WO2023136459A1 - 히트 펌프 시스템 - Google Patents

히트 펌프 시스템 Download PDF

Info

Publication number
WO2023136459A1
WO2023136459A1 PCT/KR2022/018677 KR2022018677W WO2023136459A1 WO 2023136459 A1 WO2023136459 A1 WO 2023136459A1 KR 2022018677 W KR2022018677 W KR 2022018677W WO 2023136459 A1 WO2023136459 A1 WO 2023136459A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
pipe
heat exchanger
heat
water
Prior art date
Application number
PCT/KR2022/018677
Other languages
English (en)
French (fr)
Inventor
표순재
Original Assignee
삼성전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자주식회사 filed Critical 삼성전자주식회사
Publication of WO2023136459A1 publication Critical patent/WO2023136459A1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • F25B47/022Defrosting cycles hot gas defrosting
    • F25B47/025Defrosting cycles hot gas defrosting by reversing the cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D19/00Details
    • F24D19/10Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D19/00Details
    • F24D19/10Arrangement or mounting of control or safety devices
    • F24D19/1006Arrangement or mounting of control or safety devices for water heating systems
    • F24D19/1009Arrangement or mounting of control or safety devices for water heating systems for central heating
    • F24D19/1039Arrangement or mounting of control or safety devices for water heating systems for central heating the system uses a heat pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D3/00Hot-water central heating systems
    • F24D3/18Hot-water central heating systems using heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • F25B25/005Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00 using primary and secondary systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/02Heat pumps of the compression type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0409Refrigeration circuit bypassing means for the evaporator

Definitions

  • the present disclosure relates to a heat pump system, and more particularly, to an air-to-water (ATW) heat pump system in which external air is a heat source.
  • ATW air-to-water
  • a heat pump system may include a refrigerant cycle including a compressor, an expansion device, an outdoor heat exchanger, and a refrigerant pipe, and a water series cycle including a terminal such as a radiator, a buffer tank, a backup heater, and water pipes.
  • the refrigerant cycle that absorbs heat from the outside air can transfer heat to the water-based cycle.
  • a fin-and-tube type heat exchanger which is an outdoor heat exchanger capable of exchanging heat with external air, may be disposed in the refrigerant cycle.
  • a plate type heat exchanger capable of exchanging heat may be disposed between the refrigerant cycle and the water cycle.
  • frost which is a phenomenon in which water vapor is condensed and frozen and attached to the surface of a refrigerant pipe, may occur.
  • the heat pump system may require a defrost operation. In this case, low-pressure and low-temperature refrigerant flows into the plate heat exchanger during the defrosting operation, and freezing and bursting may occur.
  • One aspect provides a heat pump system including a structure for preventing a low-temperature, low-pressure refrigerant from flowing into a plate heat exchanger during a defrosting operation.
  • Another aspect provides a heat pump system capable of obtaining heat required for defrosting, including a coil type heat exchanger capable of heat-exchanging water and refrigerant flowing in a water pipe by bypassing the plate heat exchanger during defrosting operation.
  • a heat pump system includes a compressor provided to compress a refrigerant, a first heat exchanger configured to exchange heat between the refrigerant and air, a second heat exchanger configured to exchange heat between the refrigerant and water, and the first A first refrigerant pipe through which the refrigerant heat-exchanged in the first heat exchanger is discharged during a defrosting operation of the heat exchanger, a second refrigerant pipe guiding the refrigerant from the first refrigerant pipe to the second heat exchanger, and the second refrigerant A third refrigerant pipe through which refrigerant introduced into the second heat exchanger through a pipe and heat-exchanged in the second heat exchanger is discharged, a first water pipe for supplying water to be heat exchanged in the second heat exchanger, and the second heat exchanger A second water pipe for returning water exchanged in the heat exchanger, a bypass pipe for connecting the first refrigerant pipe and the third refrigerant pipe to bypass the second heat exchanger, and a
  • a fourth refrigerant pipe having one side connected to the bypass pipe and moving the refrigerant heat-exchanged by the third heat exchanger to the compressor may be further included.
  • the third refrigerant pipe may be connected to the fourth refrigerant pipe at an upstream side of the third heat exchanger so that the refrigerant discharged from the third refrigerant pipe passes through the third heat exchanger.
  • the bypass tube may further include a capillary tube disposed in the bypass tube to expand the refrigerant flowing in the bypass tube, and an opening/closing valve opening and closing the bypass tube.
  • the opening/closing valve may be disposed upstream of the capillary tube with respect to a moving direction of the refrigerant flowing in the bypass tube.
  • the opening/closing valve may include a solenoid valve.
  • a capillary tube provided in the first refrigerant tube may be further included.
  • the third heat exchanger may include a coil type heat exchanger surrounding an outer circumference of the second water pipe.
  • Different defrosting modes may be performed based on the temperature of the water flowing in the first water pipe.
  • a bypass defrost mode is performed, and in the bypass defrost mode, the refrigerant in the first refrigerant pipe passes through the bypass pipe to perform the third heat exchange. can be guided.
  • the second refrigerant pipe is closed and the refrigerant in the bypass pipe may be expanded by the capillary.
  • a normal defrost mode is performed, and in the normal defrost mode, the refrigerant in the first refrigerant pipe passes through the second refrigerant pipe to the second heat exchanger. can be guided.
  • the bypass pipe In the normal defrosting mode, the bypass pipe is closed and the refrigerant in the second refrigerant pipe may be expanded by an expansion valve.
  • the first heat exchanger may include a fin-tube heat exchanger
  • the second heat exchanger may include a plate heat exchanger
  • a heat pump system includes a compressor provided to compress a refrigerant, a first heat exchanger configured to heat-exchange the refrigerant and air, and configured to heat-exchange the refrigerant and water heat-exchanged by the first heat exchanger.
  • a second heat exchanger a first water pipe for guiding water to be heat exchanged in the second heat exchanger, a second water pipe for guiding the water heat exchanged in the second heat exchanger to the outside, and defrosting for the first heat exchanger.
  • the bypass tube may further include a capillary tube disposed in the bypass tube to expand the refrigerant flowing in the bypass tube, and an opening/closing valve opening and closing the bypass tube.
  • the second refrigerant pipe expands the refrigerant flowing in the second refrigerant pipe and further includes an expansion valve capable of opening and closing the second refrigerant pipe, and the one end of the bypass pipe is interposed between the first heat exchanger and the expansion valve. Is connected to, the other end may be connected to the third refrigerant pipe and the fourth refrigerant pipe between the second heat exchanger and the third heat exchanger.
  • the third heat exchanger may include a coil type heat exchanger surrounding an outer circumference of the second water pipe.
  • a heat pump system includes a compressor provided to compress a refrigerant, a first heat exchanger configured to exchange heat between the refrigerant and air, a second heat exchanger configured to exchange heat between the refrigerant and water, and the A first refrigerant pipe through which the refrigerant heat-exchanged in the first heat exchanger is discharged during a defrosting operation for the first heat exchanger, a second refrigerant pipe guiding the refrigerant from the first refrigerant pipe to the second heat exchanger, 2 A third refrigerant pipe through which the refrigerant heat-exchanged in the heat exchanger is discharged, an expansion valve that expands the refrigerant flowing in the second refrigerant pipe and opens and closes the second refrigerant pipe, and water so as to exchange heat in the second heat exchanger.
  • a first water pipe for supplying, a second water pipe for returning water exchanged in the second heat exchanger, a third heat exchanger configured to exchange heat between water flowing in the second water pipe and the refrigerant, and the A bypass pipe connecting the first refrigerant pipe and the third refrigerant pipe to bypass the second heat exchanger and guiding the refrigerant heat-exchanged by the first heat exchanger to the third heat exchanger may be included.
  • a heat pump system including a structure capable of bypassing a plate heat exchanger provided to heat exchange water and a refrigerant during a defrosting operation may be provided.
  • a heat pump system capable of obtaining heat required for defrosting during a defrosting operation may be provided by including a coil type heat exchanger provided to exchange heat between water and a refrigerant separately from a plate type heat exchanger.
  • FIG. 1 is a schematic diagram showing a heat pump system according to an example.
  • FIG. 2 is a schematic diagram illustrating a flow of a refrigerant flowing in a heat pump system in a bypass defrosting mode according to an example.
  • FIG. 3 is a schematic diagram illustrating a flow of a refrigerant flowing in a heat pump system in a normal defrosting mode according to an example.
  • FIG. 4 is a schematic diagram showing the flow of water flowing in the heat pump system in a bypass defrost mode and a normal defrost mode according to an example.
  • FIG. 5 is a schematic diagram illustrating a third heat exchanger and a second water pipe of the heat pump system according to an example.
  • FIG. 6 is a block diagram according to a defrosting mode of a heat pump system according to an example.
  • FIG. 7 is a schematic diagram illustrating flows of a refrigerant and water during a heating operation of a heat pump system according to an example.
  • FIG. 8 is a schematic diagram illustrating flows of refrigerant and water during a cooling operation of a heat pump system according to an example.
  • first and second used herein may be used to describe various components, but the components are not limited by the terms, and the terms It is used only for the purpose of distinguishing one component from another.
  • a first element may be termed a second element, and similarly, a second element may be termed a first element, without departing from the scope of the present invention.
  • the term “and/or” includes any combination of a plurality of related listed items or any of a plurality of related listed items.
  • the heat pump system 1 may include an outdoor unit (not shown) disposed in an outdoor space and thermal load units T1, T2, and T3 disposed in a space or device requiring cold or warm air. there is.
  • the heat pump system 1 may include an intermediate unit (not shown) to distribute and supply cool air and warm air generated from the outdoor unit to the heat load units T1 , T2 , and T3 .
  • the heat pump system 1 may include a refrigerant cycle 10 flowing in the outdoor unit and a water cycle 50 in which water exchanged with the refrigerant of the refrigerant cycle 10 flows. Water heat-exchanged with the refrigerant of the refrigerant cycle 10 may be supplied to the heat load units T1 , T2 , and T3 .
  • the heat load units T1, T2, and T3 may be terminals, and the terminals may be radiators or the like.
  • the outdoor unit operates as a heat source using refrigerant heat-exchanged with external air, and supplies cold or warm air to the heat load units T1, T2, and T3 through the intermediate unit.
  • the outdoor unit may be placed in an outdoor space, such as a roof of a building or a veranda.
  • the refrigerant cycle 10 in which the refrigerant in the outdoor unit flows and the water-based cycle 50 in which the refrigerant and heat-exchanged water of the refrigerant cycle 10 flow flow may be disposed adjacent to each other or in a separate space.
  • the refrigerant cycle 10 and the water cycle 50 may exchange heat through the second heat exchanger 30 and the third heat exchanger 40 .
  • the heat pump system 1 may perform a cooling mode in which cold water is delivered to the heat load units T1 , T2 , and T3 , or a heating mode in which hot water is delivered to the heat load units T1 , T2 , and T3 , depending on the purpose.
  • the heat pump system 1 obtains a heat source from the first heat exchanger 20 that exchanges heat with external air and transfers heat to water through the second heat exchanger 30 and the third heat exchanger 40 (ATW (Air Air) to water) may be a heat pump system.
  • ATW Air Air
  • the heat pump system 1 may be operated according to a defrost mode to prevent frost that may occur in the first heat exchanger 20, which is an outdoor heat exchanger.
  • the first heat exchanger 20 may be provided so that the high-pressure and high-temperature refrigerant flows into the first heat exchanger 20 .
  • the refrigerant cycle 10 may be a closed cycle in which the refrigerant flows.
  • the refrigerant cycle 10 includes a compressor 13 provided to compress the refrigerant and an accumulator 12 arranged adjacent to the compressor 13 to accumulate a certain amount of refrigerant and discharging the refrigerant to the compressor 13 side as needed.
  • the refrigerant cycle 10 may include a first heat exchanger 20 configured to exchange heat between external air and the refrigerant.
  • the first heat exchanger 20 may be a fin-tube type heat exchanger 20 .
  • the refrigerant cycle 10 may include a second heat exchanger 30 configured to exchange heat between the refrigerant flowing in the refrigerant cycle 10 and the water flowing in the water-based cycle 50 .
  • the second heat exchanger 30 may be a plate type heat exchanger 30 .
  • the refrigerant cycle 10 may include a third heat exchanger 40 provided to exchange heat between water and the refrigerant of the water-based cycle 50 separately from the second heat exchanger 30 .
  • the third heat exchanger 40 may be a coil type heat exchanger 40 .
  • the first heat exchanger 20 and the second heat exchanger 30 may be connected by a first refrigerant pipe P1 and a second refrigerant pipe P2.
  • the refrigerant that has exchanged heat with air as an external heat source in the first heat exchanger 20 may be discharged through the first refrigerant pipe P1.
  • the second refrigerant pipe (P2) is connected to the first refrigerant pipe (P1) to allow the refrigerant discharged from the first heat exchanger (20) to flow into the second heat exchanger (30) through the first refrigerant pipe (P1). there is.
  • the refrigerant cycle 10 may include a third refrigerant pipe P3 through which refrigerant heat-exchanged with water flowing in the water-based cycle 50 in the second heat exchanger 30 is discharged.
  • the fourth refrigerant pipe P4 may be connected to the third refrigerant pipe P3 so that the refrigerant flows toward the accumulator 12 and the compressor 13.
  • a four-way valve 11 may be disposed on one side of the fourth refrigerant pipe P4.
  • the four-way valve 11 may switch the passage of the refrigerant flowing in the fourth refrigerant pipe P4 and/or the refrigerant discharged from the compressor 13 .
  • the four-way valve 11 can change the direction of the passage through which the refrigerant heat-exchanged in the second heat exchanger 20 flows even in the case of a cooling operation.
  • the four-way valve 11 and the accumulator 12 may be connected by a fifth refrigerant pipe P5.
  • the accumulator 12 and the compressor 13 may be connected by a sixth refrigerant pipe P6.
  • the sixth refrigerant pipe (P6) may flow the refrigerant from the accumulator 12 side to the compressor 13 side.
  • a seventh refrigerant pipe (P7) may be disposed between the compressor 13 and the four-way valve 11, and an eighth refrigerant pipe (P8) may be disposed between the four-way valve 11 and the second heat exchanger 20.
  • the four-way valve 11 is connected to the fourth refrigerant pipe (P4), the fifth refrigerant pipe (P5), the seventh refrigerant pipe (P7), and the eighth refrigerant pipe (P8) to change the direction of each flow path.
  • a catalog may be prepared.
  • a first capillary tube 14 may be disposed in the first refrigerant tube P1, and the first capillary tube 14 may improve branching of the refrigerant flowing in the first refrigerant tube P1. More specifically, a plurality of refrigerant tubes may be provided in the first heat exchanger 20 , and refrigerant discharged from the plurality of refrigerant tubes may be branched by the first capillary tube 14 . In addition, the first capillary tube 14 may expand the refrigerant flowing in the first refrigerant tube P1.
  • An expansion valve 16 provided to open and close the second refrigerant pipe P2 while expanding the refrigerant flowing in the second refrigerant pipe P2 may be disposed in the second refrigerant pipe P2.
  • Expansion valve 16 may be an electronic expansion valve (EEV).
  • a pair of strainers 15 may be disposed before and after the expansion valve 16 in the flow direction of the second refrigerant pipe P2.
  • the strainer 15 may be a device for filtering a bulky material flowing in the second refrigerant pipe (P2).
  • the refrigerant cycle 10 may include a bypass pipe BP connecting the first refrigerant pipe P1 and the third refrigerant pipe P3 to bypass the second heat exchanger 30 .
  • One end (C1) of the bypass pipe (BP) is connected to the first refrigerant pipe (P1) between the first heat exchanger 20 and the expansion valve 16, and the other end (C2) is connected to the third refrigerant pipe (P3). can be connected to
  • An on/off valve 17 capable of opening and closing the bypass pipe BP and a second capillary tube 18 expanding the refrigerant flowing in the bypass pipe BP may be disposed in the bypass pipe BP.
  • the opening/closing valve 17 may be disposed upstream of the second capillary tube 18 with respect to the direction of the refrigerant flowing through the bypass tube BP.
  • the opening/closing valve 17 may be a solenoid valve 17 .
  • One side of the fourth refrigerant pipe (P4) may be connected to the bypass pipe (BP), and the other side of the fourth refrigerant pipe (P4) may be connected to the four-way valve (11).
  • the fourth refrigerant pipe (P4) can move the refrigerant heat-exchanged by the third heat exchanger 40 to the compressor 13, and moves the refrigerant compressed by the compressor 13 to the third heat exchanger 40. can make it
  • the third refrigerant pipe (P3) may be connected to the fourth refrigerant pipe (P4) so that the refrigerant heat-exchanged by the second heat exchanger (30) passes through the third heat exchanger (40). That is, the third refrigerant pipe (P3) may be connected to the bypass pipe (BP) and the fourth refrigerant pipe (P4) at the other end (C2) of the bypass pipe (BP).
  • the water series cycle 50 returns the water heat-exchanged in the first water pipe W1 and the second heat exchanger 30 for supplying water to the second heat exchanger 30 so that the water is exchanged in the second heat exchanger 30.
  • It may include a second water pipe (W2) to.
  • the second water pipe W2 may supply water discharged from the second heat exchanger 30 to the heat load units T1, T2, and T3.
  • the second water pipe W2 may contact the third heat exchanger 40 in which the refrigerant and water of the refrigerant cycle 10 exchange heat.
  • a portion of the fourth refrigerant pipe (P4) may be provided to surround the outer circumference (80, see FIG. 5) of the second water pipe (W2).
  • a first safety valve 57, an expansion tank 58, and an air vent 59 may be disposed in the second water pipe W2.
  • the first safety valve 57 may be a water pressure safety device provided to open and close the second water pipe W2.
  • the expansion tank 58 can absorb a volume that changes depending on the temperature of the liquid in the second water pipe W2.
  • the expansion tank 58 can absorb the changing water in the second water pipe W2 to prevent overflow or intrusion of air.
  • the air vent 59 may be a device that extracts an amount of air that may be present in the second water pipe W2 to the outside of the second water pipe W2.
  • the water series cycle 50 includes a flow sensor 60 for measuring the flow rate of water flowing in the second water pipe W2 and a first valve 61 capable of opening and closing the second water pipe W2 by the flow sensor 60 ) may be included.
  • An electric heater (BUH, 62) as an auxiliary heat source and a buffer tank (Buffer Tank, 52) may be placed.
  • the electric heater 62 may be disposed in the second water pipe W2 and used as a heat source in emergency use, and may additionally be a device for enhancing heating performance for the heat load units T1, T2, and T3.
  • Water flowing in the second water pipe W2 passing through the electric heater 62 and the buffer tank 52 may be distributed through a distributor 63 . Some of the water passing through the distributor 63 may be distributed to the thermal load units T1, T2, and T3.
  • the thermal load units T1 , T2 , and T3 may include a first thermal load unit T1 , a second thermal load unit T2 , and a third thermal load unit T3 , respectively. Some of the water passing through the distributor 63 may be guided to the first heat load unit T1 by the first branch pipe W4-1 of the fourth water pipe W4. Similarly, part of the water flowing in the second water pipe W2 is transferred to the second heat load unit (W4-2) and the third branch pipe (W4-3) of the fourth water pipe (W4), respectively. T2) and the third heat load unit T3.
  • the first branch pipe (W4-1), the second branch pipe (W4-2), and the third branch pipe (W4-3) of the fourth water pipe (W4) meet each other at the connection point (CP) to the fourth water pipe ( W4) can be connected. That is, the first branch pipe (W4-1) to the third branch pipe (W4-3) may supply water to the first heat load unit (T1) to the third heat load unit (T3), respectively, and the first heat load unit ( Water used in T1) to third heat load units T3 may be recovered.
  • the remaining water distributed by the distributor 63 may pass through the third water pipe W3 and be guided to the first water pipe W1.
  • a second safety valve 64 corresponding to the first safety valve 57 may be disposed in the third water pipe W3.
  • a second valve 65 capable of opening and closing the third water pipe W3 may be disposed in the third water pipe W3.
  • the fourth water pipe W4 and the third water pipe W3 may be connected to the first water pipe W1. Water flowing in the fourth water pipe W4 and the third water pipe W3 may be guided to the first water pipe W1.
  • the first water pipe W1 through which the water pumped by the first pump 51 flows may be opened and closed by the third valve 53 .
  • the first water pipe W1 through which the water passing through the third valve 53 flows may include a strainer 54 provided to filter bulky foreign substances in the first water pipe W1.
  • a manometer 55 measures the pressure of the first water pipe W1 through which the water filtered out of foreign matter flows, and the water that exchanges heat with the refrigerant at the second heat exchanger 30 side is converted into a second water cycle.
  • a second pump 56 supplying heat to the heat exchanger 30 may be included.
  • the manometer 55 may be disposed upstream of the second pump 56 relative to the flow direction of water.
  • Figure 2 is a schematic diagram showing the flow of the refrigerant flowing in the refrigerant cycle 10 according to the bypass defrosting mode.
  • Figure 3 is a schematic diagram showing the flow of the refrigerant flowing in the refrigerant cycle 10 according to the general defrosting mode.
  • 4 is a schematic diagram showing the flow of water flowing in the water-based cycle 50 according to the bypass defrosting mode and the normal defrosting mode.
  • the heat pump system 1 may perform different defrosting modes based on the temperature of water flowing in the first water pipe W1 .
  • an operation performed when the water flowing in the first water pipe W1 is higher than a predetermined temperature may be defined as a general defrosting mode.
  • An operation performed when the water flowing in the first water pipe W1 is lower than a predetermined temperature may be defined as a biped defrosting mode.
  • the predetermined temperature may be 15 degrees Celsius.
  • the defrosting mode may be a mode in which high-pressure and high-temperature refrigerant is introduced into the first heat exchanger 20 to prevent frost that may occur on the surface of the first heat exchanger 20, which may be an outdoor heat exchanger.
  • the refrigerant in the sixth refrigerant pipe P6 is compressed by the compressor 13 to become a refrigerant of relatively high pressure and high temperature.
  • the refrigerant compressed by the compressor 13 flows in the seventh refrigerant pipe P7 and may be guided to the first heat exchanger 20 through the eighth refrigerant pipe P8 by the four-way valve 11.
  • the first heat exchanger 20 may be an outdoor heat exchanger, in the case of a defrosting mode, high-pressure and high-temperature refrigerant may be introduced to prevent frost that may occur on the surface of the first heat exchanger 20 .
  • the refrigerant heat-exchanged in the first heat exchanger 20 may be discharged through the first refrigerant pipe P1.
  • the refrigerant in the eighth refrigerant pipe P8 flowing into the first heat exchanger 20 may have a relatively higher pressure and higher temperature than the refrigerant in the first refrigerant pipe P1 discharged from the first heat exchanger 20 .
  • the refrigerant flowing in the first refrigerant pipe (P1) may flow into the bypass pipe (BP) through one end (C1) of the bypass pipe (BP).
  • the expansion valve 16 may close the second refrigerant pipe P2.
  • the opening/closing valve 17 may open the bypass pipe (BP).
  • the opening/closing valve 17 opens the bypass pipe BP to allow the refrigerant to flow.
  • the refrigerant flowing in the bypass tube BP may be expanded by the second capillary tube 18 .
  • the refrigerant supplied to the second capillary tube 18 may have a higher pressure and higher temperature than the refrigerant discharged from the second capillary tube 18 . That is, the pressure of the refrigerant may drop through the second capillary tube 18 .
  • the refrigerant having a relatively lower pressure and lower temperature than the refrigerant flowing in the first refrigerant pipe P1 may be guided to the fourth refrigerant pipe P4 through the other end C2 of the bypass pipe BP.
  • the low-pressure/low-temperature refrigerant flowing in the fourth refrigerant pipe (P4) by the third heat exchanger (40) that may be disposed in the fourth refrigerant pipe (P4) exchanges heat with water flowing in the second water pipe (W2).
  • some heat required for defrosting can be absorbed from the water cycle 50.
  • the heat pump system 1 can absorb the amount of heat through the third heat exchanger 40 without passing through the second heat exchanger 30, thereby obtaining the amount of heat required for defrosting while using the second heat exchanger. (30) can prevent freezing and bursting.
  • the refrigerant flowing in the fourth refrigerant pipe P4 is switched to the fifth refrigerant pipe P5 by the four-way valve 11 and guided to the sixth refrigerant pipe P6 via the accumulator 12.
  • the refrigerant heat-exchanged in the first heat exchanger 20 may flow into the second refrigerant pipe P2 via the first refrigerant pipe P1.
  • the expansion valve 16 may open the second refrigerant pipe P2.
  • the opening/closing valve 17 may close the bypass pipe BP.
  • the expansion valve 16 may expand the refrigerant flowing in the second refrigerant pipe P2. That is, the refrigerant flowing in the second refrigerant pipe (P2) can be guided to the second heat exchanger (30) side while the pressure is lowered and the temperature is lowered by the expansion valve (16), and the second heat exchanger (30) In the refrigerant may be heat exchanged with water introduced from the first water pipe (W1). The refrigerant heat-exchanged in the second heat exchanger 30 may flow to the fourth refrigerant pipe P4 through the third refrigerant pipe P3.
  • the refrigerant in the second refrigerant pipe P2 supplied to the second heat exchanger 30 may have a lower pressure and lower temperature than the refrigerant in the third refrigerant pipe P3 discharged from the second heat exchanger 30 . That is, the temperature and pressure of the refrigerant heat-exchanged in the second heat exchanger 30 may increase.
  • the refrigerant introduced into the fourth refrigerant pipe (P4) may exchange heat with water flowing in the second water pipe (W2) through the third heat exchanger (40).
  • the refrigerant heat-exchanged by the third heat exchanger 40 may absorb heat from the water-based cycle 50 .
  • the refrigerant heat-exchanged in the third heat exchanger 40 has a flow path switched by the four-way valve 11 and passes through the fifth refrigerant pipe P5 to the accumulator 12 and the sixth refrigerant pipe P6 to the compressor 13 ) can enter.
  • the heat pump system 1 capable of performing the bypass defrosting mode and the normal defrosting mode according to the temperature of the water flowing in the first water pipe W1 has higher system efficiency than the heat pump system performing one mode. can increase
  • the flow directions of water in the water series cycle 50 may not be different from each other. That is, water of the water series cycle 50 may flow into the second heat exchanger 30 and be discharged from the second heat exchanger 30 through the second water pipe W2. However, in the case of the bypass defrosting mode, there may be no temperature difference between the water supplied to the second heat exchanger 30 and the water discharged. In the case of the general defrost mode, the water supplied to the second heat exchanger 30 may have a higher pressure and higher temperature than the water discharged from the second heat exchanger 30 .
  • the water supplied to the third heat exchanger 40 may have a higher pressure and higher temperature than the water heat-exchanged by the third heat exchanger 40 .
  • the water discharged from the second heat exchanger 30 enters the fourth refrigerant pipe P4 through the third heat exchanger 40 formed to surround the outer circumference (80, see FIG. 5) of the second water pipe W2. It can exchange heat with the flowing refrigerant.
  • the refrigerant flowing in the second water pipe (W2) passing through the third heat exchanger (40) is connected to the first safety valve (57), the expansion tank (58), the air vent (59), and the flow sensor (60). It can be moved to the side of the second water pipe (W2). Thereafter, the refrigerant can absorb heat from the electric heater 62 as an auxiliary heat source, pass through the buffer tank 52, and be guided to the distributor 63 to be guided to the heat load units T1, T2, and T3. In the defrosting mode, the electric heater 62 may transfer heat to maintain water temperature to water flowing in the second water pipe W2. Also, the buffer tank 52 may be provided to store heat and be used for defrosting.
  • Water in the first water pipe W1 is pumped by the first pump 51 and may be guided to the second pump 56 via the buffer tank 52 and the third valve 53. Water in the first water pipe W1 pumped by the second pump 56 may be introduced into the second heat exchanger 30 again.
  • the third heat exchanger 40 may be formed to surround the outer circumference 80 of the second water pipe W2.
  • the outer circumference 80 may be the outer circumferential surface 80 of the second water pipe W2. According to this structure, the water flowing in the second water pipe (W2) and the refrigerant flowing in the fourth refrigerant pipe (P4) can exchange heat with each other.
  • the third heat exchanger 40 may be a coil type heat exchanger 40, and the heat exchange rate may vary depending on the material, thickness, and contact area of the coil. As the heat exchange rate increases, the number of times the coil surrounds the second water pipe W2 may decrease.
  • the amount of heat required in the defrosting mode may be approximately 20% of the capacity of the product, and 13% of this 20% heat amount may be used in the compressor 13, and the remaining 7% may be used in the first heat exchanger 20.
  • the heat pump system 1 (see FIG. 1 ) includes a sensor unit 100 that measures the temperature of water flowing in the first water pipe W1 and an expansion valve 16 according to the sensor unit 100. And it may include a control unit 200 that operates the on-off valve 17.
  • the sensor unit 100 may measure the water temperature flowing into the second heat exchanger 30 within the first water pipe W1, and the control unit 200 may determine if the water temperature is higher than a predetermined temperature or It can be controlled differently depending on the low case.
  • control unit 200 causes the expansion valve 16 to open the second refrigerant pipe P2 according to the general defrosting mode when the water temperature is higher than the predetermined temperature, and the on-off valve 17 to open the second refrigerant pipe P2.
  • the bypass pipe (BP) may be closed.
  • control unit 200 causes the expansion valve 16 to close the second refrigerant pipe P2 according to the bypass defrosting mode when the water temperature is lower than the predetermined temperature, and the on-off valve 17 to bypass The pass pipe BP can be opened.
  • FIG. 7 is a schematic diagram showing flows of refrigerant and water in a general heating mode of the heat pump system 1 according to an example.
  • air and refrigerant which are external heat sources, may be provided to exchange heat in the first heat exchanger 20 .
  • the first refrigerant pipe (P1) for supplying refrigerant to exchange heat in the first heat exchanger (20) and the eighth refrigerant pipe (P8) for discharging the refrigerant exchanged in the first heat exchanger (20) are the first heat exchanger (20).
  • the refrigerant flowing in the eighth refrigerant pipe P8 may have a relatively higher pressure and higher temperature than the refrigerant flowing in the first refrigerant pipe P1.
  • the refrigerant in the eighth refrigerant pipe (P8) flows into the accumulator 12 through the fifth refrigerant pipe (P5) by the four-way valve (11) and flows into the compressor (13) through the sixth refrigerant pipe (P6).
  • the refrigerant compressed by the compressor 13 may be guided to the fourth refrigerant pipe P4 by the four-way valve 11 via the seventh refrigerant pipe P7.
  • the refrigerant flowing in the fourth refrigerant pipe (P4) can exchange heat with water flowing in the second water pipe (W2) by the third heat exchanger (40).
  • the refrigerant heat-exchanged by the third heat exchanger 40 may be supplied to the second heat exchanger 30 through the third refrigerant pipe P3. Thereafter, the refrigerant heat-exchanged in the second heat exchanger 30 may flow into the second refrigerant pipe P2 and flow toward the first heat exchanger 20 through the first refrigerant pipe P1.
  • the pressure and temperature of the refrigerant flowing in the fourth refrigerant pipe P4, the third refrigerant pipe P3, and the second refrigerant pipe P2 may sequentially drop. This is because heat is transferred from the refrigerant cycle 10 side to the water series cycle 50 side by the third heat exchanger 40 and the second heat exchanger 30 .
  • the water in the first water pipe (W1) and the water in the second water pipe (W2) flowing into the third heat exchanger (40) and the water in the second water pipe (W2) discharged from the third heat exchanger (40) Water can sequentially increase its pressure and temperature.
  • the water in the second water pipe W2 exchanged heat by the second heat exchanger 30 and the third heat exchanger 40 may supply heat to the heat load units T1 , T2 , and T3 .
  • the returned water in the fourth water pipe W4 and the third water pipe W3 passes through the first pump 51 and the second pump 56. It may be supplied to the first heat exchanger 30 side again.
  • FIG. 8 is a schematic diagram showing flows of refrigerant and water in a general cooling mode of the heat pump system 1 according to an example.
  • air and refrigerant which are external heat sources, may be provided to exchange heat in the first heat exchanger 20 . That is, the high-pressure and high-temperature refrigerant compressed in the compressor 13 is changed in the direction of the flow path by the seventh refrigerant pipe P7 and the four-way valve 11, and passes through the eighth refrigerant pipe P8 to the first heat exchanger ( 20) can be supplied sideways.
  • the refrigerant heat-exchanged in the first heat exchanger 20 may be discharged to the first refrigerant pipe P1.
  • the refrigerant flowing in the first refrigerant pipe (P1) may be introduced into the second refrigerant pipe (P2) and introduced into the second heat exchanger (30) while the pressure is dropped by the expansion valve.
  • the refrigerant heat-exchanged with water in the water-based cycle 50 in the second heat exchanger 30 may flow toward the third refrigerant pipe P3 and the fourth refrigerant pipe P4.
  • the refrigerant While passing through the fourth refrigerant pipe (P4), the refrigerant may absorb heat from the water flowing in the second water pipe (W2) by the third heat exchanger (40).
  • the temperature of the refrigerant flowing in the second refrigerant pipe (P2), the third refrigerant pipe (P3) and the fourth refrigerant pipe (P4) can be sequentially increased.
  • the refrigerant heat-exchanged in the third heat exchanger 40 may be guided toward the four-way valve 11 at a relatively higher pressure and higher temperature than the refrigerant in the third refrigerant pipe P3.
  • the refrigerant in the fourth refrigerant pipe P4 passes through the fifth refrigerant pipe P5, the accumulator 12, and the sixth refrigerant pipe P6 by the four-way valve 11, and the pressure is increased again by the compressor 13. It can be.
  • the water in the first water pipe W1 passes through the second heat exchanger 30 and the third heat exchanger 40, and the pressure and temperature of the water drop through the second water pipe. (W2) can be guided into. Thereafter, the water in the second water pipe W2 may transfer cold water to the heat load units T1, T2, and T3 via the distributor 63, and the water heat-exchanged by the heat load units T1, T2, and T3 may be transferred to the fourth It can be guided to the water pipe (W4).
  • the water in the fourth water pipe (W4) and the third water pipe (W3) is guided to the first water pipe (W1) again, and the first heat exchanger (30) by the first pump (51) and the second pump (56). ) can be supplied.
  • the refrigerant cycle 10 and the water cycle 50 may exchange heat through the third heat exchanger 40 . According to this structure, efficiency can be increased not only in the defrosting mode but also in the heating mode or cooling mode.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

히트 펌프 시스템은 열원이 공기인 시스템으로 냉매를 압축시키도록 마련되는 압축기와, 냉매와 공기를 열교환시키도록 구성되는 제1 열교환기와, 냉매와 물을 열교환시키도록 구성되는 제2 열교환기와, 제1 열교환기에 대한 제상 운전 시에 제1 열교환기에서 열교환된 냉매가 배출되는 제1 냉매관 및 제1 냉매관으로부터 제2 열교환기로 냉매를 안내하는 제2 냉매관을 포함할 수 있다. 히트 펌프 시스템은 제2 냉매관을 통해 제2 열교환기로 유입되어 제2 열교환기에서 열교환된 냉매가 배출되는 제3 냉매관과 제2 열교환기에서 열교환되도록 물을 공급하는 제1 수배관과, 제2 열교환기에서 열교환된 물을 환수하는 제2 수배관과. 제2 열교환기를 바이패스하도록 제1 냉매관 및 제3 냉매관을 연결시키는 바이패스관 및 제상 운전 시에 바이패스관에 의해 안내된 냉매를 제2 수배관 내에 유동하는 물과 열교환시키도록 마련되는 제3 열교환기을 더 포함할 수 있다.

Description

히트 펌프 시스템
본 개시는 히트 펌프 시스템에 관한 것으로 보다 상세하게는 외부의 공기가 열원인 ATW(Air To Water) 히트 펌프 시스템에 관한 것이다.
일반적으로 히트 펌프 시스템은 압축기, 팽창 장치, 실외 열교환기, 냉매관을 포함하는 냉매 사이클과 라디에이터 등 터미널, 완충 탱크, 백업 히터, 수배관을 포함하는 수 계열 사이클을 포함할 수 있다.
외부의 공기로부터 열을 흡수한 냉매 사이클은 수 계열 사이클에 열을 전달할 수 있다. 냉매 사이클에는 외부의 공기와 열교환이 이루어질 수 있는 실외 열교환기인 핀-튜브형 열교환기가 배치될 수 있다. 냉매 사이클과 수 계열 사이클 사이에는 열교환이 이루어질 수 있는 판형 열교환기가 배치될 수 있다.
실외 열교환기에서는 수증기가 응축 동결되어 냉매관의 표면에 부착되는 현상인 착상이 발생할 수 있는데, 이러한 착상을 방지하기 위하여 히트 펌프 시스템은 제상 운전이 필요할 수 있다. 이 경우 제상 운전 중 판형 열교환기에 저압·저온의 냉매가 유입되어 동파가 발생할 수 있다.
일 측면은 제상 운전시에 판형 열교환기에 저온·저압의 냉매가 유입되는 것을 방지하는 구조를 포함하는 히트 펌프 시스템을 제공한다.
다른 측면은 제상 운전시에 판형 열교환기를 바이패스하여 수배관 내에 유동하는 물과 냉매를 열교환시킬 수 있는 코일형 열교환기를 포함하여 제상에 필요한 열량을 얻을 수 있는 히트 펌프 시스템을 제공한다.
일례에 따른 히트 펌프 시스템은 냉매를 압축시키도록 마련되는 압축기와, 상기 냉매와 공기를 열교환시키도록 구성되는 제1 열교환기와, 상기 냉매와 물을 열교환시키도록 구성되는 제2 열교환기와, 상기 제1 열교환기에 대한 제상 운전 시에 상기 제1 열교환기에서 열교환된 냉매가 배출되는 제1 냉매관과, 상기 제1 냉매관으로부터 상기 제2 열교환기로 냉매를 안내하는 제2 냉매관과, 상기 제2 냉매관을 통해 상기 제2 열교환기로 유입되어 상기 제2 열교환기에서 열교환된 냉매가 배출되는 제3 냉매관과, 상기 제2 열교환기에서 열교환되도록 물을 공급하는 제1 수배관과, 상기 제2 열교환기에서 열교환된 물을 환수하는 제2 수배관과, 상기 제2 열교환기를 바이패스하도록 상기 제1 냉매관 및 상기 제3 냉매관을 연결시키는 바이패스관 및 상기 제상 운전 시에 상기 바이패스관에 의해 안내된 냉매를 상기 제2 수배관 내에 유동하는 물과 열교환시키도록 마련되는 제3 열교환기를 포함할 수 있다.
일측이 상기 바이패스관과 연결되고 상기 제3 열교환기에 의해 열교환된 냉매를 상기 압축기 측으로 이동시키는 제4 냉매관을 더 포함할 수 있다.
상기 제3 냉매관으로부터 배출된 냉매가 상기 제3 열교환기를 통과하도록상기 제3 냉매관은 상기 제3 열교환기보다 상류 측에서 상기 제4 냉매관과 연결될 수 있다.
상기 바이패스관 내에 유동하는 냉매를 팽창시키도록 상기 바이패스관에 배치되는 모세관 및 상기 바이패스관을 개폐하는 개폐 밸브를 더 포함할 수 있다.
상기 바이패스관 내에 유동하는 냉매의 이동 방향에 대하여 상기 개폐 밸브가 상기 모세관 보다 상류에 배치될 수 있다.
상기 개폐 밸브는 솔레노이드 밸브를 포함할 수 있다.
상기 제2 냉매관 내에 유동하는 냉매를 팽창시키며 상기 제2 냉매관을 개폐 가능한 팽창 밸브를 더 포함하고, 상기 바이패스관은 일단이 상기 제1 열교환기와 상기 팽창 밸브 사이에서 상기 제1 냉매관에 연결되고, 타단이 상기 제2 열교환기와 상기 제3 열교환기 사이에서 상기 제3 냉매관 및 상기 제4 냉매관에 연결될 수 있다.
상기 제1 냉매관에 마련되는 모세관을 더 포함할 수 있다.
상기 제3 열교환기는 상기 제2 수배관의 외주를 감싸는 코일형 열교환기를 포함할 수 있다.
상기 제1 수배관 내에 유동하는 물의 온도에 기초하여 서로 다른 제상 모드를 수행 가능할 수 있다.
상기 제1 수배관 내에 유동하는 물의 온도가 소정의 온도 보다 낮을 때 바이패스 제상모드가 수행되고, 상기 바이패스 제상모드에서, 상기 제1 냉매관 내의 냉매는 상기 바이패스관을 통해 상기 제3 열교환기로 안내될 수 있다.
상기 바이패스 제상모드에서, 상기 제2 냉매관은 폐쇄되고 상기 바이패스관 내의 냉매는 모세관에 의해 팽창될 수 있다.
상기 제1 수배관 내에 유동하는 물의 온도가 소정의 온도 보다 높을 때 일반 제상모드가 수행되고, 상기 일반 제상모드에서, 상기 제1 냉매관 내의 냉매는 상기 제2 냉매관을 통해 상기 제2 열교환기로 안내될 수 있다.
상기 일반 제상모드에서, 상기 바이패스관은 폐쇄되고 상기 제2 냉매관 내의 냉매는 팽창 밸브에 의해 팽창될 수 있다.
상기 제1 열교환기는 핀-튜브형 열교환기를 포함하고, 상기 제2 열교환기는 판형 열교환기를 포함할 수 있다.
다른 일례에 따른 히트 펌프 시스템은 냉매를 압축시키도록 마련되는 압축기와, 상기 냉매와 공기를 열교환시키도록 구성되는 제1 열교환기와, 상기 제1 열교환기에 의해 열교환된 냉매와 물을 열교환시키도록 구성되는 제2 열교환기와, 상기 제2 열교환기에서 열교환되도록 물을 안내하는 제1 수배관과, 상기 제2 열교환기에서 열교환된 물을 외부로 안내하는 제2 수배관과, 상기 제1 열교환기에 대한 제상 운전 시에 상기 제1 열교환기에서 열교환된 냉매가 배출되는 제1 냉매관과, 상기 제1 냉매관과 연결되어 상기 제1 냉매관 내의 냉매를 상기 제2 열교환기로 안내하는 제2 냉매관과, 상기 제2 열교환기에서 열교환된 냉매가 배출되는 제3 냉매관과, 상기 제2 열교환기를 바이패스하도록 일단이 상기 제1 냉매관과 연결되고 타단이 상기 제3 냉매관과 연결되는 바이패스관 및 상기 바이패스관의 타단과 연결되고 상기 제2 수배관 내에 유동하는 물과 열교환시키도록 구성되는 제3 열교환기를 포함하는 제4 냉매관을 포함하고, 상기 제1 냉매관 내에 유동하는 냉매는 상기 제2 냉매관 또는 상기 바이패스관으로 안내될 수 있다.
상기 바이패스관 내에 유동하는 냉매를 팽창시키도록 상기 바이패스관에 배치되는 모세관 및 상기 바이패스관을 개폐하는 개폐 밸브를 더 포함할 수 있다.
상기 제2 냉매관 내에 유동하는 냉매를 팽창시키며 상기 제2 냉매관을 개폐 가능한 팽창 밸브를 더 포함하고, 상기 바이패스관의 상기 일단은 상기 제1 열교환기와 상기 팽창 밸브 사이에서 상기 제1 냉매관에 연결되고, 상기 타단은 상기 제2 열교환기와 상기 제3 열교환기 사이에서 상기 제3 냉매관 및 상기 제4 냉매관에 연결될 수 있다.
상기 제3 열교환기는 상기 제2 수배관의 외주를 감싸는 코일형 열교환기를 포함할 수 있다.
또 다른 일례에 따른 히트 펌프 시스템은 냉매를 압축시키도록 마련되는 압축기와, 상기 냉매와 공기를 열교환시키도록 구성되는 제1 열교환기와, 상기 냉매와 물을 열교환시키도록 구성되는 제2 열교환기와, 상기 제1 열교환기에 대한 제상 운전 시에 상기 제1 열교환기에서 열교환된 냉매가 배출되는 제1 냉매관과, 상기 제1 냉매관으로부터 상기 제2 열교환기로 냉매를 안내하는 제2 냉매관과, 상기 제2 열교환기에서 열교환된 냉매가 배출되는 제3 냉매관과, 상기 제2 냉매관 내에 유동하는 냉매를 팽창시키고 상기 제2 냉매관을 개폐하는 팽창 밸브와, 상기 제2 열교환기에서 열교환되도록 물을 공급하는 제1 수배관과, 상기 제2 열교환기에서 열교환된 물을 환수하는 제2 수배관과, 상기 제2 수배관 내에 유동하는 물과 상기 냉매를 열교환시키도록 구성되는 제3 열교환기 및 상기 제2 열교환기를 바이패스하도록 상기 제1 냉매관과 상기 제3 냉매관을 연결시키며 상기 제1 열교환기에 의해 열교환된 냉매를 상기 제3 열교환기 측으로 안내하는 바이패스관을 포함할 수 있다.
일 측면에 따르면, 제상 운전 시에 물과 냉매를 열교환시키도록 마련되는 판형 열교환기를 바이패스 가능한 구조를 포함한 히트 펌프 시스템을 제공할 수 있다.
다른 측면에 따르면, 판형 열교환기와 별도로 물과 냉매를 열교환시키도록 마련되는 코일형 열교환기를 포함하여 제상 운전 시에 제상에 필요한 열량을 얻을 수 있는 히트 펌프 시스템을 제공할 수 있다.
도 1은 일례에 따른 히트 펌프 시스템을 나타내는 개략도이다.
도 2는 일례에 따른 바이패스 제상모드 시에 히트 펌프 시스템 내에 유동하는 냉매의 흐름을 나타내는 개략도이다.
도 3은 일례에 따른 일반 제상모드 시에 히트 펌프 시스템 내에 유동하는 냉매의 흐름을 나타내는 개략도이다.
도 4는 일례에 따른 바이패스 제상모드 및 일반 제상모드 시에 히트 펌프 시스템 내에 유동하는 물의 흐름을 나타내는 개략도이다.
도 5는 일례에 따른 히트 펌프 시스템의 제3 열교환기 및 제2 수배관을 나타내는 개략도이다.
도 6은 일례에 따른 히트 펌프 시스템의 제상 모드에 따른 블록도이다.
도 7은 일례에 따른 히트 펌프 시스템의 난방 운전 시의 냉매 및 물의 흐름을 나타낸 개략도이다.
도 8은 일례에 따른 히트 펌프 시스템의 냉방 운전 시의 냉매 및 물의 흐름을 나타낸 개략도이다.
본 명세서에 기재된 실시예와 도면에 도시된 구성은 개시된 발명의 바람직한 일 예에 불과할 뿐이며, 본 출원의 출원시점에 있어서 본 명세서의 실시예와 도면을 대체할 수 있는 다양한 변형 예들이 있을 수 있다.
또한, 본 명세서의 각 도면에서 제시된 동일한 참조번호 또는 부호는 실질적으로 동일한 기능을 수행하는 부품 또는 구성요소를 나타낸다.
또한, 본 명세서에서 사용한 용어는 실시예를 설명하기 위해 사용된 것으로, 개시된 발명을 제한 및/또는 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다" 또는 "가지다"등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는다.
또한, 본 명세서에서 사용한 "제1", "제2" 등과 같이 서수를 포함하는 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되지는 않으며, 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제1 구성요소는 제2 구성요소로 명명될 수 있고, 유사하게 제2 구성요소도 제1 구성요소로 명명될 수 있다. "및/또는"이라는 용어는 복수의 관련된 기재된 항목들의 조합 또는 복수의 관련된 기재된 항목들 중의 어느 항목을 포함한다.
이하에서는 일례를 첨부된 도면을 참조하여 히트 펌프 시스템을 상세히 설명하며 다만, 이에 한정되지는 아니한다.
도 1은 일례에 따른 히트 펌프 시스템(1)의 개략도이다. 도 1을 참조하면, 히트 펌프 시스템(1)은 실외 공간에 배치되는 실외 유닛(미도시)과, 냉기 또는 온기가 필요한 공간 또는 장치에 배치되는 열부하 유닛(T1, T2, T3)들을 포함할 수 있다. 히트 펌프 시스템(1)은 실외 유닛에서 발생한 냉기 및 온기가 열부하 유닛(T1, T2, T3)들에 분산 공급시키도록 하는 중간 유닛(미도시)을 포함할 수 있다.
히트 펌프 시스템(1)은 실외 유닛 내에 유동하는 냉매 사이클(10)과, 냉매 사이클(10)의 냉매와 열교환되는 물이 유동하는 수 계열 사이클(50)을 포함할 수 있다. 냉매 사이클(10)의 냉매와 열교환된 물이 열부하 유닛(T1, T2, T3)들에 공급될 수 있다. 열부하 유닛(T1, T2, T3)은 터미널(Terminal)일 수 있고, 터미널은 라디에이터(Radiator) 등이 될 수 있다.
실외 유닛은 외부의 공기를 통해 열교환된 냉매를 열원으로 동작하며, 중간 유닛을 통해 열부하 유닛(T1, T2, T3)에 냉기 또는 온기를 공급한다. 실외 유닛은 실외 공간, 즉 건물의 옥상이나 베란다 등에 배치될 수 있다.
실외 유닛 내의 냉매가 유동하는 냉매 사이클(10)과, 냉매 사이클(10)의 냉매와 열교환된 물이 유동하는 수 계열 사이클(50)은 서로 인접하게 배치되거나 별도의 공간에 배치될 수 있다. 냉매 사이클(10)과 수 계열 사이클(50)은 서로 제2 열교환기(30)과 제3 열교환기(40)을 통해 열교환될 수 있다.
히트 펌프 시스템(1)은 목적에 따라 열부하 유닛(T1, T2, T3)에 냉수를 전달하는 냉방 모드 또는 열부하 유닛(T1, T2, T3)에 온수를 전달하는 난방 모드를 수행할 수 있다. 히트 펌프 시스템(1)은 외부의 공기와 열교환하는 제1 열교환기(20)로부터 열원을 얻어 제2 열교환기(30) 및 제3 열교환기(40)를 통해 물에 열을 전달하는 ATW(Air to water) 히트 펌프 시스템일 수 있다.
히트 펌프 시스템(1)은 실외용 열교환기인 제1 열교환기(20)에서 발생할 수 있는 착상을 방지하고자 제상 모드에 따라 운전할 수 있다. 제상 모드인 경우 제1 열교환기(20)에는 고압·고온의 냉매가 유입되도록 마련될 수 있다.
냉매 사이클(10)은 냉매가 유동하는 폐 사이클(Closed Cycle)일 수 있다. 냉매 사이클(10)은 냉매를 압축시키도록 마련되는 압축기(13) 및 압축기(13)에 인접하게 배치되어 일정량의 냉매를 축적해 두었다가 필요에 따라 압축기(13) 측으로 냉매를 방출하는 어큐뮬레이터(12)를 포함할 수 있다.
냉매 사이클(10)은 외부의 공기와 냉매를 열교환시키도록 구성되는 제1 열교환기(20)를 포함할 수 있다. 제1 열교환기(20)는 핀-튜브 형 열교환기(20)일 수 있다. 냉매 사이클(10)은 냉매 사이클(10) 내에 유동하는 냉매와 수 계열 사이클(50) 내에 유동하는 물을 열교환시키도록 구성되는 제2 열교환기(30)를 포함할 수 있다. 제2 열교환기(30)는 판형 열교환기(30)일 수 있다. 또한, 냉매 사이클(10)은 제2 열교환기(30)와 별도로 수 계열 사이클(50)의 물과 냉매를 열교환시키도록 마련되는 제3 열교환기(40)을 포함할 수 있다. 제3 열교환기(40)는 코일형 열교환기(40)일 수 있다.
제1 열교환기(20)와 제2 열교환기(30)는 제1 냉매관(P1) 및 제2 냉매관(P2)에 의해 연결될 수 있다. 제상 운전 시에 제1 열교환기(20)에서 외부의 열원인 공기와 열교환된 냉매는 제1 냉매관(P1)을 통해 배출될 수 있다. 제2 냉매관(P2)은 제1 냉매관(P1)과 연결되어 제1 냉매관(P1)을 통해 제1 열교환기(20)에서 배출된 냉매를 제2 열교환기(30)에 유입시킬 수 있다.
냉매 사이클(10)은 제2 열교환기(30)에서 수 계열 사이클(50) 내에 유동하는 물과 열교환된 냉매가 배출되는 제3 냉매관(P3)을 포함할 수 있다. 어큐뮬레이터(12) 및 압축기(13) 측으로 냉매를 유동시키도록 제4 냉매관(P4)이 제3 냉매관(P3)에 연결될 수 있다. 제4 냉매관(P4)의 일측에는 사방 밸브(11)가 배치될 수 있다. 사방 밸브(11)는 제4 냉매관(P4) 내에 유동하는 냉매 및/또는 압축기(13)로부터 배출되는 냉매의 유로를 전환시킬 수 있다. 또한 사방 밸브(11)는 냉방 운전인 경우에도 제2 열교환기(20) 내에서 열교환된 냉매가 유동하는 유로의 방향을 전환시킬 수 있다.
사방 밸브(11)와 어큐뮬레이터(12)는 제5 냉매관(P5)에 의해 연결될 수 있다. 어큐뮬레이터(12)와 압축기(13)는 제6 냉매관(P6)에 의해 연결될 수 있다. 제6 냉매관(P6)은 어큐뮬레이터(12) 측에서 압축기(13)측으로 냉매를 유동시킬 수 있다. 압축기(13)와 사방 밸브(11) 사이에는 제7 냉매관(P7)이 배치될 수 있고, 사방 밸브(11)와 제2 열교환기(20) 사이에는 제8 냉매관(P8)이 배치될 수 있다.
즉, 사방 밸브(11)는 제4 냉매관(P4), 제5 냉매관(P5), 제7 냉매관(P7) 및 제8 냉매관(P8)에 연결되어 각각의 유로의 방향을 전환시키도록 마련될 수 있다.
제1 냉매관(P1)에는 제1 모세관(14)이 배치될 수 있고, 제1 모세관(14)은 제1 냉매관(P1) 내에 유동하는 냉매의 분지를 개선시킬 수 있다. 보다 상세하게는 제1 열교환기(20) 내에는 복수의 냉매관이 마련될 수 있고, 복수의 냉매관으로부터 배출되는 냉매는 제1 모세관(14)에 의해 분지가 개선될 수 있다. 또한, 제1 모세관(14)은 제1 냉매관(P1) 내에 유동하는 냉매를 팽창시킬 수 있다.
제2 냉매관(P2)에는 제2 냉매관(P2) 내에 유동하는 냉매를 팽창시키면서 제2 냉매관(P2)을 개폐하도록 마련되는 팽창 밸브(16)가 배치될 수 있다. 팽창 밸브(16)는 전자식 팽창 밸브(EEV)일 수 있다.
제2 냉매관(P2)의 유동 방향에 대하여 팽창 밸브(16)의 전후에는 한 쌍의 스트레이너(Strainer, 15)가 배치될 수 있다. 스트레이너(15)는 제2 냉매관(P2) 내에 유동하는 부피가 큰 물질을 거르는 장치일 수 있다.
냉매 사이클(10)은 제2 열교환기(30)를 바이패스하도록 제1 냉매관(P1) 및 제3 냉매관(P3)을 연결시키는 바이패스관(BP)을 포함할 수 있다. 바이패스관(BP)의 일단(C1)은 제1 열교환기(20)와 팽창 밸브(16) 사이에서 제1 냉매관(P1)에 연결되고, 타단(C2)은 제3 냉매관(P3)에 연결될 수 있다.
바이패스관(BP)에는 바이패스관(BP)을 개폐가능한 개폐 밸브(17) 및 바이패스관(BP) 내에 유동하는 냉매를 팽창시키는 제2 모세관(18)이 배치될 수 있다. 개폐 밸브(17)는 바이패스관(BP)을 유동하는 냉매의 방향에 대하여 제2 모세관(18)보다 상류에 배치될 수 있다. 개폐 밸브(17)는 솔레노이드 밸브(17)일 수 있다.
제4 냉매관(P4)의 일측이 바이패스관(BP)과 연결되고, 제4 냉매관(P4)의 타측이 사방 밸브(11)와 연결될 수 있다. 제4 냉매관(P4)은 제3 열교환기(40)에 의해 열교환된 냉매를 압축기(13) 측으로 이동시킬 수 있고, 압축기(13)에 의해 압축된 냉매를 제3 열교환기(40) 측으로 이동시킬 수 있다.
제3 냉매관(P3)은 제2 열교환기(30)에 의해 열교환된 냉매가 제3 열교환기(40)를 통과시키도록 제4 냉매관(P4)과 연결될 수 있다. 즉 제3 냉매관(P3)은 바이패스관(BP)의 타단(C2)에서 바이패스관(BP) 및 제4 냉매관(P4)과 연결될 수 있다.
수 계열 사이클(50)은 제2 열교환기(30)에서 열교환되도록 물을 제2 열교환기(30)으로 공급하는 제1 수배관(W1) 및 제2 열교환기(30)에서 열교환된 물을 환수하는 제2 수배관(W2)을 포함할 수 있다. 제2 수배관(W2)은 제2 열교환기(30)에서 배출되는 물을 열부하 유닛(T1, T2, T3)에 공급할 수 있다.
제2 수배관(W2)은 제2 열교환기(30)과 별도로, 냉매 사이클(10)의 냉매와 물이 열교환되는 제3 열교환기(40)와 접촉할 수 있다. 제4 냉매관(P4)의 일부는 제2 수배관(W2)의 외주(80, 도 5 참조)를 둘러싸도록 마련될 수 있다.
제2 수배관(W2)에는 제1 안전 밸브(57), 팽창 탱크(58)와, 에어 벤트(Air Vent, 59)가 배치될 수 있다. 제1 안전 밸브(57)는 제2 수배관(W2)을 개폐하도록 마련되는 수압 안전 장치일 수 있다. 팽창 탱크(58)는 제2 수배관(W2)의 액체 온도의 상하에 의해 변화하는 체적을 흡수할 수 있다. 팽창 탱크(58)는 제2 수배관(W2)의 변화하는 물을 흡수하여 오버플로우나 공기의 침입을 방지할 수 있다. 에어 벤트(59)는 제2 수배관(W2) 내에 있을 수 있는 공기의 양을 제2 수배관(W2) 외부로 빼내는 장치일 수 있다.
수 계열 사이클(50)은 제2 수배관(W2) 내에 유동하는 물의 유량을 측정하는 유량 센서(60) 및 유량 센서(60)에 의해 제2 수배관(W2)을 개폐가능한 제1 밸브(61)을 포함할 수 있다. 제2 수배관(W2)내에 유동하는 물의 유동하는 방향에 대하여 제1 밸브(61)보다 하류 측에는 보조 열원인 전기 히터(BUH, 62) 및 압력과 온도의 완충 역할을 하는 버퍼 탱크(Buffer Tank, 52)가 배치될 수 있다.
전기 히터(62)는 제2 수배관(W2)에 배치되어 비상 사용시에 열원으로 사용될 수 있고, 추가적으로 열 부하 유닛(T1, T2, T3)을 위해 난방 성능을 강화하기 위한 장치일 수 있다.
전기 히터(62) 및 버퍼 탱크(52)를 통과한 제2 수배관(W2) 내의 유동하는 물은 분배기(Distributor, 63)을 거쳐 분배될 수 있다. 분배기(63)를 통과한 일부의 물은 열부하 유닛(T1, T2, T3)으로 분배될 수 있다. 열부하 유닛(T1, T2, T3)은 각각의 제1 열부하 유닛(T1), 제2 열부하 유닛(T2) 및 제3 열부하 유닛(T3)을 포함할 수 있다. 분배기(63)를 통과한 물 중 일부는 제4 수배관(W4)의 제1 분지관(W4-1)에 의해 제1 열부하 유닛(T1)으로 안내될 수 있다. 이와 마찬가지로 제2 수배관(W2) 내에 유동하는 물의 일부는 제4 수배관(W4)의 제2 분지관(W4-2) 및 제3 분지관(W4-3)에 의해 각각 제2 열부하 유닛(T2) 및 제3 열부하 유닛(T3)으로 분배될 수 있다.
제4 수배관(W4)의 제1 분지관(W4-1), 제2 분지관(W4-2) 및 제3 분지관(W4-3)은 연결점(CP)에서 서로 만나 제4 수배관(W4)으로 연결될 수 있다. 즉, 제1 분지관(W4-1) 내지 제3 분지관(W4-3)은 각각 제1 열부하 유닛(T1) 내지 제3 열부하 유닛(T3)으로 물을 공급할 수 있으며, 제1 열부하 유닛(T1) 내지 제3 열부하 유닛(T3)에서 사용된 물을 환수할 수 있다.
분배기(63)에 의해 분배되는 나머지 물은 제3 수배관(W3)을 통과하여 제1 수배관(W1)에 안내될 수 있다. 제3 수배관(W3)에는 제1 안전 밸브(57)과 대응되는 제2 안전 밸브(64)가 배치될 수 있다. 또한 제3 수배관(W3)에는 제3 수배관(W3)을 개폐가능한 제2 밸브(65)가 배치될 수 있다.
제4 수배관(W4) 및 제3 수배관(W3)은 제1 수배관(W1)과 연결될 수 있다. 제4 수배관(W4) 및 제3 수배관(W3) 내에 유동하는 물은 제1 수배관(W1)으로 안내될 수 있다.
제1 펌프(51)에 의해 펌핑된 물이 유동하는 제1 수배관(W1)은 제3 밸브(53)에 의해 개폐될 수 있다. 또한, 제3 밸브(53)을 통과한 물이 유동하는 제1 수배관(W1)에는 제1 수배관(W1) 내의 부피가 큰 이물질을 거르도록 마련되는 스트레이너(54)를 포함할 수 있다.
수 계열 사이클(50)은 이물질을 거른 물이 유동하는 제1 수배관(W1)의 압력을 측정하는 마노미터(Manometer, 55) 및 제2 열교환기(30) 측에서 냉매와 열교환되는 물을 제2 열교환기(30)에 공급하는 제2 펌프(56)를 포함할 수 있다. 마노미터(55)는 제2 펌프(56)보다 물의 유동 방향에 대하여 상류 측에 배치될 수 있다.
도 2는 바이패스 제상모드에 따른 냉매 사이클(10) 내의 유동하는 냉매의 흐름을 나타내는 개략도이다. 도 3은 일반 제상모드에 따른 냉매 사이클(10) 내의 유동하는 냉매의 흐름을 나타내는 개략도이다. 도 4는 바이패스 제상모드 및 일반 제상모드에 따른 수 계열 사이클(50) 내의 유동하는 물의 흐름을 나타내는 개략도이다.
도 2 내지 도 4를 참조하면, 히트 펌프 시스템(1, 도 1 참조)은 제1 수배관(W1) 내에 유동하는 물의 온도에 기초하여 서로 다른 제상 모드를 수행 가능할 수 있다. 구체적으로, 제1 수배관(W1) 내에 유동하는 물이 소정의 온도보다 높은 경우에 수행되는 운전을 일반 제상모드라고 정의될 수 있다. 제1 수배관(W1) 내에 유동하는 물이 소정의 온도보다 낮은 경우에 수행되는 운전을 바이패드 제상모드라고 정의될 수 있다. 소정의 온도는 섭씨 15도일 수 있다.
제상모드라 함은 실외용 열교환기일 수 있는 제1 열교환기(20)의 표면에 발생할 수 있는 착상을 방지하고자 제1 열교환기(20)에 고압·고온의 냉매를 유입시키는 모드일 수 있다.
이하에서는 각 모드에 따라 냉매의 흐름을 보다 상세하게 설명하도록 한다. 제6 냉매관(P6) 내의 냉매가 압축기(13)에 의해 압축되어 상대적으로 고압·고온의 냉매가 될 수 있다. 압축기(13)에 의해 압축된 냉매는 제7 냉매관(P7) 내에서 유동하여 사방 밸브(11)에 의해 제8 냉매관(P8)을 통해 제1 열교환기(20)로 안내될 수 있다.
제1 열교환기(20)는 실외 열교환기일 수 있으므로, 제상 모드인 경우에는 제1 열교환기(20)의 표면에 발생할 수 있는 착상을 방지하고자 고압·고온의 냉매가 유입될 수 있다. 제1 열교환기(20)에서 열교환된 냉매는 제1 냉매관(P1)을 통해 배출될 수 있다. 제1 열교환기(20)으로 유입되는 제8 냉매관(P8) 내의 냉매는 제1 열교환기(20)에서 배출되는 제1 냉매관(P1) 내의 냉매보다 상대적으로 고압·고온일 수 있다.
바이패스 제상모드인 경우에는 제1 냉매관(P1) 내에 유동하는 냉매가 바이패스관(BP)의 일단(C1)을 통해 바이패스관(BP)으로 유입될 수 있다. 바이패스 제상모드인 경우에는 팽창 밸브(16)가 제2 냉매관(P2)을 폐쇄시킬 수 있다. 바이패스 제상모드인 경우에는 개폐 밸브(17)가 바이패스관(BP)을 개방시킬 수 있다. 바이패스 제상모드인 경우에는 개폐 밸브(17)는 바이패스관(BP)을 개방하여 냉매가 유동하게 할 수 있다. 바이패스관(BP) 내에 유동하는 냉매는 제2 모세관(18)에 의해 팽창될 수 있다.
즉, 제2 모세관(18)에 공급되는 냉매는 제2 모세관(18)으로부터 배출되는 냉매보다 고압·고온일 수 있다. 즉, 제2 모세관(18)에 의해 냉매는 압력이 강하될 수 있다. 제1 냉매관(P1) 내에 유동하는 냉매보다 상대적으로 저압·저온인 냉매는 바이패스관(BP)의 타단(C2)을 통해 제4 냉매관(P4)으로 안내될 수 있다.
바이패스관(BP)에 의해 제1 냉매관(P1)내에 유동하는 저압·저온의 냉매가 제2 열교환기(30)으로 유입되는 것을 방지할 수 있다. 저압·저온의 냉매가 제2 열교환기(30)으로 유입되는 경우에는 제2 열교환기(30) 내에서 수온이 낮거나 유량이 충분하지 못한 경우에 발생할 수 있는 동파가 있을 수 있다. 이러한 경우 제2 열교환기(30) 내에 발생하는 동파로 인해 전체 히트 펌프 시스템(1)을 교체해야만 하는 경우가 발생할 수 있다. 즉, 제2 열교환기(30) 내로 유입될 수 있는 저압·저온의 냉매가 제2 열교환기(30)를 바이패스하여 제4 냉매관(P4)으로 안내될 수 있다. 이로써 판형 열교환기(30)일 수 있는 제2 열교환기(30) 내에서 동파를 방지하여 히트 펌프 시스템(1)의 수리 및 교체비용을 절감할 수 있다.
제4 냉매관(P4)에 배치될 수 있는 제3 열교환기(40)에 의해 제4 냉매관(P4) 내에 유동하는 저압·저온의 냉매는 제2 수배관(W2)내에 유동하는 물과 열교환되어 제상에 필요한 일부 열량을 수 계열 사이클(50)로부터 흡수할 수 있다.
즉, 이러한 구조에 의하면 히트 펌프 시스템(1)은 제2 열교환기(30)를 거치지 않고 열량을 제3 열교환기(40)를 통해 흡수할 수 있어, 제상에 필요한 열량을 얻으면서 제2 열교환기(30)의 동파를 방지할 수 있다.
제4 냉매관(P4) 내에 유동하는 냉매는 사방 밸브(11)에 의해 제5 냉매관(P5)으로 유로가 전환되어 어큐뮬레이터(12)를 거쳐 제6 냉매관(P6)으로 안내될 수 있다.
이와는 다르게, 일반 제상모드인 경우에는 제1 열교환기(20)에서 열교환된 냉매가 제1 냉매관(P1)을 거쳐 제2 냉매관(P2)으로 유입될 수 있다. 일반 제상모드인 경우에는 팽창 밸브(16)가 제2 냉매관(P2)을 개방시킬 수 있다. 일반 제상모드인 경우에는 개폐 밸브(17)가 바이패스관(BP)을 폐쇄시킬 수 있다.
팽창 밸브(16)는 제2 냉매관(P2) 내에 유동하는 냉매를 팽창시킬 수 있다. 즉, 제2 냉매관(P2) 내에 유동하는 냉매는 팽창 밸브(16)에 의해 압력이 강하되고 온도가 하강된 채로 제2 열교환기(30) 측으로 안내될 수 있고, 제2 열교환기(30)에서 냉매는 제1 수배관(W1)으로부터 유입된 물과 열교환될 수 있다. 제2 열교환기(30) 내에서 열교환된 냉매는 제3 냉매관(P3)을 통해 제4 냉매관(P4)으로 유동될 수 있다.
제2 열교환기(30)에 공급되는 제2 냉매관(P2) 내의 냉매는 제2 열교환기(30)에서 배출되는 제3 냉매관(P3) 내의 냉매보다 저압·저온일 수 있다. 즉, 제2 열교환기(30)에서 열교환된 냉매는 온도 및 압력이 상승될 수 있다.
제4 냉매관(P4)으로 유입된 냉매는 제3 열교환기(40)를 통해 제2 수배관(W2) 내에 유동하는 물과 열교환될 수 있다. 제3 열교환기(40)에 의해 열교환된 냉매는 수 계열 사이클(50)로부터 열량을 흡수할 수 있다. 제3 열교환기(40)에서 열교환된 냉매는 사방 밸브(11)에 의해 유로가 전환되어 제5 냉매관(P5)을 통과해 어큐뮬레이터(12) 및 제6 냉매관(P6)을 통해 압축기(13)로 유입될 수 있다.
제1 수배관(W1) 내에서 제2 열교환기(30)으로 입수되는 물의 온도인 입수 온도가 소정의 온도인 섭씨 15도 이상인 경우에는 제2 열교환기(30) 내에서 열교환이 이루어지더라도 동파가 발생하지 않을 수 있다.
즉, 이러한 구조에 의하면 제1 수배관(W1) 내에 유동하는 물의 온도에 따라 바이패스 제상모드 및 일반 제상모드를 수행 가능한 히트 펌프 시스템(1)은 한가지 모드를 수행하는 히트 펌프 시스템보다 시스템의 효율을 증가시킬 수 있다.
바이패스 제상모드 또는 일반 제상모드일 때 수 계열 사이클(50)의 물의 유동 방향은 서로 다르지 않을 수 있다. 즉, 수 계열 사이클(50)의 물은 제2 열교환기(30)측으로 유입되고, 제2 수배관(W2)을 통해 제2 열교환기(30)에서 배출될 수 있다. 다만, 바이패스 제상모드인 경우에는 제2 열교환기(30)에 공급되는 물과 배출되는 물의 온도차가 없을 수 있다. 일반 제상모드인 경우에는 제2 열교환기(30)에 공급되는 물이 제2 열교환기(30)에서 배출되는 물보다 고압·고온일 수 있다.
또한 일반 제상모드인 경우에 제3 열교환기(40)에 공급되는 물이 제3 열교환기(40)에 의해 열교환된 물보다 고압·고온일 수 있다.
제2 열교환기(30)에서 배출된 물은 제2 수배관(W2)의 외주(80, 도 5 참조)를 둘러싸도록 형성되는 제3 열교환기(40)를 통해 제4 냉매관(P4) 내에 유동하는 냉매와 열교환될 수 있다.
제3 열교환기(40)를 통과한 제2 수배관(W2) 내에 유동하는 냉매는 제1 안전 밸브(57), 팽창 탱크(58), 에어 벤트(59), 유량 센서(60)과 연결되는 제2 수배관(W2) 측으로 이동될 수 있다. 그 후 냉매는 보조 열원인 전기 히터(62)로부터 열을 흡수할 수 있고, 버퍼 탱크(52)를 거쳐 분배기(63)로 안내되어 열 부하 유닛(T1, T2, T3)으로 안내될 수 있다. 전기 히터(62)는 제상 모드인 경우에 수온을 유지하는 열량을 제2 수배관(W2) 내에 유동하는 물에 전달할 수 있다. 또한, 버퍼 탱크(52)는 열량을 저장하여 제상에 사용되도록 마련될 수 있다.
열 부하 유닛(T1, T2, T3)에 의해 열을 흡수한 물은 연결점(CP)에서 제4 수배관(W4)로 유동되며, 이후 제1 수배관(W1)으로 안내될 수 있다. 제1 수배관(W1)의 물은 제1 펌프(51)에 의해 펌핑되어 버퍼 탱크(52), 제3 밸브(53)를 거쳐 제2 펌프(56)으로 안내될 수 있다. 제2 펌프(56)에 의해 펌핑된 제1 수배관(W1)의 물은 다시 제2 열교환기(30) 측으로 유입될 수 있다.
도 5를 참조하면, 제3 열교환기(40)는 제2 수배관(W2)의 외주(80)를 둘러싸도록 형성될 수 있다. 외주(80)는 제2 수배관(W2)의 외주면(80)일 수 있다. 이러한 구조에 의하면 제2 수배관(W2) 내에 유동하는 물과 제4 냉매관(P4) 내에 유동하는 냉매가 서로 열교환될 수 있다.
제3 열교환기(40)는 코일형 열교환기(40)일 수 있고, 코일의 재질, 두께 및 접촉 면적에 따라 열교환율이 달라질 수 있다. 열교환율이 높은 코일일수록 제2 수배관(W2)을 둘러싸는 횟수가 줄어들 수 있다.
제상 모드에 있어서 요하는 열량은 대략 제품의 용량의 20%일 수 있고, 이 20%의 열량 중 13%는 압축기(13)에서 사용될 수 있고, 나머지 7%는 제1 열교환기(20)에서 사용될 수 있다.
도 6을 참조하면, 히트 펌프 시스템(1, 도 1 참조)은 제1 수배관(W1) 내에 유동하는 물의 온도를 측정하는 센서부(100) 및 센서부(100)에 따라 팽창 밸브(16) 그리고 개폐 밸브(17)을 작동하는 제어부(200)를 포함할 수 있다.
즉, 센서부(100)는 제1 수배관(W1) 내에서 제2 열교환기(30) 측으로 유입되는 입수 온도를 측정할 수 있고, 제어부(200)는 입수 온도가 소정의 온도보다 높은 경우 또는 낮은 경우에 따라 다르게 제어할 수 있다.
보다 상세하게는 제어부(200)는 입수 온도가 소정의 온도 보다 높은 경우에는 일반 제상모드에 따라 팽창 밸브(16)로 하여금 제2 냉매관(P2)을 개방하도록 하고, 개폐 밸브(17)로 하여금 바이패스관(BP)을 폐쇄하도록 할 수 있다.
또한, 제어부(200)는 입수 온도가 소정의 온도 보다 낮은 경우에는 바이패스 제상모드에 따라 팽창 밸브(16)로 하여금 제2 냉매관(P2)을 폐쇄하도록 하고, 개폐 밸브(17)로 하여금 바이패스관(BP)을 개방하도록 할 수 있다.
도 7은 일례에 따른 히트 펌프 시스템(1)의 일반적인 난방 모드일 때의 냉매 및 물의 흐름을 나타내는 개략도이다.
도 7을 참조하면, 외부 열원인 공기와 냉매는 제1 열교환기(20)에서 열교환하도록 구비될 수 있다. 제1 열교환기(20)에서 열교환되도록 냉매를 공급하는 제1 냉매관(P1) 및 제1 열교환기(20)에서 열교환된 냉매를 배출하는 제8 냉매관(P8)은 제1 열교환기(20)에 인접하게 배치될 수 있다. 제1 냉매관(P1) 내에 유동하는 냉매보다 제8 냉매관(P8)내에 유동하는 냉매가 상대적으로 고압·고온일 수 있다. 제8 냉매관(P8) 내의 냉매는 사방 밸브(11)에 의해 제5 냉매관(P5)을 통해 어큐뮬레이터(12)로 유입되고, 제6 냉매관(P6)을 통해 압축기(13)으로 유입될 수 있다. 압축기(13)에 의해 압축된 냉매는 제7 냉매관(P7)를 거쳐 사방 밸브(11)에 의해 제4 냉매관(P4)으로 안내될 수 있다.
제4 냉매관(P4)내에 유동하는 냉매는 제3 열교환기(40)에 의해 제2 수배관(W2) 내에 유동하는 물과 열교환할 수 있다. 제3 열교환기(40)에 의해 열교환된 냉매는 제3 냉매관(P3)을 통해 제2 열교환기(30)으로 공급될 수 있다. 이후 제2 열교환기(30)에서 열교환된 냉매는 제2 냉매관(P2)으로 유입되어 제1 열교환기(20) 측을 향해 제1 냉매관(P1)으로 유입될 수 있다.
여기서 제4 냉매관(P4), 제3 냉매관(P3) 및 제2 냉매관(P2) 내에 유동하는 냉매는 순차적으로 압력·온도가 떨어질 수 있다. 이것은 제3 열교환기(40) 및 제2 열교환기(30)에 의해 냉매 사이클(10) 측에서 수 계열 사이클(50) 측으로 열량을 전달해주었기 때문이다.
반면, 제1 수배관(W1) 내의 물과 제3 열교환기(40) 측으로 유입되는 제2 수배관(W2) 내의 물 그리고 제3 열교환기(40)에서 배출되는 제2 수배관(W2) 내의 물은 순차적으로 압력·온도가 상승할 수 있다.
제2 열교환기(30) 및 제3 열교환기(40)에 의해 열교환된 제2 수배관(W2) 내의 물은 열부하 유닛(T1, T2, T3)으로 열을 공급할 수 있다. 열부하 유닛(T1, T2, T3)에 열을 공급한 이후 환수된 제4 수배관(W4) 및 제3 수배관(W3) 내의 물은 제1 펌프(51) 및 제2 펌프(56)을 통해 다시 제1 열교환기(30) 측으로 공급될 수 있다.
도 8은 일례에 따른 히트 펌프 시스템(1)의 일반적인 냉방 모드일 때의 냉매 및 물의 흐름을 나타내는 개략도이다.
도 8을 참조하면, 외부 열원인 공기와 냉매는 제1 열교환기(20)에서 열교환하도록 구비될 수 있다. 즉, 압축기(13)에서 압축된 고압·고온의 냉매는 제7 냉매관(P7) 그리고 사방 밸브(11)에 의해 유로의 방향이 전환되어 제8 냉매관(P8)을 통해 제1 열교환기(20) 측으로 공급될 수 있다.
제1 열교환기(20)에서 열교환된 냉매는 제1 냉매관(P1)으로 배출될 수 있다. 제1 냉매관(P1) 내에 유동하는 냉매는 제2 냉매관(P2)으로 유입되어 팽창 밸브에 의해 압력 강하된 채로 제2 열교환기(30)로 유입될 수 있다. 제2 열교환기(30)에서 수 계열 사이클(50) 내의 물과 열교환된 냉매는 제3 냉매관(P3) 그리고 제4 냉매관(P4) 측으로 유동될 수 있다.
제4 냉매관(P4)을 통과하면서 냉매는 제3 열교환기(40)에 의해 제2 수배관(W2) 내에 유동하는 물 측에서 열량을 흡수할 수 있다. 이러한 구조에 의하면, 제2 냉매관(P2), 제3 냉매관(P3) 및 제4 냉매관(P4)내에 유동하는 냉매는 순차적으로 온도가 상승할 수 있다. 제3 열교환기(40)에서 열교환된 냉매는 제3 냉매관(P3) 내의 냉매보다 상대적으로 고압·고온인 채로 사방 밸브(11)측으로 안내될 수 있다.
제4 냉매관(P4) 내의 냉매는 사방 밸브(11)에 의해 제5 냉매관(P5), 어큐뮬레이터(12), 제6 냉매관(P6)을 통과해 압축기(13)에 의해 다시 압력이 상승될 수 있다.
수 계열 사이클(50)에서는 냉방 모드인 경우에 제1 수배관(W1) 내의 물이 제2 열교환기(30), 제3 열교환기(40)를 거쳐 압력·온도가 하강된 채로 제2 수배관(W2) 내로 안내될 수 있다. 이후 제2 수배관(W2) 내의 물은 분배기(63)를 거쳐 열부하 유닛(T1, T2, T3)으로 냉수를 전달할 수 있으며, 열부하 유닛(T1, T2, T3)에 의해 열교환된 물은 제4 수배관(W4)으로 안내될 수 있다. 제4 수배관(W4) 및 제3 수배관(W3) 내의 물은 다시 제1 수배관(W1)으로 안내되어 제1 펌프(51) 및 제2 펌프(56)에 의해 제1 열교환기(30)에 공급될 수 있다.
즉, 도 7 및 도 8에서 확인할 수 있듯이, 난방 모드 또는 냉방 모드인 경우에도 제3 열교환기(40)를 통해 냉매 사이클(10)과 수 계열 사이클(50)이 열교환될 수 있다. 이러한 구조에 의하면 제상 모드뿐만 아니라 난방 모드 또는 냉방 모드에서도 효율이 증가할 수 있다.
이상에서는 특정의 실시예에 대하여 도시하고 설명하였다. 그러나, 상기한 실시예에만 한정되지 않으며, 발명이 속하는 기술분야에서 통상의 지식을 가진 자라면 이하의 청구범위에 기재된 발명의 기술적 사상의 요지를 벗어남이 없이 얼마든지 다양하게 변경 실시할 수 있을 것이다.

Claims (15)

  1. 냉매를 압축시키도록 마련되는 압축기;
    상기 냉매와 공기를 열교환시키도록 구성되는 제1 열교환기;
    상기 냉매와 물을 열교환시키도록 구성되는 제2 열교환기;
    상기 제1 열교환기에 대한 제상 운전 시에 상기 제1 열교환기에서 열교환된 냉매가 배출되는 제1 냉매관;
    상기 제1 냉매관으로부터 상기 제2 열교환기로 냉매를 안내하는 제2 냉매관;
    상기 제2 냉매관을 통해 상기 제2 열교환기로 유입되어 상기 제2 열교환기에서 열교환된 냉매가 배출되는 제3 냉매관;
    상기 제2 열교환기에서 열교환되도록 물을 공급하는 제1 수배관;
    상기 제2 열교환기에서 열교환된 물을 환수하는 제2 수배관;
    상기 제2 열교환기를 바이패스하도록 상기 제1 냉매관 및 상기 제3 냉매관을 연결시키는 바이패스관; 및
    상기 제상 운전 시에 상기 바이패스관에 의해 안내된 냉매를 상기 제2 수배관 내에 유동하는 물과 열교환시키도록 마련되는 제3 열교환기; 를 포함하는 히트 펌프 시스템.
  2. 제1항에 있어서,
    일측이 상기 바이패스관과 연결되고 상기 제3 열교환기에 의해 열교환된 냉매를 상기 압축기 측으로 이동시키는 제4 냉매관을 더 포함하는 히트 펌프 시스템.
  3. 제2 항에 있어서,
    상기 제3 냉매관으로부터 배출된 냉매가 상기 제3 열교환기를 통과하도록 상기 제3 냉매관은 상기 제3 열교환기보다 상류 측에서 상기 제4 냉매관과 연결되는 히트 펌프 시스템.
  4. 제1항에 있어서,
    상기 바이패스관 내에 유동하는 냉매를 팽창시키도록 상기 바이패스관에 배치되는 모세관; 및
    상기 바이패스관을 개폐하는 개폐 밸브; 를 더 포함하는 히트 펌프 시스템.
  5. 제4항에 있어서,
    상기 바이패스관 내에 유동하는 냉매의 이동 방향에 대하여 상기 개폐 밸브가 상기 모세관 보다 상류에 배치되는 히트 펌프 시스템.
  6. 제4항에 있어서,
    상기 개폐 밸브는 솔레노이드 밸브를 포함하는 히트 펌프 시스템.
  7. 제2항에 있어서,
    상기 제2 냉매관 내에 유동하는 냉매를 팽창시키며 상기 제2 냉매관을 개폐 가능한 팽창 밸브; 를 더 포함하고,
    상기 바이패스관은 일단이 상기 제1 열교환기와 상기 팽창 밸브 사이에서 상기 제1 냉매관에 연결되고, 타단이 상기 제2 열교환기와 상기 제3 열교환기 사이에서 상기 제3 냉매관 및 상기 제4 냉매관에 연결되는 히트 펌프 시스템.
  8. 제7항에 있어서,
    상기 제1 냉매관에 마련되는 모세관을 더 포함하는 히트 펌프 시스템.
  9. 제1항에 있어서,
    상기 제3 열교환기는 상기 제2 수배관의 외주를 감싸는 코일형 열교환기를 포함하는 히트 펌프 시스템.
  10. 제1항에 있어서,
    상기 제1 수배관 내에 유동하는 물의 온도에 기초하여 서로 다른 제상 모드를 수행 가능한 히트 펌프 시스템.
  11. 제10항에 있어서,
    상기 제1 수배관 내에 유동하는 물의 온도가 소정의 온도 보다 낮을 때 바이패스 제상모드가 수행되고,
    상기 바이패스 제상모드에서, 상기 제1 냉매관 내의 냉매는 상기 바이패스관을 통해 상기 제3 열교환기로 안내되는 히트 펌프 시스템.
  12. 제11항에 있어서,
    상기 바이패스 제상모드에서, 상기 제2 냉매관은 폐쇄되고 상기 바이패스관 내의 냉매는 모세관에 의해 팽창되는 히트 펌프 시스템.
  13. 제10항에 있어서,
    상기 제1 수배관 내에 유동하는 물의 온도가 소정의 온도 보다 높을 때 일반 제상모드가 수행되고,
    상기 일반 제상모드에서, 상기 제1 냉매관 내의 냉매는 상기 제2 냉매관을 통해 상기 제2 열교환기로 안내되는 히트 펌프 시스템.
  14. 제13항에 있어서,
    상기 일반 제상모드에서, 상기 바이패스관은 폐쇄되고 상기 제2 냉매관 내의 냉매는 팽창 밸브에 의해 팽창되는 히트 펌프 시스템.
  15. 제1항에 있어서,
    상기 제1 열교환기는 핀-튜브형 열교환기를 포함하고,
    상기 제2 열교환기는 판형 열교환기를 포함하는 히트 펌프 시스템.
PCT/KR2022/018677 2022-01-17 2022-11-24 히트 펌프 시스템 WO2023136459A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2022-0006407 2022-01-17
KR1020220006407A KR20230110897A (ko) 2022-01-17 2022-01-17 히트 펌프 시스템

Publications (1)

Publication Number Publication Date
WO2023136459A1 true WO2023136459A1 (ko) 2023-07-20

Family

ID=87279308

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/018677 WO2023136459A1 (ko) 2022-01-17 2022-11-24 히트 펌프 시스템

Country Status (2)

Country Link
KR (1) KR20230110897A (ko)
WO (1) WO2023136459A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19980017695A (ko) * 1996-08-31 1998-06-05 구자홍 히트 펌프의 적상 방지장치
JP2010091131A (ja) * 2008-10-03 2010-04-22 Daikin Ind Ltd 熱交換器および温水システム
KR101641248B1 (ko) * 2010-02-05 2016-07-20 엘지전자 주식회사 냉각장치
JP6142711B2 (ja) * 2013-07-24 2017-06-07 株式会社ノーリツ ヒートポンプ給湯装置
WO2021172868A1 (en) * 2020-02-25 2021-09-02 Lg Electronics Inc. Heat pump

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19980017695A (ko) * 1996-08-31 1998-06-05 구자홍 히트 펌프의 적상 방지장치
JP2010091131A (ja) * 2008-10-03 2010-04-22 Daikin Ind Ltd 熱交換器および温水システム
KR101641248B1 (ko) * 2010-02-05 2016-07-20 엘지전자 주식회사 냉각장치
JP6142711B2 (ja) * 2013-07-24 2017-06-07 株式会社ノーリツ ヒートポンプ給湯装置
WO2021172868A1 (en) * 2020-02-25 2021-09-02 Lg Electronics Inc. Heat pump

Also Published As

Publication number Publication date
KR20230110897A (ko) 2023-07-25

Similar Documents

Publication Publication Date Title
WO2021215695A1 (ko) 자동차용 히트 펌프 시스템
WO2019212275A1 (ko) 차량용 열관리 시스템
WO2012169764A2 (en) Air conditioner in electric vehicle
WO2021157820A1 (en) Air conditioner
WO2011145779A1 (en) Hot water supply device associated with heat pump
WO2016114557A1 (en) Air conditioning system
WO2016017939A1 (ko) 차량용 히트 펌프 시스템
WO2019151815A1 (ko) 공기조화기
WO2015046834A1 (ko) 공기조화기
WO2014065548A1 (en) Air conditioner
WO2011145780A1 (en) Hot water supply device associated with heat pump
WO2015076509A1 (en) Air conditioner and method of controlling the same
WO2014010767A1 (ko) 태양열 및 축열 2원 시스템 냉난방장치
WO2017057861A2 (ko) 공기조화 시스템
WO2020209474A1 (en) Air conditioning apparatus
WO2020204596A1 (ko) 실외열교환기 및 이를 포함하는 공기조화기
WO2019160294A1 (ko) 차량용 열관리 시스템
WO2019208942A1 (ko) 차량용 열교환 시스템
WO2018155871A1 (ko) 차량용 히트펌프 시스템
WO2020197052A1 (en) Air conditioning apparatus
WO2019203621A1 (ko) 저온 저장고의 냉각 시스템
WO2020204570A1 (ko) 차량의 열관리 시스템
WO2023136459A1 (ko) 히트 펌프 시스템
EP3374704A1 (en) Air conditioner and control method thereof
WO2021157801A1 (en) Air conditioning apparatus and method for controlling an air conditioning apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22920788

Country of ref document: EP

Kind code of ref document: A1