WO2023136138A1 - Machine tool, machine tool control method, and machine tool control program - Google Patents
Machine tool, machine tool control method, and machine tool control program Download PDFInfo
- Publication number
- WO2023136138A1 WO2023136138A1 PCT/JP2022/048244 JP2022048244W WO2023136138A1 WO 2023136138 A1 WO2023136138 A1 WO 2023136138A1 JP 2022048244 W JP2022048244 W JP 2022048244W WO 2023136138 A1 WO2023136138 A1 WO 2023136138A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- tool
- spindle
- image
- passage opening
- camera
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 92
- 230000008569 process Effects 0.000 claims abstract description 72
- 238000012545 processing Methods 0.000 claims abstract description 44
- 238000003754 machining Methods 0.000 claims abstract description 34
- 238000005192 partition Methods 0.000 claims abstract description 26
- 238000003860 storage Methods 0.000 claims description 67
- 230000005856 abnormality Effects 0.000 claims description 21
- 230000010485 coping Effects 0.000 claims description 5
- 230000008859 change Effects 0.000 claims description 3
- 230000004308 accommodation Effects 0.000 abstract 2
- 238000004891 communication Methods 0.000 description 23
- 230000006870 function Effects 0.000 description 22
- 230000010365 information processing Effects 0.000 description 19
- 238000010586 diagram Methods 0.000 description 17
- 230000007246 mechanism Effects 0.000 description 8
- 230000015654 memory Effects 0.000 description 7
- 238000005259 measurement Methods 0.000 description 6
- 238000003384 imaging method Methods 0.000 description 5
- 238000013527 convolutional neural network Methods 0.000 description 3
- 230000003936 working memory Effects 0.000 description 3
- 238000001514 detection method Methods 0.000 description 2
- 238000010801 machine learning Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000013135 deep learning Methods 0.000 description 1
- 238000003708 edge detection Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012706 support-vector machine Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23Q—DETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
- B23Q17/00—Arrangements for observing, indicating or measuring on machine tools
- B23Q17/24—Arrangements for observing, indicating or measuring on machine tools using optics or electromagnetic waves
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23Q—DETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
- B23Q3/00—Devices holding, supporting, or positioning work or tools, of a kind normally removable from the machine
- B23Q3/155—Arrangements for automatic insertion or removal of tools, e.g. combined with manual handling
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B19/00—Programme-control systems
- G05B19/02—Programme-control systems electric
- G05B19/18—Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
Definitions
- the present disclosure relates to technology for detecting tools that are excessively large relative to the passage opening.
- Patent Document 1 discloses a machine tool capable of measuring the shape of the tool using a camera provided in the machine tool.
- a machine tool in one example of the present disclosure, includes a machining area provided with a tool-mountable spindle, and a tool storage area separated from the machining area by a partition.
- a passage opening is provided in the partition.
- a tool attached to the spindle passes through the passage opening and is stored in the tool storage area.
- the machine tool further includes a camera provided to photograph the tool passing through the passage opening, a rotation drive unit for rotating the spindle, and a position drive for moving the position of the spindle. and a controller for controlling the machine tool.
- the control unit controls the position driving unit so that the spindle is positioned at a predetermined position in the machining area before storing the tool in the tool storage area, and controls the position driving unit to position the spindle in the axial direction of the spindle.
- control unit further includes, after executing the controlling process, the rotation of the main shaft so as to change the axial direction of the main shaft from the predetermined first direction to a predetermined second direction. and outputting a photographing instruction to the camera at least one timing during the process of controlling the drive unit and changing the axial direction of the main shaft from the predetermined first direction to the predetermined second direction. , a process of acquiring a second image from the camera, and a process of determining whether or not the tool can pass through the passage opening based on the second image.
- control unit further rotates the main shaft about the axial direction of the main shaft as a rotation axis based on the fact that the axial direction of the main shaft is oriented in the predetermined second direction. and a process of outputting a photographing instruction to the camera at least one timing while the main shaft is rotating about the axial direction as a rotation axis, and obtaining a third image from the camera. and a process of determining whether or not the tool can pass through the passage opening based on the third image.
- the axial direction of the main shaft faces the predetermined first direction
- the axial direction of the main shaft is parallel to the partition.
- the process of determining whether or not the tool can pass through the passage opening based on the first image includes: and a process of determining that the tool cannot pass through the passage opening when the diameter exceeds a predetermined value.
- control unit determines that the tool cannot pass through the passage opening when at least part of the tool is included in the first image.
- the machine tool includes a machining area provided with a spindle on which tools can be mounted, and a tool storage area separated from the machining area by a partition.
- a passage opening is provided in the partition.
- a tool attached to the spindle passes through the passage opening and is stored in the tool storage area.
- the machine tool further comprises a camera arranged to photograph the tool passing through the passage opening.
- the control method moves the spindle to a predetermined position in the machining area before storing the tool in the tool storage area, and sets the axial direction of the spindle to a predetermined direction.
- the step of determining whether or not it is possible, and the step of performing a predetermined abnormality countermeasure process based on the determination that the tool cannot pass through the passage opening are provided.
- the machine tool includes a machining area provided with a spindle on which tools can be mounted, and a tool storage area separated from the machining area by a partition.
- a passage opening is provided in the partition.
- a tool attached to the spindle passes through the passage opening and is stored in the tool storage area.
- the machine tool further includes a camera provided to photograph the tool passing through the passage opening, and the control program causes the machine tool to store the tool in the tool storage area.
- FIG. 4 is a diagram showing a process of storing a tool attached to a spindle in a tool storage area; It is a figure showing an example of functional composition of a machine tool.
- FIG. 5 is a diagram showing a driving process of the spindle head; It is a figure which shows an example of the image obtained from the camera.
- FIG. 7 is a diagram showing the driving process of the spindle head continued from FIG. 6; It is a figure which shows an example of the image obtained from the camera.
- FIG. 1 is a diagram showing an example of a hardware configuration of a CNC (Computerized Numerical Control) unit;
- FIG. 4 is a flow chart showing part of the processing executed by the control unit of the machine tool;
- FIG. 1 is a diagram showing the appearance of a machine tool 100. As shown in FIG.
- the machine tool 100 is a work processing machine.
- the machine tool 100 is a machine tool that performs subtractive manufacturing (SM) machining of a workpiece.
- the machine tool 100 may be a machine tool that performs additive manufacturing (AM) of a work.
- Machine tool 100 may be a vertical machining center, a horizontal machining center, or a turning center.
- machine tool 100 may be a lathe or other cutting or grinding machine.
- the machine tool may be a compound machine in which these are combined.
- a machine tool 100 is provided with an operation panel 20 .
- the operation panel 20 includes a display 205 for displaying various information regarding machining, and operation keys 206 for accepting various operations for the machine tool 100 .
- the machine tool 100 has a machining area AR1 and a tool storage area AR2. Each of the machining area AR1 and the tool storage area AR2 is partitioned by a cover.
- a spindle head 130 to which a tool can be attached is provided in the machining area AR1.
- the machine tool 100 processes a work by controlling the driving of a spindle 132 to which tools are attached.
- the tool storage area AR2 is separated from the processing area AR1 by a partition PA.
- An ATC 160 and a magazine 170 are provided in the tool storage area AR2.
- the magazine 170 stores various tools used for machining the workpiece.
- the tools stored in the magazine 170 are attached to the spindle head 130 through the passage PS provided in the partition PA.
- a sliding door is attached to the passage PS. The door is opened and closed by a drive source such as a motor.
- the vertical direction is hereinafter referred to as the "X direction”
- the direction perpendicular to the partition PA is referred to as the "Z direction”
- the direction perpendicular to both the X direction and the Z direction is referred to as the "Y direction”. called.
- FIG. 2 is a diagram showing a configuration example of a drive mechanism in the machine tool 100. As shown in FIG.
- the machine tool 100 includes a control section 50, a rotation drive section 110A, a position drive section 110B, a spindle head 130, and a measurement section 140.
- control unit 50 means a device that controls the machine tool 100.
- the device configuration of the control unit 50 is arbitrary.
- the control section 50 may be composed of a single control unit, or may be composed of a plurality of control units. In the example of FIG. 2 , the control section 50 is composed of the operation panel 20 , the CNC unit 30 and the information processing device 40 .
- the operation panel 20 and the CNC unit 30 communicate with each other, for example, via a communication path NW1 (eg, wireless LAN, wired LAN, field network, etc.).
- CNC unit 30 and information processing device 40 communicate with each other, for example, via communication path NW2 (eg, wireless LAN, wired LAN, field network, etc.).
- the CNC unit 30 Upon receiving the machining start command, the CNC unit 30 starts executing a pre-designed machining program.
- the machining program is written in, for example, an NC (Numerical Control) program.
- the CNC unit 30 controls the rotation drive section 110A and the position drive section 110B to drive the spindle head 130 according to the machining program.
- the information processing device 40 is a general-purpose computer.
- the information processing device 40 may be a desktop computer, a notebook computer, or a tablet terminal.
- An image processing program is installed in the information processing device 40 , and various image processing is performed on the image acquired from the measurement unit 140 .
- the spindle head 130 includes a spindle tube 131 and a spindle 132 .
- the main shaft 132 is rotatably supported by the main shaft tube 131 .
- a tool 134 selected from a magazine 170 (see FIG. 1) is mounted on the spindle 132 .
- the tool 134 rotates in conjunction with the spindle 132 .
- the rotation drive section 110A is a drive mechanism for changing the angle of the main shaft 132.
- the rotation driving unit 110A rotates in a rotation direction centered on the X-axis direction (A-axis), a rotation direction centered on the Y-axis direction (B-axis), and a rotation center centered on the Z-axis direction. At least one angle of the rotation direction (C axis) is adjusted.
- the device configuration of the rotation drive unit 110A is arbitrary.
- the rotation driving section 110A may be composed of a single driving unit, or may be composed of a plurality of driving units. In the example of FIG. 2, the rotation driving section 110A is composed of servo drivers 111B and 111C.
- the position drive section 110B is a drive mechanism for changing the position of the main shaft 132.
- position driver 110B adjusts at least one position in the X-axis direction, Y-axis direction, and Z-axis direction.
- the device configuration of the position driving section 110B is arbitrary.
- the position driving section 110B may be composed of a single driving unit, or may be composed of a plurality of driving units. In the example of FIG. 2, the position driving section 110B is composed of servo drivers 111X to 111Z.
- the servo driver 111B sequentially receives input of the target rotational speed from the CNC unit 30 and controls a servomotor (not shown) for rotating the spindle head 130 in the B-axis direction.
- the servo driver 111B calculates the actual rotation speed of the servomotor from a feedback signal of an encoder (not shown) for detecting the rotation angle of the servomotor, and the actual rotation speed is the target rotation speed. If the actual rotation speed is higher than the target rotation speed, the rotation speed of the servo motor is lowered. In this way, the servo driver 111B brings the rotation speed of the servomotor closer to the target rotation speed while sequentially receiving the feedback of the rotation speed of the servomotor. Thereby, the servo driver 111B adjusts the rotational speed of the spindle head 130 in the B-axis direction.
- the servo driver 111C sequentially receives input of the target rotational speed from the CNC unit 30, and controls a servomotor (not shown) for rotationally driving the main shaft 132 in a rotational direction about the axial direction of the main shaft 132. .
- the servo driver 111C calculates the actual rotation speed of the servomotor from a feedback signal of an encoder (not shown) for detecting the rotation angle of the servomotor, and the actual rotation speed is the target rotation speed. If the actual rotation speed is higher than the target rotation speed, the rotation speed of the servo motor is lowered. In this way, the servo driver 111C brings the rotation speed of the servomotor closer to the target rotation speed while sequentially receiving the feedback of the rotation speed of the servomotor. Thereby, the servo driver 111C adjusts the rotation speed of the main shaft 132 in the rotation direction with the axial direction of the main shaft 132 as the rotation center.
- the servo driver 111X sequentially receives input of target positions from the CNC unit 30 and controls a servo motor (not shown).
- the servomotor feeds and drives a moving body to which the spindle head 130 is attached via a ball screw (not shown) to move the spindle head 130 to an arbitrary position in the X-axis direction.
- the method of controlling the servomotor by the servo driver 111X is the same as that of the servo drivers 111B and 111C, so the description thereof will not be repeated.
- the servo driver 111Y sequentially receives input of target positions from the CNC unit 30 and controls a servo motor (not shown).
- the servomotor feeds and drives a moving body to which the spindle head 130 is attached via a ball screw (not shown) to move the spindle 132 to an arbitrary position in the Y-axis direction.
- the method of controlling the servomotor by the servo driver 111Y is the same as that of the servo drivers 111B and 111C, so the description thereof will not be repeated.
- the servo driver 111Z sequentially receives input of target positions from the CNC unit 30 and controls a servo motor (not shown).
- the servomotor feeds and drives a moving body to which the spindle head 130 is attached via a ball screw (not shown) to move the spindle 132 to an arbitrary position in the Z-axis direction.
- the method of controlling the servomotor by the servo driver 111Z is the same as that of the servo drivers 111B and 111C, so the description thereof will not be repeated.
- the rotation driving section 110A may be configured by another motor driver.
- the rotation drive section 110A may be configured with one or more motor drivers for a stepping motor.
- the position driver 110B may consist of one or more motor drivers for stepping motors.
- the measuring unit 140 is a measuring mechanism for measuring the amount of tool wear.
- the measuring section 140 functions as an imaging section.
- the information processing device 40 measures the wear amount of the tool captured in the image by performing predetermined image processing on the image obtained from the imaging unit. The details of the method for measuring the amount of wear will be described later.
- FIG. 3 is a diagram showing the spindle head 130 and the measuring section 140. As shown in FIG. 3,
- the spindle head 130 is provided in the machining area AR1, and the measuring section 140 and the light sources 145, 147 are provided in the tool storage area AR2.
- the measuring section 140 is composed of a camera 141 and an objective lens 142 .
- the light source 145 is, for example, ring lighting and is installed so as to surround the objective lens 142 .
- the light source 145 irradiates an object within the field of view CR of the camera 141 with light. Reflected light from the object enters the objective lens 142 . A tool image representing the tool 134 is thereby obtained from the camera 141 .
- a light source 147 is provided so as to face the objective lens 142 and the light source 145 .
- the light source 147 irradiates an object within the imaging field CR of the camera 141 with light from the opposite side of the imaging direction.
- the light emitted from the light source 147 is blocked by the object included in the field of view CR of the camera 141 , and the light not blocked by the object enters the camera 141 .
- a tool image as a shadow picture is obtained from the camera 141 .
- FIG. 4 is a diagram showing the process of storing the tool attached to the spindle 132 in the tool storage area AR2.
- a worker may manually mount a tool on the spindle 132 in the processing area AR1. At this time, if an excessively large tool 134 larger than the size of the passage PS is attached to the spindle 132, the tool may collide with the passage PS when being transported from the machining area AR1 to the tool storage area AR2. .
- FIG. 4 shows the tool 134 as a milling tool. Since the diameter of the tool 134 shown in FIG. 4 is larger than the width of the passage PS, the tool 134 collides with the partition PA when being stored in the tool storage area AR2 from the processing area AR1.
- the machine tool 100 determines whether the tool 134 can pass through the passage PS before storing the tool 134 in the tool storage area AR2.
- the machine tool 100 stores the tool 134 in the tool storage area AR2 via the passage PS.
- the machine tool 100 carries out a predetermined abnormality coping process. Thereby, the machine tool 100 can prevent the tool 134 attached by the operator from colliding with the partition PA.
- FIG. 5 is a diagram showing an example of the functional configuration of the machine tool 100. As shown in FIG.
- the control unit 50 of the machine tool 100 includes a drive control unit 52, a determination unit 54, and an abnormality processing unit 56 as functional configurations. These functional configurations will be described in order below.
- each functional configuration is arbitrary.
- all of the functional configurations shown in FIG. 5 may be implemented in the operation panel 20 described above (see FIG. 2), or may be implemented in the CNC unit 30 described above (see FIG. 2), It may be implemented in the information processing device 40 (see FIG. 2) described above.
- part of the functional configuration shown in FIG. 5 may be implemented in the operation panel 20, part of the remaining functional configuration may be implemented in the CNC unit 30, and the remaining functional configuration may be implemented in the information processing device 40.
- part of the functional configuration shown in FIG. 5 may be implemented in an external device such as a server, or may be implemented in dedicated hardware.
- FIG. 6A and 6B are diagrams showing the driving process of the spindle head 130.
- FIG. 6A and 6B are diagrams showing the driving process of the spindle head 130.
- the drive control unit 52 drives the main shaft 132 before storing the tool 134 in the tool storage area AR2, thereby bringing the main shaft 132 as close as possible to the imaging field CR of the camera 141. If the tool 134 is too large, the tool 134 is included in the field of view CR of the camera 141 . Otherwise, tool 134 is not included in field of view CR of camera 141 .
- step S1 the drive control unit 52 sets the axial direction AX1 of the main shaft 132 to a predetermined direction D1 (first 1 direction) is controlled.
- direction D1 corresponds to the vertical direction.
- the axial direction AX1 of the main shaft 132 faces the direction D1, the axial direction AX1 of the main shaft 132 is parallel to the partition PA and the passage PS.
- step S2 the drive control section 52 controls the position drive section 110B (see FIG. 2) so that the position P0 of the spindle 132 matches the predetermined position P1 within the processing area AR1.
- the predetermined position P1 may be defined in the machining program or may be defined in the setting file.
- the predetermined position P1 is set at a distance d from the optical axis AX2 of the camera 141 in the direction perpendicular to the optical axis AX2.
- step S2 may be executed after the drive process of step S1
- the drive process of step S1 may be executed after the drive process of step S2.
- the driving process of step S2 may be executed in parallel with the driving process of step S1.
- FIG. 7 is a diagram showing an example of an image obtained from the above camera 141 (see FIG. 6).
- the determination unit 54 After executing the drive processing in steps S1 and S2 (see FIG. 6) described above, the determination unit 54 outputs a photographing instruction to the camera 141 and acquires an image (first image) from the camera 141 .
- FIG. 7 shows an image IM1 as an example of an image obtained from the camera 141. As shown in FIG. The determination unit 54 determines whether the tool 134 can pass through the passage PS based on the image IM1.
- the determination unit 54 searches for the tool 134 in the image IM1 by executing predetermined image processing on the image IM1. More specifically, the determination unit 54 acquires in advance a background image in which the tool is not shown. When the determination unit 54 acquires the image IM1 obtained by photographing from the same viewpoint as the background image, the determination unit 54 subtracts the background image from the image IM1. Thereby, the determination unit 54 can obtain a background difference image obtained by removing the background from the image IM1. The determination unit 54 extracts an area having a pixel value equal to or greater than a predetermined value from the background difference image, and detects the area as a tool area AR.
- the determination unit 54 determines that the tool 134 cannot pass through the passage opening PS when at least part of the tool 134 is included in the image IM1. On the other hand, the determination unit 54 determines that the tool 134 can pass through the passage PS when the tool 134 is not included in the image IM1.
- the determination unit 54 determines that the tool 134 cannot pass through the passage opening PS when the tool 134 is shown in the image IM1. On the other hand, the determining unit 54 determines that the tool 134 can pass through the passage PS when the tool 134 is not shown in the image IM1.
- the determination unit 54 calculates the diameter of the tool 134 (hereinafter also referred to as "tool diameter") from the image IM1, and based on the tool diameter, the tool 134 can pass through the passage opening PS. or not.
- the tool diameter represents the length of the tool 134 in the direction orthogonal to the axial direction AX1 of the spindle 132. As shown in FIG.
- the tool diameter may be expressed in terms of radius or diameter.
- the determination unit 54 identifies the coordinate "x1" corresponding to the end of the tool area AR. Coordinate “x1” is identified by edge detection processing, for example.
- the determination unit 54 transforms the position "x1" represented by the coordinate system of the viewpoint of the camera 141 into the position "Z1" represented by the world coordinate system based on a predetermined coordinate transformation formula.
- the x direction of image IM1 corresponds to, for example, the Z direction of the world coordinate system (see FIG. 6).
- the y-direction of image IM1 corresponds to, for example, the Y-direction of the world coordinate system (see FIG. 6). That is, each pixel in the image IM1 corresponds to coordinates on the YZ plane of the world coordinate system.
- the coordinate transformation formula is uniquely determined.
- the determination unit 54 calculates the distance between the converted Z-coordinate "Z1" and the Z-coordinate of the position P0 (see FIG. 6) of the spindle 132 as the tool diameter.
- the determination unit 54 determines that the tool 134 cannot pass through the passage opening PS when the calculated tool diameter exceeds a predetermined value.
- the determination unit 54 determines that the tool 134 can pass through the passage opening PS when the calculated tool diameter does not exceed the predetermined value.
- the image processing is not limited to a method using background subtraction.
- the determination unit 54 may search for the tool 134 within the image IM1 using the learned model.
- a trained model is generated in advance by a learning process using a learning data set.
- the learning data set includes multiple learning images in which the tool 134 is shown. Each learning image is associated with the presence or absence of the tool 134 as a label.
- the internal parameters of the trained model are optimized in advance by learning processing using such a learning data set. As a result, when the learned model receives an image input, it outputs the probability that the tool 134 appears in the image.
- CNN convolutional neural network
- FCN full-layer convolutional neural network
- support vector machine etc.
- the determination unit 54 sequentially inputs partial images within the rectangular area to the learned model while shifting a predetermined rectangular area on the image IM1. Upon receiving an input of a partial image, the learned model outputs the probability that the tool 134 appears in the partial image. The determination unit 54 determines that the tool 134 is captured in the partial image in which the probability exceeds a predetermined value and has the maximum probability, and detects the partial image in the image IM1 as the tool area AR.
- the abnormality processing unit 56 carries out a predetermined abnormality handling process.
- the anomaly handling process includes the process of outputting a warning.
- the warning notifies that an excessively large tool 134 is attached to the spindle 132 .
- the warning output mode is arbitrary.
- the warning may be displayed on the display of machine tool 100, or may be output as a sound such as a buzzer sound or voice. By outputting the warning, the operator can notice that the excessively large tool 134 is attached to the spindle 132 before the tool 134 is stored in the tool storage area AR2.
- the abnormality handling process includes a process of stopping processing. Machining processing includes, for example, driving processing of the spindle 132 .
- FIG. 8 is a diagram showing the driving process of the spindle head 130 following FIG.
- the machine tool 100 further executes the driving process of steps S3 to S5 following the driving process of steps S1 and S2 (see FIG. 6).
- the machine tool 100 more reliably detects the oversized tool 134.
- step S3 it is assumed that the axial direction AX1 of the main shaft 132 is oriented in the direction D1 and the position P0 of the main shaft 132 is aligned with the predetermined position P1.
- step S4 the drive control section 52 controls the rotation drive section 110A (see FIG. 2) to change the axial direction AX1 of the main shaft 132 from the direction D1 to the direction D2 (second direction).
- the position of the tool 134 when the spindle 132 is oriented in the direction D2 is closer to the camera 141 than the position of the tool 134 when the spindle 132 is oriented in the direction D1.
- the determination unit 54 outputs a photographing instruction to the camera 141 at least one timing while the axial direction AX1 of the main shaft 132 is being changed from the direction D1 to the direction D2, and acquires an image (second image) from the camera 141 .
- the shooting instruction is output to the camera 141 at regular time intervals while the axial direction AX1 of the main shaft 132 is being changed from the direction D1 to the direction D2.
- FIG. 9 is a diagram showing an image IM2 obtained from the camera 141 according to the shooting instruction.
- the determination unit 54 determines whether the tool 134 can pass through the passage PS based on the image IM2. The determination method is as described with reference to FIG. 7, so description thereof will not be repeated.
- the abnormality processing unit 56 performs a predetermined abnormality handling process when the determination unit 54 determines that the tool 134 cannot pass through the passage opening PS. Through the processes of steps S3 and S4, the machine tool 100 can move the tool closer to the camera 141 while the position P0 of the spindle 132 is fixed, and can more reliably detect an excessively large tool.
- step S5 the drive control unit 52 controls the rotation drive unit 110A (see FIG. 2) so as to rotate the main shaft 132 about the axial direction AX1 of the main shaft 132 as the rotation axis.
- the main shaft 132 is rotated once with the axial direction AX1 as the rotation axis.
- the determination unit 54 outputs a photographing instruction to the camera 141 at least one timing while the main shaft 132 is rotating about the axial direction AX1 as the rotation axis, and acquires an image (third image) from the camera 141 .
- the shooting instruction is output to the camera 141 at regular time intervals while the main shaft 132 is rotating about the axial direction AX1 as the rotation axis.
- FIG. 10 is a diagram showing an image IM3 obtained from the camera 141 according to the shooting instruction.
- the determination unit 54 determines whether or not the tool 134 can pass through the passage PS based on the image IM3.
- the determination method is as described with reference to FIG. 7, so description thereof will not be repeated.
- the abnormality processing unit 56 performs a predetermined abnormality handling process when the determination unit 54 determines that the tool 134 cannot pass through the passage opening PS.
- the process of step S5 enables the machine tool 100 to detect an excessively large tool whose tool diameter is not constant.
- FIG. 11 is a diagram showing an example of the hardware configuration of the operation panel 20. As shown in FIG.
- the operation panel 20 includes a control circuit 201, a ROM (Read Only Memory) 202, a RAM (Random Access Memory) 203, a communication interface 204, a display 205, operation keys 206, and an auxiliary storage device 220. These components are connected to the internal bus B2.
- the control circuit 201 is composed of, for example, at least one integrated circuit.
- Integrated circuits include, for example, at least one CPU (Central Processing Unit), at least one GPU (Graphics Processing Unit), at least one ASIC (Application Specific Integrated Circuit), at least one FPGA (Field Programmable Gate Array), or It can be configured by a combination of
- the control circuit 201 controls the operation of the operation panel 20 by executing various programs such as the control program 222 .
- the control program 222 defines commands for controlling the operation panel 20 .
- the control circuit 201 reads the control program 222 from the auxiliary storage device 220 or the ROM 202 to the RAM 203 based on the reception of the instruction to execute the control program 222 .
- the RAM 203 functions as a working memory and temporarily stores various data necessary for executing the control program 222 .
- the communication interface 204 is a communication unit for realizing communication using a LAN (Local Area Network) cable, WLAN, Bluetooth (registered trademark), or the like.
- the operation panel 20 realizes communication with external devices such as the CNC unit 30 via the communication interface 204 .
- the display 205 is, for example, a liquid crystal display, organic EL display, or other display device.
- the display 205 sends an image signal for displaying an image to the display 205 according to a command from the control circuit 201 or the like.
- the display 205 is configured by, for example, a touch panel, and receives various operations for the machine tool 100 by touch operations.
- the operation key 206 is composed of a plurality of hardware keys and accepts various user operations on the operation panel 20. A signal corresponding to the pressed key is output to the control circuit 201 . As an example, the operation key 206 accepts a tool storage operation.
- the auxiliary storage device 220 is, for example, a storage medium such as a hard disk or flash memory.
- the auxiliary storage device 220 stores a control program 222 and the like.
- the storage location of the control program 222 is not limited to the auxiliary storage device 220, but may be stored in the storage area of the control circuit 201 (for example, cache memory), ROM 202, RAM 203, external equipment (for example, server), or the like.
- control program 222 may be provided not as a standalone program but as part of an arbitrary program. In this case, various processes according to the present embodiment are implemented in cooperation with arbitrary programs. Even a program that does not include such a part of modules does not deviate from the gist of control program 222 according to the present embodiment. Furthermore, some or all of the functions provided by control program 222 may be implemented by dedicated hardware. Furthermore, the control panel 20 may be configured in a form like a so-called cloud service in which at least one server executes part of the processing of the control program 222 .
- FIG. 12 is a diagram showing an example of the hardware configuration of the CNC unit 30. As shown in FIG.
- the CNC unit 30 includes a control circuit 301 , a ROM 302 , a RAM 303 , communication interfaces 304 and 305 , a fieldbus controller 306 and an auxiliary storage device 320 . These components are connected to the internal bus B3.
- the control circuit 301 is composed of, for example, at least one integrated circuit.
- An integrated circuit may be comprised of, for example, at least one CPU, at least one GPU, at least one ASIC, at least one FPGA, or combinations thereof.
- the control circuit 301 controls the operation of the CNC unit 30 by executing various programs such as a control program 322 and a machining program 324.
- the control circuit 301 reads the control program 322 from the ROM 302 to the RAM 303 based on the acceptance of the instruction to execute the control program 322 .
- the RAM 303 functions as a working memory and temporarily stores various data necessary for executing the control program 322 .
- Communication interfaces 304 and 305 are communication units for realizing communication using LAN, WLAN, Bluetooth, or the like.
- CNC unit 30 exchanges data with an external device (for example, operation panel 20 ) via communication interface 304 . Also, the CNC unit 30 exchanges data with an external device (for example, the information processing device 40) via the communication interface 305.
- FIG. 1 A block diagram illustrating an exemplary computing environment in accordance with the present disclosure.
- the fieldbus controller 306 is a communication unit for realizing communication with various units connected to the fieldbus. Examples of units connected to the field bus include the above-described rotation driving section 110A and the above-described position driving section 110B.
- the auxiliary storage device 320 is, for example, a storage medium such as a hard disk or flash memory.
- the auxiliary storage device 320 stores a control program 322, a machining program 324, setting information 326, and the like.
- the control program 322 includes, for example, a drive program 323 for realizing the drive processing of the spindle 132 described above with reference to FIGS. 6 and 8, and the like.
- the setting information 326 includes various parameters referred to in the oversized tool detection process.
- the parameters include, for example, the above-described position P1 and angle parameters corresponding to the above-described directions D1 and D2.
- the storage locations of the control program 322, the machining program 324, and the setting information 326 are not limited to the auxiliary storage device 320, but are storage areas of the control circuit 301 (eg, cache memory), ROM 302, RAM 303, external devices (eg, servers). and so on.
- control program 322 may be provided as a part of an arbitrary program, not as a standalone program. In this case, various processes according to the present embodiment are implemented in cooperation with arbitrary programs. Even a program that does not include such a part of modules does not deviate from the gist of control program 322 according to the present embodiment. Furthermore, some or all of the functions provided by control program 322 may be implemented by dedicated hardware. Furthermore, the CNC unit 30 may be configured as a so-called cloud service in which at least one server executes part of the processing of the control program 322 .
- FIG. 13 is a diagram showing an example of the hardware configuration of the information processing device 40. As shown in FIG.
- the information processing device 40 includes a control circuit 401 , a ROM 402 , a RAM 403 , communication interfaces 404 and 405 and an auxiliary storage device 420 . These components are connected to the internal bus B4.
- the control circuit 401 is composed of, for example, at least one integrated circuit.
- An integrated circuit may be comprised of, for example, at least one CPU, at least one GPU, at least one ASIC, at least one FPGA, or combinations thereof.
- the control circuit 401 controls the operation of the information processing device 40 by executing various programs such as the control program 422 .
- the control circuit 401 reads a program to be executed from the auxiliary storage device 420 or the ROM 402 to the RAM 403 on the basis of receiving execution instructions for various programs.
- a RAM 403 functions as a working memory and temporarily stores various data necessary for program execution.
- the communication interface 404 is a communication unit for realizing communication using LAN, WLAN, Bluetooth, or the like.
- Information processing device 40 exchanges data with an external device (for example, CNC unit 30 ) via communication interface 404 .
- Information processing apparatus 40 also exchanges image data with an external device (for example, camera 141 ) via communication interface 405 .
- the auxiliary storage device 420 is, for example, a storage medium such as a hard disk or flash memory.
- Auxiliary storage device 420 stores a control program 422 and the like.
- the control program 422 includes, for example, an image processing program 423 for implementing the image processing described with reference to FIGS. 7, 9 and 10 above.
- the storage location of the control program 422 is not limited to the auxiliary storage device 420, and may be stored in the storage area of the control circuit 401 (for example, cache memory, etc.), ROM 402, RAM 403, external equipment (for example, server), or the like. .
- control program 422 may be provided as a part of an arbitrary program, not as a standalone program. In this case, processing according to the present embodiment is realized in cooperation with an arbitrary program. Even a program that does not include some of such modules does not deviate from the gist of machine tool 100 according to the present embodiment. Furthermore, part or all of the functions provided by control program 422 according to the present embodiment may be implemented by dedicated hardware. Furthermore, machine tool 100 and a server may work together to realize the processing according to the present embodiment. Furthermore, information processing apparatus 40 may be configured in the form of a so-called cloud service in which at least one server implements processing according to the present embodiment.
- FIG. 14 is a flow chart showing part of the processing executed by the control unit 50 of the machine tool 100. As shown in FIG. 14
- Part or all of the processing shown in FIG. 14 is implemented in the control program 222 described above (see FIG. 11), the control program 322 described above (see FIG. 12), or the control program 422 described above (see FIG. 13). . In other aspects, some or all of the processing shown in FIG. 14 may be implemented in circuit elements or other hardware.
- the control unit 50 determines whether or not a tool storage instruction has been received.
- the storage instruction is issued, for example, based on execution of a tool storage instruction in the machining program 324 (see FIG. 12). Alternatively, the storage instruction is issued based on the operator performing a tool storage operation on the operation panel 20 .
- control unit 50 determines that the tool storage instruction has been received (YES in step S110)
- control unit 50 switches control to step S112. Otherwise (NO in step S110), control unit 50 terminates the process shown in FIG.
- step S112 the control unit 50 functions as the drive control unit 52 (see FIG. 5) described above, and turns the axial direction AX1 of the main shaft 132 in the direction D1 (see FIG. 6) with the Y-axis direction as the rotation axis.
- the axial direction AX1 of the main shaft 132 is parallel to the partition PA or the passage PS.
- step S114 the control unit 50 functions as the drive control unit 52 described above, and moves the spindle 132 to a predetermined position P1 (see FIG. 6) within the processing area AR1.
- step S ⁇ b>116 the control unit 50 outputs a shooting instruction to the camera 141 . Thereby, the control unit 50 acquires the image IM1 (see FIG. 7) from the camera 141.
- FIG. 7 the image IM1 (see FIG. 7) from the camera 141.
- step S120 the control unit 50 functions as the determination unit 54 (see FIG. 5) described above, and determines whether the tool 134 can pass through the passage opening PS based on the image IM1 obtained in step S116. to decide.
- the determination method is as described with reference to FIG. 7, so description thereof will not be repeated.
- control unit 50 determines that tool 134 can pass through passage PS (YES in step S120)
- control unit 50 switches control to step S122. Otherwise (NO in step S120), control unit 50 switches control to step S150.
- step S122 the control unit 50 functions as the drive control unit 52 described above, and starts rotating the main shaft 132 from the direction D1 to the direction D2 (see FIG. 8) with the Y-axis direction as the rotation axis.
- the controller 50 rotates the main shaft 132 in a direction in which the tool 134 attached to the main shaft 132 approaches the camera 141 .
- step S ⁇ b>124 the control unit 50 outputs a shooting instruction to the camera 141 . Thereby, the control unit 50 acquires the image IM2 (see FIG. 9) from the camera 141.
- FIG. 1 the image IM2 (see FIG. 9) from the camera 141.
- control unit 50 functions as the determination unit 54 described above, and determines whether or not the tool 134 can pass through the passage opening PS based on the image IM2 obtained at step S124.
- the determination method is as described with reference to FIG. 9, so description thereof will not be repeated.
- control unit 50 determines that tool 134 can pass through passage PS (YES in step S126)
- control unit 50 switches control to step S130. Otherwise (NO in step S126), control unit 50 switches control to step S150.
- step S130 the control section 50 functions as the drive control section 52 described above, and determines whether or not the axial direction AX1 of the main shaft 132 faces the direction D2.
- the control unit 50 determines that the axial direction AX1 of the main shaft 132 faces the direction D2 (YES in step S130)
- the control is switched to step S132. Otherwise (NO in step S130), control unit 50 returns the control to step S124.
- the control is returned to step S124, for example, after a certain period of time (for example, 0.1 seconds).
- step S132 the control unit 50 functions as the drive control unit 52 described above, and starts rotating the main shaft 132 with the axial direction AX1 of the main shaft 132 as the rotation axis.
- step S ⁇ b>134 the control unit 50 outputs a shooting instruction to the camera 141 . Thereby, the control unit 50 acquires the image IM3 (see FIG. 10) from the camera 141.
- FIG. 10 the image IM3 (see FIG. 10) from the camera 141.
- control unit 50 functions as the determination unit 54 described above, and determines whether or not the tool 134 can pass through the passage opening PS based on the image IM3 obtained at step S134.
- the determination method is as described with reference to FIG. 10, so description thereof will not be repeated.
- control unit 50 determines that tool 134 can pass through passage opening PS (YES in step S136)
- control unit 50 switches control to step S140. Otherwise (NO in step S136), control unit 50 switches control to step S150.
- control unit 50 functions as the above-described drive control unit 52, and determines whether or not the main shaft 132 has made one revolution after the start of rotation of the main shaft 132 at step S132.
- control unit 50 determines that main shaft 132 has made one rotation (YES in step S140)
- the process shown in FIG. 14 ends. Otherwise (NO in step S140), control unit 50 returns the control to step S134.
- the control is returned to step S134, for example, after a certain period of time (for example, 0.1 seconds).
- step S150 the control unit 50 functions as the above-described abnormality processing unit 56 (see FIG. 5), and performs predetermined abnormality handling processing.
- the abnormality handling process is, for example, a process of outputting a warning indicating excessive tool size.
- the abnormality handling process is a process of stopping the processing.
- the machine tool 100 determines whether the tool 134 can pass through the passage PS before storing the tool 134 from the machining area AR1 to the tool storage area AR2. Thereby, the machine tool 100 can prevent the tool 134 from colliding with the partition PA.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Human Computer Interaction (AREA)
- Manufacturing & Machinery (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Optics & Photonics (AREA)
- Numerical Control (AREA)
- Automatic Tool Replacement In Machine Tools (AREA)
- Machine Tool Sensing Apparatuses (AREA)
Abstract
Provided is a technique for detecting an excessively large tool that cannot pass through a passage port. This machine tool has a machining area and a tool accommodation area that is partitioned from the machining area by a partition. The partition has a passage port formed therein. The machine tool is provided with: a camera which is so disposed as to capture an image of a tool passing through the passage port; a rotary drive unit which rotationally drives a spindle; a position drive unit which moves the position of the spindle; and a control unit for controlling the machine tool. The control unit executes: a process for, prior to accommodating a tool in the tool accommodation area, controlling the position drive unit so as to bring the spindle to a predetermined position within the machining area and controlling the rotary drive unit to cause the axial direction of the spindle to be oriented toward a predetermined direction; a process for determining, on the basis of an image obtained from the camera, whether or not the tool can pass through the passage port; and a process for implementing predetermined anomaly countermeasure processing on the basis of a determination that it is impossible for the tool to pass through the passage port.
Description
本開示は、通過口に対して過大な工具を検出するための技術に関する。
The present disclosure relates to technology for detecting tools that are excessively large relative to the passage opening.
近年、カメラを備えた工作機械が普及している。当該工作機械に関し、特開2014-163807号公報(特許文献1)は、工作機械内に設けられているカメラを用いて工具の形状を測定することが可能な工作機械を開示している。
In recent years, machine tools equipped with cameras have become popular. Regarding the machine tool, Japanese Patent Application Laid-Open No. 2014-163807 (Patent Document 1) discloses a machine tool capable of measuring the shape of the tool using a camera provided in the machine tool.
近年、ワークの加工を行う加工エリアと、複数の工具を収納する工具収納エリアとを有する工作機械が普及している。加工エリアおよび工具収納エリアは、仕切によって区分けされている。当該仕切には通過口が設けられており、工作機械は、当該通過口を介して、加工エリアにある使用済の工具と、工具収納エリアに収納されている工具とを交換する。
In recent years, machine tools that have a machining area for machining workpieces and a tool storage area for storing multiple tools have become widespread. The machining area and the tool storage area are separated by partitions. A passage opening is provided in the partition, and the machine tool exchanges the used tool in the machining area with the tool stored in the tool storage area through the passage opening.
作業者は、加工エリアにある主軸に対して工具を手動で装着することがある。このとき、過大な工具が主軸に装着されると、当該工具は、工具収納エリアに収納される際に上記通過口を通過できない可能性がある。したがって、当該通過口を通過できないような過大な工具を検出するための技術が望まれている。なお、特許文献1に開示される技術は、過大な工具を検出するためのものではない。
The worker may manually attach the tool to the spindle in the machining area. At this time, if an excessively large tool is attached to the spindle, the tool may not be able to pass through the passage opening when stored in the tool storage area. Therefore, there is a demand for a technique for detecting excessively large tools that cannot pass through the passage opening. Note that the technique disclosed in Patent Document 1 is not for detecting an excessively large tool.
本開示の一例では、工作機械は、工具を装着可能な主軸が設けられている加工エリアと、仕切りによって上記加工エリアと区分けされている工具収納エリアとを備える。上記仕切りには通過口が設けられている。上記主軸に装着されている工具は、上記通過口を通過して上記工具収納エリアに収容される。上記工作機械は、さらに、上記通過口を通過する上記工具を撮影するように設けられたカメラと、上記主軸を回転駆動するための回転駆動部と、上記主軸の位置を移動するための位置駆動部と、上記工作機械を制御するための制御部とを備える。上記制御部は、上記工具収納エリアに上記工具を収容する前に、上記加工エリア内の予め定められた位置に上記主軸が位置するように上記位置駆動部を制御するとともに、上記主軸の軸方向が予め定められた第1方向を向くように上記回転駆動部を制御する処理と、上記制御する処理の実行後、上記カメラに撮影指示を出力し、当該カメラから第1画像を取得する処理と、上記第1画像に基づいて、上記工具が上記通過口を通過可能であるか否かを判断する処理と、上記工具が上記通過口を通過不可能であると判断されたことに基づいて、予め定められた異常対処処理を実施する処理と、を実行する。
In one example of the present disclosure, a machine tool includes a machining area provided with a tool-mountable spindle, and a tool storage area separated from the machining area by a partition. A passage opening is provided in the partition. A tool attached to the spindle passes through the passage opening and is stored in the tool storage area. The machine tool further includes a camera provided to photograph the tool passing through the passage opening, a rotation drive unit for rotating the spindle, and a position drive for moving the position of the spindle. and a controller for controlling the machine tool. The control unit controls the position driving unit so that the spindle is positioned at a predetermined position in the machining area before storing the tool in the tool storage area, and controls the position driving unit to position the spindle in the axial direction of the spindle. A process of controlling the rotation drive unit so that it faces a predetermined first direction, and a process of outputting a shooting instruction to the camera after execution of the control process and acquiring a first image from the camera a process of determining whether or not the tool can pass through the passage opening based on the first image; and based on the determination that the tool cannot pass through the passage opening, and a process of executing a predetermined abnormality handling process.
本開示の一例では、上記制御部は、さらに、上記制御する処理の実行後、上記主軸の軸方向を上記予め定められた第1方向から予め定められた第2方向に変化させるように上記回転駆動部を制御する処理と、上記主軸の軸方向を上記予め定められた第1方向から上記予め定められた第2方向に変化させている間の少なくとも一タイミングにおいて上記カメラに撮影指示を出力し、当該カメラから第2画像を取得する処理と、上記第2画像に基づいて、上記工具が上記通過口を通過可能であるか否かを判断する処理と、を実行する。
In one example of the present disclosure, the control unit further includes, after executing the controlling process, the rotation of the main shaft so as to change the axial direction of the main shaft from the predetermined first direction to a predetermined second direction. and outputting a photographing instruction to the camera at least one timing during the process of controlling the drive unit and changing the axial direction of the main shaft from the predetermined first direction to the predetermined second direction. , a process of acquiring a second image from the camera, and a process of determining whether or not the tool can pass through the passage opening based on the second image.
本開示の一例では、上記制御部は、さらに、上記主軸の軸方向が上記予め定められた第2方向に向いたことに基づいて、上記主軸の軸方向を回転軸として上記主軸を回転させるように上記回転駆動部を制御する処理と、上記軸方向を回転軸として上記主軸を回転させている間の少なくとも一タイミングにおいて上記カメラに撮影指示を出力し、当該カメラから第3画像を取得する処理と、上記第3画像に基づいて、上記工具が上記通過口を通過可能であるか否かを判断する処理と、を実行する。
In one example of the present disclosure, the control unit further rotates the main shaft about the axial direction of the main shaft as a rotation axis based on the fact that the axial direction of the main shaft is oriented in the predetermined second direction. and a process of outputting a photographing instruction to the camera at least one timing while the main shaft is rotating about the axial direction as a rotation axis, and obtaining a third image from the camera. and a process of determining whether or not the tool can pass through the passage opening based on the third image.
本開示の一例では、上記主軸の軸方向が上記予め定められた第1方向を向いているときに、上記主軸の軸方向は、上記仕切りと平行となる。
In one example of the present disclosure, when the axial direction of the main shaft faces the predetermined first direction, the axial direction of the main shaft is parallel to the partition.
本開示の一例では、上記第1画像に基づいて、上記工具が上記通過口を通過可能であるか否かを判断する処理は、上記第1画像内における上記工具の位置に基づいて、上記主軸の軸方向と直交する方向における上記工具の径を算出する処理と、上記径が予め定められた値を超えている場合に、上記工具が上記通過口を通過不可能と判断する処理とを含む。
In one example of the present disclosure, the process of determining whether or not the tool can pass through the passage opening based on the first image includes: and a process of determining that the tool cannot pass through the passage opening when the diameter exceeds a predetermined value. .
本開示の一例では、上記制御部は、上記第1画像に上記工具の少なくとも一部が含まれている場合に、上記工具が上記通過口を通過不可能と判断する。
In one example of the present disclosure, the control unit determines that the tool cannot pass through the passage opening when at least part of the tool is included in the first image.
本開示の他の例では、工作機械の制御方法が提供される。上記工作機械は、工具を装着可能な主軸が設けられている加工エリアと、仕切りによって上記加工エリアと区分けされている工具収納エリアとを備える。上記仕切りには通過口が設けられている。上記主軸に装着されている工具は、上記通過口を通過して上記工具収納エリアに収容される。上記工作機械は、さらに、上記通過口を通過する上記工具を撮影するように設けられたカメラを備える。上記制御方法は、上記工具収納エリアに上記工具を収容する前に、上記加工エリア内の予め定められた位置に上記主軸を移動するとともに、上記主軸の軸方向が予め定められた方向を向くように上記主軸を回転するステップと、上記回転するステップの実行後、上記カメラに撮影指示を出力し、当該カメラから画像を取得するステップと、上記画像に基づいて、上記工具が上記通過口を通過可能であるか否かを判断するステップと、上記工具が上記通過口を通過不可能であると判断されたことに基づいて、予め定められた異常対処処理を実施するステップと、を備える。
Another example of the present disclosure provides a control method for a machine tool. The machine tool includes a machining area provided with a spindle on which tools can be mounted, and a tool storage area separated from the machining area by a partition. A passage opening is provided in the partition. A tool attached to the spindle passes through the passage opening and is stored in the tool storage area. The machine tool further comprises a camera arranged to photograph the tool passing through the passage opening. The control method moves the spindle to a predetermined position in the machining area before storing the tool in the tool storage area, and sets the axial direction of the spindle to a predetermined direction. outputting a photographing instruction to the camera after executing the rotating step, acquiring an image from the camera; and allowing the tool to pass through the passage opening based on the image. The step of determining whether or not it is possible, and the step of performing a predetermined abnormality countermeasure process based on the determination that the tool cannot pass through the passage opening are provided.
本開示の他の例では、工作機械の制御プログラムが提供される。上記工作機械は、工具を装着可能な主軸が設けられている加工エリアと、仕切りによって上記加工エリアと区分けされている工具収納エリアとを備える。上記仕切りには通過口が設けられている。上記主軸に装着されている工具は、上記通過口を通過して上記工具収納エリアに収容される。上記工作機械は、さらに、上記通過口を通過する上記工具を撮影するように設けられたカメラと、上記制御プログラムは、上記工作機械に、上記工具収納エリアに上記工具を収容する前に、上記加工エリア内の予め定められた位置に上記主軸を移動するとともに、上記主軸の軸方向が予め定められた方向を向くように上記主軸を回転するステップと、上記回転するステップの実行後、上記カメラに撮影指示を出力し、当該カメラから画像を取得するステップと、上記画像に基づいて、上記工具が上記通過口を通過可能であるか否かを判断するステップと、上記工具が上記通過口を通過不可能であると判断されたことに基づいて、予め定められた異常対処処理を実施するステップと、を実行させる。
Another example of the present disclosure provides a machine tool control program. The machine tool includes a machining area provided with a spindle on which tools can be mounted, and a tool storage area separated from the machining area by a partition. A passage opening is provided in the partition. A tool attached to the spindle passes through the passage opening and is stored in the tool storage area. The machine tool further includes a camera provided to photograph the tool passing through the passage opening, and the control program causes the machine tool to store the tool in the tool storage area. moving the main shaft to a predetermined position within the processing area and rotating the main shaft so that the axial direction of the main shaft faces a predetermined direction; obtaining an image from the camera; determining whether or not the tool can pass through the passage opening based on the image; and and executing a predetermined abnormality coping process based on the judgment that passage is impossible.
本発明の上記および他の目的、特徴、局面および利点は、添付の図面と関連して理解される本発明に関する次の詳細な説明から明らかとなるであろう。
The above and other objects, features, aspects and advantages of the present invention will become apparent from the following detailed description of the present invention understood in conjunction with the accompanying drawings.
以下、図面を参照しつつ、本発明に従う各実施の形態について説明する。以下の説明では、同一の部品および構成要素には同一の符号を付してある。それらの名称および機能も同じである。したがって、これらについての詳細な説明は繰り返さない。なお、以下で説明される各実施の形態および各変形例は、適宜選択的に組み合わされてもよい。
Each embodiment according to the present invention will be described below with reference to the drawings. In the following description, identical parts and components are given identical reference numerals. Their names and functions are also the same. Therefore, detailed description of these will not be repeated. In addition, each embodiment and each modified example described below may be selectively combined as appropriate.
<A.工作機械100の構成>
まず、図1を参照して、工作機械100の構成について説明する。図1は、工作機械100の外観を示す図である。 <A. Configuration ofMachine Tool 100>
First, the configuration of themachine tool 100 will be described with reference to FIG. FIG. 1 is a diagram showing the appearance of a machine tool 100. As shown in FIG.
まず、図1を参照して、工作機械100の構成について説明する。図1は、工作機械100の外観を示す図である。 <A. Configuration of
First, the configuration of the
工作機械100は、ワークの加工機である。一例として、工作機械100は、ワークの除去加工(SM(Subtractive manufacturing)加工)を行う工作機械である。あるいは、工作機械100は、ワークの付加加工(AM(Additive manufacturing)加工)を行う工作機械であってもよい。また、工作機械100は、立形のマシニングセンタや横形のマシニングセンタやターニングセンタであってもよい。あるいは、工作機械100は、旋盤であってもよいし、その他の切削機械や研削機械であってもよい。さらに、工作機械は、これらを複合した複合機であってもよい。
The machine tool 100 is a work processing machine. As an example, the machine tool 100 is a machine tool that performs subtractive manufacturing (SM) machining of a workpiece. Alternatively, the machine tool 100 may be a machine tool that performs additive manufacturing (AM) of a work. Machine tool 100 may be a vertical machining center, a horizontal machining center, or a turning center. Alternatively, machine tool 100 may be a lathe or other cutting or grinding machine. Furthermore, the machine tool may be a compound machine in which these are combined.
工作機械100には、操作盤20が設けられている。操作盤20は、加工に関する各種情報を表示するためのディスプレイ205と、工作機械100に対する各種操作を受け付ける操作キー206とを含む。
A machine tool 100 is provided with an operation panel 20 . The operation panel 20 includes a display 205 for displaying various information regarding machining, and operation keys 206 for accepting various operations for the machine tool 100 .
工作機械100は、加工エリアAR1と、工具収納エリアAR2とを有する。加工エリアAR1および工具収納エリアAR2のそれぞれは、カバーによって区画化されている。
The machine tool 100 has a machining area AR1 and a tool storage area AR2. Each of the machining area AR1 and the tool storage area AR2 is partitioned by a cover.
加工エリアAR1には、工具を装着可能な主軸頭130が設けられている。工作機械100は、工具が取り付けられた主軸132の駆動を制御することでワークを加工する。
A spindle head 130 to which a tool can be attached is provided in the machining area AR1. The machine tool 100 processes a work by controlling the driving of a spindle 132 to which tools are attached.
工具収納エリアAR2は、仕切りPAによって加工エリアAR1と区分けされる。工具収納エリアAR2には、ATC160と、マガジン170とが設けられている。マガジン170は、ワークの加工に用いられる種々の工具を収納する。マガジン170に収納されている工具は、仕切りPAに設けられている通過口PSを介して主軸頭130に取り付けられる。通過口PSには、スライド式のドアが取り付けられる。当該ドアは、モータなどの駆動源により開閉される。
The tool storage area AR2 is separated from the processing area AR1 by a partition PA. An ATC 160 and a magazine 170 are provided in the tool storage area AR2. The magazine 170 stores various tools used for machining the workpiece. The tools stored in the magazine 170 are attached to the spindle head 130 through the passage PS provided in the partition PA. A sliding door is attached to the passage PS. The door is opened and closed by a drive source such as a motor.
説明の便宜のために、以下では、鉛直方向を「X方向」と称し、仕切りPAに直交する方向を「Z方向」と称し、X方向およびZ方向の両方に直交する方向を「Y方向」と称する。
For convenience of explanation, the vertical direction is hereinafter referred to as the "X direction", the direction perpendicular to the partition PA is referred to as the "Z direction", and the direction perpendicular to both the X direction and the Z direction is referred to as the "Y direction". called.
<B.工作機械100の駆動機構>
次に、図2を参照して、工作機械100における各種の駆動機構について説明する。図2は、工作機械100における駆動機構の構成例を示す図である。 <B. Drive Mechanism ofMachine Tool 100>
Next, various drive mechanisms in themachine tool 100 will be described with reference to FIG. FIG. 2 is a diagram showing a configuration example of a drive mechanism in the machine tool 100. As shown in FIG.
次に、図2を参照して、工作機械100における各種の駆動機構について説明する。図2は、工作機械100における駆動機構の構成例を示す図である。 <B. Drive Mechanism of
Next, various drive mechanisms in the
図2に示されるように、工作機械100は、制御部50と、回転駆動部110Aと、位置駆動部110Bと、主軸頭130と、測定部140とを含む。
As shown in FIG. 2, the machine tool 100 includes a control section 50, a rotation drive section 110A, a position drive section 110B, a spindle head 130, and a measurement section 140.
本明細書でいう「制御部50」とは、工作機械100を制御する装置を意味する。制御部50の装置構成は、任意である。制御部50は、単体の制御ユニットで構成されてもよいし、複数の制御ユニットで構成されてもよい。図2の例では、制御部50は、操作盤20と、CNCユニット30と、情報処理装置40とで構成されている。
The "control unit 50" referred to in this specification means a device that controls the machine tool 100. The device configuration of the control unit 50 is arbitrary. The control section 50 may be composed of a single control unit, or may be composed of a plurality of control units. In the example of FIG. 2 , the control section 50 is composed of the operation panel 20 , the CNC unit 30 and the information processing device 40 .
操作盤20およびCNCユニット30は、たとえば、通信経路NW1(たとえば、無線LAN、有線LAN、フィールドネットワークなど)を介して互いに通信を行う。CNCユニット30および情報処理装置40は、たとえば、通信経路NW2(たとえば、無線LAN、有線LAN、フィールドネットワークなど)を介して互いに通信を行う。
The operation panel 20 and the CNC unit 30 communicate with each other, for example, via a communication path NW1 (eg, wireless LAN, wired LAN, field network, etc.). CNC unit 30 and information processing device 40 communicate with each other, for example, via communication path NW2 (eg, wireless LAN, wired LAN, field network, etc.).
CNCユニット30は、加工開始指令を受けたことに基づいて、予め設計されている加工プログラムの実行を開始する。当該加工プログラムは、たとえば、NC(Numerical Control)プログラムで記述されている。CNCユニット30は、当該加工プログラムに従って、回転駆動部110Aおよび位置駆動部110Bを制御し、主軸頭130を駆動する。
Upon receiving the machining start command, the CNC unit 30 starts executing a pre-designed machining program. The machining program is written in, for example, an NC (Numerical Control) program. The CNC unit 30 controls the rotation drive section 110A and the position drive section 110B to drive the spindle head 130 according to the machining program.
情報処理装置40は、汎用のコンピュータである。一例として、情報処理装置40は、デスクトップ型のコンピュータであってもよいし、ノート型のコンピュータであってもよいし、タブレット端末であってもよい。情報処理装置40には、画像処理プログラムがインストールされており、測定部140から取得した画像に対して種々の画像処理を実行する。
The information processing device 40 is a general-purpose computer. As an example, the information processing device 40 may be a desktop computer, a notebook computer, or a tablet terminal. An image processing program is installed in the information processing device 40 , and various image processing is performed on the image acquired from the measurement unit 140 .
主軸頭130は、主軸筒131と、主軸132とを含む。主軸132は、主軸筒131により回転可能に支持されている。主軸132にはマガジン170(図1参照)から選択された一の工具134が装着される。工具134は、主軸132と連動して回転する。
The spindle head 130 includes a spindle tube 131 and a spindle 132 . The main shaft 132 is rotatably supported by the main shaft tube 131 . A tool 134 selected from a magazine 170 (see FIG. 1) is mounted on the spindle 132 . The tool 134 rotates in conjunction with the spindle 132 .
回転駆動部110Aは、主軸132の角度を変えるための駆動機構である。一例として、回転駆動部110Aは、X軸方向を回転軸中心とした回転方向(A軸)、Y軸方向を回転軸中心とした回転方向(B軸)、および、Z軸方向を回転軸中心とした回転方向(C軸)の少なくとも1つの角度を調整する。回転駆動部110Aの装置構成は、任意である。回転駆動部110Aは、単体の駆動ユニットで構成されてもよいし、複数の駆動ユニットで構成されてもよい。図2の例では、回転駆動部110Aは、サーボドライバ111B、111Cで構成されている。
The rotation drive section 110A is a drive mechanism for changing the angle of the main shaft 132. As an example, the rotation driving unit 110A rotates in a rotation direction centered on the X-axis direction (A-axis), a rotation direction centered on the Y-axis direction (B-axis), and a rotation center centered on the Z-axis direction. At least one angle of the rotation direction (C axis) is adjusted. The device configuration of the rotation drive unit 110A is arbitrary. The rotation driving section 110A may be composed of a single driving unit, or may be composed of a plurality of driving units. In the example of FIG. 2, the rotation driving section 110A is composed of servo drivers 111B and 111C.
位置駆動部110Bは、主軸132の位置を変えるための駆動機構である。一例として、位置駆動部110Bは、X軸方向、Y軸方向およびZ軸方向の少なくとも1つの位置を調整する。位置駆動部110Bの装置構成は、任意である。位置駆動部110Bは、単体の駆動ユニットで構成されてもよいし、複数の駆動ユニットで構成されてもよい。図2の例では、位置駆動部110Bは、サーボドライバ111X~111Zで構成されている。
The position drive section 110B is a drive mechanism for changing the position of the main shaft 132. As an example, position driver 110B adjusts at least one position in the X-axis direction, Y-axis direction, and Z-axis direction. The device configuration of the position driving section 110B is arbitrary. The position driving section 110B may be composed of a single driving unit, or may be composed of a plurality of driving units. In the example of FIG. 2, the position driving section 110B is composed of servo drivers 111X to 111Z.
サーボドライバ111Bは、CNCユニット30から目標回転速度の入力を逐次的に受け、B軸方向に主軸頭130を回転駆動するためのサーボモータ(図示しない)を制御する。
The servo driver 111B sequentially receives input of the target rotational speed from the CNC unit 30 and controls a servomotor (not shown) for rotating the spindle head 130 in the B-axis direction.
より具体的には、サーボドライバ111Bは、当該サーボモータの回転角度を検出するためのエンコーダ(図示しない)のフィードバック信号から当該サーボモータの実回転速度を算出し、当該実回転速度が目標回転速度よりも小さい場合には当該サーボモータの回転速度を上げ、当該実回転速度が目標回転速度よりも大きい場合には当該サーボモータの回転速度を下げる。このように、サーボドライバ111Bは、当該サーボモータの回転速度のフィードバックを逐次的に受けながら当該サーボモータの回転速度を目標回転速度に近付ける。これにより、サーボドライバ111Bは、B軸方向における主軸頭130の回転速度を調整する。
More specifically, the servo driver 111B calculates the actual rotation speed of the servomotor from a feedback signal of an encoder (not shown) for detecting the rotation angle of the servomotor, and the actual rotation speed is the target rotation speed. If the actual rotation speed is higher than the target rotation speed, the rotation speed of the servo motor is lowered. In this way, the servo driver 111B brings the rotation speed of the servomotor closer to the target rotation speed while sequentially receiving the feedback of the rotation speed of the servomotor. Thereby, the servo driver 111B adjusts the rotational speed of the spindle head 130 in the B-axis direction.
サーボドライバ111Cは、CNCユニット30から目標回転速度の入力を逐次的に受け、主軸132の軸方向を回転中心とした回転方向に主軸132を回転駆動するためのサーボモータ(図示しない)を制御する。
The servo driver 111C sequentially receives input of the target rotational speed from the CNC unit 30, and controls a servomotor (not shown) for rotationally driving the main shaft 132 in a rotational direction about the axial direction of the main shaft 132. .
より具体的には、サーボドライバ111Cは、当該サーボモータの回転角度を検出するためのエンコーダ(図示しない)のフィードバック信号から当該サーボモータの実回転速度を算出し、当該実回転速度が目標回転速度よりも小さい場合には当該サーボモータの回転速度を上げ、当該実回転速度が目標回転速度よりも大きい場合には当該サーボモータの回転速度を下げる。このように、サーボドライバ111Cは、当該サーボモータの回転速度のフィードバックを逐次的に受けながら当該サーボモータの回転速度を目標回転速度に近付ける。これにより、サーボドライバ111Cは、主軸132の軸方向を回転中心とした回転方向において主軸132の回転速度を調整する。
More specifically, the servo driver 111C calculates the actual rotation speed of the servomotor from a feedback signal of an encoder (not shown) for detecting the rotation angle of the servomotor, and the actual rotation speed is the target rotation speed. If the actual rotation speed is higher than the target rotation speed, the rotation speed of the servo motor is lowered. In this way, the servo driver 111C brings the rotation speed of the servomotor closer to the target rotation speed while sequentially receiving the feedback of the rotation speed of the servomotor. Thereby, the servo driver 111C adjusts the rotation speed of the main shaft 132 in the rotation direction with the axial direction of the main shaft 132 as the rotation center.
サーボドライバ111Xは、CNCユニット30から目標位置の入力を逐次的に受け、サーボモータ(図示しない)を制御する。当該サーボモータは、主軸頭130が取り付けられている移動体をボールネジ(図示しない)を介して送り駆動し、X軸方向の任意の位置に主軸頭130を移動する。サーボドライバ111Xによる当該サーボモータの制御方法は、サーボドライバ111B、111Cと同様であるので、その説明については繰り返さない。
The servo driver 111X sequentially receives input of target positions from the CNC unit 30 and controls a servo motor (not shown). The servomotor feeds and drives a moving body to which the spindle head 130 is attached via a ball screw (not shown) to move the spindle head 130 to an arbitrary position in the X-axis direction. The method of controlling the servomotor by the servo driver 111X is the same as that of the servo drivers 111B and 111C, so the description thereof will not be repeated.
サーボドライバ111Yは、CNCユニット30から目標位置の入力を逐次的に受け、サーボモータ(図示しない)を制御する。当該サーボモータは、主軸頭130が取り付けられている移動体をボールネジ(図示しない)を介して送り駆動し、Y軸方向の任意の位置に主軸132を移動する。サーボドライバ111Yによる当該サーボモータの制御方法は、サーボドライバ111B、111Cと同様であるので、その説明については繰り返さない。
The servo driver 111Y sequentially receives input of target positions from the CNC unit 30 and controls a servo motor (not shown). The servomotor feeds and drives a moving body to which the spindle head 130 is attached via a ball screw (not shown) to move the spindle 132 to an arbitrary position in the Y-axis direction. The method of controlling the servomotor by the servo driver 111Y is the same as that of the servo drivers 111B and 111C, so the description thereof will not be repeated.
サーボドライバ111Zは、CNCユニット30から目標位置の入力を逐次的に受け、サーボモータ(図示しない)を制御する。当該サーボモータは、主軸頭130が取り付けられている移動体をボールネジ(図示しない)を介して送り駆動し、Z軸方向の任意の位置に主軸132を移動する。サーボドライバ111Zによる当該サーボモータの制御方法は、サーボドライバ111B、111Cと同様であるので、その説明については繰り返さない。
The servo driver 111Z sequentially receives input of target positions from the CNC unit 30 and controls a servo motor (not shown). The servomotor feeds and drives a moving body to which the spindle head 130 is attached via a ball screw (not shown) to move the spindle 132 to an arbitrary position in the Z-axis direction. The method of controlling the servomotor by the servo driver 111Z is the same as that of the servo drivers 111B and 111C, so the description thereof will not be repeated.
なお、上述では、回転駆動部110Aがサーボドライバで構成されている例について説明を行ったが、回転駆動部110Aは、その他のモータドライバで構成されてもよい。一例として、回転駆動部110Aは、ステッピングモータ用の1つ以上のモータドライバで構成されてもよい。同様に、位置駆動部110Bは、ステッピングモータ用の1つ以上のモータドライバで構成されてもよい。
In the above description, an example in which the rotation driving section 110A is configured by a servo driver has been described, but the rotation driving section 110A may be configured by another motor driver. As an example, the rotation drive section 110A may be configured with one or more motor drivers for a stepping motor. Similarly, the position driver 110B may consist of one or more motor drivers for stepping motors.
測定部140は、工具の摩耗量を測定するための測定機構である。一例として、測定部140は、撮像部として機能する。情報処理装置40は、当該撮像部から得られた画像に対して所定の画像処理を実行することで、画像に写る工具の摩耗量を測定する。当該摩耗量の測定方法の詳細については後述する。
The measuring unit 140 is a measuring mechanism for measuring the amount of tool wear. As an example, the measuring section 140 functions as an imaging section. The information processing device 40 measures the wear amount of the tool captured in the image by performing predetermined image processing on the image obtained from the imaging unit. The details of the method for measuring the amount of wear will be described later.
<C.測定部140>
次に、図3を参照して、測定部140の測定機構について説明する。図3は、主軸頭130と測定部140とを示す図である。 <C. Measurement unit 140>
Next, referring to FIG. 3, the measurement mechanism of themeasurement section 140 will be described. FIG. 3 is a diagram showing the spindle head 130 and the measuring section 140. As shown in FIG.
次に、図3を参照して、測定部140の測定機構について説明する。図3は、主軸頭130と測定部140とを示す図である。 <
Next, referring to FIG. 3, the measurement mechanism of the
図3の例では、主軸頭130が加工エリアAR1に設けられており、測定部140および光源145,147が工具収納エリアAR2に設けられている。測定部140は、カメラ141と、対物レンズ142とで構成されている。
In the example of FIG. 3, the spindle head 130 is provided in the machining area AR1, and the measuring section 140 and the light sources 145, 147 are provided in the tool storage area AR2. The measuring section 140 is composed of a camera 141 and an objective lens 142 .
光源145は、たとえば、リング照明であり、対物レンズ142を囲うように設置される。光源145は、カメラ141の撮影視野CR内にある物体に光を照射する。当該物体からの反射光は、対物レンズ142に入射する。これにより、工具134を表わす工具画像がカメラ141から得られる。
The light source 145 is, for example, ring lighting and is installed so as to surround the objective lens 142 . The light source 145 irradiates an object within the field of view CR of the camera 141 with light. Reflected light from the object enters the objective lens 142 . A tool image representing the tool 134 is thereby obtained from the camera 141 .
光源147は、対物レンズ142および光源145に対向するように設けられる。光源147は、カメラ141の撮影視野CR内にある物体に撮影方向の反対側から光を照射する。その結果、光源147から照射された光は、カメラ141の撮影視野CRに含まれる物体に遮られ、当該物体に遮られなかった光がカメラ141に入射する。これにより、影絵としての工具画像がカメラ141から得られる。
A light source 147 is provided so as to face the objective lens 142 and the light source 145 . The light source 147 irradiates an object within the imaging field CR of the camera 141 with light from the opposite side of the imaging direction. As a result, the light emitted from the light source 147 is blocked by the object included in the field of view CR of the camera 141 , and the light not blocked by the object enters the camera 141 . Thereby, a tool image as a shadow picture is obtained from the camera 141 .
<D.概要>
次に、図4を参照して、過大工具の検出処理の概要について説明する。図4は、主軸132に取り付けられた工具を工具収納エリアAR2に収納する過程を示す図である。 <D. Overview>
Next, with reference to FIG. 4, an overview of the oversized tool detection process will be described. FIG. 4 is a diagram showing the process of storing the tool attached to thespindle 132 in the tool storage area AR2.
次に、図4を参照して、過大工具の検出処理の概要について説明する。図4は、主軸132に取り付けられた工具を工具収納エリアAR2に収納する過程を示す図である。 <D. Overview>
Next, with reference to FIG. 4, an overview of the oversized tool detection process will be described. FIG. 4 is a diagram showing the process of storing the tool attached to the
作業者は、加工エリアAR1にある主軸132に対して工具を手動で装着することがある。このとき、通過口PSのサイズ以上の過大な工具134が主軸132に装着されると、工具は、加工エリアAR1から工具収納エリアAR2に搬送される際に通過口PSに衝突する可能性がある。
A worker may manually mount a tool on the spindle 132 in the processing area AR1. At this time, if an excessively large tool 134 larger than the size of the passage PS is attached to the spindle 132, the tool may collide with the passage PS when being transported from the machining area AR1 to the tool storage area AR2. .
図4の例では、フライス工具としての工具134が示されている。図4に示される工具134の径は、通過口PSの幅よりも大きいため、工具134は、加工エリアAR1から工具収納エリアAR2に収納される際に仕切りPAと衝突している。
The example of FIG. 4 shows the tool 134 as a milling tool. Since the diameter of the tool 134 shown in FIG. 4 is larger than the width of the passage PS, the tool 134 collides with the partition PA when being stored in the tool storage area AR2 from the processing area AR1.
そこで、工作機械100は、工具収納エリアAR2に工具134を収容する前に、当該工具134が通過口PSを通過可能であるか否かを判断する。工具134が通過口PSを通過可能である場合には、工作機械100は、通過口PSを介して、工具収納エリアAR2に工具134を収容する。一方で、工具134が通過口PSを通過不可能である場合には、工作機械100は、予め定められた異常対処処理を実施する。これにより、工作機械100は、作業者によって取り付けられた工具134が仕切りPAと衝突することを防止することができる。
Therefore, the machine tool 100 determines whether the tool 134 can pass through the passage PS before storing the tool 134 in the tool storage area AR2. When the tool 134 can pass through the passage PS, the machine tool 100 stores the tool 134 in the tool storage area AR2 via the passage PS. On the other hand, when the tool 134 cannot pass through the passage PS, the machine tool 100 carries out a predetermined abnormality coping process. Thereby, the machine tool 100 can prevent the tool 134 attached by the operator from colliding with the partition PA.
<E.機能構成>
図5~図7を参照して、過大工具を検出するための機能について説明する。図5は、工作機械100の機能構成の一例を示す図である。 <E. Functional configuration>
A function for detecting an oversized tool will be described with reference to FIGS. 5 to 7. FIG. FIG. 5 is a diagram showing an example of the functional configuration of themachine tool 100. As shown in FIG.
図5~図7を参照して、過大工具を検出するための機能について説明する。図5は、工作機械100の機能構成の一例を示す図である。 <E. Functional configuration>
A function for detecting an oversized tool will be described with reference to FIGS. 5 to 7. FIG. FIG. 5 is a diagram showing an example of the functional configuration of the
工作機械100の制御部50は、機能構成として、駆動制御部52と、判断部54と、異常処理部56とを含む。以下では、これらの機能構成について順に説明する。
The control unit 50 of the machine tool 100 includes a drive control unit 52, a determination unit 54, and an abnormality processing unit 56 as functional configurations. These functional configurations will be described in order below.
なお、各機能構成の配置は、任意である。一例として、図5に示される機能構成の全ては、上述の操作盤20(図2参照)に実装されてもよいし、上述のCNCユニット30(図2参照)に実装されてもよいし、上述の情報処理装置40(図2参照)に実装されてもよい。あるいは、図5に示される機能構成の一部が操作盤20に実装され、残りの機能構成の一部がCNCユニット30に実装され、残りの機能構成が情報処理装置40に実装されてもよい。あるいは、図5に示される機能構成の一部は、サーバーなどの外部装置に実装されてもよいし、専用のハードウェアに実装されてもよい。
The arrangement of each functional configuration is arbitrary. As an example, all of the functional configurations shown in FIG. 5 may be implemented in the operation panel 20 described above (see FIG. 2), or may be implemented in the CNC unit 30 described above (see FIG. 2), It may be implemented in the information processing device 40 (see FIG. 2) described above. Alternatively, part of the functional configuration shown in FIG. 5 may be implemented in the operation panel 20, part of the remaining functional configuration may be implemented in the CNC unit 30, and the remaining functional configuration may be implemented in the information processing device 40. . Alternatively, part of the functional configuration shown in FIG. 5 may be implemented in an external device such as a server, or may be implemented in dedicated hardware.
(E1.駆動制御部52)
まず、図6を参照して、図5に示される駆動制御部52の機能について説明する。図6は、主軸頭130の駆動過程を示す図である。 (E1. Drive control unit 52)
First, referring to FIG. 6, the function of thedrive control section 52 shown in FIG. 5 will be described. 6A and 6B are diagrams showing the driving process of the spindle head 130. FIG.
まず、図6を参照して、図5に示される駆動制御部52の機能について説明する。図6は、主軸頭130の駆動過程を示す図である。 (E1. Drive control unit 52)
First, referring to FIG. 6, the function of the
駆動制御部52は、工具収納エリアAR2に工具134を収容する前に主軸132を駆動することで、カメラ141の撮影視野CRに主軸132を可能な限り近付ける。工具134が過大である場合には、工具134がカメラ141の撮影視野CRに含まれる。そうでない場合には、工具134がカメラ141の撮影視野CRに含まれない。
The drive control unit 52 drives the main shaft 132 before storing the tool 134 in the tool storage area AR2, thereby bringing the main shaft 132 as close as possible to the imaging field CR of the camera 141. If the tool 134 is too large, the tool 134 is included in the field of view CR of the camera 141 . Otherwise, tool 134 is not included in field of view CR of camera 141 .
より具体的には、ステップS1において、駆動制御部52は、工具収納エリアAR2への工具134の収納指示を受けたことに基づいて、主軸132の軸方向AX1が予め定められた方向D1(第1方向)を向くように上述の回転駆動部110A(図2参照)を制御する。図6の例では、方向D1は、鉛直方向に相当している。典型的には、主軸132の軸方向AX1が方向D1を向いているときに、主軸132の軸方向AX1は、仕切りPAおよび通過口PSと平行となる。
More specifically, in step S1, the drive control unit 52 sets the axial direction AX1 of the main shaft 132 to a predetermined direction D1 (first 1 direction) is controlled. In the example of FIG. 6, direction D1 corresponds to the vertical direction. Typically, when the axial direction AX1 of the main shaft 132 faces the direction D1, the axial direction AX1 of the main shaft 132 is parallel to the partition PA and the passage PS.
ステップS2において、駆動制御部52は、主軸132の位置P0が加工エリアAR1内の予め定められた位置P1に合うように上述の位置駆動部110B(図2参照)を制御する。予め定められた位置P1は、加工プログラムに規定されていてもよいし、設定ファイルに規定されていてもよい。典型的には、予め定められた位置P1は、カメラ141の光軸AX2から、当該光軸AX2の直交方向に距離dだけ離れた場所に設定される。
In step S2, the drive control section 52 controls the position drive section 110B (see FIG. 2) so that the position P0 of the spindle 132 matches the predetermined position P1 within the processing area AR1. The predetermined position P1 may be defined in the machining program or may be defined in the setting file. Typically, the predetermined position P1 is set at a distance d from the optical axis AX2 of the camera 141 in the direction perpendicular to the optical axis AX2.
なお、上述では、ステップS1の駆動処理の後に、ステップS2の駆動処理が実行される例について説明を行ったが、ステップS2の駆動処理の後に、ステップS1の駆動処理が実行されてもよい。あるいは、ステップS2の駆動処理は、ステップS1の駆動処理と並行に実行されてもよい。
Although the example in which the drive process of step S2 is executed after the drive process of step S1 has been described above, the drive process of step S1 may be executed after the drive process of step S2. Alternatively, the driving process of step S2 may be executed in parallel with the driving process of step S1.
(E2.判断部54)
次に、図7を参照して、図5に示される判断部54の機能について説明する。図7は、上述のカメラ141(図6参照)から得られた画像の一例を示す図である。 (E2. Determination unit 54)
Next, with reference to FIG. 7, functions of thedetermination unit 54 shown in FIG. 5 will be described. FIG. 7 is a diagram showing an example of an image obtained from the above camera 141 (see FIG. 6).
次に、図7を参照して、図5に示される判断部54の機能について説明する。図7は、上述のカメラ141(図6参照)から得られた画像の一例を示す図である。 (E2. Determination unit 54)
Next, with reference to FIG. 7, functions of the
判断部54は、上述のステップS1,S2(図6参照)の駆動処理の実行後、カメラ141に撮影指示を出力し、カメラ141から画像(第1画像)を取得する。図7には、カメラ141から得られた画像の一例として、画像IM1が示されている。判断部54は、画像IM1に基づいて、工具134が通過口PSを通過可能であるか否かを判断する。
After executing the drive processing in steps S1 and S2 (see FIG. 6) described above, the determination unit 54 outputs a photographing instruction to the camera 141 and acquires an image (first image) from the camera 141 . FIG. 7 shows an image IM1 as an example of an image obtained from the camera 141. As shown in FIG. The determination unit 54 determines whether the tool 134 can pass through the passage PS based on the image IM1.
一例として、判断部54は、画像IM1に対して予め定められた画像処理を実行することで、画像IM1内において工具134を探索する。より具体的には、判断部54は、工具が写っていない背景画像を予め取得しておく。判断部54は、当該背景画像と同じ視点から撮影して得られた画像IM1を取得すると、画像IM1から背景画像を差分する。これにより、判断部54は、画像IM1から背景を除いた背景差分画像を得ることができる。判断部54は、背景差分画像から所定値以上の画素値を有する領域を抽出し、当該領域を工具領域ARとして検出する。
As an example, the determination unit 54 searches for the tool 134 in the image IM1 by executing predetermined image processing on the image IM1. More specifically, the determination unit 54 acquires in advance a background image in which the tool is not shown. When the determination unit 54 acquires the image IM1 obtained by photographing from the same viewpoint as the background image, the determination unit 54 subtracts the background image from the image IM1. Thereby, the determination unit 54 can obtain a background difference image obtained by removing the background from the image IM1. The determination unit 54 extracts an area having a pixel value equal to or greater than a predetermined value from the background difference image, and detects the area as a tool area AR.
ある局面において、判断部54は、画像IM1に工具134の少なくとも一部が含まれている場合に、工具134が通過口PSを通過不可能と判断する。一方で、判断部54は、画像IM1に工具134が含まれていない場合に、工具134が通過口PSを通過可能と判断する。
In a certain aspect, the determination unit 54 determines that the tool 134 cannot pass through the passage opening PS when at least part of the tool 134 is included in the image IM1. On the other hand, the determination unit 54 determines that the tool 134 can pass through the passage PS when the tool 134 is not included in the image IM1.
異なる言い方をすれば、判断部54は、工具134が画像IM1に写っている場合に、工具134が通過口PSを通過不可能である判断する。一方で、判断部54は、工具134が画像IM1に写っていない場合に、工具134が通過口PSを通過可能である判断する。
In other words, the determination unit 54 determines that the tool 134 cannot pass through the passage opening PS when the tool 134 is shown in the image IM1. On the other hand, the determining unit 54 determines that the tool 134 can pass through the passage PS when the tool 134 is not shown in the image IM1.
他の局面において、判断部54は、画像IM1から工具134の径(以下、「工具径」ともいう。)を算出し、当該工具径に基づいて、工具134が通過口PSを通過可能であるか否かを判断する。工具径とは、主軸132の軸方向AX1と直交する方向における工具134の長さを表わす。工具径は、半径で表されてもよいし、直径で表されてもよい。
In another aspect, the determination unit 54 calculates the diameter of the tool 134 (hereinafter also referred to as "tool diameter") from the image IM1, and based on the tool diameter, the tool 134 can pass through the passage opening PS. or not. The tool diameter represents the length of the tool 134 in the direction orthogonal to the axial direction AX1 of the spindle 132. As shown in FIG. The tool diameter may be expressed in terms of radius or diameter.
より具体的には、まず、判断部54は、工具領域ARの端部に当たる座標「x1」を特定する。座標「x1」は、たとえば、エッジ検出処理により特定される。次に、判断部54は、予め定められた座標変換式に基づいて、カメラ141視点の座標系で表わされる位置「x1」をワールド座標系で表わされる位置「Z1」に変換する。画像IM1のx方向は、たとえば、ワールド座標系のZ方向(図6参照)に対応している。画像IM1のy方向は、たとえば、ワールド座標系のY方向(図6参照)に対応している。すなわち、画像IM1内の各画素は、ワールド座標系のYZ平面上の座標に対応している。このように、カメラ141の位置が既知であれば、上記座標変換式は、一意に決まる。
More specifically, first, the determination unit 54 identifies the coordinate "x1" corresponding to the end of the tool area AR. Coordinate "x1" is identified by edge detection processing, for example. Next, the determination unit 54 transforms the position "x1" represented by the coordinate system of the viewpoint of the camera 141 into the position "Z1" represented by the world coordinate system based on a predetermined coordinate transformation formula. The x direction of image IM1 corresponds to, for example, the Z direction of the world coordinate system (see FIG. 6). The y-direction of image IM1 corresponds to, for example, the Y-direction of the world coordinate system (see FIG. 6). That is, each pixel in the image IM1 corresponds to coordinates on the YZ plane of the world coordinate system. As described above, if the position of the camera 141 is known, the coordinate transformation formula is uniquely determined.
次に、判断部54は、変換後のZ座標「Z1」と、主軸132の位置P0(図6参照)のZ座標との間の距離を工具径として算出する。判断部54は、算出した工具径が予め定められた値を超えている場合に、工具134が通過口PSを通過不可能である判断する。一方で、判断部54は、算出した工具径が予め定められた値を超えていない場合に、工具134が通過口PSを通過可能であると判断する。
Next, the determination unit 54 calculates the distance between the converted Z-coordinate "Z1" and the Z-coordinate of the position P0 (see FIG. 6) of the spindle 132 as the tool diameter. The determination unit 54 determines that the tool 134 cannot pass through the passage opening PS when the calculated tool diameter exceeds a predetermined value. On the other hand, the determination unit 54 determines that the tool 134 can pass through the passage opening PS when the calculated tool diameter does not exceed the predetermined value.
なお、上述では、背景差分に基づく画像処理を用いて画像IM1内から工具を探索する方法を前提として説明を行ったが、当該画像処理は、背景差分を用いた方法に限定されない。一例として、判断部54は、学習済みモデルを用いて画像IM1内から工具134を探索してもよい。学習済みモデルは、学習用データセットを用いた学習処理により予め生成されている。学習用データセットは、工具134が写っている複数の学習用画像を含む。各学習用画像には、工具134の有無がラベルとして関連付けられる。学習済みモデルの内部パラメータは、このような学習用データセットを用いた学習処理により予め最適化されている。これにより、学習済みモデルは、画像の入力を受けると、当該画像に工具134が写っている確率を出力する。
Although the above description assumes a method of searching for a tool from within the image IM1 using image processing based on background subtraction, the image processing is not limited to a method using background subtraction. As an example, the determination unit 54 may search for the tool 134 within the image IM1 using the learned model. A trained model is generated in advance by a learning process using a learning data set. The learning data set includes multiple learning images in which the tool 134 is shown. Each learning image is associated with the presence or absence of the tool 134 as a label. The internal parameters of the trained model are optimized in advance by learning processing using such a learning data set. As a result, when the learned model receives an image input, it outputs the probability that the tool 134 appears in the image.
学習済みモデルを生成するための学習手法には、種々の機械学習アルゴリズムが採用され得る。一例として、当該機械学習アルゴリズムとして、ディープラーニング、コンボリューションニューラルネットワーク(CNN)、全層畳み込みニューラルネットワーク(FCN)、サポートベクターマシンなどが採用される。
Various machine learning algorithms can be adopted as the learning method for generating trained models. For example, deep learning, convolutional neural network (CNN), full-layer convolutional neural network (FCN), support vector machine, etc. are adopted as the machine learning algorithm.
判断部54は、画像IM1上で所定の矩形領域をずらしながら、当該矩形領域内の部分画像を上記学習済モデルに順次入力する。当該学習済みモデルは、部分画像の入力を受け付けると、当該部分画像に工具134が写っている確率を出力する。判断部54は、当該確率が所定値を超えかつ当該確率が最大となる部分画像において、工具134が写っていると判断し、画像IM1内の当該部分画像を工具領域ARとして検出する。
The determination unit 54 sequentially inputs partial images within the rectangular area to the learned model while shifting a predetermined rectangular area on the image IM1. Upon receiving an input of a partial image, the learned model outputs the probability that the tool 134 appears in the partial image. The determination unit 54 determines that the tool 134 is captured in the partial image in which the probability exceeds a predetermined value and has the maximum probability, and detects the partial image in the image IM1 as the tool area AR.
(E3.異常処理部56)
次に、図5に示される異常処理部56の機能について説明する。 (E3. Abnormal processing unit 56)
Next, functions of theabnormality processing unit 56 shown in FIG. 5 will be described.
次に、図5に示される異常処理部56の機能について説明する。 (E3. Abnormal processing unit 56)
Next, functions of the
異常処理部56は、判断部54によって工具134が通過口PSを通過不可能であると判断された場合に、予め定められた異常対処処理を実施する。
When the determining unit 54 determines that the tool 134 cannot pass through the passage opening PS, the abnormality processing unit 56 carries out a predetermined abnormality handling process.
当該異常対処処理は、警告を出力する処理を含む。当該警告により、過大な工具134が主軸132に取り付けられていることが報知される。警告の出力態様は、任意である。一例として、当該警告は、工作機械100のディスプレイ上に表示されてもよいし、ブザー音や音声などの音で出力されてもよい。警告が出力されることで、作業者は、工具134が工具収納エリアAR2に収納される前に、過大な工具134が主軸132に取り付けられていることに気付くことができる。
The anomaly handling process includes the process of outputting a warning. The warning notifies that an excessively large tool 134 is attached to the spindle 132 . The warning output mode is arbitrary. As an example, the warning may be displayed on the display of machine tool 100, or may be output as a sound such as a buzzer sound or voice. By outputting the warning, the operator can notice that the excessively large tool 134 is attached to the spindle 132 before the tool 134 is stored in the tool storage area AR2.
他の例として、上記異常対処処理は、加工処理を停止する処理を含む。加工処理は、たとえば、主軸132の駆動処理を含む。
As another example, the abnormality handling process includes a process of stopping processing. Machining processing includes, for example, driving processing of the spindle 132 .
<F.変形例>
次に、図8~図10を参照して、工作機械100の変形例について説明する。図8は、図6に続く主軸頭130の駆動工程を示す図である。 <F. Variation>
Next, modifications of themachine tool 100 will be described with reference to FIGS. 8 to 10. FIG. FIG. 8 is a diagram showing the driving process of the spindle head 130 following FIG.
次に、図8~図10を参照して、工作機械100の変形例について説明する。図8は、図6に続く主軸頭130の駆動工程を示す図である。 <F. Variation>
Next, modifications of the
本変形例では、工作機械100は、上述のステップS1,S2(図6参照)における駆動処理に続いて、ステップS3~S5の駆動処理をさらに実行する。ステップS3~S5の駆動処理により、工作機械100は、過大な工具134をより確実に検出する。
In this modified example, the machine tool 100 further executes the driving process of steps S3 to S5 following the driving process of steps S1 and S2 (see FIG. 6). By the driving process of steps S3 to S5, the machine tool 100 more reliably detects the oversized tool 134. FIG.
より具体的には、ステップS3において、主軸132の軸方向AX1が方向D1に向けられ、主軸132の位置P0が予め定められた位置P1に合わされたとする。
More specifically, in step S3, it is assumed that the axial direction AX1 of the main shaft 132 is oriented in the direction D1 and the position P0 of the main shaft 132 is aligned with the predetermined position P1.
その後、ステップS4において、駆動制御部52は、主軸132の軸方向AX1を方向D1から方向D2(第2方向)に変化させるように回転駆動部110A(図2参照)を制御する。主軸132が方向D2に向けられた場合における工具134の位置は、主軸132が方向D1に向けられた場合における工具134の位置よりもカメラ141に近くなる。判断部54は、主軸132の軸方向AX1を方向D1から方向D2に変化させている間の少なくとも一タイミングにおいてカメラ141に撮影指示を出力し、カメラ141から画像(第2画像)を取得する。好ましくは、当該撮影指示は、主軸132の軸方向AX1を方向D1から方向D2に変化させている間に一定時間ごとにカメラ141に出力される。
After that, in step S4, the drive control section 52 controls the rotation drive section 110A (see FIG. 2) to change the axial direction AX1 of the main shaft 132 from the direction D1 to the direction D2 (second direction). The position of the tool 134 when the spindle 132 is oriented in the direction D2 is closer to the camera 141 than the position of the tool 134 when the spindle 132 is oriented in the direction D1. The determination unit 54 outputs a photographing instruction to the camera 141 at least one timing while the axial direction AX1 of the main shaft 132 is being changed from the direction D1 to the direction D2, and acquires an image (second image) from the camera 141 . Preferably, the shooting instruction is output to the camera 141 at regular time intervals while the axial direction AX1 of the main shaft 132 is being changed from the direction D1 to the direction D2.
図9は、当該撮影指示によりカメラ141から得られた画像IM2を示す図である。判断部54は、画像IM2に基づいて、工具134が通過口PSを通過可能であるか否かを判断する。当該判断方法については図7で説明した通りであるので、その説明については繰り返さない。異常処理部56は、判断部54によって工具134が通過口PSを通過不可能であると判断された場合に、予め定められた異常対処処理を実施する。ステップS3,S4の工程により、工作機械100は、主軸132の位置P0を固定したまま工具をカメラ141に近付けることができ、より確実に過大な工具を検出することができる。
FIG. 9 is a diagram showing an image IM2 obtained from the camera 141 according to the shooting instruction. The determination unit 54 determines whether the tool 134 can pass through the passage PS based on the image IM2. The determination method is as described with reference to FIG. 7, so description thereof will not be repeated. The abnormality processing unit 56 performs a predetermined abnormality handling process when the determination unit 54 determines that the tool 134 cannot pass through the passage opening PS. Through the processes of steps S3 and S4, the machine tool 100 can move the tool closer to the camera 141 while the position P0 of the spindle 132 is fixed, and can more reliably detect an excessively large tool.
その後、ステップS5において、駆動制御部52は、主軸132の軸方向AX1を回転軸として主軸132を回転させるように回転駆動部110A(図2参照)を制御する。一例として、主軸132は、軸方向AX1を回転軸として1回転される。判断部54は、軸方向AX1を回転軸として主軸132が回転している間の少なくとも一タイミングにおいてカメラ141に撮影指示を出力し、カメラ141から画像(第3画像)を取得する。好ましくは、当該撮影指示は、軸方向AX1を回転軸として主軸132が回転している間に一定時間ごとにカメラ141に出力される。
After that, in step S5, the drive control unit 52 controls the rotation drive unit 110A (see FIG. 2) so as to rotate the main shaft 132 about the axial direction AX1 of the main shaft 132 as the rotation axis. As an example, the main shaft 132 is rotated once with the axial direction AX1 as the rotation axis. The determination unit 54 outputs a photographing instruction to the camera 141 at least one timing while the main shaft 132 is rotating about the axial direction AX1 as the rotation axis, and acquires an image (third image) from the camera 141 . Preferably, the shooting instruction is output to the camera 141 at regular time intervals while the main shaft 132 is rotating about the axial direction AX1 as the rotation axis.
図10は、当該撮影指示によりカメラ141から得られた画像IM3を示す図である。判断部54は、画像IM3に基づいて、工具134が通過口PSを通過可能であるか否かを判断する。当該判断方法については図7で説明した通りであるので、その説明については繰り返さない。異常処理部56は、判断部54によって工具134が通過口PSを通過不可能であると判断された場合に、予め定められた異常対処処理を実施する。ステップS5の工程により、工作機械100は、工具径が一定でないような過大な工具を検出することが可能になる。
FIG. 10 is a diagram showing an image IM3 obtained from the camera 141 according to the shooting instruction. The determination unit 54 determines whether or not the tool 134 can pass through the passage PS based on the image IM3. The determination method is as described with reference to FIG. 7, so description thereof will not be repeated. The abnormality processing unit 56 performs a predetermined abnormality handling process when the determination unit 54 determines that the tool 134 cannot pass through the passage opening PS. The process of step S5 enables the machine tool 100 to detect an excessively large tool whose tool diameter is not constant.
<G.操作盤20のハードウェア構成>
次に、図11を参照して、図2に示される操作盤20のハードウェア構成について説明する。図11は、操作盤20のハードウェア構成の一例を示す図である。 <G. Hardware Configuration ofOperation Panel 20>
Next, referring to FIG. 11, the hardware configuration of theoperation panel 20 shown in FIG. 2 will be described. FIG. 11 is a diagram showing an example of the hardware configuration of the operation panel 20. As shown in FIG.
次に、図11を参照して、図2に示される操作盤20のハードウェア構成について説明する。図11は、操作盤20のハードウェア構成の一例を示す図である。 <G. Hardware Configuration of
Next, referring to FIG. 11, the hardware configuration of the
操作盤20は、制御回路201と、ROM(Read Only Memory)202と、RAM(Random Access Memory)203と、通信インターフェイス204と、ディスプレイ205と、操作キー206と、補助記憶装置220とを含む。これらのコンポーネントは、内部バスB2に接続される。
The operation panel 20 includes a control circuit 201, a ROM (Read Only Memory) 202, a RAM (Random Access Memory) 203, a communication interface 204, a display 205, operation keys 206, and an auxiliary storage device 220. These components are connected to the internal bus B2.
制御回路201は、たとえば、少なくとも1つの集積回路によって構成される。集積回路は、たとえば、少なくとも1つのCPU(Central Processing Unit)、少なくとも1つのGPU(Graphics Processing Unit)、少なくとも1つのASIC(Application Specific Integrated Circuit)、少なくとも1つのFPGA(Field Programmable Gate Array)、またはそれらの組み合わせなどによって構成され得る。
The control circuit 201 is composed of, for example, at least one integrated circuit. Integrated circuits include, for example, at least one CPU (Central Processing Unit), at least one GPU (Graphics Processing Unit), at least one ASIC (Application Specific Integrated Circuit), at least one FPGA (Field Programmable Gate Array), or It can be configured by a combination of
制御回路201は、制御プログラム222などの各種プログラムを実行することで操作盤20の動作を制御する。制御プログラム222は、操作盤20を制御するための命令を規定している。制御回路201は、制御プログラム222の実行命令を受け付けたことに基づいて、補助記憶装置220またはROM202からRAM203に制御プログラム222を読み出す。RAM203は、ワーキングメモリとして機能し、制御プログラム222の実行に必要な各種データを一時的に格納する。
The control circuit 201 controls the operation of the operation panel 20 by executing various programs such as the control program 222 . The control program 222 defines commands for controlling the operation panel 20 . The control circuit 201 reads the control program 222 from the auxiliary storage device 220 or the ROM 202 to the RAM 203 based on the reception of the instruction to execute the control program 222 . The RAM 203 functions as a working memory and temporarily stores various data necessary for executing the control program 222 .
通信インターフェイス204は、LAN(Local Area Network)ケーブル、WLAN、またはBluetooth(登録商標)などを用いた通信を実現するための通信ユニットである。一例として、操作盤20は、通信インターフェイス204を介して、CNCユニット30などの外部機器との通信を実現する。
The communication interface 204 is a communication unit for realizing communication using a LAN (Local Area Network) cable, WLAN, Bluetooth (registered trademark), or the like. As an example, the operation panel 20 realizes communication with external devices such as the CNC unit 30 via the communication interface 204 .
ディスプレイ205は、たとえば、液晶ディスプレイ、有機ELディスプレイ、またはその他の表示機器である。ディスプレイ205は、制御回路201などからの指令に従って、ディスプレイ205に対して、画像を表示するための画像信号を送出する。ディスプレイ205は、たとえば、タッチパネルで構成されており、工作機械100に対する各種操作をタッチ操作で受け付ける。
The display 205 is, for example, a liquid crystal display, organic EL display, or other display device. The display 205 sends an image signal for displaying an image to the display 205 according to a command from the control circuit 201 or the like. The display 205 is configured by, for example, a touch panel, and receives various operations for the machine tool 100 by touch operations.
操作キー206は、複数のハードウェアキーで構成され、操作盤20に対する各種のユーザ操作を受け付ける。押下されたキーに応じた信号が制御回路201に出力される。一例として、操作キー206は、工具の収納操作などを受け付ける。
The operation key 206 is composed of a plurality of hardware keys and accepts various user operations on the operation panel 20. A signal corresponding to the pressed key is output to the control circuit 201 . As an example, the operation key 206 accepts a tool storage operation.
補助記憶装置220は、たとえば、ハードディスクやフラッシュメモリなどの記憶媒体である。補助記憶装置220は、制御プログラム222などを格納する。制御プログラム222の格納場所は、補助記憶装置220に限定されず、制御回路201の記憶領域(たとえば、キャッシュメモリ)、ROM202、RAM203、外部機器(たとえば、サーバー)などに格納されていてもよい。
The auxiliary storage device 220 is, for example, a storage medium such as a hard disk or flash memory. The auxiliary storage device 220 stores a control program 222 and the like. The storage location of the control program 222 is not limited to the auxiliary storage device 220, but may be stored in the storage area of the control circuit 201 (for example, cache memory), ROM 202, RAM 203, external equipment (for example, server), or the like.
なお、制御プログラム222は、単体のプログラムとしてではなく、任意のプログラムの一部に組み込まれて提供されてもよい。この場合、本実施の形態に従う各種の処理は、任意のプログラムと協働して実現される。このような一部のモジュールを含まないプログラムであっても、本実施の形態に従う制御プログラム222の趣旨を逸脱するものではない。さらに、制御プログラム222によって提供される機能の一部または全部は、専用のハードウェアによって実現されてもよい。さらに、少なくとも1つのサーバーが制御プログラム222の処理の一部を実行する所謂クラウドサービスのような形態で操作盤20が構成されてもよい。
It should be noted that the control program 222 may be provided not as a standalone program but as part of an arbitrary program. In this case, various processes according to the present embodiment are implemented in cooperation with arbitrary programs. Even a program that does not include such a part of modules does not deviate from the gist of control program 222 according to the present embodiment. Furthermore, some or all of the functions provided by control program 222 may be implemented by dedicated hardware. Furthermore, the control panel 20 may be configured in a form like a so-called cloud service in which at least one server executes part of the processing of the control program 222 .
<H.CNCユニット30のハードウェア構成>
次に、図12を参照して、図2に示されるCNCユニット30のハードウェア構成について説明する。図12は、CNCユニット30のハードウェア構成の一例を示す図である。 <H. Hardware Configuration ofCNC Unit 30>
Next, referring to FIG. 12, the hardware configuration of theCNC unit 30 shown in FIG. 2 will be described. FIG. 12 is a diagram showing an example of the hardware configuration of the CNC unit 30. As shown in FIG.
次に、図12を参照して、図2に示されるCNCユニット30のハードウェア構成について説明する。図12は、CNCユニット30のハードウェア構成の一例を示す図である。 <H. Hardware Configuration of
Next, referring to FIG. 12, the hardware configuration of the
CNCユニット30は、制御回路301と、ROM302と、RAM303と、通信インターフェイス304,305と、フィールドバスコントローラ306と、補助記憶装置320とを含む。これらのコンポーネントは、内部バスB3に接続される。
The CNC unit 30 includes a control circuit 301 , a ROM 302 , a RAM 303 , communication interfaces 304 and 305 , a fieldbus controller 306 and an auxiliary storage device 320 . These components are connected to the internal bus B3.
制御回路301は、たとえば、少なくとも1つの集積回路によって構成される。集積回路は、たとえば、少なくとも1つのCPU、少なくとも1つのGPU、少なくとも1つのASIC、少なくとも1つのFPGA、またはそれらの組み合わせなどによって構成され得る。
The control circuit 301 is composed of, for example, at least one integrated circuit. An integrated circuit may be comprised of, for example, at least one CPU, at least one GPU, at least one ASIC, at least one FPGA, or combinations thereof.
制御回路301は、制御プログラム322や加工プログラム324などの各種プログラムを実行することでCNCユニット30の動作を制御する。制御回路301は、制御プログラム322の実行命令を受け付けたことに基づいて、ROM302からRAM303に制御プログラム322を読み出す。RAM303は、ワーキングメモリとして機能し、制御プログラム322の実行に必要な各種データを一時的に格納する。
The control circuit 301 controls the operation of the CNC unit 30 by executing various programs such as a control program 322 and a machining program 324. The control circuit 301 reads the control program 322 from the ROM 302 to the RAM 303 based on the acceptance of the instruction to execute the control program 322 . The RAM 303 functions as a working memory and temporarily stores various data necessary for executing the control program 322 .
通信インターフェイス304,305には、LAN、WLAN、またはBluetoothなどを用いた通信を実現するための通信ユニットである。CNCユニット30は、通信インターフェイス304を介して外部機器(たとえば、操作盤20)とデータをやり取りする。また、CNCユニット30は、通信インターフェイス305を介して外部機器(たとえば、情報処理装置40)とデータをやり取りする。
Communication interfaces 304 and 305 are communication units for realizing communication using LAN, WLAN, Bluetooth, or the like. CNC unit 30 exchanges data with an external device (for example, operation panel 20 ) via communication interface 304 . Also, the CNC unit 30 exchanges data with an external device (for example, the information processing device 40) via the communication interface 305. FIG.
フィールドバスコントローラ306は、フィールドバスに接続される各種ユニットとの通信を実現するための通信ユニットである。当該フィールドバスに接続されるユニットの一例として、上述の回転駆動部110Aや上述の位置駆動部110Bなどが挙げられる。
The fieldbus controller 306 is a communication unit for realizing communication with various units connected to the fieldbus. Examples of units connected to the field bus include the above-described rotation driving section 110A and the above-described position driving section 110B.
補助記憶装置320は、たとえば、ハードディスクやフラッシュメモリなどの記憶媒体である。補助記憶装置320は、制御プログラム322、加工プログラム324、および設定情報326などを格納する。制御プログラム322は、たとえば、上述の図6および図8で説明した主軸132の駆動処理を実現するための駆動プログラム323などを含む。設定情報326は、過大工具の検出処理で参照される各種パラメータを含む。当該パラメータは、たとえば、上述の位置P1と、上述の方向D1,D2に相当する角度パラメータとを含む。
The auxiliary storage device 320 is, for example, a storage medium such as a hard disk or flash memory. The auxiliary storage device 320 stores a control program 322, a machining program 324, setting information 326, and the like. The control program 322 includes, for example, a drive program 323 for realizing the drive processing of the spindle 132 described above with reference to FIGS. 6 and 8, and the like. The setting information 326 includes various parameters referred to in the oversized tool detection process. The parameters include, for example, the above-described position P1 and angle parameters corresponding to the above-described directions D1 and D2.
制御プログラム322、加工プログラム324、および設定情報326の格納場所は、補助記憶装置320に限定されず、制御回路301の記憶領域(たとえば、キャッシュメモリ)、ROM302、RAM303、外部機器(たとえば、サーバー)などに格納されていてもよい。
The storage locations of the control program 322, the machining program 324, and the setting information 326 are not limited to the auxiliary storage device 320, but are storage areas of the control circuit 301 (eg, cache memory), ROM 302, RAM 303, external devices (eg, servers). and so on.
なお、制御プログラム322は、単体のプログラムとしてではなく、任意のプログラムの一部に組み込まれて提供されてもよい。この場合、本実施の形態に従う各種の処理は、任意のプログラムと協働して実現される。このような一部のモジュールを含まないプログラムであっても、本実施の形態に従う制御プログラム322の趣旨を逸脱するものではない。さらに、制御プログラム322によって提供される機能の一部または全部は、専用のハードウェアによって実現されてもよい。さらに、少なくとも1つのサーバーが制御プログラム322の処理の一部を実行する所謂クラウドサービスのような形態でCNCユニット30が構成されてもよい。
It should be noted that the control program 322 may be provided as a part of an arbitrary program, not as a standalone program. In this case, various processes according to the present embodiment are implemented in cooperation with arbitrary programs. Even a program that does not include such a part of modules does not deviate from the gist of control program 322 according to the present embodiment. Furthermore, some or all of the functions provided by control program 322 may be implemented by dedicated hardware. Furthermore, the CNC unit 30 may be configured as a so-called cloud service in which at least one server executes part of the processing of the control program 322 .
<I.情報処理装置40のハードウェア構成>
次に、図13を参照して、図2に示される情報処理装置40のハードウェア構成について説明する。図13は、情報処理装置40のハードウェア構成の一例を示す図である。 <I. Hardware Configuration ofInformation Processing Device 40>
Next, the hardware configuration of theinformation processing device 40 shown in FIG. 2 will be described with reference to FIG. FIG. 13 is a diagram showing an example of the hardware configuration of the information processing device 40. As shown in FIG.
次に、図13を参照して、図2に示される情報処理装置40のハードウェア構成について説明する。図13は、情報処理装置40のハードウェア構成の一例を示す図である。 <I. Hardware Configuration of
Next, the hardware configuration of the
情報処理装置40は、制御回路401と、ROM402と、RAM403と、通信インターフェイス404,405と、補助記憶装置420とを含む。これらのコンポーネントは、内部バスB4に接続される。
The information processing device 40 includes a control circuit 401 , a ROM 402 , a RAM 403 , communication interfaces 404 and 405 and an auxiliary storage device 420 . These components are connected to the internal bus B4.
制御回路401は、たとえば、少なくとも1つの集積回路によって構成される。集積回路は、たとえば、少なくとも1つのCPU、少なくとも1つのGPU、少なくとも1つのASIC、少なくとも1つのFPGA、またはそれらの組み合わせなどによって構成され得る。
The control circuit 401 is composed of, for example, at least one integrated circuit. An integrated circuit may be comprised of, for example, at least one CPU, at least one GPU, at least one ASIC, at least one FPGA, or combinations thereof.
制御回路401は、制御プログラム422などの各種プログラムを実行することで情報処理装置40の動作を制御する。制御回路401は、各種プログラムの実行命令を受け付けたことに基づいて、補助記憶装置420またはROM402からRAM403に実行対象のプログラムを読み出す。RAM403は、ワーキングメモリとして機能し、プログラムの実行に必要な各種データを一時的に格納する。
The control circuit 401 controls the operation of the information processing device 40 by executing various programs such as the control program 422 . The control circuit 401 reads a program to be executed from the auxiliary storage device 420 or the ROM 402 to the RAM 403 on the basis of receiving execution instructions for various programs. A RAM 403 functions as a working memory and temporarily stores various data necessary for program execution.
通信インターフェイス404には、LAN、WLAN、またはBluetoothなどを用いた通信を実現するための通信ユニットである。情報処理装置40は、通信インターフェイス404を介して外部機器(たとえば、CNCユニット30)とデータをやり取りする。また、情報処理装置40は、通信インターフェイス405を介して外部機器(たとえば、カメラ141)と画像データをやり取りする。
The communication interface 404 is a communication unit for realizing communication using LAN, WLAN, Bluetooth, or the like. Information processing device 40 exchanges data with an external device (for example, CNC unit 30 ) via communication interface 404 . Information processing apparatus 40 also exchanges image data with an external device (for example, camera 141 ) via communication interface 405 .
補助記憶装置420は、たとえば、ハードディスクやフラッシュメモリなどの記憶媒体である。補助記憶装置420は、制御プログラム422などを格納する。制御プログラム422は、たとえば、上述の図7,図9および図10で説明した画像処理を実現するための画像処理プログラム423などを含む。制御プログラム422の格納場所は、補助記憶装置420に限定されず、制御回路401の記憶領域(たとえば、キャッシュメモリなど)、ROM402、RAM403、外部機器(たとえば、サーバー)などに格納されていてもよい。
The auxiliary storage device 420 is, for example, a storage medium such as a hard disk or flash memory. Auxiliary storage device 420 stores a control program 422 and the like. The control program 422 includes, for example, an image processing program 423 for implementing the image processing described with reference to FIGS. 7, 9 and 10 above. The storage location of the control program 422 is not limited to the auxiliary storage device 420, and may be stored in the storage area of the control circuit 401 (for example, cache memory, etc.), ROM 402, RAM 403, external equipment (for example, server), or the like. .
なお、制御プログラム422は、単体のプログラムとしてではなく、任意のプログラムの一部に組み込まれて提供されてもよい。この場合、任意のプログラムと協働して本実施の形態に従う処理が実現される。このような一部のモジュールを含まないプログラムであっても、本実施の形態に従う工作機械100の趣旨を逸脱するものではない。さらに、本実施の形態に従う制御プログラム422によって提供される機能の一部または全部は、専用のハードウェアによって実現されてもよい。さらに、工作機械100とサーバーとが協働して、本実施の形態に従う処理を実現するようにしてもよい。さらに、少なくとも1つのサーバーが本実施の形態に従う処理を実現する、所謂クラウドサービスの形態で情報処理装置40が構成されてもよい。
It should be noted that the control program 422 may be provided as a part of an arbitrary program, not as a standalone program. In this case, processing according to the present embodiment is realized in cooperation with an arbitrary program. Even a program that does not include some of such modules does not deviate from the gist of machine tool 100 according to the present embodiment. Furthermore, part or all of the functions provided by control program 422 according to the present embodiment may be implemented by dedicated hardware. Furthermore, machine tool 100 and a server may work together to realize the processing according to the present embodiment. Furthermore, information processing apparatus 40 may be configured in the form of a so-called cloud service in which at least one server implements processing according to the present embodiment.
<J.工作機械100の制御フロー>
次に、図14を参照して、工作機械100の制御構造について説明する。図14は、工作機械100の制御部50が実行する処理の一部を示すフローチャートである。 <J. Control Flow ofMachine Tool 100>
Next, referring to FIG. 14, the control structure ofmachine tool 100 will be described. FIG. 14 is a flow chart showing part of the processing executed by the control unit 50 of the machine tool 100. As shown in FIG.
次に、図14を参照して、工作機械100の制御構造について説明する。図14は、工作機械100の制御部50が実行する処理の一部を示すフローチャートである。 <J. Control Flow of
Next, referring to FIG. 14, the control structure of
図14に示される処理の一部または全部は、上述の制御プログラム222(図11参照)、上述の制御プログラム322(図12参照)、または上述の制御プログラム422(図13参照)に実装される。他の局面において、図14に示される処理の一部または全部が、回路素子またはその他のハードウェアに実装されてもよい。
Part or all of the processing shown in FIG. 14 is implemented in the control program 222 described above (see FIG. 11), the control program 322 described above (see FIG. 12), or the control program 422 described above (see FIG. 13). . In other aspects, some or all of the processing shown in FIG. 14 may be implemented in circuit elements or other hardware.
ステップS110において、制御部50は、工具の収納指示を受け付けたか否かを判断する。当該収納指示は、たとえば、工具の収納命令が加工プログラム324(図12参照)において実行されたことに基づいて発せられる。あるいは、当該収納指示は、作業者が操作盤20に対して工具の収納操作を行ったことに基づいて発せられる。制御部50は、工具の収納指示を受け付けたと判断した場合(ステップS110においてYES)、制御をステップS112に切り替える。そうでない場合には(ステップS110においてNO)、制御部50は、図14に示される処理を終了する。
At step S110, the control unit 50 determines whether or not a tool storage instruction has been received. The storage instruction is issued, for example, based on execution of a tool storage instruction in the machining program 324 (see FIG. 12). Alternatively, the storage instruction is issued based on the operator performing a tool storage operation on the operation panel 20 . When control unit 50 determines that the tool storage instruction has been received (YES in step S110), control unit 50 switches control to step S112. Otherwise (NO in step S110), control unit 50 terminates the process shown in FIG.
ステップS112において、制御部50は、上述の駆動制御部52(図5参照)として機能し、Y軸方向を回転軸として主軸132の軸方向AX1を方向D1(図6参照)に向ける。その結果、主軸132の軸方向AX1は、仕切りPAまたは通過口PSと平行となる。
In step S112, the control unit 50 functions as the drive control unit 52 (see FIG. 5) described above, and turns the axial direction AX1 of the main shaft 132 in the direction D1 (see FIG. 6) with the Y-axis direction as the rotation axis. As a result, the axial direction AX1 of the main shaft 132 is parallel to the partition PA or the passage PS.
ステップS114において、制御部50は、上述の駆動制御部52として機能し、加工エリアAR1内の予め定められた位置P1(図6参照)に主軸132を移動する。
In step S114, the control unit 50 functions as the drive control unit 52 described above, and moves the spindle 132 to a predetermined position P1 (see FIG. 6) within the processing area AR1.
ステップS116において、制御部50は、カメラ141に撮影指示を出力する。これにより、制御部50は、カメラ141から画像IM1(図7参照)を取得する。
In step S<b>116 , the control unit 50 outputs a shooting instruction to the camera 141 . Thereby, the control unit 50 acquires the image IM1 (see FIG. 7) from the camera 141. FIG.
ステップS120において、制御部50は、上述の判断部54(図5参照)として機能し、ステップS116で得られた画像IM1に基づいて、工具134が通過口PSを通過可能であるか否かを判断する。当該判断方法については図7で説明した通りであるので、その説明については繰り返さない。制御部50は、工具134が通過口PSを通過可能であると判断した場合(ステップS120においてYES)、制御をステップS122に切り替える。そうでない場合には(ステップS120においてNO)、制御部50は、制御をステップS150に切り替える。
In step S120, the control unit 50 functions as the determination unit 54 (see FIG. 5) described above, and determines whether the tool 134 can pass through the passage opening PS based on the image IM1 obtained in step S116. to decide. The determination method is as described with reference to FIG. 7, so description thereof will not be repeated. When control unit 50 determines that tool 134 can pass through passage PS (YES in step S120), control unit 50 switches control to step S122. Otherwise (NO in step S120), control unit 50 switches control to step S150.
ステップS122において、制御部50は、上述の駆動制御部52として機能し、Y軸方向を回転軸として方向D1から方向D2(図8参照)への主軸132の回転駆動を開始する。異なる言い方をすれば、制御部50は、主軸132に装着されている工具134がカメラ141に近付く方向に主軸132を回転駆動する。
In step S122, the control unit 50 functions as the drive control unit 52 described above, and starts rotating the main shaft 132 from the direction D1 to the direction D2 (see FIG. 8) with the Y-axis direction as the rotation axis. In other words, the controller 50 rotates the main shaft 132 in a direction in which the tool 134 attached to the main shaft 132 approaches the camera 141 .
ステップS124において、制御部50は、カメラ141に撮影指示を出力する。これにより、制御部50は、カメラ141から画像IM2(図9参照)を取得する。
In step S<b>124 , the control unit 50 outputs a shooting instruction to the camera 141 . Thereby, the control unit 50 acquires the image IM2 (see FIG. 9) from the camera 141. FIG.
ステップS126において、制御部50は、上述の判断部54として機能し、ステップS124で得られた画像IM2に基づいて、工具134が通過口PSを通過可能であるか否かを判断する。当該判断方法については図9で説明した通りであるので、その説明については繰り返さない。制御部50は、工具134が通過口PSを通過可能であると判断した場合(ステップS126においてYES)、制御をステップS130に切り替える。そうでない場合には(ステップS126においてNO)、制御部50は、制御をステップS150に切り替える。
At step S126, the control unit 50 functions as the determination unit 54 described above, and determines whether or not the tool 134 can pass through the passage opening PS based on the image IM2 obtained at step S124. The determination method is as described with reference to FIG. 9, so description thereof will not be repeated. When control unit 50 determines that tool 134 can pass through passage PS (YES in step S126), control unit 50 switches control to step S130. Otherwise (NO in step S126), control unit 50 switches control to step S150.
ステップS130において、制御部50は、上述の駆動制御部52として機能し、主軸132の軸方向AX1が方向D2に向いたか否かを判断する。制御部50は、主軸132の軸方向AX1が方向D2に向いたと判断した場合(ステップS130においてYES)、制御をステップS132に切り替える。そうでない場合には(ステップS130においてNO)、制御部50は、制御をステップS124に戻す。当該制御は、たとえば、一定時間後(たとえば、0.1秒後)にステップS124に戻される。
In step S130, the control section 50 functions as the drive control section 52 described above, and determines whether or not the axial direction AX1 of the main shaft 132 faces the direction D2. When the control unit 50 determines that the axial direction AX1 of the main shaft 132 faces the direction D2 (YES in step S130), the control is switched to step S132. Otherwise (NO in step S130), control unit 50 returns the control to step S124. The control is returned to step S124, for example, after a certain period of time (for example, 0.1 seconds).
ステップS132において、制御部50は、上述の駆動制御部52として機能し、主軸132の軸方向AX1を回転軸として主軸132の回転駆動を開始する。
In step S132, the control unit 50 functions as the drive control unit 52 described above, and starts rotating the main shaft 132 with the axial direction AX1 of the main shaft 132 as the rotation axis.
ステップS134において、制御部50は、カメラ141に撮影指示を出力する。これにより、制御部50は、カメラ141から画像IM3(図10参照)を取得する。
In step S<b>134 , the control unit 50 outputs a shooting instruction to the camera 141 . Thereby, the control unit 50 acquires the image IM3 (see FIG. 10) from the camera 141. FIG.
ステップS136において、制御部50は、上述の判断部54として機能し、ステップS134で得られた画像IM3に基づいて、工具134が通過口PSを通過可能であるか否かを判断する。当該判断方法については図10で説明した通りであるので、その説明については繰り返さない。制御部50は、工具134が通過口PSを通過可能であると判断した場合(ステップS136においてYES)、制御をステップS140に切り替える。そうでない場合には(ステップS136においてNO)、制御部50は、制御をステップS150に切り替える。
At step S136, the control unit 50 functions as the determination unit 54 described above, and determines whether or not the tool 134 can pass through the passage opening PS based on the image IM3 obtained at step S134. The determination method is as described with reference to FIG. 10, so description thereof will not be repeated. When control unit 50 determines that tool 134 can pass through passage opening PS (YES in step S136), control unit 50 switches control to step S140. Otherwise (NO in step S136), control unit 50 switches control to step S150.
ステップS140において、制御部50は、上述の駆動制御部52として機能し、ステップS132における主軸132の回転を開始してから、主軸132が1回転したか否かを判断する。制御部50は、主軸132が1回転したと判断した場合(ステップS140においてYES)、図14に示される処理を終了する。そうでない場合には(ステップS140においてNO)、制御部50は、制御をステップS134に戻す。当該制御は、たとえば、一定時間後(たとえば、0.1秒後)にステップS134に戻される。
At step S140, the control unit 50 functions as the above-described drive control unit 52, and determines whether or not the main shaft 132 has made one revolution after the start of rotation of the main shaft 132 at step S132. When control unit 50 determines that main shaft 132 has made one rotation (YES in step S140), the process shown in FIG. 14 ends. Otherwise (NO in step S140), control unit 50 returns the control to step S134. The control is returned to step S134, for example, after a certain period of time (for example, 0.1 seconds).
ステップS150において、制御部50は、上述の異常処理部56(図5参照)として機能し、予め定められた異常対処処理を実施する。当該異常対処処理は、たとえば、工具過大を示す警告を出力する処理である。あるいは、当該異常対処処理は、加工処理を停止する処理である。
In step S150, the control unit 50 functions as the above-described abnormality processing unit 56 (see FIG. 5), and performs predetermined abnormality handling processing. The abnormality handling process is, for example, a process of outputting a warning indicating excessive tool size. Alternatively, the abnormality handling process is a process of stopping the processing.
<K.まとめ>
以上のように、工作機械100は、加工エリアAR1から工具収納エリアAR2に工具134を収納する前に、工具134が通過口PSを通過可能であるか否かを判断する。これにより、工作機械100は、工具134が仕切りPAに衝突することを防止することができる。 <K. Summary>
As described above, themachine tool 100 determines whether the tool 134 can pass through the passage PS before storing the tool 134 from the machining area AR1 to the tool storage area AR2. Thereby, the machine tool 100 can prevent the tool 134 from colliding with the partition PA.
以上のように、工作機械100は、加工エリアAR1から工具収納エリアAR2に工具134を収納する前に、工具134が通過口PSを通過可能であるか否かを判断する。これにより、工作機械100は、工具134が仕切りPAに衝突することを防止することができる。 <K. Summary>
As described above, the
今回開示された実施の形態は全ての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内での全ての変更が含まれることが意図される。
It should be considered that the embodiments disclosed this time are illustrative in all respects and not restrictive. The scope of the present invention is indicated by the scope of the claims rather than the above description, and is intended to include all modifications within the meaning and scope equivalent to the scope of the claims.
20 操作盤、30 CNCユニット、40 情報処理装置、50 制御部、52 駆動制御部、54 判断部、56 異常処理部、100 工作機械、110A 回転駆動部、110B 位置駆動部、111B,111C,111X,111Y,111Z サーボドライバ、130 主軸頭、131 主軸筒、132 主軸、134 工具、140 測定部、141 カメラ、142 対物レンズ、145,147 光源、160 ATC、170 マガジン、201,301,401 制御回路、202,302,402 ROM、203,303,403 RAM、204,304,305,404,405 通信インターフェイス、205 ディスプレイ、206 操作キー、220,320,420 補助記憶装置、222,322,422 制御プログラム、306 フィールドバスコントローラ、323 駆動プログラム、324 加工プログラム、326 設定情報、423 画像処理プログラム。
20 operation panel, 30 CNC unit, 40 information processing device, 50 control unit, 52 drive control unit, 54 determination unit, 56 abnormality processing unit, 100 machine tool, 110A rotation drive unit, 110B position drive unit, 111B, 111C, 111X , 111 Y, 111 Z Servo driver, 130 Spindle head, 131 Spindle tube, 132 Spindle, 134 Tool, 140 Measurement part, 141 Camera, 142 Objective lens, 145, 147 Light source, 160 ATC, 170 Magazine, 201, 301, 401 Control circuit , 202, 302, 402 ROM, 203, 303, 403 RAM, 204, 304, 305, 404, 405 communication interface, 205 display, 206 operation keys, 220, 320, 420 auxiliary storage device, 222, 322, 422 control program , 306 fieldbus controller, 323 drive program, 324 machining program, 326 setting information, 423 image processing program.
Claims (8)
- 工作機械であって、
工具を装着可能な主軸が設けられている加工エリアと、
仕切りによって前記加工エリアと区分けされている工具収納エリアとを備え、前記仕切りには通過口が設けられており、前記主軸に装着されている工具は、前記通過口を通過して前記工具収納エリアに収容され、
前記通過口を通過する前記工具を撮影するように設けられたカメラと、
前記主軸を回転駆動するための回転駆動部と、
前記主軸の位置を移動するための位置駆動部と、
前記工作機械を制御するための制御部とを備え、
前記制御部は、
前記工具収納エリアに前記工具を収容する前に、前記加工エリア内の予め定められた位置に前記主軸が位置するように前記位置駆動部を制御するとともに、前記主軸の軸方向が予め定められた第1方向を向くように前記回転駆動部を制御する処理と、
前記制御する処理の実行後、前記カメラに撮影指示を出力し、当該カメラから第1画像を取得する処理と、
前記第1画像に基づいて、前記工具が前記通過口を通過可能であるか否かを判断する処理と、
前記工具が前記通過口を通過不可能であると判断されたことに基づいて、予め定められた異常対処処理を実施する処理と、を実行する、工作機械。 a machine tool,
A machining area provided with a spindle on which a tool can be attached,
A tool storage area is provided which is separated from the machining area by a partition, the partition is provided with a passage opening, and a tool attached to the spindle passes through the passage opening to enter the tool storage area. housed in
a camera provided to photograph the tool passing through the passage;
a rotary drive unit for rotating the main shaft;
a position drive unit for moving the position of the spindle;
A control unit for controlling the machine tool,
The control unit
Before storing the tool in the tool storage area, the position driving unit is controlled so that the spindle is positioned at a predetermined position in the machining area, and the axial direction of the spindle is predetermined. a process of controlling the rotation drive unit to face the first direction;
After executing the controlling process, a process of outputting a photographing instruction to the camera and obtaining a first image from the camera;
a process of determining whether the tool can pass through the passage opening based on the first image;
and a process of executing a predetermined abnormality coping process based on determination that the tool cannot pass through the passage opening. - 前記制御部は、さらに、
前記制御する処理の実行後、前記主軸の軸方向を前記予め定められた第1方向から予め定められた第2方向に変化させるように前記回転駆動部を制御する処理と、
前記主軸の軸方向を前記予め定められた第1方向から前記予め定められた第2方向に変化させている間の少なくとも一タイミングにおいて前記カメラに撮影指示を出力し、当該カメラから第2画像を取得する処理と、
前記第2画像に基づいて、前記工具が前記通過口を通過可能であるか否かを判断する処理と、を実行する、請求項1に記載の工作機械。 The control unit further
After executing the controlling process, a process of controlling the rotation driving section so as to change the axial direction of the main shaft from the predetermined first direction to a predetermined second direction;
outputting a photographing instruction to the camera at least one timing while changing the axial direction of the main axis from the predetermined first direction to the predetermined second direction, and capturing a second image from the camera; the process of obtaining,
2. The machine tool according to claim 1, further comprising determining whether or not the tool can pass through the passage opening based on the second image. - 前記制御部は、さらに、
前記主軸の軸方向が前記予め定められた第2方向に向いたことに基づいて、前記主軸の軸方向を回転軸として前記主軸を回転させるように前記回転駆動部を制御する処理と、
前記軸方向を回転軸として前記主軸を回転させている間の少なくとも一タイミングにおいて前記カメラに撮影指示を出力し、当該カメラから第3画像を取得する処理と、
前記第3画像に基づいて、前記工具が前記通過口を通過可能であるか否かを判断する処理と、を実行する、請求項2に記載の工作機械。 The control unit further
a process of controlling the rotation drive unit to rotate the main shaft about the axial direction of the main shaft as a rotation axis based on the fact that the axial direction of the main shaft is oriented in the predetermined second direction;
a process of outputting a photographing instruction to the camera at least one timing while the main shaft is rotated about the axial direction as a rotation axis, and obtaining a third image from the camera;
3. The machine tool according to claim 2, further comprising determining whether or not the tool can pass through the passage opening based on the third image. - 前記主軸の軸方向が前記予め定められた第1方向を向いているときに、前記主軸の軸方向は、前記仕切りと平行となる、請求項1~3のいずれか1項に記載の工作機械。 The machine tool according to any one of claims 1 to 3, wherein the axial direction of the main shaft is parallel to the partition when the axial direction of the main shaft faces the predetermined first direction. .
- 前記第1画像に基づいて、前記工具が前記通過口を通過可能であるか否かを判断する処理は、
前記第1画像内における前記工具の位置に基づいて、前記主軸の軸方向と直交する方向における前記工具の径を算出する処理と、
前記径が予め定められた値を超えている場合に、前記工具が前記通過口を通過不可能と判断する処理とを含む、請求項4に記載の工作機械。 The process of determining whether or not the tool can pass through the passage opening based on the first image includes:
a process of calculating the diameter of the tool in a direction perpendicular to the axial direction of the spindle based on the position of the tool in the first image;
5. The machine tool according to claim 4, further comprising a process of determining that said tool cannot pass through said passage opening when said diameter exceeds a predetermined value. - 前記制御部は、前記第1画像に前記工具の少なくとも一部が含まれている場合に、前記工具が前記通過口を通過不可能と判断する、請求項1~4のいずれか1項に記載の工作機械。 5. The control unit according to any one of claims 1 to 4, wherein when at least part of the tool is included in the first image, the control unit determines that the tool cannot pass through the passage opening. machine tools.
- 工作機械の制御方法であって、
前記工作機械は、
工具を装着可能な主軸が設けられている加工エリアと、
仕切りによって前記加工エリアと区分けされている工具収納エリアとを備え、
前記仕切りには通過口が設けられており、前記主軸に装着されている工具は、前記通過口を通過して前記工具収納エリアに収容され、
前記工作機械は、さらに、前記通過口を通過する前記工具を撮影するように設けられたカメラを備え、
前記制御方法は、
前記工具収納エリアに前記工具を収容する前に、前記加工エリア内の予め定められた位置に前記主軸を移動するとともに、前記主軸の軸方向が予め定められた方向を向くように前記主軸を回転するステップと、
前記回転するステップの実行後、前記カメラに撮影指示を出力し、当該カメラから画像を取得するステップと、
前記画像に基づいて、前記工具が前記通過口を通過可能であるか否かを判断するステップと、
前記工具が前記通過口を通過不可能であると判断されたことに基づいて、予め定められた異常対処処理を実施するステップと、を備える、制御方法。 A machine tool control method comprising:
The machine tool is
A machining area provided with a spindle on which a tool can be attached,
A tool storage area separated from the processing area by a partition,
A passage opening is provided in the partition, and a tool attached to the spindle passes through the passage opening and is stored in the tool storage area,
The machine tool further comprises a camera provided to photograph the tool passing through the passage opening,
The control method is
Before the tool is stored in the tool storage area, the spindle is moved to a predetermined position within the machining area, and the spindle is rotated so that the axial direction of the spindle faces a predetermined direction. and
After executing the rotating step, outputting a photographing instruction to the camera and obtaining an image from the camera;
determining whether the tool can pass through the passage opening based on the image;
and a step of performing a predetermined abnormality coping process based on the determination that the tool cannot pass through the passage opening. - 工作機械の制御プログラムであって、
前記工作機械は、
工具を装着可能な主軸が設けられている加工エリアと、
仕切りによって前記加工エリアと区分けされている工具収納エリアとを備え、
前記仕切りには通過口が設けられており、前記主軸に装着されている工具は、前記通過口を通過して前記工具収納エリアに収容され、
前記工作機械は、さらに、前記通過口を通過する前記工具を撮影するように設けられたカメラと、
前記制御プログラムは、前記工作機械に、
前記工具収納エリアに前記工具を収容する前に、前記加工エリア内の予め定められた位置に前記主軸を移動するとともに、前記主軸の軸方向が予め定められた方向を向くように前記主軸を回転するステップと、
前記回転するステップの実行後、前記カメラに撮影指示を出力し、当該カメラから画像を取得するステップと、
前記画像に基づいて、前記工具が前記通過口を通過可能であるか否かを判断するステップと、
前記工具が前記通過口を通過不可能であると判断されたことに基づいて、予め定められた異常対処処理を実施するステップと、を実行させる、制御プログラム。 A control program for a machine tool,
The machine tool is
A machining area provided with a spindle on which a tool can be attached,
A tool storage area separated from the processing area by a partition,
A passage opening is provided in the partition, and a tool attached to the spindle passes through the passage opening and is stored in the tool storage area,
The machine tool further includes a camera provided to photograph the tool passing through the passage opening;
The control program causes the machine tool to:
Before the tool is stored in the tool storage area, the spindle is moved to a predetermined position within the machining area, and the spindle is rotated so that the axial direction of the spindle faces a predetermined direction. and
After executing the rotating step, outputting a photographing instruction to the camera and obtaining an image from the camera;
determining whether the tool can pass through the passage opening based on the image;
A control program for executing a step of performing a predetermined abnormality coping process based on the determination that the tool cannot pass through the passage opening.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022002992A JP7038939B1 (en) | 2022-01-12 | 2022-01-12 | Machine tools, machine tool control methods, and machine tool control programs |
JP2022-002992 | 2022-01-12 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023136138A1 true WO2023136138A1 (en) | 2023-07-20 |
Family
ID=81213704
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/048244 WO2023136138A1 (en) | 2022-01-12 | 2022-12-27 | Machine tool, machine tool control method, and machine tool control program |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7038939B1 (en) |
WO (1) | WO2023136138A1 (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015104782A (en) * | 2013-11-29 | 2015-06-08 | 株式会社牧野フライス製作所 | Tool magazine device |
JP6884933B1 (en) * | 2021-02-15 | 2021-06-09 | Dmg森精機株式会社 | Machine Tools |
-
2022
- 2022-01-12 JP JP2022002992A patent/JP7038939B1/en active Active
- 2022-12-27 WO PCT/JP2022/048244 patent/WO2023136138A1/en unknown
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015104782A (en) * | 2013-11-29 | 2015-06-08 | 株式会社牧野フライス製作所 | Tool magazine device |
JP6884933B1 (en) * | 2021-02-15 | 2021-06-09 | Dmg森精機株式会社 | Machine Tools |
Also Published As
Publication number | Publication date |
---|---|
JP2023102482A (en) | 2023-07-25 |
JP7038939B1 (en) | 2022-03-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10478935B2 (en) | Deburring apparatus | |
US7251543B2 (en) | Interference checking device | |
JP5554235B2 (en) | Interference check device, interference check method, and machine tool provided with interference check device | |
WO2021192890A1 (en) | Machine tool, machine tool control method, and machine tool control program | |
JP6208701B2 (en) | Robot system for adjusting position of coolant nozzle and robot control method | |
JP2022029120A (en) | Machine tool, detection method, and detection program | |
US20080086221A1 (en) | Machine-tool controller | |
JP2005128686A (en) | Numerical control apparatus | |
WO2023136138A1 (en) | Machine tool, machine tool control method, and machine tool control program | |
JP6709315B1 (en) | Machine Tools | |
JP7029491B2 (en) | Machine tools, machine tool control methods, and machine tool control programs | |
JP2017091429A (en) | NC program creation device | |
US20180074467A1 (en) | System and method for reducing vibration in a computer controlled resurfacing machine | |
JP2020127996A (en) | Machine tool, foreign substance detecting method, and foreign substance detection program | |
WO2022091767A1 (en) | Image processing method, image processing device, robot mounted-type conveyance device, and system | |
JP6906724B1 (en) | Machine Tools | |
JP6915182B1 (en) | Machine tools, machine tool control methods, and machine tool control programs | |
JP2009134542A (en) | Interference detection device and interference map of machine tool | |
JP2007172325A (en) | Method of machining free curve and numerical control device | |
JP6900561B1 (en) | Machine tools, information processing methods, and information processing programs | |
WO2022180907A1 (en) | Machine tool, display control method, and display control program | |
JP6784804B1 (en) | Machining system, machine tool, machining system control method, and machining system control program | |
JP2023108194A (en) | Machine tool, control method and control program | |
JP2007249671A (en) | Method for preventing collision in machine tool | |
JP7169478B1 (en) | MACHINE TOOL, MACHINE TOOL, CONTROL METHOD, AND CONTROL PROGRAM |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22920654 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |