WO2023136033A1 - Power cable for submersible pump, pump carry-in method, and pump pull-up method - Google Patents

Power cable for submersible pump, pump carry-in method, and pump pull-up method Download PDF

Info

Publication number
WO2023136033A1
WO2023136033A1 PCT/JP2022/045984 JP2022045984W WO2023136033A1 WO 2023136033 A1 WO2023136033 A1 WO 2023136033A1 JP 2022045984 W JP2022045984 W JP 2022045984W WO 2023136033 A1 WO2023136033 A1 WO 2023136033A1
Authority
WO
WIPO (PCT)
Prior art keywords
pump
cable
split
cables
column
Prior art date
Application number
PCT/JP2022/045984
Other languages
French (fr)
Japanese (ja)
Inventor
修一郎 本田
哲司 笠谷
隼人 池田
圭 渡次
日向 菊池
光隆 石見
Original Assignee
株式会社荏原製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社荏原製作所 filed Critical 株式会社荏原製作所
Publication of WO2023136033A1 publication Critical patent/WO2023136033A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • F04D13/02Units comprising pumps and their driving means
    • F04D13/06Units comprising pumps and their driving means the pump being electrically driven
    • F04D13/08Units comprising pumps and their driving means the pump being electrically driven for submerged use
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C9/00Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure

Definitions

  • the present invention relates to a power cable for supplying power to submerged pumps that boost the pressure of liquefied gases such as liquefied ammonia, liquefied natural gas (LNG), and liquid hydrogen. Further, the invention relates to a method of loading a submersible pump into a pump column and a method of lifting a submersible pump out of the pump column using such a power cable.
  • liquefied gases such as liquefied ammonia, liquefied natural gas (LNG), and liquid hydrogen.
  • Natural gas is widely used for thermal power generation and as a chemical raw material. Further, ammonia and hydrogen are expected as energy that does not generate carbon dioxide that causes global warming. Applications of hydrogen for energy include fuel cells and turbine power generation. Since natural gas, ammonia and hydrogen are gaseous at normal temperatures, natural gas, ammonia and hydrogen are cooled and liquefied for their storage and transportation. Liquefied gas such as liquefied natural gas (LNG), liquefied ammonia, and liquefied hydrogen is temporarily stored in a liquefied gas storage tank and then transferred to a power plant, factory, or the like by a pump.
  • LNG liquefied natural gas
  • FIG. 19 is a schematic diagram showing a conventional example of a liquefied gas storage tank in which liquefied gas is stored and a pump for pumping up the liquefied gas.
  • the pump 500 is installed in a vertical pump column 505 installed in the liquefied gas reservoir 501 .
  • An upper end opening of the pump column 505 is closed with an upper lid 510 .
  • the inside of the pump column 505 is filled with liquefied gas, and the entire pump 500 is immersed in the liquefied gas.
  • Pump 500 is thus a submerged pump that can operate in liquefied gas.
  • the pump 500 When the pump 500 is operated, the liquefied gas in the liquefied gas reservoir 501 is drawn into the pump column 505, ascends the pump column 505, and is discharged from the pump column 505 through the liquefied gas discharge port 509.
  • the pump 500 is housed in a pump column 505 with a suspension cable 508 connected to its upper portion.
  • the upper portion of the suspension cable 508 is wound around a cable holding portion 511 extending from the upper lid 510 into the pump column 505 and held by the cable holding portion 511 .
  • the lower end of suspension cable 508 is connected to pump 500 . Accordingly, suspension cable 508 is also accommodated within pump column 505, similar to pump 500.
  • the hanging cable 508 is used when the pump 500 is carried into the pump column 505 and when the pump 500 is pulled up from the pump column 505.
  • the suspension cable 508 By leaving the suspension cable 508 connected to the pump 500, the work of connecting the suspension cable 508 to the pump 500 when the pump 500 is lifted is eliminated.
  • suspension cable 508 is immersed in liquefied gas within pump column 505 with pump 500 .
  • a power cable 507 is similarly connected to the motor of the pump 500 and extends through the pump column 505 to the outside of the pump column 505 . Power is supplied to the electric motor of pump 500 through power cable 507 so that pump 500 can operate within pump column 505 .
  • 20A and 20B are diagrams for explaining the operation of carrying the pump 500 into the pump column 505 and the operation of pulling the pump 500 up from the pump column 505.
  • FIG. When the pump 500 is installed in the pump column 505 and when the pump 500 is lifted from the pump column 505 for maintenance or the like, the upper end of the suspension cable 508 is connected to the hoist 513 . Pump 500 is suspended on suspension cable 508 and is raised and lowered within pump column 505 by hoist 513 .
  • the power cable 507 is also drawn out into the pump column 505 and pulled up from the pump column 505 .
  • the pump column 505 for liquefied gas is generally very long in the vertical direction, and may extend to several tens of meters.
  • the power cable 507 connected to the pump 500 installed at the bottom of such a pump column 505 is also necessarily long.
  • the work of feeding the power cable 507 into the pump column 505 and the work of pulling it up from the pump column 505 are very large-scale.
  • the power cable 507 in contact with the liquefied gas is very cold, and handling of the long power cable 507 is dangerous.
  • the present invention provides a power cable that can facilitate the handling of the power cable connected to the submersible pump, ensures the safety of workers, and reduces the burden on workers. offer.
  • the invention also provides a method of loading a submersible pump into the pump column and a method of lifting the submersible pump from the pump column using such a power cable.
  • a power cable for powering a submersible pump positioned within a pump column for transporting liquefied gas comprising: a plurality of split power cables; A power cable is provided that includes a plurality of cable connectors that physically connect.
  • each split power cable is shorter than the length of said pump column.
  • each cable connector comprises a female connector and a male connector connected to opposite ends of each split power cable.
  • the plurality of cable connectors are each supported by a plurality of connecting links connecting a plurality of split suspension cables for suspending the submersible pump within the pump column.
  • the load of the plurality of split power cables is supported by the plurality of split suspension cables.
  • a method of loading a submersible pump used to transfer liquefied gas into a pump column wherein a sling cable connected to a winch moves the submersible pump into the pump column.
  • a method is provided for connecting a plurality of split power cables for powering the submersible pump one by one with cable connectors while lowering the submersible pump.
  • the method further includes housing the submersible pump within a purge vessel, supplying a purge gas into the purge vessel, and exposing the submersible pump to the purge gas.
  • the step of lowering the submersible pump within the pump column by the lifting cable connected to the hoisting machine includes connecting a plurality of divided lifting cables one by one with a connecting link while the lifting cable is connected to the hoisting cable. lowering the submerged pump in the pump column by means of the plurality of split suspension cables connected to the machine;
  • the cable connector is supported by the connecting link.
  • the load of the plurality of split power cables is supported by the plurality of split suspension cables.
  • a method of hoisting a submersible pump used to transfer liquefied gas from a pump column, wherein the submersible pump is hoisted within the pump column by a sling cable connected to a hoist. Meanwhile, a method is provided for removing, one by one, a plurality of split power cables for powering the submersible pump.
  • the method further includes moving the submersible pump from the pump column into a purge vessel, supplying a purge gas into the purge vessel, and exposing the submersible pump to the purge gas.
  • the step of pulling up the submersible pump within the pump column by the suspension cable connected to the hoist includes dividing a plurality of divided suspension cables that constitute the suspension cable connected to the hoist. It is a step of lifting the submersible pump in the pump column by the suspension cable while removing them one by one.
  • the plurality of split power cables are electrically connected by cable connectors, the plurality of split suspension cables are connected by connecting links, and the cable connectors are supported by the connecting links. ing.
  • the load of the plurality of split power cables is supported by the plurality of split suspension cables.
  • the submersible pump can be carried into the pump column while adding these split power cables one by one. Further, the submersible pump can be lifted from the pump column while removing the multiple split power cables one by one. Workers do not need to handle long power cables (for example, several tens of meters), so the burden on workers can be reduced. In particular, worker safety is ensured when pulling the cryogenic power cable out of the pump column.
  • FIG. 1 illustrates one embodiment of a pump system for transporting liquefied gas
  • FIG. Figure 2A is a side view of one embodiment of a connecting link.
  • FIG. 2B is a top view of the connecting link.
  • FIG. 4 is a side view showing a connecting link, a split hanging cable connected to the connecting link, and a split power cable attached to the connecting link;
  • FIG. 4 is a diagram showing a state in which two split hanging cables are connected to a connecting link, and two split power cables are connected by a male connector and a female connector;
  • FIG. 11 is a top view showing another embodiment of a connecting link;
  • FIG. 10 is a cross-sectional view of one embodiment of a head plate and sealing link;
  • FIG. 10 illustrates one embodiment of the pump system prior to loading the submersible pump into the pump column and the lifting device used to load the submersible pump into the pump column.
  • FIG. 11 illustrates one embodiment of a method of loading a submersible pump into a pump column;
  • FIG. 10 illustrates one embodiment of a method of lifting a submersible pump from a pump column;
  • FIG. 10 illustrates one embodiment of a method of lifting a submersible pump from a pump column;
  • FIG. 10 illustrates one embodiment of a method of lifting a submersible pump from a pump column;
  • FIG. 10 illustrates one embodiment of a method of lifting a submersible pump from a pump column;
  • FIG. 1 is a schematic diagram showing a conventional example of a liquefied gas storage tank in which liquefied gas is stored and a pump for pumping up the liquefied gas.
  • FIG. 4 is a diagram for explaining the work of loading the pump into the pump column and the work of pulling the pump up from the pump column;
  • FIG. 1 illustrates one embodiment of a pump system for transporting liquefied gas.
  • liquefied gases that may be transported by the pump system shown in FIG. 1 include liquefied ammonia, liquid hydrogen, liquid nitrogen, liquefied natural gas, liquefied ethylene gas, liquefied petroleum gas, and the like.
  • the pump system includes a submerged pump 2 for transferring liquefied gas, a pump column 3 in which the submerged pump 2 is housed, and a A purge container 1, a cover wall 10 fixed to the upper end of the purge container 1, and an upper lid 12 closing an upper opening of the cover wall 10 are provided.
  • the pump column 3 is installed in a liquefied gas storage tank 5 in which liquefied gas is stored.
  • the pump column 3 is a vertically extending hollow container, the upper part of which protrudes upward from the liquefied gas storage tank 5 .
  • a purge container 1 communicates with a pump column 3 .
  • the pump column 3 has a purge gas introduction port 8 and a discharge port 9 .
  • a suction valve 6 is provided at the bottom of the pump column 3 .
  • the submerged pump 2 is installed on the suction valve 6 of the pump column 3 .
  • the suction valve 6 has a valve body 6A that covers the lower opening of the pump column 3, and a plurality of springs 6B that bias the valve body 6A upward.
  • the valve body 6A is pressed against the lower end of the pump column 3 by a plurality of springs 6B to close the lower opening of the pump column 3.
  • the self-weight of the submerged pump 2 causes the valve body 6A to move downward against the force of the spring 6B, thereby opening the suction valve 6.
  • the intake valve 6 may be an actuator-driven valve (eg, an electrically operated valve).
  • the purge container 1 is a device for exposing the submerged pump 2 to purge gas before the submerged pump 2 is carried into the pump column 3 and after the submerged pump 2 is pulled up from the pump column 3 .
  • a purge container 1 is fixed to the upper end of the pump column 3 .
  • the purge container 1 has a purge gas inlet port 17 and a gas outlet port 18 communicating with its internal space 15 .
  • An upper opening of the purge container 1 is covered with a head plate 20 and a lower opening of the purge container 1 can be closed by a gate valve 21 .
  • the gate valve 21 of the present embodiment is of a manual type that is opened and closed by manually operating the handle 21a, but may be configured to be electrically opened and closed.
  • Suspension cables 23 and connecting structures 28 are suspended from sealing links 30 fixed to head plate 20 .
  • Suspension cables 23 include a plurality of split suspension cables 23B and connection links 24 that connect these split suspension cables 23B.
  • the length of each divided suspension cable 23B is shorter than the length of the pump column 3.
  • a plurality of divided hanging cables 23B are connected in series by connecting links 24 .
  • connection structure 28 is attached to the submerged pump 2 .
  • the connection structure 28 has a connection link 33 at its upper end, and this connection link 33 is connected to the lower end of the suspension cable 23 .
  • a specific configuration of the connecting structure 28 is not particularly limited, and it may include a cable, a rod, or the like.
  • Suspension cables 23 and connecting structures 28 extend vertically through purge vessel 1 and pump column 3 .
  • the head plate 20 is covered by the cover wall 10 and the upper lid 12.
  • An electrical terminal 35 is attached to the upper surface of the upper lid 12 .
  • This electrical terminal 35 is connected to a power supply (not shown).
  • a power cable 36 for supplying power to the electric motor of the submersible pump 2 extends vertically along the suspension cable 23 and the coupling structure 28 through the pump column 3, the purge vessel 1 and the cover wall 10 to provide electrical power. It is electrically connected to terminal 35 .
  • the power cable 36 includes a plurality of split power cables 36A and cable connectors 36B electrically connecting the split power cables 36A. The length of each split power cable 36A is shorter than the length of the pump column 3. A plurality of divided power cables 36A are connected in series by cable connectors 36B.
  • the purge gas introduction port 8 the purge gas inlet port 17, and the gas outlet port 18 are closed by valves (not shown), and the gate valve 21 is opened.
  • the liquefied gas in the liquefied gas storage tank 5 is introduced into the pump column 3 through the suction valve 6, and the pump column 3 is filled with the liquefied gas.
  • the entire submerged pump 2 is immersed in the liquefied gas. Therefore, the submerged pump 2 is configured to be operable in liquefied gas.
  • the liquefied gas pressurized by the submerged pump 2 is transferred to the outside through the discharge port 9 .
  • FIG. 2A is a side view showing one embodiment of a connecting link 24 for connecting a plurality of split hanging cables 23B
  • FIG. 2B is a top view of the connecting link 24.
  • the connecting link 24 has two pin holes 24a into which connecting pins (to be described later) for connecting the split hanging cables 23B are inserted. These pin holes 24 a are located at the upper and lower portions of the connecting link 24 .
  • the connecting link 24 has a flange portion 25 projecting sideways.
  • the connecting link 24 has a cable passage 26 vertically passing through the flange portion 25 .
  • a split power cable 36 A is inserted into this cable passage 26 .
  • the cable passage 26 has an outwardly open notch shape so that the split power cable 36A can be inserted into the cable passage 26 from the side of the connecting link 24 .
  • cable passageway 26 may have the shape of a through hole.
  • FIG. 3 is a side view showing the connecting link 24, the divided suspension cable 23B connected to the connecting link 24, and the divided power cable 36A supported by the connecting link 24.
  • FIG. Each split suspension cable 23B has a connecting terminal 29 at its end, and this connecting terminal 29 has a through hole 29a through which the connecting pin 31 can pass.
  • the connecting pin 31 is inserted into the through hole 29a of the connecting terminal 29 of each divided suspension cable 23B and the pin hole 24a of the connecting link 24, whereby each divided suspension cable 23B is connected to the connecting link 24.
  • FIG. 3 is a side view showing the connecting link 24, the divided suspension cable 23B connected to the connecting link 24, and the divided power cable 36A supported by the connecting link 24.
  • FIG. 3 is a side view showing the connecting link 24, the divided suspension cable 23B connected to the connecting link 24, and the divided power cable 36A supported by the connecting link 24.
  • FIG. 3 is a side view showing the connecting link 24, the divided suspension cable 23B connected to the connecting link 24, and the divided power cable 36A supported by the connecting
  • the split power cables 36A are electrically connected by a cable connector 36B including a female connector 37 and a male connector 38.
  • the male connector 38 has a shape that fits inside the female connector 37 .
  • a female connector 37 is connected to the upper end of each split power cable 36A, and a male connector 38 is connected to the lower end of each split power cable 36A.
  • the split power cable 36A has a width smaller than the cable passage 26, but the female connector 37 has a width greater than the width of the cable passage 26, and the female connector 37 passes through the cable passage 26. can't. Therefore, the female connector 37 also functions as a stopper that prevents the split power cable 36A from falling from the connecting link 24. As shown in FIG. In other words, split power cable 36A is supported by connecting link 24 via female connector 37 . Therefore, the load of the split power cable 36A connected to the female connector 37 is supported by the split suspension cable 23B connected to the connecting link 24.
  • the male connector 38 may be connected to the upper end of the split power cable 36A and the female connector 37 may be connected to the lower end of the split power cable 36A. .
  • the male connector 38 functions as a stopper that prevents the split power cable 36A from falling from the connecting link 24.
  • FIG. 4 is a diagram showing a state in which two divided hanging cables 23B are connected to the connecting link 24 and two divided power cables 36A are connected by the male connector 38 and the female connector 37.
  • FIG. 4 the male connector 38 and the female connector 37 are connected by inserting the male connector 38 connected to the upper divided power cable 36A into the female connector 37 connected to the lower divided power cable 36A. This establishes an electrical connection between the upper split power cable 36A and the lower split power cable 36A.
  • Male connector 38 and female connector 37 are supported by connecting link 24 . Furthermore, since the connecting link 24 can support the load of the lower split power cable 36A, unintended disconnection of the male connector 38 and the female connector 37 can be prevented.
  • Each split power cable 36A may be split into three split power cables for three-phase AC.
  • each connecting link 24 may have three cable passages 26 into which three split power cables for three-phase alternating current are inserted.
  • FIG. 6 is a cross-sectional view showing one embodiment of the head plate 20 and sealing link 30.
  • the head plate 20 includes a plate body 40 shaped to cover the upper opening of the purge container 1, a projection 41 extending upward from the plate body 40, a movable flange 42 surrounding the projection 41, and the projection 41.
  • a seal 44 (for example, gland packing) is provided to seal the gap between the outer surface and the inner surface of the movable flange 42 .
  • the projecting portion 41 and the movable flange 42 have a cylindrical shape.
  • the movable flange 42 is vertically movable relative to the projecting portion 41 and the plate body 40 .
  • the head plate 20 has cable ports 47 fixed to both sides of the plate body 40 . Each cable port 47 has a hole (not shown) through which the hanging cable 23 can pass.
  • the head plate 20 has a through hole 50 formed in the projecting portion 41 .
  • the through hole 50 extends vertically.
  • the width of the through-hole 50 is larger than the width of the upper portion of the suspension cable 23 and the connection structure 28 (see FIG. 1), and the upper portion of the connection structure 28 (including the connection link 33) and the suspension cable 23 (including the connection link 24). ) can pass through the through hole 50 .
  • the head plate 20 is removably secured to the upper end of the purge vessel 1 by fasteners 53 such as bolts and nuts.
  • the sealing link 30 is removably fixed to the movable flange 42 by fasteners (not shown) such as screws.
  • the upper end of through hole 50 is closed by sealing link 30 .
  • a power cable 36 extends through the sealing link 30 .
  • the split suspension cable 23B and the power cable 36 that constitute the suspension cable 23 extend through the through hole 50 .
  • FIG. 7 shows an embodiment of the pump system before loading the submersible pump 2 into the pump column 3 and the lifting device 60 used to load the submersible pump 2 into the pump column 3. It is a diagram. The cover wall 10 and the top lid 12 are removed before the submersible pump 2 is carried into the pump column 3 . Gate valve 21 is closed.
  • the lifting device 60 includes a hoist 61 such as a hoist or a winch, the suspension cable 23 connected to the hoist 61 , the connection structure 28 extending upward from the submerged pump 2 , and the submerged pump 2 .
  • the head plate 20 is arranged above and has a shape that covers the upper opening of the purge container 1 , and a locking member 65 that locks the connecting structure 28 to the head plate 20 .
  • a hoist 61 is arranged above the pump column 3 and the purge container 1 .
  • the lower end of the connecting structure 28 is connected to the submerged pump 2, and the upper end of the connecting structure 28 is composed of a connecting link 33. Since this connecting link 33 has the same configuration as the connecting link 24 described with reference to FIGS. 2 to 4 or 5, redundant description thereof will be omitted.
  • the connecting link 33 has a laterally projecting flange portion 33a.
  • the locking member 65 is engaged with the flange portion 33 a of the connecting link 33 .
  • the split power cable 36A extends through a cable passage (not shown) formed in the flange portion 33a of the connecting link 33, and the female connector 37 connected to the upper end of the split power cable 36A extends through the flange portion 33a. locked to.
  • a cable passage (not shown) of the connecting link 33 has the same structure as the cable passage 26 of the connecting link 24 described with reference to FIGS. 2 to 5, so redundant description thereof will be omitted.
  • the connecting link 33 extends through the locking member 65 and is supported by the locking member 65 .
  • a locking member 65 is placed on the head plate 20 . More specifically, the locking member 65 is arranged so as to partially cover the through hole 50 of the head plate 20 .
  • Coupling structure 28 and split power cable 36 A extend through through hole 50 .
  • FIG. 8 is a perspective view showing one embodiment of the locking member 65.
  • locking member 65 is shaped to engage connecting links 24, 33 (see FIG. 1).
  • the locking member 65 of this embodiment has an opening 66 in its center and is divided into a plurality of members 65A, 65A.
  • the opening 66 has a size that does not allow passage of the connecting links 24, 33 (see FIG. 1).
  • the locking member 65 that functions as a stopper for the connecting links 24 and 33 is a split ring (for example, a split ring) made up of a plurality of (typically two) members.
  • the configurations of the connecting links 24, 33 and the locking member 65 are not limited to this embodiment as long as they can perform their intended functions.
  • locking member 65 may be a single member (eg, a U-shaped member) having a notch extending outwardly from its center.
  • the connecting links 24, 33 may be structures such as shackles.
  • the connecting links 24 and 33 have through holes extending in the horizontal direction instead of having protrusions extending in the lateral direction, and the locking member 65 is a rod-like member inserted into the through holes. good too.
  • the width of the locking member 65 is larger than the width of the through hole 50 of the head plate 20, and the locking member 65 cannot pass through the through hole 50.
  • the width of the connecting link 33 is smaller than the width of the through hole 50 of the head plate 20 so that the connecting link 33 can pass through the through hole 50 .
  • the submersible pump 2 is thus suspended from the locking member 65 on the head plate 20 by the connecting structure 28 including the connecting link 33 .
  • the load of the submerged pump 2 is supported by the head plate 20 via the connecting structure 28 including the connecting link 33 and the locking member 65 .
  • the split power cable 36A extends along the connecting structure 28 and the female connector 37 connected to the split power cable 36A is supported on the connecting link 33. As shown in FIG.
  • the purge gas inlet port 17 is connected to the purge gas supply line 71 extending from the purge gas supply source 70, and the gas outlet port 18 is connected to the vacuum line 74.
  • Vacuum line 74 is connected to a vacuum source (not shown) such as a vacuum pump.
  • purge gas sources 70 include nitrogen gas sources, helium gas sources, hydrogen gas sources, or combinations thereof.
  • the purge gas source 70 may include multiple purge gas sources of different types, such as at least two of a nitrogen gas source and a helium gas source and a hydrogen gas source. In this case, multiple purge gas supply sources may be selectively connected to the purge gas supply line 71 .
  • FIGS. 9 to 14 are diagrams explaining an embodiment of a method for carrying the submerged pump 2 into the pump column 3.
  • FIG. A series of operations shown in FIGS. 9 to 14 includes a dry-up operation in which the submerged pump 2 is exposed to the purge gas in the purge container 1, an operation in which the submerged pump 2 is lowered in the pump column 3, and a plurality of divided suspensions. It includes an operation of splicing the cables 23B to the suspension cable 23 one by one, and an operation of splicing the plurality of divided power cables 36A to the power cable 36 one by one.
  • Liquefied gas is discharged from the pump column 3 before the loading operation described below.
  • the purge gas is supplied into the pump column 3 from the purge gas supply line 71 and/or the purge gas introduction port 8 , and the pressure of the purge gas discharges the liquefied gas from the pump column 3 through the suction valve 6 .
  • the suspension cable 23 connected to the hoist 61 is connected to the head plate 20 . More specifically, the suspension cable 23 connects to the cable port 47 of the headplate 20 .
  • the submerged pump 2 is suspended from the head plate 20 by a connecting structure 28 including a connecting link 33 and a locking member 65 .
  • One of the plurality of split power cables 36A is connected to the electric motor of the submerged pump 2, and the female connector 37 at the upper end of the split power cable 36A is engaged with the connecting link 33.
  • step 102 the submersion pump 2, the head plate 20, the connection structure 28, the split power cable 36A, and the locking member 65 are all lowered by the hoist 61, and the top of the purge container 1 is lifted by the head plate 20. cover the opening.
  • the head plate 20 is secured to the upper end of the purge container 1 by fasteners 53 shown in FIG.
  • the hoisting cable (first hoisting cable) 23 A connected to the hoist 61 is disconnected from the cable port 47 . Furthermore, one of a plurality of split hanging cables (second hanging cables) 23B prepared in advance is added to the hanging cable 23 . More specifically, the upper end of the newly added divided suspension cable 23B is connected to the suspension cable 23A connected to the hoist 61 via the connection link 24, and the newly added divided suspension cable 23B The lower end is connected to the connecting link 33 of the connecting structure 28 .
  • the suspension cable 23 includes a first suspension cable 23A extending from the hoist 61 and a plurality of split suspension cables (second suspension cables) 23B that can be separated from the first suspension cable 23A.
  • one of a plurality of divided power cables 36A prepared in advance is added to the power cable 36. More specifically, the newly added split power cable 36A is passed through the cable passage 26 (see FIG. 2) of the connecting link 24, and the female connector 37 attached to the split power cable 36A is connected to the connecting link 24. place on top. Further, the male connector 38 attached to the newly added divided power cable 36A is connected to the female connector 37 on the already installed divided power cable 36A. As a result, the newly added split power cable 36A is electrically connected to the existing split power cable 36A. A plurality of divided power cables 36A electrically connected in this manner constitute a power cable 36. FIG.
  • the internal space 15 of the purge container 1 containing the submerged pump 2 is filled with gas.
  • a vacuum is drawn through outlet port 18 .
  • a purge gas (including, for example, an inert gas and/or a gas having the same composition as that of the liquefied gas) is supplied through the purge gas inlet port 17 into the interior space 15 to fill the interior space 15 with the purge gas.
  • the submersible pump 2 is exposed (contacted) to purge gas within the purge vessel 1 , thereby excluding air and moisture from the surfaces of the submersible pump 2 .
  • This step is a dry-up that expels air and moisture from the submersible pump 2 .
  • the evacuation of the internal space 15 and the supply of the purge gas to the internal space 15 may be repeated.
  • the purge gas used is a gas composed of a component with a boiling point lower than the boiling point of the liquefied gas to be pumped by the submerged pump 2. This is to prevent the purge gas from liquefying when it contacts the liquefied gas.
  • purge gas include inert gases such as nitrogen gas and helium gas.
  • nitrogen gas which is a gas composed of nitrogen having a boiling point ( ⁇ 196° C.) lower than the boiling point ( ⁇ 162° C.) of liquefied natural gas. is used for the purge gas.
  • helium gas which is a gas made of helium having a boiling point (-269°C) lower than the boiling point of hydrogen (-253°C). is used for the purge gas.
  • a part of the purge gas may be gas composed of the same components as those of the liquefied gas. If the gas outlet port 18 is connected to a gas processor, all of the purge gas may be gas of the same composition as the liquefied gas. For example, if the liquefied gas is liquid hydrogen, some or all of the purge gas may be hydrogen gas. Alternatively, if the liquefied gas is liquefied ammonia, some or all of the purge gas may be ammonia gas.
  • step 104 the hoisting device 61 lifts the suspension cable 23 , the split power cable 36A and the submerged pump 2 slightly, and removes the locking member 65 from the head plate 20 .
  • the load of the submerged pump 2 is supported by the hoist 61 .
  • the supply of the purge gas into the purge container 1 through the purge gas inlet port 17 is continued. Meanwhile, the evacuation of the internal space 15 of the purge container 1 through the gas outlet port 18 is stopped. Furthermore, the gate valve 21 is opened.
  • step 105 the hoist 61 further lowers the suspension cable 23, the split power cable 36A, the connection structure 28, and the submerged pump 2. While the submerged pump 2 is being lowered, purge gas may be supplied into the pump column 3 from the purge gas introduction port 8 . Before the uppermost connecting link 24 enters the purge container 1 , the locking member 65 is again placed on the head plate 20 . When the submersible pump 2 is lowered, the split suspension cable 23B and the split power cable 36A extend through the through hole 50 of the head plate 20. As shown in FIG.
  • step 106 the suspension cable 23, the split power cable 36A, the coupling structure 28, and the latent cable 24 are connected until the connection link 24 connected to the upper end of the split suspension cable 23B engages (contacts) the locking member 65.
  • the submerged pump 2 is lowered by the hoist 61. - ⁇ When the connecting link 24 engages the locking member 65 , the load of the submerged pump 2 is supported by the locking member 65 and the head plate 20 .
  • step 107 when the submerged pump 2 approaches the bottom of the pump column 3, the last split suspension cable 23B is added to the suspension cables 23 and the last split power cable 36A is added to the power cable 36.
  • the sealing link 30 described with reference to FIG. 6 is connected to the upper end of the last split suspension cable 23B.
  • a male connector 38 is connected to the lower end of the split power cable 36A, and the upper part of the split power cable 36A extends through the sealing link 30.
  • the locking member 65 is removed from the head plate 20 and then the submersible pump 2 is lowered until the sealing link 30 reaches a position directly above the head plate 20 .
  • the submerged pump 2 is arranged at a predetermined position directly above the intake valve 6 within the pump column 3 .
  • step 109 the movable flange 42 of the head plate 20 is lifted upward and fixed to the sealing link 30 by fasteners (not shown) such as screws.
  • seal link 30 , movable flange 42 and submerged pump 2 are lowered until seal link 30 contacts head plate 20 .
  • the submersible pump 2 is placed on the intake valve 6 .
  • the suction valve 6 is opened by the self-weight of the submerged pump 2 .
  • the suspension cable 23A is disconnected from the sealing link 30, after which the cover wall 10 is fixed to the upper end of the purge vessel 1.
  • FIG. The uppermost split power cable 36 A is connected to an electrical terminal 35 installed on the upper surface of the top cover 12 , and the top cover 12 is further fixed to the cover wall 10 .
  • the submerged pump 2 can be carried into the pump column 3 while adding (connecting) these split power cables 36A one by one. can. Workers do not need to handle long power cables (for example, several tens of meters), so the burden on workers can be reduced.
  • the submerged pump 2 can be carried into the pump column 3 while adding (connecting) these split suspension cables 23B one by one. . Workers do not need to handle long suspension cables (for example, several tens of meters), so the burden on workers can be reduced.
  • FIG. 15 to 18 An embodiment of a method for pulling up the submerged pump 2 from the pump column 3 will be described with reference to FIGS. 15 to 18.
  • FIG. 15 to 18 A series of operations shown in FIGS. 15 to 18 includes an operation to raise the submerged pump 2 within the pump column 3, an operation to remove the plurality of split suspension cables 23B one by one, and one operation to pull the plurality of split power cables 36A. It includes a step-by-step removal operation and a hot-up where the submersible pump 2 is exposed to purge gas within the purge vessel 1 .
  • step 201 the top lid 12 is removed from the cover wall 10 and the uppermost split power cable 36A is disconnected from the electrical terminals 35. Furthermore, the cover wall 10 is removed from the purge container 1 .
  • the suspension cable 23A is then connected to the sealing link 30, whereby the suspension cable 23A is connected via the sealing link 30 to the suspension cable 23B extending from the connecting structure 28 connected to the submersible pump 2. be.
  • the hoist 61 lifts the sealing link 30, the movable flange 42, the suspension cable 23B, the split power cable 36A, the connection structure 28, and the submerged pump 2 slightly, and the suction valve 6 is closed.
  • purge gas is supplied into the purge container 1 and the pump column 3 through the purge gas inlet port 17 .
  • the pressure in the pump column 3 increases and the suction valve 6 opens accordingly. Liquefied gas is thereby discharged from the pump column 3 through the intake valve 6 .
  • the movable flange 42 is separated from the sealing link 30. Further, the plurality of divided suspension cables 23B, the plurality of divided power cables 36A, and the connection are continued until the entire uppermost divided suspension cable 23B and the entire uppermost divided power cable 36A are positioned above the purge container 1. The structure 28 and submerged pump 2 are pulled up by the hoist 61 . After that, the locking member 65 is placed on the head plate 20 . The suspension cable 23B and the split power cable 36A extend through the through hole 50 of the head plate 20 when the submersible pump 2 is raised.
  • step 203 the split suspension cable 23B, split power cable 36A, connecting structure 28, and submerged pump 2 are moved until the connecting link 24 directly above the locking member 65 engages (contacts) with the locking member 65. It is slightly lowered by the hoist 61. ⁇ The load of submerged pump 2 is supported by locking member 65 and head plate 20 .
  • the uppermost split hanging cable 23 B outside the purge container 1 is removed from the hanging cable 23 .
  • the sealing link 30 is removed from the suspension cable 23 together with the split suspension cable 23B.
  • the uppermost split power cable 36 A is also removed from the power cable 36 .
  • the male connector 38 connected to the lower end of the split power cable 36A is disconnected from the female connector 37 on the connecting link 24 supported by the locking member 65. As shown in FIG.
  • the suspension cable 23 A extending from the hoist 61 is connected to the connecting link 24 engaged with the locking member 65 .
  • the suspension cable 23A is reconnected to the submerged pump 2 via the split suspension cable 23B.
  • the steps similar to Step 202 to Step 205 are repeated until the submerged pump 2 is lifted into the purge container 1 by the hoist 61 while removing (separating) the plurality of divided hanging cables 23B one by one. and while removing (disconnecting) the plurality of divided power cables 36A one by one.
  • purge gas is fed into the pump column 3 through the purge gas inlet port 17 and/or the purge gas introduction port 8 .
  • the gate valve 21 is closed while the submerged pump 2 is positioned inside the purge container 1 .
  • a purge gas e.g. inert gas and/or the same component as the liquefied gas
  • the submerged pump 2 is exposed (contacted) to the purge gas in the purge container 1, thereby warming the submerged pump 2. As shown in FIG. This step is a hot-up for heating the submerged pump 2 .
  • step 207 fasteners 53 (see FIG. 6) such as bolts and nuts fixing the head plate 20 to the purge container 1 are removed.
  • the suspension cable 23A is connected to the cable port 47 of the head plate 20.
  • the hoist 61 lifts the head plate 20, the connecting structure 28, the lowermost divided power cable 36A, the locking member 65, and the submersible pump 2 together to purge the submersible pump 2. Move out of container 1.
  • the submersible pump 2 can be pulled up from the pump column 3 while removing (separating) these split power cables 36A one by one. Workers do not need to handle long power cables (for example, several tens of meters), so the burden on workers can be reduced. In particular, the safety of the operator when pulling up the cryogenic power cable 36 from the pump column 3 can be ensured.
  • the submerged pump 2 is pulled up from the pump column 3 while removing (separating) these divided suspension cables 23B one by one. can be done. Workers do not need to handle long suspension cables (for example, several tens of meters), so the burden on workers can be reduced. In particular, it is possible to ensure the safety of workers when pulling up the cryogenic hanging cable 23 from the pump column 3 .
  • the present invention can be used as a power cable for supplying power to submerged pumps that boost the pressure of liquefied gases such as liquefied ammonia, liquefied natural gas (LNG), and liquid hydrogen. Further, the present invention is applicable to a method of loading a submersible pump into a pump column and a method of lifting a submersible pump from the pump column using such a power cable.
  • liquefied gases such as liquefied ammonia, liquefied natural gas (LNG), and liquid hydrogen.

Abstract

The present invention relates to a power cable for supplying power to a submersible pump for raising the pressure of a liquefied gas such as liquefied ammonia, liquefied natural gas (LNG), or liquid hydrogen. The present invention further relates to: a method for carrying a submersible pump into a pump column by using such a power cable; and to a method for pulling up the submersible pump from the pump column. A power cable (36) is for supplying power to a submersible pump (2) disposed inside a pump column (3) in order to transfer liquefied gas, the power cable comprising: a plurality of split power cables (36A); and a plurality of cable connectors (36B) electrically connecting the plurality of split power cables (36A).

Description

潜没式ポンプのための電力ケーブル、ポンプ搬入方法、ポンプ引き上げ方法Power cable for submerged pump, pump loading method, pump lifting method
 本発明は、液化アンモニアや液化天然ガス(LNG)や液体水素などの液化ガスを昇圧する潜没式ポンプに電力を供給するための電力ケーブルに関する。さらに、本発明はそのような電力ケーブルを用いて、潜没式ポンプをポンプコラム内に搬入する方法、および潜没式ポンプをポンプコラムから引き上げる方法に関する。 The present invention relates to a power cable for supplying power to submerged pumps that boost the pressure of liquefied gases such as liquefied ammonia, liquefied natural gas (LNG), and liquid hydrogen. Further, the invention relates to a method of loading a submersible pump into a pump column and a method of lifting a submersible pump out of the pump column using such a power cable.
 天然ガスは、火力発電や化学原料として広く利用されている。また、アンモニアや水素は、地球温暖化の原因となる二酸化炭素を発生しないエネルギーとして期待されている。エネルギーとしての水素の用途には、燃料電池およびタービン発電などが挙げられる。天然ガス、アンモニア、および水素は、常温では気体の状態であるため、これらの貯蔵および運搬のために、天然ガス、アンモニア、および水素は冷却され、液化される。液化天然ガス(LNG)や液化アンモニアや液体水素などの液化ガスは、一旦液化ガス貯槽に貯蔵された後、ポンプによって発電所や工場などに移送される。 Natural gas is widely used for thermal power generation and as a chemical raw material. Further, ammonia and hydrogen are expected as energy that does not generate carbon dioxide that causes global warming. Applications of hydrogen for energy include fuel cells and turbine power generation. Since natural gas, ammonia and hydrogen are gaseous at normal temperatures, natural gas, ammonia and hydrogen are cooled and liquefied for their storage and transportation. Liquefied gas such as liquefied natural gas (LNG), liquefied ammonia, and liquefied hydrogen is temporarily stored in a liquefied gas storage tank and then transferred to a power plant, factory, or the like by a pump.
 図19は、液化ガスが貯蔵された液化ガス貯槽と、液化ガスを汲み上げるためのポンプの従来例を示す模式図である。ポンプ500は、液化ガス貯槽501に設置された縦型ポンプコラム505内に設置される。ポンプコラム505の上端開口は、上蓋510で閉じられている。ポンプコラム505内は液化ガスで満たされ、ポンプ500の全体は液化ガス中に浸漬される。したがって、ポンプ500は、液化ガス中で運転可能な潜没式ポンプである。ポンプ500が運転されると、液化ガス貯槽501内の液化ガスはポンプコラム505内に吸い込まれ、ポンプコラム505を上昇し、そしてポンプコラム505から液化ガス排出ポート509を通じて排出される。 FIG. 19 is a schematic diagram showing a conventional example of a liquefied gas storage tank in which liquefied gas is stored and a pump for pumping up the liquefied gas. The pump 500 is installed in a vertical pump column 505 installed in the liquefied gas reservoir 501 . An upper end opening of the pump column 505 is closed with an upper lid 510 . The inside of the pump column 505 is filled with liquefied gas, and the entire pump 500 is immersed in the liquefied gas. Pump 500 is thus a submerged pump that can operate in liquefied gas. When the pump 500 is operated, the liquefied gas in the liquefied gas reservoir 501 is drawn into the pump column 505, ascends the pump column 505, and is discharged from the pump column 505 through the liquefied gas discharge port 509.
 ポンプ500は、その上部に吊りケーブル508が接続された状態で、ポンプコラム505内に収容されている。吊りケーブル508の上部は、上蓋510からポンプコラム505内に延びるケーブル保持部511に巻かれており、ケーブル保持部511に保持されている。吊りケーブル508の下端はポンプ500に接続されている。したがって、吊りケーブル508も、ポンプ500と同様に、ポンプコラム505内に収容される。 The pump 500 is housed in a pump column 505 with a suspension cable 508 connected to its upper portion. The upper portion of the suspension cable 508 is wound around a cable holding portion 511 extending from the upper lid 510 into the pump column 505 and held by the cable holding portion 511 . The lower end of suspension cable 508 is connected to pump 500 . Accordingly, suspension cable 508 is also accommodated within pump column 505, similar to pump 500. FIG.
 吊りケーブル508は、ポンプ500をポンプコラム505内に搬入するとき、およびポンプ500をポンプコラム505から引き上げるときに使用される。吊りケーブル508をポンプ500に接続されたままにしておくことで、ポンプ500を引き上げる際に吊りケーブル508をポンプ500に連結する作業が省ける。ポンプ500の運転中は、吊りケーブル508は、ポンプ500とともにポンプコラム505内で、液化ガス中に浸漬される。 The hanging cable 508 is used when the pump 500 is carried into the pump column 505 and when the pump 500 is pulled up from the pump column 505. By leaving the suspension cable 508 connected to the pump 500, the work of connecting the suspension cable 508 to the pump 500 when the pump 500 is lifted is eliminated. During operation of pump 500 , suspension cable 508 is immersed in liquefied gas within pump column 505 with pump 500 .
 電力ケーブル507も同様に、ポンプ500の電動機に接続されており、ポンプコラム505を通ってポンプコラム505の外まで延びている。電力は、電力ケーブル507を通ってポンプ500の電動機に供給され、これによりポンプ500はポンプコラム505内で運転することができる。 A power cable 507 is similarly connected to the motor of the pump 500 and extends through the pump column 505 to the outside of the pump column 505 . Power is supplied to the electric motor of pump 500 through power cable 507 so that pump 500 can operate within pump column 505 .
 図20は、ポンプ500をポンプコラム505内に搬入する作業、およびポンプ500をポンプコラム505から引き上げる作業を説明する図である。ポンプ500をポンプコラム505内に設置するとき、およびメンテナンスなどの目的でポンプ500をポンプコラム505から引き上げるとき、吊りケーブル508の上端は巻き上げ機513に接続される。ポンプ500は吊りケーブル508に吊り下げられ、巻き上げ機513によってポンプコラム505内を上昇および下降される。 20A and 20B are diagrams for explaining the operation of carrying the pump 500 into the pump column 505 and the operation of pulling the pump 500 up from the pump column 505. FIG. When the pump 500 is installed in the pump column 505 and when the pump 500 is lifted from the pump column 505 for maintenance or the like, the upper end of the suspension cable 508 is connected to the hoist 513 . Pump 500 is suspended on suspension cable 508 and is raised and lowered within pump column 505 by hoist 513 .
 ポンプ500の上昇および下降に伴い、電力ケーブル507もポンプコラム505内に繰り出され、ポンプコラム505から引き上げられる。 As the pump 500 ascends and descends, the power cable 507 is also drawn out into the pump column 505 and pulled up from the pump column 505 .
特許3197645号公報Japanese Patent No. 3197645 特許3198248号公報Japanese Patent No. 3198248 特許3472379号公報Japanese Patent No. 3472379
 しかしながら、液化ガス用のポンプコラム505は、一般に、鉛直方向に非常に長く、数十メートルにもおよぶ場合がある。このようなポンプコラム505の底部に設置されたポンプ500に接続された電力ケーブル507も必然的に長くなる。結果として、電力ケーブル507をポンプコラム505内に繰り出す作業、およびポンプコラム505から引き上げる作業は、非常に大掛かりなものとなる。特に、電力ケーブル507をポンプコラム505から引き上げるとき、液化ガスに接触していた電力ケーブル507は非常に低温であり、長尺の電力ケーブル507の取り扱いには危険を伴う。 However, the pump column 505 for liquefied gas is generally very long in the vertical direction, and may extend to several tens of meters. The power cable 507 connected to the pump 500 installed at the bottom of such a pump column 505 is also necessarily long. As a result, the work of feeding the power cable 507 into the pump column 505 and the work of pulling it up from the pump column 505 are very large-scale. In particular, when the power cable 507 is pulled up from the pump column 505, the power cable 507 in contact with the liquefied gas is very cold, and handling of the long power cable 507 is dangerous.
 そこで、本発明は、潜没式ポンプに接続された電力ケーブルの取り扱いを容易にすることができ、作業員の安全性の確保と、作業員への負荷低減を達成することができる電力ケーブルを提供する。また、本発明は、そのような電力ケーブルを用いて、潜没式ポンプをポンプコラム内に搬入する方法、および潜没式ポンプをポンプコラムから引き上げる方法を提供する。 Therefore, the present invention provides a power cable that can facilitate the handling of the power cable connected to the submersible pump, ensures the safety of workers, and reduces the burden on workers. offer. The invention also provides a method of loading a submersible pump into the pump column and a method of lifting the submersible pump from the pump column using such a power cable.
 一態様では、液化ガスを移送するためにポンプコラム内に配置された潜没式ポンプに電力を供給するための電力ケーブルであって、複数の分割電力ケーブルと、前記複数の分割電力ケーブルを電気的に接続する複数のケーブルコネクタを備えている、電力ケーブルが提供される。 In one aspect, a power cable for powering a submersible pump positioned within a pump column for transporting liquefied gas, comprising: a plurality of split power cables; A power cable is provided that includes a plurality of cable connectors that physically connect.
 一態様では、各分割電力ケーブルの長さは、前記ポンプコラムの長さよりも短い。
 一態様では、各ケーブルコネクタは、各分割電力ケーブルの両端に接続されたメスコネクタおよびオスコネクタを備えている。
 一態様では、前記複数のケーブルコネクタは、前記潜没式ポンプを前記ポンプコラム内に吊り下げるための複数の分割吊りケーブルを連結する複数の連結リンクによってそれぞれ支持されている。
 一態様では、前記複数の分割電力ケーブルの荷重は、前記複数の分割吊りケーブルによって支持されている。
In one aspect, the length of each split power cable is shorter than the length of said pump column.
In one aspect, each cable connector comprises a female connector and a male connector connected to opposite ends of each split power cable.
In one aspect, the plurality of cable connectors are each supported by a plurality of connecting links connecting a plurality of split suspension cables for suspending the submersible pump within the pump column.
In one aspect, the load of the plurality of split power cables is supported by the plurality of split suspension cables.
 一態様では、液化ガスを移送するために使用される潜没式ポンプをポンプコラム内に搬入する方法であって、巻き上げ機に連結された吊りケーブルにより、前記潜没式ポンプを前記ポンプコラム内で下降させながら、前記潜没式ポンプに電力を供給するための複数の分割電力ケーブルを1つずつケーブルコネクタにより接続する、方法が提供される。 In one aspect, a method of loading a submersible pump used to transfer liquefied gas into a pump column, wherein a sling cable connected to a winch moves the submersible pump into the pump column. A method is provided for connecting a plurality of split power cables for powering the submersible pump one by one with cable connectors while lowering the submersible pump.
 一態様では、前記方法は、前記潜没式ポンプをパージ容器内に収容し、前記パージ容器内にパージガスを供給して前記潜没式ポンプを前記パージガスにさらす工程をさらに含む。
 一態様では、前記巻き上げ機に連結された前記吊りケーブルにより、前記潜没式ポンプを前記ポンプコラム内で下降させる工程は、複数の分割吊りケーブルを1つずつ連結リンクにより接続しながら、前記巻き上げ機に連結された前記複数の分割吊りケーブルにより、前記潜没式ポンプを前記ポンプコラム内で下降させる工程である。
 一態様では、前記ケーブルコネクタは、前記連結リンクによって支持されている。
 一態様では、前記複数の分割電力ケーブルの荷重は、前記複数の分割吊りケーブルによって支持されている。
In one aspect, the method further includes housing the submersible pump within a purge vessel, supplying a purge gas into the purge vessel, and exposing the submersible pump to the purge gas.
In one aspect, the step of lowering the submersible pump within the pump column by the lifting cable connected to the hoisting machine includes connecting a plurality of divided lifting cables one by one with a connecting link while the lifting cable is connected to the hoisting cable. lowering the submerged pump in the pump column by means of the plurality of split suspension cables connected to the machine;
In one aspect, the cable connector is supported by the connecting link.
In one aspect, the load of the plurality of split power cables is supported by the plurality of split suspension cables.
 一態様では、液化ガスを移送するために使用される潜没式ポンプをポンプコラムから引き上げる方法であって、巻き上げ機に連結された吊りケーブルにより、前記潜没式ポンプを前記ポンプコラム内で引き上げながら、前記潜没式ポンプに電力を供給するための複数の分割電力ケーブルを1つずつ取り外す、方法が提供される。 In one aspect, a method of hoisting a submersible pump used to transfer liquefied gas from a pump column, wherein the submersible pump is hoisted within the pump column by a sling cable connected to a hoist. Meanwhile, a method is provided for removing, one by one, a plurality of split power cables for powering the submersible pump.
 一態様では、前記方法は、前記潜没式ポンプを前記ポンプコラムからパージ容器内に移動させ、前記パージ容器内にパージガスを供給して前記潜没式ポンプを前記パージガスにさらす工程をさらに含む。
 一態様では、前記巻き上げ機に連結された前記吊りケーブルにより、前記潜没式ポンプを前記ポンプコラム内で引き上げる工程は、前記巻き上げ機に連結された前記吊りケーブルを構成する複数の分割吊りケーブルを1つずつ取り外しながら、前記吊りケーブルにより前記潜没式ポンプを前記ポンプコラム内で引き上げる工程である。
 一態様では、前記複数の分割電力ケーブルは、ケーブルコネクタにより電気的に接続されており、前記複数の分割吊りケーブルは、連結リンクにより連結されており、前記ケーブルコネクタは、前記連結リンクによって支持されている。
 一態様では、前記複数の分割電力ケーブルの荷重は、前記複数の分割吊りケーブルによって支持されている。
In one aspect, the method further includes moving the submersible pump from the pump column into a purge vessel, supplying a purge gas into the purge vessel, and exposing the submersible pump to the purge gas.
In one aspect, the step of pulling up the submersible pump within the pump column by the suspension cable connected to the hoist includes dividing a plurality of divided suspension cables that constitute the suspension cable connected to the hoist. It is a step of lifting the submersible pump in the pump column by the suspension cable while removing them one by one.
In one aspect, the plurality of split power cables are electrically connected by cable connectors, the plurality of split suspension cables are connected by connecting links, and the cable connectors are supported by the connecting links. ing.
In one aspect, the load of the plurality of split power cables is supported by the plurality of split suspension cables.
 本発明によれば、複数の分割電力ケーブルが使用されるので、これら分割電力ケーブルを1つずつ追加しながら、潜没式ポンプをポンプコラム内に搬入することができる。さらに、複数の分割電力ケーブルを1つずつ取り外しながら、潜没式ポンプをポンプコラムから引き上げることができる。作業員は、長尺(例えば数十メートル)の電力ケーブルを取り扱う必要がないので、作業員の負荷を低減することができる。特に、極低温の電力ケーブルをポンプコラムから引き上げるときの作業員の安全性が確保できる。 According to the present invention, since a plurality of split power cables are used, the submersible pump can be carried into the pump column while adding these split power cables one by one. Further, the submersible pump can be lifted from the pump column while removing the multiple split power cables one by one. Workers do not need to handle long power cables (for example, several tens of meters), so the burden on workers can be reduced. In particular, worker safety is ensured when pulling the cryogenic power cable out of the pump column.
液化ガスを移送するためのポンプシステムの一実施形態を示す図である。1 illustrates one embodiment of a pump system for transporting liquefied gas; FIG. 図2Aは、連結リンクの一実施形態を示す側面図である。Figure 2A is a side view of one embodiment of a connecting link. 図2Bは、連結リンクの上面図である。FIG. 2B is a top view of the connecting link. 連結リンク、連結リンクに連結された分割吊りケーブル、および連結リンクに装着された分割電力ケーブルを示す側面図である。FIG. 4 is a side view showing a connecting link, a split hanging cable connected to the connecting link, and a split power cable attached to the connecting link; 2つの分割吊りケーブルが連結リンクに連結され、2つの分割電力ケーブルがオスコネクタおよびメスコネクタにより連結された状態を示す図である。FIG. 4 is a diagram showing a state in which two split hanging cables are connected to a connecting link, and two split power cables are connected by a male connector and a female connector; 連結リンクの他の実施形態を示す上面図である。FIG. 11 is a top view showing another embodiment of a connecting link; ヘッドプレートおよび封止リンクの一実施形態を示す断面図である。FIG. 10 is a cross-sectional view of one embodiment of a head plate and sealing link; 潜没式ポンプをポンプコラム内に搬入する前のポンプシステムと、潜没式ポンプをポンプコラム内に搬入するために使用される昇降装置の一実施形態を示す図である。FIG. 10 illustrates one embodiment of the pump system prior to loading the submersible pump into the pump column and the lifting device used to load the submersible pump into the pump column. 係止部材の一実施形態を示す斜視図である。FIG. 11 is a perspective view showing one embodiment of a locking member; 潜没式ポンプをポンプコラム内に搬入する方法の一実施形態を説明する図である。FIG. 11 illustrates one embodiment of a method of loading a submersible pump into a pump column; 潜没式ポンプをポンプコラム内に搬入する方法の一実施形態を説明する図である。FIG. 11 illustrates one embodiment of a method of loading a submersible pump into a pump column; 潜没式ポンプをポンプコラム内に搬入する方法の一実施形態を説明する図である。FIG. 11 illustrates one embodiment of a method of loading a submersible pump into a pump column; 潜没式ポンプをポンプコラム内に搬入する方法の一実施形態を説明する図である。FIG. 11 illustrates one embodiment of a method of loading a submersible pump into a pump column; 潜没式ポンプをポンプコラム内に搬入する方法の一実施形態を説明する図である。FIG. 11 illustrates one embodiment of a method of loading a submersible pump into a pump column; 潜没式ポンプをポンプコラム内に搬入する方法の一実施形態を説明する図である。FIG. 11 illustrates one embodiment of a method of loading a submersible pump into a pump column; 潜没式ポンプをポンプコラムから引き上げる方法の一実施形態を説明する図である。FIG. 10 illustrates one embodiment of a method of lifting a submersible pump from a pump column; 潜没式ポンプをポンプコラムから引き上げる方法の一実施形態を説明する図である。FIG. 10 illustrates one embodiment of a method of lifting a submersible pump from a pump column; 潜没式ポンプをポンプコラムから引き上げる方法の一実施形態を説明する図である。FIG. 10 illustrates one embodiment of a method of lifting a submersible pump from a pump column; 潜没式ポンプをポンプコラムから引き上げる方法の一実施形態を説明する図である。FIG. 10 illustrates one embodiment of a method of lifting a submersible pump from a pump column; 液化ガスが貯蔵された液化ガス貯槽と、液化ガスを汲み上げるためのポンプの従来例を示す模式図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic diagram showing a conventional example of a liquefied gas storage tank in which liquefied gas is stored and a pump for pumping up the liquefied gas. ポンプをポンプコラム内に搬入する作業、およびポンプをポンプコラムから引き上げる作業を説明する図である。FIG. 4 is a diagram for explaining the work of loading the pump into the pump column and the work of pulling the pump up from the pump column;
 以下、本発明の実施形態について図面を参照して説明する。
 図1は、液化ガスを移送するためのポンプシステムの一実施形態を示す図である。図1に示すポンプシステムによって移送される液化ガスの例としては、液化アンモニア、液体水素、液体窒素、液化天然ガス、液化エチレンガス、液化石油ガスなどが挙げられる。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 illustrates one embodiment of a pump system for transporting liquefied gas. Examples of liquefied gases that may be transported by the pump system shown in FIG. 1 include liquefied ammonia, liquid hydrogen, liquid nitrogen, liquefied natural gas, liquefied ethylene gas, liquefied petroleum gas, and the like.
 図1に示すように、ポンプシステムは、液化ガスを移送するための潜没式ポンプ2と、潜没式ポンプ2が内部に収容されたポンプコラム3と、ポンプコラム3の上端に連結されたパージ容器1と、パージ容器1の上端に固定されたカバー壁10と、カバー壁10の上部開口を閉じる上蓋12を備えている。ポンプコラム3は、液化ガスが貯留される液化ガス貯槽5内に設置されている。ポンプコラム3は、鉛直方向に延びた中空状の容器であり、その上部は液化ガス貯槽5から上方に突出している。パージ容器1は、ポンプコラム3に連通している。ポンプコラム3はパージガス導入ポート8および吐出しポート9を有している。 As shown in FIG. 1, the pump system includes a submerged pump 2 for transferring liquefied gas, a pump column 3 in which the submerged pump 2 is housed, and a A purge container 1, a cover wall 10 fixed to the upper end of the purge container 1, and an upper lid 12 closing an upper opening of the cover wall 10 are provided. The pump column 3 is installed in a liquefied gas storage tank 5 in which liquefied gas is stored. The pump column 3 is a vertically extending hollow container, the upper part of which protrudes upward from the liquefied gas storage tank 5 . A purge container 1 communicates with a pump column 3 . The pump column 3 has a purge gas introduction port 8 and a discharge port 9 .
 ポンプコラム3の底部には吸込み弁6が設けられている。潜没式ポンプ2はポンプコラム3の吸込み弁6上に設置される。吸込み弁6は、ポンプコラム3の下部開口を覆う弁体6Aと、弁体6Aを上方に付勢する複数のばね6Bを有している。潜没式ポンプ2が弁体6A上の置かれていないときは、弁体6Aは複数のばね6Bによってポンプコラム3の下端に押し付けられ、ポンプコラム3の下部開口を閉じる。潜没式ポンプ2が弁体6A上に置かれると、潜没式ポンプ2の自重により弁体6Aはばね6Bの力に抗って下方に移動し、これにより吸込み弁6が開く。吸込み弁6は、アクチュエータ駆動型弁(例えば電動弁)でもよい。 A suction valve 6 is provided at the bottom of the pump column 3 . The submerged pump 2 is installed on the suction valve 6 of the pump column 3 . The suction valve 6 has a valve body 6A that covers the lower opening of the pump column 3, and a plurality of springs 6B that bias the valve body 6A upward. When the submerged pump 2 is not placed on the valve body 6A, the valve body 6A is pressed against the lower end of the pump column 3 by a plurality of springs 6B to close the lower opening of the pump column 3. When the submerged pump 2 is placed on the valve body 6A, the self-weight of the submerged pump 2 causes the valve body 6A to move downward against the force of the spring 6B, thereby opening the suction valve 6. As shown in FIG. The intake valve 6 may be an actuator-driven valve (eg, an electrically operated valve).
 パージ容器1は、潜没式ポンプ2をポンプコラム3に搬入する前、および潜没式ポンプ2をポンプコラム3から引き上げた後に、潜没式ポンプ2をパージガスにさらすための装置である。パージ容器1は、ポンプコラム3の上端に固定されている。パージ容器1は、その内部空間15に連通するパージガス入口ポート17およびガス出口ポート18を備えている。パージ容器1の上部開口はヘッドプレート20で覆われ、パージ容器1の下部開口はゲート弁21によって閉じることが可能である。本実施形態のゲート弁21は、ハンドル21aを手動で操作することで開閉させる手動タイプであるが、電動で開閉するように構成されてもよい。 The purge container 1 is a device for exposing the submerged pump 2 to purge gas before the submerged pump 2 is carried into the pump column 3 and after the submerged pump 2 is pulled up from the pump column 3 . A purge container 1 is fixed to the upper end of the pump column 3 . The purge container 1 has a purge gas inlet port 17 and a gas outlet port 18 communicating with its internal space 15 . An upper opening of the purge container 1 is covered with a head plate 20 and a lower opening of the purge container 1 can be closed by a gate valve 21 . The gate valve 21 of the present embodiment is of a manual type that is opened and closed by manually operating the handle 21a, but may be configured to be electrically opened and closed.
 ヘッドプレート20は、パージ容器1の上端に着脱可能に固定されている。吊りケーブル23および連結構造体28は、ヘッドプレート20に固定された封止リンク30から吊り下げられている。吊りケーブル23は、複数の分割吊りケーブル23B、およびこれら分割吊りケーブル23Bを連結する連結リンク24を含む。各分割吊りケーブル23Bの長さは、ポンプコラム3の長さよりも短い。複数の分割吊りケーブル23Bは、連結リンク24により直列に繋がれている。 The head plate 20 is detachably fixed to the upper end of the purge container 1. Suspension cables 23 and connecting structures 28 are suspended from sealing links 30 fixed to head plate 20 . Suspension cables 23 include a plurality of split suspension cables 23B and connection links 24 that connect these split suspension cables 23B. The length of each divided suspension cable 23B is shorter than the length of the pump column 3. A plurality of divided hanging cables 23B are connected in series by connecting links 24 .
 連結構造体28は、潜没式ポンプ2に取り付けられている。連結構造体28は、その上端に連結リンク33を有しており、この連結リンク33は吊りケーブル23の下端に連結されている。連結構造体28の具体的な構成は特に限定されず、ケーブルまたはロッドなどを備えてもよい。吊りケーブル23および連結構造体28は、パージ容器1およびポンプコラム3内を鉛直方向に延びている。 The connection structure 28 is attached to the submerged pump 2 . The connection structure 28 has a connection link 33 at its upper end, and this connection link 33 is connected to the lower end of the suspension cable 23 . A specific configuration of the connecting structure 28 is not particularly limited, and it may include a cable, a rod, or the like. Suspension cables 23 and connecting structures 28 extend vertically through purge vessel 1 and pump column 3 .
 ヘッドプレート20は、カバー壁10および上蓋12によって覆われている。上蓋12の上面には電気端子35が取り付けられている。この電気端子35は、図示しない電源に接続されている。潜没式ポンプ2の電動機に電力を供給するための電力ケーブル36は、吊りケーブル23および連結構造体28に沿ってポンプコラム3、パージ容器1、およびカバー壁10内を鉛直方向に延び、電気端子35に電気的に接続されている。電力ケーブル36は、複数の分割電力ケーブル36Aと、これら分割電力ケーブル36Aを電気的に接続するケーブルコネクタ36Bを含む。各分割電力ケーブル36Aの長さは、ポンプコラム3の長さよりも短い。複数の分割電力ケーブル36Aは、ケーブルコネクタ36Bにより直列に繋がれている。 The head plate 20 is covered by the cover wall 10 and the upper lid 12. An electrical terminal 35 is attached to the upper surface of the upper lid 12 . This electrical terminal 35 is connected to a power supply (not shown). A power cable 36 for supplying power to the electric motor of the submersible pump 2 extends vertically along the suspension cable 23 and the coupling structure 28 through the pump column 3, the purge vessel 1 and the cover wall 10 to provide electrical power. It is electrically connected to terminal 35 . The power cable 36 includes a plurality of split power cables 36A and cable connectors 36B electrically connecting the split power cables 36A. The length of each split power cable 36A is shorter than the length of the pump column 3. A plurality of divided power cables 36A are connected in series by cable connectors 36B.
 潜没式ポンプ2の運転中は、パージガス導入ポート8、パージガス入口ポート17、ガス出口ポート18は、図示しない弁によりそれぞれ閉じられており、ゲート弁21は開かれている。 During operation of the submerged pump 2, the purge gas introduction port 8, the purge gas inlet port 17, and the gas outlet port 18 are closed by valves (not shown), and the gate valve 21 is opened.
 潜没式ポンプ2の運転中は、液化ガス貯槽5内の液化ガスは、吸込み弁6を通じてポンプコラム3内に導入され、ポンプコラム3内は液化ガスで満たされる。潜没式ポンプ2の運転中、潜没式ポンプ2の全体は液化ガス中に浸漬される。したがって、潜没式ポンプ2は、液化ガス中で運転可能なように構成されている。潜没式ポンプ2によって昇圧された液化ガスは、吐出しポート9を通じて外部に移送される。 During operation of the submerged pump 2, the liquefied gas in the liquefied gas storage tank 5 is introduced into the pump column 3 through the suction valve 6, and the pump column 3 is filled with the liquefied gas. During operation of the submerged pump 2, the entire submerged pump 2 is immersed in the liquefied gas. Therefore, the submerged pump 2 is configured to be operable in liquefied gas. The liquefied gas pressurized by the submerged pump 2 is transferred to the outside through the discharge port 9 .
 図2Aは、複数の分割吊りケーブル23Bを連結するための連結リンク24の一実施形態を示す側面図であり、図2Bは、連結リンク24の上面図である。連結リンク24は、分割吊りケーブル23Bを連結するための後述する連結ピンが挿入される2つのピン穴24aを備えている。これらピン穴24aは、連結リンク24の上部および下部に位置している。連結リンク24は、側方に張り出したフランジ部25を有している。連結リンク24は、フランジ部25を上下方向に貫通するケーブル通路26を有している。分割電力ケーブル36Aは、このケーブル通路26に挿入される。本実施形態では、分割電力ケーブル36Aを連結リンク24の側方からケーブル通路26に挿入可能なように、ケーブル通路26は外側に開いた切り欠きの形を有している。他の実施形態では、ケーブル通路26は、通孔の形を有してもよい。 FIG. 2A is a side view showing one embodiment of a connecting link 24 for connecting a plurality of split hanging cables 23B, and FIG. 2B is a top view of the connecting link 24. FIG. The connecting link 24 has two pin holes 24a into which connecting pins (to be described later) for connecting the split hanging cables 23B are inserted. These pin holes 24 a are located at the upper and lower portions of the connecting link 24 . The connecting link 24 has a flange portion 25 projecting sideways. The connecting link 24 has a cable passage 26 vertically passing through the flange portion 25 . A split power cable 36 A is inserted into this cable passage 26 . In this embodiment, the cable passage 26 has an outwardly open notch shape so that the split power cable 36A can be inserted into the cable passage 26 from the side of the connecting link 24 . In other embodiments, cable passageway 26 may have the shape of a through hole.
 図3は、連結リンク24、連結リンク24に連結された分割吊りケーブル23B、および連結リンク24に支持された分割電力ケーブル36Aを示す側面図である。各分割吊りケーブル23Bは、その端部に連結端子29を有しており、この連結端子29は連結ピン31が貫通できる通孔29aを有している。連結ピン31は、各分割吊りケーブル23Bの連結端子29の通孔29a、および連結リンク24のピン穴24aに挿入され、これにより各分割吊りケーブル23Bは連結リンク24に連結される。 FIG. 3 is a side view showing the connecting link 24, the divided suspension cable 23B connected to the connecting link 24, and the divided power cable 36A supported by the connecting link 24. FIG. Each split suspension cable 23B has a connecting terminal 29 at its end, and this connecting terminal 29 has a through hole 29a through which the connecting pin 31 can pass. The connecting pin 31 is inserted into the through hole 29a of the connecting terminal 29 of each divided suspension cable 23B and the pin hole 24a of the connecting link 24, whereby each divided suspension cable 23B is connected to the connecting link 24. As shown in FIG.
 分割電力ケーブル36A同士は、メスコネクタ37およびオスコネクタ38を含むケーブルコネクタ36Bにより電気的に接続される。オスコネクタ38は、メスコネクタ37内に嵌合される形状を有する。各分割電力ケーブル36Aの上端にはメスコネクタ37が接続され、各分割電力ケーブル36Aの下端にはオスコネクタ38が接続されている。分割電力ケーブル36Aは、ケーブル通路26よりも小さな幅を有しているが、メスコネクタ37は、ケーブル通路26の幅よりも大きな幅を有しており、メスコネクタ37はケーブル通路26を通り抜けることはできない。したがって、メスコネクタ37は、分割電力ケーブル36Aの連結リンク24からの落下を防ぐストッパとしても機能する。言い換えれば、分割電力ケーブル36Aは、メスコネクタ37を介して連結リンク24に支持される。したがって、メスコネクタ37に接続された分割電力ケーブル36Aの荷重は、連結リンク24に接続された分割吊りケーブル23Bによって支持される。 The split power cables 36A are electrically connected by a cable connector 36B including a female connector 37 and a male connector 38. The male connector 38 has a shape that fits inside the female connector 37 . A female connector 37 is connected to the upper end of each split power cable 36A, and a male connector 38 is connected to the lower end of each split power cable 36A. The split power cable 36A has a width smaller than the cable passage 26, but the female connector 37 has a width greater than the width of the cable passage 26, and the female connector 37 passes through the cable passage 26. can't. Therefore, the female connector 37 also functions as a stopper that prevents the split power cable 36A from falling from the connecting link 24. As shown in FIG. In other words, split power cable 36A is supported by connecting link 24 via female connector 37 . Therefore, the load of the split power cable 36A connected to the female connector 37 is supported by the split suspension cable 23B connected to the connecting link 24. FIG.
 オスコネクタ38がケーブル通路26の幅よりも大きな幅を有していれば、分割電力ケーブル36Aの上端にオスコネクタ38が接続され、分割電力ケーブル36Aの下端にメスコネクタ37が接続されてもよい。この場合は、オスコネクタ38は、分割電力ケーブル36Aの連結リンク24からの落下を防ぐストッパとして機能する。 If the male connector 38 has a width greater than the width of the cable passage 26, the male connector 38 may be connected to the upper end of the split power cable 36A and the female connector 37 may be connected to the lower end of the split power cable 36A. . In this case, the male connector 38 functions as a stopper that prevents the split power cable 36A from falling from the connecting link 24. FIG.
 図4は、2つの分割吊りケーブル23Bが連結リンク24に連結され、2つの分割電力ケーブル36Aがオスコネクタ38およびメスコネクタ37により連結された状態を示す図である。図4に示すように、上方の分割電力ケーブル36Aに接続されたオスコネクタ38を、下方の分割電力ケーブル36Aに接続されたメスコネクタ37に挿入することで、オスコネクタ38とメスコネクタ37が連結され、これにより上方の分割電力ケーブル36Aと下方の分割電力ケーブル36Aの電気的接続が確立される。オスコネクタ38とメスコネクタ37は、連結リンク24によって支持される。さらに、連結リンク24は、下方の分割電力ケーブル36Aの荷重を支えることができるので、オスコネクタ38とメスコネクタ37の意図しない切り離しを防止することができる。 FIG. 4 is a diagram showing a state in which two divided hanging cables 23B are connected to the connecting link 24 and two divided power cables 36A are connected by the male connector 38 and the female connector 37. FIG. As shown in FIG. 4, the male connector 38 and the female connector 37 are connected by inserting the male connector 38 connected to the upper divided power cable 36A into the female connector 37 connected to the lower divided power cable 36A. This establishes an electrical connection between the upper split power cable 36A and the lower split power cable 36A. Male connector 38 and female connector 37 are supported by connecting link 24 . Furthermore, since the connecting link 24 can support the load of the lower split power cable 36A, unintended disconnection of the male connector 38 and the female connector 37 can be prevented.
 各分割電力ケーブル36Aは、三相交流用の3本の分割電力ケーブルに分けられてもよい。その場合は、図5に示すように、各連結リンク24は、三相交流用の3本の分割電力ケーブルが挿入される3つのケーブル通路26を有してもよい。 Each split power cable 36A may be split into three split power cables for three-phase AC. In that case, as shown in FIG. 5, each connecting link 24 may have three cable passages 26 into which three split power cables for three-phase alternating current are inserted.
 図6は、ヘッドプレート20および封止リンク30の一実施形態を示す断面図である。ヘッドプレート20は、パージ容器1の上部開口を覆う形状を有したプレート本体40と、プレート本体40から上部に延びる突出部41と、突出部41の周りを囲む可動フランジ42と、突出部41の外面と可動フランジ42の内面との隙間を封止するシール44(例えば、グランドパッキン)を備えている。突出部41および可動フランジ42は円筒形状を有している。可動フランジ42は、突出部41およびプレート本体40に対して相対的に上下方向に移動可能である。ヘッドプレート20は、プレート本体40の両側に固定されたケーブルポート47を備えている。各ケーブルポート47は、吊りケーブル23が通過可能な孔(図示せず)を有している。 FIG. 6 is a cross-sectional view showing one embodiment of the head plate 20 and sealing link 30. FIG. The head plate 20 includes a plate body 40 shaped to cover the upper opening of the purge container 1, a projection 41 extending upward from the plate body 40, a movable flange 42 surrounding the projection 41, and the projection 41. A seal 44 (for example, gland packing) is provided to seal the gap between the outer surface and the inner surface of the movable flange 42 . The projecting portion 41 and the movable flange 42 have a cylindrical shape. The movable flange 42 is vertically movable relative to the projecting portion 41 and the plate body 40 . The head plate 20 has cable ports 47 fixed to both sides of the plate body 40 . Each cable port 47 has a hole (not shown) through which the hanging cable 23 can pass.
 ヘッドプレート20は、突出部41に形成された通孔50を有している。この通孔50は上下方向に延びている。通孔50の幅は、吊りケーブル23および連結構造体28(図1参照)の上部の幅よりも大きく、連結構造体28(連結リンク33含む)の上部および吊りケーブル23(連結リンク24を含む)は通孔50を通過することが可能である。ヘッドプレート20は、ボルトおよびナットなどの締結具53によりパージ容器1の上端に取り外し可能に固定されている。封止リンク30は、可動フランジ42にねじなどの締結具(図示せず)により取り外し可能に固定されている。通孔50の上端は、封止リンク30によって閉じられている。電力ケーブル36は封止リンク30を貫通して延びている。吊りケーブル23を構成する分割吊りケーブル23Bおよび電力ケーブル36は、通孔50を通って延びている。 The head plate 20 has a through hole 50 formed in the projecting portion 41 . The through hole 50 extends vertically. The width of the through-hole 50 is larger than the width of the upper portion of the suspension cable 23 and the connection structure 28 (see FIG. 1), and the upper portion of the connection structure 28 (including the connection link 33) and the suspension cable 23 (including the connection link 24). ) can pass through the through hole 50 . The head plate 20 is removably secured to the upper end of the purge vessel 1 by fasteners 53 such as bolts and nuts. The sealing link 30 is removably fixed to the movable flange 42 by fasteners (not shown) such as screws. The upper end of through hole 50 is closed by sealing link 30 . A power cable 36 extends through the sealing link 30 . The split suspension cable 23B and the power cable 36 that constitute the suspension cable 23 extend through the through hole 50 .
 次に、潜没式ポンプ2をポンプコラム3内に搬入する方法の一実施形態について説明する。図7は、潜没式ポンプ2をポンプコラム3内に搬入する前のポンプシステムと、潜没式ポンプ2をポンプコラム3内に搬入するために使用される昇降装置60の一実施形態を示す図である。カバー壁10および上蓋12は、潜没式ポンプ2をポンプコラム3内に搬入する前に取り外される。ゲート弁21は閉じられる。 Next, an embodiment of a method for carrying the submerged pump 2 into the pump column 3 will be described. FIG. 7 shows an embodiment of the pump system before loading the submersible pump 2 into the pump column 3 and the lifting device 60 used to load the submersible pump 2 into the pump column 3. It is a diagram. The cover wall 10 and the top lid 12 are removed before the submersible pump 2 is carried into the pump column 3 . Gate valve 21 is closed.
 昇降装置60は、ホイスト、ウインチなどの巻き上げ機61と、巻き上げ機61に連結された上記吊りケーブル23と、潜没式ポンプ2から上方に延びる上記連結構造体28と、潜没式ポンプ2の上方に配置され、パージ容器1の上部開口を覆う形状を有する上記ヘッドプレート20と、連結構造体28をヘッドプレート20に係止させる係止部材65を備えている。巻き上げ機61は、ポンプコラム3およびパージ容器1の上方に配置されている。 The lifting device 60 includes a hoist 61 such as a hoist or a winch, the suspension cable 23 connected to the hoist 61 , the connection structure 28 extending upward from the submerged pump 2 , and the submerged pump 2 . The head plate 20 is arranged above and has a shape that covers the upper opening of the purge container 1 , and a locking member 65 that locks the connecting structure 28 to the head plate 20 . A hoist 61 is arranged above the pump column 3 and the purge container 1 .
 連結構造体28の下端は潜没式ポンプ2に連結され、連結構造体28の上端は連結リンク33から構成されている。この連結リンク33は、図2乃至図4、または図5を参照して説明した連結リンク24と同じ構成を有しているので、その重複する説明を省略する。 The lower end of the connecting structure 28 is connected to the submerged pump 2, and the upper end of the connecting structure 28 is composed of a connecting link 33. Since this connecting link 33 has the same configuration as the connecting link 24 described with reference to FIGS. 2 to 4 or 5, redundant description thereof will be omitted.
 連結リンク33は、横方向に張り出したフランジ部33aを有している。係止部材65は、連結リンク33のフランジ部33aに係合している。分割電力ケーブル36Aは、連結リンク33のフランジ部33aに形成されているケーブル通路(図示せず)を通って延びており、分割電力ケーブル36Aの上端に接続されたメスコネクタ37は、フランジ部33aに係止されている。連結リンク33のケーブル通路(図示せず)は、図2乃至図5を参照して説明した連結リンク24のケーブル通路26と同じ構成を有しているので、その重複する説明を省略する。 The connecting link 33 has a laterally projecting flange portion 33a. The locking member 65 is engaged with the flange portion 33 a of the connecting link 33 . The split power cable 36A extends through a cable passage (not shown) formed in the flange portion 33a of the connecting link 33, and the female connector 37 connected to the upper end of the split power cable 36A extends through the flange portion 33a. locked to. A cable passage (not shown) of the connecting link 33 has the same structure as the cable passage 26 of the connecting link 24 described with reference to FIGS. 2 to 5, so redundant description thereof will be omitted.
 連結リンク33は、係止部材65を貫通して延びており、係止部材65に支持されている。係止部材65は、ヘッドプレート20上に置かれている。より具体的には、係止部材65は、ヘッドプレート20の通孔50の一部を覆うように配置されている。連結構造体28および分割電力ケーブル36Aは、通孔50を通って延びている。 The connecting link 33 extends through the locking member 65 and is supported by the locking member 65 . A locking member 65 is placed on the head plate 20 . More specifically, the locking member 65 is arranged so as to partially cover the through hole 50 of the head plate 20 . Coupling structure 28 and split power cable 36 A extend through through hole 50 .
 図8は係止部材65の一実施形態を示す斜視図である。この実施形態では、係止部材65は、連結リンク24,33(図1参照)に係合する形状を有する。本実施形態の係止部材65は、その中央に開口66を有しており、複数の部材65A,65Aに分割されている。開口66は、連結リンク24,33(図1参照)の通過を許容しない大きさを有する。 FIG. 8 is a perspective view showing one embodiment of the locking member 65. FIG. In this embodiment, locking member 65 is shaped to engage connecting links 24, 33 (see FIG. 1). The locking member 65 of this embodiment has an opening 66 in its center and is divided into a plurality of members 65A, 65A. The opening 66 has a size that does not allow passage of the connecting links 24, 33 (see FIG. 1).
 本実施形態では、連結リンク24,33のストッパとして機能する係止部材65は、複数の(典型的には2つの)部材からなる分割リング(例えば2つ割りリング)である。しかしながら、連結リンク24,33および係止部材65の構成は、それらの意図した機能を奏することができる限り、本実施形態に限定されない。例えば、係止部材65は、その中心から外側に延びる切り欠きを有した単一の部材(例えば、U字型の部材)であってもよい。さらに、連結リンク24,33は、シャックルのような構造体であってもよい。他の例では、連結リンク24,33は、横方向に張り出す突出部を有する代わりに水平方向に延びる通孔を有し、係止部材65は通孔に挿入される棒状の部材であってもよい。 In this embodiment, the locking member 65 that functions as a stopper for the connecting links 24 and 33 is a split ring (for example, a split ring) made up of a plurality of (typically two) members. However, the configurations of the connecting links 24, 33 and the locking member 65 are not limited to this embodiment as long as they can perform their intended functions. For example, locking member 65 may be a single member (eg, a U-shaped member) having a notch extending outwardly from its center. Further, the connecting links 24, 33 may be structures such as shackles. In another example, the connecting links 24 and 33 have through holes extending in the horizontal direction instead of having protrusions extending in the lateral direction, and the locking member 65 is a rod-like member inserted into the through holes. good too.
 図7に戻り、係止部材65の幅は、ヘッドプレート20の通孔50の幅よりも大きく、係止部材65はこの通孔50を通過することはできない。一方、連結リンク33の幅は、ヘッドプレート20の通孔50の幅よりも小さく、連結リンク33は通孔50を通過することができる。しかしながら、連結リンク33は係止部材65に支持されている限りにおいて、連結リンク33は通孔50を通過することができない。したがって、潜没式ポンプ2は、連結リンク33を含む連結構造体28によって、ヘッドプレート20上の係止部材65から吊り下げられる。潜没式ポンプ2の荷重は、連結リンク33を含む連結構造体28および係止部材65を介して、ヘッドプレート20によって支持されている。分割電力ケーブル36Aは、連結構造体28に沿って延びており、分割電力ケーブル36Aに接続されているメスコネクタ37は連結リンク33上に支持されている。 Returning to FIG. 7, the width of the locking member 65 is larger than the width of the through hole 50 of the head plate 20, and the locking member 65 cannot pass through the through hole 50. On the other hand, the width of the connecting link 33 is smaller than the width of the through hole 50 of the head plate 20 so that the connecting link 33 can pass through the through hole 50 . However, as long as the connecting link 33 is supported by the locking member 65 , the connecting link 33 cannot pass through the through hole 50 . The submersible pump 2 is thus suspended from the locking member 65 on the head plate 20 by the connecting structure 28 including the connecting link 33 . The load of the submerged pump 2 is supported by the head plate 20 via the connecting structure 28 including the connecting link 33 and the locking member 65 . The split power cable 36A extends along the connecting structure 28 and the female connector 37 connected to the split power cable 36A is supported on the connecting link 33. As shown in FIG.
 潜没式ポンプ2がパージ容器1内に搬入される前、パージガス入口ポート17には、パージガス供給源70から延びるパージガス供給ライン71が連結され、ガス出口ポート18には、真空ライン74が連結される。真空ライン74は、真空ポンプなどの真空源(図示せず)に接続されている。パージガス供給源70の例としては、窒素ガス供給源、ヘリウムガス供給源、水素ガス供給源、またはこれらの組み合わせが挙げられる。一実施形態では、パージガス供給源70は、異なる種類の複数のパージガス供給源、例えば窒素ガス供給源およびヘリウムガス供給源および水素ガス供給源のうちの少なくとも2つを含んでもよい。この場合は、複数のパージガス供給源は、選択的にパージガス供給ライン71に接続されてもよい。 Before the submerged pump 2 is carried into the purge container 1, the purge gas inlet port 17 is connected to the purge gas supply line 71 extending from the purge gas supply source 70, and the gas outlet port 18 is connected to the vacuum line 74. be. Vacuum line 74 is connected to a vacuum source (not shown) such as a vacuum pump. Examples of purge gas sources 70 include nitrogen gas sources, helium gas sources, hydrogen gas sources, or combinations thereof. In one embodiment, the purge gas source 70 may include multiple purge gas sources of different types, such as at least two of a nitrogen gas source and a helium gas source and a hydrogen gas source. In this case, multiple purge gas supply sources may be selectively connected to the purge gas supply line 71 .
 図9乃至図14は、潜没式ポンプ2をポンプコラム3内に搬入する方法の一実施形態を説明する図である。図9乃至図14に示す一連の動作は、潜没式ポンプ2をパージ容器1内でパージガスにさらすドライアップと、潜没式ポンプ2をポンプコラム3内で下降させる動作と、複数の分割吊りケーブル23Bを1つずつ吊りケーブル23に継ぎ足す動作と、複数の分割電力ケーブル36Aを1つずつ電力ケーブル36に継ぎ足す動作を含む。 9 to 14 are diagrams explaining an embodiment of a method for carrying the submerged pump 2 into the pump column 3. FIG. A series of operations shown in FIGS. 9 to 14 includes a dry-up operation in which the submerged pump 2 is exposed to the purge gas in the purge container 1, an operation in which the submerged pump 2 is lowered in the pump column 3, and a plurality of divided suspensions. It includes an operation of splicing the cables 23B to the suspension cable 23 one by one, and an operation of splicing the plurality of divided power cables 36A to the power cable 36 one by one.
 以下に説明する搬入動作の前に、ポンプコラム3から液化ガスが排出される。具体的には、パージガスをパージガス供給ライン71および/またはパージガス導入ポート8からポンプコラム3内に供給し、パージガスの圧力により液化ガスをポンプコラム3から吸込み弁6を通じて排出する。 Liquefied gas is discharged from the pump column 3 before the loading operation described below. Specifically, the purge gas is supplied into the pump column 3 from the purge gas supply line 71 and/or the purge gas introduction port 8 , and the pressure of the purge gas discharges the liquefied gas from the pump column 3 through the suction valve 6 .
 ステップ101では、巻き上げ機61に連結された吊りケーブル23を、ヘッドプレート20に連結する。より具体的には、吊りケーブル23を、ヘッドプレート20のケーブルポート47に連結する。潜没式ポンプ2は、連結リンク33を含む連結構造体28と、係止部材65によって、ヘッドプレート20から吊り下げられる。複数の分割電力ケーブル36Aのうちの1つは、潜没式ポンプ2の電動機に接続されており、分割電力ケーブル36Aの上端にあるメスコネクタ37は、連結リンク33に係止している。 At step 101 , the suspension cable 23 connected to the hoist 61 is connected to the head plate 20 . More specifically, the suspension cable 23 connects to the cable port 47 of the headplate 20 . The submerged pump 2 is suspended from the head plate 20 by a connecting structure 28 including a connecting link 33 and a locking member 65 . One of the plurality of split power cables 36A is connected to the electric motor of the submerged pump 2, and the female connector 37 at the upper end of the split power cable 36A is engaged with the connecting link 33.
 ステップ102では、巻き上げ機61により、潜没式ポンプ2、ヘッドプレート20、連結構造体28、分割電力ケーブル36A、および係止部材65を一体に下降させて、ヘッドプレート20でパージ容器1の上部開口を覆う。ヘッドプレート20は、図6に示す締結具53によりパージ容器1の上端に固定される。 In step 102, the submersion pump 2, the head plate 20, the connection structure 28, the split power cable 36A, and the locking member 65 are all lowered by the hoist 61, and the top of the purge container 1 is lifted by the head plate 20. cover the opening. The head plate 20 is secured to the upper end of the purge container 1 by fasteners 53 shown in FIG.
 ステップ103では、巻き上げ機61に接続されている吊りケーブル(第1吊りケーブル)23Aは、ケーブルポート47から切り離される。さらに、予め用意された複数の分割吊りケーブル(第2吊りケーブル)23Bのうちの1つを、吊りケーブル23に追加する。より具体的には、新たに追加された分割吊りケーブル23Bの上端を、巻き上げ機61に接続されている吊りケーブル23Aに連結リンク24を介して連結し、新たに追加された分割吊りケーブル23Bの下端を、連結構造体28の連結リンク33に連結する。本実施形態では、吊りケーブル23は、巻き上げ機61から延びる第1吊りケーブル23Aと、第1吊りケーブル23Aから切り離し可能な複数の分割吊りケーブル(第2吊りケーブル)23Bを含む。 At step 103 , the hoisting cable (first hoisting cable) 23 A connected to the hoist 61 is disconnected from the cable port 47 . Furthermore, one of a plurality of split hanging cables (second hanging cables) 23B prepared in advance is added to the hanging cable 23 . More specifically, the upper end of the newly added divided suspension cable 23B is connected to the suspension cable 23A connected to the hoist 61 via the connection link 24, and the newly added divided suspension cable 23B The lower end is connected to the connecting link 33 of the connecting structure 28 . In this embodiment, the suspension cable 23 includes a first suspension cable 23A extending from the hoist 61 and a plurality of split suspension cables (second suspension cables) 23B that can be separated from the first suspension cable 23A.
 同様に、予め用意された複数の分割電力ケーブル36Aのうちの1つを、電力ケーブル36に追加する。より具体的には、新たに追加された分割電力ケーブル36Aを、連結リンク24のケーブル通路26(図2参照)を通過させ、その分割電力ケーブル36Aに取り付けられているメスコネクタ37を連結リンク24上に配置する。さらに、上記新たに追加された分割電力ケーブル36Aに取り付けられているオスコネクタ38を、既に設置されている分割電力ケーブル36A上のメスコネクタ37に連結する。これにより、新たに追加された分割電力ケーブル36Aは、既設の分割電力ケーブル36Aに電気的に接続される。このようにして電気的に接続された複数の分割電力ケーブル36Aは、電力ケーブル36を構成する。 Similarly, one of a plurality of divided power cables 36A prepared in advance is added to the power cable 36. More specifically, the newly added split power cable 36A is passed through the cable passage 26 (see FIG. 2) of the connecting link 24, and the female connector 37 attached to the split power cable 36A is connected to the connecting link 24. place on top. Further, the male connector 38 attached to the newly added divided power cable 36A is connected to the female connector 37 on the already installed divided power cable 36A. As a result, the newly added split power cable 36A is electrically connected to the existing split power cable 36A. A plurality of divided power cables 36A electrically connected in this manner constitute a power cable 36. FIG.
 パージ容器1の上部開口がヘッドプレート20で覆われ、かつパージ容器1の下部開口がゲート弁21で閉じられた状態で、潜没式ポンプ2が収容されたパージ容器1の内部空間15をガス出口ポート18を通じて真空引きする。その後、パージガス(例えば、不活性ガス、および/または液化ガスの成分と同じ成分からなるガスを含む)をパージガス入口ポート17から内部空間15に供給し、内部空間15をパージガスで満たす。潜没式ポンプ2はパージ容器1内でパージガスにさらされ(接触し)、これによって潜没式ポンプ2の表面から空気および水分が排除される。この工程は、潜没式ポンプ2から空気および水分を追い払うドライアップである。内部空間15の真空引きと、内部空間15へのパージガスの供給は繰り返し行われてもよい。 With the upper opening of the purge container 1 covered with a head plate 20 and the lower opening of the purge container 1 closed with a gate valve 21, the internal space 15 of the purge container 1 containing the submerged pump 2 is filled with gas. A vacuum is drawn through outlet port 18 . Thereafter, a purge gas (including, for example, an inert gas and/or a gas having the same composition as that of the liquefied gas) is supplied through the purge gas inlet port 17 into the interior space 15 to fill the interior space 15 with the purge gas. The submersible pump 2 is exposed (contacted) to purge gas within the purge vessel 1 , thereby excluding air and moisture from the surfaces of the submersible pump 2 . This step is a dry-up that expels air and moisture from the submersible pump 2 . The evacuation of the internal space 15 and the supply of the purge gas to the internal space 15 may be repeated.
 使用されるパージガスは、潜没式ポンプ2が汲み上げる対象の液化ガスの沸点以下の沸点を持つ成分からなるガスである。これは、パージガスが液化ガスに接触したときに、パージガスが液化しないようにするためである。パージガスの例としては、窒素ガス、ヘリウムガスなどの不活性ガスが挙げられる。例えば、潜没式ポンプ2が汲み上げる対象の液化ガスが液化天然ガスである場合、液化天然ガスの沸点(-162℃)よりも低い沸点(-196℃)を持つ窒素からなるガスである窒素ガスがパージガスに使用される。他の例では、潜没式ポンプ2が汲み上げる対象の液化ガスが液体水素である場合、水素の沸点(-253℃)よりも低い沸点(-269℃)を持つヘリウムからなるガスであるヘリウムガスがパージガスに使用される。 The purge gas used is a gas composed of a component with a boiling point lower than the boiling point of the liquefied gas to be pumped by the submerged pump 2. This is to prevent the purge gas from liquefying when it contacts the liquefied gas. Examples of purge gas include inert gases such as nitrogen gas and helium gas. For example, when the liquefied gas to be pumped by the submerged pump 2 is liquefied natural gas, nitrogen gas, which is a gas composed of nitrogen having a boiling point (−196° C.) lower than the boiling point (−162° C.) of liquefied natural gas. is used for the purge gas. In another example, when the liquefied gas to be pumped by the submersible pump 2 is liquid hydrogen, helium gas, which is a gas made of helium having a boiling point (-269°C) lower than the boiling point of hydrogen (-253°C). is used for the purge gas.
 パージガスの一部は、液化ガスの成分と同じ成分からなるガスであってもよい。ガス出口ポート18がガス処理装置に連結されている場合には、パージガスの全ては、液化ガスの成分と同じ成分からなるガスであってもよい。例えば、液化ガスが液体水素である場合は、パージガスの一部または全ては、水素ガスであってもよい。他の例では、液化ガスが液化アンモニアである場合は、パージガスの一部または全てはアンモニアガスであってもよい。 A part of the purge gas may be gas composed of the same components as those of the liquefied gas. If the gas outlet port 18 is connected to a gas processor, all of the purge gas may be gas of the same composition as the liquefied gas. For example, if the liquefied gas is liquid hydrogen, some or all of the purge gas may be hydrogen gas. Alternatively, if the liquefied gas is liquefied ammonia, some or all of the purge gas may be ammonia gas.
 ステップ104では、巻き上げ機61により、吊りケーブル23、分割電力ケーブル36A、および潜没式ポンプ2を少しだけ引き上げ、係止部材65をヘッドプレート20から取り外す。潜没式ポンプ2の荷重は巻き上げ機61によって支持される。ヘッドプレート20の通孔50からの空気の流入を防ぐために、パージガス入口ポート17を通じてパージ容器1内へのパージガスの供給は継続される。その一方で、ガス出口ポート18を通じたパージ容器1の内部空間15の真空引きは停止される。さらに、ゲート弁21が開かれる。 In step 104 , the hoisting device 61 lifts the suspension cable 23 , the split power cable 36A and the submerged pump 2 slightly, and removes the locking member 65 from the head plate 20 . The load of the submerged pump 2 is supported by the hoist 61 . In order to prevent the inflow of air from the through hole 50 of the head plate 20, the supply of the purge gas into the purge container 1 through the purge gas inlet port 17 is continued. Meanwhile, the evacuation of the internal space 15 of the purge container 1 through the gas outlet port 18 is stopped. Furthermore, the gate valve 21 is opened.
 ステップ105では、巻き上げ機61によって吊りケーブル23、分割電力ケーブル36A、連結構造体28、および潜没式ポンプ2をさらに下降させる。潜没式ポンプ2を下降させている間、パージガスをパージガス導入ポート8からポンプコラム3内に供給してもよい。最も上にある連結リンク24がパージ容器1内に入る前に、係止部材65をヘッドプレート20上に再び置く。潜没式ポンプ2が下降されるとき、分割吊りケーブル23Bおよび、分割電力ケーブル36Aは、ヘッドプレート20の通孔50を通って延びる。 In step 105, the hoist 61 further lowers the suspension cable 23, the split power cable 36A, the connection structure 28, and the submerged pump 2. While the submerged pump 2 is being lowered, purge gas may be supplied into the pump column 3 from the purge gas introduction port 8 . Before the uppermost connecting link 24 enters the purge container 1 , the locking member 65 is again placed on the head plate 20 . When the submersible pump 2 is lowered, the split suspension cable 23B and the split power cable 36A extend through the through hole 50 of the head plate 20. As shown in FIG.
 ステップ106では、分割吊りケーブル23Bの上端に連結されている連結リンク24が係止部材65に係合するまで(接触するまで)、吊りケーブル23、分割電力ケーブル36A、連結構造体28、および潜没式ポンプ2を巻き上げ機61によって下降させる。連結リンク24が係止部材65に係合すると、潜没式ポンプ2の荷重は、係止部材65およびヘッドプレート20によって支持される。 In step 106, the suspension cable 23, the split power cable 36A, the coupling structure 28, and the latent cable 24 are connected until the connection link 24 connected to the upper end of the split suspension cable 23B engages (contacts) the locking member 65. The submerged pump 2 is lowered by the hoist 61. - 特許庁When the connecting link 24 engages the locking member 65 , the load of the submerged pump 2 is supported by the locking member 65 and the head plate 20 .
 そして、潜没式ポンプ2がポンプコラム3の底部に近づくまで、上記ステップ103から上記ステップ106と同様のステップを、複数の分割吊りケーブル23Bの残りを1つずつ追加(連結)しながら、かつ複数の分割電力ケーブル36Aの残りを1つずつケーブルコネクタ36Bで接続しながら繰り返す。メスコネクタ37およびオスコネクタ38を含むケーブルコネクタ36Bによって連結された複数の分割電力ケーブル36Aの荷重は、連結リンク24を経由して複数の分割吊りケーブル23Bによって支持される。潜没式ポンプ2を下降させている間、パージガスはパージガス入口ポート17および/またはパージガス導入ポート8からポンプコラム3内に供給される。 Then, until the submerged pump 2 approaches the bottom of the pump column 3, the same steps as the steps 103 to 106 are performed while adding (connecting) the remaining divided suspension cables 23B one by one, and This is repeated while connecting the rest of the plurality of divided power cables 36A one by one with the cable connectors 36B. The load of a plurality of divided power cables 36A connected by a cable connector 36B including a female connector 37 and a male connector 38 is supported by a plurality of divided hanging cables 23B via connecting links 24. FIG. While the submerged pump 2 is being lowered, purge gas is fed into the pump column 3 through the purge gas inlet port 17 and/or the purge gas introduction port 8 .
 ステップ107では、潜没式ポンプ2がポンプコラム3の底部に近づいたとき、最後の分割吊りケーブル23Bを吊りケーブル23に追加し、最後の分割電力ケーブル36Aを電力ケーブル36に追加する。この最後の分割吊りケーブル23Bの上端には、図6を参照して説明した封止リンク30が連結されている。分割電力ケーブル36Aの下端にはオスコネクタ38が接続され、分割電力ケーブル36Aの上部は封止リンク30を貫通して延びている。
 ステップ108では、係止部材65をヘッドプレート20から取り外し、その後、封止リンク30がヘッドプレート20の直上位置に達するまで、潜没式ポンプ2を下降させる。潜没式ポンプ2は、ポンプコラム3内の吸込み弁6の直上にある所定位置に配置される。
 ステップ109では、ヘッドプレート20の可動フランジ42を上方に持ち上げて、可動フランジ42を封止リンク30にねじなどの締結具(図示せず)により固定する。
In step 107, when the submerged pump 2 approaches the bottom of the pump column 3, the last split suspension cable 23B is added to the suspension cables 23 and the last split power cable 36A is added to the power cable 36. The sealing link 30 described with reference to FIG. 6 is connected to the upper end of the last split suspension cable 23B. A male connector 38 is connected to the lower end of the split power cable 36A, and the upper part of the split power cable 36A extends through the sealing link 30. As shown in FIG.
At step 108 , the locking member 65 is removed from the head plate 20 and then the submersible pump 2 is lowered until the sealing link 30 reaches a position directly above the head plate 20 . The submerged pump 2 is arranged at a predetermined position directly above the intake valve 6 within the pump column 3 .
In step 109, the movable flange 42 of the head plate 20 is lifted upward and fixed to the sealing link 30 by fasteners (not shown) such as screws.
 ステップ110では、封止リンク30がヘッドプレート20に接触するまで、封止リンク30、可動フランジ42、および潜没式ポンプ2を下降させる。潜没式ポンプ2は吸込み弁6上に置かれる。吸込み弁6は、潜没式ポンプ2の自重により開く。
 ステップ111では、吊りケーブル23Aが封止リンク30から切り離され、その後、カバー壁10がパージ容器1の上端に固定される。最も上にある分割電力ケーブル36Aは、上蓋12の上面に設置されている電気端子35に接続され、さらに上蓋12がカバー壁10に固定される。
At step 110 , seal link 30 , movable flange 42 and submerged pump 2 are lowered until seal link 30 contacts head plate 20 . The submersible pump 2 is placed on the intake valve 6 . The suction valve 6 is opened by the self-weight of the submerged pump 2 .
At step 111, the suspension cable 23A is disconnected from the sealing link 30, after which the cover wall 10 is fixed to the upper end of the purge vessel 1. FIG. The uppermost split power cable 36 A is connected to an electrical terminal 35 installed on the upper surface of the top cover 12 , and the top cover 12 is further fixed to the cover wall 10 .
 本実施形態によれば、複数の分割電力ケーブル36Aが使用されるので、これら分割電力ケーブル36Aを1つずつ追加(連結)しながら、潜没式ポンプ2をポンプコラム3内に搬入することができる。作業員は、長尺(例えば数十メートル)の電力ケーブルを取り扱う必要がないので、作業員の負荷を低減することができる。 According to this embodiment, since a plurality of split power cables 36A are used, the submerged pump 2 can be carried into the pump column 3 while adding (connecting) these split power cables 36A one by one. can. Workers do not need to handle long power cables (for example, several tens of meters), so the burden on workers can be reduced.
 さらに本実施形態では、複数の分割吊りケーブル23Bが使用されるので、これら分割吊りケーブル23Bを1つずつ追加(連結)しながら、潜没式ポンプ2をポンプコラム3内に搬入することができる。作業員は、長尺(例えば数十メートル)の吊りケーブルを取り扱う必要がないので、作業員の負荷を低減することができる。 Furthermore, in the present embodiment, since a plurality of split suspension cables 23B are used, the submerged pump 2 can be carried into the pump column 3 while adding (connecting) these split suspension cables 23B one by one. . Workers do not need to handle long suspension cables (for example, several tens of meters), so the burden on workers can be reduced.
 次に、潜没式ポンプ2をポンプコラム3から引き上げる方法の一実施形態について、図15乃至図18を参照して説明する。潜没式ポンプ2の引き上げでは、基本的に、図9乃至図14を参照して説明した工程が逆の順序で行われる。図15乃至図18に示す一連の動作は、潜没式ポンプ2をポンプコラム3内で上昇させる動作と、複数の分割吊りケーブル23Bを1つずつ取り外す動作と、複数の分割電力ケーブル36Aを1つずつ取り外す動作と、潜没式ポンプ2をパージ容器1内でパージガスにさらすホットアップを含む。 Next, an embodiment of a method for pulling up the submerged pump 2 from the pump column 3 will be described with reference to FIGS. 15 to 18. FIG. In pulling up the submerged pump 2, basically, the steps described with reference to FIGS. 9 to 14 are performed in the reverse order. A series of operations shown in FIGS. 15 to 18 includes an operation to raise the submerged pump 2 within the pump column 3, an operation to remove the plurality of split suspension cables 23B one by one, and one operation to pull the plurality of split power cables 36A. It includes a step-by-step removal operation and a hot-up where the submersible pump 2 is exposed to purge gas within the purge vessel 1 .
 ステップ201では、上蓋12がカバー壁10から外され、最も上にある分割電力ケーブル36Aは電気端子35から切り離される。さらに、カバー壁10がパージ容器1から外される。その後、吊りケーブル23Aが封止リンク30に連結され、これにより吊りケーブル23Aは、潜没式ポンプ2に連結されている連結構造体28から延びる吊りケーブル23Bに封止リンク30を介して連結される。巻き上げ機61により、封止リンク30、可動フランジ42、吊りケーブル23B、分割電力ケーブル36A、連結構造体28、潜没式ポンプ2を少しだけ引き上げ、吸込み弁6を閉じる。さらに、パージガスをパージガス入口ポート17を通じてパージ容器1およびポンプコラム3内に供給する。ポンプコラム3内の圧力が上昇し、これに伴って吸込み弁6が開く。これにより液化ガスがポンプコラム3から吸込み弁6を通って排出される。 In step 201, the top lid 12 is removed from the cover wall 10 and the uppermost split power cable 36A is disconnected from the electrical terminals 35. Furthermore, the cover wall 10 is removed from the purge container 1 . The suspension cable 23A is then connected to the sealing link 30, whereby the suspension cable 23A is connected via the sealing link 30 to the suspension cable 23B extending from the connecting structure 28 connected to the submersible pump 2. be. The hoist 61 lifts the sealing link 30, the movable flange 42, the suspension cable 23B, the split power cable 36A, the connection structure 28, and the submerged pump 2 slightly, and the suction valve 6 is closed. Further, purge gas is supplied into the purge container 1 and the pump column 3 through the purge gas inlet port 17 . The pressure in the pump column 3 increases and the suction valve 6 opens accordingly. Liquefied gas is thereby discharged from the pump column 3 through the intake valve 6 .
 ステップ202では、可動フランジ42を封止リンク30から切り離す。さらに、最も上にある分割吊りケーブル23Bの全体、および最も上にある分割電力ケーブル36Aの全体がパージ容器1の上方に位置するまで、複数の分割吊りケーブル23B、複数の分割電力ケーブル36A、連結構造体28、潜没式ポンプ2を巻き上げ機61によって引き上げる。その後、係止部材65をヘッドプレート20の上に置く。潜没式ポンプ2が引き上げられるとき、吊りケーブル23Bおよび分割電力ケーブル36Aは、ヘッドプレート20の通孔50を通って延びる。 At step 202, the movable flange 42 is separated from the sealing link 30. Further, the plurality of divided suspension cables 23B, the plurality of divided power cables 36A, and the connection are continued until the entire uppermost divided suspension cable 23B and the entire uppermost divided power cable 36A are positioned above the purge container 1. The structure 28 and submerged pump 2 are pulled up by the hoist 61 . After that, the locking member 65 is placed on the head plate 20 . The suspension cable 23B and the split power cable 36A extend through the through hole 50 of the head plate 20 when the submersible pump 2 is raised.
 ステップ203では、係止部材65の直上にある連結リンク24が係止部材65に係合(接触)するまで、分割吊りケーブル23B、分割電力ケーブル36A、連結構造体28、潜没式ポンプ2を巻き上げ機61によって少しだけ下降させる。潜没式ポンプ2の荷重は、係止部材65およびヘッドプレート20によって支持される。 In step 203, the split suspension cable 23B, split power cable 36A, connecting structure 28, and submerged pump 2 are moved until the connecting link 24 directly above the locking member 65 engages (contacts) with the locking member 65. It is slightly lowered by the hoist 61.例文帳に追加The load of submerged pump 2 is supported by locking member 65 and head plate 20 .
 ステップ204では、パージ容器1の外にある最も上の分割吊りケーブル23Bを吊りケーブル23から取り外す。封止リンク30は、分割吊りケーブル23Bとともに、吊りケーブル23から外される。最も上にある分割電力ケーブル36Aも電力ケーブル36から取り外す。このとき、その分割電力ケーブル36Aの下端に接続されているオスコネクタ38は、係止部材65に支持されている連結リンク24上のメスコネクタ37から切り離される。 At step 204 , the uppermost split hanging cable 23 B outside the purge container 1 is removed from the hanging cable 23 . The sealing link 30 is removed from the suspension cable 23 together with the split suspension cable 23B. The uppermost split power cable 36 A is also removed from the power cable 36 . At this time, the male connector 38 connected to the lower end of the split power cable 36A is disconnected from the female connector 37 on the connecting link 24 supported by the locking member 65. As shown in FIG.
 ステップ205では、巻き上げ機61から延びる吊りケーブル23Aを、係止部材65に係合している連結リンク24に連結する。これにより、吊りケーブル23Aは分割吊りケーブル23Bを介して潜没式ポンプ2に再び連結される。
 そして、巻き上げ機61によって潜没式ポンプ2がパージ容器1内に引き上げられるまで、上記ステップ202から上記ステップ205と同様のステップを、複数の分割吊りケーブル23Bを1つずつ取り外し(切り離し)ながら、および複数の分割電力ケーブル36Aを1つずつ取り外(切り離し)しながら繰り返す。潜没式ポンプ2を引き上げている間、パージガスはパージガス入口ポート17および/またはパージガス導入ポート8からポンプコラム3内に供給される。
At step 205 , the suspension cable 23 A extending from the hoist 61 is connected to the connecting link 24 engaged with the locking member 65 . As a result, the suspension cable 23A is reconnected to the submerged pump 2 via the split suspension cable 23B.
Then, the steps similar to Step 202 to Step 205 are repeated until the submerged pump 2 is lifted into the purge container 1 by the hoist 61 while removing (separating) the plurality of divided hanging cables 23B one by one. and while removing (disconnecting) the plurality of divided power cables 36A one by one. While the submersible pump 2 is being raised, purge gas is fed into the pump column 3 through the purge gas inlet port 17 and/or the purge gas introduction port 8 .
 ステップ206では、潜没式ポンプ2がパージ容器1内に位置している状態で、ゲート弁21で閉じられる。パージ容器1の上部開口がヘッドプレート20で覆われ、かつパージ容器1の下部開口がゲート弁21で閉じられた状態で、パージガス(例えば、不活性ガス、および/または液化ガスの成分と同じ成分からなるガスを含む)をパージガス入口ポート17から内部空間15に供給し、内部空間15をパージガスで満たす。潜没式ポンプ2はパージ容器1内でパージガスにさらされ(接触し)、これによって潜没式ポンプ2が加温される。この工程は、潜没式ポンプ2を加温するホットアップである。 At step 206 , the gate valve 21 is closed while the submerged pump 2 is positioned inside the purge container 1 . With the top opening of the purge container 1 covered with a head plate 20 and the bottom opening of the purge container 1 closed with a gate valve 21, a purge gas (e.g. inert gas and/or the same component as the liquefied gas) is injected. ) is supplied to the interior space 15 through the purge gas inlet port 17 to fill the interior space 15 with the purge gas. The submerged pump 2 is exposed (contacted) to the purge gas in the purge container 1, thereby warming the submerged pump 2. As shown in FIG. This step is a hot-up for heating the submerged pump 2 .
 ステップ207では、ヘッドプレート20をパージ容器1に固定しているボルトおよびナットなどの締結具53(図6参照)を取り外す。その後、吊りケーブル23Aをヘッドプレート20のケーブルポート47に連結する。そして、巻き上げ機61により、ヘッドプレート20、連結構造体28、最も下にある分割電力ケーブル36A、係止部材65、および潜没式ポンプ2を一体に上昇させて、潜没式ポンプ2をパージ容器1の外に移動させる。 In step 207, fasteners 53 (see FIG. 6) such as bolts and nuts fixing the head plate 20 to the purge container 1 are removed. After that, the suspension cable 23A is connected to the cable port 47 of the head plate 20. As shown in FIG. Then, the hoist 61 lifts the head plate 20, the connecting structure 28, the lowermost divided power cable 36A, the locking member 65, and the submersible pump 2 together to purge the submersible pump 2. Move out of container 1.
 本実施形態によれば、複数の分割電力ケーブル36Aが使用されるので、これら分割電力ケーブル36Aを1つずつ取り外し(切り離し)ながら、潜没式ポンプ2をポンプコラム3から引き上げることができる。作業員は、長尺(例えば数十メートル)の電力ケーブルを取り扱う必要がないので、作業員の負荷を低減することができる。特に、極低温の電力ケーブル36をポンプコラム3から引き上げるときの作業員の安全性が確保できる。 According to this embodiment, since a plurality of split power cables 36A are used, the submersible pump 2 can be pulled up from the pump column 3 while removing (separating) these split power cables 36A one by one. Workers do not need to handle long power cables (for example, several tens of meters), so the burden on workers can be reduced. In particular, the safety of the operator when pulling up the cryogenic power cable 36 from the pump column 3 can be ensured.
 また、本実施形態によれば、複数の分割吊りケーブル23Bが使用されるので、これら分割吊りケーブル23Bを1つずつ取り外(切り離し)しながら、潜没式ポンプ2をポンプコラム3から引き上げることができる。作業員は、長尺(例えば数十メートル)の吊りケーブルを取り扱う必要がないので、作業員の負荷を低減することができる。特に、極低温の吊りケーブル23をポンプコラム3から引き上げるときの作業員の安全性が確保できる。 Further, according to the present embodiment, since a plurality of divided suspension cables 23B are used, the submerged pump 2 is pulled up from the pump column 3 while removing (separating) these divided suspension cables 23B one by one. can be done. Workers do not need to handle long suspension cables (for example, several tens of meters), so the burden on workers can be reduced. In particular, it is possible to ensure the safety of workers when pulling up the cryogenic hanging cable 23 from the pump column 3 .
 上述した実施形態は、本発明が属する技術分野における通常の知識を有する者が本発明を実施できることを目的として記載されたものである。上記実施形態の種々の変形例は、当業者であれば当然になしうることであり、本発明の技術的思想は他の実施形態にも適用しうる。したがって、本発明は、記載された実施形態に限定されることはなく、特許請求の範囲によって定義される技術的思想に従った最も広い範囲に解釈されるものである。 The above-described embodiments are described for the purpose of enabling those who have ordinary knowledge in the technical field to which the present invention belongs to implement the present invention. Various modifications of the above embodiments can be made by those skilled in the art, and the technical idea of the present invention can be applied to other embodiments. Accordingly, the present invention is not limited to the described embodiments, but is to be construed in its broadest scope in accordance with the technical spirit defined by the claims.
 本発明は、液化アンモニアや液化天然ガス(LNG)や液体水素などの液化ガスを昇圧する潜没式ポンプに電力を供給するための電力ケーブルに利用可能である。さらに、本発明はそのような電力ケーブルを用いて、潜没式ポンプをポンプコラム内に搬入する方法、および潜没式ポンプをポンプコラムから引き上げる方法に利用可能である。 The present invention can be used as a power cable for supplying power to submerged pumps that boost the pressure of liquefied gases such as liquefied ammonia, liquefied natural gas (LNG), and liquid hydrogen. Further, the present invention is applicable to a method of loading a submersible pump into a pump column and a method of lifting a submersible pump from the pump column using such a power cable.
 1   パージ容器
 2   潜没式ポンプ
 3   ポンプコラム
 5   液化ガス貯槽
 6   吸込み弁
 8   パージガス導入ポート
 9   吐出しポート
10   カバー壁
12   上蓋
15   内部空間
17   パージガス入口ポート
18   ガス出口ポート
20   ヘッドプレート
21   ゲート弁
23   吊りケーブル
23A  第1吊りケーブル
23B  分割吊りケーブル(第2吊りケーブル)
24   連結リンク
24a  ピン穴
25   フランジ部
26   ケーブル通路
28   連結構造体
29   連結端子
30   封止リンク
31   連結ピン
33   連結リンク
33a  フランジ部
35   電気端子
36   電力ケーブル
36A  分割電力ケーブル
36B  ケーブルコネクタ
37   メスコネクタ
38   オスコネクタ
40   プレート本体
41   突出部
42   可動フランジ
44   シール
47   ケーブルポート
50   通孔
53   締結具
60   昇降装置
61   巻き上げ機
65   係止部材
66   開口
70   パージガス供給源
71   パージガス供給ライン
74   真空ライン
1 purge container 2 submerged pump 3 pump column 5 liquefied gas storage tank 6 suction valve 8 purge gas introduction port 9 discharge port 10 cover wall 12 upper lid 15 internal space 17 purge gas inlet port 18 gas outlet port 20 head plate 21 gate valve 23 suspension Cable 23A First hanging cable 23B Divided hanging cable (second hanging cable)
24 connecting link 24a pin hole 25 flange portion 26 cable passage 28 connecting structure 29 connecting terminal 30 sealing link 31 connecting pin 33 connecting link 33a flange portion 35 electrical terminal 36 power cable 36A split power cable 36B cable connector 37 female connector 38 male Connector 40 Plate body 41 Protrusion 42 Movable flange 44 Seal 47 Cable port 50 Through hole 53 Fastener 60 Lifting device 61 Hoist 65 Locking member 66 Opening 70 Purge gas supply source 71 Purge gas supply line 74 Vacuum line

Claims (15)

  1.  液化ガスを移送するためにポンプコラム内に配置された潜没式ポンプに電力を供給するための電力ケーブルであって、
     複数の分割電力ケーブルと、
     前記複数の分割電力ケーブルを電気的に接続する複数のケーブルコネクタを備えている、電力ケーブル。
    A power cable for powering a submersible pump positioned within a pump column for transporting liquefied gas, comprising:
    a plurality of split power cables;
    A power cable comprising a plurality of cable connectors electrically connecting the plurality of split power cables.
  2.  各分割電力ケーブルの長さは、前記ポンプコラムの長さよりも短い、請求項1に記載の電力ケーブル。 The power cable according to claim 1, wherein the length of each split power cable is shorter than the length of the pump column.
  3.  各ケーブルコネクタは、各分割電力ケーブルの両端に接続されたメスコネクタおよびオスコネクタを備えている、請求項1または2に記載の電力ケーブル。 The power cable according to claim 1 or 2, wherein each cable connector comprises a female connector and a male connector connected to both ends of each split power cable.
  4.  前記複数のケーブルコネクタは、前記潜没式ポンプを前記ポンプコラム内に吊り下げるための複数の分割吊りケーブルを連結する複数の連結リンクによってそれぞれ支持されている、請求項1乃至3のいずれか一項に記載の電力ケーブル。 4. The plurality of cable connectors according to any one of claims 1 to 3, wherein the plurality of cable connectors are respectively supported by a plurality of connection links that connect a plurality of split suspension cables for suspending the submerged pump in the pump column. power cable as described in section.
  5.  前記複数の分割電力ケーブルの荷重は、前記複数の分割吊りケーブルによって支持されている、請求項4に記載の電力ケーブル。 The power cable according to claim 4, wherein the load of the plurality of split power cables is supported by the plurality of split suspension cables.
  6.  液化ガスを移送するために使用される潜没式ポンプをポンプコラム内に搬入する方法であって、
     巻き上げ機に連結された吊りケーブルにより、前記潜没式ポンプを前記ポンプコラム内で下降させながら、前記潜没式ポンプに電力を供給するための複数の分割電力ケーブルを1つずつケーブルコネクタにより接続する、方法。
    A method of loading a submersible pump used to transfer liquefied gas into a pump column, comprising:
    While the submersible pump is lowered in the pump column by a suspension cable connected to a hoist, a plurality of split power cables for supplying power to the submersible pump are connected one by one by cable connectors. how to.
  7.  前記潜没式ポンプをパージ容器内に収容し、
     前記パージ容器内にパージガスを供給して前記潜没式ポンプを前記パージガスにさらす工程をさらに含む、請求項6に記載の方法。
    housing the submerged pump in a purge container;
    7. The method of claim 6, further comprising supplying a purge gas into the purge vessel and exposing the submersible pump to the purge gas.
  8.  前記巻き上げ機に連結された前記吊りケーブルにより、前記潜没式ポンプを前記ポンプコラム内で下降させる工程は、複数の分割吊りケーブルを1つずつ連結リンクにより接続しながら、前記巻き上げ機に連結された前記複数の分割吊りケーブルにより、前記潜没式ポンプを前記ポンプコラム内で下降させる工程である、請求項6または7に記載の方法。 The step of lowering the submerged pump in the pump column by the suspension cable connected to the hoist includes connecting a plurality of divided suspension cables one by one with a connection link to the hoist. 8. A method according to claim 6 or 7, wherein said submersible pump is lowered within said pump column by means of said plurality of split suspension cables.
  9.  前記ケーブルコネクタは、前記連結リンクによって支持されている、請求項8に記載の方法。 The method of claim 8, wherein said cable connector is supported by said connecting link.
  10.  前記複数の分割電力ケーブルの荷重は、前記複数の分割吊りケーブルによって支持されている、請求項9に記載の方法。 The method according to claim 9, wherein the loads of the plurality of split power cables are supported by the plurality of split suspension cables.
  11.  液化ガスを移送するために使用される潜没式ポンプをポンプコラムから引き上げる方法であって、
     巻き上げ機に連結された吊りケーブルにより、前記潜没式ポンプを前記ポンプコラム内で引き上げながら、前記潜没式ポンプに電力を供給するための複数の分割電力ケーブルを1つずつ取り外す、方法。
    A method of raising a submersible pump used to transfer liquefied gas from a pump column, comprising:
    A method of removing, one by one, a plurality of split power cables for powering the submersible pump while the submersible pump is being hoisted within the pump column by a sling cable connected to a hoist.
  12.  前記潜没式ポンプを前記ポンプコラムからパージ容器内に移動させ、
     前記パージ容器内にパージガスを供給して前記潜没式ポンプを前記パージガスにさらす工程をさらに含む、請求項11に記載の方法。
    moving the submerged pump from the pump column into a purge vessel;
    12. The method of claim 11, further comprising supplying a purge gas into the purge vessel and exposing the submersible pump to the purge gas.
  13.  前記巻き上げ機に連結された前記吊りケーブルにより、前記潜没式ポンプを前記ポンプコラム内で引き上げる工程は、前記巻き上げ機に連結された前記吊りケーブルを構成する複数の分割吊りケーブルを1つずつ取り外しながら、前記吊りケーブルにより前記潜没式ポンプを前記ポンプコラム内で引き上げる工程である、請求項11または12に記載の方法。 The step of pulling up the submerged pump in the pump column by the suspension cable connected to the hoist includes removing, one by one, a plurality of divided suspension cables constituting the suspension cable connected to the hoist. 13. A method according to claim 11 or 12, wherein the suspension cable raises the submersible pump within the pump column.
  14.  前記複数の分割電力ケーブルは、ケーブルコネクタにより電気的に接続されており、
     前記複数の分割吊りケーブルは、連結リンクにより連結されており、
     前記ケーブルコネクタは、前記連結リンクによって支持されている、請求項13に記載の方法。
    The plurality of split power cables are electrically connected by cable connectors,
    The plurality of divided hanging cables are connected by connecting links,
    14. The method of claim 13, wherein said cable connector is supported by said connecting link.
  15.  前記複数の分割電力ケーブルの荷重は、前記複数の分割吊りケーブルによって支持されている、請求項14に記載の方法。 The method according to claim 14, wherein the load of said plurality of split power cables is supported by said plurality of split suspension cables.
PCT/JP2022/045984 2022-01-11 2022-12-14 Power cable for submersible pump, pump carry-in method, and pump pull-up method WO2023136033A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022002217A JP2023101956A (en) 2022-01-11 2022-01-11 Power cable for submersible pump, method of carrying-in pump and method of pulling up pump
JP2022-002217 2022-01-11

Publications (1)

Publication Number Publication Date
WO2023136033A1 true WO2023136033A1 (en) 2023-07-20

Family

ID=87278945

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/045984 WO2023136033A1 (en) 2022-01-11 2022-12-14 Power cable for submersible pump, pump carry-in method, and pump pull-up method

Country Status (2)

Country Link
JP (1) JP2023101956A (en)
WO (1) WO2023136033A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57137684A (en) * 1980-10-09 1982-08-25 Itt Pump apparatus
JPH11234948A (en) * 1998-02-13 1999-08-27 Mitsubishi Electric Corp Inverter-controlled submergible motor
JP2000205176A (en) * 1999-01-06 2000-07-25 Ishigaki:Kk Protecting device for cable in sumberged pump
JP2007085310A (en) * 2005-09-26 2007-04-05 Torishima Pump Mfg Co Ltd Submerged motor pump
US20170244294A1 (en) * 2014-08-29 2017-08-24 Schlumberger Technology Corporation Equipment including polytetrafluoroethylene

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57137684A (en) * 1980-10-09 1982-08-25 Itt Pump apparatus
JPH11234948A (en) * 1998-02-13 1999-08-27 Mitsubishi Electric Corp Inverter-controlled submergible motor
JP2000205176A (en) * 1999-01-06 2000-07-25 Ishigaki:Kk Protecting device for cable in sumberged pump
JP2007085310A (en) * 2005-09-26 2007-04-05 Torishima Pump Mfg Co Ltd Submerged motor pump
US20170244294A1 (en) * 2014-08-29 2017-08-24 Schlumberger Technology Corporation Equipment including polytetrafluoroethylene

Also Published As

Publication number Publication date
JP2023101956A (en) 2023-07-24

Similar Documents

Publication Publication Date Title
KR20100103266A (en) Pump tower
WO2023136033A1 (en) Power cable for submersible pump, pump carry-in method, and pump pull-up method
WO2023022059A1 (en) Lifting device, pump delivery method, and pump raising method
WO2023022062A1 (en) Purging device and purging method
US5865605A (en) Method and apparatus for removing a high pressure in-tank pump using a low pressure tube
USRE31445E (en) Submerged pumping system
JP2023101955A (en) Pump lifting device, method of carrying-in pump and method of pulling up pump
WO2023210508A1 (en) Pump installation device, pump installation method, and pump extraction method
WO2023022058A1 (en) Integrally portable purge container and method for using same
WO2023022063A1 (en) Buffer gate, pump introduction method, and pump lifting method
WO2023022060A1 (en) Purge vessel and method for using purge vessel
KR101539459B1 (en) Ship in dry dock
US3696975A (en) Submerged pump removal system
US20180033504A1 (en) Method of extracting plug and removable unit when refueling nuclear reactor
WO2023067741A1 (en) Ocean facility
KR20240051156A (en) Power supply device and feeding method for submerged pumps
CN117813453A (en) Power supply device and power supply method for submersible pump
CN217109129U (en) LNG loading and unloading vehicle interlocking control device
TWI811985B (en) Method for connecting a component of a power conversion circuit of a wind turbine
CN219728487U (en) Auxiliary installation equipment for cargo oil pipeline on deck of large-sized finished oil tanker
CN115527698A (en) Emergency maintenance assembly and method for high-temperature gas cooled reactor spent fuel charging device
JP2024044536A (en) liquefied gas tank
JP2024500563A (en) System for automatic connection and/or disconnection of power supply and/or data connections for refrigerated containers
JPS58211593A (en) Pump inserting and retracting apparatus for liquefied- gas tank

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22920551

Country of ref document: EP

Kind code of ref document: A1