WO2023136148A1 - Electrolysis system - Google Patents

Electrolysis system Download PDF

Info

Publication number
WO2023136148A1
WO2023136148A1 PCT/JP2022/048338 JP2022048338W WO2023136148A1 WO 2023136148 A1 WO2023136148 A1 WO 2023136148A1 JP 2022048338 W JP2022048338 W JP 2022048338W WO 2023136148 A1 WO2023136148 A1 WO 2023136148A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrolytic
cell
electrode
solar cell
photocatalyst
Prior art date
Application number
PCT/JP2022/048338
Other languages
French (fr)
Japanese (ja)
Inventor
友和 戸澤
邦裕 中野
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Publication of WO2023136148A1 publication Critical patent/WO2023136148A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/08Supplying or removing reactants or electrolytes; Regeneration of electrolytes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/50Cells or assemblies of cells comprising photoelectrodes; Assemblies of constructional parts thereof
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/60Constructional parts of cells
    • C25B9/65Means for supplying current; Electrode connections; Electric inter-cell connections
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/60Constructional parts of cells
    • C25B9/67Heating or cooling means
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/70Assemblies comprising two or more cells
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S10/00PV power plants; Combinations of PV energy systems with other systems for the generation of electric power
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/40Thermal components
    • H02S40/44Means to utilise heat energy, e.g. hybrid systems producing warm water and electricity at the same time

