data includes a plurality of first candidate scorecard decision units including a plurality of different credit rating base data by combining a plurality of credit rating base data. Determining a second candidate scorecard, a first candidate artificial intelligence engine generating unit generating a first candidate artificial intelligence engine learned based on the plurality of first candidate scorecards, a second candidate artificial intelligence engine generating unit Determining an artificial intelligence engine whose reliability is equal to or greater than a critical reliability level among the primary candidate artificial intelligence engines as a secondary candidate artificial intelligence engine, wherein a secondary candidate scorecard generator generates the primary candidate scorecard corresponding to the secondary candidate artificial intelligence engine. Generating a second candidate scorecard by performing weight adjustment, scale adjustment, or creation time adjustment for the plurality of credit evaluation basic data included in ; It may include the step of determining.
  • the scale adjustment may determine the secondary candidate scorecard based on adjustment of a range scale for classifying the plurality of credit evaluation base data.
  • the generation time adjustment determines the secondary candidate scorecard in consideration of the generation time of the plurality of credit evaluation basic data, and the generation time adjustment includes the observation period, scoring time, and operation of the plurality of credit evaluation basic data.
  • a plurality of scoring time points may be set by classifying into periods and setting the observation period and the operation period differently.
  • a credit evaluation device for determining a credit evaluation scorecard based on e-commerce data combines a plurality of credit evaluation basic data and a plurality of primary candidate scorecards including a plurality of different credit evaluation basic data.
  • a primary candidate scorecard determining unit implemented to determine a primary candidate scorecard, a primary candidate artificial intelligence engine generating unit implemented to generate a primary candidate artificial intelligence engine learned based on the plurality of primary candidate scorecards, and the primary candidate scorecard.
  • a secondary candidate artificial intelligence engine generation unit configured to determine, among artificial intelligence engines, an artificial intelligence engine whose reliability is equal to or higher than a critical reliability level as a secondary candidate artificial intelligence engine; and the primary candidate scorecard corresponding to the secondary candidate artificial intelligence engine.
  • a second candidate scorecard generation unit implemented to generate a second candidate scorecard by performing weight adjustment, scale adjustment, or creation time adjustment for the plurality of included credit rating base data, and a final one of the second candidate scorecard and a scorecard determination unit implemented to determine the scorecard to be used.
  • the scale adjustment may determine the secondary candidate scorecard based on adjustment of a range scale for classifying the plurality of credit evaluation base data.
  • the generation time adjustment determines the secondary candidate scorecard in consideration of the generation time of the plurality of credit evaluation basic data, and the generation time adjustment includes the observation period, scoring time, and operation of the plurality of credit evaluation basic data.
  • a plurality of scoring time points may be set by classifying into periods and setting the observation period and the operation period differently.
  • a more accurate seller's credit evaluation can be performed through e-commerce data-based credit evaluation score card determination, so that a customized financial service can be provided to the seller.
  • a customized financial service tailored to the seller is performed by performing a step-by-step scorecard determination step in consideration of seller characteristic information and weight adjustment, scale adjustment, or generation timing adjustment for a plurality of credit evaluation basic data included in the scorecard. may be provided.
  • FIG. 1 is a conceptual diagram illustrating a credit evaluation apparatus according to an embodiment of the present invention.
  • FIG. 2 is a conceptual diagram illustrating a sales management platform and a method of collecting basic credit evaluation data through the sales management platform according to an embodiment of the present invention.
  • FIG. 3 is a conceptual diagram illustrating the operation of a credit basic data pre-processing unit according to an embodiment of the present invention.
  • FIG. 4 is a conceptual diagram illustrating a first preprocessing according to an embodiment of the present invention.
  • FIG. 5 is a conceptual diagram illustrating a first preprocessing (a seller) according to an embodiment of the present invention.
  • FIG. 6 is a conceptual diagram illustrating a first preprocessing according to an embodiment of the present invention.
  • FIG. 7 is a conceptual diagram illustrating a first preprocessing according to an embodiment of the present invention.
  • FIG. 8 is a conceptual diagram illustrating a method of performing a first preprocessing according to an embodiment of the present invention.
  • FIG. 9 is a conceptual diagram illustrating the operation of a credit evaluation unit according to an embodiment of the present invention.
  • FIG. 10 is a conceptual diagram illustrating a scorecard determination method according to an embodiment of the present invention.
  • FIG. 11 is a conceptual diagram illustrating a scorecard determination method according to an embodiment of the present invention.
  • FIG. 12 is a conceptual diagram illustrating a method for determining a scorecard according to an embodiment of the present invention.
  • FIG. 13 is a conceptual diagram illustrating a credit evaluation device that performs scorecard determination according to an embodiment of the present invention.
  • FIG. 1 is a conceptual diagram illustrating a credit evaluation apparatus according to an embodiment of the present invention.
  • the credit evaluation apparatus includes a credit evaluation basic data collection unit 110, a credit evaluation basic data pre-processing unit 120, a credit evaluation basic data learning unit 130, a credit evaluation unit 140, and a financial service unit. 150 and a processor 160.
  • the credit evaluation basic data collection unit 110 may be implemented to collect credit evaluation basic data for a seller's credit evaluation. Sellers can sell products through various platforms for selling and distributing products through e-commerce. An e-commerce sales and distribution management system platform for managing various data related to seller's product sales, product distribution, and product payment may be expressed as a sales management platform 100 .
  • the credit evaluation basic data collection unit 110 may be implemented to collect credit evaluation basic data for seller's credit evaluation through various sales management platforms. A specific sales management platform 100 will be described later.
  • the term product used in the present invention may be used as a meaning including a service provided by a seller as one product.
  • the credit evaluation basic data preprocessing unit 120 may be implemented to preprocess the collected credit evaluation basic data.
  • the basic credit evaluation data may be preprocessed and used for learning of an artificial intelligence engine for credit evaluation, or may be used for credit evaluation of a seller.
  • the credit evaluation basic data for learning of the artificial intelligence engine for credit evaluation may be transmitted to the credit evaluation basic data learning unit 130 through the first pre-processing.
  • Credit evaluation basic data for learning of the artificial intelligence engine for credit evaluation of the seller may be transmitted to the credit evaluation unit 140 through the second pre-processing.
  • the credit evaluation basic data learning unit 130 may be implemented for artificial intelligence learning for seller's credit evaluation.
  • the credit evaluation basic data learning unit 130 includes a plurality of artificial intelligence engines for credit evaluation of the seller, and each of the plurality of artificial intelligence engines may be implemented to determine a lower credit evaluation factor for the seller's credit evaluation. .
  • the credit evaluation unit 140 may be implemented to evaluate the seller's credit and determine the seller's credit evaluation data.
  • the credit evaluation unit 140 may determine the seller's credit evaluation data based on a plurality of sub-level credit evaluation factors determined by each of a plurality of artificial intelligence engines of the credit evaluation basic data learning unit.
  • the credit evaluation unit 140 may determine the seller's credit evaluation data based on a separate algorithm rather than an artificial intelligence engine.
  • the financial service unit 150 may be implemented to provide financial services to the seller based on the seller's credit evaluation data.
  • the processor 160 operates the credit evaluation basic data collection unit 110, the credit evaluation basic data pre-processing unit 120, the credit evaluation basic data learning unit 130, the credit evaluation unit 140, and the financial service unit 150. can be implemented to control
  • FIG. 2 is a conceptual diagram illustrating a sales management platform and a method of collecting basic credit evaluation data through the sales management platform according to an embodiment of the present invention.
  • the sales management platform includes an order management system (OMS) 210, an enterprise resource planning (ERP) 220, a warehouse management system (WMS) 230, and an E-commerce solution (ECS) 240. etc. may be included.
  • OMS 210
  • ERP enterprise resource planning
  • WMS warehouse management system
  • ECS E-commerce solution
  • OMS 210
  • ERP enterprise resource planning
  • WMS warehouse management system
  • ECS E-commerce solution
  • OMS (210) is a platform for product order management of the seller.
  • the OMS 210 is a computer system through which a seller who sells a product through a plurality of sales channels can integrally process a series of sales processes.
  • the seller may check the status of products ordered through the plurality of sales channels through the OMS 210 and may collectively process payment confirmation, delivery, order cancellation, return, and the like.
  • the OMS 210 functions such as batch product registration modification, order collection, invoice registration and transmission, inventory management, and the like may be provided.
  • the OMS 210 may provide functions for managing payment information, sales information, settlement information for sales, return information, refund information due to return, and inventory information on a plurality of sales channels.
  • the ERP 220 may be a sales management platform for managing information such as product production (purchase), logistics, finance, accounting, sales, purchase, and inventory of a seller as enterprise resource management.
  • WMS 230 is a warehouse management system and a sales management platform for supporting and optimizing warehouse or distribution center management.
  • the WMS 230 may integrate and manage logistics processes such as warehousing, stocking, stocking, picking, and shipping of the seller's products as a whole.
  • the ECS 240 may be a sales management platform for creating and managing an online mall for sale by a seller.
  • the ECS 240 may be implemented to create an online shopping mall, manage data generated on the online shopping mall, and perform marketing for product sales.
  • Credit evaluation basic data collection unit OMS (210), ERP (220), WMS (230), ECS (240), such as sales management platform in association with the credit evaluation basic data may be collected.
  • the credit evaluation basic data collection unit converts product registration information, inventory information, order information, return information, payment information, sales information, settlement information, refund information, etc. generated in the OMS 210 into the seller's credit evaluation basic data. can be collected
  • the credit evaluation basic data collection unit may collect product storage information, product stock information, product release information, and product delivery information generated by the WMS 230 as the seller's credit evaluation basic data.
  • the credit evaluation basic data collection unit may collect the product marketing information generated by the ECS 240 as the seller's credit evaluation basic data.
  • FIG. 3 is a conceptual diagram illustrating the operation of a credit basic data pre-processing unit according to an embodiment of the present invention.
  • the credit evaluation basic data 300 may be transmitted to the credit evaluation basic data learning unit 360 as the first preprocessing credit evaluation basic data 320 through the first preprocessing 310 .
  • the credit evaluation basic data 300 may be transmitted to the credit evaluation unit 370 as the second preprocessing credit evaluation basic data 355 through the second preprocessing 350 .
  • the first pre-processing 310 may be pre-processing for learning in an artificial intelligence engine.
  • the first pre-processing 310 may be performed in consideration of characteristics of the sales management platform that generated the credit evaluation basic data 300 .
  • the first pre-processing 310 since the financial service is provided considering seller characteristics and supply chain characteristics, the first pre-processing 310 may be performed to learn the artificial intelligence engine considering the seller characteristics and supply chain characteristics.
  • preprocessing considering supply chain characteristics may be performed in consideration of a supply chain step corresponding to the credit evaluation basic data 300 .
  • preprocessing considering supply chain characteristics may be expressed as a first preprocessing (supply chain) 313 .
  • the credit evaluation basic data 300 is primarily credit evaluation basic data (production phase) based on the stage at which the data was acquired. ), credit evaluation basic data (distribution phase), and credit evaluation basic data (sale phase), and may be generated as first pre-processed credit evaluation basic data 320 .
  • the preprocessing considering seller characteristics may be performed through seller data classification and seller data augmentation based on seller characteristics.
  • the pre-processing considering seller characteristics may be expressed as a first pre-processing (seller) 316 .
  • the second pre-processing 350 may be performed for credit evaluation of the seller based on an artificial intelligence engine included in the credit evaluation unit.
  • the second pre-processed credit evaluation base data 355 may be input to an artificial intelligence engine and used to determine lower credit evaluation factors. Accordingly, the second pre-processing 350 may be performed in consideration of the input data format of the artificial intelligence engine. Prediction on different credit rating base data is performed for each artificial intelligence engine, and each artificial intelligence engine may have a different data format.
  • a second pre-processing 350 may be performed in consideration of at least one artificial intelligence engine that may be used for credit evaluation of the seller.
  • FIG. 4 is a conceptual diagram illustrating a first preprocessing according to an embodiment of the present invention.
  • FIG. 4 a first pre-processing (seller) and a first pre-processing (supply chain) applied to credit evaluation basic data are disclosed.
  • credit evaluation basic data classified by seller through the first pre-processing (seller) 400 is pre-processed for each supply chain step through the first pre-processing (supply chain) 450, and the first pre-processed basic credit data (490).
  • the first pre-processing (supply chain) 450 may generate the first pre-processing credit basic data 490 in consideration of the sales management platform, which is the subject of data transmission, and the data format transmitted from the sales management platform.
  • the credit rating basic data is converted into credit rating basic data (produced). ) 460, credit evaluation basic data (distribution) 470, and credit evaluation basic data (sales) 480, and may be generated as first pre-processed credit evaluation basic data.
  • first pre-processing (supply chain) 450 may generate first pre-processing credit evaluation basic data 490 by performing redundant data processing on the credit evaluation basic data transmitted through the sales management platform.
  • duplicate data processing may be performed. For example, when a seller purchases a specific product for sale, the product may be registered on the OMS and the product may be placed on the WMS. That is, an act of purchasing a specific product by a seller is performed only once, but data on product registration and product placement resulting from such a purchase action are generated for each sales management platform, which may result in duplication of basic credit evaluation data.
  • the first pre-processing (supply chain) 450 determines the redundancy of the transmitted credit rating basic data in consideration of the data generation time of the credit rating basic data, the information included in the credit rating basic data, and the later transmitted credit evaluation basic data information. Thus, first pre-processing credit evaluation basic data 490 may be generated. When duplication of credit evaluation basic data occurs, only data of one sales management platform is used through the first preprocessing (supply chain) 450, or duplicated credit evaluation basic data is filtered out and duplicate credit Only other credit evaluation basic data including information included in the evaluation basic data may be used.
  • the first pre-processing (supply chain) 450 may be pre-processing of credit evaluation basic data considering time.
  • the seller's credit rating and the data underlying the seller's credit rating may change over time. Therefore, setting a time scale for credit evaluation basic data for learning may greatly affect the performance of the artificial intelligence engine. Accordingly, in the present invention, after setting a time scale for the obtained basic credit evaluation data, the first preprocessed basic credit data 490 may be generated by pre-processing the basic credit evaluation data considering the time scale. A time scale for preprocessing may be set for each credit evaluation basic data.
  • FIG. 5 is a conceptual diagram illustrating a first preprocessing (a seller) according to an embodiment of the present invention.
  • FIG. 5 a method for augmenting processing of credit evaluation base data for learning of an artificial intelligence engine through a first preprocessing (seller) is disclosed.
  • a method in which basic credit evaluation data is divided into sub-level credit evaluation basic data and used as learning data among data augmentation methods is disclosed.
  • the credit evaluation basic data 500 may include seasonality, transaction size, delivery cycle, sales trend, return rate, sales product, inventory size, operational information, and the like.
  • specific credit evaluation basic data may be augmented and generated as a plurality of lower credit evaluation basic data 540 .
  • data such as the size of the return, the discard rate, the average return rate, the stability of the change in the return rate, and the number of times the return rate exceeds the MAX may be generated as the lower credit evaluation basic data 540 .
  • learning when data augmentation is required to make credit evaluation more accurate, learning may be performed by augmenting the credit evaluation basic data 500 with lower credit evaluation basic data 540 through a first preprocessing.
  • Data augmentation of the first pre-processing may be expressed in terms of a lower data augmentation 520 .
  • FIG. 6 is a conceptual diagram illustrating a first preprocessing according to an embodiment of the present invention.
  • FIG. 6 a method of augmenting processing of credit evaluation basic data for learning of an artificial intelligence engine on a first preprocessing (seller) is disclosed.
  • a method of augmenting data by analyzing data based on credit evaluation on a time scale and a method of augmenting data through a statistical method are disclosed.
  • FIG. 6(a) is a method of augmenting data by analyzing the credit evaluation base data 600 on a time scale among data augmentation methods.
  • a method of augmenting data by analyzing credit evaluation base data on a time scale may be expressed as a time scale data augmentation 610 .
  • the credit evaluation basic data 600 is a return rate
  • data on the number of sellers with a monthly return rate of 5% or more for 36 months may be augmented and generated based on the monthly return rate of 5% or more.
  • data on the number of sellers with an average return rate for 36 months may be augmented and generated.
  • FIG. 6 is a method of augmenting data by statistically analyzing the credit evaluation base data 650 among data augmentation methods.
  • a method of statistically analyzing the credit evaluation base data 650 to augment data may be expressed as a statistical data augmentation 660 .
  • data augmentation may be performed by increasing the return rate in various ways through a statistical method such as average, standard deviation, maximum, or more than a specific range of return rates for each customer.
  • FIG. 7 is a conceptual diagram illustrating a first preprocessing according to an embodiment of the present invention.
  • FIG. 7 a method of augmenting processing of credit evaluation basic data for learning of an artificial intelligence engine on a first preprocessing (seller) is disclosed.
  • a method of augmenting data by two-dimensionally analyzing credit evaluation basic data among data augmentation methods is disclosed.
  • a method of augmenting credit evaluation basic data 700 as two-dimensional data among data augmentation methods is disclosed.
  • credit evaluation basic data 700 is divided into a plurality of dimensions to augment data.
  • the method may be expressed in terms of multidimensional data augmentation 710 .
  • the entire return rate may be divided into two-dimensional data and increased.
  • the first dimension may be the average return rate for 36 months
  • the second dimension may be the number of months in which the return rate exceeds 5% for 36 months.
  • FIG. 8 is a conceptual diagram illustrating a method of performing a first preprocessing according to an embodiment of the present invention.
  • the first preprocessing may use lower data augmentation 810, time scale data augmentation 820, statistical data augmentation 830, and multidimensional data augmentation 840.
  • a first pre-processing may be selectively performed to learn the plurality of artificial intelligence engines included in the credit evaluation basic data learning unit.
  • the sub-data augmentation 810 may be used for training of an artificial intelligence engine to generate a specialized result through specific analysis of characteristic credit evaluation data among artificial intelligence engines.
  • sub-data augmentation for the return rate may be performed for learning of an artificial intelligence engine that generates credit evaluation data with more weight on the return rate.
  • Time scale data augmentation 820 can be used to train an artificial intelligence engine to predict changes in credit rating data over time.
  • Statistical data augmentation 830 may be used for training of an artificial intelligence engine for predicting credit evaluation data according to separately preset specific criteria.
  • Multi-dimensional data augmentation 840 can be used to train an artificial intelligence engine to predict credit rating data based on set criteria for two dimensions.
  • various first preprocessing may be performed according to the properties of predicted credit evaluation data, and various artificial intelligence models may be generated.
  • FIG. 9 is a conceptual diagram illustrating the operation of a credit evaluation unit according to an embodiment of the present invention.
  • the credit evaluation unit may generate credit evaluation data through a seller's credit evaluation based on at least one artificial intelligence engine.
  • the credit evaluation unit may generate the seller's credit evaluation data based on one artificial intelligence engine, but the credit evaluation unit adaptively determines the artificial intelligence engine applicable to the seller based on the seller characteristic information 900, and the determined artificial intelligence engine.
  • Credit evaluation data 950 may be generated based on an intelligence engine.
  • the target artificial intelligence engine 920 for credit evaluation most suitable for the seller characteristic information 900 based on seller information such as seller's sales product, seller's product sales platform, seller's sales, seller's net profit, etc. can be determined
  • the credit evaluation unit may determine the reliability of the artificial intelligence engine according to the seller characteristic information based on the feedback information of each of the plurality of artificial intelligence engines.
  • the credit evaluation unit may determine a reliability level for each seller characteristic information for each of the plurality of artificial intelligence engines.
  • seller characteristic information may be vectorized and expressed on a space based on each sub-seller characteristic information
  • seller groups may be formed based on seller characteristic information through distance information between spaces
  • the reliability of each seller group of the artificial intelligence engine may be determined by comparing the result data of the financial service and the financial service result data.
  • the reliability level may be determined in consideration of statistical characteristics of reliability for seller groups for each artificial intelligence engine.
  • the credit evaluation unit may determine an artificial intelligence engine having a relatively high reliability level as the target artificial intelligence engine 920 based on the seller characteristic information and generate credit evaluation data 950 for the seller.
  • FIG. 10 is a conceptual diagram illustrating a scorecard determination method according to an embodiment of the present invention.
  • the scorecard 1000 may be a card including a plurality of basic credit evaluation data for determining credit evaluation data of a seller.
  • a plurality of credit evaluation base data included in the scorecard 1000 may be preprocessed and then input to the artificial intelligence engine 1020 to determine credit evaluation data.
  • the plurality of credit evaluation basic data included in the scorecard 1000 is information such as residence status, residence period, occupation, job retention period, bank records, card use records, existing loan records, and the like.
  • the scorecard 1000 includes a combination of a plurality of basic credit evaluation data, and can be generated in various types according to the combination of a plurality of basic credit evaluation data.
  • a combination of a plurality of credit rating base data included in the scorecard 1000 may be pre-processed and input to the artificial intelligence engine 1020 for determining the seller's credit rating data.
  • the scorecard 1000 not only can there be a plurality of scorecards 1000 composed of combinations of a plurality of various credit evaluation base data, but also the scorecard 1000 including the same credit evaluation base data includes learning and In order to generate credit evaluation data, it may be defined as a different scorecard 1000 according to a weight applied to each of a plurality of credit evaluation basic data, a scale applied to each of a plurality of credit evaluation basic data, and the like, and input to the artificial intelligence engine 1020. there is.
  • a plurality of scorecards 1000 may be input to and learned from different artificial intelligence engines 1020, and thus different credit evaluation data 1040 may be generated.
  • a specific scorecard 1000 may be selectively used.
  • various scorecard determination methods may be used to determine the scorecard 1000 with the highest accuracy.
  • FIG. 11 is a conceptual diagram illustrating a scorecard determination method according to an embodiment of the present invention.
  • a plurality of primary candidate scorecards including a plurality of different credit evaluation basic data are variously combined with a plurality of credit evaluation basic data to determine a scorecard that generates highly accurate credit evaluation data. (1100) can be determined.
  • credit evaluation base data corresponding to the plurality of primary candidate scorecards 1100 is input to each of a plurality of artificial intelligence engines, and each of the plurality of artificial intelligence engines learns. This can be done
  • a plurality of artificial intelligence engines that are trained based on credit evaluation basic data corresponding to the plurality of primary candidate scorecards 1100 may be expressed as a term of primary candidate artificial intelligence engines 1120 .
  • the corresponding artificial intelligence engine may be determined as the secondary candidate artificial intelligence engine 1160 .
  • a plurality of credit evaluation basic data included in the primary candidate scorecard 1100 corresponding to the secondary candidate artificial intelligence engine 1160 having a threshold reliability or higher is weighted, scaled, or generated by adjusting the secondary candidate scorecard 1100.
  • Scorecard 1140 may include.
  • Credit evaluation base data corresponding to the secondary candidate scorecard 1140 is input to the secondary candidate artificial intelligence engine 1160, and the secondary candidate artificial intelligence engine 1160 may be trained.
  • At least one artificial intelligence engine whose reliability is equal to or higher than a critical reliability level or an artificial intelligence engine having the highest reliability may be finally determined as an artificial intelligence engine to be used in the credit evaluation unit.
  • the secondary candidate scorecard 1140 used in the finally determined artificial intelligence engine may be determined as the final scorecard to be used.
  • the above scorecard and artificial intelligence engine determining operation may be performed for each seller group in consideration of seller characteristic information, an artificial intelligence engine may be determined for each seller group, and a scorecard to be used for each seller group may be determined. That is, for each seller group, the first candidate scorecard 1000, the first candidate artificial intelligence engine 1120, the second candidate scorecard 1140, and the second candidate artificial intelligence engine 1160 may be determined.
  • FIG. 12 is a conceptual diagram illustrating a method for determining a scorecard according to an embodiment of the present invention.
  • the weight adjustment 1200 may be set in consideration of the importance of each of the basic credit evaluation data included in the scorecard. For credit evaluation basic data that has a greater impact on actual financial service results, a larger weight can be set to perform learning on the artificial intelligence engine.
  • Scale adjustment 1210 may be an adjustment of a range scale for classifying credit rating base data. For example, in the case of the number of years of service at work, it can be classified into n categories, and the scale on which the basic credit evaluation data is classified and learned determines whether the credit evaluation data of the artificial intelligence engine will reflect the actual financial service results. can affect what you can do. Accordingly, optimal artificial intelligence engine learning may be performed through scaling 1210 for each of a plurality of credit evaluation base data included in the secondary candidate scorecard 1240 .
  • the creation time point adjustment 1220 may perform learning of the artificial intelligence engine in consideration of the generation time point (or scoring time point) of the credit evaluation base data.
  • a plurality of credit evaluation basic data included in the scorecard may be grouped and input to the artificial intelligence engine. Accordingly, it is possible to determine which learning data is generated by setting a generation time point of the credit evaluation basic data. Therefore, more accurate learning of the artificial intelligence engine can be performed through the adjustment of the generation time point 1220 of the credit evaluation base data.
  • the creation time point adjustment 1220 may reduce a score error generated according to the generation time point by setting a plurality of creation time points.
  • the observation period 1250, the scoring time 1260, and the operation period 1270 are separately classified, and the observation period 1250 and the operation period 1270 are set differently to set a plurality of scoring times 1260. can be set By setting a plurality of scoring time points 1260, it is possible to reduce a score error according to the time of creation, which may occur according to a seller's product, such as a seasonal change, and to reflect the score change according to time.
  • FIG. 13 is a conceptual diagram illustrating a credit evaluation device that performs scorecard determination according to an embodiment of the present invention.
  • the credit evaluation device may include a scorecard determining unit.
  • a scorecard determination unit may be implemented to determine a scorecard.
  • the scorecard determining unit includes a first candidate scorecard determining unit 1310, a first candidate artificial intelligence engine generating unit 1320, a second candidate scorecard determining unit 1330, a second candidate artificial intelligence engine generating unit 1340, and A scorecard determining unit 1350 may be included.
  • the primary candidate scorecard determining unit 1310 variously combines a plurality of credit evaluation basic data to determine a scorecard for determining highly accurate credit evaluation data, and includes a plurality of different credit evaluation basic data.
  • a primary candidate scorecard can be determined.
  • the first candidate artificial intelligence engine generation unit 1320 may be implemented to generate the first candidate artificial intelligence engine. After determining the plurality of primary candidate scorecards, the credit evaluation basic data corresponding to the plurality of primary candidate scorecards is input to each of the plurality of artificial intelligence engines, learning of each of the plurality of artificial intelligence engines is performed, and the primary A candidate artificial intelligence engine may be determined.
  • the secondary candidate artificial intelligence engine generating unit 1340 may determine the corresponding artificial intelligence engine as a secondary candidate artificial intelligence engine when reliability among the primary candidate artificial intelligence engines is greater than or equal to a critical reliability level.
  • the secondary candidate scorecard generating unit 1330 performs weight adjustment, scale adjustment, or creation time adjustment on a plurality of credit evaluation base data included in the primary candidate scorecard corresponding to the secondary candidate artificial intelligence engine to generate secondary candidate scorecards.
  • a candidate scorecard can be determined.
  • the scorecard determination unit 1350 may be implemented to determine a final scorecard to be used among secondary candidate scorecards.
  • Embodiments according to the present invention described above may be implemented in the form of program instructions that can be executed through various computer components and recorded on a computer-readable recording medium.
  • the computer readable recording medium may include program instructions, data files, data structures, etc. alone or in combination.
  • Program instructions recorded on the computer-readable recording medium may be specially designed and configured for the present invention, or may be known and usable to those skilled in the art of computer software.
  • Examples of computer-readable recording media include magnetic media such as hard disks, floppy disks and magnetic tapes, optical recording media such as CD-ROMs and DVDs, and magneto-optical media such as floptical disks. medium), and hardware devices specially configured to store and execute program instructions, such as ROM, RAM, flash memory, and the like.
  • Examples of program instructions include high-level language codes that can be executed by a computer using an interpreter or the like as well as machine language codes generated by a compiler.
  • a hardware device may be modified with one or more software modules to perform processing according to the present invention and vice vers

Landscapes

  • Business, Economics & Management (AREA)
  • Accounting & Taxation (AREA)
  • Finance (AREA)
  • Engineering & Computer Science (AREA)
  • Strategic Management (AREA)
  • Development Economics (AREA)
  • General Business, Economics & Management (AREA)
  • Physics & Mathematics (AREA)
  • Marketing (AREA)
  • General Physics & Mathematics (AREA)
  • Economics (AREA)
  • Theoretical Computer Science (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Game Theory and Decision Science (AREA)
  • Technology Law (AREA)
  • Data Mining & Analysis (AREA)
  • Financial Or Insurance-Related Operations Such As Payment And Settlement (AREA)

Abstract

The present invention relates to a method for determining an e-commerce data-based credit assessment scorecard and a device performing the method. The method for determining an e-commerce data-based credit assessment scorecard may include the steps in which: a primary candidate scorecard determination unit combines multiple pieces of credit assessment basic data to determine multiple primary candidate scorecards including multiple pieces of different credit assessment basic data; a primary candidate artificial intelligence engine generation unit generates primary candidate artificial intelligence engines trained on the basis of the multiple primary candidate scorecards; and a secondary candidate artificial intelligence engine generation unit determines an artificial intelligence engine having reliability greater than or equal to critical reliability among the primary candidate artificial intelligence engines as a secondary candidate artificial intelligence engine.

Description

이커머스 데이터 기반 신용 평가 스코어 카드 결정 방법 및 이러한 방법을 수행하는 장치Credit rating score card determination method based on e-commerce data and apparatus for performing the method
본 발명은 이커머스 데이터 기반 신용 평가 스코어 카드 결정 방법 및 이러한 방법을 수행하는 장치에 관한 것이다. 보다 상세하게는 이커머스 데이터 기반으로 판매자의 신용 평가를 위한 신용 평가 스코어 카드를 결정하는 방법 및 이러한 방법을 수행하는 장치에 관한 것이다.The present invention relates to a method for determining a credit evaluation score card based on e-commerce data and an apparatus for performing the method. More particularly, it relates to a method for determining a credit rating scorecard for credit rating of a seller based on e-commerce data and an apparatus for performing the method.
4차 산업혁명에 의해 촉발된 지능 정보 사회로 진입하면서 데이터의 무한한 활용 가능성이 데이터 산업의 변화를 초래하고 있다. 데이터 시대가 도래함에 따라 향후 데이터 산업의 수준이 국가 사이에 경쟁력의 차이를 결정하게 될 것이다. As we enter the intelligent information society triggered by the 4th industrial revolution, the possibility of unlimited utilization of data is bringing about changes in the data industry. With the arrival of the data era, the level of the future data industry will determine the difference in competitiveness between countries.
특히 금융 시장에서의 빅데이터 인프라 구축은 매우 시급할 뿐만 아니라, 머지 않아 국가의 데이터 산업의 향방을 좌우할만큼 중요한 자산이 되었다. 금융 빅데이터 인프라는 빅데이터 개방 시스템, 데이터 거래소, 데이터 전문기관 등으로 구성된다. In particular, the establishment of big data infrastructure in the financial market is not only very urgent, but soon it has become an important asset enough to determine the direction of the country's data industry. The financial big data infrastructure consists of big data open systems, data exchanges, and data specialized institutions.
이러한 빅데이터 기반의 사용자 금융 데이터를 기반으로 한 새로운 금융 상품에 대한 연구가 필요하다. 사용자 금융 상품에 대한 인공 지능 기반의 학습을 통해 다양한 리스크 분석이 가능하고, 리스크 분석을 기반으로 현재까지 없었던 새로운 금융 서비스를 사용자들에게 제공할 수 있다. Research on new financial products based on these big data-based user financial data is needed. It is possible to analyze various risks through artificial intelligence-based learning of user financial products, and based on risk analysis, new financial services that have not been available before can be provided to users.
따라서, 사용자의 금융 데이터를 활용하고 사용자의 금융 데이터를 기반으로 다양한 금융 서비스를 제공하기 위한 구체적인 방법에 대한 연구가 필요하다.Therefore, it is necessary to study specific methods for utilizing user's financial data and providing various financial services based on the user's financial data.
본 발명은 상술한 문제점을 모두 해결하는 것을 그 목적으로 한다.The object of the present invention is to solve all of the above problems.
또한, 본 발명은, 이커머스 데이터 기반 신용 평가 스코어 카드 결정을 통해 보다 정확한 판매자의 신용 평가를 수행하여 판매자에게 맞춤형 금융 서비스를 제공하는 것을 목적으로 한다.In addition, an object of the present invention is to provide a customized financial service to a seller by performing a more accurate credit evaluation of a seller through e-commerce data-based credit evaluation score card determination.
또한, 본 발명은, 판매자 특성 정보를 고려한 단계적인 스코어카드 결정 단계 및 스코어카드에 포함되는 복수의 신용 평가 기초 데이터에 대한 가중치 조정, 스케일 조정 또는 생성 시점 조정을 수행하여 판매자에게 맞는 맞춤형 금융 서비스를 제공하는 것을 목적으로 한다.In addition, the present invention provides a customized financial service tailored to the seller by performing a step-by-step scorecard determination step in consideration of seller characteristic information and weight adjustment, scale adjustment, or creation time adjustment for a plurality of credit evaluation basic data included in the scorecard. intended to provide
상기 목적을 달성하기 위한 본 발명의 대표적인 구성은 다음과 같다.Representative configurations of the present invention for achieving the above object are as follows.
본 발명의 일 실시예에 따르면, 이커머스 데이터 기반 신용 평가 스코어 카드 결정 방법은 1차 후보 스코어카드 결정부가 복수의 신용 평가 기초 데이터를 조합하여 서로 다른 복수의 신용 평가 기초 데이터를 포함하는 복수의 1차 후보 스코어카드를 결정하는 단계, 1차 후보 인공 지능 엔진 생성부가 상기 복수의 1차 후보 스코어카드를 기반으로 학습된 1차 후보 인공 지능 엔진을 생성하는 단계, 2차 후보 인공 지능 엔진 생성부가 상기 1차 후보 인공 지능 엔진 중 신뢰도가 임계 신뢰도 이상인 인공 지능 엔진을 2차 후보 인공 지능 엔진으로 결정하는 단계, 2차 후보 스코어카드 생성부가 상기 2차 후보 인공 지능 엔진에 대응되는 상기 1차 후보 스코어카드에 포함되는 상기 복수의 신용 평가 기초 데이터에 대한 가중치 조정, 스케일 조정 또는 생성 시점 조정을 수행하여 2차 후보 스코어카드를 생성하는 단계와 스코어카드 결정부가 상기 2차 후보 스코어카드 중 최종적으로 사용될 스코어카드를 결정하는 단계를 포함할 수 있다.According to an embodiment of the present invention, a method for determining a credit rating scorecard based on e-commerce data includes a plurality of first candidate scorecard decision units including a plurality of different credit rating base data by combining a plurality of credit rating base data. Determining a second candidate scorecard, a first candidate artificial intelligence engine generating unit generating a first candidate artificial intelligence engine learned based on the plurality of first candidate scorecards, a second candidate artificial intelligence engine generating unit Determining an artificial intelligence engine whose reliability is equal to or greater than a critical reliability level among the primary candidate artificial intelligence engines as a secondary candidate artificial intelligence engine, wherein a secondary candidate scorecard generator generates the primary candidate scorecard corresponding to the secondary candidate artificial intelligence engine. Generating a second candidate scorecard by performing weight adjustment, scale adjustment, or creation time adjustment for the plurality of credit evaluation basic data included in ; It may include the step of determining.
한편, 상기 가중치 조정은 상기 1차 후보 스코어카드에 포함되는 상기 복수의 신용 평가 기초 데이터 각각의 중요도를 고려하여 금융 서비스 결과에 상대적으로 더 큰 영향을 끼치는 신용 평가 기초 데이터일수록 상대적으로 더 큰 가중치를 설정하여 상기 2차 후보 스코어카드를 결정하고, 상기 스케일 조정은 상기 복수의 신용 평가 기초 데이터를 분류하기 위한 범위 스케일의 조정을 기반으로 상기 2차 후보 스코어카드를 결정할 수 있다.On the other hand, in the weight adjustment, considering the importance of each of the plurality of credit evaluation basic data included in the primary candidate scorecard, a relatively larger weight is assigned to the credit evaluation basic data having a relatively greater influence on the financial service result. setting to determine the secondary candidate scorecard, and the scale adjustment may determine the secondary candidate scorecard based on adjustment of a range scale for classifying the plurality of credit evaluation base data.
또한, 상기 생성 시점 조정은 상기 복수의 신용 평가 기초 데이터의 생성 시점을 고려하여 상기 2차 후보 스코어카드를 결정하고, 상기 생성 시점 조정은 상기 복수의 신용 평가 기초 데이터를 관찰 기간, 스코어링 시점, 동작 기간으로 분류하고, 상기 관찰 기간과 상기 동작 기간을 서로 다르게 설정하여 상기 스코어링 시점을 복수개 설정할 수 있다.In addition, the generation time adjustment determines the secondary candidate scorecard in consideration of the generation time of the plurality of credit evaluation basic data, and the generation time adjustment includes the observation period, scoring time, and operation of the plurality of credit evaluation basic data. A plurality of scoring time points may be set by classifying into periods and setting the observation period and the operation period differently.
본 발명의 다른 실시예에 따르면, 이커머스 데이터 기반 신용 평가 스코어 카드 결정하는 신용 평가 장치는 복수의 신용 평가 기초 데이터를 조합하여 서로 다른 복수의 신용 평가 기초 데이터를 포함하는 복수의 1차 후보 스코어카드를 결정하도록 구현되는 1차 후보 스코어카드 결정부, 상기 복수의 1차 후보 스코어카드를 기반으로 학습된 1차 후보 인공 지능 엔진을 생성하도록 구현되는 1차 후보 인공 지능 엔진 생성부, 상기 1차 후보 인공 지능 엔진 중 신뢰도가 임계 신뢰도 이상인 인공 지능 엔진을 2차 후보 인공 지능 엔진으로 결정하도록 구현되는 2차 후보 인공 지능 엔진 생성부, 상기 2차 후보 인공 지능 엔진에 대응되는 상기 1차 후보 스코어카드에 포함되는 상기 복수의 신용 평가 기초 데이터에 대한 가중치 조정, 스케일 조정 또는 생성 시점 조정을 수행하여 2차 후보 스코어카드를 생성하도록 구현되는 2차 후보 스코어카드 생성부와 상기 2차 후보 스코어카드 중 최종적으로 사용될 스코어카드를 결정하도록 구현되는 스코어카드 결정부를 포함할 수 있다.According to another embodiment of the present invention, a credit evaluation device for determining a credit evaluation scorecard based on e-commerce data combines a plurality of credit evaluation basic data and a plurality of primary candidate scorecards including a plurality of different credit evaluation basic data. A primary candidate scorecard determining unit implemented to determine a primary candidate scorecard, a primary candidate artificial intelligence engine generating unit implemented to generate a primary candidate artificial intelligence engine learned based on the plurality of primary candidate scorecards, and the primary candidate scorecard. A secondary candidate artificial intelligence engine generation unit configured to determine, among artificial intelligence engines, an artificial intelligence engine whose reliability is equal to or higher than a critical reliability level as a secondary candidate artificial intelligence engine; and the primary candidate scorecard corresponding to the secondary candidate artificial intelligence engine. A second candidate scorecard generation unit implemented to generate a second candidate scorecard by performing weight adjustment, scale adjustment, or creation time adjustment for the plurality of included credit rating base data, and a final one of the second candidate scorecard and a scorecard determination unit implemented to determine the scorecard to be used.
한편, 상기 가중치 조정은 상기 1차 후보 스코어카드에 포함되는 상기 복수의 신용 평가 기초 데이터 각각의 중요도를 고려하여 금융 서비스 결과에 상대적으로 더 큰 영향을 끼치는 신용 평가 기초 데이터일수록 상대적으로 더 큰 가중치를 설정하여 상기 2차 후보 스코어카드를 결정하고, 상기 스케일 조정은 상기 복수의 신용 평가 기초 데이터를 분류하기 위한 범위 스케일의 조정을 기반으로 상기 2차 후보 스코어카드를 결정할 수 있다.On the other hand, in the weight adjustment, considering the importance of each of the plurality of credit evaluation basic data included in the primary candidate scorecard, a relatively larger weight is assigned to the credit evaluation basic data having a relatively greater influence on the financial service result. setting to determine the secondary candidate scorecard, and the scale adjustment may determine the secondary candidate scorecard based on adjustment of a range scale for classifying the plurality of credit evaluation base data.
또한, 상기 생성 시점 조정은 상기 복수의 신용 평가 기초 데이터의 생성 시점을 고려하여 상기 2차 후보 스코어카드를 결정하고, 상기 생성 시점 조정은 상기 복수의 신용 평가 기초 데이터를 관찰 기간, 스코어링 시점, 동작 기간으로 분류하고, 상기 관찰 기간과 상기 동작 기간을 서로 다르게 설정하여 상기 스코어링 시점을 복수개 설정할 수 있다.In addition, the generation time adjustment determines the secondary candidate scorecard in consideration of the generation time of the plurality of credit evaluation basic data, and the generation time adjustment includes the observation period, scoring time, and operation of the plurality of credit evaluation basic data. A plurality of scoring time points may be set by classifying into periods and setting the observation period and the operation period differently.
본 발명에 의하면, 이커머스 데이터 기반 신용 평가 스코어 카드 결정을 통해 보다 정확한 판매자의 신용 평가를 수행하여 판매자에게 맞춤형 금융 서비스가 제공될 수 있다.According to the present invention, a more accurate seller's credit evaluation can be performed through e-commerce data-based credit evaluation score card determination, so that a customized financial service can be provided to the seller.
또한, 본 발명에 의하면, 판매자 특성 정보를 고려한 단계적인 스코어카드 결정 단계 및 스코어카드에 포함되는 복수의 신용 평가 기초 데이터에 대한 가중치 조정, 스케일 조정 또는 생성 시점 조정을 수행하여 판매자에게 맞는 맞춤형 금융 서비스가 제공될 수 있다.In addition, according to the present invention, a customized financial service tailored to the seller is performed by performing a step-by-step scorecard determination step in consideration of seller characteristic information and weight adjustment, scale adjustment, or generation timing adjustment for a plurality of credit evaluation basic data included in the scorecard. may be provided.
도 1은 본 발명의 실시예에 따른 신용 평가 장치를 나타낸 개념도이다.1 is a conceptual diagram illustrating a credit evaluation apparatus according to an embodiment of the present invention.
도 2는 본 발명의 실시예에 따른 판매 관리 플랫폼과 판매 관리 플랫폼을 통해 신용 평가 기초 데이터를 수집하는 방법을 나타낸 개념도이다.2 is a conceptual diagram illustrating a sales management platform and a method of collecting basic credit evaluation data through the sales management platform according to an embodiment of the present invention.
도 3은 본 발명의 실시예에 따른 신용 기초 데이터 전처리부의 동작을 나타낸 개념도이다.3 is a conceptual diagram illustrating the operation of a credit basic data pre-processing unit according to an embodiment of the present invention.
도 4는 본 발명의 실시예에 따른 제1 전처리를 나타낸 개념도이다.4 is a conceptual diagram illustrating a first preprocessing according to an embodiment of the present invention.
도 5는 본 발명의 실시예에 따른 제1 전처리(판매자)를 나타낸 개념도이다.5 is a conceptual diagram illustrating a first preprocessing (a seller) according to an embodiment of the present invention.
도 6은 본 발명의 실시예에 따른 제1 전처리를 나타낸 개념도이다.6 is a conceptual diagram illustrating a first preprocessing according to an embodiment of the present invention.
도 7은 본 발명의 실시예에 따른 제1 전처리를 나타낸 개념도이다.7 is a conceptual diagram illustrating a first preprocessing according to an embodiment of the present invention.
도 8은 본 발명의 실시예에 따른 제1 전처리를 수행하는 방법을 나타낸 개념도이다.8 is a conceptual diagram illustrating a method of performing a first preprocessing according to an embodiment of the present invention.
도 9는 본 발명의 실시예에 따른 신용 평가부의 동작을 나타낸 개념도이다.9 is a conceptual diagram illustrating the operation of a credit evaluation unit according to an embodiment of the present invention.
도 10은 본 발명의 실시예에 따른 스코어카드 결정 방법을 나타낸 개념도이다.10 is a conceptual diagram illustrating a scorecard determination method according to an embodiment of the present invention.
도 11은 본 발명의 실시예에 따른 스코어카드 결정 방법을 나타낸 개념도이다.11 is a conceptual diagram illustrating a scorecard determination method according to an embodiment of the present invention.
도 12는 본 발명의 실시예에 따른 스코어카드 결정 방법을 나타낸 개념도이다. 12 is a conceptual diagram illustrating a method for determining a scorecard according to an embodiment of the present invention.
도 13은 본 발명의 실시예에 따른 스코어카드 결정을 수행하는 신용 평가 장치를 나타낸 개념도이다.13 is a conceptual diagram illustrating a credit evaluation device that performs scorecard determination according to an embodiment of the present invention.
후술하는 본 발명에 대한 상세한 설명은, 본 발명이 실시될 수 있는 특정 실시예를 예시로서 도시하는 첨부 도면을 참조한다. 이러한 실시예는 당업자가 본 발명을 실시할 수 있기에 충분하도록 상세히 설명된다. 본 발명의 다양한 실시예는 서로 다르지만 상호 배타적일 필요는 없음이 이해되어야 한다. 예를 들어, 본 명세서에 기재되어 있는 특정 형상, 구조 및 특성은 본 발명의 정신과 범위를 벗어나지 않으면서 일 실시예로부터 다른 실시예로 변경되어 구현될 수 있다. 또한, 각각의 실시예 내의 개별 구성요소의 위치 또는 배치도 본 발명의 정신과 범위를 벗어나지 않으면서 변경될 수 있음이 이해되어야 한다. 따라서, 후술하는 상세한 설명은 한정적인 의미로서 행하여 지는 것이 아니며, 본 발명의 범위는 특허청구범위의 청구항들이 청구하는 범위 및 그와 균등한 모든 범위를 포괄하는 것으로 받아들여져야 한다. 도면에서 유사한 참조부호는 여러 측면에 걸쳐서 동일하거나 유사한 구성요소를 나타낸다.DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The detailed description of the present invention which follows refers to the accompanying drawings which illustrate, by way of illustration, specific embodiments in which the present invention may be practiced. These embodiments are described in sufficient detail to enable any person skilled in the art to practice the present invention. It should be understood that the various embodiments of the present invention are different from each other but are not necessarily mutually exclusive. For example, specific shapes, structures, and characteristics described herein may be implemented from one embodiment to another without departing from the spirit and scope of the present invention. It should also be understood that the location or arrangement of individual components within each embodiment may be changed without departing from the spirit and scope of the present invention. Therefore, the detailed description to be described later is not performed in a limiting sense, and the scope of the present invention should be taken as encompassing the scope claimed by the claims and all scopes equivalent thereto. Like reference numbers in the drawings indicate the same or similar elements throughout the various aspects.
이하에서는, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명을 용이하게 실시할 수 있도록 하기 위하여, 본 발명의 여러 바람직한 실시예에 관하여 첨부된 도면을 참조하여 상세히 설명하기로 한다.Hereinafter, various preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings in order to enable those skilled in the art to easily practice the present invention.
도 1은 본 발명의 실시예에 따른 신용 평가 장치를 나타낸 개념도이다.1 is a conceptual diagram illustrating a credit evaluation apparatus according to an embodiment of the present invention.
도 1에서는 이커머스 판매 및 유통 관리 시스템 플랫폼을 통해 수집된 데이터를 기반으로 판매자에 대한 신용 평가를 수행하는 신용 평가 장치가 개시된다.In FIG. 1, a credit evaluation device for performing a credit evaluation on a seller based on data collected through an e-commerce sales and distribution management system platform is disclosed.
도 1을 참조하면, 신용 평가 장치는 신용 평가 기초 데이터 수집부(110), 신용 평가 기초 데이터 전처리부(120), 신용 평가 기초 데이터 학습부(130), 신용 평가부(140), 금융 서비스부(150) 및 프로세서(160)를 포함할 수 있다.Referring to FIG. 1 , the credit evaluation apparatus includes a credit evaluation basic data collection unit 110, a credit evaluation basic data pre-processing unit 120, a credit evaluation basic data learning unit 130, a credit evaluation unit 140, and a financial service unit. 150 and a processor 160.
신용 평가 기초 데이터 수집부(110)는 판매자의 신용 평가를 위한 신용 평가 기초 데이터를 수집하기 위해 구현될 수 있다. 판매자는 이커머스를 통해 상품을 판매하고 유통하기 위한 다양한 플랫폼을 통해 상품을 판매할 수 있다. 판매자의 상품 판매, 상품 유통, 상품 결제와 관련된 다양한 데이터를 관리하기 위한 이커머스 판매 및 유통 관리 시스템 플랫폼은 판매 관리 플랫폼(100)이라는 용어로 표현될 수 있다. 신용 평가 기초 데이터 수집부(110)는 다양한 판매 관리 플랫폼을 통해 판매자의 신용 평가를 위한 신용 평가 기초 데이터를 수집하도록 구현될 수 있다. 구체적인 판매 관리 플랫폼(100)은 후술된다. 본 발명에서 사용되는 상품이라는 용어는 판매자에 의해 제공되는 서비스도 하나의 상품으로서 포함하는 의미로 사용될 수 있다.The credit evaluation basic data collection unit 110 may be implemented to collect credit evaluation basic data for a seller's credit evaluation. Sellers can sell products through various platforms for selling and distributing products through e-commerce. An e-commerce sales and distribution management system platform for managing various data related to seller's product sales, product distribution, and product payment may be expressed as a sales management platform 100 . The credit evaluation basic data collection unit 110 may be implemented to collect credit evaluation basic data for seller's credit evaluation through various sales management platforms. A specific sales management platform 100 will be described later. The term product used in the present invention may be used as a meaning including a service provided by a seller as one product.
신용 평가 기초 데이터 전처리부(120)는 수집된 신용 평가 기초 데이터를 전처리하기 위해 구현될 수 있다. 신용 평가 기초 데이터는 전처리되어 신용 평가를 위한 인공 지능 엔진의 학습을 위해 활용될 수도 있고, 판매자의 신용 평가를 위해 활용될 수도 있다.The credit evaluation basic data preprocessing unit 120 may be implemented to preprocess the collected credit evaluation basic data. The basic credit evaluation data may be preprocessed and used for learning of an artificial intelligence engine for credit evaluation, or may be used for credit evaluation of a seller.
신용 평가를 위한 인공 지능 엔진의 학습을 위한 신용 평가 기초 데이터는 제1 전처리를 통해 신용 평가 기초 데이터 학습부(130)로 전송될 수 있다. 판매자의 신용 평가를 위한 인공 지능 엔진의 학습을 위한 신용 평가 기초 데이터는 제2 전처리를 통해 신용 평가부(140)로 전송될 수 있다.The credit evaluation basic data for learning of the artificial intelligence engine for credit evaluation may be transmitted to the credit evaluation basic data learning unit 130 through the first pre-processing. Credit evaluation basic data for learning of the artificial intelligence engine for credit evaluation of the seller may be transmitted to the credit evaluation unit 140 through the second pre-processing.
신용 평가 기초 데이터 학습부(130)는 판매자의 신용 평가를 위한 인공 지능 학습을 위해 구현될 수 있다. 신용 평가 기초 데이터 학습부(130)는 판매자의 신용 평가를 위한 복수의 인공 지능 엔진을 포함하고, 복수의 인공 지능 엔진 각각은 판매자의 신용 평가를 위한 하위 신용 평가 요소를 결정하기 위해 구현될 수 있다.The credit evaluation basic data learning unit 130 may be implemented for artificial intelligence learning for seller's credit evaluation. The credit evaluation basic data learning unit 130 includes a plurality of artificial intelligence engines for credit evaluation of the seller, and each of the plurality of artificial intelligence engines may be implemented to determine a lower credit evaluation factor for the seller's credit evaluation. .
신용 평가부(140)는 판매자의 신용을 평가하여 판매자의 신용 평가 데이터를 결정하기 위해 구현될 수 있다. 신용 평가부(140)는 신용 평가 기초 데이터 학습부의 복수의 인공 지능 엔진 각각에 의해 결정된 복수의 하위 신용 평가 요소를 기반으로 판매자의 신용 평가 데이터를 결정할 수 있다. 또한 신용 평가부(140)는 인공 지능 엔진이 아닌 별도의 알고리즘을 기반으로 판매자의 신용 평가 데이터를 결정할 수 있다. The credit evaluation unit 140 may be implemented to evaluate the seller's credit and determine the seller's credit evaluation data. The credit evaluation unit 140 may determine the seller's credit evaluation data based on a plurality of sub-level credit evaluation factors determined by each of a plurality of artificial intelligence engines of the credit evaluation basic data learning unit. In addition, the credit evaluation unit 140 may determine the seller's credit evaluation data based on a separate algorithm rather than an artificial intelligence engine.
금융 서비스부(150)는 판매자의 신용 평가 데이터를 기반으로 판매자에게 금융 서비스를 제공하기 위해 구현될 수 있다. The financial service unit 150 may be implemented to provide financial services to the seller based on the seller's credit evaluation data.
프로세서(160)는 신용 평가 기초 데이터 수집부(110), 신용 평가 기초 데이터 전처리부(120), 신용 평가 기초 데이터 학습부(130), 신용 평가부(140), 금융 서비스부(150)의 동작을 제어하기 위해 구현될 수 있다.The processor 160 operates the credit evaluation basic data collection unit 110, the credit evaluation basic data pre-processing unit 120, the credit evaluation basic data learning unit 130, the credit evaluation unit 140, and the financial service unit 150. can be implemented to control
도 2는 본 발명의 실시예에 따른 판매 관리 플랫폼과 판매 관리 플랫폼을 통해 신용 평가 기초 데이터를 수집하는 방법을 나타낸 개념도이다.2 is a conceptual diagram illustrating a sales management platform and a method of collecting basic credit evaluation data through the sales management platform according to an embodiment of the present invention.
도 2에서는 판매 관리 플랫폼과 판매 관리 플랫폼에서 수집되는 신용 평가 기초 데이터가 개시된다.2 discloses a sales management platform and credit evaluation basic data collected from the sales management platform.
도 2를 참조하면, 판매 관리 플랫폼은 OMS(order management system)(210), ERP(enterprise resource planning)(220), WMS(warehouse management system)(230), ECS(E-commerce solution)(240) 등을 포함할 수 있다. OMS(210), ERP(220), WMS(230), ECS(240)는 하나의 예시로서 판매자의 상품 판매와 관련된 다른 다양한 주체가 판매 관리 플랫폼일 수 있다. Referring to FIG. 2, the sales management platform includes an order management system (OMS) 210, an enterprise resource planning (ERP) 220, a warehouse management system (WMS) 230, and an E-commerce solution (ECS) 240. etc. may be included. OMS (210), ERP (220), WMS (230), ECS (240), as an example, may be a sales management platform for various other entities related to product sales of sellers.
OMS(210)는 판매자의 상품 주문 관리를 위한 플랫폼이다.OMS (210) is a platform for product order management of the seller.
OMS(210)는 다수의 판매 채널을 통해 상품을 판매하는 판매자가 일련의 판매 과정 업무를 통합적으로 처리할 수 있는 전산 시스템이다. 판매자는 OMS(210)를 통해 복수의 판매 채널 상에서 주문된 상품 현황을 확인하고 결제 확인, 배송, 주문 취소, 반품 등을 총괄 처리할 수 있다.The OMS 210 is a computer system through which a seller who sells a product through a plurality of sales channels can integrally process a series of sales processes. The seller may check the status of products ordered through the plurality of sales channels through the OMS 210 and may collectively process payment confirmation, delivery, order cancellation, return, and the like.
구체적으로 OMS(210) 상에서는 상품 일괄 등록 수정, 주문 수집, 송장 등록 및 송신, 재고 관리 등과 같은 기능이 제공될 수 있다. 또한, OMS(210)는 복수의 판매 채널 상에서의 결제 정보, 매출 정보, 매출에 대한 정산 정보, 반품 정보, 반품으로 인한 환불 정보, 재고 정보 등을 관리하기 위한 기능을 제공할 수 있다. In detail, on the OMS 210, functions such as batch product registration modification, order collection, invoice registration and transmission, inventory management, and the like may be provided. In addition, the OMS 210 may provide functions for managing payment information, sales information, settlement information for sales, return information, refund information due to return, and inventory information on a plurality of sales channels.
ERP(220)는 전사적 자원 관리로서 판매자의 상품 생산(구매), 물류, 재무, 회계, 영업, 구매, 재고 등과 같은 정보를 관리하기 위한 판매 관리 플랫폼일 수 있다.The ERP 220 may be a sales management platform for managing information such as product production (purchase), logistics, finance, accounting, sales, purchase, and inventory of a seller as enterprise resource management.
WMS(230)는 창고 관리 시스템으로서 창고 또는 배송 센터 관리를 지원하고 최적화하기 위한 판매 관리 플랫폼이다. WMS(230)는 판매자의 상품의 입고, 적치, 재고, 피킹, 출고 등 물류 프로세서를 전체적으로 통합하여 관리할 수 있다. WMS 230 is a warehouse management system and a sales management platform for supporting and optimizing warehouse or distribution center management. The WMS 230 may integrate and manage logistics processes such as warehousing, stocking, stocking, picking, and shipping of the seller's products as a whole.
ECS(240)는 판매자의 판매를 위한 온라인 몰에 대한 생성 및 관리를 위한 판매 관리 플랫폼일 수 있다. ECS(240)는 온라인 쇼핑몰을 생성하고 온라인 쇼핑몰 상에서 발생되는 데이터를 관리하고, 상품의 판매를 위한 마켓팅을 수행하기 위해 구현될 수 있다. The ECS 240 may be a sales management platform for creating and managing an online mall for sale by a seller. The ECS 240 may be implemented to create an online shopping mall, manage data generated on the online shopping mall, and perform marketing for product sales.
신용 평가 기초 데이터 수집부는 OMS(210), ERP(220), WMS(230), ECS(240)와 같은 판매 관리 플랫폼과 연계되어 신용 평가 기초 데이터를 수집할 수 있다. Credit evaluation basic data collection unit OMS (210), ERP (220), WMS (230), ECS (240), such as sales management platform in association with the credit evaluation basic data may be collected.
예를 들어, 신용 평가 기초 데이터 수집부는 OMS(210)에서 발생된 상품 등록 정보, 재고 정보, 주문 정보, 반품 정보, 결제 정보, 매출 정보, 정산 정보, 환불 정보 등을 판매자의 신용 평가 기초 데이터로서 수집할 수 있다.For example, the credit evaluation basic data collection unit converts product registration information, inventory information, order information, return information, payment information, sales information, settlement information, refund information, etc. generated in the OMS 210 into the seller's credit evaluation basic data. can be collected
신용 평가 기초 데이터 수집부는 WMS(230)에서 발생된 상품 입고 정보, 상품 재고 정보, 상품 출고 정보, 상품 배송 정보 등을 판매자의 신용 평가 기초 데이터로서 수집할 수 있다.The credit evaluation basic data collection unit may collect product storage information, product stock information, product release information, and product delivery information generated by the WMS 230 as the seller's credit evaluation basic data.
신용 평가 기초 데이터 수집부는 ECS(240)에서 발생된 상품 마켓팅 정보 등을 판매자의 신용 평가 기초 데이터로서 수집할 수도 있다.The credit evaluation basic data collection unit may collect the product marketing information generated by the ECS 240 as the seller's credit evaluation basic data.
도 3은 본 발명의 실시예에 따른 신용 기초 데이터 전처리부의 동작을 나타낸 개념도이다.3 is a conceptual diagram illustrating the operation of a credit basic data pre-processing unit according to an embodiment of the present invention.
도 3에서는 신용 기초 데이터 전처리부에서 신용 평가 기초 데이터를 전처리하는 방법이 개시된다.3 discloses a method of preprocessing credit evaluation basic data in a credit basic data preprocessing unit.
도 3을 참조하면, 신용 평가 기초 데이터(300)는 제1 전처리(310)를 통해 제1 전처리 신용 평가 기초 데이터(320)로서 신용 평가 기초 데이터 학습부(360)로 전송될 수 있다. 또한, 신용 평가 기초 데이터(300)는 제2 전처리(350)를 통해 제2 전처리 신용 평가 기초 데이터(355)로서 신용 평가부(370)로 전송될 수 있다.Referring to FIG. 3 , the credit evaluation basic data 300 may be transmitted to the credit evaluation basic data learning unit 360 as the first preprocessing credit evaluation basic data 320 through the first preprocessing 310 . In addition, the credit evaluation basic data 300 may be transmitted to the credit evaluation unit 370 as the second preprocessing credit evaluation basic data 355 through the second preprocessing 350 .
제1 전처리(310)는 인공 지능 엔진에서 학습을 위한 전처리일 수 있다.The first pre-processing 310 may be pre-processing for learning in an artificial intelligence engine.
제1 전처리(310)는 신용 평가 기초 데이터(300)를 생성한 판매 관리 플랫폼의 특성을 고려하여 수행될 수 있다. 본 발명에서 금융 서비스는 판매자 특성, 서플라이 체인 특성을 고려하여 제공되기 때문에 판매자 특성, 서플라이 체인 특성을 고려한 인공 지능 엔진의 학습을 위해 제1 전처리(310)가 수행될 수 있다.The first pre-processing 310 may be performed in consideration of characteristics of the sales management platform that generated the credit evaluation basic data 300 . In the present invention, since the financial service is provided considering seller characteristics and supply chain characteristics, the first pre-processing 310 may be performed to learn the artificial intelligence engine considering the seller characteristics and supply chain characteristics.
제1 전처리(310) 중 서플라이 체인 특성을 고려한 전처리는 신용 평가 기초 데이터(300)에 대응되는 서플라이 체인 단계를 고려하여 수행될 수 있다. 제1 전처리(310) 중 서플라이 체인 특성을 고려한 전처리는 제1 전처리(서플라이 체인)(313)이라는 용어로 표현될 수 있다.Among the first preprocessing 310 , preprocessing considering supply chain characteristics may be performed in consideration of a supply chain step corresponding to the credit evaluation basic data 300 . Among the first preprocessing 310 , preprocessing considering supply chain characteristics may be expressed as a first preprocessing (supply chain) 313 .
예를 들어, 서플라이 체인이 생산(또는 구매) 단계, 유통 단계, 판매 단계로 구분되는 경우, 신용 평가 기초 데이터(300)는 1차적으로 데이터가 획득된 단계를 기초로 신용 평가 기초 데이터(생산 단계), 신용 평가 기초 데이터(유통 단계), 신용 평가 기초 데이터(판매 단계)로 구분되어 제1 전처리 신용 평가 기초 데이터(320)로서 생성될 수 있다.For example, when a supply chain is divided into a production (or purchase) stage, a distribution stage, and a sales stage, the credit evaluation basic data 300 is primarily credit evaluation basic data (production phase) based on the stage at which the data was acquired. ), credit evaluation basic data (distribution phase), and credit evaluation basic data (sale phase), and may be generated as first pre-processed credit evaluation basic data 320 .
또한, 제1 전처리(310) 중 판매자 특성을 고려한 전처리는 판매자 특성을 기초로 한 판매자 데이터 분류 및 판매자 데이터 증강(augmentation)을 통해 수행될 수 있다. 제1 전처리 중 판매자 특성을 고려한 전처리는 제1 전처리(판매자)(316)라는 용어로 표현될 수 있다.Also, among the first preprocessing 310 , the preprocessing considering seller characteristics may be performed through seller data classification and seller data augmentation based on seller characteristics. Among the first pre-processing, the pre-processing considering seller characteristics may be expressed as a first pre-processing (seller) 316 .
제2 전처리(350)는 신용 평가부에 포함되는 인공 지능 엔진을 기반으로 판매자의 신용 평가를 위해 수행될 수 있다. 제2 전처리 신용 평가 기초 데이터(355)는 인공 지능 엔진으로 입력되어 하위 신용 평가 요소를 결정하기 위해 사용될 수 있다. 따라서, 제2 전처리(350)는 인공 지능 엔진의 입력 데이터 포맷을 고려하여 수행될 수 있다. 인공 지능 엔진 별로 서로 다른 신용 평가 기초 데이터에 대한 예측이 수행되고, 인공 지능 엔진 별로 서로 다른 데이터 포맷을 가질 수 있다. 판매자의 신용 평가를 위해 사용될 수 있는 적어도 하나의 인공 지능 엔진을 고려하여 제2 전처리(350)가 수행될 수 있다.The second pre-processing 350 may be performed for credit evaluation of the seller based on an artificial intelligence engine included in the credit evaluation unit. The second pre-processed credit evaluation base data 355 may be input to an artificial intelligence engine and used to determine lower credit evaluation factors. Accordingly, the second pre-processing 350 may be performed in consideration of the input data format of the artificial intelligence engine. Prediction on different credit rating base data is performed for each artificial intelligence engine, and each artificial intelligence engine may have a different data format. A second pre-processing 350 may be performed in consideration of at least one artificial intelligence engine that may be used for credit evaluation of the seller.
도 4는 본 발명의 실시예에 따른 제1 전처리를 나타낸 개념도이다.4 is a conceptual diagram illustrating a first preprocessing according to an embodiment of the present invention.
도 4에서는 신용 평가 기초 데이터에 적용되는 제1 전처리(판매자) 및 제1 전처리(서플라이 체인)이 개시된다.In FIG. 4 , a first pre-processing (seller) and a first pre-processing (supply chain) applied to credit evaluation basic data are disclosed.
도 4를 참조하면, 제1 전처리(판매자)(400)를 통해 판매자 별로 분류된 신용 평가 기초 데이터는 제1 전처리(서플라이 체인)(450)을 통해 서플라이 체인 단계 별로 전처리되어 제1 전처리 신용 기초 데이터(490)로서 생성될 수 있다.Referring to FIG. 4 , credit evaluation basic data classified by seller through the first pre-processing (seller) 400 is pre-processed for each supply chain step through the first pre-processing (supply chain) 450, and the first pre-processed basic credit data (490).
제1 전처리(서플라이 체인)(450)은 데이터 전송 주체인 판매 관리 플랫폼 및 판매 관리 플랫폼에서 전송되는 데이터 포맷을 고려하여 제1 전처리 신용 기초 데이터(490)를 생성할 수 있다.The first pre-processing (supply chain) 450 may generate the first pre-processing credit basic data 490 in consideration of the sales management platform, which is the subject of data transmission, and the data format transmitted from the sales management platform.
판매 관리 플랫폼에 의해 관리되는 서플라이 체인 단계 및 판매 관리 플랫폼에서 발생되는 신용 평가 기초 데이터에 포함되는 정보를 고려한 제1 전처리(서플라이 체인)(450)을 통해 신용 평가 기초 데이터는 신용 평가 기초 데이터(생산)(460), 신용 평가 기초 데이터(유통)(470), 신용 평가 기초 데이터(판매)(480)로 구분되어 제1 전처리 신용 평가 기초 데이터로서 생성될 수 있다.Through the first pre-processing (supply chain) 450 that considers the information included in the supply chain stage managed by the sales management platform and the credit rating basic data generated in the sales management platform, the credit rating basic data is converted into credit rating basic data (produced). ) 460, credit evaluation basic data (distribution) 470, and credit evaluation basic data (sales) 480, and may be generated as first pre-processed credit evaluation basic data.
또한, 제1 전처리(서플라이 체인)(450)은 판매 관리 플랫폼을 통해 전송되는 신용 평가 기초 데이터에 대한 중복 데이터 처리를 수행하여 제1 전처리 신용 평가 기초 데이터(490)를 생성할 수 있다. 복수의 판매 관리 플랫폼에서 동일한 상품에 대한 신용 평가 기초 데이터가 중복하여 발생되는 경우, 중복 데이터 처리가 수행될 수 있다. 예를 들어, 판매자가 판매를 위해 특정 상품을 구매하는 경우, OMS 상에서 상품 등록이 되고, WMS 상에서는 상품 적치가 이루어질 수 있다. 즉, 판매자가 특정 물품을 구매하는 행위는 1회로 이루어지나 이러한 구매 행위로 인한 상품 등록 및 상품 적치에 대한 데이터는 판매 관리 플랫폼 별로 생성되고, 이로 인해 신용 평가 기초 데이터의 중복이 발생될 수 있다.In addition, the first pre-processing (supply chain) 450 may generate first pre-processing credit evaluation basic data 490 by performing redundant data processing on the credit evaluation basic data transmitted through the sales management platform. When credit rating base data for the same product is duplicated in a plurality of sales management platforms, duplicate data processing may be performed. For example, when a seller purchases a specific product for sale, the product may be registered on the OMS and the product may be placed on the WMS. That is, an act of purchasing a specific product by a seller is performed only once, but data on product registration and product placement resulting from such a purchase action are generated for each sales management platform, which may result in duplication of basic credit evaluation data.
제1 전처리(서플라이 체인)(450)은 신용 평가 기초 데이터의 데이터 발생 시간, 신용 평가 기초 데이터에 포함된 정보, 추후 전송되는 신용 평가 기초 데이터 정보를 고려하여 전송된 신용 평가 기초 데이터의 중복성을 판단하여 제1 전처리 신용 평가 기초 데이터(490)를 생성할 수 있다. 신용 평가 기초 데이터의 중복이 발생하는 경우, 제1 전처리(서플라이 체인)(450)을 통해 하나의 판매 관리 플랫폼의 데이터만이 사용되거나, 중복된 신용 평가 기초 데이터를 필터링하여 제외하고, 중복된 신용 평가 기초 데이터에 포함되는 정보를 포함하는 다른 신용 평가 기초 데이터만이 사용되도록 할 수 있다.The first pre-processing (supply chain) 450 determines the redundancy of the transmitted credit rating basic data in consideration of the data generation time of the credit rating basic data, the information included in the credit rating basic data, and the later transmitted credit evaluation basic data information. Thus, first pre-processing credit evaluation basic data 490 may be generated. When duplication of credit evaluation basic data occurs, only data of one sales management platform is used through the first preprocessing (supply chain) 450, or duplicated credit evaluation basic data is filtered out and duplicate credit Only other credit evaluation basic data including information included in the evaluation basic data may be used.
또한, 제1 전처리(서플라이 체인)(450)은 시간을 고려한 신용 평가 기초 데이터에 대한 전처리일 수 있다.Also, the first pre-processing (supply chain) 450 may be pre-processing of credit evaluation basic data considering time.
판매자의 신용 등급 및 판매자의 신용 평가 기초 데이터는 시간에 따라 변화될 수 있다. 따라서, 학습을 위한 신용 평가 기초 데이터에 대한 시간 스케일 설정이 인공 지능 엔진의 성능에 영향을 크게 끼칠 수 있다. 따라서, 본 발명에서는 획득된 신용 평가 기초 데이터에 대한 시간 스케일을 설정한 후, 시간 스케일을 고려한 신용 평가 기초 데이터를 전처리하여 제1 전처리 신용 기초 데이터(490)를 생성할 수 있다. 전처리를 위한 시간 스케일은 신용 평가 기초 데이터 별로 설정될 수 있다. The seller's credit rating and the data underlying the seller's credit rating may change over time. Therefore, setting a time scale for credit evaluation basic data for learning may greatly affect the performance of the artificial intelligence engine. Accordingly, in the present invention, after setting a time scale for the obtained basic credit evaluation data, the first preprocessed basic credit data 490 may be generated by pre-processing the basic credit evaluation data considering the time scale. A time scale for preprocessing may be set for each credit evaluation basic data.
도 5는 본 발명의 실시예에 따른 제1 전처리(판매자)를 나타낸 개념도이다.5 is a conceptual diagram illustrating a first preprocessing (a seller) according to an embodiment of the present invention.
도 5에서는 제1 전처리(판매자)를 통한 인공 지능 엔진의 학습을 위한 신용 평가 기초 데이터의 증강 처리 방법이 개시된다. 특히, 데이터 증강 방법 중 신용 평가 기초 데이터가 하위 신용 평가 기초 데이터로 분할되어 학습 데이터로서 사용되는 방법이 개시된다.In FIG. 5, a method for augmenting processing of credit evaluation base data for learning of an artificial intelligence engine through a first preprocessing (seller) is disclosed. In particular, a method in which basic credit evaluation data is divided into sub-level credit evaluation basic data and used as learning data among data augmentation methods is disclosed.
도 5를 참조하면, 특정 신용 평가 기초 데이터(500)를 증강 처리하여 보다 정확한 인공 지능 엔진 학습을 수행하는 방법이 개시된다. 예를 들어, 신용 평가 기초 데이터(500)는 계절성, 거래 규모, 배송 주기, 매출 추이, 반품률, 판매 상품, 재고 자산 규모, 운영 정보 등일 수 있다. 신용 평가 기초 데이터(500) 중 특정 신용 평가 기초 데이터는 증강되어 복수의 하위 신용 평가 기초 데이터(540)로서 생성될 수 있다.Referring to FIG. 5 , a method of performing more accurate artificial intelligence engine learning by augmenting specific credit evaluation base data 500 is disclosed. For example, the credit evaluation basic data 500 may include seasonality, transaction size, delivery cycle, sales trend, return rate, sales product, inventory size, operational information, and the like. Among the credit evaluation basic data 500 , specific credit evaluation basic data may be augmented and generated as a plurality of lower credit evaluation basic data 540 .
반품율 데이터가 증가되는 경우, 반품 규모, 폐기율, 반품율 평균, 반품률 변동 안정성, 반품률 MAX 초과 횟수 등과 같은 데이터가 하위 신용 평가 기초 데이터(540)로서 생성될 수 있다.When the return rate data is increased, data such as the size of the return, the discard rate, the average return rate, the stability of the change in the return rate, and the number of times the return rate exceeds the MAX may be generated as the lower credit evaluation basic data 540 .
본 발명의 실시예에서는 신용 평가를 보다 정확하게 하기 위해 데이터 증강이 필요한 경우, 제1 전처리를 통해 신용 평가 기초 데이터(500)를 하위 신용 평가 기초 데이터(540)로 증강하여 학습을 수행할 수 있다. 이러한 제1 전처리(판매자)의 데이터 증강은 하위 데이터 증강(520)이라는 용어로 표현될 수 있다.In an embodiment of the present invention, when data augmentation is required to make credit evaluation more accurate, learning may be performed by augmenting the credit evaluation basic data 500 with lower credit evaluation basic data 540 through a first preprocessing. Data augmentation of the first pre-processing (seller) may be expressed in terms of a lower data augmentation 520 .
도 6은 본 발명의 실시예에 따른 제1 전처리를 나타낸 개념도이다.6 is a conceptual diagram illustrating a first preprocessing according to an embodiment of the present invention.
도 6에서는 제1 전처리(판매자) 상에서 인공 지능 엔진의 학습을 위한 신용 평가 기초 데이터의 증강 처리 방법이 개시된다. 특히, 데이터 증강 방법 중 신용 평가 기초 데이터를 시간 스케일로 분석하여 데이터를 증강하는 방법, 통계적인 방법을 통해 데이터를 증강하는 방법이 개시된다.In FIG. 6, a method of augmenting processing of credit evaluation basic data for learning of an artificial intelligence engine on a first preprocessing (seller) is disclosed. In particular, among data augmentation methods, a method of augmenting data by analyzing data based on credit evaluation on a time scale and a method of augmenting data through a statistical method are disclosed.
도 6의 (a)는 데이터 증강 방법 중 신용 평가 기초 데이터(600)를 시간 스케일로 분석하여 데이터를 증강하는 방법이다. 데이터 증강 방법 중 신용 평가 기초 데이터를 시간 스케일로 분석하여 데이터를 증강하는 방법은 시간 스케일 데이터 증강(610)이라는 용어로 표현될 수 있다.6(a) is a method of augmenting data by analyzing the credit evaluation base data 600 on a time scale among data augmentation methods. Among data augmentation methods, a method of augmenting data by analyzing credit evaluation base data on a time scale may be expressed as a time scale data augmentation 610 .
예를 들어, 신용 평가 기초 데이터(600)가 반품율인 경우, 월 반품률 5% 이상을 기준으로 36개월 간 월 반품율 5% 이상 판매자 수에 대한 데이터가 증강되어 생성될 수 있다. 또 다른 예로, 월 반품율 평균율 기준으로 36개월 간 평균 반품율 판매자 수에 대한 데이터가 증강되어 생성될 수 있다.For example, when the credit evaluation basic data 600 is a return rate, data on the number of sellers with a monthly return rate of 5% or more for 36 months may be augmented and generated based on the monthly return rate of 5% or more. As another example, based on the average monthly return rate, data on the number of sellers with an average return rate for 36 months may be augmented and generated.
도 6의 (b)는 데이터 증강 방법 중 신용 평가 기초 데이터(650)를 통계적으로 분석하여 데이터를 증강하는 방법이다. 데이터 증강 방법 중 신용 평가 기초 데이터(650)를 통계적으로 분석하여 데이터를 증강하는 방법은 통계적 데이터 증강(660)이라는 용어로 표현될 수 있다. 예를 들어, 신용 평가 기초 데이터(650)가 반품율인 경우, 고객별 반품율의 평균, 표준 편차, 최고, 특정 구간 이상 등 통계적 방법을 통해 다각도로 증가하여 데이터 증강이 수행될 수 있다.(b) of FIG. 6 is a method of augmenting data by statistically analyzing the credit evaluation base data 650 among data augmentation methods. Among the data augmentation methods, a method of statistically analyzing the credit evaluation base data 650 to augment data may be expressed as a statistical data augmentation 660 . For example, if the credit evaluation basic data 650 is the return rate, data augmentation may be performed by increasing the return rate in various ways through a statistical method such as average, standard deviation, maximum, or more than a specific range of return rates for each customer.
도 7은 본 발명의 실시예에 따른 제1 전처리를 나타낸 개념도이다.7 is a conceptual diagram illustrating a first preprocessing according to an embodiment of the present invention.
도 7에서는 제1 전처리(판매자) 상에서 인공 지능 엔진의 학습을 위한 신용 평가 기초 데이터의 증강 처리 방법이 개시된다. 특히 데이터 증강 방법 중 신용 평가 기초 데이터를 2차원으로 분석하여 데이터를 증강하는 방법이 개시된다. In FIG. 7 , a method of augmenting processing of credit evaluation basic data for learning of an artificial intelligence engine on a first preprocessing (seller) is disclosed. In particular, a method of augmenting data by two-dimensionally analyzing credit evaluation basic data among data augmentation methods is disclosed.
도 7을 참조하면, 데이터 증강 방법 중 신용 평가 기초 데이터(700)를 2차원 데이터로서 증강하는 방법이 개시된다 데이터 증강 방법 중 신용 평가 기초 데이터(700)를 복수의 차원으로 분할하여 데이터를 증강하는 방법은 다차원 데이터 증강(710)이라는 용어로 표현될 수 있다.Referring to FIG. 7 , a method of augmenting credit evaluation basic data 700 as two-dimensional data among data augmentation methods is disclosed. Among data augmentation methods, credit evaluation basic data 700 is divided into a plurality of dimensions to augment data. The method may be expressed in terms of multidimensional data augmentation 710 .
예를 들어, 신용 평가 기초 데이터(700)가 반품율인 경우, 전체 반품율이 2차원의 데이터로 분할되어 증가될 수 있다. 1차원은 36개월 간 평균 반품율이고, 2차원은 36개월 간 반품율이 5%를 넘은 개월 수일 수 있다. 이러한 2차원 분석을 통해 보다 정확한 판매자의 신용 평가 기초 데이터(700)에 대한 평가가 가능할 수 있다.For example, when the credit evaluation basic data 700 is a return rate, the entire return rate may be divided into two-dimensional data and increased. The first dimension may be the average return rate for 36 months, and the second dimension may be the number of months in which the return rate exceeds 5% for 36 months. Through this two-dimensional analysis, a more accurate assessment of the seller's credit evaluation basic data 700 may be possible.
도 8은 본 발명의 실시예에 따른 제1 전처리를 수행하는 방법을 나타낸 개념도이다.8 is a conceptual diagram illustrating a method of performing a first preprocessing according to an embodiment of the present invention.
도 8에서는 신용 평가 기초 데이터 학습부의 학습을 위한 제1 전처리(판매자)를 선택적으로 수행하는 방법이 개시된다.8 discloses a method of selectively performing a first preprocessing (seller) for learning of a credit evaluation basic data learning unit.
도 8을 참조하면, 제1 전처리(판매자)는 하위 데이터 증강(810), 시간 스케일 데이터 증강(820), 통계적 데이터 증강(830), 다차원 데이터 증강(840)을 사용할 수 있다.Referring to FIG. 8 , the first preprocessing (seller) may use lower data augmentation 810, time scale data augmentation 820, statistical data augmentation 830, and multidimensional data augmentation 840.
신용 평가 기초 데이터 학습부에 포함되는 복수의 인공 지능 엔진에 대한 학습을 위해 제1 전처리(판매자)가 선택적으로 수행될 수 있다.A first pre-processing (seller) may be selectively performed to learn the plurality of artificial intelligence engines included in the credit evaluation basic data learning unit.
예를 들어, 하위 데이터 증강(810)은 인공 지능 엔진 중 특성 신용 평가 데이터에 대한 구체적인 분석을 통해 특화된 결과를 생성하기 위한 인공 지능 엔진의 학습을 위해 사용될 수 있다. 예를 들어, 반품율에 보다 가중치를 가지고 신용 평가 데이터를 생성하는 인공 지능 엔진의 학습을 위해서 반품율에 대한 하위 데이터 증강이 수행될 수 있다.For example, the sub-data augmentation 810 may be used for training of an artificial intelligence engine to generate a specialized result through specific analysis of characteristic credit evaluation data among artificial intelligence engines. For example, sub-data augmentation for the return rate may be performed for learning of an artificial intelligence engine that generates credit evaluation data with more weight on the return rate.
시간 스케일 데이터 증강(820)은 시간에 따른 신용 평가 데이터의 변화를 예측하기 위한 인공 지능 엔진의 학습을 위해 사용될 수 있다. Time scale data augmentation 820 can be used to train an artificial intelligence engine to predict changes in credit rating data over time.
통계적 데이터 증강(830)은 특정 기준을 별도로 미리 설정하고, 설정 기준에 따른 신용 평가 데이터를 예측하기 위한 인공 지능 엔진의 학습을 위해 사용될 수 있다. Statistical data augmentation 830 may be used for training of an artificial intelligence engine for predicting credit evaluation data according to separately preset specific criteria.
다차원 데이터 증강(840)은 2개의 차원에 대한 설정 기준을 기반으로 신용 평가 데이터를 예측하기 위한 인공 지능 엔진의 학습을 위해 사용될 수 있다.Multi-dimensional data augmentation 840 can be used to train an artificial intelligence engine to predict credit rating data based on set criteria for two dimensions.
본 발명의 실시예에서는 예측되는 신용 평가 데이터의 성질에 따라 제1 전처리(판매자)가 다양하게 수행되고 다양한 인공 지능 모델이 생성될 수 있다. In an embodiment of the present invention, various first preprocessing (seller) may be performed according to the properties of predicted credit evaluation data, and various artificial intelligence models may be generated.
도 9는 본 발명의 실시예에 따른 신용 평가부의 동작을 나타낸 개념도이다.9 is a conceptual diagram illustrating the operation of a credit evaluation unit according to an embodiment of the present invention.
도 9에서는 신용 평가부에서 인공 지능 엔진을 기반으로 판매자의 신용 평가 데이터를 생성하는 방법이 개시된다.9 discloses a method of generating credit evaluation data of a seller based on an artificial intelligence engine in a credit evaluation unit.
도 9를 참조하면, 신용 평가부는 적어도 하나의 인공 지능 엔진을 기반으로 한 판매자의 신용 평가를 통해 신용 평가 데이터를 생성할 수 있다.Referring to FIG. 9 , the credit evaluation unit may generate credit evaluation data through a seller's credit evaluation based on at least one artificial intelligence engine.
신용 평가부는 하나의 인공 지능 엔진을 기반으로 판매자의 신용 평가 데이터를 생성할 수도 있으나, 신용 평가부는 판매자 특성 정보(900)를 기반으로 적응적으로 판매자에게 적용 가능한 인공 지능 엔진을 결정하고, 결정된 인공 지능 엔진을 기반으로 신용 평가 데이터(950)를 생성할 수 있다.The credit evaluation unit may generate the seller's credit evaluation data based on one artificial intelligence engine, but the credit evaluation unit adaptively determines the artificial intelligence engine applicable to the seller based on the seller characteristic information 900, and the determined artificial intelligence engine. Credit evaluation data 950 may be generated based on an intelligence engine.
예를 들어, 판매자의 판매 상품, 판매자의 상품 판매 플랫폼, 판매자의 매출, 판매자의 순이익 등과 같은 판매자 정보를 기반으로 판매자 특성 정보(900)에 가장 적합한 신용 평가를 위한 타겟 인공 지능 엔진(920)이 결정될 수 있다.For example, the target artificial intelligence engine 920 for credit evaluation most suitable for the seller characteristic information 900 based on seller information such as seller's sales product, seller's product sales platform, seller's sales, seller's net profit, etc. can be determined
신용 평가부는 복수의 인공 지능 엔진 각각에 피드백 정보를 기반으로 판매자 특성 정보에 따른 인공 지능 엔진의 신뢰도를 결정할 수 있다. 또한, 신용 평가부는 복수의 인공 지능 엔진 각각에 대해 판매자 특성 정보별 신뢰도 등급을 결정할 수 있다. 구체적으로 판매자 특성 정보는 하위 판매자 특성 정보 각각을 기반으로 벡터화되고 공간 상에 표현될 수 있고, 공간 간의 거리 정보를 통해 판매자 특성 정보를 기반으로 판매자 그룹이 형성될 수 있고, 판매자 그룹별 신용 평가 데이터와 금융 서비스 결과 데이터를 비교하여 인공 지능 엔진의 판매자 그룹별 신뢰도가 결정될 수 있다. 신뢰도 등급은 인공 지능 엔진별 판매자 그룹에 대한 신뢰도의 통계적 특성을 고려하여 결정될 수 있다.The credit evaluation unit may determine the reliability of the artificial intelligence engine according to the seller characteristic information based on the feedback information of each of the plurality of artificial intelligence engines. In addition, the credit evaluation unit may determine a reliability level for each seller characteristic information for each of the plurality of artificial intelligence engines. Specifically, seller characteristic information may be vectorized and expressed on a space based on each sub-seller characteristic information, seller groups may be formed based on seller characteristic information through distance information between spaces, and credit evaluation data for each seller group The reliability of each seller group of the artificial intelligence engine may be determined by comparing the result data of the financial service and the financial service result data. The reliability level may be determined in consideration of statistical characteristics of reliability for seller groups for each artificial intelligence engine.
신용 평가부는 판매자 특성 정보를 기초로 상대적으로 높은 신뢰도 등급을 가지는 인공 지능 엔진을 타겟 인공 지능 엔진(920)으로 결정하여 판매자에 대한 신용 평가 데이터(950)를 생성할 수 있다.The credit evaluation unit may determine an artificial intelligence engine having a relatively high reliability level as the target artificial intelligence engine 920 based on the seller characteristic information and generate credit evaluation data 950 for the seller.
도 10은 본 발명의 실시예에 따른 스코어카드 결정 방법을 나타낸 개념도이다.10 is a conceptual diagram illustrating a scorecard determination method according to an embodiment of the present invention.
도 10에서는 판매자의 신용 평가 데이터를 결정하기 위한 스코어카드를 결정하는 방법이 개시된다.10 discloses a method for determining a scorecard for determining a seller's credit rating data.
도 10을 참조하면, 스코어카드(1000)는 판매자의 신용 평가 데이터를 결정하기 위한 복수의 신용 평가 기초 데이터를 포함하는 카드일 수 있다. 스코어카드(1000)에 포함되는 복수의 신용 평가 기초 데이터는 전처리된 후 인공 지능 엔진(1020)으로 입력되어 신용 평가 데이터를 결정할 수 있다.Referring to FIG. 10 , the scorecard 1000 may be a card including a plurality of basic credit evaluation data for determining credit evaluation data of a seller. A plurality of credit evaluation base data included in the scorecard 1000 may be preprocessed and then input to the artificial intelligence engine 1020 to determine credit evaluation data.
예를 들어, 스코어카드(1000)에 포함되는 복수의 신용 평가 기초 데이터는 거주지 자가 여부, 거주지에서 거주한 기간, 직업, 직업 유지 기간, 은행 기록, 카드 사용 기록, 기존의 대출 기록 등과 같은 정보일 수 있다.For example, the plurality of credit evaluation basic data included in the scorecard 1000 is information such as residence status, residence period, occupation, job retention period, bank records, card use records, existing loan records, and the like. can
스코어카드(1000)는 복수의 신용 평가 기초 데이터의 조합을 포함하며, 복수의 신용 평가 기초 데이터의 조합에 따라 다양한 타입으로 생성될 수 있다. 스코어카드(1000)에 포함되는 복수의 신용 평가 기초 데이터의 조합은 전처리되어 판매자의 신용 평가 데이터를 결정하기 위한 인공 지능 엔진(1020)으로 입력될 수 있다.The scorecard 1000 includes a combination of a plurality of basic credit evaluation data, and can be generated in various types according to the combination of a plurality of basic credit evaluation data. A combination of a plurality of credit rating base data included in the scorecard 1000 may be pre-processed and input to the artificial intelligence engine 1020 for determining the seller's credit rating data.
본 발명의 실시예에서는 다양한 복수의 신용 평가 기초 데이터의 조합으로 구성된 복수의 스코어카드(1000)가 존재할 수 있을 뿐만 아니라 또한, 동일한 신용 평가 기초 데이터를 포함하는 스코어카드(1000)더라도 포함되는 학습 및 신용 평가 데이터 생성을 위해 복수의 신용 평가 기초 데이터 각각에 적용되는 가중치, 복수의 신용 평가 기초 데이터 각각에 적용되는 스케일 등에 따라 다른 스코어카드(1000)로서 정의되어 인공 지능 엔진(1020)으로 입력될 수 있다.In the embodiment of the present invention, not only can there be a plurality of scorecards 1000 composed of combinations of a plurality of various credit evaluation base data, but also the scorecard 1000 including the same credit evaluation base data includes learning and In order to generate credit evaluation data, it may be defined as a different scorecard 1000 according to a weight applied to each of a plurality of credit evaluation basic data, a scale applied to each of a plurality of credit evaluation basic data, and the like, and input to the artificial intelligence engine 1020. there is.
즉, 본 발명에서는 복수의 스코어카드(1000)가 서로 다른 인공 지능 엔진(1020)으로 입력되어 학습되고, 그에 따른 서로 다른 신용 평가 데이터(1040)를 생성하도록 구현될 수 있다. 복수의 스코어카드(1000) 중 특정 스코어카드(1000)가 선택적으로 사용될 수 있다. 본 발명에서는 가장 정확도가 높은 스코어카드(1000)를 결정하기 위해서는 다양한 스코어카드 결정 방법이 사용될 수 있다.That is, in the present invention, a plurality of scorecards 1000 may be input to and learned from different artificial intelligence engines 1020, and thus different credit evaluation data 1040 may be generated. Among the plurality of scorecards 1000, a specific scorecard 1000 may be selectively used. In the present invention, various scorecard determination methods may be used to determine the scorecard 1000 with the highest accuracy.
도 11은 본 발명의 실시예에 따른 스코어카드 결정 방법을 나타낸 개념도이다.11 is a conceptual diagram illustrating a scorecard determination method according to an embodiment of the present invention.
도 11을 참조하면, 정확도 높은 신용 평가 데이터를 생성하는 스코어카드를 결정하기 위해 복수의 신용 평가 기초 데이터는 다양하게 조합되고, 서로 다른 복수의 신용 평가 기초 데이터를 포함하는 복수의 1차 후보 스코어카드(1100)가 결정될 수 있다.Referring to FIG. 11, a plurality of primary candidate scorecards including a plurality of different credit evaluation basic data are variously combined with a plurality of credit evaluation basic data to determine a scorecard that generates highly accurate credit evaluation data. (1100) can be determined.
복수의 1차 후보 스코어카드(1100)의 결정 이후, 복수의 1차 후보 스코어카드(1100)에 대응되는 신용 평가 기초 데이터가 복수의 인공 지능 엔진 각각으로 입력되고, 복수의 인공 지능 엔진 각각의 학습이 수행될 수 있다. After the plurality of primary candidate scorecards 1100 are determined, credit evaluation base data corresponding to the plurality of primary candidate scorecards 1100 is input to each of a plurality of artificial intelligence engines, and each of the plurality of artificial intelligence engines learns. this can be done
복수의 1차 후보 스코어카드(1100)에 대응되는 신용 평가 기초 데이터를 기반으로 학습되는 복수의 인공 지능 엔진은 1차 후보 인공 지능 엔진(1120)이라는 용어로 표현될 수 있다.A plurality of artificial intelligence engines that are trained based on credit evaluation basic data corresponding to the plurality of primary candidate scorecards 1100 may be expressed as a term of primary candidate artificial intelligence engines 1120 .
1차 후보 인공 지능 엔진(1120) 중 신뢰도가 임계 신뢰도 이상인 경우, 해당 인공 자능 엔진은 2차 후보 인공 지능 엔진(1160)으로 결정될 수 있다. If the reliability of the primary candidate artificial intelligence engine 1120 is greater than or equal to the threshold reliability, the corresponding artificial intelligence engine may be determined as the secondary candidate artificial intelligence engine 1160 .
임계 신뢰도 이상을 가지는 2차 후보 인공 지능 엔진(1160)에 대응되는 1차 후보 스코어카드(1100)에 포함되는 복수의 신용 평가 기초 데이터는 가중치 조정, 스케일 조정 또는 생성 시점 조정이 수행되어 2차 후보 스코어카드(1140)에 포함될 수 있다.A plurality of credit evaluation basic data included in the primary candidate scorecard 1100 corresponding to the secondary candidate artificial intelligence engine 1160 having a threshold reliability or higher is weighted, scaled, or generated by adjusting the secondary candidate scorecard 1100. Scorecard 1140 may include.
2차 후보 스코어카드(1140)에 대응되는 신용 평가 기초 데이터는 2차 후보 인공 지능 엔진(1160)으로 입력되고, 2차 후보 인공 지능 엔진(1160)은 학습될 수 있다. Credit evaluation base data corresponding to the secondary candidate scorecard 1140 is input to the secondary candidate artificial intelligence engine 1160, and the secondary candidate artificial intelligence engine 1160 may be trained.
2차 후보 인공 지능 엔진(1160) 중 신뢰도가 임계 신뢰도 이상인 적어도 하나의 인공 지능 엔진 또는 가장 높은 신뢰도를 가지는 인공 지능 엔진이 최종적으로 신용 평가부에서 사용될 인공 지능 엔진으로 결정될 수 있다. 또한, 최종적으로 결정된 인공 지능 엔진에 사용되는 2차 후보 스코어카드(1140)가 최종적으로 사용될 스코어카드로서 결정될 수 있다.Among the secondary candidate artificial intelligence engines 1160 , at least one artificial intelligence engine whose reliability is equal to or higher than a critical reliability level or an artificial intelligence engine having the highest reliability may be finally determined as an artificial intelligence engine to be used in the credit evaluation unit. In addition, the secondary candidate scorecard 1140 used in the finally determined artificial intelligence engine may be determined as the final scorecard to be used.
위의 스코어 카드 및 인공 지능 엔진 결정 동작은 판매자 특성 정보를 고려하여 판매자 그룹별로 수행되고, 판매자 그룹 별로 인공 지능 엔진이 결정되고, 판매자 그룹별로 사용될 스코어카드가 결정될 수 있다. 즉, 판매자그룹별로, 1차 후보 스코어카드(1000), 1차 후보 인공 지능 엔진(1120), 2차 후보 스코어카드(1140) 및 2차 후보 인공 지능 엔진(1160)이 결정될 수 있다.The above scorecard and artificial intelligence engine determining operation may be performed for each seller group in consideration of seller characteristic information, an artificial intelligence engine may be determined for each seller group, and a scorecard to be used for each seller group may be determined. That is, for each seller group, the first candidate scorecard 1000, the first candidate artificial intelligence engine 1120, the second candidate scorecard 1140, and the second candidate artificial intelligence engine 1160 may be determined.
도 12는 본 발명의 실시예에 따른 스코어카드 결정 방법을 나타낸 개념도이다. 12 is a conceptual diagram illustrating a method for determining a scorecard according to an embodiment of the present invention.
도 12에서는 가중치 조정, 스케일 조정 또는 생성 시점 조정이 수행되어 2차 후보 스코어카드를 결정하는 방법이 개시된다.12 discloses a method of determining a secondary candidate scorecard by performing weight adjustment, scale adjustment, or generation timing adjustment.
도 12를 참조하면, 가중치 조정(1200)은 스코어카드에 포함되는 신용 평가 기초 데이터 각각의 중요도를 고려하여 설정될 수 있다. 실제 금융 서비스 결과에 더 큰 영향을 끼치는 신용 평가 기초 데이터일수록 더 큰 가중치를 설정하여 인공 지능 엔진에 대한 학습을 수행할 수 있다.Referring to FIG. 12 , the weight adjustment 1200 may be set in consideration of the importance of each of the basic credit evaluation data included in the scorecard. For credit evaluation basic data that has a greater impact on actual financial service results, a larger weight can be set to perform learning on the artificial intelligence engine.
스케일 조정(1210)은 신용 평가 기초 데이터를 분류하기 위한 범위 스케일의 조정일 수 있다. 예를 들어, 직장 근속 년수의 경우, n개의 카테고리로 분류할 수 있고, 신용 평가 기초 데이터에 대해 어떠한 스케일로 분류하여 학습을 수행하는지가 인공 지능 엔진의 신용 평가 데이터가 실제 금융 서비스 결과를 반영할 수 있는지에 영향을 끼칠 수 있다. 따라서, 2차 후보 스코어카드(1240)에 포함되는 복수의 신용 평가 기초 데이터 각각에 대한 스케일 조정(1210)을 통해 최적의 인공 지능 엔진 학습이 수행될 수 있다. Scale adjustment 1210 may be an adjustment of a range scale for classifying credit rating base data. For example, in the case of the number of years of service at work, it can be classified into n categories, and the scale on which the basic credit evaluation data is classified and learned determines whether the credit evaluation data of the artificial intelligence engine will reflect the actual financial service results. can affect what you can do. Accordingly, optimal artificial intelligence engine learning may be performed through scaling 1210 for each of a plurality of credit evaluation base data included in the secondary candidate scorecard 1240 .
생성 시점 조정(1220)(또는 스코어링 시점 조정)은 신용 평가 기초 데이터의 생성 시점(또는 스코어링 시점)을 고려하여 인공 지능 엔진의 학습을 수행할 수 있다. 인공 지능 엔진으로 스코어카드에 포함되는 복수의 신용 평가 기초 데이터가 그룹핑되어 입력될 수 있다. 따라서, 신용 평가 기초 데이터의 생성 시점의 설정을 통해 어떠한 학습 데이터가 생성되는지가 결정될 수 있다. 따라서, 이러한 신용 평가 기초 데이터의 생성 시점 조정(1220)을 통해 보다 정확한 인공 지능 엔진의 학습이 수행될 수 있다. The creation time point adjustment 1220 (or scoring time point adjustment) may perform learning of the artificial intelligence engine in consideration of the generation time point (or scoring time point) of the credit evaluation base data. A plurality of credit evaluation basic data included in the scorecard may be grouped and input to the artificial intelligence engine. Accordingly, it is possible to determine which learning data is generated by setting a generation time point of the credit evaluation basic data. Therefore, more accurate learning of the artificial intelligence engine can be performed through the adjustment of the generation time point 1220 of the credit evaluation base data.
또한, 생성 시점 조정(1220)은 생성 시점을 복수개로 설정하여 생성 시점에 따라 발생되는 스코어 오차를 줄일 수 있다. 신용 평가 기초 데이터는 관찰 기간(1250)과 스코어링 시점(1260), 동작 기간(1270)을 별도로 분류하고, 관찰 기간(1250)과 동작 기간(1270)을 서로 다르게 설정하여 스코어링 시점(1260)을 복수개 설정할 수 있다. 복수개의 스코어링 시점(1260)의 설정을 통해 계절적인 변화와 같은 판매자의 상품에 따라 발생될 수 있는 생성 시점에 따른 스코어 오차를 줄이고 이러한 시간에 따른 스코어 변화를 반영할 수 있다.In addition, the creation time point adjustment 1220 may reduce a score error generated according to the generation time point by setting a plurality of creation time points. In the basic credit evaluation data, the observation period 1250, the scoring time 1260, and the operation period 1270 are separately classified, and the observation period 1250 and the operation period 1270 are set differently to set a plurality of scoring times 1260. can be set By setting a plurality of scoring time points 1260, it is possible to reduce a score error according to the time of creation, which may occur according to a seller's product, such as a seasonal change, and to reflect the score change according to time.
도 13은 본 발명의 실시예에 따른 스코어카드 결정을 수행하는 신용 평가 장치를 나타낸 개념도이다.13 is a conceptual diagram illustrating a credit evaluation device that performs scorecard determination according to an embodiment of the present invention.
도 13을 참조하면, 신용 평가 장치는 스코어카드 결정부를 포함할 수 있다. Referring to FIG. 13 , the credit evaluation device may include a scorecard determining unit.
스코어카드 결정부는 스코어카드를 결정하기 위해 구현될 수 있다. 스코어 카드 결정부는 1차 후보 스코어카드 결정부(1310), 1차 후보 인공 지능 엔진 생성부(1320), 2차 후보 스코어카드 결정부(1330), 2차 후보 인공 지능 엔진 생성부(1340) 및 스코어카드 결정부(1350)를 포함할 수 있다.A scorecard determination unit may be implemented to determine a scorecard. The scorecard determining unit includes a first candidate scorecard determining unit 1310, a first candidate artificial intelligence engine generating unit 1320, a second candidate scorecard determining unit 1330, a second candidate artificial intelligence engine generating unit 1340, and A scorecard determining unit 1350 may be included.
1차 후보 스코어카드 결정부(1310)는 정확도 높은 신용 평가 데이터를 결정하기 위한 스코어카드를 결정하기 위해 복수의 신용 평가 기초 데이터를 다양하게 조합하여 서로 다른 복수의 신용 평가 기초 데이터를 포함하는 복수의 1차 후보 스코어카드를 결정할 수 있다.The primary candidate scorecard determining unit 1310 variously combines a plurality of credit evaluation basic data to determine a scorecard for determining highly accurate credit evaluation data, and includes a plurality of different credit evaluation basic data. A primary candidate scorecard can be determined.
1차 후보 인공 지능 엔진 생성부(1320)는 1차 후보 인공 지능 엔진을 생성하기 위해 구현될 수 있다. 복수의 1차 후보 스코어카드의 결정 이후, 복수의 1차 후보 스코어카드에 대응되는 신용 평가 기초 데이터가 복수의 인공 지능 엔진 각각으로 입력되고, 복수의 인공 지능 엔진 각각의 학습이 수행되고, 1차 후보 인공 지능 엔진이 결정될 수 있다.The first candidate artificial intelligence engine generation unit 1320 may be implemented to generate the first candidate artificial intelligence engine. After determining the plurality of primary candidate scorecards, the credit evaluation basic data corresponding to the plurality of primary candidate scorecards is input to each of the plurality of artificial intelligence engines, learning of each of the plurality of artificial intelligence engines is performed, and the primary A candidate artificial intelligence engine may be determined.
2차 후보 인공 지능 엔진 생성부(1340)는 1차 후보 인공 지능 엔진 중 신뢰도가 임계 신뢰도 이상인 경우, 해당 인공 지능 엔진은 2차 후보 인공 지능 엔진으로 결정될 수 있다.The secondary candidate artificial intelligence engine generating unit 1340 may determine the corresponding artificial intelligence engine as a secondary candidate artificial intelligence engine when reliability among the primary candidate artificial intelligence engines is greater than or equal to a critical reliability level.
2차 후보 스코어카드 생성부(1330)는 2차 후보 인공 지능 엔진에 대응되는 1차 후보 스코어카드에 포함되는 복수의 신용 평가 기초 데이터에 대한 가중치 조정, 스케일 조정 또는 생성 시점 조정을 수행하여 2차 후보 스코어카드를 결정할 수 있다.The secondary candidate scorecard generating unit 1330 performs weight adjustment, scale adjustment, or creation time adjustment on a plurality of credit evaluation base data included in the primary candidate scorecard corresponding to the secondary candidate artificial intelligence engine to generate secondary candidate scorecards. A candidate scorecard can be determined.
스코어카드 결정부(1350)는 2차 후보 스코어카드 중 최종적으로 사용될 스코어카드를 결정하기 위해 구현될 수 있다.The scorecard determination unit 1350 may be implemented to determine a final scorecard to be used among secondary candidate scorecards.
이상 설명된 본 발명에 따른 실시예는 다양한 컴퓨터 구성요소를 통하여 실행될 수 있는 프로그램 명령어의 형태로 구현되어 컴퓨터 판독 가능한 기록 매체에 기록될 수 있다. 상기 컴퓨터 판독 가능한 기록 매체는 프로그램 명령어, 데이터 파일, 데이터 구조 등을 단독으로 또는 조합하여 포함할 수 있다. 상기 컴퓨터 판독 가능한 기록 매체에 기록되는 프로그램 명령어는 본 발명을 위하여 특별히 설계되고 구성된 것이거나 컴퓨터 소프트웨어 분야의 당업자에게 공지되어 사용 가능한 것일 수 있다. 컴퓨터 판독 가능한 기록 매체의 예에는, 하드 디스크, 플로피 디스크 및 자기 테이프와 같은 자기 매체, CD-ROM 및 DVD와 같은 광기록 매체, 플롭티컬 디스크(floptical disk)와 같은 자기-광 매체(magneto-optical medium), 및 ROM, RAM, 플래시 메모리 등과 같은, 프로그램 명령어를 저장하고 실행하도록 특별히 구성된 하드웨어 장치가 포함된다. 프로그램 명령어의 예에는, 컴파일러에 의하여 만들어지는 것과 같은 기계어 코드뿐만 아니라 인터프리터 등을 사용하여 컴퓨터에 의해서 실행될 수 있는 고급 언어 코드도 포함된다. 하드웨어 장치는 본 발명에 따른 처리를 수행하기 위하여 하나 이상의 소프트웨어 모듈로 변경될 수 있으며, 그 역도 마찬가지이다.Embodiments according to the present invention described above may be implemented in the form of program instructions that can be executed through various computer components and recorded on a computer-readable recording medium. The computer readable recording medium may include program instructions, data files, data structures, etc. alone or in combination. Program instructions recorded on the computer-readable recording medium may be specially designed and configured for the present invention, or may be known and usable to those skilled in the art of computer software. Examples of computer-readable recording media include magnetic media such as hard disks, floppy disks and magnetic tapes, optical recording media such as CD-ROMs and DVDs, and magneto-optical media such as floptical disks. medium), and hardware devices specially configured to store and execute program instructions, such as ROM, RAM, flash memory, and the like. Examples of program instructions include high-level language codes that can be executed by a computer using an interpreter or the like as well as machine language codes generated by a compiler. A hardware device may be modified with one or more software modules to perform processing according to the present invention and vice versa.
이상에서 본 발명이 구체적인 구성요소 등과 같은 특정 사항과 한정된 실시예 및 도면에 의하여 설명되었으나, 이는 본 발명의 보다 전반적인 이해를 돕기 위하여 제공된 것일 뿐, 본 발명이 상기 실시예에 한정되는 것은 아니며, 본 발명이 속하는 기술분야에서 통상적인 지식을 가진 자라면 이러한 기재로부터 다양한 수정과 변경을 꾀할 수 있다.Although the present invention has been described above with specific details such as specific components and limited embodiments and drawings, these are only provided to help a more general understanding of the present invention, and the present invention is not limited to the above embodiments, and the present invention Those with ordinary knowledge in the technical field to which the invention belongs may seek various modifications and changes from these descriptions.
따라서, 본 발명의 사상은 상기 설명된 실시예에 국한되어 정해져서는 아니 되며, 후술하는 특허청구범위뿐만 아니라 이 특허청구범위와 균등한 또는 이로부터 등가적으로 변경된 모든 범위는 본 발명의 사상의 범주에 속한다고 할 것이다.Therefore, the spirit of the present invention should not be limited to the above-described embodiments and should not be determined, and all scopes equivalent to or equivalently changed from the claims as well as the claims described below are within the scope of the spirit of the present invention. will be said to belong to

Claims (6)

  1. 이커머스 데이터 기반 신용 평가 스코어 카드 결정 방법은, The e-commerce data-based credit rating scorecard determination method,
    1차 후보 스코어카드 결정부가 복수의 신용 평가 기초 데이터를 조합하여 서로 다른 복수의 신용 평가 기초 데이터를 포함하는 복수의 1차 후보 스코어카드를 결정하는 단계;determining a plurality of primary candidate scorecards including a plurality of different credit evaluation base data by combining a plurality of credit evaluation base data, by a primary candidate scorecard determination unit;
    1차 후보 인공 지능 엔진 생성부가 상기 복수의 1차 후보 스코어카드를 기반으로 학습된 1차 후보 인공 지능 엔진을 생성하는 단계;generating a first candidate artificial intelligence engine learned by a first candidate artificial intelligence engine generation unit based on the plurality of first candidate scorecards;
    2차 후보 인공 지능 엔진 생성부가 상기 1차 후보 인공 지능 엔진 중 신뢰도가 임계 신뢰도 이상인 인공 지능 엔진을 2차 후보 인공 지능 엔진으로 결정하는 단계;determining, by a secondary candidate artificial intelligence engine generation unit, an artificial intelligence engine having a reliability of which is greater than or equal to a critical reliability among the primary candidate artificial intelligence engines as a secondary candidate artificial intelligence engine;
    2차 후보 스코어카드 생성부가 상기 2차 후보 인공 지능 엔진에 대응되는 상기 1차 후보 스코어카드에 포함되는 상기 복수의 신용 평가 기초 데이터에 대한 가중치 조정, 스케일 조정 또는 생성 시점 조정을 수행하여 2차 후보 스코어카드를 생성하는 단계; 및A second candidate scorecard generation unit performs weight adjustment, scale adjustment, or creation time adjustment on the plurality of credit evaluation base data included in the first candidate scorecard corresponding to the second candidate artificial intelligence engine to generate a second candidate scorecard. generating a scorecard; and
    스코어카드 결정부가 상기 2차 후보 스코어카드 중 최종적으로 사용될 스코어카드를 결정하는 단계를 포함하는 것을 특징으로 하는 방법.and a scorecard determination unit determining a scorecard to be finally used among the secondary candidate scorecards.
  2. 제1항에 있어서, According to claim 1,
    상기 가중치 조정은 상기 1차 후보 스코어카드에 포함되는 상기 복수의 신용 평가 기초 데이터 각각의 중요도를 고려하여 금융 서비스 결과에 상대적으로 더 큰 영향을 끼치는 신용 평가 기초 데이터일수록 상대적으로 더 큰 가중치를 설정하여 상기 2차 후보 스코어카드를 결정하고,The weight adjustment takes into account the importance of each of the plurality of credit evaluation basic data included in the primary candidate scorecard, and sets a relatively larger weight for credit evaluation basic data that has a relatively greater impact on the financial service result determining the secondary candidate scorecard;
    상기 스케일 조정은 상기 복수의 신용 평가 기초 데이터를 분류하기 위한 범위 스케일의 조정을 기반으로 상기 2차 후보 스코어카드를 결정하는 것을 특징으로 하는 방법.Wherein the scale adjustment determines the secondary candidate scorecard based on the adjustment of a range scale for classifying the plurality of credit rating base data.
  3. 제1 항에 있어서,According to claim 1,
    상기 생성 시점 조정은 상기 복수의 신용 평가 기초 데이터의 생성 시점을 고려하여 상기 2차 후보 스코어카드를 결정하고, The generation time adjustment determines the secondary candidate scorecard in consideration of the generation time of the plurality of credit evaluation base data;
    상기 생성 시점 조정은 상기 복수의 신용 평가 기초 데이터를 관찰 기간, 스코어링 시점, 동작 기간으로 분류하고, 상기 관찰 기간과 상기 동작 기간을 서로 다르게 설정하여 상기 스코어링 시점을 복수개 설정하는 것을 특징으로 하는 방법.The creation time point adjustment comprises classifying the plurality of credit evaluation basic data into an observation period, a scoring time point, and an operation period, and setting the plurality of scoring time points by setting the observation period and the operation period differently.
  4. 이커머스 데이터 기반 신용 평가 스코어 카드 결정하는 신용 평가 장치는,The credit evaluation device that determines the e-commerce data-based credit evaluation score card,
    복수의 신용 평가 기초 데이터를 조합하여 서로 다른 복수의 신용 평가 기초 데이터를 포함하는 복수의 1차 후보 스코어카드를 결정하도록 구현되는 1차 후보 스코어카드 결정부;a primary candidate scorecard determining unit, configured to combine a plurality of credit rating base data to determine a plurality of primary candidate scorecards including a plurality of different credit rating base data;
    상기 복수의 1차 후보 스코어카드를 기반으로 학습된 1차 후보 인공 지능 엔진을 생성하도록 구현되는 1차 후보 인공 지능 엔진 생성부;a first candidate artificial intelligence engine generation unit configured to generate a first candidate artificial intelligence engine learned based on the plurality of first candidate scorecards;
    상기 1차 후보 인공 지능 엔진 중 신뢰도가 임계 신뢰도 이상인 인공 지능 엔진을 2차 후보 인공 지능 엔진으로 결정하도록 구현되는 2차 후보 인공 지능 엔진 생성부;a second candidate artificial intelligence engine generating unit configured to determine an artificial intelligence engine whose reliability is equal to or higher than a critical reliability level among the first candidate artificial intelligence engines as a secondary candidate artificial intelligence engine;
    상기 2차 후보 인공 지능 엔진에 대응되는 상기 1차 후보 스코어카드에 포함되는 상기 복수의 신용 평가 기초 데이터에 대한 가중치 조정, 스케일 조정 또는 생성 시점 조정을 수행하여 2차 후보 스코어카드를 생성하도록 구현되는 2차 후보 스코어카드 생성부; 및Implemented to generate a secondary candidate scorecard by performing weight adjustment, scale adjustment, or creation time adjustment for the plurality of credit evaluation base data included in the primary candidate scorecard corresponding to the secondary candidate artificial intelligence engine. a secondary candidate scorecard generator; and
    상기 2차 후보 스코어카드 중 최종적으로 사용될 스코어카드를 결정하도록 구현되는 스코어카드 결정부를 포함하는 것을 특징으로 하는 신용 평가 장치.and a scorecard determination unit configured to determine a scorecard to be finally used among the secondary candidate scorecards.
  5. 제4항에 있어서,According to claim 4,
    상기 가중치 조정은 상기 1차 후보 스코어카드에 포함되는 상기 복수의 신용 평가 기초 데이터 각각의 중요도를 고려하여 금융 서비스 결과에 상대적으로 더 큰 영향을 끼치는 신용 평가 기초 데이터일수록 상대적으로 더 큰 가중치를 설정하여 상기 2차 후보 스코어카드를 결정하고,The weight adjustment takes into account the importance of each of the plurality of credit evaluation basic data included in the primary candidate scorecard, and sets a relatively larger weight for credit evaluation basic data that has a relatively greater impact on the financial service result determining the secondary candidate scorecard;
    상기 스케일 조정은 상기 복수의 신용 평가 기초 데이터를 분류하기 위한 범위 스케일의 조정을 기반으로 상기 2차 후보 스코어카드를 결정하는 것을 특징으로 하는 신용 평가 장치.The scale adjustment determines the secondary candidate scorecard based on the adjustment of a range scale for classifying the plurality of credit evaluation base data.
  6. 제4항에 있어서,According to claim 4,
    상기 생성 시점 조정은 상기 복수의 신용 평가 기초 데이터의 생성 시점을 고려하여 상기 2차 후보 스코어카드를 결정하고, The generation time adjustment determines the secondary candidate scorecard in consideration of the generation time of the plurality of credit evaluation base data;
    상기 생성 시점 조정은 상기 복수의 신용 평가 기초 데이터를 관찰 기간, 스코어링 시점, 동작 기간으로 분류하고, 상기 관찰 기간과 상기 동작 기간을 서로 다르게 설정하여 상기 스코어링 시점을 복수개 설정하는 것을 특징으로 하는 신용 평가 장치.The creation time point adjustment comprises classifying the plurality of credit evaluation base data into an observation period, a scoring time point, and an operation period, and setting the observation period and the operation period differently to set a plurality of scoring time points. Device.
PCT/KR2022/020815 2022-01-12 2022-12-20 Method for determining e-commerce data-based credit assessment scorecard and device performing same method WO2023136492A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2022-0004691 2022-01-12
KR1020220004691A KR102433934B1 (en) 2022-01-12 2022-01-12 Method for determination of credit evaluation score card based on e-commerce data and apparatus for performing the method

Publications (1)

Publication Number Publication Date
WO2023136492A1 true WO2023136492A1 (en) 2023-07-20

Family

ID=83113523

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/020815 WO2023136492A1 (en) 2022-01-12 2022-12-20 Method for determining e-commerce data-based credit assessment scorecard and device performing same method

Country Status (2)

Country Link
KR (2) KR102433934B1 (en)
WO (1) WO2023136492A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102433934B1 (en) * 2022-01-12 2022-08-19 주식회사 에이젠글로벌 Method for determination of credit evaluation score card based on e-commerce data and apparatus for performing the method
KR20240139733A (en) 2023-03-15 2024-09-24 김지우 AI-based customized e-commerce data service provision system with integrated dashboard

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102005733B1 (en) * 2018-07-31 2019-07-31 (주)굿레이트 Block chain-based person-to-person financial service offering system using credit rating assessment result drawn on online big data analysis
KR102089666B1 (en) * 2019-03-14 2020-03-16 (주)디에스솔루션즈 Method for automatically aggregating and evaluating seller credit rate using big data and ai auto classification server
KR102246782B1 (en) * 2019-03-19 2021-04-29 주식회사 포스코아이씨티 System for Debt Repayment Capability Evaluation Of Corporation Including Evaluation Model Based On AI Using Commerce Data
KR20210076641A (en) * 2019-12-16 2021-06-24 박병훈 Method for providing artificial intelligence service
KR20210127512A (en) * 2020-04-14 2021-10-22 (주)푸드노트서비스 System for small business credit loan based on artificial intelligence, and method thereof
KR102433934B1 (en) * 2022-01-12 2022-08-19 주식회사 에이젠글로벌 Method for determination of credit evaluation score card based on e-commerce data and apparatus for performing the method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102005733B1 (en) * 2018-07-31 2019-07-31 (주)굿레이트 Block chain-based person-to-person financial service offering system using credit rating assessment result drawn on online big data analysis
KR102089666B1 (en) * 2019-03-14 2020-03-16 (주)디에스솔루션즈 Method for automatically aggregating and evaluating seller credit rate using big data and ai auto classification server
KR102246782B1 (en) * 2019-03-19 2021-04-29 주식회사 포스코아이씨티 System for Debt Repayment Capability Evaluation Of Corporation Including Evaluation Model Based On AI Using Commerce Data
KR20210076641A (en) * 2019-12-16 2021-06-24 박병훈 Method for providing artificial intelligence service
KR20210127512A (en) * 2020-04-14 2021-10-22 (주)푸드노트서비스 System for small business credit loan based on artificial intelligence, and method thereof
KR102433934B1 (en) * 2022-01-12 2022-08-19 주식회사 에이젠글로벌 Method for determination of credit evaluation score card based on e-commerce data and apparatus for performing the method

Also Published As

Publication number Publication date
KR20230109070A (en) 2023-07-19
KR102433934B1 (en) 2022-08-19

Similar Documents

Publication Publication Date Title
WO2023136492A1 (en) Method for determining e-commerce data-based credit assessment scorecard and device performing same method
WO2023153681A1 (en) Credit evaluation method based on end-to-end data generated during purchase, sale, inventory, logistics, distribution, and settlement of e-commerce solution, and apparatus for performing same method
WO2012070744A1 (en) System and method for supporting economic analysis of research and development technology
WO2023153692A1 (en) Method for rating credit by considering external data, and apparatus for performing same
WO2023136493A1 (en) Cb company credit evaluation model generation and management automation method and apparatus for performing same method
WO2020218838A1 (en) Method of managing real property investment, system and computer program thereof
WO2020122487A1 (en) Company bankruptcy prediction system and operating method therefor
WO2023136491A1 (en) Credit rating method based on data collected by ecommerce sales and distribution management system platform and device for performing same
WO2023153679A1 (en) Credit evaluation method based on order data generated between online sellers and consumers in oms, and apparatus for performing method
WO2023080531A1 (en) Method for evaluating values of financial model and financial data for financial service, and apparatus performing said method
CN114723543B (en) Financial archive big data management system and method for cross-border e-commerce
WO2023153680A1 (en) Method of evaluating credit on basis of data generated in e-commerce logistics movement process of wms, and device for performing same method
WO2024005370A1 (en) Method for measuring value of financial data in data economy and device for performing same
WO2023195579A1 (en) Server and method for providing recommended investment item on basis of investment portfolio of investor
Sun et al. Predictive modeling of potential customers based on the customers clickstream data: A field study
WO2022010217A1 (en) System for providing stable salary via prediction of future income
WO2022092776A1 (en) Server for providing advertising platform, and system therefor
WO2022092689A1 (en) Integrated customer response management method, and server for executing same
WO2022025639A1 (en) Method and apparatus for checking consistency of reference price calculation of fund by using artificial intelligence technology
WO2022131875A1 (en) Server and method for providing product recommendation service by using purchased item information
KR102687276B1 (en) Sales agency sales information provision method
WO2023106443A1 (en) Electronic device for providing pay-later service and method thereof
WO2024010188A1 (en) Method and system for managing multi-use or disposable containers through container unique identifier system
JP2003044667A (en) Names collection system, names collection method, storage medium with program for making computer execute processing in the system stored thereon, and information match determination device
WO2022025465A1 (en) Business opportunity information sales server for predicting purchaser value and method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22920821

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE