WO2023136284A1 - Heat storage material and method for using heat energy - Google Patents

Heat storage material and method for using heat energy Download PDF

Info

Publication number
WO2023136284A1
WO2023136284A1 PCT/JP2023/000579 JP2023000579W WO2023136284A1 WO 2023136284 A1 WO2023136284 A1 WO 2023136284A1 JP 2023000579 W JP2023000579 W JP 2023000579W WO 2023136284 A1 WO2023136284 A1 WO 2023136284A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat storage
heat
sample
storage material
water
Prior art date
Application number
PCT/JP2023/000579
Other languages
French (fr)
Japanese (ja)
Inventor
哲 市坪
範彦 岡本
拓也 畠山
弘毅 李
Original Assignee
国立大学法人東北大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東北大学 filed Critical 国立大学法人東北大学
Publication of WO2023136284A1 publication Critical patent/WO2023136284A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/16Materials undergoing chemical reactions when used
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B15/00Sorption machines, plants or systems, operating continuously, e.g. absorption type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Definitions

  • the present invention relates to a heat storage material and a method for utilizing thermal energy.
  • This application claims priority based on Japanese Patent Application No. 2022-003139 filed in Japan on January 12, 2022, the contents of which are incorporated herein.
  • a chemical heat pump is a system that supplies heat (dissipates heat) and stores heat by utilizing heat generation and heat absorption phenomena associated with reversible chemical reactions (hydration reaction and dehydration reaction) between a reaction medium and a heat storage material. .
  • Patent Document 1 proposes a heat storage material containing magnesium sulfate. Since magnesium sulfate can absorb a large amount of water, it has a high energy density and can increase the amount of heat stored.
  • Patent Document 1 has a problem that the speed of heat dissipation is slow and it is difficult to use repeatedly.
  • Non-Patent Document 1 proposes a heat storage material containing lanthanum sulfate monohydrate. According to the invention of Non-Patent Document 1, since the change in the crystal structure is small, it is possible to increase the reaction rate and promote the progress of the reversible reaction.
  • Non-Patent Document 1 the amount of water that can be absorbed by lanthanum sulfate is small, so the energy density is low and the heat storage amount cannot be increased.
  • an object of the present invention is to provide a heat storage material and a method of utilizing thermal energy that can increase the amount of heat stored.
  • Another object of the present invention is to provide a heat storage material that can be used repeatedly with a high rate of heat release, and a method for utilizing thermal energy.
  • AxMnO2.nH2O ( I ) [In formula (I), A represents an element capable of maintaining the delta crystal structure, x is a number of 0.00 or more and 0.50 or less, and n is 0.00 or more and 1.00 or less. is the number of ] [2] In [1], wherein A in the formula (I) is one or more selected from metal elements capable of forming cations, preferably metal elements capable of forming monovalent or divalent cations. The heat storage material described.
  • a method for utilizing thermal energy comprising a heat storage step of heating the heat storage material according to [1] or [2] to desorb water from the heat storage material.
  • the method of utilizing thermal energy according to [5] wherein the heat storage step and the heat dissipation step are defined as one cycle, and two or more of the cycles are provided.
  • the heat storage amount can be further increased.
  • the speed of heat dissipation is high and the material can be used repeatedly.
  • FIG. 1 is a schematic diagram showing a crystal structure of a heat storage material according to one embodiment of the present invention
  • FIG. FIG. 4 is a photograph showing the results of X-ray crystal structure analysis when the heat storage material according to one embodiment of the present invention adsorbs and desorbs water.
  • FIG. 4 is a photograph showing the results of X-ray crystal structure analysis of a heat storage material when heating and cooling are repeated in dry nitrogen gas.
  • 4 is a graph showing TG/DTA results for a heat storage material according to an embodiment of the present invention
  • 4 is a graph showing TG/DTA results of heat storage materials according to other embodiments of the present invention.
  • 4 is a graph showing DSC results of a heat storage material according to an embodiment of the present invention
  • 4 is a graph showing DSC results of a heat storage material according to another embodiment of the present invention
  • 4 is a graph showing DSC results of heat storage materials according to other embodiments of the present invention and one form other than the present invention.
  • BRIEF DESCRIPTION OF THE DRAWINGS It is a schematic diagram which shows the outline
  • 4 is a graph showing DSC results of a heat storage material (Sample A) according to one embodiment of the present invention.
  • 4 is a graph showing DSC results of a heat storage material (sample B) according to one embodiment of the present invention.
  • 4 is a graph showing DSC results of a heat storage material (Sample C) according to one embodiment of the present invention.
  • 4 is a graph showing DSC results of a heat storage material (Sample D) according to one embodiment of the present invention.
  • 4 is a graph showing DSC results of a heat storage material (Sample E) according to one embodiment of the present invention.
  • 4 is a graph showing DSC results of a heat storage material (Sample F) according to one embodiment of the present invention.
  • 4 is a graph showing DSC results of a heat storage material (Sample G) according to one embodiment of the present invention.
  • 4 is a graph showing DSC results of a heat storage material (Sample H) according to one embodiment of the present invention.
  • FIG. 4 is a graph showing DSC results of a heat storage material (Sample I) according to one embodiment of the present invention.
  • FIG. 4 is a graph showing DSC results of a heat storage material (Sample J) according to one embodiment of the present invention.
  • 4 is a graph showing DSC results of a heat storage material (Sample K) according to one embodiment of the present invention.
  • 4 is a graph showing the amount of water inserted/desorbed in a heat storage material according to one embodiment of the present invention.
  • 4 is a graph showing TG change of a heat storage material according to one embodiment of the present invention; 4 is a graph showing TG changes (converted to the number of moles of water molecules per mole of Mn atoms) of the heat storage material according to one embodiment of the present invention.
  • the heat storage material of the present invention is a layered manganese oxide represented by the following formula (I) and having a delta-type crystal structure.
  • A represents an element capable of maintaining a delta crystal structure
  • x is a number of 0.00 or more and 0.50 or less
  • n is a number of 0.00 or more and 1.00 or less.
  • layered manganese oxide having a delta-type crystal structure is expressed as, for example, delta-type manganese dioxide, delta-type manganese dioxide, delta-type MnO 2 and delta-MnO 2 , all of which are the same. shall mean.
  • ⁇ -type manganese dioxide is a hexagonal crystal with a layered structure in which oxygen octahedral units of MnO 6 are arranged in layers.
  • the ⁇ -type manganese dioxide shown in FIG. 1 has a layer L1 , a layer L2 , and a layer L3 .
  • the layer L2 is positioned above the layer L1 in the c-axis direction, and the layer L3 is positioned above the layer L2 in the c-axis direction.
  • An interlayer region S1 is formed between the layer L1 and the layer L2 .
  • An interlayer region S2 is formed between the layer L2 and the layer L3 .
  • ⁇ -type manganese dioxide can contain elements and water molecules capable of maintaining a delta-type crystal structure in the interlayer regions S 1 and S 2 .
  • ⁇ -type manganese dioxide generates heat by adsorbing (absorbing) water molecules (water, water vapor) in the interlayer regions S 1 and S 2 , and the water molecules in the interlayer regions S 1 and S 2 desorb (desorb). By doing so, it absorbs heat.
  • ⁇ -type manganese dioxide serves as a host molecule, and water molecules serve as guest molecules. In this way, ⁇ -type manganese dioxide is a heat storage material that repeats heat generation (radiation) and heat absorption (heat storage) by a reversible reaction in which water molecules enter and leave the regions S 1 and S 2 between the layers.
  • the reversible reaction described above is also called an intercalation reaction of water.
  • ⁇ -type manganese dioxide can accommodate a large number of water molecules with a small structural change, it is possible to increase the reaction rate and increase the heat storage amount.
  • n represents the number of moles of water molecules per mole of Mn atoms in ⁇ -type manganese dioxide, and is 0.00 or more and 1.00 or less.
  • n in formula (I) is 0.00, it means that ⁇ -type manganese dioxide does not have water molecules in the region between the layers, and the larger n is, the higher the heat storage capacity is. Further, when n is equal to or less than the above upper limit, the heat storage material can be used repeatedly.
  • the structural change of ⁇ -type manganese dioxide can be expressed by the change rate of the interlayer distance according to the inflow and outflow of water (adsorption and desorption).
  • the change rate of the interlayer distance is preferably 15% or less, more preferably 10% or less.
  • the rate of change of the interlayer distance is equal to or less than the upper limit, the structural change is small and the heat dissipation rate can be increased.
  • the rate of change in interlayer distance is equal to or less than the above upper limit, the structural change is small and the heat storage material can be used repeatedly.
  • the lower limit of the rate of change in the interlayer distance is not particularly limited, it is substantially 1%.
  • the change rate of the interlayer distance is preferably 1 to 15%, preferably 1 to 10%, for example.
  • d2 is the same as d1 .
  • the interlayer distance during expansion represents the interlayer distance when water molecules are absorbed to the maximum extent, and the interlayer distance during contraction represents the interlayer distance when water molecules are desorbed.
  • d is the interlayer distance
  • is the diffraction angle
  • is the X-ray wavelength
  • c represents a lattice constant.
  • A represents an element that allows the layered manganese oxide to maintain the delta-type crystal structure.
  • A is not particularly limited as long as it is an element that allows the layered manganese oxide to maintain the delta-type crystal structure.
  • A is, for example, a metalloid element or a metal element, and among these, a metal element is preferable, and a metal element capable of forming a cation is preferable because it easily enters between the layers of ⁇ -type manganese dioxide and has excellent stability.
  • a metal element capable of forming a monovalent or divalent cation is more preferred.
  • metal elements capable of forming cations include potassium (K), sodium (Na), lithium (Li), cesium (Cs), calcium (Ca), zinc (Zn), copper (Cu), aluminum ( Al) is preferable, among which elements selected from alkali metals and alkaline earth metals are more preferable, sodium, potassium and zinc are more preferable, sodium and potassium are particularly preferable, and potassium is particularly preferable.
  • A may be composed of one type of element, or may be composed of two or more types of elements. When it is composed of two or more elements, it is preferable that one element is potassium and the other one or more elements are selected from the group consisting of sodium, lithium, cesium, calcium, zinc, copper, and aluminum.
  • the type is potassium and at least one other type is selected from the group consisting of calcium and zinc.
  • one element is sodium and the other one or more elements are selected from the group consisting of potassium, lithium, cesium, calcium, zinc, copper, and aluminum.
  • Metalloid elements include, for example, boron (B), silicon (Si), germanium (Ge), antimony (Sb), and tellurium (Te).
  • metal elements include alkali metals, alkaline earth metals, base metals, and transition metals.
  • metal elements capable of forming cations or metal elements capable of forming monovalent or divalent cations include alkali metals, alkaline earth metals, and transition metals.
  • alkali metals include lithium (Li), sodium (Na), potassium (K), rubidium (Rb), cesium (Cs), and francium (Fr).
  • alkaline earth metals include beryllium (Be), magnesium (Mg), calcium (Ca), strontium (Sr), barium (Ba), and radium (Ra).
  • base metals include aluminum (Al), gallium (Ga), indium (In), thallium (Tl), tin (Sn), lead (Pb), and bismuth (Bi).
  • transition metals include scandium (Sc), titanium (Ti), vanadium (V), chromium (Cr), iron (Fe), cobalt (Co), nickel (Ni), copper (Cu), zinc (Zn ), zirconium (Zr), molybdenum (Mo), palladium (Pd), silver (Ag), cadmium (Cd), tungsten (W), platinum (Pt), and gold (Au).
  • x represents the number of moles of element A per 1 mole of Mn atom, and is 0.00 or more and 0.50 or less, preferably 0.01 or more and 0.40 or less, and 0.06 or more and 0.06 or less. 40 or less is more preferable, 0.10 or more and 0.35 or less is still more preferable, and 0.10 or more and 0.33 or less is particularly preferable.
  • x is at least the above lower limit, the layered structure of ⁇ -manganese dioxide can be stabilized and the water absorption can be increased. Therefore, the energy density can be increased, and the heat storage amount can be further increased.
  • x is equal to or greater than the above lower limit, resistance to repeated use can be further enhanced.
  • x is equal to or less than the above upper limit, it is possible to secure a gap between the layers of the ⁇ -type manganese dioxide and increase the water absorption amount. Therefore, the heat dissipation amount can be further increased.
  • x when x is 0.00, it means that the ⁇ -type manganese dioxide does not have the element A in the region between the layers.
  • x when x exceeds 0.00, it means that the ⁇ -type manganese dioxide has the element A in the region between the layers.
  • x is preferably 0.01 or more because the layered structure of ⁇ -type manganese dioxide can be stabilized.
  • x can be determined, for example, by X-ray crystal structure analysis. x can be adjusted by chemical treatment using an acid such as hydrochloric acid, electrochemical treatment, or a combination thereof.
  • the shape of the heat storage material of the present invention is not particularly limited, and any shape can be selected according to the embodiment of the consumer as long as the properties of the heat storage material are not impaired.
  • Examples of the shape of the heat storage material include the shape of powder, granules, and compacts.
  • heat storage material in the form of powder, granules, or molded bodies.
  • sieving, pulverizing, and pulverizing processes can be applied.
  • Granulation processes such as extrusion granulation, tumbling granulation, fluidized bed granulation, and spray drying can be used to produce the heat storage material in granules.
  • molding processes such as press molding, injection molding, blow molding, vacuum molding, and extrusion molding can be applied.
  • the method of utilizing thermal energy of the present invention has a heat storage step.
  • the heat storage step is a step of heating the heat storage material of the present invention and desorbing water from the heated heat storage material.
  • the method of heating the heat storage material is not particularly limited, and examples include a method of exposing the material to direct sunlight, a method of using exhaust heat from a factory, a method of using exhaust heat from an engine such as an automobile, and a method of heating with an oven, heater, or the like. is mentioned. From the viewpoint of effective use of energy, the method of heating the heat storage material is preferably a method of exposing it to direct sunlight, a method of using exhaust heat from a factory, or a method of using exhaust heat from an automobile engine.
  • the temperature when heating the heat storage material (hereinafter also referred to as "heating temperature") is preferably 50 to 300°C, more preferably 80 to 250°C, and even more preferably 100 to 200°C.
  • heating temperature is equal to or higher than the above lower limit, water molecules can be sufficiently desorbed from the heat storage material.
  • the heating temperature is equal to or lower than the upper limit, structural change of the heat storage material can be suppressed.
  • the time for heating the heat storage material (hereinafter also referred to as "heating time") is preferably 10 minutes or more and 6 hours or less, more preferably 30 minutes or more and 4 hours or less, and even more preferably 1 hour or more and 3 hours or less.
  • heating time is equal to or longer than the above lower limit, a sufficient heat storage amount can be secured.
  • the heating time is equal to or less than the above upper limit, the ease of use (usability) of the heat storage material can be further enhanced.
  • the heat storage amount in the heat storage step is preferably 500 MJ/m 3 or more, more preferably 600 MJ/m 3 or more, and even more preferably 700 MJ/m 3 or more in terms of volumetric energy density.
  • the upper limit of the amount of heat stored in the heat storage step is considered to be 2000 MJ/m 3 , which is the limit value in the intercalation reaction of water at 100-200°C.
  • the heat storage amount in the heat storage step is, for example, preferably 500 to 2000 MJ/m 3 , more preferably 600 to 2000 MJ/m 3 and even more preferably 700 to 2000 MJ/m 3 .
  • the amount of heat stored in the heat storage step is determined by, for example, differential scanning calorimetry (DSC).
  • the method of using thermal energy according to the present embodiment may have processes other than the heat storage process.
  • a heat radiation process is mentioned as processes other than a heat storage process.
  • the heat radiation step is a step of causing the heated heat storage material to adsorb water and release heat.
  • the relative humidity of the atmosphere in the heat radiation step is preferably 20-80% RH, more preferably 30-70% RH, and even more preferably 40-60% RH.
  • the relative humidity of the air is equal to or higher than the above lower limit, the contact efficiency between the heat storage material and water can be enhanced, and more water molecules can be adsorbed. Structural change of the heat storage material can be suppressed when the atmospheric relative humidity is equal to or lower than the upper limit.
  • the temperature of the atmosphere in the heat radiation step is preferably 0 to 40°C, more preferably 5 to 35°C, and even more preferably 10 to 30°C.
  • the temperature of the atmosphere is equal to or higher than the above lower limit, more water molecules can be adsorbed by the heat storage material.
  • the atmospheric temperature is equal to or lower than the upper limit value, the heat dissipation effect can be further enhanced.
  • the heat release amount in the heat release step is preferably 50 J/g or more, more preferably 100 J/g or more, and even more preferably 150 J/g or more per unit mass of the heat storage material. A sufficient amount of thermal energy can be radiated when the heat release amount in the heat release step is equal to or higher than the lower limit.
  • the upper limit of the heat release amount in the heat release step is not particularly limited, but is set to 1400 J/g, for example.
  • the heat release amount in the heat release step is preferably 50 to 1400 J/g, more preferably 100 to 1400 J/g, and even more preferably 150 to 1400 J/g per unit mass of the heat storage material.
  • the heat release amount in the heat release process is determined by, for example, DSC.
  • the thermal energy utilization method of this embodiment has two or more cycles, with the heat storage step and the heat dissipation step being one cycle.
  • the number of cycles between the heat storage process and the heat dissipation process (hereinafter also referred to as "cycle number") is preferably 2 or more, more preferably 5 or more, still more preferably 10 or more, and particularly preferably 15 or more.
  • Heat energy can be effectively utilized as the number of cycles is more than the said lower limit.
  • the upper limit of the number of cycles is not particularly limited, it is set to 50, for example.
  • the number of cycles is, for example, preferably 2-50, more preferably 5-50, still more preferably 10-50, and particularly preferably 15-50.
  • the heat storage process may be performed first, or the heat radiation process may be performed first.
  • the heat energy utilization method of the present embodiment uses the heat storage material of the present invention
  • the heat storage amount can be further increased.
  • the heat energy utilization method of the present embodiment uses the heat storage material of the present invention, the speed of heat dissipation can be increased. Since the heating temperature is 50 to 300° C., the heat energy utilization method of this embodiment can utilize low-grade waste heat. Since the heat energy utilization method of the present embodiment repeats the heat storage process and the heat dissipation process, it has reversibility and contributes to the effective utilization of sustainable energy.
  • sample 1 K 0.33 MnO 2 ⁇ nH 2 O (n is a number from 0 to 0.83, hereinafter also referred to as “sample 1”) as a heat storage material. The results of each experiment are discussed below with reference to the drawings.
  • potassium permanganate (KMnO 4 ) was heat-treated at 700° C. for 10 hours, washed with water and filtered until the water became colorless and transparent in order to remove water-soluble by-products. It was obtained by drying in a vacuum drying oven at 80° C. for 12 hours.
  • Sample 1 was placed in an atmosphere of 25° C. and a relative humidity of 60% RH, and the temperature was raised from 40° C. to 240° C. and lowered from 240° C. to 40° C. twice. Sample 1 at this time was subjected to X-ray crystal structure analysis to observe changes in interlayer distance (c-axis lattice constant). The results are shown in FIG. As shown in FIG. 2, in the 002 diffraction line, it was confirmed that the c-axis lattice constant changed in four regions A 1 to A 4 .
  • the change rate of the interlayer distance at this time is ⁇ 1 ⁇ sin (6.30°)/sin (5.75°) ⁇ 100 ⁇ 9.5% Met. It was found that in the regions A 1 and A 3 , desorption of water occurred between 120° C. and 160° C., and the interlayer distance was reduced. In regions A 2 and A 4 , it was found that water adsorption occurred between 160° C. and 120° C. and the interlayer distance expanded.
  • sample 1 was placed in dry nitrogen gas, and the temperature was raised from 40°C to 240°C and lowered from 240°C to 40°C twice.
  • Sample 1 at this time was subjected to X-ray crystal structure analysis to observe changes in the interlayer distance.
  • the results are shown in FIG.
  • FIG. 3 when the temperature of sample 1 was increased , desorption of water occurred between 80.degree. C. and 120.degree. However, it was found that the interlayer distance did not change even after the sample 1 was subsequently cooled and the temperature was lowered. This means that water cannot be adsorbed in dry gas and the interlayer distance cannot be restored. It was confirmed that the interlayer distance was restored (widened) as shown in region A6 by exposing Sample 1 with a reduced interlayer distance to the atmosphere at 24° C. and a relative humidity of 80% RH.
  • sample 1 was placed in nitrogen gas with a relative humidity of 70% RH (nitrogen gas with a moisture content of 2.2% by mass) under a thermogravimetric differential thermal analyzer (TG/DTA, differential thermal analysis in a high-concentration steam atmosphere). Thermal analysis was performed using a balance (manufactured by Rigaku Corporation: Thermo plus EVO2 TG-DTA8122/HUM-1)). Sample 1 was heated to 250°C at a temperature increase rate of 10°C/min and then cooled to 30°C at a temperature decrease rate of 5°C/min (first cycle).
  • TG/DTA thermogravimetric differential thermal analyzer
  • sample 1 was heated to 250°C at a temperature increase rate of 20°C/min, and then cooled to 30°C at a temperature decrease rate of 5°C/min.
  • the sample 1 was heated to 250°C at a temperature increase rate of 40°C/min, and then cooled to 30°C at a temperature decrease rate of 5°C/min.
  • sample 1 was heated to 250°C at a temperature increase rate of 100°C/min, and then cooled to 30°C at a temperature decrease rate of 5°C/min.
  • FIG. 4 shows the result of performing such a temperature rising/falling cycle six times.
  • the graph of area P1 represents the TG of sample 1.
  • the graph in region P2 represents the DTA for sample 1.
  • the mass of sample 1 decreases after heating, and the rate of mass decrease decreases when the temperature exceeds 160°C. After that, a mass loss of approximately 13% was observed up to 250°C.
  • the mass begins to increase, and the mass of the sample 1 rapidly increases when the temperature drops below 130°C.
  • the mass of Sample 1 was observed to recover to a 5% loss.
  • the mass of Sample 1 was observed to range from a 5% decrease to a 13% decrease. During this time, it is considered that the water molecules between the layers of ⁇ -type manganese dioxide are repeatedly adsorbed and desorbed.
  • FIG. 5 shows the results of 16 cycles of heating and cooling.
  • the lower graph represents the TG of sample 1.
  • the upper graph represents the DTA for sample 1. Looking at the TG data, the mass of sample 1 decreases after heating, and the rate of mass decrease decreases when the temperature exceeds 160°C. After that, a mass loss of approximately 13% was observed up to 250°C.
  • the mass begins to increase, and the mass of the sample 1 rapidly increases when the temperature drops below 130°C.
  • the mass of Sample 1 was observed to recover to a loss of 5.5%. From the shape of the TG graph, it was confirmed that the adsorption-desorption reaction of water molecules between layers of ⁇ -manganese dioxide maintained reversibility up to the 16th cycle. Also, from the shape of the TG graph, it was found that the equilibrium temperature of the adsorption/desorption reaction of water molecules is around 120°C. Furthermore, from the shape of the TG graph, it is considered that the adsorption-desorption reaction of water molecules between layers of ⁇ -manganese dioxide is a single-phase reaction in which the amount of water molecules changes continuously with temperature.
  • Sample 1 was subjected to thermal analysis in a dry argon gas atmosphere using a differential scanning calorimeter (DSC) device.
  • Sample 1 was heated from 30°C to 240°C at a heating rate of 5°C/min. After that, it was cooled from 240° C. to 30° C. at a cooling rate of 5° C./min, and this was taken as the initial cycle (curve A).
  • Sample 1 was then exposed to air (room temperature) for 30 minutes and heated under the same conditions as the initial cycle (second cycle, curve B). Separately, sample 1 was heated at 250° C. and then exposed to the atmosphere (room temperature) for 12 hours and heated under the same conditions as the initial cycle (curve C).
  • This value is on the same order as 2000 MJ/m 3 , which is considered to be the limit value for the intercalation reaction of water at 100 to 200° C., and can be said to be comparable to the limit value for the intercalation reaction of water.
  • curve G third cycle
  • the height of the peak top of the exothermic peak is lower than that of curve F. This is probably because the amount of water molecules that can be adsorbed and desorbed between the layers of ⁇ -manganese dioxide is smaller in the third cycle than in the initial cycle.
  • the area of the portion surrounded by the baseline H means the calorific value of the heat storage material.
  • the calorific value determined by the DSC apparatus was 190 J/g.
  • the slope of the curve becomes gentle around 900 seconds after the start of exposure, so heat generation is completed 15 minutes after the start of exposure.
  • FIG. 8 shows the case of using sample 1 as the heat storage material, the case of using K 0.06 MnO 2 ⁇ nH 2 O (n is a number from 0 to 0.83, sample 2), and the case of beta type.
  • 3 shows the results of DSC measurement when manganese dioxide ( ⁇ -MnO 2 , sample 3) having a crystal structure is used. Sample 2 was obtained by subjecting sample 1 to leaching treatment in nitric acid.
  • Sample 3 was obtained by sealing an aqueous solution of 1 mol/L of MnSO 4 and 1 mol/L of (NH 4 ) 2 S 2 O 8 ) in an autoclave (Teflon-lined stainless-steel autoclave) and heating at 180°C. was heat treated for 6 hours at The obtained sample was washed with water until the water became colorless and transparent, and then dried in a vacuum drying oven at 40° C. for 12 hours. As shown in FIG. 8, an endothermic peak due to desorption of water was observed in the temperature range of 100 to 200° C. in both the case of using sample 1 and the case of using sample 2. It was confirmed from the depth of the endothermic peak that the amount of endotherm was greater when sample 1 was used.
  • Sample B K0.05Zn0.125MnO2.nH2O
  • Sample A2 was added to a mixture (aqueous solution) of 89.24 g (0.3 mol) of zinc nitrate hexahydrate (Zn(NO 3 ) 2.6H 2 O) and 200 g of water at room temperature for 2 weeks without stirring. .30 g (0.02 mol) was immersed and the sample obtained by filtration was vacuum-dried at 40° C. for 12 hours to obtain sample B.
  • FIG. 11 shows the test results using sample B.
  • Sample C ( Cs0.28MnO2.nH2O )] 2.30 g (0.02 mol) of sample A was immersed in a mixture (aqueous solution) of 50.51 g (0.3 mol) of cesium chloride (CsCl) and 200 g of water at room temperature for 2 weeks without stirring, and filtered. The obtained sample was vacuum-dried at 40° C. for 12 hours to obtain Sample C.
  • FIG. 12 shows the results of the above test using sample C. As shown in FIG.
  • Sample D K0.075Ca0.1MnO2.nH2O
  • Sample A2 was added to a mixture (aqueous solution) of 70.85 g (0.3 mol) of calcium nitrate tetrahydrate (Ca(NO 3 ) 2 4H 2 O) and 200 g of water without stirring at room temperature for 2 weeks.
  • a sample obtained by immersing .30 g (0.02 mol) and filtering was vacuum-dried at 40° C. for 12 hours to obtain sample D.
  • FIG. 13 shows the test results using sample D.
  • Sample E ( Cu0.11MnO2.nH2O )]
  • a mixture (aqueous solution) of 72.48 g (0.3 mol) of copper nitrate trihydrate (Cu(NO 3 ) 2.3H 2 O) and 200 g of water (aqueous solution) was added without stirring at room temperature for 2 weeks. .30 g (0.02 mol) was immersed and the sample obtained by filtration was vacuum-dried at 40° C. for 12 hours to obtain sample E.
  • FIG. 14 shows the results of the above test using sample E.
  • Sample F Li0.34MnO2.nH2O )
  • sample A Li0.34MnO2.nH2O )
  • a mixture aqueous solution
  • the sample thus obtained was vacuum-dried at 40° C. for 12 hours to obtain Sample F.
  • FIG. 15 shows the results of the above test using sample F.
  • Sample G (Al 0.015 MnO 2 ⁇ nH 2 O)
  • Sample A2 was added to a mixture (aqueous solution) of 112.5 g ( 0.3 mol) of aluminum nitrate nonahydrate (Al( NO3 ) 3.9H2O ) and 200 g of water at room temperature for 2 weeks without stirring.
  • a sample obtained by soaking .30 g (0.02 mol) and filtering was vacuum-dried at 40° C. for 12 hours to obtain sample G.
  • FIG. 16 shows the test results using sample G.
  • Sample H Na0.25MnO2.nH2O )
  • 11.5 g (0.1 mol) of sample A was immersed in a mixture (aqueous solution) of 25.5 g (1.5 mol) of sodium nitrate (NaNO 3 ) and 200 g of water at room temperature for 2 weeks without stirring, and filtered.
  • the sample thus obtained was vacuum-dried at 40° C. for 12 hours to obtain Sample H.
  • FIG. 17 shows the results of the above test using sample H.
  • Sample J ( Zn0.179MnO2.nH2O )] Sample I 2 A sample obtained by soaking .30 g (0.02 mol) and filtering was vacuum-dried at 40° C. for 12 hours to obtain sample J.
  • FIG. 19 shows the test results using sample J.
  • Sample K Na0.28MnO2.nH2O )] 11.5 g (0.1 mol) of sample I was immersed in a mixture (aqueous solution) of 25.5 g (1.5 mol) of sodium nitrate (NaNO 3 ) and 200 g of water at room temperature for 2 weeks without stirring, and filtered. The sample thus obtained was vacuum-dried at 40° C. for 12 hours to obtain Sample K.
  • FIG. 20 shows the test results using sample K.
  • thermogravimetric differential thermal analyzer TG/DTA, high-concentration steam atmosphere differential thermal balance (manufactured by Rigaku Corporation: Thermo plus EVO2 TG- Thermal analysis was performed using DTA8122/HUM-1)).
  • TG/DTA thermogravimetric differential thermal analyzer
  • the thermal The relative humidity (25° C. standard) at the gas inlet of the gravimetric differential thermal analyzer main body was reciprocally swept from 0% to 90% (water vapor partial pressure 28.5 hPa) (0.5% RH/min).
  • the humidity of the introduced gas was adjusted by mixing wet nitrogen passed through a water bath with high-purity dry nitrogen at an appropriate ratio, and feedback-controlling the relative humidity at the gas inlet.
  • the flow rate of the introduced gas was approximately 500 sccm regardless of the relative humidity.
  • the relative humidity in FIG. 21 represents the 25° C. reference humidity at the gas inlet. .9% RH.
  • TG: 0% in FIG. 21 corresponds to the completely dehydrated state in sample 1.
  • 22 and 23 show the humidity dependence of TG at corresponding temperatures and the humidity dependence of the number of moles of water molecules per mole of Mn atoms corresponding to n in formula (I) for the above thermal analysis results. Each is represented.
  • the heat storage temperature, heat radiation temperature, and water desorption/insertion amount at the ambient humidity can be determined.
  • FIGS. 21 to 23 in the case of heat dissipation at 28° C. (room temperature level) in sample 1, even if the environmental humidity changes such as summer humidity/winter dryness, the It can be seen that the amount does not change significantly. In other words, it can be seen that Sample 1 can provide a stable amount of heat dissipation without being significantly affected by the environmental humidity in heat dissipation at the room temperature level.
  • the heat storage temperature is 135° C. or higher, water in the sample can be almost completely desorbed regardless of the environmental humidity.
  • FIG. 9 shows a schematic diagram showing the outline of the present invention.
  • the layered manganese oxide of the present embodiment can adsorb and desorb water molecules in the region between the layers due to the intercalation reaction of water. It was found that the layered manganese oxide of this embodiment can reversibly intercalate 0.5 mol of water molecules per 1 mol of Mn atoms. It was found that the desorption reaction (dehydration reaction) of water was completed within 3 minutes at a rate of 100°C/min. It is considered that such a fast reaction rate is realized by utilizing the intercalation reaction of water.
  • the intercalation reaction of water proceeds mainly by a single-phase reaction.
  • the heat storage capacity of the heat storage material of this embodiment was 1007 MJ/m 3 in terms of volume energy density. This value was close to the limit value (2000 MJ/m 3 ) of heat storage for the intercalation reaction of water at 100 to 200°C.
  • the present invention is the first application of the intercalation reaction of water to a heat storage material. It was found that the heat storage material of the present invention is an excellent material among existing heat storage materials in terms of energy density, reaction rate, and reversibility.
  • the heat storage material of the present invention can further increase the amount of heat stored.
  • the heat storage material of the present invention has a high heat release rate and can be used repeatedly.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

The purpose of the present invention is to provide a heat storage material and a method for using heat energy that make it possible to further increase the amount of stored heat. Another purpose of the present invention is to provide a heat storage material and a method for using heat energy that offer fast heat dissipation and can be used repeatedly. The heat storage material of the present invention is a layered manganese oxide that is represented by formula (I) and has a delta-type crystal structure. Formula (I): AxMnO2·nH2O (in formula (I), A represents an element that makes it possible to maintain the delta-type crystal structure, x is a number between 0.00-0.50 inclusive, and n is a number between 0.00-1.00 inclusive).

Description

蓄熱材料及び熱エネルギーの利用方法Thermal storage material and method of using thermal energy
 本発明は、蓄熱材料及び熱エネルギーの利用方法に関する。
 本願は、2022年1月12日に日本出願された特願2022-003139号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a heat storage material and a method for utilizing thermal energy.
This application claims priority based on Japanese Patent Application No. 2022-003139 filed in Japan on January 12, 2022, the contents of which are incorporated herein.
 近年、地球環境を保護する等の観点から、持続可能なエネルギーの有効活用が注目されている。
 例えば、余剰排熱等の熱源を有効活用するケミカルヒートポンプ等の熱回収システムが知られている。ケミカルヒートポンプは、反応媒体と蓄熱材料との間の、可逆的な化学反応(水和反応及び脱水反応)に伴う発熱、吸熱現象を利用して、熱供給(放熱)、蓄熱を行うシステムである。
In recent years, the effective use of sustainable energy has attracted attention from the viewpoint of protecting the global environment.
For example, heat recovery systems such as chemical heat pumps that effectively utilize heat sources such as surplus waste heat are known. A chemical heat pump is a system that supplies heat (dissipates heat) and stores heat by utilizing heat generation and heat absorption phenomena associated with reversible chemical reactions (hydration reaction and dehydration reaction) between a reaction medium and a heat storage material. .
 ケミカルヒートポンプに利用される蓄熱材料として、例えば、特許文献1には、硫酸マグネシウムを含む蓄熱材料が提案されている。硫酸マグネシウムは、水を多く吸収できるため、エネルギー密度が高く、蓄熱量を高めることができる。 As a heat storage material used in chemical heat pumps, for example, Patent Document 1 proposes a heat storage material containing magnesium sulfate. Since magnesium sulfate can absorb a large amount of water, it has a high energy density and can increase the amount of heat stored.
 しかしながら、硫酸マグネシウムが水を吸収すると、硫酸マグネシウムの表面が潮解し、結晶構造が変化し、反応速度が低下し、可逆的な反応が進行しにくくなる。すなわち、特許文献1の発明では、放熱の速度が遅く、繰り返し使用しづらいという問題がある。 However, when magnesium sulfate absorbs water, the surface of magnesium sulfate deliquesces, the crystal structure changes, the reaction rate decreases, and the reversible reaction becomes difficult to proceed. That is, the invention of Patent Document 1 has a problem that the speed of heat dissipation is slow and it is difficult to use repeatedly.
 このような問題に対し、例えば、非特許文献1には、硫酸ランタン一水和物を含む蓄熱材料が提案されている。非特許文献1の発明によれば、結晶構造の変化が小さいため、反応速度を高め、可逆的な反応の進行を促進できる。 In response to such problems, for example, Non-Patent Document 1 proposes a heat storage material containing lanthanum sulfate monohydrate. According to the invention of Non-Patent Document 1, since the change in the crystal structure is small, it is possible to increase the reaction rate and promote the progress of the reversible reaction.
日本国特開2014-177619号公報Japanese Patent Application Laid-Open No. 2014-177619
 しかしながら、非特許文献1の発明では、硫酸ランタンが吸収できる水の量が少ないため、エネルギー密度が低く、蓄熱量を高めることができない。 However, in the invention of Non-Patent Document 1, the amount of water that can be absorbed by lanthanum sulfate is small, so the energy density is low and the heat storage amount cannot be increased.
 そこで、本発明は、蓄熱量をより高めることができる蓄熱材料及び熱エネルギーの利用方法の提供を目的とする。
 また、本発明は、放熱の速度が速く、繰り返し使用できる蓄熱材料及び熱エネルギーの利用方法の提供を目的とする。
Accordingly, an object of the present invention is to provide a heat storage material and a method of utilizing thermal energy that can increase the amount of heat stored.
Another object of the present invention is to provide a heat storage material that can be used repeatedly with a high rate of heat release, and a method for utilizing thermal energy.
 上記課題を解決するために、本発明は以下の態様を有する。
[1]下記式(I)で表され、デルタ型の結晶構造を有する層状マンガン酸化物である、蓄熱材料。
 AMnO・nHO ・・・(I)
 [式(I)中、Aは、前記デルタ型の結晶構造を維持できる元素を表し、xは、0.00以上0.50以下の数であり、nは、0.00以上1.00以下の数である。]
[2]前記式(I)におけるAが、陽イオンを形成し得る金属元素、好ましくは1価又は2価の陽イオンを形成し得る金属元素から選ばれる1種以上である、[1]に記載の蓄熱材料。
In order to solve the above problems, the present invention has the following aspects.
[1] A heat storage material represented by the following formula (I) and being a layered manganese oxide having a delta-type crystal structure.
AxMnO2.nH2O ( I )
[In formula (I), A represents an element capable of maintaining the delta crystal structure, x is a number of 0.00 or more and 0.50 or less, and n is 0.00 or more and 1.00 or less. is the number of ]
[2] In [1], wherein A in the formula (I) is one or more selected from metal elements capable of forming cations, preferably metal elements capable of forming monovalent or divalent cations. The heat storage material described.
[3][1]又は[2]に記載の蓄熱材料を加熱して、前記蓄熱材料から水を脱離する蓄熱工程を有する、熱エネルギーの利用方法。
[4]前記蓄熱工程における前記蓄熱材料を加熱する温度が50~300℃である、[3]に記載の熱エネルギーの利用方法。
[5]加熱した前記蓄熱材料に水を吸着させて熱を放出する放熱工程をさらに有する、[3]又は[4]に記載の熱エネルギーの利用方法。
[6]前記蓄熱工程と、前記放熱工程とを一つのサイクルとして、前記サイクルを2以上有する、[5]に記載の熱エネルギーの利用方法。
[3] A method for utilizing thermal energy, comprising a heat storage step of heating the heat storage material according to [1] or [2] to desorb water from the heat storage material.
[4] The method for utilizing thermal energy according to [3], wherein the temperature for heating the heat storage material in the heat storage step is 50 to 300°C.
[5] The method for utilizing thermal energy according to [3] or [4], further comprising a heat release step of adsorbing water to the heated heat storage material to release heat.
[6] The method of utilizing thermal energy according to [5], wherein the heat storage step and the heat dissipation step are defined as one cycle, and two or more of the cycles are provided.
 本発明の蓄熱材料及び熱エネルギーの利用方法によれば、蓄熱量をより高めることができる。
 また、本発明の蓄熱材料および熱エネルギーの利用方法によれば、放熱の速度が速く、繰り返し使用できる。
According to the heat storage material and the method of utilizing thermal energy of the present invention, the heat storage amount can be further increased.
Moreover, according to the heat storage material and the method of utilizing thermal energy of the present invention, the speed of heat dissipation is high and the material can be used repeatedly.
本発明の一実施形態に係る蓄熱材料の結晶構造を示す模式図である。1 is a schematic diagram showing a crystal structure of a heat storage material according to one embodiment of the present invention; FIG. 本発明の一実施形態に係る蓄熱材料の水の吸脱着を行った際のX線結晶構造解析の結果を示す写真である。FIG. 4 is a photograph showing the results of X-ray crystal structure analysis when the heat storage material according to one embodiment of the present invention adsorbs and desorbs water. FIG. 乾燥窒素ガス中で加熱、冷却を繰り返した場合の蓄熱材料のX線結晶構造解析の結果を示す写真である。4 is a photograph showing the results of X-ray crystal structure analysis of a heat storage material when heating and cooling are repeated in dry nitrogen gas. 本発明の一実施形態に係る蓄熱材料のTG/DTAの結果を示すグラフである。4 is a graph showing TG/DTA results for a heat storage material according to an embodiment of the present invention; 本発明の他の実施形態に係る蓄熱材料のTG/DTAの結果を示すグラフである。4 is a graph showing TG/DTA results of heat storage materials according to other embodiments of the present invention. 本発明の一実施形態に係る蓄熱材料のDSCの結果を示すグラフである。4 is a graph showing DSC results of a heat storage material according to an embodiment of the present invention; 本発明の他の実施形態に係る蓄熱材料のDSCの結果を示すグラフである。4 is a graph showing DSC results of a heat storage material according to another embodiment of the present invention; 本発明の他の実施形態、及び本発明以外の一形態に係る蓄熱材料のDSCの結果を示すグラフである。4 is a graph showing DSC results of heat storage materials according to other embodiments of the present invention and one form other than the present invention. 本発明の概要を示す模式図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a schematic diagram which shows the outline|summary of this invention. 本発明の一実施形態に係る蓄熱材料(サンプルA)のDSCの結果を示すグラフである。4 is a graph showing DSC results of a heat storage material (Sample A) according to one embodiment of the present invention. 本発明の一実施形態に係る蓄熱材料(サンプルB)のDSCの結果を示すグラフである。4 is a graph showing DSC results of a heat storage material (sample B) according to one embodiment of the present invention. 本発明の一実施形態に係る蓄熱材料(サンプルC)のDSCの結果を示すグラフである。4 is a graph showing DSC results of a heat storage material (Sample C) according to one embodiment of the present invention. 本発明の一実施形態に係る蓄熱材料(サンプルD)のDSCの結果を示すグラフである。4 is a graph showing DSC results of a heat storage material (Sample D) according to one embodiment of the present invention. 本発明の一実施形態に係る蓄熱材料(サンプルE)のDSCの結果を示すグラフである。4 is a graph showing DSC results of a heat storage material (Sample E) according to one embodiment of the present invention. 本発明の一実施形態に係る蓄熱材料(サンプルF)のDSCの結果を示すグラフである。4 is a graph showing DSC results of a heat storage material (Sample F) according to one embodiment of the present invention. 本発明の一実施形態に係る蓄熱材料(サンプルG)のDSCの結果を示すグラフである。4 is a graph showing DSC results of a heat storage material (Sample G) according to one embodiment of the present invention. 本発明の一実施形態に係る蓄熱材料(サンプルH)のDSCの結果を示すグラフである。4 is a graph showing DSC results of a heat storage material (Sample H) according to one embodiment of the present invention. 本発明の一実施形態に係る蓄熱材料(サンプルI)のDSCの結果を示すグラフである。FIG. 4 is a graph showing DSC results of a heat storage material (Sample I) according to one embodiment of the present invention. FIG. 本発明の一実施形態に係る蓄熱材料(サンプルJ)のDSCの結果を示すグラフである。4 is a graph showing DSC results of a heat storage material (Sample J) according to one embodiment of the present invention. 本発明の一実施形態に係る蓄熱材料(サンプルK)のDSCの結果を示すグラフである。4 is a graph showing DSC results of a heat storage material (Sample K) according to one embodiment of the present invention. 本発明の一実施形態に係る蓄熱材料の水脱挿入量を示すグラフである。4 is a graph showing the amount of water inserted/desorbed in a heat storage material according to one embodiment of the present invention. 本発明の一実施形態に係る蓄熱材料のTG変化を示すグラフである。4 is a graph showing TG change of a heat storage material according to one embodiment of the present invention; 本発明の一実施形態に係る蓄熱材料のTG変化(Mn原子1モル当たりの水分子のモル数に換算したもの)を示すグラフである。4 is a graph showing TG changes (converted to the number of moles of water molecules per mole of Mn atoms) of the heat storage material according to one embodiment of the present invention.
[蓄熱材料]
 本発明の蓄熱材料は、下記式(I)で表され、デルタ型の結晶構造を有する層状マンガン酸化物である。
 AMnO・nHO ・・・(I)
 式(I)中、Aは、デルタ型の結晶構造を維持できる元素を表し、xは、0.00以上0.50以下の数であり、nは、0.00以上1.00以下の数である。
 本明細書において、「デルタ型の結晶構造を有する層状マンガン酸化物」は、例えば、デルタ型二酸化マンガン、δ型二酸化マンガン、δ型MnO、δ-MnOと表記し、いずれも同じものを意味するものとする。
[Heat storage material]
The heat storage material of the present invention is a layered manganese oxide represented by the following formula (I) and having a delta-type crystal structure.
AxMnO2.nH2O ( I )
In formula (I), A represents an element capable of maintaining a delta crystal structure, x is a number of 0.00 or more and 0.50 or less, and n is a number of 0.00 or more and 1.00 or less. is.
In this specification, "layered manganese oxide having a delta-type crystal structure" is expressed as, for example, delta-type manganese dioxide, delta-type manganese dioxide, delta-type MnO 2 and delta-MnO 2 , all of which are the same. shall mean.
 図1に示すように、δ型二酸化マンガンは、MnOの酸素八面体ユニットが層状に配列した層状構造を有する六方晶である。
 図1に示すδ型二酸化マンガンは、レイヤーLと、レイヤーLと、レイヤーLとを有する。レイヤーLは、レイヤーLのc軸方向上側に位置し、さらにレイヤーLのc軸方向上側にレイヤーLが位置する。
 レイヤーLと、レイヤーLとの間には、層間の領域Sが形成されている。レイヤーLと、レイヤーLとの間には、層間の領域Sが形成されている。
 δ型二酸化マンガンは、層間の領域S、Sにデルタ型の結晶構造を維持できる元素や水分子を含有することができる。
 δ型二酸化マンガンは、層間の領域S、Sに水分子(水、水蒸気)を吸着(吸収)することにより発熱し、層間の領域S、Sの水分子が脱離(脱着)することにより、吸熱する。δ型二酸化マンガンはホスト分子、水分子はゲスト分子の役割を果たす。
 このように、δ型二酸化マンガンは、層間の領域S、Sに水分子が侵入したり、脱離したりする可逆反応により、発熱(放熱)と、吸熱(蓄熱)とを繰り返す蓄熱材料として機能する。上述の可逆反応を、水のインターカレーション反応ともいう。
 加えて、δ型二酸化マンガンは、小さい構造変化で多くの水分子を収容できるため、反応速度を高めることができ、蓄熱量をより高めることができる。
As shown in FIG. 1, δ-type manganese dioxide is a hexagonal crystal with a layered structure in which oxygen octahedral units of MnO 6 are arranged in layers.
The δ-type manganese dioxide shown in FIG. 1 has a layer L1 , a layer L2 , and a layer L3 . The layer L2 is positioned above the layer L1 in the c-axis direction, and the layer L3 is positioned above the layer L2 in the c-axis direction.
An interlayer region S1 is formed between the layer L1 and the layer L2 . An interlayer region S2 is formed between the layer L2 and the layer L3 .
δ-type manganese dioxide can contain elements and water molecules capable of maintaining a delta-type crystal structure in the interlayer regions S 1 and S 2 .
δ-type manganese dioxide generates heat by adsorbing (absorbing) water molecules (water, water vapor) in the interlayer regions S 1 and S 2 , and the water molecules in the interlayer regions S 1 and S 2 desorb (desorb). By doing so, it absorbs heat. δ-type manganese dioxide serves as a host molecule, and water molecules serve as guest molecules.
In this way, δ-type manganese dioxide is a heat storage material that repeats heat generation (radiation) and heat absorption (heat storage) by a reversible reaction in which water molecules enter and leave the regions S 1 and S 2 between the layers. Function. The reversible reaction described above is also called an intercalation reaction of water.
In addition, since δ-type manganese dioxide can accommodate a large number of water molecules with a small structural change, it is possible to increase the reaction rate and increase the heat storage amount.
 式(I)において、nは、δ型二酸化マンガンにおけるMn原子1モルに対する水分子のモル数を表し、0.00以上1.00以下である。なお、式(I)におけるnが0.00のとき、δ型二酸化マンガンは、層間の領域に水分子を有しないことを意味し、nは大きいほど蓄熱量を高められる。また、nが上記上限値以下であると、蓄熱材料を繰り返し使用できる。 In formula (I), n represents the number of moles of water molecules per mole of Mn atoms in δ-type manganese dioxide, and is 0.00 or more and 1.00 or less. When n in formula (I) is 0.00, it means that δ-type manganese dioxide does not have water molecules in the region between the layers, and the larger n is, the higher the heat storage capacity is. Further, when n is equal to or less than the above upper limit, the heat storage material can be used repeatedly.
 δ型二酸化マンガンの構造変化は、水の出入り(吸脱着)に応じた層間距離の変化率で表すことができる。層間距離の変化率は、15%以下が好ましく、10%以下がより好ましい。層間距離の変化率が上記上限値以下であると、構造変化が小さく、放熱の速度を高められる。加えて、層間距離の変化率が上記上限値以下であると、構造変化が小さく、蓄熱材料を繰り返し使用できる。層間距離の変化率の下限値は、特に限定されないが、実質的には、1%である。層間距離の変化率は、例えば、1~15%が好ましく、1~10%が好ましい。 The structural change of δ-type manganese dioxide can be expressed by the change rate of the interlayer distance according to the inflow and outflow of water (adsorption and desorption). The change rate of the interlayer distance is preferably 15% or less, more preferably 10% or less. When the rate of change of the interlayer distance is equal to or less than the upper limit, the structural change is small and the heat dissipation rate can be increased. In addition, when the rate of change in interlayer distance is equal to or less than the above upper limit, the structural change is small and the heat storage material can be used repeatedly. Although the lower limit of the rate of change in the interlayer distance is not particularly limited, it is substantially 1%. The change rate of the interlayer distance is preferably 1 to 15%, preferably 1 to 10%, for example.
 層間距離の変化率は、下記式(II)で表される。
 層間距離の変化率(%)={(膨張時の層間距離(Å))-(収縮時の層間距離(Å))/(収縮時の層間距離(Å))}×100・・・(II)
 ここで、δ型二酸化マンガンの層間距離は、図1のd又はdで表されるc軸方向の長さである。dは、約7Å(オングストローム)=0.7nmである。dは、dと同様である。
 膨張時の層間距離は、水分子を最大限吸収した時の層間距離を表し、収縮時の層間距離は、水分子が脱離したときの層間距離を表す。
The change rate of the interlayer distance is represented by the following formula (II).
Rate of change in interlayer distance (%) = {(interlayer distance at expansion (Å)) - (interlayer distance at contraction (Å))/(interlayer distance at contraction (Å))} × 100 (II )
Here, the interlayer distance of δ-type manganese dioxide is the length in the c-axis direction represented by d1 or d2 in FIG. d 1 is approximately 7 Å (Angstroms)=0.7 nm. d2 is the same as d1 .
The interlayer distance during expansion represents the interlayer distance when water molecules are absorbed to the maximum extent, and the interlayer distance during contraction represents the interlayer distance when water molecules are desorbed.
 δ型二酸化マンガンの層間距離は、X線結晶構造解析により、下記式(III)、(IV)に基づいて求められる。
 2dsinθ=λ ・・・(III)
 c=2d ・・・(IV)
 式(III)において、dは層間距離、θは回折角、λはX線の波長を表す。
 式(IV)において、cは格子定数を表す。
The interlayer distance of δ-type manganese dioxide is determined by X-ray crystal structure analysis based on the following formulas (III) and (IV).
2d sin θ=λ (III)
c=2d (IV)
In formula (III), d is the interlayer distance, θ is the diffraction angle, and λ is the X-ray wavelength.
In formula (IV), c represents a lattice constant.
 式(I)において、Aは、層状マンガン酸化物がデルタ型の結晶構造を維持できる元素を表す。Aとしては、層状マンガン酸化物がデルタ型の結晶構造を維持できる元素であればよく、特に限定されない。Aとしては、例えば、半金属元素、金属元素が挙げられ、中でも金属元素が好ましく、δ型二酸化マンガンの層間に入り込みやすく、安定性に優れることから、陽イオンを形成し得る金属元素が好ましく、1価又は2価の陽イオンを形成し得る金属元素がより好ましい。
 陽イオンを形成し得る金属元素としては、例えば、カリウム(K)、ナトリウム(Na)、リチウム(Li)、セシウム(Cs)、カルシウム(Ca)、亜鉛(Zn)、銅(Cu)、アルミニウム(Al)が好ましく、中でもアルカリ金属及びアルカリ土類金属から選ばれる元素がより好ましく、ナトリウム、カリウム、亜鉛がさらに好ましく、ナトリウム、カリウムがことさら好ましく、カリウムが特に好ましい。
 Aは、1種類の元素で構成されていてもよく、2種類以上の元素で構成されていてもよい。2種類以上の元素で構成されている場合、1種類がカリウムであり、他の1種類以上がナトリウム、リチウム、セシウム、カルシウム、亜鉛、銅、及びアルミニウムからなる群より選ばれることが好ましく、1種類がカリウムであり、他の1種類以上がカルシウム、及び亜鉛からなる群より選ばれることがより好ましい。また、2種類以上の元素で構成されている場合、1種類がナトリウムであり、他の1種類以上がカリウム、リチウム、セシウム、カルシウム、亜鉛、銅、及びアルミニウムからなる群より選ばれることが好ましい。
 半金属元素としては、例えば、ホウ素(B)、ケイ素(Si)、ゲルマニウム(Ge)、アンチモン(Sb)、テルル(Te)が挙げられる。
 金属元素としては、例えば、アルカリ金属、アルカリ土類金属、卑金属、遷移金属が挙げられる。
 陽イオンを形成し得る金属元素、あるいは1価又は2価の陽イオンを形成し得る金属元素としては、例えば、アルカリ金属、アルカリ土類金属、遷移金属が挙げられる。
 アルカリ金属としては、例えば、リチウム(Li)、ナトリウム(Na)、カリウム(K)、ルビジウム(Rb)、セシウム(Cs)、フランシウム(Fr)が挙げられる。
 アルカリ土類金属としては、例えば、ベリリウム(Be)、マグネシウム(Mg)、カルシウム(Ca)、ストロンチウム(Sr)、バリウム(Ba)、ラジウム(Ra)が挙げられる。
 卑金属としては、例えば、アルミニウム(Al)、ガリウム(Ga)、インジウム(In)、タリウム(Tl)、錫(Sn)、鉛(Pb)、ビスマス(Bi)が挙げられる。
 遷移金属としては、例えば、スカンジウム(Sc)、チタン(Ti)、バナジウム(V)、クロム(Cr)、鉄(Fe)、コバルト(Co)、ニッケル(Ni)、銅(Cu)、亜鉛(Zn)、ジルコニウム(Zr)、モリブデン(Mo)、パラジウム(Pd)、銀(Ag)、カドミウム(Cd)、タングステン(W)、白金(Pt)、金(Au)が挙げられる。
In formula (I), A represents an element that allows the layered manganese oxide to maintain the delta-type crystal structure. A is not particularly limited as long as it is an element that allows the layered manganese oxide to maintain the delta-type crystal structure. A is, for example, a metalloid element or a metal element, and among these, a metal element is preferable, and a metal element capable of forming a cation is preferable because it easily enters between the layers of δ-type manganese dioxide and has excellent stability. A metal element capable of forming a monovalent or divalent cation is more preferred.
Examples of metal elements capable of forming cations include potassium (K), sodium (Na), lithium (Li), cesium (Cs), calcium (Ca), zinc (Zn), copper (Cu), aluminum ( Al) is preferable, among which elements selected from alkali metals and alkaline earth metals are more preferable, sodium, potassium and zinc are more preferable, sodium and potassium are particularly preferable, and potassium is particularly preferable.
A may be composed of one type of element, or may be composed of two or more types of elements. When it is composed of two or more elements, it is preferable that one element is potassium and the other one or more elements are selected from the group consisting of sodium, lithium, cesium, calcium, zinc, copper, and aluminum. More preferably, the type is potassium and at least one other type is selected from the group consisting of calcium and zinc. Further, when it is composed of two or more elements, it is preferable that one element is sodium and the other one or more elements are selected from the group consisting of potassium, lithium, cesium, calcium, zinc, copper, and aluminum. .
Metalloid elements include, for example, boron (B), silicon (Si), germanium (Ge), antimony (Sb), and tellurium (Te).
Examples of metal elements include alkali metals, alkaline earth metals, base metals, and transition metals.
Examples of metal elements capable of forming cations or metal elements capable of forming monovalent or divalent cations include alkali metals, alkaline earth metals, and transition metals.
Examples of alkali metals include lithium (Li), sodium (Na), potassium (K), rubidium (Rb), cesium (Cs), and francium (Fr).
Examples of alkaline earth metals include beryllium (Be), magnesium (Mg), calcium (Ca), strontium (Sr), barium (Ba), and radium (Ra).
Examples of base metals include aluminum (Al), gallium (Ga), indium (In), thallium (Tl), tin (Sn), lead (Pb), and bismuth (Bi).
Examples of transition metals include scandium (Sc), titanium (Ti), vanadium (V), chromium (Cr), iron (Fe), cobalt (Co), nickel (Ni), copper (Cu), zinc (Zn ), zirconium (Zr), molybdenum (Mo), palladium (Pd), silver (Ag), cadmium (Cd), tungsten (W), platinum (Pt), and gold (Au).
 式(I)において、xは、Mn原子1モルに対する元素Aのモル数を表し、0.00以上0.50以下であり、0.01以上0.40以下が好ましく、0.06以上0.40以下がより好ましく、0.10以上0.35以下がさらに好ましく、0.10以上0.33以下が特に好ましい。xが上記下限値以上であると、δ型二酸化マンガンの層状構造を安定化でき、水の吸収量を増加できる。このため、エネルギー密度を高めることができ、蓄熱量をより高められる。加えて、xが上記下限値以上であると、繰り返し使用に対する耐性をより高められる。xが上記上限値以下であると、δ型二酸化マンガンの層間の隙間を確保でき、水の吸収量を増加できる。このため、放熱量をより高めることができる。
 式(I)において、xが0.00のとき、δ型二酸化マンガンは、層間の領域に元素Aを有しないことを意味する。また、式(I)において、xが0.00超のとき、δ型二酸化マンガンは、層間の領域に元素Aを有することを意味する。δ型二酸化マンガンの層状構造を安定化できることから、xは、0.01以上であることが好ましい。
 xは、例えば、X線結晶構造解析により求めることができる。
 xは、塩酸等の酸を用いた化学処理や、電気化学的な処理、及びこれらの組合せにより調節できる。
In formula (I), x represents the number of moles of element A per 1 mole of Mn atom, and is 0.00 or more and 0.50 or less, preferably 0.01 or more and 0.40 or less, and 0.06 or more and 0.06 or less. 40 or less is more preferable, 0.10 or more and 0.35 or less is still more preferable, and 0.10 or more and 0.33 or less is particularly preferable. When x is at least the above lower limit, the layered structure of δ-manganese dioxide can be stabilized and the water absorption can be increased. Therefore, the energy density can be increased, and the heat storage amount can be further increased. In addition, when x is equal to or greater than the above lower limit, resistance to repeated use can be further enhanced. When x is equal to or less than the above upper limit, it is possible to secure a gap between the layers of the δ-type manganese dioxide and increase the water absorption amount. Therefore, the heat dissipation amount can be further increased.
In formula (I), when x is 0.00, it means that the δ-type manganese dioxide does not have the element A in the region between the layers. Moreover, in the formula (I), when x exceeds 0.00, it means that the δ-type manganese dioxide has the element A in the region between the layers. x is preferably 0.01 or more because the layered structure of δ-type manganese dioxide can be stabilized.
x can be determined, for example, by X-ray crystal structure analysis.
x can be adjusted by chemical treatment using an acid such as hydrochloric acid, electrochemical treatment, or a combination thereof.
 本発明の蓄熱材料の形状は特に限定されず、蓄熱材料の性状を損なわない限りにおいて、需要者の実施形態に応じた任意の形状を選択できる。蓄熱材料の形状としては、例えば、粉末や、造粒体、成形体の形状が挙げられる。 The shape of the heat storage material of the present invention is not particularly limited, and any shape can be selected according to the embodiment of the consumer as long as the properties of the heat storage material are not impaired. Examples of the shape of the heat storage material include the shape of powder, granules, and compacts.
 形状が粉末、造粒体、又は成形体の蓄熱材料を製造するにあたっては、公知の手法を適用できる。
 粉末の蓄熱材料を製造する際には、例えば、篩別、解砕、粉砕工程を適用できる。
 造粒体の蓄熱材料を製造する際には、例えば、押出造粒、転動造粒、流動層造粒、スプレードライ等の造粒工程を適用できる。
 成形体の蓄熱材料を製造する際には、例えば、プレス成形、射出成形、ブロー成形、真空成形、押出成形等の成形工程を適用できる。
Known techniques can be applied to manufacture the heat storage material in the form of powder, granules, or molded bodies.
When producing the powdered heat storage material, for example, sieving, pulverizing, and pulverizing processes can be applied.
Granulation processes such as extrusion granulation, tumbling granulation, fluidized bed granulation, and spray drying can be used to produce the heat storage material in granules.
When manufacturing the heat storage material of the molded body, for example, molding processes such as press molding, injection molding, blow molding, vacuum molding, and extrusion molding can be applied.
[熱エネルギーの利用方法]
 次に、本発明の蓄熱材料を用いた熱エネルギーの利用方法(蓄熱方法、放熱方法)について説明する。
 本発明の熱エネルギーの利用方法は、蓄熱工程を有する。
[How to use thermal energy]
Next, a method for utilizing thermal energy (a method for storing heat and a method for releasing heat) using the heat storage material of the present invention will be described.
The method of utilizing thermal energy of the present invention has a heat storage step.
<蓄熱工程>
 蓄熱工程は、本発明の蓄熱材料を加熱して、加熱した蓄熱材料から水を脱離する工程である。
 蓄熱材料を加熱する方法は、特に限定されず、例えば、直射日光に曝す方法、工場の排熱を利用する方法、自動車等のエンジンの排熱を利用する方法、オーブンやヒーター等で加熱する方法が挙げられる。
 エネルギーを有効活用する観点から、蓄熱材料を加熱する方法としては、直射日光に曝す方法、工場の排熱を利用する方法、自動車等のエンジンの排熱を利用する方法が好ましい。
<Heat storage process>
The heat storage step is a step of heating the heat storage material of the present invention and desorbing water from the heated heat storage material.
The method of heating the heat storage material is not particularly limited, and examples include a method of exposing the material to direct sunlight, a method of using exhaust heat from a factory, a method of using exhaust heat from an engine such as an automobile, and a method of heating with an oven, heater, or the like. is mentioned.
From the viewpoint of effective use of energy, the method of heating the heat storage material is preferably a method of exposing it to direct sunlight, a method of using exhaust heat from a factory, or a method of using exhaust heat from an automobile engine.
 蓄熱材料を加熱する際の温度(以下、「加熱温度」ともいう。)は、50~300℃が好ましく、80~250℃がより好ましく、100~200℃がさらに好ましい。加熱温度が上記下限値以上であると、蓄熱材料から水分子を充分に脱離できる。加熱温度が上記上限値以下であると、蓄熱材料の構造変化を抑制できる。 The temperature when heating the heat storage material (hereinafter also referred to as "heating temperature") is preferably 50 to 300°C, more preferably 80 to 250°C, and even more preferably 100 to 200°C. When the heating temperature is equal to or higher than the above lower limit, water molecules can be sufficiently desorbed from the heat storage material. When the heating temperature is equal to or lower than the upper limit, structural change of the heat storage material can be suppressed.
 蓄熱材料を加熱する際の時間(以下、「加熱時間」ともいう。)は、10分間以上6時間以下が好ましく、30分間以上4時間以下がより好ましく、1時間以上3時間以下がさらに好ましい。加熱時間が上記下限値以上であると、充分な蓄熱量を確保できる。加熱時間が上記上限値以下であると、蓄熱材料の使いやすさ(使用性)をより高められる。 The time for heating the heat storage material (hereinafter also referred to as "heating time") is preferably 10 minutes or more and 6 hours or less, more preferably 30 minutes or more and 4 hours or less, and even more preferably 1 hour or more and 3 hours or less. When the heating time is equal to or longer than the above lower limit, a sufficient heat storage amount can be secured. When the heating time is equal to or less than the above upper limit, the ease of use (usability) of the heat storage material can be further enhanced.
 蓄熱工程における蓄熱量は、体積エネルギー密度に換算して、500MJ/m以上が好ましく、600MJ/m以上がより好ましく、700MJ/m以上がさらに好ましい。蓄熱工程における蓄熱量が上記下限値以上であると、充分な量の熱エネルギーを放熱できる。蓄熱工程における蓄熱量の上限値は、100~200℃における水のインターカレーション反応における限界値である2000MJ/mと考えられる。蓄熱工程における蓄熱量は、例えば、500~2000MJ/mが好ましく、600~2000MJ/mがより好ましく、700~2000MJ/mがさらに好ましい。
 蓄熱工程における蓄熱量は、例えば、示差走査熱量測定(DSC)により求められる。
The heat storage amount in the heat storage step is preferably 500 MJ/m 3 or more, more preferably 600 MJ/m 3 or more, and even more preferably 700 MJ/m 3 or more in terms of volumetric energy density. When the amount of heat stored in the heat storage step is equal to or greater than the lower limit value, a sufficient amount of thermal energy can be dissipated. The upper limit of the amount of heat stored in the heat storage step is considered to be 2000 MJ/m 3 , which is the limit value in the intercalation reaction of water at 100-200°C. The heat storage amount in the heat storage step is, for example, preferably 500 to 2000 MJ/m 3 , more preferably 600 to 2000 MJ/m 3 and even more preferably 700 to 2000 MJ/m 3 .
The amount of heat stored in the heat storage step is determined by, for example, differential scanning calorimetry (DSC).
<放熱工程>
 本実施形態の熱エネルギーの利用方法は、蓄熱工程以外の工程を有していてもよい。蓄熱工程以外の工程としては、放熱工程が挙げられる。
 放熱工程は、加熱した蓄熱材料に水を吸着させて熱を放出する工程である。
 放熱工程における大気の相対湿度は、20~80%RHが好ましく、30~70%RHがより好ましく、40~60%RHがさらに好ましい。大気の相対湿度が上記下限値以上であると、蓄熱材料と水との接触効率を高めて、より多くの水分子を吸着できる。大気の相対湿度が上記上限値以下であると、蓄熱材料の構造変化を抑制できる。
<Heat dissipation process>
The method of using thermal energy according to the present embodiment may have processes other than the heat storage process. A heat radiation process is mentioned as processes other than a heat storage process.
The heat radiation step is a step of causing the heated heat storage material to adsorb water and release heat.
The relative humidity of the atmosphere in the heat radiation step is preferably 20-80% RH, more preferably 30-70% RH, and even more preferably 40-60% RH. When the relative humidity of the air is equal to or higher than the above lower limit, the contact efficiency between the heat storage material and water can be enhanced, and more water molecules can be adsorbed. Structural change of the heat storage material can be suppressed when the atmospheric relative humidity is equal to or lower than the upper limit.
 放熱工程における大気の温度は、0~40℃が好ましく、5~35℃がより好ましく、10~30℃がさらに好ましい。大気の温度が上記下限値以上であると、蓄熱材料により多くの水分子を吸着できる。大気の温度が上記上限値以下であると、放熱の効果をより高められる。 The temperature of the atmosphere in the heat radiation step is preferably 0 to 40°C, more preferably 5 to 35°C, and even more preferably 10 to 30°C. When the temperature of the atmosphere is equal to or higher than the above lower limit, more water molecules can be adsorbed by the heat storage material. When the atmospheric temperature is equal to or lower than the upper limit value, the heat dissipation effect can be further enhanced.
 放熱工程における放熱量は、蓄熱材料の単位質量当たり、50J/g以上が好ましく、100J/g以上がより好ましく、150J/g以上がさらに好ましい。放熱工程における放熱量が上記下限値以上であると、充分な量の熱エネルギーを放熱できる。放熱工程における放熱量の上限値は、特に限定されないが、例えば、1400J/gとされる。放熱工程における放熱量は、蓄熱材料の単位質量当たり、例えば、50~1400J/gが好ましく、100~1400J/gがより好ましく、150~1400J/gがさらに好ましい。
 放熱工程における放熱量は、例えば、DSCにより求められる。
The heat release amount in the heat release step is preferably 50 J/g or more, more preferably 100 J/g or more, and even more preferably 150 J/g or more per unit mass of the heat storage material. A sufficient amount of thermal energy can be radiated when the heat release amount in the heat release step is equal to or higher than the lower limit. The upper limit of the heat release amount in the heat release step is not particularly limited, but is set to 1400 J/g, for example. The heat release amount in the heat release step is preferably 50 to 1400 J/g, more preferably 100 to 1400 J/g, and even more preferably 150 to 1400 J/g per unit mass of the heat storage material.
The heat release amount in the heat release process is determined by, for example, DSC.
 本実施形態の熱エネルギーの利用方法は、蓄熱工程と放熱工程とを繰り返し行うことが好ましい。すなわち、本実施形態の熱エネルギーの利用方法は、蓄熱工程と放熱工程とを一つのサイクルとして、このサイクルを2以上有することが好ましい。
 蓄熱工程と放熱工程とを繰り返し行うことで、熱エネルギーを再利用でき、持続可能なエネルギーの有効活用に資する。
 蓄熱工程と放熱工程とのサイクルの数(以下、「サイクル数」ともいう。)は、2以上が好ましく、5以上がより好ましく、10以上がさらに好ましく、15以上が特に好ましい。サイクル数が上記下限値以上であると、熱エネルギーを有効活用できる。サイクル数の上限は特に限定されないが、例えば、50とされる。サイクル数は、例えば、2~50が好ましく、5~50がより好ましく、10~50がさらに好ましく、15~50が特に好ましい。
In the method of using thermal energy according to the present embodiment, it is preferable to repeatedly perform the heat storage process and the heat radiation process. That is, it is preferable that the thermal energy utilization method of this embodiment has two or more cycles, with the heat storage step and the heat dissipation step being one cycle.
By repeatedly performing the heat storage process and the heat dissipation process, thermal energy can be reused, contributing to effective utilization of sustainable energy.
The number of cycles between the heat storage process and the heat dissipation process (hereinafter also referred to as "cycle number") is preferably 2 or more, more preferably 5 or more, still more preferably 10 or more, and particularly preferably 15 or more. Heat energy can be effectively utilized as the number of cycles is more than the said lower limit. Although the upper limit of the number of cycles is not particularly limited, it is set to 50, for example. The number of cycles is, for example, preferably 2-50, more preferably 5-50, still more preferably 10-50, and particularly preferably 15-50.
 蓄熱工程と放熱工程とのサイクルを有する場合、蓄熱工程が先でもよく、放熱工程が先でもよい。 When the cycle of the heat storage process and the heat radiation process is provided, the heat storage process may be performed first, or the heat radiation process may be performed first.
 本実施形態の熱エネルギーの利用方法は、本発明の蓄熱材料を用いるものであるため、蓄熱量をより高めることができる。
 本実施形態の熱エネルギーの利用方法は、本発明の蓄熱材料を用いるものであるため、放熱の速度をより速くできる。
 本実施形態の熱エネルギーの利用方法は、加熱温度が50~300℃であるため、低品位の排熱を利用できる。
 本実施形態の熱エネルギーの利用方法は、蓄熱工程と放熱工程とを繰り返すものであるため、可逆性を有し、持続可能なエネルギーの有効活用に資する。
Since the heat energy utilization method of the present embodiment uses the heat storage material of the present invention, the heat storage amount can be further increased.
Since the heat energy utilization method of the present embodiment uses the heat storage material of the present invention, the speed of heat dissipation can be increased.
Since the heating temperature is 50 to 300° C., the heat energy utilization method of this embodiment can utilize low-grade waste heat.
Since the heat energy utilization method of the present embodiment repeats the heat storage process and the heat dissipation process, it has reversibility and contributes to the effective utilization of sustainable energy.
 以下に、実施例を用いて本発明をさらに詳しく説明するが、本発明はこれら実施例に限定されるものではない。 The present invention will be described in more detail below using examples, but the present invention is not limited to these examples.
 蓄熱材料として、粉末のK0.33MnO・nHO(nは、0~0.83の数、以下、「サンプル1」ともいう。)を用いて、後述する各実験を行った。以下、各実験について、図面を参照して、結果を考察する。
 なお、サンプル1は、過マンガン酸カリウム(KMnO)を700℃にて10時間熱処理し、水に可溶な副生成物を除去するため、水が無色透明になるまで水洗ろ過し、その後、80℃の真空乾燥炉にて12時間乾燥して得た。
Using powder K 0.33 MnO 2 ·nH 2 O (n is a number from 0 to 0.83, hereinafter also referred to as “sample 1”) as a heat storage material, each experiment described later was performed. The results of each experiment are discussed below with reference to the drawings.
For sample 1, potassium permanganate (KMnO 4 ) was heat-treated at 700° C. for 10 hours, washed with water and filtered until the water became colorless and transparent in order to remove water-soluble by-products. It was obtained by drying in a vacuum drying oven at 80° C. for 12 hours.
<水分子の脱離、吸収の確認>
 サンプル1を25℃における相対湿度60%RHの大気中に置き、40℃から240℃の昇温と、240℃から40℃の降温を2回繰り返した。このときのサンプル1のX線結晶構造解析を行い、層間距離(c軸格子定数)の変化を観察した。結果を図2に示す。
 図2に示すように、002回折線において、領域A~Aの4か所で、c軸格子定数が変化していることが確認できた。このときの層間距離の変化率は、
{1-sin(6.30°)/sin(5.75°)}×100≒-9.5%
であった。領域AとAでは、120℃~160℃の間で水の脱離が起き、層間距離が縮まっていることが分かった。領域AとAでは、160℃~120℃の間で水の吸着が起き、層間距離が膨張していることが分かった。
<Confirmation of Desorption and Absorption of Water Molecules>
Sample 1 was placed in an atmosphere of 25° C. and a relative humidity of 60% RH, and the temperature was raised from 40° C. to 240° C. and lowered from 240° C. to 40° C. twice. Sample 1 at this time was subjected to X-ray crystal structure analysis to observe changes in interlayer distance (c-axis lattice constant). The results are shown in FIG.
As shown in FIG. 2, in the 002 diffraction line, it was confirmed that the c-axis lattice constant changed in four regions A 1 to A 4 . The change rate of the interlayer distance at this time is
{1−sin (6.30°)/sin (5.75°)}×100≈−9.5%
Met. It was found that in the regions A 1 and A 3 , desorption of water occurred between 120° C. and 160° C., and the interlayer distance was reduced. In regions A 2 and A 4 , it was found that water adsorption occurred between 160° C. and 120° C. and the interlayer distance expanded.
 次に、サンプル1を乾燥窒素ガス中に置き、40℃から240℃の昇温と、240℃から40℃の降温を2回繰り返した。このときのサンプル1のX線結晶構造解析を行い、層間距離の変化を観察した。結果を図3に示す。
 図3に示すように、サンプル1を昇温すると、領域Aにおいて、80℃~120℃の間で水の脱離が起き、層間距離が縮まっていることが分かった。しかし、その後、サンプル1を冷却し、降温しても、層間距離は変化しないことが分かった。これは、乾燥ガス中では、水を吸着できず、層間距離が元に戻らないことを意味している。
 層間距離が縮まったサンプル1を24℃における相対湿度80%RHの大気中に開放することで、領域Aに示すように、層間距離が元に戻る(広がる)ことが確認できた。
Next, sample 1 was placed in dry nitrogen gas, and the temperature was raised from 40°C to 240°C and lowered from 240°C to 40°C twice. Sample 1 at this time was subjected to X-ray crystal structure analysis to observe changes in the interlayer distance. The results are shown in FIG.
As shown in FIG. 3, when the temperature of sample 1 was increased , desorption of water occurred between 80.degree. C. and 120.degree. However, it was found that the interlayer distance did not change even after the sample 1 was subsequently cooled and the temperature was lowered. This means that water cannot be adsorbed in dry gas and the interlayer distance cannot be restored.
It was confirmed that the interlayer distance was restored (widened) as shown in region A6 by exposing Sample 1 with a reduced interlayer distance to the atmosphere at 24° C. and a relative humidity of 80% RH.
<吸脱着可能な水分子の量、脱離温度、反応速度の確認>
 次に、サンプル1を相対湿度70%RHの窒素ガス(水分含有量2.2質量%の窒素ガス)中の環境下で、熱重量示差熱分析装置(TG/DTA、高濃度水蒸気雰囲気示差熱天秤(株式会社リガク製:Thermo plus EVO2 TG-DTA8122/HUM-1))を用いて熱分析を行った。
 サンプル1を昇温速度10℃/minで250℃まで加熱し、その後降温速度5℃/minで30℃まで冷却した(1サイクル目)。2回目は、サンプル1を昇温速度20℃/minで250℃まで加熱し、その後降温速度5℃/minで30℃まで冷却した。3回目~5回目は、サンプル1を昇温速度40℃/minで250℃まで加熱し、その後降温速度5℃/minで30℃まで冷却した。最後6回目は、サンプル1を昇温速度100℃/minで250℃まで加熱し、その後降温速度5℃/minで30℃まで冷却した。このような昇温、降温のサイクルを6回行った結果を図4に示す。
 図4において、領域Pのグラフは、サンプル1のTGを表す。領域Pのグラフは、サンプル1のDTAを表す。
<Confirmation of the amount of water molecules that can be adsorbed and desorbed, the desorption temperature, and the reaction rate>
Next, sample 1 was placed in nitrogen gas with a relative humidity of 70% RH (nitrogen gas with a moisture content of 2.2% by mass) under a thermogravimetric differential thermal analyzer (TG/DTA, differential thermal analysis in a high-concentration steam atmosphere). Thermal analysis was performed using a balance (manufactured by Rigaku Corporation: Thermo plus EVO2 TG-DTA8122/HUM-1)).
Sample 1 was heated to 250°C at a temperature increase rate of 10°C/min and then cooled to 30°C at a temperature decrease rate of 5°C/min (first cycle). For the second time, sample 1 was heated to 250°C at a temperature increase rate of 20°C/min, and then cooled to 30°C at a temperature decrease rate of 5°C/min. For the third to fifth times, the sample 1 was heated to 250°C at a temperature increase rate of 40°C/min, and then cooled to 30°C at a temperature decrease rate of 5°C/min. Finally, for the sixth time, sample 1 was heated to 250°C at a temperature increase rate of 100°C/min, and then cooled to 30°C at a temperature decrease rate of 5°C/min. FIG. 4 shows the result of performing such a temperature rising/falling cycle six times.
In FIG. 4, the graph of area P1 represents the TG of sample 1. In FIG. The graph in region P2 represents the DTA for sample 1.
 TGのデータを見ると、加熱してからサンプル1の質量は減少し、温度が160℃を超えたあたりで質量減少の割合が低下する。その後、250℃までにおよそ13%の質量の減少が観測された。サンプル1を冷却すると、質量が増加に転じ、温度が130℃を下回ったあたりからサンプル1の質量が急激に増加する。サンプル1の質量は、5%の減少まで回復していることが観測された。2回目のサイクル以降は、サンプル1の質量は、5%の減少から13%の減少までの範囲で推移することが観測された。この間、δ型二酸化マンガンの層間の水分子が吸脱着を繰り返しているものと考えられる。このように、吸脱着を繰り返すことができる水分子の量は、Mn原子1モルに対して、0.5モルであることが確認できた。これは、下記式(V)によって算出された値である。
 水分子のモル数/K0.33MnOのモル数=
{(サンプル1の質量(mg))×(可逆な質量変化率)÷(HOの分子量)}/{(サンプル1の質量(mg))×(1-(最大の質量変化率))÷(K0.33MnOの分子量)}=
{0.07767÷18.0152}/{(1-0.1306)÷99.839}=0.495≒0.5 ・・・(V)
Looking at the TG data, the mass of sample 1 decreases after heating, and the rate of mass decrease decreases when the temperature exceeds 160°C. After that, a mass loss of approximately 13% was observed up to 250°C. When the sample 1 is cooled, the mass begins to increase, and the mass of the sample 1 rapidly increases when the temperature drops below 130°C. The mass of Sample 1 was observed to recover to a 5% loss. After the second cycle, the mass of Sample 1 was observed to range from a 5% decrease to a 13% decrease. During this time, it is considered that the water molecules between the layers of δ-type manganese dioxide are repeatedly adsorbed and desorbed. Thus, it was confirmed that the amount of water molecules capable of repeating adsorption and desorption was 0.5 mol per 1 mol of Mn atoms. This is a value calculated by the following formula (V).
moles of water molecules/moles of K 0.33 MnO 2 =
{(mass of sample 1 (mg))×(reversible mass change rate)÷(molecular weight of H 2 O)}/{(mass of sample 1 (mg))×(1−(maximum mass change rate)) ÷ (K 0.33 molecular weight of MnO 2 )}=
{0.07767/18.0152}/{(1-0.1306)/99.839}=0.495≈0.5 (V)
 6回目のサイクルにおいて、温度が200℃を超えたあたりで質量減少の割合が低下していることから、昇温速度100℃/minで加熱した場合、3分以内に水の脱離(チャージ)が完了することが確認できた。これは、δ型二酸化マンガンの構造変化が小さく、水の脱離反応の反応速度が速いためであると考えられる。 In the 6th cycle, the rate of mass reduction decreased when the temperature exceeded 200 ° C., so when heating at a temperature increase rate of 100 ° C./min, water is desorbed (charged) within 3 minutes. was confirmed to be complete. This is probably because the structural change of δ-type manganese dioxide is small and the reaction rate of the water elimination reaction is fast.
 DTAのデータを見ると、1回目の加熱後、温度60℃の付近で吸熱のピークが見られ、その後温度140℃付近で再び吸熱ピークが観測された。これは、δ型二酸化マンガンの層間の水分子が脱離したことによるものであると考えられる。吸熱ピークが観測される温度は、昇温速度の上昇に応じて高温側にシフトしていることが観測された。サンプル1を冷却した際は、温度110℃付近、80℃付近に発熱のピークが観測された。これは、δ型二酸化マンガンの層間に水分子が吸着したことによるものであると考えられる。 Looking at the DTA data, after the first heating, an endothermic peak was observed at a temperature of around 60°C, and then an endothermic peak was observed again at a temperature of around 140°C. This is considered to be due to desorption of water molecules between the layers of δ-type manganese dioxide. It was observed that the temperature at which the endothermic peak was observed shifted to higher temperatures as the heating rate increased. When sample 1 was cooled, exothermic peaks were observed at temperatures around 110°C and around 80°C. This is considered to be due to the adsorption of water molecules between the layers of δ-type manganese dioxide.
<水分子吸脱着反応の可逆性、反応機構の確認>
 サンプル1を加熱する際の昇温速度を20℃/minに固定して、上記と同じ熱重量示差熱分析装置を用いて熱分析を行った。昇温、降温のサイクルを16回行った結果を図5に示す。
 図5において、下側のグラフは、サンプル1のTGを表す。上側のグラフは、サンプル1のDTAを表す。
 TGのデータを見ると、加熱してからサンプル1の質量は減少し、温度が160℃を超えたあたりで質量減少の割合が低下する。その後、250℃までにおよそ13%の質量の減少が観測された。サンプル1を冷却すると、質量が増加に転じ、温度が130℃を下回ったあたりからサンプル1の質量が急激に増加する。サンプル1の質量は、5.5%の減少まで回復していることが観測された。TGのグラフの形状から、δ型二酸化マンガンの層間の水分子の吸脱着反応は、16サイクル目まで可逆性を維持していることが確認された。また、TGのグラフの形状から、水分子の吸脱着反応の平衡温度は、120℃付近であることが分かった。さらに、TGのグラフの形状から、δ型二酸化マンガンの層間の水分子の吸脱着反応は、温度に対して連続的に水分子の量が変わる単相反応であると考えられる。
<Confirmation of reversibility and reaction mechanism of water molecule adsorption/desorption reaction>
A thermal analysis was performed using the same thermogravimetric differential thermal analysis apparatus as above, with the rate of temperature increase during heating of sample 1 being fixed at 20° C./min. FIG. 5 shows the results of 16 cycles of heating and cooling.
In FIG. 5, the lower graph represents the TG of sample 1. The upper graph represents the DTA for sample 1.
Looking at the TG data, the mass of sample 1 decreases after heating, and the rate of mass decrease decreases when the temperature exceeds 160°C. After that, a mass loss of approximately 13% was observed up to 250°C. When the sample 1 is cooled, the mass begins to increase, and the mass of the sample 1 rapidly increases when the temperature drops below 130°C. The mass of Sample 1 was observed to recover to a loss of 5.5%. From the shape of the TG graph, it was confirmed that the adsorption-desorption reaction of water molecules between layers of δ-manganese dioxide maintained reversibility up to the 16th cycle. Also, from the shape of the TG graph, it was found that the equilibrium temperature of the adsorption/desorption reaction of water molecules is around 120°C. Furthermore, from the shape of the TG graph, it is considered that the adsorption-desorption reaction of water molecules between layers of δ-manganese dioxide is a single-phase reaction in which the amount of water molecules changes continuously with temperature.
 DTAのデータを見ると、加熱後、温度130℃~160℃の範囲で吸熱のピークが観測された。これは、δ型二酸化マンガンの層間の水分子が脱離したことによるものであると考えられる。サンプル1を冷却した際は、温度120℃付近、80℃付近に発熱のピークが観測された。これは、δ型二酸化マンガンの層間に水分子が吸着したことによるものであると考えられる。DTAのグラフの形状から、δ型二酸化マンガンの層間の水分子の吸脱着反応は、16サイクル目まで可逆性を維持していることが確認された。 Looking at the DTA data, after heating, an endothermic peak was observed in the temperature range of 130°C to 160°C. This is considered to be due to desorption of water molecules between the layers of δ-type manganese dioxide. When sample 1 was cooled, exothermic peaks were observed at temperatures around 120°C and around 80°C. This is considered to be due to the adsorption of water molecules between the layers of δ-type manganese dioxide. From the shape of the DTA graph, it was confirmed that the adsorption-desorption reaction of water molecules between layers of δ-manganese dioxide maintained reversibility up to the 16th cycle.
<蓄熱量の確認>
 次に、サンプル1を乾燥アルゴンガス雰囲気下で、示差走査熱量測定(DSC)装置を用いて熱分析を行った。
 サンプル1を昇温速度5℃/minで、30℃から240℃まで加熱した。その後降温速度5℃/minで、240℃から30℃まで冷却し、これを初期サイクルとした(曲線A)。次に、サンプル1を30分間大気中(室温)に曝露し、初期サイクルと同じ条件で加熱した(2回目のサイクル、曲線B)。
 これとは別に、サンプル1を250℃で加熱した後、12時間大気中(室温)に曝露し、初期サイクルと同じ条件で加熱した(曲線C)。
 また、サンプル1を250℃で加熱した後、室温で水に浸漬し、その後、初期サイクルと同じ条件で加熱した(曲線D)。
 なお、それぞれの昇温後のサンプル1は大気中に曝露せずに冷却した(曲線E)。これらの結果を図6に示す。グラフ左側の縦軸は、サンプル1のDSCを表し、グラフ右側の縦軸は、サンプル1の単位質量当たりの熱量を表す。
<Confirmation of heat storage amount>
Next, Sample 1 was subjected to thermal analysis in a dry argon gas atmosphere using a differential scanning calorimeter (DSC) device.
Sample 1 was heated from 30°C to 240°C at a heating rate of 5°C/min. After that, it was cooled from 240° C. to 30° C. at a cooling rate of 5° C./min, and this was taken as the initial cycle (curve A). Sample 1 was then exposed to air (room temperature) for 30 minutes and heated under the same conditions as the initial cycle (second cycle, curve B).
Separately, sample 1 was heated at 250° C. and then exposed to the atmosphere (room temperature) for 12 hours and heated under the same conditions as the initial cycle (curve C).
Also, after heating sample 1 at 250° C., it was immersed in water at room temperature and then heated under the same conditions as the initial cycle (curve D).
After each temperature rise, Sample 1 was cooled without being exposed to the air (curve E). These results are shown in FIG. The vertical axis on the left side of the graph represents the DSC of Sample 1, and the vertical axis on the right side of the graph represents the amount of heat per unit mass of Sample 1.
 上記4つの曲線A~D(昇温曲線)は、温度120~150℃の範囲に吸熱ピークを有することが確認できた。曲線E(降温曲線)と、昇温曲線とで囲まれた面積が、それぞれの昇温試験における吸熱量(蓄熱量)である。
 曲線Aの場合、δ型二酸化マンガンの層間に存在し得る水分子の量が、Mn原子1モルに対して、0.83モルであるため、他の3つの曲線(曲線B~D)の場合と比べて蓄熱量が多くなっていることが確認できた。
 2回目のサイクル以降の試験では、可逆的に吸脱着できる水分子の量が、Mn原子1モルに対して、0.50モルであるため、曲線Aの場合に比べて蓄熱量が少なくなっていることが確認できた。
 曲線Bにおける蓄熱量をDSC装置から求めたところ、30.5kJ/molであった。これをδ型二酸化マンガンのモル体積(30.3cm/mol)で除することにより、体積エネルギー密度((30.5kJ/mol)/(30.3cm/mol)=1007MJ/m)を求めた。すなわち、体積エネルギー密度で換算したサンプル1の蓄熱量は、1007MJ/mであった。この値は、100~200℃における水のインターカレーション反応における限界値と考えられている2000MJ/mと同じオーダーであり、水のインターカレーション反応における限界値に匹敵するものといえる。
It was confirmed that the above four curves A to D (temperature rise curves) have endothermic peaks in the temperature range of 120 to 150°C. The area surrounded by the curve E (temperature drop curve) and the temperature rise curve is the heat absorption amount (heat storage amount) in each temperature rise test.
In the case of curve A, the amount of water molecules that can exist between the layers of δ-type manganese dioxide is 0.83 mol with respect to 1 mol of Mn atoms, so in the case of the other three curves (curves B to D) It was confirmed that the amount of heat stored was larger than that of the
In the tests after the second cycle, the amount of water molecules that can be reversibly adsorbed and desorbed is 0.50 mol with respect to 1 mol of Mn atoms. I was able to confirm that there is.
When the heat storage amount in curve B was obtained from the DSC device, it was 30.5 kJ/mol. By dividing this by the molar volume (30.3 cm 3 /mol) of δ-type manganese dioxide, the volume energy density ((30.5 kJ/mol)/(30.3 cm 3 /mol) = 1007 MJ/m 3 ) is obtained. asked. That is, the heat storage amount of sample 1 converted by volumetric energy density was 1007 MJ/m 3 . This value is on the same order as 2000 MJ/m 3 , which is considered to be the limit value for the intercalation reaction of water at 100 to 200° C., and can be said to be comparable to the limit value for the intercalation reaction of water.
<発熱量の確認>
 上記の<蓄熱量の確認>における初期サイクルのサンプル1を温度28℃で大気雰囲気下に置き、DSC装置を用いて熱分析を行った(曲線F)。結果を図7に示す。
 図7に示すように、曲線Fの場合、サンプル1を大気中に曝露開始してからすぐに発熱が開始し、曝露開始から200秒付近で発熱ピークを迎え、その後放出される熱量が減少していき、曝露開始から900秒を経過したあたりで、曲線Fの傾きが緩やかになり、曝露開始から1000秒を経過したあたりで放出される熱量が0となることが確認できた。
 昇温、降温のサイクルを2回繰り返した後のサンプル1について、同様に温度28℃で大気雰囲気下に置き、DSC装置を用いて熱分析を行った(曲線G、3回目のサイクル)。
 曲線Gの場合、曲線Fよりも発熱ピークのピークトップの高さが低い。これは、3回目のサイクルにおいては、δ型二酸化マンガンの層間に吸脱着可能な水分子の量が、初期サイクルの場合よりも少ないためであると考えられる。
 曲線Fの場合、曲線Gの場合、ともに、ベースラインHとで囲まれた部分の面積が蓄熱材料の発熱量を意味する。曲線Gの場合、DSC装置によって求めた発熱量は、190J/gであった。
 また、曲線Fの場合、曲線Gの場合、ともに、曝露開始から900秒を経過したあたりで、曲線の傾きが緩やかになっていることから、曝露開始から15分で発熱が完了していることが確認できた。蓄熱材料として硫酸マグネシウムを用いた場合、吸水に2~3時間要することと比較して、本実施形態の蓄熱材料は、水分子の吸脱着反応の反応速度が著しく速いことが分かった。
<Confirmation of calorific value>
Sample 1 of the initial cycle in the above <Confirmation of heat storage amount> was placed in an air atmosphere at a temperature of 28° C., and thermal analysis was performed using a DSC device (curve F). The results are shown in FIG.
As shown in FIG. 7, in the case of curve F, heat generation starts immediately after the sample 1 is exposed to the atmosphere, reaches a heat generation peak around 200 seconds after the start of exposure, and then the amount of heat released decreases. Approximately 900 seconds after the start of exposure, the slope of the curve F becomes gentle, and it was confirmed that the amount of heat released becomes 0 after 1000 seconds from the start of exposure.
Sample 1 after repeating the cycle of heating and cooling twice was similarly placed in an air atmosphere at a temperature of 28° C. and subjected to thermal analysis using a DSC apparatus (curve G, third cycle).
In the case of curve G, the height of the peak top of the exothermic peak is lower than that of curve F. This is probably because the amount of water molecules that can be adsorbed and desorbed between the layers of δ-manganese dioxide is smaller in the third cycle than in the initial cycle.
In the case of the curve F and the curve G, the area of the portion surrounded by the baseline H means the calorific value of the heat storage material. For curve G, the calorific value determined by the DSC apparatus was 190 J/g.
In addition, in the case of curve F and curve G, the slope of the curve becomes gentle around 900 seconds after the start of exposure, so heat generation is completed 15 minutes after the start of exposure. was confirmed. It was found that the reaction rate of the adsorption and desorption reaction of water molecules in the heat storage material of the present embodiment is remarkably fast, compared to the fact that when magnesium sulfate is used as the heat storage material, it takes 2 to 3 hours to absorb water.
<元素Aのモル数の違いの確認>
 図8に、蓄熱材料として、サンプル1を用いた場合と、K0.06MnO・nHO(nは、0~0.83の数、サンプル2)を用いた場合と、ベータ型の結晶構造を有する二酸化マンガン(β-MnO、サンプル3)を用いた場合とにおけるDSC測定の結果を示す。
 なお、サンプル2は、サンプル1を硝酸中でリーチング処理することで得た。また、サンプル3は、1 mol/LのMnSOと1 mol/Lの(NH)の水溶液をオートクレーブ(Teflon-lined stainless-steel autoclave)中に封止し、180℃で6時間熱処理した。得られた試料を水が無色透明になるまで水洗ろ取し、その後、40℃の真空乾燥炉にて12時間乾燥して得た。
 図8に示すように、サンプル1を用いた場合と、サンプル2を用いた場合とは、ともに、100~200℃の温度範囲に水の脱離に起因する吸熱ピークが観測された。吸熱量は、吸熱ピークの深さから、サンプル1を用いた場合の方が多いことが確認できた。このことから、式(I)で表される層状マンガン酸化物において、Mn原子1モルに対するカリウム原子のモル数が多いほど、吸熱量を高められることが分かった。これは、Mn原子1モルに対するカリウム原子のモル数が多いほど、δ型二酸化マンガンの層間により多くの水分子を取り込めるためであると考えられる。
 また、サンプル2を用いた場合、温度400~500℃の範囲と、温度550~600℃の範囲とに、それぞれ吸熱ピークが観測された。これは、δ型二酸化マンガンが、四三酸化マンガン(Mn)、次いで、酸化マンガン(MnO)に変化したためであると考えられる。また、このことは、Mn原子1モルに対するカリウム原子のモル数が少ないと、δ型二酸化マンガンが層状構造を維持しにくくなり、構造変化が起こりやすくなるためであると考えられる。
 これに対して、サンプル3を用いた場合には、100~200℃の温度範囲に吸熱ピークは観測されなかった。なお、温度550~600℃の範囲の吸熱ピークは、ベータ型二酸化マンガンが、酸化マンガンに変化したときのものであると考えられる。
<Confirmation of difference in number of moles of element A>
FIG. 8 shows the case of using sample 1 as the heat storage material, the case of using K 0.06 MnO 2 ·nH 2 O (n is a number from 0 to 0.83, sample 2), and the case of beta type. 3 shows the results of DSC measurement when manganese dioxide (β-MnO 2 , sample 3) having a crystal structure is used.
Sample 2 was obtained by subjecting sample 1 to leaching treatment in nitric acid. Sample 3 was obtained by sealing an aqueous solution of 1 mol/L of MnSO 4 and 1 mol/L of (NH 4 ) 2 S 2 O 8 ) in an autoclave (Teflon-lined stainless-steel autoclave) and heating at 180°C. was heat treated for 6 hours at The obtained sample was washed with water until the water became colorless and transparent, and then dried in a vacuum drying oven at 40° C. for 12 hours.
As shown in FIG. 8, an endothermic peak due to desorption of water was observed in the temperature range of 100 to 200° C. in both the case of using sample 1 and the case of using sample 2. It was confirmed from the depth of the endothermic peak that the amount of endotherm was greater when sample 1 was used. From this, it was found that in the layered manganese oxide represented by the formula (I), the larger the number of moles of potassium atoms per 1 mole of Mn atoms, the higher the endothermic value. It is believed that this is because more water molecules can be taken into the interlayers of δ-type manganese dioxide as the number of moles of potassium atoms per mole of Mn atoms increases.
Also, when sample 2 was used, endothermic peaks were observed in the temperature range of 400 to 500° C. and in the temperature range of 550 to 600° C., respectively. This is presumably because δ-type manganese dioxide changed to trimanganese tetraoxide (Mn 3 O 4 ) and then to manganese oxide (MnO). Moreover, it is considered that this is because when the number of moles of potassium atoms to 1 mole of Mn atoms is small, it becomes difficult for the δ-type manganese dioxide to maintain a layered structure, and structural changes are likely to occur.
In contrast, when sample 3 was used, no endothermic peak was observed in the temperature range of 100 to 200°C. Note that the endothermic peak in the temperature range of 550 to 600° C. is considered to occur when beta manganese dioxide changes to manganese oxide.
<元素Aの種類の違いの確認>
 上述した、「<蓄熱量の確認>」の操作に倣って、下記に示した各種サンプル(サンプルA~サンプルK)を乾燥アルゴンガス雰囲気下で、示差走査熱量測定(DSC)装置を用いて熱分析を行った。即ち、各サンプルを昇温速度5℃/minで、30℃から240℃まで加熱し、その後降温速度5℃/minで、240℃から30℃まで冷却し、これを初期サイクルとし(曲線A)、次に、各種サンプルを30分間大気中(室温)に曝露し、初期サイクルと同じ条件で加熱した(2回目のサイクル、曲線B)。その結果を、それぞれ図10~20に示した。
<Confirmation of difference in type of element A>
Following the operation of "<Confirmation of heat storage amount>" described above, the various samples shown below (Sample A to Sample K) were heated using a differential scanning calorimetry (DSC) device in a dry argon gas atmosphere. Analysis was carried out. That is, each sample was heated from 30° C. to 240° C. at a temperature increase rate of 5° C./min, and then cooled from 240° C. to 30° C. at a temperature decrease rate of 5° C./min, and this was taken as the initial cycle (curve A). , then the various samples were exposed to air (room temperature) for 30 minutes and heated under the same conditions as the initial cycle (second cycle, curve B). The results are shown in FIGS. 10 to 20, respectively.
[サンプルA(K0.27MnO・nHO)]
 過マンガン酸カリウム(KMnO)を700℃にて10時間熱処理し、水に可溶な副生成物を除去するため、水が無色透明になるまで水洗ろ過した。その後、40℃の真空乾燥炉にて12時間乾燥し、サンプルAを得た。
 サンプルAを用いた上記試験結果を図10に示す。
[ Sample A ( K0.27MnO2.nH2O )]
Potassium permanganate (KMnO 4 ) was heat-treated at 700° C. for 10 hours, washed with water and filtered until the water became colorless and transparent in order to remove water-soluble by-products. After that, it was dried in a vacuum drying oven at 40° C. for 12 hours to obtain a sample A.
FIG. 10 shows the test results using sample A. FIG.
[サンプルB(K0.05Zn0.125MnO・nHO)]
 硝酸亜鉛・六水和物(Zn(NO・6HO)89.24g(0.3mol)と水200gとの混合物(水溶液)に、攪拌せず室温にて2週間、サンプルA 2.30g(0.02mol)を浸漬し、ろ過して得られた試料を40℃で12時間真空乾燥し、サンプルBを得た。
 サンプルBを用いた上記試験結果を図11に示す。
[ Sample B ( K0.05Zn0.125MnO2.nH2O )]
Sample A2 was added to a mixture (aqueous solution) of 89.24 g (0.3 mol) of zinc nitrate hexahydrate (Zn(NO 3 ) 2.6H 2 O) and 200 g of water at room temperature for 2 weeks without stirring. .30 g (0.02 mol) was immersed and the sample obtained by filtration was vacuum-dried at 40° C. for 12 hours to obtain sample B.
FIG. 11 shows the test results using sample B. FIG.
[サンプルC(Cs0.28MnO・nHO)]
 塩化セシウム(CsCl)50.51g(0.3mol)と水200gとの混合物(水溶液)に、攪拌せず室温にて2週間、サンプルA 2.30g(0.02mol)を浸漬し、ろ過して得られた試料を40℃で12時間真空乾燥し、サンプルCを得た。
 サンプルCを用いた上記試験結果を図12に示す。
[ Sample C ( Cs0.28MnO2.nH2O )]
2.30 g (0.02 mol) of sample A was immersed in a mixture (aqueous solution) of 50.51 g (0.3 mol) of cesium chloride (CsCl) and 200 g of water at room temperature for 2 weeks without stirring, and filtered. The obtained sample was vacuum-dried at 40° C. for 12 hours to obtain Sample C.
FIG. 12 shows the results of the above test using sample C. As shown in FIG.
[サンプルD(K0.075Ca0.1MnO・nHO)]
 硝酸カルシウム・四水和物(Ca(NO・4HO)70.85g(0.3mol)と水200gとの混合物(水溶液)に、攪拌せず室温にて2週間、サンプルA 2.30g(0.02mol)を浸漬し、ろ過して得られた試料を40℃で12時間真空乾燥し、サンプルDを得た。
 サンプルDを用いた上記試験結果を図13に示す。
[ Sample D ( K0.075Ca0.1MnO2.nH2O )]
Sample A2 was added to a mixture (aqueous solution) of 70.85 g (0.3 mol) of calcium nitrate tetrahydrate (Ca(NO 3 ) 2 4H 2 O) and 200 g of water without stirring at room temperature for 2 weeks. A sample obtained by immersing .30 g (0.02 mol) and filtering was vacuum-dried at 40° C. for 12 hours to obtain sample D.
FIG. 13 shows the test results using sample D. FIG.
[サンプルE(Cu0.11MnO・nHO)]
 硝酸銅・三水和物(Cu(NO・3HO)72.48g(0.3mol)と水200gとの混合物(水溶液)に、攪拌せず室温にて2週間、サンプルA 2.30g(0.02mol)を浸漬し、ろ過して得られた試料を40℃で12時間真空乾燥し、サンプルEを得た。
 サンプルEを用いた上記試験結果を図14に示す。
[ Sample E ( Cu0.11MnO2.nH2O )]
A mixture (aqueous solution) of 72.48 g (0.3 mol) of copper nitrate trihydrate (Cu(NO 3 ) 2.3H 2 O) and 200 g of water (aqueous solution) was added without stirring at room temperature for 2 weeks. .30 g (0.02 mol) was immersed and the sample obtained by filtration was vacuum-dried at 40° C. for 12 hours to obtain sample E.
FIG. 14 shows the results of the above test using sample E. FIG.
[サンプルF(Li0.34MnO・nHO)]
 硝酸リチウム(LiNO)20.68g(0.3mol)と水200gとの混合物(水溶液)に、攪拌せず室温にて2週間、サンプルA 2.30g(0.02mol)を浸漬し、ろ過して得られた試料を40℃で12時間真空乾燥し、サンプルFを得た。
 サンプルFを用いた上記試験結果を図15に示す。
[ Sample F ( Li0.34MnO2.nH2O )]
2.30 g (0.02 mol) of sample A was immersed in a mixture (aqueous solution) of 20.68 g (0.3 mol) of lithium nitrate (LiNO 3 ) and 200 g of water at room temperature for 2 weeks without stirring, and filtered. The sample thus obtained was vacuum-dried at 40° C. for 12 hours to obtain Sample F.
FIG. 15 shows the results of the above test using sample F.
[サンプルG(Al0.015MnO・nHO)]
 硝酸アルミニウム・九水和物(Al(NO・9HO)112.5g(0.3mol)と水200gとの混合物(水溶液)に、攪拌せず室温にて2週間、サンプルA 2.30g(0.02mol)を浸漬し、ろ過して得られた試料を40℃で12時間真空乾燥し、サンプルGを得た。
 サンプルGを用いた上記試験結果を図16に示す。
[Sample G (Al 0.015 MnO 2 ·nH 2 O)]
Sample A2 was added to a mixture (aqueous solution) of 112.5 g ( 0.3 mol) of aluminum nitrate nonahydrate (Al( NO3 ) 3.9H2O ) and 200 g of water at room temperature for 2 weeks without stirring. A sample obtained by soaking .30 g (0.02 mol) and filtering was vacuum-dried at 40° C. for 12 hours to obtain sample G.
FIG. 16 shows the test results using sample G. FIG.
[サンプルH(Na0.25MnO・nHO)]
 硝酸ナトリウム(NaNO)25.5g(1.5mol)と水200gとの混合物(水溶液)に、攪拌せず室温にて2週間、サンプルA 11.5g(0.1mol)を浸漬し、ろ過して得られた試料を40℃で12時間真空乾燥し、サンプルHを得た。
 サンプルHを用いた上記試験結果を図17に示す。
[ Sample H ( Na0.25MnO2.nH2O )]
11.5 g (0.1 mol) of sample A was immersed in a mixture (aqueous solution) of 25.5 g (1.5 mol) of sodium nitrate (NaNO 3 ) and 200 g of water at room temperature for 2 weeks without stirring, and filtered. The sample thus obtained was vacuum-dried at 40° C. for 12 hours to obtain Sample H.
FIG. 17 shows the results of the above test using sample H.
[サンプルI(K0.29MnO・nHO)]
 過マンガン酸カリウム(KMnO)20.54g(0.13mol)、水100g、硫酸マンガン・五水和物(MnSO・5HO)6.027g(0.025mol)、及び酸化マンガン(MnO)3.622g(0.042mol)の混合物(水溶液)を、オートクレーブ(Teflon-lined stainless-steel autoclave)中に封止し、120℃で12時間熱処理した。得られた試料を水が無色透明になるまで水洗ろ取した。その後、40℃の真空乾燥炉にて12時間乾燥し、サンプルAを得た。
 サンプルIを用いた上記試験結果を図18に示す。
[ Sample I ( K0.29MnO2.nH2O )]
20.54 g (0.13 mol) of potassium permanganate (KMnO 4 ), 100 g of water, 6.027 g (0.025 mol) of manganese sulfate pentahydrate (MnSO 4.5H 2 O), and manganese oxide (MnO 2 ) 3.622 g (0.042 mol) of the mixture (aqueous solution) were sealed in an autoclave (Teflon-lined stainless-steel autoclave) and heat treated at 120° C. for 12 hours. The obtained sample was washed with water and collected by filtration until the water became colorless and transparent. After that, it was dried in a vacuum drying oven at 40° C. for 12 hours to obtain a sample A.
FIG. 18 shows the results of the above test using sample I.
[サンプルJ(Zn0.179MnO・nHO)]
 硝酸亜鉛・六水和物(Zn(NO・6HO)89.24g(0.3mol)と水200gとの混合物(水溶液)に、攪拌せず室温にて2週間、サンプルI 2.30g(0.02mol)を浸漬し、ろ過して得られた試料を40℃で12時間真空乾燥し、サンプルJを得た。
 サンプルJを用いた上記試験結果を図19に示す。
[ Sample J ( Zn0.179MnO2.nH2O )]
Sample I 2 A sample obtained by soaking .30 g (0.02 mol) and filtering was vacuum-dried at 40° C. for 12 hours to obtain sample J.
FIG. 19 shows the test results using sample J. FIG.
[サンプルK(Na0.28MnO・nHO)]
 硝酸ナトリウム(NaNO)25.5g(1.5mol)と水200gとの混合物(水溶液)に、攪拌せず室温にて2週間、サンプルI 11.5g(0.1mol)を浸漬し、ろ過して得られた試料を40℃で12時間真空乾燥し、サンプルKを得た。
 サンプルKを用いた上記試験結果を図20に示す。
[ Sample K ( Na0.28MnO2.nH2O )]
11.5 g (0.1 mol) of sample I was immersed in a mixture (aqueous solution) of 25.5 g (1.5 mol) of sodium nitrate (NaNO 3 ) and 200 g of water at room temperature for 2 weeks without stirring, and filtered. The sample thus obtained was vacuum-dried at 40° C. for 12 hours to obtain Sample K.
FIG. 20 shows the test results using sample K. FIG.
 図10~20に示すように、いずれのサンプルにおいても、昇温時において吸熱が確認され、サンプル1やサンプル2と同様に、蓄熱材料として使用し得ることが確認できた。 As shown in FIGS. 10 to 20, in any sample, heat absorption was confirmed during temperature rise, and it was confirmed that, like sample 1 and sample 2, it could be used as a heat storage material.
<等温下での水脱挿入量の湿度依存性>
 サンプル1について、等温下での水脱挿入量の湿度依存性を検討するため、熱重量示差熱分析装置(TG/DTA、高濃度水蒸気雰囲気示差熱天秤(株式会社リガク製:Thermo plus EVO2 TG-DTA8122/HUM-1))を用いた熱分析を行った。
 図21に示すように、それぞれの温度(28℃、36℃、46℃、56℃、65℃、75℃、85℃、95℃、105℃、115℃、125℃、135℃)において、熱重量示差熱分析装置本体のガス導入口での相対湿度(25℃基準)を0%から90%(水蒸気分圧28.5hPa)まで往復掃引した(0.5%RH/分)。導入ガスの湿度調整は、水浴中に高純度窒素を通した湿潤窒素と、高純度窒素である乾燥窒素を適宜の割合で混合し、ガス導入口での相対湿度をフィードバック制御して行った。導入ガスの流量は、相対湿度にかかわらず、およそ500sccmとした。
 なお、図21中の相対湿度は、上述のとおり、ガス導入口における25℃基準の湿度を表しているため、例えば、25℃において90%RHの導入ガスは、135℃の分析装置内では0.9%RHである。但し、温度による水蒸気分圧には変化はない。また、図21におけるTG:0%は、サンプル1における完全脱水状態に対応する。
 図22、及び図23は、上記の熱分析結果について、対応する温度におけるTGの湿度依存性、及び式(I)におけるnに対応するMn原子1モルに対する水分子のモル数の湿度依存性をそれぞれ表したものである。
<Humidity Dependence of Isothermal Water Insertion and Desorption>
For sample 1, in order to investigate the humidity dependence of the amount of water deinsertion under isothermal conditions, a thermogravimetric differential thermal analyzer (TG/DTA, high-concentration steam atmosphere differential thermal balance (manufactured by Rigaku Corporation: Thermo plus EVO2 TG- Thermal analysis was performed using DTA8122/HUM-1)).
As shown in FIG. 21, the thermal The relative humidity (25° C. standard) at the gas inlet of the gravimetric differential thermal analyzer main body was reciprocally swept from 0% to 90% (water vapor partial pressure 28.5 hPa) (0.5% RH/min). The humidity of the introduced gas was adjusted by mixing wet nitrogen passed through a water bath with high-purity dry nitrogen at an appropriate ratio, and feedback-controlling the relative humidity at the gas inlet. The flow rate of the introduced gas was approximately 500 sccm regardless of the relative humidity.
As described above, the relative humidity in FIG. 21 represents the 25° C. reference humidity at the gas inlet. .9% RH. However, the water vapor partial pressure does not change with temperature. TG: 0% in FIG. 21 corresponds to the completely dehydrated state in sample 1.
22 and 23 show the humidity dependence of TG at corresponding temperatures and the humidity dependence of the number of moles of water molecules per mole of Mn atoms corresponding to n in formula (I) for the above thermal analysis results. Each is represented.
 各温度、各湿度における水含有量を読み取ることにより、その条件における蓄熱温度、放熱温度、雰囲気湿度における水脱挿入量が分かり、これらを用いることにより蓄放熱量の見積もりが可能となる。
 図21~図23に示したように、サンプル1において28℃(室温レベルの温度)で放熱させる場合には、例えば夏季湿潤/冬季乾燥のような環境湿度が変化しても、水の脱挿入量はあまり大きく変化しないことが分かる。つまり、サンプル1は、室温レベルでの放熱においては、環境湿度に大きな影響を受けることなく、安定した放熱量が得られることが分かる。
 また、図21~図23に示したように、蓄熱温度を135℃以上とすれば、環境湿度にかかわらず、ほぼ完全にサンプル中の水を脱離させることが可能であることが分かる。
By reading the water content at each temperature and humidity, the heat storage temperature, heat radiation temperature, and water desorption/insertion amount at the ambient humidity can be determined.
As shown in FIGS. 21 to 23, in the case of heat dissipation at 28° C. (room temperature level) in sample 1, even if the environmental humidity changes such as summer humidity/winter dryness, the It can be seen that the amount does not change significantly. In other words, it can be seen that Sample 1 can provide a stable amount of heat dissipation without being significantly affected by the environmental humidity in heat dissipation at the room temperature level.
Moreover, as shown in FIGS. 21 to 23, if the heat storage temperature is 135° C. or higher, water in the sample can be almost completely desorbed regardless of the environmental humidity.
<まとめ>
 総括として、本発明の概要を示す模式図を図9に示す。
 図9に示すように、本実施形態の層状マンガン酸化物は、水のインターカレーション反応によって、層間の領域に水分子を吸脱着できることが分かった。
 本実施形態の層状マンガン酸化物は、Mn原子1モルに対して、水分子0.5モルを可逆的にインターカレーション可能であることが分かった。水の脱離反応(脱水反応)は、100℃/minの速度で、3分以内で完了することが分かった。このような速い反応速度は、水のインターカレーション反応を利用することにより実現できているものと考えられる。
 本実施形態の層状マンガン酸化物において、水のインターカレーション反応は、主に単相反応によって進行することが分かった。
 本実施形態の蓄熱材料の蓄熱可能な蓄熱量は、体積エネルギー密度に換算して1007MJ/mであった。これは、100~200℃における水のインターカレーション反応の蓄熱量の限界値(2000MJ/m)に近い値であった。
 本発明は、水のインターカレーション反応を蓄熱材料に初めて適用したものである。本発明の蓄熱材料は、既存の蓄熱材料の中でも、エネルギー密度、反応速度、可逆性の3点について、優れた材料であることが分かった。
<Summary>
As a summary, FIG. 9 shows a schematic diagram showing the outline of the present invention.
As shown in FIG. 9, it was found that the layered manganese oxide of the present embodiment can adsorb and desorb water molecules in the region between the layers due to the intercalation reaction of water.
It was found that the layered manganese oxide of this embodiment can reversibly intercalate 0.5 mol of water molecules per 1 mol of Mn atoms. It was found that the desorption reaction (dehydration reaction) of water was completed within 3 minutes at a rate of 100°C/min. It is considered that such a fast reaction rate is realized by utilizing the intercalation reaction of water.
It was found that in the layered manganese oxide of this embodiment, the intercalation reaction of water proceeds mainly by a single-phase reaction.
The heat storage capacity of the heat storage material of this embodiment was 1007 MJ/m 3 in terms of volume energy density. This value was close to the limit value (2000 MJ/m 3 ) of heat storage for the intercalation reaction of water at 100 to 200°C.
The present invention is the first application of the intercalation reaction of water to a heat storage material. It was found that the heat storage material of the present invention is an excellent material among existing heat storage materials in terms of energy density, reaction rate, and reversibility.
 以上のように、本発明の蓄熱材料によれば、蓄熱量をより高めることができることが分かった。
 加えて、本発明の蓄熱材料によれば、放熱の速度が速く、繰り返し使用できることが分かった。
As described above, it was found that the heat storage material of the present invention can further increase the amount of heat stored.
In addition, it has been found that the heat storage material of the present invention has a high heat release rate and can be used repeatedly.

Claims (8)

  1.  下記式(I)で表され、デルタ型の結晶構造を有する層状マンガン酸化物である、蓄熱材料。
     AMnO・nHO ・・・(I)
     [式(I)中、Aは、前記デルタ型の結晶構造を維持できる元素を表し、xは、0.00以上0.50以下の数であり、nは、0.00以上1.00以下の数である。]
    A heat storage material represented by the following formula (I) and being a layered manganese oxide having a delta-type crystal structure.
    AxMnO2.nH2O ( I )
    [In formula (I), A represents an element capable of maintaining the delta crystal structure, x is a number of 0.00 or more and 0.50 or less, and n is 0.00 or more and 1.00 or less. is the number of ]
  2.  前記式(I)におけるAが陽イオンを形成し得る金属元素から選ばれる1種以上である、請求項1に記載の蓄熱材料。 The heat storage material according to claim 1, wherein A in the formula (I) is one or more selected from metal elements capable of forming cations.
  3.  請求項1又は2に記載の蓄熱材料を加熱して、前記蓄熱材料から水を脱離する蓄熱工程を有する、熱エネルギーの利用方法。 A method for utilizing thermal energy, comprising a heat storage step of heating the heat storage material according to claim 1 or 2 to desorb water from the heat storage material.
  4.  前記蓄熱工程における前記蓄熱材料を加熱する温度が50~300℃である、請求項3に記載の熱エネルギーの利用方法。 The method of utilizing thermal energy according to claim 3, wherein the temperature for heating the heat storage material in the heat storage step is 50 to 300°C.
  5.  加熱した前記蓄熱材料に水を吸着させて熱を放出する放熱工程をさらに有する、請求項3に記載の熱エネルギーの利用方法。 The method of utilizing thermal energy according to claim 3, further comprising a heat dissipation step of causing the heated heat storage material to adsorb water to release heat.
  6.  加熱した前記蓄熱材料に水を吸着させて熱を放出する放熱工程をさらに有する、請求項4に記載の熱エネルギーの利用方法。 The method of utilizing thermal energy according to claim 4, further comprising a heat release step of causing water to be adsorbed on the heated heat storage material to release heat.
  7.  前記蓄熱工程と、前記放熱工程とを一つのサイクルとして、
     前記サイクルを2以上有する、請求項5に記載の熱エネルギーの利用方法。
    With the heat storage step and the heat dissipation step as one cycle,
    6. The method of utilizing thermal energy according to claim 5, comprising two or more of said cycles.
  8.  前記蓄熱工程と、前記放熱工程とを一つのサイクルとして、
     前記サイクルを2以上有する、請求項6に記載の熱エネルギーの利用方法。
    With the heat storage step and the heat dissipation step as one cycle,
    7. The method of utilizing thermal energy according to claim 6, comprising two or more of said cycles.
PCT/JP2023/000579 2022-01-12 2023-01-12 Heat storage material and method for using heat energy WO2023136284A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-003139 2022-01-12
JP2022003139 2022-01-12

Publications (1)

Publication Number Publication Date
WO2023136284A1 true WO2023136284A1 (en) 2023-07-20

Family

ID=87279181

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/000579 WO2023136284A1 (en) 2022-01-12 2023-01-12 Heat storage material and method for using heat energy

Country Status (1)

Country Link
WO (1) WO2023136284A1 (en)

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HATAKEYAMA TAKUYA, OKAMOTO NORIHIKO L., OTAKE SATOSHI, SATO HIROAKI, LI HONGYI, ICHITSUBO TETSU: "Excellently balanced water-intercalation-type heat-storage oxide", NATURE COMMUNICATIONS, vol. 13, no. 1, 17 March 2022 (2022-03-17), pages 1452, XP093078995, DOI: 10.1038/s41467-022-28988-0 *
SHIZUME KUNIHIKO, HATADA NAOYUKI, UDA TETSUYA: "Experimental Study of Hydration/Dehydration Behaviors of Metal Sulfates M 2 (SO 4 ) 3 (M = Sc, Yb, Y, Dy, Al, Ga, Fe, In) in Search of New Low-Temperature Thermochemical Heat Storage Materials", ACS OMEGA, ACS PUBLICATIONS, US, vol. 5, no. 23, 16 June 2020 (2020-06-16), US , pages 13521 - 13527, XP093078987, ISSN: 2470-1343, DOI: 10.1021/acsomega.9b04308 *
STEIGER MICHAEL, LINNOW KIRSTEN, JULING HERBERT, GÜLKER GERD, JARAD AKRAM EL, BRÜGGERHOFF STEFAN, KIRCHNER DIRK: "Hydration of MgSO 4 ·H 2 O and Generation of Stress in Porous Materials", CRYSTAL GROWTH & DESIGN, ASC WASHINGTON DC, US, vol. 8, no. 1, 1 January 2008 (2008-01-01), US , pages 336 - 343, XP093078991, ISSN: 1528-7483, DOI: 10.1021/cg060688c *

Similar Documents

Publication Publication Date Title
Yang et al. A review on strategies to LDH-based materials to improve adsorption capacity and photoreduction efficiency for CO2
Zhang et al. Recent advances in lithium containing ceramic based sorbents for high-temperature CO 2 capture
Levitskij et al. “Chemical heat accumulators”: a new approach to accumulating low potential heat
Bhatta et al. Progress in hydrotalcite like compounds and metal-based oxides for CO2 capture: a review
Makhanya et al. Recent advances on thermal energy storage using metal-organic frameworks (MOFs)
JP4765072B2 (en) Chemical heat pump
JP4002054B2 (en) Pressure swing adsorption method for carbon dioxide adsorption
JP5177386B2 (en) Chemical heat pump
Kubota et al. Enhancement of hydration rate of LiOH by combining with mesoporous carbon for Low-temperature chemical heat storage
Shkatulov et al. Doping magnesium hydroxide with sodium nitrate: A new approach to tune the dehydration reactivity of heat-storage materials
Tawalbeh et al. A comprehensive review on the recent advances in materials for thermal energy storage applications
Chitrakar et al. Synthetic inorganic ion exchange materials XLVII. Preparation of a new crystalline antimonic acid HSbO3. O. 12H2O
Mohapatra et al. Salt in matrix for thermochemical energy storage-A review
WO2023136284A1 (en) Heat storage material and method for using heat energy
Milone et al. Thermal energy storage with chemical reactions
Nguyen et al. Recent progress in thermochemical heat storage: materials and applications
CN110770523B (en) Chemical heat storage material and method for producing same, and chemical heat pump and method for operating same
JP6743685B2 (en) Chemical heat storage material and manufacturing method thereof
Palacios et al. Water sorption-based thermochemical storage materials: A review from material candidates to manufacturing routes
CN110770320B (en) Chemical heat storage material and method for producing same, and chemical heat pump and method for operating same
JP7248989B2 (en) Chemical heat storage material and its manufacturing method
Ibrahimova The Synthesis Methods and Applications of Layered Double Hydroxides–a Brief Review
EP3561022A1 (en) Heat-storage material
WO2024087839A1 (en) Co2 reversible adsorption material, composition and regeneration method thereof, and co2 capture method
EP3591023A1 (en) Heat storage material comprising metal salt of cyanuric acid

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23740292

Country of ref document: EP

Kind code of ref document: A1