Definitions

  • the present invention relates to an electrolytic system that decomposes an electrolytic solution such as water.
  • Patent Document 1 a photocatalyst that decomposes water with sunlight to generate hydrogen is attracting attention.
  • a photocatalyst electrode an electrode coated with a photocatalyst (hereinafter also referred to as a photocatalyst electrode), and by applying a water decomposition voltage between the photocatalyst electrode and the counter electrode, Since water is decomposed and hydrogen can be generated without emitting carbon dioxide, the environmental impact is smaller than that of conventional hydrogen production methods using fossil fuels.
  • an object of the present invention is to provide an electrolysis system capable of decomposing an electrolytic solution more efficiently than before.
  • the inventors examined the following.
  • the voltage for electrolyzing water is insufficient, so a solar cell is often provided as an auxiliary power source to apply a voltage up to the electrolysis potential of water by the electromotive force of the solar cell.
  • the power generation efficiency of solar cells for example, in the case of silicon solar cells, tends to decrease as the temperature rises, but under sunlight, the temperature of the solar cell tends to rise significantly compared to room temperature. .
  • photocatalyst electrodes for example, photocatalyst electrodes using metal oxides such as bismuth vanadate and iron oxide tend to improve charge carrier transport and increase electrolysis efficiency when the operating temperature is raised. be. Therefore, the present inventor thought that the power generation efficiency of the solar cell and the electrolysis efficiency of the electrolyzer could both be improved by using the amount of heat generated by the solar cell to heat the electrolyzer.
  • One aspect of the present invention derived based on the above idea is a solar cell, an electrolytic cell having a photocatalyst electrode, a counter electrode, and an electrolytic solution, a supply channel for supplying the electrolytic solution to the electrolytic cell, and
  • the electrolysis system includes a heat transfer section that is provided in the middle of the supply channel and that transfers heat from the solar cell to the electrolytic solution passing through the supply channel.
  • the "heat of solar cells” here includes not only the amount of heat generated by solar cells generating electricity, but also the amount of heat generated when heated by light such as sunlight.
  • the temperature of the electrolyte in the electrolytic cell can be raised while the solar cell is cooled by the electrolyte. Therefore, the electrolysis efficiency of the electrolytic solution in the electrolytic cell can be improved while improving the power generation efficiency of the solar cell.
  • a preferable aspect is that the electrolytic cell is arranged on the solar cell.
  • the heat of the solar cell can be transferred to the electrolytic cell, so the electrolytic solution can be decomposed more efficiently.
  • a preferred aspect is that the solar cell applies a voltage between the photocatalyst electrode and the counter electrode.
  • the power generated by the solar cell can be used for electrolysis in the electrolytic cell, so the energy efficiency when generating hydrogen can be improved.
  • the absorption wavelength range of general photocatalysts is often 600 nm or less. That is, even if the photocatalyst is irradiated with light having a wavelength of more than 600 nm, the electrolysis efficiency does not change so much in many cases.
  • some solar cells can generate power over a wide wavelength range, even with light exceeding 600 nm. Therefore, by separating the sunlight, irradiating the photocatalyst with short-wavelength light, and irradiating the solar cell with long-wavelength light, it is possible to reduce the energy loss of the sunlight and improve the overall energy efficiency. Thought.
  • the electrolytic bath separates the transmitted light into short-wavelength light having a predetermined wavelength or less and long-wavelength light having a longer wavelength than the short-wavelength light. It is provided with a wavelength separating section that guides wavelength light to the photocatalyst electrode and guides long-wavelength light to the solar cell.
  • the wavelength separator guides the light in the short wavelength region, which is easily absorbed by the photocatalyst electrode, to the photocatalyst electrode, and guides the light in the long wavelength region, which is hardly used in the electrolysis of the photocatalyst electrode, to the solar cell. can improve efficiency.
  • a more preferable aspect is to provide an antireflection film on the wavelength separation section.
  • the electrolytic cell has a light-receiving portion for receiving light, and the counter electrode is positioned closer to the light-receiving portion than the photocatalyst electrode.
  • a preferred aspect is that it has at least two electrolytic cells, and the solar cell is positioned between the photocatalyst electrodes of the two electrolytic cells when the solar cells are viewed from above.
  • one solar cell can heat two electrolytic cells at the same time.
  • a preferred aspect has a gas storage part
  • the electrolytic cell has an ion exchange part between the photocatalyst electrode and the counter electrode, and the ion exchange part divides the electrolytic cell into a space on the side of the photocatalyst electrode and the It is divided into a space on the counter electrode side, and the gas storage part communicates with the space on the counter electrode side and can store the gas flowing out from the space on the counter electrode side.
  • the gas in the space on the counter electrode side can be stored in the gas storage part without being mixed with the gas in the space on the photocatalyst electrode side.
  • a more preferable aspect is to have a connecting portion that connects the gas storage portion and the electrolytic cell, and that the connecting portion is connected to the top side of the electrolytic cell rather than the counter electrode.
  • a preferred aspect has at least two electrolytic cells, the two electrolytic cells have an ion exchange section between the photocatalyst electrode and the counter electrode, and the ion exchange section directs the electrolytic cell to the photocatalytic electrode side. and the space on the counter electrode side, the two electrolytic cells are provided with a communication flow path in which the space on the photocatalyst electrode side communicates, and the two electrolytic cells are a first electrolytic cell and a first electrolytic cell. It has two electrolytic cells, and has an electrolytic solution supply unit that supplies the electrolytic solution to the space on the photocatalyst electrode side of the first electrolytic cell, and the communication flow path extends from the first electrolytic cell side to the second electrolytic cell in the middle. 2.
  • a check valve is provided that allows only the movement of the electrolyte to the electrolytic cell side.
  • the electrolytic solution in the space on the photocatalytic electrode side of the first electrolytic cell is supplied to the space of the second electrolytic cell. It is extruded into the space on the side of the photocatalyst electrode. Therefore, the decomposed product obtained by decomposing the electrolytic solution on the photocatalyst electrode side can be concentrated in the second electrolytic cell.
  • a solar cell has an electrolytic cell having a photocatalyst electrode, a counter electrode, and an electrolytic solution, and the solar cell receives light that has passed through the electrolytic cell to generate power. A part or all of the generated electric power is supplied to the electrolytic cell, and the electrolytic cell is an electrolytic system that decomposes the electrolytic solution using the electric power supplied from the solar cell.
  • the electrolytic cell since the electrolytic cell is positioned above the solar cell, the electrolytic cell is heated by the amount of heat generated by the solar cell, and the electrolysis efficiency of the electrolytic solution in the electrolytic cell can be improved.
  • the solar cell receives the light that is attenuated by the photocatalyst electrode and transmitted. That is, since the solar cell receives light that has passed through the photocatalyst electrode, shadows and the like do not occur locally. etc. can be suppressed.
  • the electrolytic solution can be decomposed more efficiently than before.
  • FIG. 1 is an exploded perspective view of the electrolysis system of FIG. 1;
  • FIG. 2 is an explanatory diagram of the flow of light when light is incident on the light receiving section in the electrolysis system of FIG. 1;
  • FIG. 3 is a view in the direction of arrow A in FIG. 2 when the electrolysis system in FIG. 1 is installed with an inclination with respect to the horizontal plane.
  • FIG. 6 is a side view when the electrolysis system of FIG. 5 is installed with an inclination with respect to the horizontal plane; It is explanatory drawing of the electrolysis system of 3rd Embodiment of this invention, (a) is sectional drawing of an electrolysis system, (b) is sectional drawing in a cross section different from (a). Note that (a) omits the electrolytic solution for easy understanding.
  • FIG. 4 is a cross-sectional view of essential parts of an electrolysis system according to another embodiment of the present invention, omitting the electrolyte for ease of understanding;
  • the electrolysis system 1 of the first embodiment of the present invention includes, as shown in FIG. A liquid supply system 5, a gas recovery system 7, solution communication channels 8a and 8b, and a solution recovery system 9 are provided.
  • the electrolysis system 1 uses the electric power generated by the solar cell 3 to electrolyze the electrolytic solutions 25a and 25b in the electrolytic cell 2, and is capable of executing a hydrogen generation operation of generating hydrogen.
  • the electrolytic cell 2 includes a cell main body 20, a photocatalyst electrode 21, a counter electrode 22, an ion exchange section 23, and electrolytic solutions 25a and 25b.
  • the electrolytic cell 2 is divided into a first electrolytic space 26, which is a space on the photocatalyst electrode 21 side, and a second electrolytic space, which is a space on the counter electrode 22 side, by the ion exchange unit 23. 27 are divided.
  • the tank main body 20 is a box-shaped body having a prism portion 30, a bottom wall portion 31, and side wall portions 32a and 32b.
  • the prism unit 30 separates the transmitted light L1 into short-wavelength light L2 and long-wavelength light L3 based on a predetermined wavelength, guides the short-wavelength light L2 to the photocatalyst electrode 21, and converts the light L1 into long-wavelength light. It is a wavelength separator that guides L3 to the solar cell 3 .
  • the prism portion 30 constitutes the ceiling wall portion of the tank body portion 20 and is a light receiving portion that receives light. As shown in FIGS.
  • the prism portion 30 has a first inclined portion 36 and a second inclined portion 37 with a bottom line portion 35 as a boundary.
  • a concave groove 38 having a triangular shape is formed.
  • the inclined portions 36 and 37 are provided with gas recovery holes 40a and 40b as shown in FIG. 1(b).
  • the gas recovery holes 40a and 40b are gas discharge holes for recovering the gas in the second electrolysis space 27, and are through holes penetrating with a vertical component.
  • the bottom wall portion 31 is a wall portion that constitutes the bottom portion of the tank body portion 20 and is a facing wall portion that faces the prism portion 30 with the ion exchange portion 23 interposed therebetween. As shown in FIG. 1, the bottom wall portion 31 includes an electrolyte inlet 41, communication ports 42 (42a, 42b), and an outlet 43 as necessary.
  • the electrolytic solution introduction port 41 is an opening through which the electrolytic solution 25a is introduced.
  • the communication port 42 (42a, 42b) is an opening for communicating the first electrolysis space 26 of itself with the first electrolysis space 26 of the adjacent electrolytic cell 2.
  • the discharge port 43 is an opening through which the electrolytic solution 25a is discharged from the electrolytic cell 2 to the outside.
  • the side wall portions 32a and 32b are connection walls that connect the prism portion 30 and the bottom wall portion 31, as shown in FIG.
  • the photocatalyst electrode 21 is an anode electrode that oxidizes the electrolytic solution 25a by receiving light to generate hydrogen peroxide.
  • the photocatalyst electrode 21 is formed by laminating a photocatalyst on a conductive substrate.
  • the conductive substrate is not particularly limited as long as it has conductivity.
  • a transparent conductive oxide substrate in which a transparent conductive oxide is laminated on a transparent substrate, a metal substrate, etc. can be used. .
  • the photocatalyst is not particularly limited as long as it has photocatalytic activity.
  • photocatalysts examples include tungsten trioxide ( WO3 ) catalysts, bismuth vanadate ( BiVO4 ) catalysts, tin oxide ( SnO2 ) catalysts, titanium oxide ( TiO2 ) catalysts, hematite ( Fe2O3 ) catalysts, and the like . Available.
  • the counter electrode 22 is an electrode that forms a pair with the photocatalyst electrode 21 and faces the photocatalyst electrode 21 with the ion exchange portion 23 interposed therebetween. .
  • the counter electrode 22 is mesh-like and has a plurality of openings so that light can pass through in the thickness direction.
  • the ion exchange part 23 is a film-like body, and is a part that allows only specific ions to move in the thickness direction and restricts the movement of the remaining ions and electrons.
  • the ion exchange section 23 of the present embodiment is a cation exchange membrane that restricts or disables movement of anions and electrons, and allows movement of only cations.
  • the ion exchange section 23 also serves as a blocking membrane that blocks the flow of gas in the thickness direction.
  • the material of the ion exchange section 23 is not particularly limited as long as hydrogen and oxygen do not cross over.
  • a polymer membrane such as a perfluoroalkylsulfonic acid polymer membrane such as Nafion (registered trademark) can be used.
  • the electrolytic solution 25a generates hydrogen peroxide by oxidation, and is specifically an aqueous solution containing water.
  • the electrolytic solution 25b generates hydrogen by reduction, and is specifically an aqueous solution containing water.
  • the electrolytic solution 25b may be the same electrolytic solution as the electrolytic solution 25a, or may be a different electrolytic solution.
  • the solar cell 3 is a photoelectric conversion device that converts light energy into electrical energy.
  • the solar battery 3 has a plurality of solar cells, and each solar cell is electrically connected in series and/or electrically connected in parallel.
  • the solar cell 3 of this embodiment includes a solar cell string in which a plurality of solar cells are connected in series.
  • the antireflection film 4 is provided across the prism portions 30 of the electrolytic baths 2a to 2c, and is a film that suppresses reflected light of light incident from the prism portion 30 into the electrolytic baths 2a to 2c. be. In other words, the antireflection film 4 confines the light entering the electrolytic baths 2a to 2c from the prism portion 30 within the electrolytic baths 2a to 2c.
  • the electrolytic solution supply system 5 is a supply system for supplying the electrolytic solution 25a to each of the electrolytic cells 2a to 2c. As shown in FIG. 1, the electrolyte supply system 5 includes an electrolyte supply unit 50 and electrolyte supply channels 51a to 51c. The electrolytic solution 25a can be supplied to each electrolytic bath 2a to 2c.
  • the electrolytic solution supply channel 51a is a channel that connects the electrolytic solution supply part 50 to the electrolytic solution introduction port 41 of the electrolytic cell 2a, and includes an on-off valve 55a and a heat transfer part 56a.
  • the on-off valve 55a is a member that is provided in the middle of the flow direction of the electrolytic solution supply channel 51a, and opens and closes the circulation of the electrolytic solution 25a by opening and closing.
  • the heat transfer portion 56a is a portion that exchanges heat between the electrolytic solution 25a passing through the electrolytic solution supply channel 51a and the solar cell 3a. It is a portion that conducts heat to the electrolytic solution 25a. That is, in the heat transfer portion 56a, it is possible to heat the electrolytic solution 25a with the heat generated by the solar cell 3a. In other words, in the heat transfer portion 56a, the solar cell 3a can be cooled with the electrolytic solution 25a.
  • the electrolytic solution supply channel 51b is a channel that connects the electrolytic solution supply part 50 to the electrolytic solution introduction port 41 of the electrolytic bath 2b, and includes an on-off valve 55b and a heat transfer part 56b.
  • the on-off valve 55b is a member that is provided in the middle of the flow direction of the electrolytic solution supply channel 51b, and opens and closes the circulation of the electrolytic solution 25a by opening and closing.
  • the heat transfer part 56b is a part that exchanges heat between the electrolytic solution 25b passing through the electrolytic solution supply channel 51b and the solar cell 3b. It is a portion that conducts heat to the electrolytic solution 25a. That is, in the heat transfer portion 56b, it is possible to heat the electrolytic solution 25a with the heat generated by the solar cell 3b. In other words, in the heat transfer portion 56b, the solar cell 3b can be cooled with the electrolytic solution 25a.
  • the electrolytic solution supply channel 51c is a channel that connects the electrolytic solution supply part 50 to the electrolytic solution introduction port 41 of the electrolytic bath 2c, and includes an on-off valve 55c.
  • the on-off valve 55c is a member that is provided in the middle of the flow direction of the electrolytic solution supply channel 51c and opens and closes the circulation of the electrolytic solution 25a by opening and closing.
  • the gas recovery system 7 is a system for recovering the hydrogen generated in each of the electrolytic cells 2a to 2c, and as shown in FIG. there is
  • the gas storage unit 60 is a hydrogen storage unit that stores the hydrogen generated in each of the electrolytic cells 2a to 2c, and allows hydrogen to be discharged to an external device or the like and introduced from an external device or the like as necessary. .
  • the gas recovery channel 61 is a connection channel that connects the gas recovery holes 40a and 40b of the respective electrolytic cells 2a to 2c and the gas storage section 60, and the hydrogen generated in the second electrolytic space 27 from the respective electrolytic cells 2a to 2c. is collected and introduced into the gas storage unit 60 .
  • the solution communication channel 8a is a channel that communicates between the adjacent first electrolytic space 26 of the first electrolytic bath 2a and the first electrolytic space 26 of the second electrolytic bath 2b. It connects the communication port 42b of the first electrolytic bath 2a and the communication port 42a of the second electrolytic bath 2b.
  • the solution communication channel 8b is a channel for communicating between the adjacent first electrolytic space 26 of the second electrolytic bath 2b and the first electrolytic space 26 of the third electrolytic bath 2c. and the communication port 42a of the third electrolytic cell 2c.
  • the solution communication channels 8a and 8b are provided with check valves 70a and 70b in the middle of the flow direction.
  • the check valve 70a allows only the movement of the electrolytic solution 25a from the side of the first electrolytic bath 2a to the side of the second electrolytic bath 2b.
  • the check valve 70b allows only the movement of the electrolytic solution 25a from the side of the second electrolytic bath 2b to the side of the third electrolytic bath 2c.
  • the solution recovery system 9 is a system for recovering the hydrogen peroxide produced in the electrolytic cells 2a-2c.
  • the solution recovery system 9 includes a solution storage section 80 , a solution recovery channel 81 and an on-off valve 82 .
  • the solution storage part 80 is a part for storing the hydrogen peroxide generated in each of the electrolytic cells 2a to 2c, and it is possible to discharge hydrogen to an external device or the like or introduce hydrogen from an external device or the like as necessary. .
  • the solution recovery channel 81 is a connection channel that connects the outlet 43 of the third electrolytic cell 2c and the solution storage unit 80, recovers hydrogen peroxide from the first electrolytic space 26 of the third electrolytic cell 2c, and recovers the solution. This is a part to be introduced into the storage part 80 .
  • the on-off valve 82 is a member that is provided in the middle of the solution recovery channel 81 in the flow direction and opens and blocks the flow of hydrogen peroxide.
  • electrolytic cells 2 (2a to 2c) are arranged in a straight line in a predetermined direction.
  • the electrolytic bath 2 (2a to 2c) is inclined at an inclination angle ⁇ 1 with respect to the horizontal plane GL, the prism part 30 faces the light source such as the sun, and the gas recovery channel 61 side is inclined.
  • the position of the end is higher than the position of the end on the side opposite to the gas recovery channel 61 .
  • the inclination angle ⁇ 1 is preferably 15 degrees or more and 45 degrees or less.
  • the electrolytic cells 2a and 2b have the photocatalyst electrode 21 arranged on the first electrolytic space 26 side and the counter electrode 22 arranged on the second electrolytic space 27 side.
  • the photocatalyst electrode 21 faces the counter electrode 22 with the ion exchange portion 23 interposed therebetween, and is positioned below the counter electrode 22 .
  • the solar cells 3a and 3b are placed on the heat transfer portions 56a and 56b so that their back surfaces are in contact with each other, and the light receiving surfaces face upward.
  • the solar cell 3a is provided at the boundary between the first electrolytic bath 2a and the second electrolytic bath 2b.
  • the photocatalyst electrode 21 of the first electrolytic bath 2a and the second electrolytic bath 2b are located between the photocatalyst electrodes 21 of the That is, the solar cell 3a has the bottom walls 31, 31 of the electrolytic vessels 2a, 2b above, and is in contact with the bottom walls 31, 31 of the electrolytic vessels 2a, 2b in this embodiment.
  • the solar cell 3b is provided at the boundary between the second electrolytic cell 2b and the third electrolytic cell 2c.
  • the photocatalyst electrode 21 of the second electrolytic cell 2b and the third electrolytic cell 2c are located between the photocatalyst electrodes 21 of the That is, the solar cell 3b has the bottom walls 31, 31 of the electrolytic cells 2b, 2c above, and is in contact with the bottom walls 31, 31 of the electrolytic cells 2b, 2c in this embodiment.
  • the electrolytic solution 25a is supplied from the electrolytic solution supply unit 50 to the electrolytic cells 2a to 2c through the electrolytic solution supply channels 51a to 51c, and the first electrolysis is performed.
  • the space 26 is filled with the electrolytic solution 25a.
  • an electrolytic solution 25b is supplied from an electrolytic solution supply unit (not shown) through an electrolytic solution supply flow path (not shown) to each of the electrolytic cells 2a to 2c to fill the second electrolytic space 27 with the electrolytic solution 25b.
  • the incident light L1 such as sunlight is incident from the prism portion 30
  • the incident light L1 is separated into short wavelength light L2 and long wavelength light L3 at the prism portion 30 as shown in FIG. 21 and the long-wavelength light L3 is guided to the solar cell 3 .
  • the short-wavelength light L2 dispersed by the prism portion 30 mainly passes through the opening of the counter electrode 22, passes through the ion exchange portion 23, and reaches the photocatalyst electrode 21.
  • the long-wavelength light L3 split by the prism portion 30 is mainly transmitted through the ion exchange portion 23 and then through the bottom wall portion 31 to reach the light receiving surface of the solar cell 3 .
  • the first electrolytic solution 25a is decomposed on the photocatalyst electrode 21 to generate hydrogen peroxide, and the counter electrode 22 Above, the second electrolytic solution 25b is decomposed to generate hydrogen.
  • the hydrogen generated on the counter electrode 22 moves upward and is stored in the gas storage section 60 via the gas recovery channel 61 from the gas recovery holes 40a and 40b.
  • the oxygen generated on the photocatalyst electrode 21 is released from vent holes (not shown) in the electrolytic cells 2a to 2c, and when hydrogen peroxide is generated, it is mixed with the first electrolytic solution 25a, resulting in a two-liquid mixed state. Become.
  • a hydrogen peroxide concentration operation is performed as required.
  • a fresh first electrolytic solution 25a is supplied from the electrolytic solution supply unit 50 shown in FIG. 1(a) to the first electrolytic cell 2a.
  • the first electrolytic solution 25a is supplied to the first electrolytic cell 2a, part of the first electrolytic solution 25a and part of hydrogen peroxide are extruded into the fresh electrolytic solution 25a as shown in FIG. 1(b). It flows into the adjacent second electrolytic cell 2b via the solution communication channel 8a.
  • the heat of the solar cells 3 heats the first electrolytic solution 25a.
  • the temperature of the electrolytic solution 25a can be raised. Therefore, while improving the power generation efficiency of the solar cell 3, the electrolysis efficiency of the first electrolytic solution 25a in the electrolytic baths 2a and 2b can be improved.
  • the electrolytic cell 2 is arranged on the solar cell 3, and the heat generated in the solar cell 3 can be transferred to the electrolytic cell 2, so that the electrolytic solutions 25a and 25b can be efficiently generated. can be decomposed.
  • part or all of the electromotive force generated by the solar cell 3 is applied between the photocatalyst electrode 21 and the counter electrode 22, so that the energy efficiency when generating hydrogen can be improved.
  • the short-wavelength light L2, which is easily absorbed by the photocatalyst electrode 21, is guided to the photocatalyst electrode 21 by the prism part 30, and the long-wavelength light L3, which is hardly used in the electrolysis of the photocatalyst electrode 21, is transferred to the solar cell. 3, energy efficiency can be improved.
  • the antireflection film 4 is provided on the prism portion 30, the light incident on the prism portion 30 can be prevented from being reflected and emitted to the outside. It can be contained on two sides.
  • the solar cell 3 since the solar cell 3 is positioned at the boundary between the adjacent electrolytic cells 2, 2, a single solar cell 3 can heat the plurality of electrolytic cells 2, 2 at the same time. Moreover, each light that has passed through the adjacent electrolytic cells 2 , 2 can be collected in the solar cell 3 .
  • the first electrolysis space 26 and the second electrolysis space 27 are separated by the ion exchange section 23, so the gas in the first electrolysis space 26 and the gas in the second electrolysis space 27 can be stored in the gas storage unit 60 without being mixed.
  • the gas recovery channel 61 is connected to the prism portion 30 forming the top portion of the counter electrode 22, so the gas generated in the second electrolysis space 27 is lighter than air. In this case, the gas in the second electrolysis space 27 can be easily recovered.
  • the electrolytic solution supply unit 50 supplies the electrolytic solution 25a to the first electrolytic space 26 of the first electrolytic bath 2a, thereby of the electrolytic solution 25a is pushed into the first electrolytic space 26 of the second electrolytic cell 2b. Therefore, hydrogen peroxide, which is a decomposition product of the electrolytic solution 25a decomposed on the photocatalyst electrode 21 side, can be concentrated in the adjacent second electrolytic cell 2b.
  • the electrolytic cell 2 since the electrolytic cell 2 is positioned above the solar cell 3, the electrolytic cell 2 is heated by the amount of heat generated by the solar cell 3, and the electrolytic solution 25a in the electrolytic cell 2 , 25b can be improved.
  • the electrolytic cell 2 is inclined so that the gas recovery channel 61 side is at a higher position, so hydrogen generated at the counter electrode 22 tends to gather on the gas recovery channel 61 side.
  • the electrolysis system 100 of the second embodiment includes, as shown in FIG. 107, a solution recovery system 9, and a malfunction detection means (not shown).
  • the electrolytic baths 102a to 102c include a bath body 120, a photocatalyst electrode 21, a counter electrode 22, an ion exchange portion 23, and electrolytic solutions 25a and 25b.
  • the tank main body 120 is a box-shaped body including a prism portion 30, a bottom wall portion 131, and side wall portions 32a and 32b.
  • the bottom wall portion 131 has an electrolyte inlet 41 and, if necessary, an outlet 43 .
  • a side wall portion 32b of the first electrolytic cell 102a is provided with a liquid passage hole 145b and a gas communication hole 146b.
  • Liquid passage holes 145a and 145b and gas communication holes 146a and 146b are provided in the side walls 32a and 32b of the second electrolytic cell 102b.
  • a side wall portion 32a of the third electrolytic cell 102c is provided with a liquid passage hole 145a and a gas communication hole 146a, and a side wall portion 32b is provided with a gas recovery hole 140.
  • the liquid passage hole 145a is a through hole through which liquid can pass, and forms a communication hole that is continuous with the liquid passage hole 145b of the adjacent electrolytic cell 102 .
  • the gas communication hole 146a is a through hole through which gas can pass, and forms a communication hole that is continuous with the gas communication hole 146b of the adjacent electrolytic cell 102 .
  • the gas recovery hole 140 is a gas discharge hole for recovering gas in the second electrolysis space 27 of the third electrolytic cell 102c.
  • the electrolytic solution supply system 105 is composed of an electrolytic solution supply channel 51a, and a heat transfer portion 56a of the electrolytic solution supply channel 51a is provided across the plurality of solar cells 3a and 3b.
  • the gas recovery system 107 is a system that recovers hydrogen from the gas recovery holes 140 of the third electrolytic cell 2c and introduces it into the gas storage section 60, and is composed of the gas storage section 60 and the gas recovery channel 61.
  • the malfunction detection means forcibly executes a safety ensuring operation, which will be described later, when a malfunction occurs in the electrical system of the electrolysis system 100 due to an external factor such as an earthquake or a power failure.
  • the failure detection means is, for example, a current detection device or a voltage detection device, and the electrolysis system 100 forcibly executes a safety ensuring operation when an abnormality occurs in current or voltage.
  • the electrolytic cells 102a to 102c are inclined at an inclination angle ⁇ 2 with respect to the horizontal plane GL, the prism portion 30 faces the light source such as the sun, and the end portion on the side of the gas recovery hole 140 is positioned is higher than the position of the end opposite to the gas recovery hole 140 . That is, the third electrolytic bath 102c side is higher than the first electrolytic bath 102a side.
  • the inclination angle ⁇ 2 is preferably 15 degrees or more and 45 degrees or less.
  • the electrolytic solution 25a is supplied from the electrolytic solution supply part 50 through the electrolytic solution supply channel 51a to the first electrolytic cell 102a, and then through the liquid passage holes 145a and 145b to the remaining electrolytic cells 102b. , 102c is supplied with the electrolytic solution 25a.
  • the incident light L1 such as sunlight is incident from the prism portion 30
  • the incident light L1 is separated into the short wavelength light L2 and the long wavelength light L3 by the prism portion 30 in the same manner as the hydrogen generation operation in the first embodiment.
  • the light L2 is guided to the photocatalyst electrode 21
  • the long-wavelength light L3 is guided to the solar cell 3
  • the first electrolyte solution 25a is decomposed on the photocatalyst electrode 21 to generate hydrogen peroxide
  • the second electrolysis is performed on the counter electrode 22.
  • the liquid 25b is decomposed to generate hydrogen.
  • the hydrogen generated on the counter electrode 22 of each of the electrolytic cells 102a to 102c is tilted with respect to the horizontal plane GL at the predetermined tilt angle ⁇ 2 as shown in FIG. b) moves toward the gas recovery hole 140 through the gas communication holes 146a and 146b, and is stored in the gas storage section 60 through the gas recovery channel 61.
  • FIG. On the other hand, the hydrogen peroxide generated on the photocatalyst electrode 21 is mixed with the first electrolytic solution 25a, and the hydrogen peroxide is concentrated.
  • the on-off valve 82 is opened to discharge the hydrogen peroxide from the solution recovery channel 81 to the solution storage section 80 .
  • the first electrolytic cell 102a can flow to the third electrolytic cell 102c side through the hydrogen generated in . Therefore, hydrogen can be automatically recovered without installing piping or the like in the electrolytic baths 102a to 102c.
  • the electrolysis system 200 of the third embodiment includes a plurality of electrolytic cells 202a to 202c, a plurality of solar cells 3a to 3c, an antireflection film 4, an electrolyte supply system 205, and a gas recovery system. 107, a solution recovery system 9, and a malfunction detection means (not shown).
  • the electrolytic baths 202a to 202c include a bath body 220, a photocatalyst electrode 21, a counter electrode 22, an ion exchange portion 23, and electrolytic solutions 25a and 25b.
  • the tank body portion 220 includes a ceiling side wall portion 230, a bottom wall portion 131, and side wall portions 32a and 32b. Unlike the prism section 30, the ceiling side wall section 230 guides the transmitted light as it is without separating it.
  • the electrolyte supply system 205 includes an electrolyte supply unit 50 and electrolyte supply channels 51a to 51c.
  • the electrolytic solution 25a can be supplied to each of the electrolytic cells 202a-202c.
  • the electrolytic solution supply channel 51c of the electrolytic solution supply system 205 is a channel connected from the electrolytic solution supply part 50 to the electrolytic solution introduction port 41 of the electrolytic bath 202c, and unlike the first embodiment, the on-off valve 55c and the transmission A heating section 56c is provided.
  • the electrolysis vessels 202a to 202c and the solar cells 3a to 3c overlap when viewed from above from the ceiling side walls 230 of the electrolysis vessels 202a to 202c.
  • the areas of the solar cells 3a to 3c are smaller than the areas of the photocatalyst electrodes 21 of the electrolytic cells 202a to 202c, and are entirely covered with the photocatalyst electrodes 21.
  • FIG. That is, the solar cells 3a to 3c receive light transmitted through the photocatalyst electrode 21.
  • the solar cells 3a to 3c and the photocatalyst electrode 21 overlap each other, and the solar cells 3a to 3c mainly receive the light transmitted through the photocatalyst electrode 21. That is, since the solar cells 3a to 3c receive the light that has been attenuated by the photocatalyst electrode 21 and transmitted, shadows or the like do not occur locally on the solar cells 3a to 3c, and the plurality of solar cells are connected in series. Even when the solar cell 3 is used, the generation of hot spots can be suppressed, and the overall power generation efficiency can be improved. Also, since the occurrence of hot spots can be suppressed, installation of bypass diodes or the like in the solar cells 3a to 3c can be omitted.
  • the wavelength separator may be a fisheye lens or the like as long as it can separate the long wavelength light L3 and the short wavelength light L2.
  • hydrogen peroxide is mainly generated from the electrolytic solution 25a on the photocatalyst electrode 21, but the present invention is not limited to this.
  • Oxygen may be generated from the electrolyte solution 25a on the photocatalyst electrode 21 by adjusting the voltage between the photocatalyst electrode 21 and the counter electrode 22 .
  • the generated oxygen gas may be collected and used, or may be naturally discharged into the atmosphere by providing a vent hole.
  • one gas recovery channel 61 branches to the gas recovery holes 40a and 40b of the respective electrolytic cells 2, and the gas recovery holes 40a and 40b of the respective electrolytic cells 2 and
  • the gas storage unit 60 is connected by the gas recovery channel 61
  • the present invention is not limited to this.
  • Each electrolytic cell 2 may be provided with a gas recovery channel 61 , and the gas recovery channel 61 of each electrolytic cell 2 may be connected to form a channel to the gas storage section 60 .
  • the counter electrode 22 is provided on the prism portion 30 side with respect to the photocatalyst electrode 21, but the present invention is not limited to this.
  • the photocatalyst electrode 21 may be provided on the side of the prism portion 30 with respect to the counter electrode 22 as shown in FIG. That is, the photocatalyst electrode 21 may be arranged on the light receiving side with respect to the counter electrode 22 .
  • the photosensitive photocatalyst electrode is arranged at a position close to the sunlight, and the transmission loss of light due to the ion exchange section 23 and the like can be reduced.
  • each constituent member can be freely replaced or added between the embodiments.

Abstract

The present invention provides an electrolysis system capable of decomposing an electrolyte more efficiently than before. The system is configured to comprise: a solar cell; an electrolytic tank having a photocatalyst electrode, a counter electrode, and an electrolyte; a supply flow path for supplying the electrolyte to the electrolytic tank; and a heat transfer unit disposed partway in the supply flow path and transferring heat of the solar cell to the electrolyte passing through the supply flow path.

Description

電解システムelectrolysis system
 本発明は、水等の電解液を分解する電解システムに関する。 The present invention relates to an electrolytic system that decomposes an electrolytic solution such as water.
 近年、燃料電池モジュールの普及により、燃料電池モジュールの燃料極に使用される水素原料の需要が増えている。
 水素原料の製法として、太陽光によって水を分解し、水素を発生させる光触媒が注目されている(例えば、特許文献1)。
 光触媒による水素原料の製法は、光触媒を塗膜した電極(以下、光触媒電極ともいう)で太陽光を受光し、光触媒電極と対極との間で水の分解電圧を印加することで、対極上で水が分解され、二酸化炭素を排出させずに水素を発生できるので、従来の化石燃料を用いた水素の製法に比べて環境負荷が小さい。
In recent years, with the spread of fuel cell modules, the demand for hydrogen raw materials used for the fuel electrodes of fuel cell modules is increasing.
As a method for producing a hydrogen raw material, a photocatalyst that decomposes water with sunlight to generate hydrogen is attracting attention (for example, Patent Document 1).
In the method of producing hydrogen raw materials using a photocatalyst, sunlight is received by an electrode coated with a photocatalyst (hereinafter also referred to as a photocatalyst electrode), and by applying a water decomposition voltage between the photocatalyst electrode and the counter electrode, Since water is decomposed and hydrogen can be generated without emitting carbon dioxide, the environmental impact is smaller than that of conventional hydrogen production methods using fossil fuels.
国際公開第2019/216284号WO2019/216284
 しかしながら、光触媒を用いた電解装置は、環境負荷が小さいものの、水の電解効率が小さく、更なる電解効率の向上が求められていた。 However, although electrolyzers using photocatalysts have a small environmental impact, the efficiency of water electrolysis is low, and further improvements in electrolysis efficiency have been sought.
 そこで、本発明は、従来に比べて効率的に電解液を分解できる電解システムを提供することを目的とする。 Therefore, an object of the present invention is to provide an electrolysis system capable of decomposing an electrolytic solution more efficiently than before.
 上記した課題を解決するために本発明者は、以下のことを検討した。
 光触媒を用いた水の電解装置では、水を電解するための電圧が足らず、補助電源として太陽電池を設けて太陽電池の起電力で水の電解電位まで電圧をかけることが多い。
 太陽電池の発電効率は、例えばシリコン太陽電池の場合、温度が上がるごとに発電量が低下する傾向があるが、太陽光の下では、太陽電池の温度が常温に比べて大きく上昇する傾向がある。
 一方、光触媒電極を用いた電解装置では、例えば、バナジン酸ビスマスや酸化鉄などの金属酸化物を用いた光触媒電極で、稼働温度を上昇させると電荷キャリア輸送が改善し電解効率が増加する傾向がある。
 そこで、本発明者は、太陽電池で生じる熱量を電解装置の加熱に使用することで、太陽電池の発電効率と電解装置の電解効率がともに向上できると考えた。
In order to solve the above-described problems, the inventors examined the following.
In a water electrolyzer using a photocatalyst, the voltage for electrolyzing water is insufficient, so a solar cell is often provided as an auxiliary power source to apply a voltage up to the electrolysis potential of water by the electromotive force of the solar cell.
The power generation efficiency of solar cells, for example, in the case of silicon solar cells, tends to decrease as the temperature rises, but under sunlight, the temperature of the solar cell tends to rise significantly compared to room temperature. .
On the other hand, in electrolysis devices using photocatalyst electrodes, for example, photocatalyst electrodes using metal oxides such as bismuth vanadate and iron oxide tend to improve charge carrier transport and increase electrolysis efficiency when the operating temperature is raised. be.
Therefore, the present inventor thought that the power generation efficiency of the solar cell and the electrolysis efficiency of the electrolyzer could both be improved by using the amount of heat generated by the solar cell to heat the electrolyzer.
 上記した考えのもと導き出された本発明の一つの様相は、太陽電池と、光触媒電極と対極と電解液を有する電解槽と、前記電解槽に前記電解液を供給する供給流路と、前記供給流路の中途に設けられ、前記太陽電池の熱を、前記供給流路を通過する前記電解液に伝熱する伝熱部を備える、電解システムである。 One aspect of the present invention derived based on the above idea is a solar cell, an electrolytic cell having a photocatalyst electrode, a counter electrode, and an electrolytic solution, a supply channel for supplying the electrolytic solution to the electrolytic cell, and The electrolysis system includes a heat transfer section that is provided in the middle of the supply channel and that transfers heat from the solar cell to the electrolytic solution passing through the supply channel.
 ここでいう「太陽電池の熱」とは、太陽電池が発電することによって生じる熱量だけではなく、太陽光等の光によって加熱される際に生じる熱量も含む。 The "heat of solar cells" here includes not only the amount of heat generated by solar cells generating electricity, but also the amount of heat generated when heated by light such as sunlight.
 本様相によれば、太陽電池の熱で電解液を加熱するので、電解液によって太陽電池を冷却しつつ、電解槽内の電解液を昇温できる。そのため、太陽電池の発電効率を向上させつつ、電解槽内での電解液の電解効率を向上できる。 According to this aspect, since the heat of the solar cell heats the electrolyte, the temperature of the electrolyte in the electrolytic cell can be raised while the solar cell is cooled by the electrolyte. Therefore, the electrolysis efficiency of the electrolytic solution in the electrolytic cell can be improved while improving the power generation efficiency of the solar cell.
 好ましい様相は、前記太陽電池上に前記電解槽が配されていることである。 A preferable aspect is that the electrolytic cell is arranged on the solar cell.
 本様相によれば、太陽電池の熱を電解槽に熱移動できるので、さらに効率的に電解液を分解できる。 According to this aspect, the heat of the solar cell can be transferred to the electrolytic cell, so the electrolytic solution can be decomposed more efficiently.
 好ましい様相は、前記太陽電池は、前記光触媒電極と前記対極間に電圧を印加することである。 A preferred aspect is that the solar cell applies a voltage between the photocatalyst electrode and the counter electrode.
 本様相によれば、太陽電池で発電した電力を電解槽での電解に使用できるため、水素を生成する際のエネルギー効率を向上できる。 According to this aspect, the power generated by the solar cell can be used for electrolysis in the electrolytic cell, so the energy efficiency when generating hydrogen can be improved.
 ここで、一般的な光触媒の吸収波長域は、600nm以下であることが多い。すなわち、光触媒に対して600nm超過の光を照射しても電解効率はさほど変わらないことが多い。
 一方、太陽電池の中には、広い波長域で発電でき、600nm超過の光であっても発電可能なものがある。
 そこで、太陽光を分離し、光触媒に対して短波長光を照射し、太陽電池に対して長波長光を照射することで太陽光のエネルギー損失を低減でき、全体としてのエネルギー効率を向上できると考えた。
Here, the absorption wavelength range of general photocatalysts is often 600 nm or less. That is, even if the photocatalyst is irradiated with light having a wavelength of more than 600 nm, the electrolysis efficiency does not change so much in many cases.
On the other hand, some solar cells can generate power over a wide wavelength range, even with light exceeding 600 nm.
Therefore, by separating the sunlight, irradiating the photocatalyst with short-wavelength light, and irradiating the solar cell with long-wavelength light, it is possible to reduce the energy loss of the sunlight and improve the overall energy efficiency. Thought.
 この考えのもと導き出された好ましい様相は、前記電解槽は、透過する光を所定の波長以下の短波長光と前記短波長光に比べて長波長の長波長光とに分離し、前記短波長光を前記光触媒電極に導き、前記長波長光を前記太陽電池に導く波長分離部を備えることである。 A preferable aspect derived from this idea is that the electrolytic bath separates the transmitted light into short-wavelength light having a predetermined wavelength or less and long-wavelength light having a longer wavelength than the short-wavelength light. It is provided with a wavelength separating section that guides wavelength light to the photocatalyst electrode and guides long-wavelength light to the solar cell.
 本様相によれば、波長分離部によって、光触媒電極が吸収しやすい短波長域の光を光触媒電極に導き、光触媒電極の電解でほとんど使用されない長波長域の光を太陽電池に導くので、よりエネルギー効率を向上できる。 According to this aspect, the wavelength separator guides the light in the short wavelength region, which is easily absorbed by the photocatalyst electrode, to the photocatalyst electrode, and guides the light in the long wavelength region, which is hardly used in the electrolysis of the photocatalyst electrode, to the solar cell. can improve efficiency.
 より好ましい様相は、前記波長分離部上に反射防止フィルムを備えることである。 A more preferable aspect is to provide an antireflection film on the wavelength separation section.
 本様相によれば、波長分離部に入射した光が反射することを防止でき、光を電解槽側に封じ込めることができる。 According to this aspect, it is possible to prevent the light incident on the wavelength separation section from being reflected, and to confine the light to the electrolytic cell side.
 好ましい様相は、前記電解槽は、光を受光する受光部を有し、前記対極は、前記光触媒電極に比べて前記受光部側に位置することである。 A preferable aspect is that the electrolytic cell has a light-receiving portion for receiving light, and the counter electrode is positioned closer to the light-receiving portion than the photocatalyst electrode.
 好ましい様相は、少なくとも2つの電解槽を有し、前記太陽電池は、前記太陽電池を平面視したときに、前記2つの電解槽の光触媒電極の間に位置することである。 A preferred aspect is that it has at least two electrolytic cells, and the solar cell is positioned between the photocatalyst electrodes of the two electrolytic cells when the solar cells are viewed from above.
 本様相によれば、1つの太陽電池で2つの電解槽を同時に温めることができる。 According to this aspect, one solar cell can heat two electrolytic cells at the same time.
 好ましい様相は、気体貯蔵部を有し、前記電解槽は、前記光触媒電極と前記対極の間にイオン交換部を有し、前記イオン交換部は、前記電解槽を前記光触媒電極側の空間と前記対極側の空間に区切っており、前記気体貯蔵部は、前記対極側の空間と連通し、前記対極側の空間内から流出する気体を貯蔵可能であることである。 A preferred aspect has a gas storage part, the electrolytic cell has an ion exchange part between the photocatalyst electrode and the counter electrode, and the ion exchange part divides the electrolytic cell into a space on the side of the photocatalyst electrode and the It is divided into a space on the counter electrode side, and the gas storage part communicates with the space on the counter electrode side and can store the gas flowing out from the space on the counter electrode side.
 本様相によれば、対極側の空間内の気体が光触媒電極側の空間内の気体等と混ざらずに気体貯蔵部に貯蔵することができる。 According to this aspect, the gas in the space on the counter electrode side can be stored in the gas storage part without being mixed with the gas in the space on the photocatalyst electrode side.
 より好ましい様相は、前記気体貯蔵部と前記電解槽を接続する接続部を有し、前記接続部は、前記対極よりも前記電解槽の頂部側に接続されていることである。 A more preferable aspect is to have a connecting portion that connects the gas storage portion and the electrolytic cell, and that the connecting portion is connected to the top side of the electrolytic cell rather than the counter electrode.
 本様相によれば、対極側の空間内の気体を回収しやすい。 According to this aspect, it is easy to recover the gas in the space on the counter electrode side.
 好ましい様相は、少なくとも2つの電解槽を有し、前記2つの電解槽は、前記光触媒電極と前記対極の間にイオン交換部を有し、前記イオン交換部は、前記電解槽を前記光触媒電極側の空間と前記対極側の空間に区切っており、前記2つの電解槽は、前記光触媒電極側の空間が連通した連通流路を備えており、前記2つの電解槽は、第1電解槽と第2電解槽であり、前記第1電解槽の前記光触媒電極側の空間に前記電解液を供給する電解液供給部を有し、前記連通流路は、中途に前記第1電解槽側から前記第2電解槽側への前記電解液の移動のみを許容する逆止弁を備えることである。 A preferred aspect has at least two electrolytic cells, the two electrolytic cells have an ion exchange section between the photocatalyst electrode and the counter electrode, and the ion exchange section directs the electrolytic cell to the photocatalytic electrode side. and the space on the counter electrode side, the two electrolytic cells are provided with a communication flow path in which the space on the photocatalyst electrode side communicates, and the two electrolytic cells are a first electrolytic cell and a first electrolytic cell. It has two electrolytic cells, and has an electrolytic solution supply unit that supplies the electrolytic solution to the space on the photocatalyst electrode side of the first electrolytic cell, and the communication flow path extends from the first electrolytic cell side to the second electrolytic cell in the middle. 2. A check valve is provided that allows only the movement of the electrolyte to the electrolytic cell side.
 本様相によれば、電解液供給部によって第1電解槽の光触媒電極側の空間に電解液を供給することで、第1電解槽の光触媒電極側の空間内の電解液が第2電解槽の光触媒電極側の空間内に押し出される。そのため、光触媒電極側で電解液が分解された分解物を第2電解槽で濃縮させることができる。 According to this aspect, by supplying the electrolytic solution to the space on the photocatalyst electrode side of the first electrolytic cell by the electrolytic solution supply unit, the electrolytic solution in the space on the photocatalytic electrode side of the first electrolytic cell is supplied to the space of the second electrolytic cell. It is extruded into the space on the side of the photocatalyst electrode. Therefore, the decomposed product obtained by decomposing the electrolytic solution on the photocatalyst electrode side can be concentrated in the second electrolytic cell.
 ところで、太陽電池によって電解槽を加熱する方法として電解液を介して加熱する方法と、直接電解槽を加熱する方法が考えられる。 By the way, as a method of heating an electrolytic cell by a solar cell, a method of heating via an electrolytic solution and a method of directly heating an electrolytic cell are conceivable.
 そこで、本発明の一つの様相は、太陽電池上に、光触媒電極と対極と電解液を有する電解槽を有し、前記太陽電池は、前記電解槽を通過した光を受光して発電し、発電した電力の一部又は全部を前記電解槽に供給するものであり、前記電解槽は、前記太陽電池から供給される電力を使用して前記電解液を分解する、電解システムである。 Therefore, in one aspect of the present invention, a solar cell has an electrolytic cell having a photocatalyst electrode, a counter electrode, and an electrolytic solution, and the solar cell receives light that has passed through the electrolytic cell to generate power. A part or all of the generated electric power is supplied to the electrolytic cell, and the electrolytic cell is an electrolytic system that decomposes the electrolytic solution using the electric power supplied from the solar cell.
 本様相によれば、太陽電池の上方側に電解槽が位置するので、太陽電池で発生した熱量で電解槽が加熱され、電解槽内での電解液の電解効率を向上できる。
 本様相によれば、光触媒電極で減衰し、透過した光を太陽電池が受光する。すなわち、太陽電池は、光触媒電極を透過した光を受光するので、影等が局所的に発生せず、例えば、太陽電池が複数の太陽電池セルが直列接続されたものであっても、ホットスポット等の発生を抑制できる。
According to this aspect, since the electrolytic cell is positioned above the solar cell, the electrolytic cell is heated by the amount of heat generated by the solar cell, and the electrolysis efficiency of the electrolytic solution in the electrolytic cell can be improved.
According to this aspect, the solar cell receives the light that is attenuated by the photocatalyst electrode and transmitted. That is, since the solar cell receives light that has passed through the photocatalyst electrode, shadows and the like do not occur locally. etc. can be suppressed.
 本発明の電解システムによれば、従来に比べて効率的に電解液を分解できる。 According to the electrolysis system of the present invention, the electrolytic solution can be decomposed more efficiently than before.
本発明の第1実施形態の電解システムの説明図であり、(a)は電解システムの断面図であり、(b)は(a)とは異なる断面での断面図である。なお、(a)は理解を容易にするために電解液を省略している。BRIEF DESCRIPTION OF THE DRAWINGS It is explanatory drawing of the electrolysis system of 1st Embodiment of this invention, (a) is sectional drawing of an electrolysis system, (b) is sectional drawing in a cross section different from (a). Note that (a) omits the electrolytic solution for easy understanding. 図1の電解システムの分解斜視図である。2 is an exploded perspective view of the electrolysis system of FIG. 1; FIG. 図1の電解システムにおいて光受光部に光が入射したときの光の流れの説明図である。2 is an explanatory diagram of the flow of light when light is incident on the light receiving section in the electrolysis system of FIG. 1; FIG. 図1の電解システムを水平面に対して傾斜して設置したときの図2のA方向からみた矢視図である。FIG. 3 is a view in the direction of arrow A in FIG. 2 when the electrolysis system in FIG. 1 is installed with an inclination with respect to the horizontal plane. 本発明の第2実施形態の電解システムの説明図であり、(a)は電解システムの断面図であり、(b)は(a)とは異なる断面での断面図である。なお、(a)は理解を容易にするために電解液を省略している。It is explanatory drawing of the electrolysis system of 2nd Embodiment of this invention, (a) is sectional drawing of an electrolysis system, (b) is sectional drawing in a cross section different from (a). Note that (a) omits the electrolytic solution for easy understanding. 図5の電解システムを水平面に対して傾斜して設置したときの側面図である。FIG. 6 is a side view when the electrolysis system of FIG. 5 is installed with an inclination with respect to the horizontal plane; 本発明の第3実施形態の電解システムの説明図であり、(a)は電解システムの断面図であり、(b)は(a)とは異なる断面での断面図である。なお、(a)は理解を容易にするために電解液を省略している。It is explanatory drawing of the electrolysis system of 3rd Embodiment of this invention, (a) is sectional drawing of an electrolysis system, (b) is sectional drawing in a cross section different from (a). Note that (a) omits the electrolytic solution for easy understanding. 本発明の他の実施形態の電解システムの要部の断面図であり、理解を容易にするために電解液を省略している。FIG. 4 is a cross-sectional view of essential parts of an electrolysis system according to another embodiment of the present invention, omitting the electrolyte for ease of understanding;
 以下、本発明の実施形態について詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail.
 本発明の第1実施形態の電解システム1は、図1のように、複数の電解槽2(2a~2c)と、複数の太陽電池3(3a,3b)と、反射防止フィルム4と、電解液供給系統5と、ガス回収系統7と、溶液連通流路8a,8bと、溶液回収系統9を備えている。
 電解システム1は、太陽電池3で発電した電力を利用して、電解槽2において電解液25a,25bを電気分解し、水素を生成する水素生成動作が実行可能となっている。
The electrolysis system 1 of the first embodiment of the present invention includes, as shown in FIG. A liquid supply system 5, a gas recovery system 7, solution communication channels 8a and 8b, and a solution recovery system 9 are provided.
The electrolysis system 1 uses the electric power generated by the solar cell 3 to electrolyze the electrolytic solutions 25a and 25b in the electrolytic cell 2, and is capable of executing a hydrogen generation operation of generating hydrogen.
(電解槽2)
 電解槽2は、図1のように、槽本体部20と、光触媒電極21と、対極22と、イオン交換部23と、電解液25a,25bを備えている。
 また、電解槽2は、図1(a)のように、イオン交換部23によって槽本体部20を光触媒電極21側の空間たる第1電解空間26と、対極22側の空間たる第2電解空間27とに区画されている。
(Electrolyzer 2)
As shown in FIG. 1, the electrolytic cell 2 includes a cell main body 20, a photocatalyst electrode 21, a counter electrode 22, an ion exchange section 23, and electrolytic solutions 25a and 25b.
In addition, as shown in FIG. 1A, the electrolytic cell 2 is divided into a first electrolytic space 26, which is a space on the photocatalyst electrode 21 side, and a second electrolytic space, which is a space on the counter electrode 22 side, by the ion exchange unit 23. 27 are divided.
 槽本体部20は、図2のように、プリズム部30と、底壁部31と、側壁部32a,32bを備えた箱状体である。
 プリズム部30は、図3のように、透過する光L1を所定の波長を基準として短波長光L2と長波長光L3とに分離し、短波長光L2を光触媒電極21に導き、長波長光L3を太陽電池3に導く波長分離部である。
 プリズム部30は、槽本体部20の天井壁部を構成し、光を受光する受光部である。
 プリズム部30は、図2,図3のように、底線部35を境界として第1傾斜部36と、第2傾斜部37を備えており、第1傾斜部36と第2傾斜部37によって断面形状が三角形状の凹溝38が形成されている。
 傾斜部36,37は、図1(b)のように、ガス回収孔40a,40bを備えている。
 ガス回収孔40a,40bは、第2電解空間27内の気体を回収するガス排出孔であり、鉛直方向成分をもって貫通した貫通孔である。
As shown in FIG. 2, the tank main body 20 is a box-shaped body having a prism portion 30, a bottom wall portion 31, and side wall portions 32a and 32b.
As shown in FIG. 3, the prism unit 30 separates the transmitted light L1 into short-wavelength light L2 and long-wavelength light L3 based on a predetermined wavelength, guides the short-wavelength light L2 to the photocatalyst electrode 21, and converts the light L1 into long-wavelength light. It is a wavelength separator that guides L3 to the solar cell 3 .
The prism portion 30 constitutes the ceiling wall portion of the tank body portion 20 and is a light receiving portion that receives light.
As shown in FIGS. 2 and 3, the prism portion 30 has a first inclined portion 36 and a second inclined portion 37 with a bottom line portion 35 as a boundary. A concave groove 38 having a triangular shape is formed.
The inclined portions 36 and 37 are provided with gas recovery holes 40a and 40b as shown in FIG. 1(b).
The gas recovery holes 40a and 40b are gas discharge holes for recovering the gas in the second electrolysis space 27, and are through holes penetrating with a vertical component.
 底壁部31は、槽本体部20の底部を構成する壁部であり、プリズム部30とイオン交換部23を挟んで対向する対向壁部である。
 底壁部31は、図1のように、電解液導入口41と、連通口42(42a,42b)と、必要に応じて排出口43を備えている。
 電解液導入口41は、電解液25aが導入される開口である。
 連通口42(42a,42b)は、自己の第1電解空間26を隣接する電解槽2の第1電解空間26と連通させるための開口である。
 排出口43は、電解槽2から外部に電解液25aを排出する開口である。
The bottom wall portion 31 is a wall portion that constitutes the bottom portion of the tank body portion 20 and is a facing wall portion that faces the prism portion 30 with the ion exchange portion 23 interposed therebetween.
As shown in FIG. 1, the bottom wall portion 31 includes an electrolyte inlet 41, communication ports 42 (42a, 42b), and an outlet 43 as necessary.
The electrolytic solution introduction port 41 is an opening through which the electrolytic solution 25a is introduced.
The communication port 42 (42a, 42b) is an opening for communicating the first electrolysis space 26 of itself with the first electrolysis space 26 of the adjacent electrolytic cell 2. As shown in FIG.
The discharge port 43 is an opening through which the electrolytic solution 25a is discharged from the electrolytic cell 2 to the outside.
 側壁部32a,32bは、図2のように、プリズム部30と底壁部31を接続する接続壁であり、電解空間26,27を挟んで対向している。 The side wall portions 32a and 32b are connection walls that connect the prism portion 30 and the bottom wall portion 31, as shown in FIG.
 光触媒電極21は、光を受光することで電解液25aを酸化して過酸化水素を発生させるアノード電極である。
 光触媒電極21は、導電性基材上に光触媒が積層されたものである。
 導電性基材は、導電性を有するものであれば特に限定されるものではなく、例えば、透明基板上に透明導電性酸化物が積層された透明導電性酸化物基板や金属基板などが使用できる。
 光触媒は、光触媒活性を有するものであれば、特に限定されるものではない。光触媒としては、例えば、三酸化タングステン(WO)触媒、バナジン酸ビスマス(BiVO)触媒、酸化スズ(SnO)触媒、酸化チタン(TiO)触媒、ヘマタイト(Fe)触媒などが使用できる。
The photocatalyst electrode 21 is an anode electrode that oxidizes the electrolytic solution 25a by receiving light to generate hydrogen peroxide.
The photocatalyst electrode 21 is formed by laminating a photocatalyst on a conductive substrate.
The conductive substrate is not particularly limited as long as it has conductivity. For example, a transparent conductive oxide substrate in which a transparent conductive oxide is laminated on a transparent substrate, a metal substrate, etc. can be used. .
The photocatalyst is not particularly limited as long as it has photocatalytic activity. Examples of photocatalysts include tungsten trioxide ( WO3 ) catalysts, bismuth vanadate ( BiVO4 ) catalysts, tin oxide ( SnO2 ) catalysts, titanium oxide ( TiO2 ) catalysts, hematite ( Fe2O3 ) catalysts, and the like . Available.
 対極22は、光触媒電極21と対をなし、光触媒電極21とイオン交換部23を挟んで対向する電極であり、光を受光することで電解液25bを還元して水素を発生させるカソード電極である。
 対極22は、メッシュ状であって複数の開口部を有しており、厚み方向に光を通過可能となっている。
The counter electrode 22 is an electrode that forms a pair with the photocatalyst electrode 21 and faces the photocatalyst electrode 21 with the ion exchange portion 23 interposed therebetween. .
The counter electrode 22 is mesh-like and has a plurality of openings so that light can pass through in the thickness direction.
 イオン交換部23は、膜状体であり、厚み方向において、特定のイオンのみを移動可能とし、残りのイオンや電子の移動を規制する部位である。
 本実施形態のイオン交換部23は、陽イオン交換膜であり、陰イオンや電子の移動を制限又は不能にし、陽イオンだけを移動可能としている。また、イオン交換部23は、厚み方向のガスの流通を遮断する遮断膜でもある。
 イオン交換部23は、水素や酸素がクロスオーバーしなければ材質は特に限定されない。
 イオン交換部23としては、例えば、ナフィオン(登録商標)等のパーフルオロアルキルスルホン酸系ポリマーの膜などの高分子膜が使用できる。
The ion exchange part 23 is a film-like body, and is a part that allows only specific ions to move in the thickness direction and restricts the movement of the remaining ions and electrons.
The ion exchange section 23 of the present embodiment is a cation exchange membrane that restricts or disables movement of anions and electrons, and allows movement of only cations. In addition, the ion exchange section 23 also serves as a blocking membrane that blocks the flow of gas in the thickness direction.
The material of the ion exchange section 23 is not particularly limited as long as hydrogen and oxygen do not cross over.
As the ion exchange section 23, for example, a polymer membrane such as a perfluoroalkylsulfonic acid polymer membrane such as Nafion (registered trademark) can be used.
 電解液25aは、酸化することで過酸化水素を発生するものであり、具体的に、水を含む水溶液である。
 電解液25bは、還元することで水素を発生するものであり、具体的に、水を含む水溶液である。
 電解液25bは、電解液25aと同様の電解液であってもよいし、異なる電解液であってもよい。
The electrolytic solution 25a generates hydrogen peroxide by oxidation, and is specifically an aqueous solution containing water.
The electrolytic solution 25b generates hydrogen by reduction, and is specifically an aqueous solution containing water.
The electrolytic solution 25b may be the same electrolytic solution as the electrolytic solution 25a, or may be a different electrolytic solution.
(太陽電池3)
 太陽電池3は、光エネルギーを電気エネルギーに変換する光電変換装置である。
 太陽電池3は、複数の太陽電池セルを有するものであり、各太陽電池セルが電気的に直列接続及び/又は電気的に並列接続されたものである。
 本実施形態の太陽電池3は、複数の太陽電池セルが直列接続された太陽電池ストリングを備えている。
(Solar cell 3)
The solar cell 3 is a photoelectric conversion device that converts light energy into electrical energy.
The solar battery 3 has a plurality of solar cells, and each solar cell is electrically connected in series and/or electrically connected in parallel.
The solar cell 3 of this embodiment includes a solar cell string in which a plurality of solar cells are connected in series.
(反射防止フィルム4)
 反射防止フィルム4は、図1のように、各電解槽2a~2cのプリズム部30に跨って設けられ、プリズム部30から電解槽2a~2c内に入射した光の反射光を抑制するフィルムである。
 すなわち、反射防止フィルム4は、プリズム部30から電解槽2a~2c内に入射した光を電解槽2a~2c内に封じ込めるものである。
(Antireflection film 4)
As shown in FIG. 1, the antireflection film 4 is provided across the prism portions 30 of the electrolytic baths 2a to 2c, and is a film that suppresses reflected light of light incident from the prism portion 30 into the electrolytic baths 2a to 2c. be.
In other words, the antireflection film 4 confines the light entering the electrolytic baths 2a to 2c from the prism portion 30 within the electrolytic baths 2a to 2c.
(電解液供給系統5)
 電解液供給系統5は、各電解槽2a~2cに電解液25aを供給する供給系統である。
 電解液供給系統5は、図1のように、電解液供給部50と、電解液供給流路51a~51cを備えており、電解液供給部50から電解液供給流路51a~51cを介して電解液25aを各電解槽2a~2cに供給可能となっている。
(Electrolyte solution supply system 5)
The electrolytic solution supply system 5 is a supply system for supplying the electrolytic solution 25a to each of the electrolytic cells 2a to 2c.
As shown in FIG. 1, the electrolyte supply system 5 includes an electrolyte supply unit 50 and electrolyte supply channels 51a to 51c. The electrolytic solution 25a can be supplied to each electrolytic bath 2a to 2c.
 電解液供給流路51aは、図1(a)のように、電解液供給部50から電解槽2aの電解液導入口41に繋がる流路であり、開閉弁55aと、伝熱部56aを備えている。
 開閉弁55aは、電解液供給流路51aの流れ方向の中途に設けられ、開閉することで電解液25aの流通を開放及び遮断する部材である。
 伝熱部56aは、電解液供給流路51aを通過する電解液25aと太陽電池3aとの間で熱交換する部位であり、太陽電池3aで発生した熱の一部を電解槽2aに導入される電解液25aに伝熱する部位である。
 すなわち、伝熱部56aでは、太陽電池3aで発生した熱で電解液25aを加熱することが可能となっている。言い換えると、伝熱部56aでは、太陽電池3aを電解液25aで冷却することが可能となっている。
As shown in FIG. 1A, the electrolytic solution supply channel 51a is a channel that connects the electrolytic solution supply part 50 to the electrolytic solution introduction port 41 of the electrolytic cell 2a, and includes an on-off valve 55a and a heat transfer part 56a. ing.
The on-off valve 55a is a member that is provided in the middle of the flow direction of the electrolytic solution supply channel 51a, and opens and closes the circulation of the electrolytic solution 25a by opening and closing.
The heat transfer portion 56a is a portion that exchanges heat between the electrolytic solution 25a passing through the electrolytic solution supply channel 51a and the solar cell 3a. It is a portion that conducts heat to the electrolytic solution 25a.
That is, in the heat transfer portion 56a, it is possible to heat the electrolytic solution 25a with the heat generated by the solar cell 3a. In other words, in the heat transfer portion 56a, the solar cell 3a can be cooled with the electrolytic solution 25a.
 電解液供給流路51bは、電解液供給部50から電解槽2bの電解液導入口41に繋がる流路であり、開閉弁55bと、伝熱部56bを備えている。
 開閉弁55bは、電解液供給流路51bの流れ方向の中途に設けられ、開閉することで電解液25aの流通を開放及び遮断する部材である。
 伝熱部56bは、電解液供給流路51bを通過する電解液25bと太陽電池3bとの間で熱交換する部位であり、太陽電池3bで発生した熱の一部を電解槽2bに導入される電解液25aに伝熱する部位である。
 すなわち、伝熱部56bでは、太陽電池3bで発生した熱で電解液25aを加熱することが可能となっている。言い換えると、伝熱部56bでは、太陽電池3bを電解液25aで冷却することが可能となっている。
The electrolytic solution supply channel 51b is a channel that connects the electrolytic solution supply part 50 to the electrolytic solution introduction port 41 of the electrolytic bath 2b, and includes an on-off valve 55b and a heat transfer part 56b.
The on-off valve 55b is a member that is provided in the middle of the flow direction of the electrolytic solution supply channel 51b, and opens and closes the circulation of the electrolytic solution 25a by opening and closing.
The heat transfer part 56b is a part that exchanges heat between the electrolytic solution 25b passing through the electrolytic solution supply channel 51b and the solar cell 3b. It is a portion that conducts heat to the electrolytic solution 25a.
That is, in the heat transfer portion 56b, it is possible to heat the electrolytic solution 25a with the heat generated by the solar cell 3b. In other words, in the heat transfer portion 56b, the solar cell 3b can be cooled with the electrolytic solution 25a.
 電解液供給流路51cは、電解液供給部50から電解槽2cの電解液導入口41に繋がる流路であり、開閉弁55cを備えている。
 開閉弁55cは、電解液供給流路51cの流れ方向の中途に設けられ、開閉することで電解液25aの流通を開放及び遮断する部材である。
The electrolytic solution supply channel 51c is a channel that connects the electrolytic solution supply part 50 to the electrolytic solution introduction port 41 of the electrolytic bath 2c, and includes an on-off valve 55c.
The on-off valve 55c is a member that is provided in the middle of the flow direction of the electrolytic solution supply channel 51c and opens and closes the circulation of the electrolytic solution 25a by opening and closing.
(ガス回収系統7)
 ガス回収系統7は、各電解槽2a~2cで発生した水素を回収する系統であり、図1(b)のように、気体貯蔵部60と、ガス回収流路61(接続部)を備えている。
(Gas recovery system 7)
The gas recovery system 7 is a system for recovering the hydrogen generated in each of the electrolytic cells 2a to 2c, and as shown in FIG. there is
 気体貯蔵部60は、各電解槽2a~2cで発生した水素を貯蔵する水素貯蔵部であり、必要に応じて水素の外部機器等への排出、外部機器等からの導入が可能となっている。 The gas storage unit 60 is a hydrogen storage unit that stores the hydrogen generated in each of the electrolytic cells 2a to 2c, and allows hydrogen to be discharged to an external device or the like and introduced from an external device or the like as necessary. .
 ガス回収流路61は、各電解槽2a~2cのガス回収孔40a,40bと気体貯蔵部60を接続する接続流路であり、各電解槽2a~2cから第2電解空間27で生成した水素を回収し、気体貯蔵部60に導入する部位である。 The gas recovery channel 61 is a connection channel that connects the gas recovery holes 40a and 40b of the respective electrolytic cells 2a to 2c and the gas storage section 60, and the hydrogen generated in the second electrolytic space 27 from the respective electrolytic cells 2a to 2c. is collected and introduced into the gas storage unit 60 .
(溶液連通流路8a,8b)
 溶液連通流路8aは、図1(b)のように、隣接する第1電解槽2aの第1電解空間26と第2電解槽2bの第1電解空間26間を連通させる流路であり、第1電解槽2aの連通口42bと第2電解槽2bの連通口42aを接続するものである。
 溶液連通流路8bは、隣接する第2電解槽2bの第1電解空間26と第3電解槽2cの第1電解空間26間を連通させる流路であり、第2電解槽2bの連通口42bと第3電解槽2cの連通口42aを接続するものである。
 溶液連通流路8a,8bは、流れ方向の中途に逆止弁70a,70bを備えている。
 逆止弁70aは、第1電解槽2a側から第2電解槽2b側への電解液25aの移動のみを許容するものである。
 逆止弁70bは、第2電解槽2b側から第3電解槽2c側への電解液25aの移動のみを許容するものである。
( Solution communication channels 8a and 8b)
As shown in FIG. 1B, the solution communication channel 8a is a channel that communicates between the adjacent first electrolytic space 26 of the first electrolytic bath 2a and the first electrolytic space 26 of the second electrolytic bath 2b. It connects the communication port 42b of the first electrolytic bath 2a and the communication port 42a of the second electrolytic bath 2b.
The solution communication channel 8b is a channel for communicating between the adjacent first electrolytic space 26 of the second electrolytic bath 2b and the first electrolytic space 26 of the third electrolytic bath 2c. and the communication port 42a of the third electrolytic cell 2c.
The solution communication channels 8a and 8b are provided with check valves 70a and 70b in the middle of the flow direction.
The check valve 70a allows only the movement of the electrolytic solution 25a from the side of the first electrolytic bath 2a to the side of the second electrolytic bath 2b.
The check valve 70b allows only the movement of the electrolytic solution 25a from the side of the second electrolytic bath 2b to the side of the third electrolytic bath 2c.
(溶液回収系統9)
 溶液回収系統9は、電解槽2a~2cで生成された過酸化水素を回収する系統である。
 溶液回収系統9は、溶液貯蔵部80と、溶液回収流路81と、開閉弁82を備えている。
 溶液貯蔵部80は、各電解槽2a~2cで発生した過酸化水素を貯蔵する部位であり、必要に応じて水素の外部機器等への排出、外部機器等からの導入が可能となっている。
(Solution recovery system 9)
The solution recovery system 9 is a system for recovering the hydrogen peroxide produced in the electrolytic cells 2a-2c.
The solution recovery system 9 includes a solution storage section 80 , a solution recovery channel 81 and an on-off valve 82 .
The solution storage part 80 is a part for storing the hydrogen peroxide generated in each of the electrolytic cells 2a to 2c, and it is possible to discharge hydrogen to an external device or the like or introduce hydrogen from an external device or the like as necessary. .
 溶液回収流路81は、第3電解槽2cの排出口43と溶液貯蔵部80を接続する接続流路であり、第3電解槽2cの第1電解空間26から過酸化水素を回収し、溶液貯蔵部80に導入する部位である。
 開閉弁82は、溶液回収流路81の流れ方向の中途に設けられ、過酸化水素の流通を開放及び遮断する部材である。
The solution recovery channel 81 is a connection channel that connects the outlet 43 of the third electrolytic cell 2c and the solution storage unit 80, recovers hydrogen peroxide from the first electrolytic space 26 of the third electrolytic cell 2c, and recovers the solution. This is a part to be introduced into the storage part 80 .
The on-off valve 82 is a member that is provided in the middle of the solution recovery channel 81 in the flow direction and opens and blocks the flow of hydrogen peroxide.
 続いて、本実施形態の電解システム1の各部位の位置関係について説明する。 Next, the positional relationship of each part of the electrolysis system 1 of this embodiment will be described.
 電解システム1は、図1のように、電解槽2(2a~2c)が所定の方向に直線上に並んでいる。
 電解槽2(2a~2c)は、図4のように、水平面GLに対して傾斜角度θ1で傾斜しており、太陽等の光源にプリズム部30が向いており、ガス回収流路61側の端部の位置がガス回収流路61とは反対側の端部の位置に比べて高くなっている。
 傾斜角度θ1は、15度以上45度以下であることが好ましい。
In the electrolytic system 1, as shown in FIG. 1, electrolytic cells 2 (2a to 2c) are arranged in a straight line in a predetermined direction.
As shown in FIG. 4, the electrolytic bath 2 (2a to 2c) is inclined at an inclination angle θ1 with respect to the horizontal plane GL, the prism part 30 faces the light source such as the sun, and the gas recovery channel 61 side is inclined. The position of the end is higher than the position of the end on the side opposite to the gas recovery channel 61 .
The inclination angle θ1 is preferably 15 degrees or more and 45 degrees or less.
 電解槽2a~2bは、図1のように、第1電解空間26側に光触媒電極21が配されており、第2電解空間27側に対極22が配されている。
 光触媒電極21は、イオン交換部23を挟んで対極22と対向しており、対極22に対して下方側に位置している。
As shown in FIG. 1, the electrolytic cells 2a and 2b have the photocatalyst electrode 21 arranged on the first electrolytic space 26 side and the counter electrode 22 arranged on the second electrolytic space 27 side.
The photocatalyst electrode 21 faces the counter electrode 22 with the ion exchange portion 23 interposed therebetween, and is positioned below the counter electrode 22 .
 太陽電池3a,3bは、伝熱部56a,56b上に裏面が接するように載置されており、受光面が上方側を向いている。
 太陽電池3aは、第1電解槽2aと第2電解槽2bの境界部分に設けられており、太陽電池3aを平面視したときに、第1電解槽2aの光触媒電極21と第2電解槽2bの光触媒電極21の間に位置している。すなわち、太陽電池3aは、上方に電解槽2a,2bの底壁部31,31があり、本実施形態では電解槽2a,2bの底壁部31,31と接している。
 太陽電池3bは、第2電解槽2bと第3電解槽2cの境界部分に設けられており、太陽電池3bを平面視したときに、第2電解槽2bの光触媒電極21と第3電解槽2cの光触媒電極21の間に位置している。すなわち、太陽電池3bは、上方に電解槽2b,2cの底壁部31,31があり、本実施形態では電解槽2b,2cの底壁部31,31と接している。
The solar cells 3a and 3b are placed on the heat transfer portions 56a and 56b so that their back surfaces are in contact with each other, and the light receiving surfaces face upward.
The solar cell 3a is provided at the boundary between the first electrolytic bath 2a and the second electrolytic bath 2b. When the solar cell 3a is viewed from above, the photocatalyst electrode 21 of the first electrolytic bath 2a and the second electrolytic bath 2b are located between the photocatalyst electrodes 21 of the That is, the solar cell 3a has the bottom walls 31, 31 of the electrolytic vessels 2a, 2b above, and is in contact with the bottom walls 31, 31 of the electrolytic vessels 2a, 2b in this embodiment.
The solar cell 3b is provided at the boundary between the second electrolytic cell 2b and the third electrolytic cell 2c. When the solar cell 3b is viewed from above, the photocatalyst electrode 21 of the second electrolytic cell 2b and the third electrolytic cell 2c are located between the photocatalyst electrodes 21 of the That is, the solar cell 3b has the bottom walls 31, 31 of the electrolytic cells 2b, 2c above, and is in contact with the bottom walls 31, 31 of the electrolytic cells 2b, 2c in this embodiment.
 続いて、本実施形態の電解システム1による水素生成動作について説明する。 Next, the operation of generating hydrogen by the electrolysis system 1 of this embodiment will be described.
 まず、図1(a)に示される電解液供給系統5において電解液供給部50から電解液供給流路51a~51cを介して電解液25aを各電解槽2a~2cに供給し、第1電解空間26を電解液25aで満たす。また、図示しない電解液供給部から図示しない電解液供給流路を介して電解液25bを各電解槽2a~2cに供給し、第2電解空間27を電解液25bで満たす。 First, in the electrolytic solution supply system 5 shown in FIG. 1A, the electrolytic solution 25a is supplied from the electrolytic solution supply unit 50 to the electrolytic cells 2a to 2c through the electrolytic solution supply channels 51a to 51c, and the first electrolysis is performed. The space 26 is filled with the electrolytic solution 25a. Further, an electrolytic solution 25b is supplied from an electrolytic solution supply unit (not shown) through an electrolytic solution supply flow path (not shown) to each of the electrolytic cells 2a to 2c to fill the second electrolytic space 27 with the electrolytic solution 25b.
 太陽光等の入射光L1がプリズム部30から入射すると、図3のように、プリズム部30で入射光L1が短波長光L2と、長波長光L3に分離され、短波長光L2が光触媒電極21に導かれ、長波長光L3が太陽電池3に導かれる。
 具体的には、プリズム部30で分光された短波長光L2は、主に対極22の開口部を通過し、イオン交換部23を透過して光触媒電極21に至る。また、プリズム部30で分光された長波長光L3は、主にイオン交換部23を透過し、底壁部31を透過して太陽電池3の受光面に至る。
 そうすると、受光した光触媒電極21上で光電荷分離が生じ、同時に太陽電池3上で光起電力が生じ、光触媒電極21上では第1電解液25aが分解されて過酸化水素が発生し、対極22上では第2電解液25bが分解されて水素が発生する。
When incident light L1 such as sunlight is incident from the prism portion 30, the incident light L1 is separated into short wavelength light L2 and long wavelength light L3 at the prism portion 30 as shown in FIG. 21 and the long-wavelength light L3 is guided to the solar cell 3 .
Specifically, the short-wavelength light L2 dispersed by the prism portion 30 mainly passes through the opening of the counter electrode 22, passes through the ion exchange portion 23, and reaches the photocatalyst electrode 21. FIG. Further, the long-wavelength light L3 split by the prism portion 30 is mainly transmitted through the ion exchange portion 23 and then through the bottom wall portion 31 to reach the light receiving surface of the solar cell 3 .
Then, photocharge separation occurs on the photocatalyst electrode 21 that receives the light, photovoltaic force is generated on the solar cell 3 at the same time, the first electrolytic solution 25a is decomposed on the photocatalyst electrode 21 to generate hydrogen peroxide, and the counter electrode 22 Above, the second electrolytic solution 25b is decomposed to generate hydrogen.
 このとき、対極22上で発生した水素は、上方に移動し、ガス回収孔40a,40bからガス回収流路61を介して気体貯蔵部60に貯蔵される。
 一方、光触媒電極21上で発生した酸素は、電解槽2a~2cにおける図示しないベント孔から放出され、過酸化水素が発生する場合は、第1電解液25aと混合状態となり、二液混合状態となる。
At this time, the hydrogen generated on the counter electrode 22 moves upward and is stored in the gas storage section 60 via the gas recovery channel 61 from the gas recovery holes 40a and 40b.
On the other hand, the oxygen generated on the photocatalyst electrode 21 is released from vent holes (not shown) in the electrolytic cells 2a to 2c, and when hydrogen peroxide is generated, it is mixed with the first electrolytic solution 25a, resulting in a two-liquid mixed state. Become.
 ここで、必要に応じて、過酸化水素濃縮動作を実行する。
 具体的には、図1(a)に示される電解液供給部50からフレッシュな第1電解液25aを第1電解槽2aに供給する。第1電解槽2aに第1電解液25aが供給されると、第1電解液25aの一部と過酸化水素の一部がフレッシュな電解液25aに押し出されて図1(b)に示される溶液連通流路8aを介して隣接する第2電解槽2bに流れる。
 第2電解槽2bに第1電解液25aの一部と過酸化水素の一部が導入されると、第2電解槽2b内の第1電解液25aの一部と過酸化水素の一部が押し出されて図1(b)に示される溶液連通流路8bを介して隣接する第3電解槽2cに流れる。そして第3電解槽2cに第1電解液25aの一部と過酸化水素の一部が導入される。
 その結果、第3電解槽2c内において過酸化水素が濃縮されていき、過酸化水素が所定量以上濃縮されたタイミングで開閉弁82を開状態にし、第3電解槽2cから溶液回収流路81を介して溶液貯蔵部80に過酸化水素を排出する。
Here, a hydrogen peroxide concentration operation is performed as required.
Specifically, a fresh first electrolytic solution 25a is supplied from the electrolytic solution supply unit 50 shown in FIG. 1(a) to the first electrolytic cell 2a. When the first electrolytic solution 25a is supplied to the first electrolytic cell 2a, part of the first electrolytic solution 25a and part of hydrogen peroxide are extruded into the fresh electrolytic solution 25a as shown in FIG. 1(b). It flows into the adjacent second electrolytic cell 2b via the solution communication channel 8a.
When part of the first electrolytic solution 25a and part of the hydrogen peroxide are introduced into the second electrolytic bath 2b, part of the first electrolytic solution 25a and part of the hydrogen peroxide in the second electrolytic bath 2b are It is pushed out and flows into the adjacent third electrolytic cell 2c through the solution communication channel 8b shown in FIG. 1(b). Then, part of the first electrolytic solution 25a and part of the hydrogen peroxide are introduced into the third electrolytic bath 2c.
As a result, the hydrogen peroxide is concentrated in the third electrolytic cell 2c, and at the timing when the hydrogen peroxide is concentrated by a predetermined amount or more, the on-off valve 82 is opened, and the solution recovery flow path 81 is discharged from the third electrolytic cell 2c. The hydrogen peroxide is discharged to the solution storage unit 80 through the .
 本実施形態の電解システム1によれば、太陽電池3の熱で第1電解液25aを加熱するので、第1電解液25aによって太陽電池3を冷却しつつ、電解槽2a,2b内の第1電解液25aを昇温することができる。そのため、太陽電池3の発電効率を向上させつつ、電解槽2a,2b内での第1電解液25aの電解効率を向上できる。 According to the electrolysis system 1 of the present embodiment, the heat of the solar cells 3 heats the first electrolytic solution 25a. The temperature of the electrolytic solution 25a can be raised. Therefore, while improving the power generation efficiency of the solar cell 3, the electrolysis efficiency of the first electrolytic solution 25a in the electrolytic baths 2a and 2b can be improved.
 本実施形態の電解システム1によれば、太陽電池3上に電解槽2が配されており、太陽電池3で発生した熱を電解槽2に熱移動できるので、効率的に電解液25a,25bを分解できる。 According to the electrolysis system 1 of the present embodiment, the electrolytic cell 2 is arranged on the solar cell 3, and the heat generated in the solar cell 3 can be transferred to the electrolytic cell 2, so that the electrolytic solutions 25a and 25b can be efficiently generated. can be decomposed.
 本実施形態の電解システム1によれば、太陽電池3で生じた起電力の一部又は全部を光触媒電極21と対極22間に印加するので、水素を生成する際のエネルギー効率を向上できる。 According to the electrolysis system 1 of the present embodiment, part or all of the electromotive force generated by the solar cell 3 is applied between the photocatalyst electrode 21 and the counter electrode 22, so that the energy efficiency when generating hydrogen can be improved.
 本実施形態の電解システム1によれば、プリズム部30によって、光触媒電極21が吸収しやすい短波長光L2を光触媒電極21に導き、光触媒電極21の電解でほとんど使用されない長波長光L3を太陽電池3に導くので、エネルギー効率を向上できる。 According to the electrolysis system 1 of the present embodiment, the short-wavelength light L2, which is easily absorbed by the photocatalyst electrode 21, is guided to the photocatalyst electrode 21 by the prism part 30, and the long-wavelength light L3, which is hardly used in the electrolysis of the photocatalyst electrode 21, is transferred to the solar cell. 3, energy efficiency can be improved.
 本実施形態の電解システム1によれば、プリズム部30上に反射防止フィルム4が設けられているので、プリズム部30に入射した光が反射して外部に出ることを防止でき、光を電解槽2側に封じ込めることができる。 According to the electrolysis system 1 of the present embodiment, since the antireflection film 4 is provided on the prism portion 30, the light incident on the prism portion 30 can be prevented from being reflected and emitted to the outside. It can be contained on two sides.
 本実施形態の電解システム1によれば、隣接する電解槽2,2の境界部分に太陽電池3が位置するので、1つの太陽電池3で複数の電解槽2,2を同時に温めることができる。また、隣接する電解槽2,2を通過したそれぞれの光を太陽電池3に集めることができる。 According to the electrolysis system 1 of this embodiment, since the solar cell 3 is positioned at the boundary between the adjacent electrolytic cells 2, 2, a single solar cell 3 can heat the plurality of electrolytic cells 2, 2 at the same time. Moreover, each light that has passed through the adjacent electrolytic cells 2 , 2 can be collected in the solar cell 3 .
 本実施形態の電解システム1によれば、イオン交換部23によって第1電解空間26と第2電解空間27に区切っているので、第1電解空間26内の気体と第2電解空間27内の気体が混ざらずに、気体貯蔵部60に貯蔵することができる。 According to the electrolysis system 1 of the present embodiment, the first electrolysis space 26 and the second electrolysis space 27 are separated by the ion exchange section 23, so the gas in the first electrolysis space 26 and the gas in the second electrolysis space 27 can be stored in the gas storage unit 60 without being mixed.
 本実施形態の電解システム1によれば、ガス回収流路61が対極22よりも頂部をなすプリズム部30側で接続されているので、第2電解空間27内で発生する気体が空気よりも軽い場合に第2電解空間27内の気体を回収しやすい。 According to the electrolysis system 1 of the present embodiment, the gas recovery channel 61 is connected to the prism portion 30 forming the top portion of the counter electrode 22, so the gas generated in the second electrolysis space 27 is lighter than air. In this case, the gas in the second electrolysis space 27 can be easily recovered.
 本実施形態の電解システム1によれば、電解液供給部50によって第1電解槽2aの第1電解空間26に電解液25aを供給することで、第1電解槽2aの第1電解空間26内の電解液25aが第2電解槽2bの第1電解空間26内に押し出される。そのため、光触媒電極21側で電解液25aが分解された分解物たる過酸化水素を隣接する第2電解槽2bで濃縮させることができる。 According to the electrolysis system 1 of the present embodiment, the electrolytic solution supply unit 50 supplies the electrolytic solution 25a to the first electrolytic space 26 of the first electrolytic bath 2a, thereby of the electrolytic solution 25a is pushed into the first electrolytic space 26 of the second electrolytic cell 2b. Therefore, hydrogen peroxide, which is a decomposition product of the electrolytic solution 25a decomposed on the photocatalyst electrode 21 side, can be concentrated in the adjacent second electrolytic cell 2b.
 本実施形態の電解システム1によれば、太陽電池3の上方側に電解槽2が位置するので、太陽電池3で発生した熱量で電解槽2が加熱され、電解槽2内での電解液25a,25bの電解効率を向上できる。 According to the electrolysis system 1 of the present embodiment, since the electrolytic cell 2 is positioned above the solar cell 3, the electrolytic cell 2 is heated by the amount of heat generated by the solar cell 3, and the electrolytic solution 25a in the electrolytic cell 2 , 25b can be improved.
 本実施形態の電解システム1によれば、ガス回収流路61側が高い位置になるように電解槽2が傾斜しているので、対極22で生成した水素がガス回収流路61側に集まりやすい。 According to the electrolysis system 1 of the present embodiment, the electrolytic cell 2 is inclined so that the gas recovery channel 61 side is at a higher position, so hydrogen generated at the counter electrode 22 tends to gather on the gas recovery channel 61 side.
 続いて、本発明の第2実施形態の電解システム100について説明する。なお、第1実施形態の電解システム1と同様の構成については、同一の符号を付して説明を省略する。以下、同様とする。 Next, an electrolysis system 100 according to a second embodiment of the present invention will be described. In addition, about the structure similar to the electrolysis system 1 of 1st Embodiment, the same code|symbol is attached|subjected and description is abbreviate|omitted. The same shall apply hereinafter.
 第2実施形態の電解システム100は、図5のように、複数の電解槽102a~102cと、複数の太陽電池3a,3bと、反射防止フィルム4と、電解液供給系統105と、ガス回収系統107と、溶液回収系統9と、不具合検知手段(図示しない)を備えている。 The electrolysis system 100 of the second embodiment includes, as shown in FIG. 107, a solution recovery system 9, and a malfunction detection means (not shown).
 電解槽102a~102cは、図5のように、槽本体部120と、光触媒電極21と、対極22と、イオン交換部23と、電解液25a,25bを備えている。
 槽本体部120は、プリズム部30と、底壁部131と、側壁部32a,32bを備えた箱状体である。
 底壁部131は、電解液導入口41と、必要に応じて排出口43を備えている。
As shown in FIG. 5, the electrolytic baths 102a to 102c include a bath body 120, a photocatalyst electrode 21, a counter electrode 22, an ion exchange portion 23, and electrolytic solutions 25a and 25b.
The tank main body 120 is a box-shaped body including a prism portion 30, a bottom wall portion 131, and side wall portions 32a and 32b.
The bottom wall portion 131 has an electrolyte inlet 41 and, if necessary, an outlet 43 .
 第1電解槽102aの側壁部32bには、液体通過孔145bと、気体連通孔146bが設けられている。
 第2電解槽102bの側壁部32a,32bには、液体通過孔145a,145bと、気体連通孔146a,146bが設けられている。
 第3電解槽102cの側壁部32aには、液体通過孔145aと、気体連通孔146aが設けられており、側壁部32bにはガス回収孔140が設けられている。
 液体通過孔145aは、液体が通過可能な貫通孔であって、隣接する電解槽102の液体通過孔145bと連続した連通孔を形成するものである。
 気体連通孔146aは、気体が通過可能な貫通孔であって、隣接する電解槽102の気体連通孔146bと連続した連通孔を形成するものである。
 ガス回収孔140は、第3電解槽102cの第2電解空間27内の気体を回収するガス排出孔である。
A side wall portion 32b of the first electrolytic cell 102a is provided with a liquid passage hole 145b and a gas communication hole 146b.
Liquid passage holes 145a and 145b and gas communication holes 146a and 146b are provided in the side walls 32a and 32b of the second electrolytic cell 102b.
A side wall portion 32a of the third electrolytic cell 102c is provided with a liquid passage hole 145a and a gas communication hole 146a, and a side wall portion 32b is provided with a gas recovery hole 140. As shown in FIG.
The liquid passage hole 145a is a through hole through which liquid can pass, and forms a communication hole that is continuous with the liquid passage hole 145b of the adjacent electrolytic cell 102 .
The gas communication hole 146a is a through hole through which gas can pass, and forms a communication hole that is continuous with the gas communication hole 146b of the adjacent electrolytic cell 102 .
The gas recovery hole 140 is a gas discharge hole for recovering gas in the second electrolysis space 27 of the third electrolytic cell 102c.
 電解液供給系統105は、電解液供給流路51aで構成されており、電解液供給流路51aの伝熱部56aが複数の太陽電池3a,3bに跨って設けられている。
The electrolytic solution supply system 105 is composed of an electrolytic solution supply channel 51a, and a heat transfer portion 56a of the electrolytic solution supply channel 51a is provided across the plurality of solar cells 3a and 3b.
 ガス回収系統107は、第3電解槽2cのガス回収孔140から水素を回収し、気体貯蔵部60に導入する系統であり、気体貯蔵部60と、ガス回収流路61で構成されている。 The gas recovery system 107 is a system that recovers hydrogen from the gas recovery holes 140 of the third electrolytic cell 2c and introduces it into the gas storage section 60, and is composed of the gas storage section 60 and the gas recovery channel 61.
 不具合検知手段は、地震や停電等の外的要因等によって電解システム100の電気系統に不具合が生じた場合に強制的に後述する安全確保動作を実行させるものである。
 不具合検知手段は、例えば、電流検知装置や電圧検知装置であり、電解システム100は、電流や電圧に異常が生じた場合に強制的に安全確保動作を実行する。
The malfunction detection means forcibly executes a safety ensuring operation, which will be described later, when a malfunction occurs in the electrical system of the electrolysis system 100 due to an external factor such as an earthquake or a power failure.
The failure detection means is, for example, a current detection device or a voltage detection device, and the electrolysis system 100 forcibly executes a safety ensuring operation when an abnormality occurs in current or voltage.
 続いて、本実施形態の電解システム100の各部位の位置関係について説明する。 Next, the positional relationship of each part of the electrolysis system 100 of this embodiment will be described.
 電解槽102a~102cは、図6のように、水平面GLに対して傾斜角度θ2で傾斜しており、太陽等の光源にプリズム部30が向いており、ガス回収孔140側の端部の位置がガス回収孔140とは反対側の端部の位置に比べて高くなっている。すなわち、第3電解槽102c側が第1電解槽102a側に比べて高くなっている。
 傾斜角度θ2は、15度以上45度以下であることが好ましい。
As shown in FIG. 6, the electrolytic cells 102a to 102c are inclined at an inclination angle θ2 with respect to the horizontal plane GL, the prism portion 30 faces the light source such as the sun, and the end portion on the side of the gas recovery hole 140 is positioned is higher than the position of the end opposite to the gas recovery hole 140 . That is, the third electrolytic bath 102c side is higher than the first electrolytic bath 102a side.
The inclination angle θ2 is preferably 15 degrees or more and 45 degrees or less.
 続いて、第2実施形態の電解システム100における水素生成動作について説明する。 Next, the hydrogen generation operation in the electrolysis system 100 of the second embodiment will be described.
 まず、電解液供給系統105において電解液供給部50から電解液供給流路51aを介して電解液25aを第1電解槽102aに供給し、液体通過孔145a,145bを介して残りの電解槽102b,102cに電解液25aを供給する。 First, in the electrolytic solution supply system 105, the electrolytic solution 25a is supplied from the electrolytic solution supply part 50 through the electrolytic solution supply channel 51a to the first electrolytic cell 102a, and then through the liquid passage holes 145a and 145b to the remaining electrolytic cells 102b. , 102c is supplied with the electrolytic solution 25a.
 太陽光等の入射光L1がプリズム部30から入射すると、第1実施形態における水素生成動作と同様、プリズム部30で入射光L1が短波長光L2と、長波長光L3に分離され、短波長光L2が光触媒電極21に導かれ、長波長光L3が太陽電池3に導かれ、光触媒電極21上では第1電解液25aが分解されて過酸化水素が発生し、対極22上では第2電解液25bが分解されて水素が発生する。 When the incident light L1 such as sunlight is incident from the prism portion 30, the incident light L1 is separated into the short wavelength light L2 and the long wavelength light L3 by the prism portion 30 in the same manner as the hydrogen generation operation in the first embodiment. The light L2 is guided to the photocatalyst electrode 21, the long-wavelength light L3 is guided to the solar cell 3, the first electrolyte solution 25a is decomposed on the photocatalyst electrode 21 to generate hydrogen peroxide, and the second electrolysis is performed on the counter electrode 22. The liquid 25b is decomposed to generate hydrogen.
 このとき、各電解槽102a~102cの対極22上で発生した水素は、図6のように電解槽102a~102cが所定の傾斜角度θ2で水平面GLに対して傾斜しているので、図5(b)に示される気体連通孔146a,146bを介してガス回収孔140に向かって移動し、ガス回収流路61を介して気体貯蔵部60に貯蔵される。
 一方、光触媒電極21上で発生した過酸化水素は、第1電解液25aと混合状態となり、過酸化水素が濃縮されていく。そして、過酸化水素が所定量以上濃縮されたタイミングで開閉弁82を開状態にし、溶液回収流路81から溶液貯蔵部80に過酸化水素を排出する。
At this time, the hydrogen generated on the counter electrode 22 of each of the electrolytic cells 102a to 102c is tilted with respect to the horizontal plane GL at the predetermined tilt angle θ2 as shown in FIG. b) moves toward the gas recovery hole 140 through the gas communication holes 146a and 146b, and is stored in the gas storage section 60 through the gas recovery channel 61. FIG.
On the other hand, the hydrogen peroxide generated on the photocatalyst electrode 21 is mixed with the first electrolytic solution 25a, and the hydrogen peroxide is concentrated. When the hydrogen peroxide is concentrated to a predetermined amount or more, the on-off valve 82 is opened to discharge the hydrogen peroxide from the solution recovery channel 81 to the solution storage section 80 .
 第2実施形態の電解システム100によれば、ガス回収孔140側の端部の位置がガス回収孔140とは反対側の端部の位置に比べて高くなっているので、第1電解槽102aで生成した水素を介して第3電解槽102c側に流すことができる。そのため、電解槽102a~102c内に配管等を設けなくても、水素を自動的に回収できる。 According to the electrolysis system 100 of the second embodiment, since the position of the end on the side of the gas recovery hole 140 is higher than the position of the end on the side opposite to the gas recovery hole 140, the first electrolytic cell 102a can flow to the third electrolytic cell 102c side through the hydrogen generated in . Therefore, hydrogen can be automatically recovered without installing piping or the like in the electrolytic baths 102a to 102c.
 続いて、第3実施形態の電解システム200について説明する。 Next, the electrolysis system 200 of the third embodiment will be described.
 第3実施形態の電解システム200は、図7のように、複数の電解槽202a~202cと、複数の太陽電池3a~3cと、反射防止フィルム4と、電解液供給系統205と、ガス回収系統107と、溶液回収系統9と、不具合検知手段(図示しない)を備えている。 As shown in FIG. 7, the electrolysis system 200 of the third embodiment includes a plurality of electrolytic cells 202a to 202c, a plurality of solar cells 3a to 3c, an antireflection film 4, an electrolyte supply system 205, and a gas recovery system. 107, a solution recovery system 9, and a malfunction detection means (not shown).
 電解槽202a~202cは、図7のように、槽本体部220と、光触媒電極21と、対極22と、イオン交換部23と、電解液25a,25bを備えている。
 槽本体部220は、天井側壁部230と、底壁部131と、側壁部32a,32bを備えている。
 天井側壁部230は、プリズム部30とは異なり、透過する光を分離せずにそのまま導く。
As shown in FIG. 7, the electrolytic baths 202a to 202c include a bath body 220, a photocatalyst electrode 21, a counter electrode 22, an ion exchange portion 23, and electrolytic solutions 25a and 25b.
The tank body portion 220 includes a ceiling side wall portion 230, a bottom wall portion 131, and side wall portions 32a and 32b.
Unlike the prism section 30, the ceiling side wall section 230 guides the transmitted light as it is without separating it.
 電解液供給系統205は、図7のように、電解液供給部50と、電解液供給流路51a~51cを備えており、電解液供給部50から電解液供給流路51a~51cを介して電解液25aを各電解槽202a~202cに供給可能となっている。
 電解液供給系統205の電解液供給流路51cは、電解液供給部50から電解槽202cの電解液導入口41に繋がる流路であり、第1実施形態とは異なり、開閉弁55cと、伝熱部56cを備えている。
As shown in FIG. 7, the electrolyte supply system 205 includes an electrolyte supply unit 50 and electrolyte supply channels 51a to 51c. The electrolytic solution 25a can be supplied to each of the electrolytic cells 202a-202c.
The electrolytic solution supply channel 51c of the electrolytic solution supply system 205 is a channel connected from the electrolytic solution supply part 50 to the electrolytic solution introduction port 41 of the electrolytic bath 202c, and unlike the first embodiment, the on-off valve 55c and the transmission A heating section 56c is provided.
 続いて、本実施形態の電解システム200の各部位の位置関係について説明する。 Next, the positional relationship of each part of the electrolysis system 200 of this embodiment will be described.
 電解システム200は、電解槽202a~202cの天井側壁部230から平面視したときに、電解槽202a~202cと太陽電池3a~3cが重なっている。
 太陽電池3a~3cの面積は、電解槽202a~202cの光触媒電極21の面積よりも小さく、全体が光触媒電極21に覆われている。すなわち、太陽電池3a~3cは、光触媒電極21を透過した光を受光する。
In the electrolysis system 200, the electrolysis vessels 202a to 202c and the solar cells 3a to 3c overlap when viewed from above from the ceiling side walls 230 of the electrolysis vessels 202a to 202c.
The areas of the solar cells 3a to 3c are smaller than the areas of the photocatalyst electrodes 21 of the electrolytic cells 202a to 202c, and are entirely covered with the photocatalyst electrodes 21. FIG. That is, the solar cells 3a to 3c receive light transmitted through the photocatalyst electrode 21. FIG.
 第3実施形態の電解システム200によれば、太陽電池3a~3cと光触媒電極21が重畳しており、主に光触媒電極21を透過した光を太陽電池3a~3cが受光する。すなわち、光触媒電極21で減衰し、透過した光を太陽電池3a~3cが受光するので、太陽電池3a~3c上で影等が局所的に発生せず、複数の太陽電池セルが直列接続された太陽電池3を使用した場合でも、ホットスポット等の発生を抑制でき、全体の発電効率も向上できる。また、ホットスポットとの発生等を抑制できるので、太陽電池3a~3cにおいてバイパスダイオード等の設置を省略することができる。 According to the electrolysis system 200 of the third embodiment, the solar cells 3a to 3c and the photocatalyst electrode 21 overlap each other, and the solar cells 3a to 3c mainly receive the light transmitted through the photocatalyst electrode 21. That is, since the solar cells 3a to 3c receive the light that has been attenuated by the photocatalyst electrode 21 and transmitted, shadows or the like do not occur locally on the solar cells 3a to 3c, and the plurality of solar cells are connected in series. Even when the solar cell 3 is used, the generation of hot spots can be suppressed, and the overall power generation efficiency can be improved. Also, since the occurrence of hot spots can be suppressed, installation of bypass diodes or the like in the solar cells 3a to 3c can be omitted.
 上記した実施形態では、波長分離部としてプリズム部30を用いた場合について説明したが、本発明はこれに限定されるものではない。波長分離部は、長波長光L3と短波長光L2に分離できるものであれば、魚眼レンズ等であってもよい。 In the above-described embodiment, the case where the prism section 30 is used as the wavelength separating section has been described, but the present invention is not limited to this. The wavelength separator may be a fisheye lens or the like as long as it can separate the long wavelength light L3 and the short wavelength light L2.
 上記した実施形態では、光触媒電極21上で電解液25aから主に過酸化水素を生成していたが、本発明はこれに限定されるものではない。光触媒電極21と対極22との間の電圧を調整して光触媒電極21上で電解液25aから酸素を生成してもよい。
 この場合、発生した酸素ガスを捕集して利用してもよいし、ベント孔を設けて大気に自然放出してもよい。
In the above-described embodiment, hydrogen peroxide is mainly generated from the electrolytic solution 25a on the photocatalyst electrode 21, but the present invention is not limited to this. Oxygen may be generated from the electrolyte solution 25a on the photocatalyst electrode 21 by adjusting the voltage between the photocatalyst electrode 21 and the counter electrode 22 .
In this case, the generated oxygen gas may be collected and used, or may be naturally discharged into the atmosphere by providing a vent hole.
 上記した第1実施形態では、ガス回収系統7において、一つのガス回収流路61から各電解槽2のガス回収孔40a,40bに分岐して、各電解槽2のガス回収孔40a,40bと気体貯蔵部60をガス回収流路61で接続していたが、本発明はこれに限定されるものではない。各電解槽2にそれぞれガス回収流路61を設け、各電解槽2のガス回収流路61同士を接続して気体貯蔵部60への流路を形成してもよい。 In the first embodiment described above, in the gas recovery system 7, one gas recovery channel 61 branches to the gas recovery holes 40a and 40b of the respective electrolytic cells 2, and the gas recovery holes 40a and 40b of the respective electrolytic cells 2 and Although the gas storage unit 60 is connected by the gas recovery channel 61, the present invention is not limited to this. Each electrolytic cell 2 may be provided with a gas recovery channel 61 , and the gas recovery channel 61 of each electrolytic cell 2 may be connected to form a channel to the gas storage section 60 .
 上記した実施形態では、光触媒電極21に対してプリズム部30側に対極22が設けられていたが、本発明はこれに限定されるものではない。図8のように対極22に対してプリズム部30側に光触媒電極21が設けられていてもよい。すなわち、対極22に対して受光側に光触媒電極21が配されていてもよい。こうすることで、太陽光に近い位置に光感受性のある光触媒電極が配置することになり、イオン交換部23等による光の透過ロスを少なくできる。 In the above-described embodiment, the counter electrode 22 is provided on the prism portion 30 side with respect to the photocatalyst electrode 21, but the present invention is not limited to this. The photocatalyst electrode 21 may be provided on the side of the prism portion 30 with respect to the counter electrode 22 as shown in FIG. That is, the photocatalyst electrode 21 may be arranged on the light receiving side with respect to the counter electrode 22 . By doing so, the photosensitive photocatalyst electrode is arranged at a position close to the sunlight, and the transmission loss of light due to the ion exchange section 23 and the like can be reduced.
 上記した実施形態は、本発明の技術的範囲に含まれる限り、各実施形態間で各構成部材を自由に置換や付加できる。 As long as the above-described embodiments are within the technical scope of the present invention, each constituent member can be freely replaced or added between the embodiments.
  1,100,200 電解システム
  2,102,202 電解槽
  2a,102a,202a 第1電解槽
  2b,102b,202b 第2電解槽
  2c,102c,202c 第3電解槽
  3,3a~3c 太陽電池
  4 反射防止フィルム
  8a,8b 溶液連通流路(連通流路)
 21 光触媒電極
 22 対極
 23 イオン交換部
 25a 第1電解液
 25b 第2電解液
 26 第1電解空間(光触媒電極側の空間)
 27 第2電解空間(対極側の空間)
 30 プリズム部(波長分離部,受光部)
 51a~51c 電解液供給流路(供給流路)
 56a,56b 伝熱部
 60 気体貯蔵部
 61 ガス回収流路(接続部)
 70a,70b 逆止弁
1, 100, 200 electrolytic system 2, 102, 202 electrolytic cell 2a, 102a, 202a first electrolytic cell 2b, 102b, 202b second electrolytic cell 2c, 102c, 202c third electrolytic cell 3, 3a-3c solar cell 4 reflection Prevention films 8a, 8b Solution communication channel (communication channel)
21 Photocatalyst electrode 22 Counter electrode 23 Ion exchange part 25a First electrolytic solution 25b Second electrolytic solution 26 First electrolytic space (space on the side of the photocatalytic electrode)
27 Second electrolytic space (space on the counter electrode side)
30 prism part (wavelength separation part, light receiving part)
51a to 51c Electrolyte solution supply channel (supply channel)
56a, 56b heat transfer section 60 gas storage section 61 gas recovery channel (connection section)
70a, 70b check valve

Claims (11)

  1.  太陽電池と、
     光触媒電極と対極と電解液を有する電解槽と、
     前記電解槽に前記電解液を供給する供給流路と、
     前記供給流路の中途に設けられ、前記太陽電池の熱を、前記供給流路を通過する前記電解液に伝熱する伝熱部を備える、電解システム。
    a solar cell;
    an electrolytic cell having a photocatalyst electrode, a counter electrode, and an electrolytic solution;
    a supply channel for supplying the electrolytic solution to the electrolytic cell;
    An electrolysis system, comprising: a heat transfer section provided in the middle of the supply channel for transferring heat of the solar cell to the electrolytic solution passing through the supply channel.
  2.  前記太陽電池上に前記電解槽が配されている、請求項1に記載の電解システム。 The electrolytic system according to claim 1, wherein the electrolytic cell is arranged on the solar cell.
  3.  前記太陽電池は、前記光触媒電極と前記対極間に電圧を印加する、請求項1又は2に記載の電解システム。 The electrolysis system according to claim 1 or 2, wherein the solar cell applies a voltage between the photocatalyst electrode and the counter electrode.
  4.  前記電解槽は、透過する光を所定の波長以下の短波長光と前記短波長光に比べて長波長の長波長光とに分離し、前記短波長光を前記光触媒電極に導き、前記長波長光を前記太陽電池に導く波長分離部を備える、請求項1~3のいずれか1項に記載の電解システム。 The electrolytic cell separates the transmitted light into short-wavelength light having a predetermined wavelength or less and long-wavelength light having a longer wavelength than the short-wavelength light, guides the short-wavelength light to the photocatalyst electrode, and directs the light to the long-wavelength light. The electrolysis system according to any one of claims 1 to 3, comprising a wavelength separator that directs light to the solar cell.
  5.  前記波長分離部上に反射防止フィルムを備える、請求項4に記載の電解システム。 The electrolysis system according to claim 4, comprising an antireflection film on the wavelength separator.
  6.  前記電解槽は、光を受光する受光部を有し、
     前記対極は、前記光触媒電極に比べて前記受光部側に位置する、請求項1~5のいずれか1項に記載の電解システム。
    The electrolytic bath has a light receiving portion that receives light,
    The electrolysis system according to any one of claims 1 to 5, wherein the counter electrode is positioned closer to the light receiving section than the photocatalyst electrode.
  7.  少なくとも2つの電解槽を有し、
     前記太陽電池は、前記太陽電池を平面視したときに、前記2つの電解槽の光触媒電極の間に位置する、請求項1~6のいずれか1項に記載の電解システム。
    having at least two electrolytic cells;
    The electrolysis system according to any one of claims 1 to 6, wherein the solar cell is positioned between the photocatalyst electrodes of the two electrolytic cells when the solar cell is viewed from above.
  8.  気体貯蔵部を有し、
     前記電解槽は、前記光触媒電極と前記対極の間にイオン交換部を有し、
     前記イオン交換部は、前記電解槽を前記光触媒電極側の空間と前記対極側の空間に区切っており、
     前記気体貯蔵部は、前記対極側の空間と連通し、前記対極側の空間内から流出する気体を貯蔵可能である、請求項1~7のいずれか1項に記載の電解システム。
    having a gas reservoir,
    The electrolytic cell has an ion exchange part between the photocatalyst electrode and the counter electrode,
    The ion exchange unit divides the electrolytic cell into a space on the side of the photocatalyst electrode and a space on the side of the counter electrode,
    The electrolysis system according to any one of claims 1 to 7, wherein the gas storage part communicates with the space on the counter electrode side and can store the gas flowing out from the space on the counter electrode side.
  9.  前記気体貯蔵部と前記電解槽を接続する接続部を有し、
     前記接続部は、前記対極よりも前記電解槽の頂部側に接続されている、請求項8に記載の電解システム。
    Having a connection portion that connects the gas storage portion and the electrolytic cell,
    9. The electrolysis system according to claim 8, wherein the connecting portion is connected to the top side of the electrolytic cell relative to the counter electrode.
  10.  少なくとも2つの電解槽を有し、
     前記2つの電解槽は、前記光触媒電極と前記対極の間にイオン交換部を有し、
     前記イオン交換部は、前記電解槽を前記光触媒電極側の空間と前記対極側の空間に区切っており、
     前記2つの電解槽は、前記光触媒電極側の空間が連通した連通流路を備えており、
     前記2つの電解槽は、第1電解槽と第2電解槽であり、
     前記第1電解槽の前記光触媒電極側の空間に前記電解液を供給する電解液供給部を有し、
     前記連通流路は、中途に前記第1電解槽側から前記第2電解槽側への前記電解液の移動のみを許容する逆止弁を備える、請求項1~9のいずれか1項に記載の電解システム。
    having at least two electrolytic cells;
    The two electrolytic cells have an ion exchange part between the photocatalyst electrode and the counter electrode,
    The ion exchange unit divides the electrolytic cell into a space on the side of the photocatalyst electrode and a space on the side of the counter electrode,
    The two electrolytic cells are provided with a communication channel in which the space on the side of the photocatalyst electrode communicates,
    The two electrolytic cells are a first electrolytic cell and a second electrolytic cell,
    Having an electrolytic solution supply unit that supplies the electrolytic solution to the space on the photocatalyst electrode side of the first electrolytic cell,
    10. The communication channel according to any one of claims 1 to 9, wherein a check valve that allows only movement of the electrolytic solution from the first electrolytic cell side to the second electrolytic cell side is provided in the middle of the communication channel. electrolytic system.
  11.  太陽電池上に、光触媒電極と対極と電解液を有する電解槽を有し、
     前記太陽電池は、前記電解槽を通過した光を受光して発電し、発電した電力の一部又は全部を前記電解槽に供給するものであり、
     前記電解槽は、前記太陽電池から供給される電力を使用して前記電解液を分解する、電解システム。
    Having an electrolytic cell having a photocatalyst electrode, a counter electrode and an electrolytic solution on the solar cell,
    The solar cell receives light that has passed through the electrolytic cell to generate power, and supplies part or all of the generated power to the electrolytic cell,
    The electrolytic system, wherein the electrolytic cell uses power supplied from the solar cell to decompose the electrolytic solution.
PCT/JP2022/048338 2022-01-12 2022-12-27 Electrolysis system WO2023136148A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022003323 2022-01-12
JP2022-003323 2022-01-12

Publications (1)

Publication Number Publication Date
WO2023136148A1 true WO2023136148A1 (en) 2023-07-20

Family

ID=87279151

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/048338 WO2023136148A1 (en) 2022-01-12 2022-12-27 Electrolysis system

Country Status (1)

Country Link
WO (1) WO2023136148A1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6130065U (en) * 1984-07-26 1986-02-22 株式会社 ほくさん Gas generator using water electrolysis using solar panels
JPH0413880A (en) * 1990-05-07 1992-01-17 Mitsubishi Heavy Ind Ltd Water decomposition equipment
JP2006176834A (en) * 2004-12-22 2006-07-06 Nissan Motor Co Ltd Energy conversion system
JP2009274891A (en) * 2008-05-13 2009-11-26 Sharp Corp Semiconductor oxide film, production method thereof, and hydrogen generation apparatus using the semiconductor oxide film
US20100300892A1 (en) * 2009-06-02 2010-12-02 Herbert Franz Matare Apparatus and Method for Solar Hydrogen Synfuel Production
US20170167035A1 (en) * 2013-11-27 2017-06-15 Industry-University Cooperation Foundation Hanyang University Erica Campus Hybrid type device
JP2018016840A (en) * 2016-07-27 2018-02-01 住友電気工業株式会社 Hydrogen purification system
JP2019059996A (en) * 2017-09-27 2019-04-18 株式会社豊田中央研究所 Artificial photosynthesis cell
KR20200054749A (en) * 2018-11-12 2020-05-20 한국광기술원 Photoelectrochemical Hydrogen production system with wavelength selective type
JP2020196927A (en) * 2019-06-03 2020-12-10 株式会社アクトリー Hydrogen production apparatus using sunlight

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6130065U (en) * 1984-07-26 1986-02-22 株式会社 ほくさん Gas generator using water electrolysis using solar panels
JPH0413880A (en) * 1990-05-07 1992-01-17 Mitsubishi Heavy Ind Ltd Water decomposition equipment
JP2006176834A (en) * 2004-12-22 2006-07-06 Nissan Motor Co Ltd Energy conversion system
JP2009274891A (en) * 2008-05-13 2009-11-26 Sharp Corp Semiconductor oxide film, production method thereof, and hydrogen generation apparatus using the semiconductor oxide film
US20100300892A1 (en) * 2009-06-02 2010-12-02 Herbert Franz Matare Apparatus and Method for Solar Hydrogen Synfuel Production
US20170167035A1 (en) * 2013-11-27 2017-06-15 Industry-University Cooperation Foundation Hanyang University Erica Campus Hybrid type device
JP2018016840A (en) * 2016-07-27 2018-02-01 住友電気工業株式会社 Hydrogen purification system
JP2019059996A (en) * 2017-09-27 2019-04-18 株式会社豊田中央研究所 Artificial photosynthesis cell
KR20200054749A (en) * 2018-11-12 2020-05-20 한국광기술원 Photoelectrochemical Hydrogen production system with wavelength selective type
JP2020196927A (en) * 2019-06-03 2020-12-10 株式会社アクトリー Hydrogen production apparatus using sunlight

Similar Documents

Publication Publication Date Title
JP6333235B2 (en) Photoelectrochemical cell, photo-driven generation system and generation method of hydrogen and oxygen using the photoelectrochemical cell, and method for producing the photoelectrochemical cell
JP4767370B2 (en) Photoelectrochemical cell
US9447509B2 (en) Hydrogen producing cell, hydrogen producing device, and energy system including the hydrogen producing device
US8999119B2 (en) Hydrogen production device
US6287431B1 (en) Integrated ozone generator system
US8388818B1 (en) Photoelectrochemical generation of hydrogen
ES2685279T3 (en) Photoelectrochemical cell filter-press type for water oxidation and CO2 reduction
US20130092549A1 (en) Proton exchange membrane electrolysis using water vapor as a feedstock
US20070246370A1 (en) Device and Method for Photovoltaic Generation of Hydrogen
CN102099508B (en) Photoelectrochemical cell
Hu Membrane-less photoelectrochemical devices for H 2 O 2 production: efficiency limit and operational constraint
US20080213641A1 (en) Photoelectrochemical Reaction Cell
WO2013027456A1 (en) Power generation system
JP5860636B2 (en) Anion exchange membrane fuel cell system
US9774052B2 (en) Hydrogen producing device and hydrogen producing unit and energy system including the hydrogen producing device and the hydrogen producing unit
US10202695B2 (en) Photoelectrolysis system and method
WO2015087691A1 (en) Artificial-photosynthesis array
US10351964B2 (en) Artificial photosynthesis module
WO2023136148A1 (en) Electrolysis system
CN105293644B (en) Optical electro-chemistry electrolysis installation and the battery lead plate for the optical electro-chemistry electrolysis installation
US20190249313A1 (en) Integrated membrane solar fuel production assembly
WO2013011843A1 (en) Electrolytic cell, gas producing device, and gas producing method
WO2021045017A1 (en) Photodecomposition module, photodecomposition cell, decomposition system, living environment sustaining system, and supply amount adjustment system
JP6142281B2 (en) Hydrogen generating device, hydrogen generating unit and energy system using them
WO2011093124A1 (en) Water treatment device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22920664

Country of ref document: EP

Kind code of ref document: A1