WO2023135989A1 - Vehicle control device and vehicle control method - Google Patents

Vehicle control device and vehicle control method Download PDF

Info

Publication number
WO2023135989A1
WO2023135989A1 PCT/JP2022/045078 JP2022045078W WO2023135989A1 WO 2023135989 A1 WO2023135989 A1 WO 2023135989A1 JP 2022045078 W JP2022045078 W JP 2022045078W WO 2023135989 A1 WO2023135989 A1 WO 2023135989A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
adjacent lane
control device
travel route
distance
Prior art date
Application number
PCT/JP2022/045078
Other languages
French (fr)
Japanese (ja)
Inventor
琢馬 大里
春樹 的野
雅幸 竹村
健 永崎
Original Assignee
日立Astemo株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立Astemo株式会社 filed Critical 日立Astemo株式会社
Publication of WO2023135989A1 publication Critical patent/WO2023135989A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/14Adaptive cruise control
    • B60W30/16Control of distance between vehicles, e.g. keeping a distance to preceding vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W60/00Drive control systems specially adapted for autonomous road vehicles
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems

Definitions

  • the present invention relates to a vehicle control device and a vehicle control method for predicting other vehicles that may cut in front of the own vehicle.
  • Patent Document 1 proposes a vehicle control device for identifying an interrupting vehicle.
  • an intervening vehicle identification unit that identifies an intervening vehicle that is about to intervene into the traveling lane from the side of the traveling lane in which the vehicle is present, based on the recognition result of the recognizing unit; and based on the position of the identified intervening vehicle.
  • a driving control unit that controls at least one of acceleration/deceleration and steering of the vehicle, and the cut-in vehicle identification unit controls, during a predetermined period of time, other vehicles on the side of the driving lane in the road width direction.
  • the other vehicle When the amount of lateral movement toward the driving lane exceeds a threshold value, the other vehicle is specified as a cut-in vehicle, and when the other vehicle is traveling in a position relatively close to the driving lane, it is far from the driving lane.
  • a vehicle control device that makes the threshold smaller than when the vehicle is traveling at a certain position.”
  • FIG. 1 shows an example of a situation in which another vehicle V1 may cut in front of the own vehicle V0 .
  • Another vehicle V1 runs behind (adjacent lane) at speed S1 ( S0 ⁇ S1 ), and another vehicle V2 runs ahead of the left lane (adjacent lane) at speed S2 ( S2 ⁇ S1 ).
  • S1 speed of the left lane
  • S2 speed of the left lane
  • S2 ⁇ S1
  • FIG. 1 shows an example of running in
  • another vehicle V1 which is following another vehicle V2 in the adjacent lane at high speed, moves ahead of the own vehicle V0 along the route indicated by the dashed arrow in order to avoid rear-end collision with the other vehicle V2 .
  • the right direction of the own vehicle V0 is defined as the positive direction of the x-axis
  • the forward direction thereof is defined as the positive direction of the y-axis.
  • the vehicle control device of Patent Document 1 identifies the other vehicle V1 as an interrupting vehicle when the x-direction speed of the other vehicle V1 exceeds the threshold value. If the speed in the x direction of the other vehicle V1 does not reach the threshold because the other vehicle V1 cuts in gently, there is a problem that the other vehicle V1 cannot be identified as the cutting-in vehicle.
  • the vehicle control device of Patent Document 1 detects an interrupt after another vehicle V1 has started an interrupt. There is also the problem that the start timing of the action to avoid is delayed.
  • An object of the present invention is to provide a vehicle control method.
  • an adjacent lane vehicle detection unit that detects an adjacent lane vehicle traveling in an adjacent lane
  • a travel route prediction unit that predicts a travel route of the vehicle traveling in the adjacent lane
  • a target inter-vehicle distance determining unit for determining a target inter-vehicle distance between the vehicle and the preceding vehicle in the adjacent lane
  • a vehicle speed control unit for controlling the speed of the own vehicle based on the target inter-vehicle distance.
  • the vehicle control device and vehicle control method of the present invention it is possible to predict interrupting candidate vehicles that may cut in front of the own vehicle based on the surrounding conditions of the own vehicle.
  • FIG. 2 is a functional block diagram of the vehicle control device according to the first embodiment;
  • FIG. An example of the running situation of the host vehicle V0 and the other vehicle V1 in the first embodiment (the speed S2 of the other vehicle V2 >0).
  • An example of the running situation of the host vehicle V0 and the other vehicle V1 in the first embodiment (the speed S2 of the other vehicle V2 ⁇ 0).
  • FIG. 8 is an example of a calculation method of the possibility of interruption in the vehicle control device according to the first embodiment
  • 4 is a processing flowchart of the vehicle control device according to the first embodiment
  • FIG. An example of the driving situation of own vehicle V0 and other vehicle V1 in Example 3.
  • FIGS. 2 to 7. a vehicle control device 1 according to Embodiment 1 of the present invention will be described using FIGS. 2 to 7.
  • FIG. Duplicate descriptions of the points in common with FIG. 1 will be omitted.
  • FIG. 2 is a functional block diagram of the vehicle control device 1 of this embodiment, which is mounted on the own vehicle V0 . As shown here, a plurality of external sensors 2 are installed on the input side of the vehicle control device 1, and a driving system 3a, a braking system 3b, and a steering system 3c are installed on the output side.
  • the external sensor 2 is a sensor for recognizing the surroundings of the own vehicle V0 , and is various sensors such as a camera and LiDAR. It should be noted that the host vehicle V0 of this embodiment is equipped with a plurality of external sensors 2 at various locations on the vehicle, so that it can recognize situations (other vehicles, obstacles, road surfaces, etc.) in the front, rear, left, and right directions.
  • the drive system 3a is various devices used during acceleration of the own vehicle V0 , specifically, a mechanism including an engine, a motor, and the like.
  • the braking system 3b is various devices used during deceleration of the own vehicle V0 , specifically, a mechanism including a brake and the like.
  • the steering system 3c is various devices used when the host vehicle V0 turns, and more specifically, it is a mechanism including steering and the like.
  • the vehicle control device 1 includes an other vehicle behavior prediction unit 11 and an own vehicle behavior control unit 12, as shown in FIG.
  • the other vehicle behavior prediction unit 11 has an adjacent lane vehicle detection section 11a and a travel route prediction section 11b.
  • the host vehicle behavior control unit 12 also has a target inter-vehicle distance determination section 12a, a speed control section 12b, and a traveling direction control section 12c.
  • the vehicle control device 1 is a computer including hardware such as an arithmetic device such as a CPU, a storage device such as a semiconductor memory, and a communication device. Then, each function in the other vehicle behavior prediction unit 11 and the own vehicle behavior control unit 12 is realized by executing the program developed in the storage device by the arithmetic device. Each part in each unit will be described while omitting it.
  • the speeds S 0 , S 1 , and S 2 in the drawing are the speeds of the own vehicle V 0 and the other vehicles V 1 , V 2 , respectively.
  • it is faster than speed S2 .
  • the distance in the y-axis direction from the front end of the own vehicle V 0 to the rear end of the preceding vehicle (another vehicle V 2 ) running in the adjacent vehicle is defined as the inter-vehicle distance D.
  • the velocities S 1 and S 2 of the other vehicles V 1 and V 2 in the left lane are both positive, and the relative velocity of the other vehicles V 1 and V 2 is (S 1 -S 2 ). is positive, the rear vehicle V1 will eventually catch up with the front vehicle V2 . Therefore, in order to avoid a rear-end collision with the other vehicle V2 , it can be predicted that there is a high possibility that the other vehicle V1 will cut in front of the own vehicle V0 along the route indicated by the dashed arrow in FIG.
  • the other vehicle V1 cuts in front of the own vehicle V0 in order to avoid a rear-end collision with the other vehicle V2 . can be predicted with high probability.
  • the relationship between the relative speed (S 1 ⁇ S 2 ) and the interrupt probability P can be summarized as follows. That is, when the speed S2 of the other vehicle V2 is negative (see FIG. 5) or when the speed S2 of the other vehicle V2 is 0 (see FIG. 4), the other vehicle V1 can interrupt The sex P can be assumed to be 100%. When the speed S 2 of the other vehicle V 2 is positive (see FIG. 3), the smaller the relative speed (S 1 ⁇ S 2 ), the smaller the possibility P of the other vehicle V 1 interrupting.
  • the vehicle control device 1 can easily calculate the interruption possibility P of the other vehicle V 1 based on the relative speed (S 1 ⁇ S 2 ). can be calculated. Note that even if the relative speed (S 1 ⁇ S 2 ) is 0, there is a certain possibility that the other vehicle V 1 will cut in, so in FIG .
  • the interrupt possibility P is assumed to be a positive value.
  • step St1 the adjacent lane vehicle detection unit 11a of the other vehicle behavior prediction unit 11 detects the positions, speeds, traveling directions, vehicle types, etc. of the other vehicles V1 and V2 based on the inputs from the plurality of external sensors 2. is detected (see FIGS. 3 to 5).
  • the other vehicle position or the like detected here may be a relative position or the like with respect to the own vehicle V0 , or may be an absolute position or the like.
  • step St2 the adjacent lane vehicle detection unit 11a determines the magnitude of the interruption possibility P of the other vehicle V1 based on the various information detected in step St1. Then, if the interrupt possibility P is high, the process proceeds to step St3, and if the interrupt possibility P is small, the process proceeds to step St5.
  • the determination of the magnitude of the interrupt possibility P in this step can be performed from various viewpoints. may be used, or a plurality of determination methods may be used together, for example, determination may be made by majority vote.
  • (1) Utilizing the graph of FIG. 6, based on the relative speed (S 1 ⁇ S 2 ) of the other vehicle V 1 and the other vehicle V 2 , calculate the interruption possibility P of the other vehicle V 1 , If the interrupt probability P is equal to or greater than a predetermined value (eg, 50%), it is determined that the interrupt probability P is high, and if not, it is determined that the interrupt probability P is low.
  • a predetermined value eg, 50%
  • the inter-vehicle distance D from the own vehicle V0 to the other vehicle V2 is greater than or equal to a predetermined value (for example, 20 m), it is determined that the possibility of interruption P is high; otherwise, the possibility of interruption is determined. It is determined that P is small.
  • a predetermined value for example, 20 m
  • the other vehicle V1 is a small vehicle such as an ordinary car or a motorcycle
  • the other vehicle V2 is a large vehicle such as a truck or a bus
  • the possibility of interruption P is high. It is determined that the interrupt possibility P is small.
  • the travel route prediction section 11b of the other vehicle behavior prediction unit 11 predicts the travel route (see FIG. 1 ) of the other vehicle V1 based on the information detected at step St1.
  • step St4 the travel route prediction unit 11b determines the size of the contact risk R of the other vehicle V1 based on the information detected in step St1 and the travel route of the other vehicle V1 predicted in step St3. If the contact risk R is large, the process proceeds to step St7, and if the contact risk R is small, the process proceeds to step St8.
  • the determination of the magnitude of the contact risk R in this step can be performed from various viewpoints. Alternatively, a plurality of them may be used together and, for example, weighted may be used for determination. (1) If the predicted routes of the own vehicle V0 and the other vehicle V1 intersect after a predetermined time, it is determined that the contact risk R is large, and if not, it is determined that the contact risk R is small. (2) If the predicted positions of the own vehicle V0 and the other vehicle V1 after a predetermined time approach within a predetermined offset distance (for example, 3 m), it is determined that the contact risk R is large; It is determined that the contact risk R is small.
  • a predetermined offset distance for example, 3 m
  • the travel route prediction unit 11b predicts the travel route (see FIG. 1 ) of the other vehicle V1, similarly to step St3.
  • step St6 the travel route prediction unit 11b determines the magnitude of the contact risk R of the other vehicle V1 , as in step St4. If the contact risk R is large, the process proceeds to step St9, and if the contact risk R is small, the process proceeds to step St10.
  • Step St7 is a process executed when the interrupt possibility P is high and the contact risk R is also high.
  • the target inter-vehicle distance determination unit 12a of the own vehicle behavior control unit 12 prevents contact with the other vehicle V1 even if the other vehicle V1 cuts in along the predicted route.
  • An extended distance (target inter-vehicle distance) that can be avoided is calculated.
  • the speed control unit 12b controls the driving system 3a and the braking system 3b so as to secure the inter-vehicle distance D equal to or greater than the extended distance, thereby decelerating the host vehicle V0 .
  • the traveling route prediction unit 11b determines whether there is a high possibility that the other vehicle V1 will change lanes in 5 seconds and collide with the own vehicle V0 .
  • the above-mentioned extended distance will be reached within 5 seconds.
  • the driving system 3a and the braking system 3b are controlled so as to ensure If it is difficult to secure the inter-vehicle distance D equal to or greater than the extended distance by the estimated contact time with the other vehicle V1 , the traveling direction control unit 12c controls the steering system 3c to move the vehicle V0 further to the right.
  • the collision with the other vehicle V1 may be avoided by a method other than securing the inter-vehicle distance D equal to or greater than the extended distance, such as by moving the vehicle to an overtaking lane (not shown).
  • Step St8 is a process executed when the interrupt possibility P is high and the contact risk R is low. In this case, even if the other vehicle V1 cuts in ahead, the possibility of contact with the own vehicle V0 is low as long as the current own vehicle control is continued. There is no need to execute separate control such as St7. However, it is more desirable to suppress the acceleration in order to further reduce the contact risk R with the other vehicle V1 .
  • Step St9 is a process executed when the interrupt possibility P is small and the contact risk R is large.
  • the target inter-vehicle distance determination unit 12a determines a reduced distance (target inter-vehicle distance) that can prevent the other vehicle V1 from cutting in if the other vehicle V1 cuts in along the predicted route.
  • the speed control unit 12b controls and accelerates the drive system 3a so that the vehicle-to-vehicle distance D becomes equal to or less than the reduced distance.
  • the predicted course of the other vehicle V1 will be obstructed, so even if the other vehicle V1 had planned to cut in, it is thought that the cut-in will be abandoned. Avoid contact.
  • Step St10 is a process that is executed when the interruptability P is small and the contact risk R is small. In this case, the host vehicle behavior control unit 12 does not perform any separate control, as in step St8.
  • the vehicle control apparatus of the present embodiment it is possible to predict an interrupting candidate vehicle that may cut in front of the own vehicle based on the surrounding conditions of the own vehicle. It is possible to quickly implement necessary actions such as avoiding contact with the vehicle.
  • step St4 of the first embodiment a method for determining the magnitude of the contact risk R when there is no other vehicle ahead of the own vehicle V0 was introduced.
  • a method of calculating the contact risk R under the condition that the is running will be described.
  • the contact risk R of the other vehicle V1 is calculated using Equations 1 and 2.
  • Dn is the inter-vehicle distance .
  • the inter-vehicle distance D3 between the other vehicle V2 and the other vehicle V3 is the contact risk of the other vehicle V1 traveling the inter-vehicle distance Dn
  • l is the collision determination threshold (length of the other vehicle V1 + offset distance (for example, 3m))
  • gn is This is a setting parameter for the inter-vehicle distance Dn .
  • the contact risk rn while traveling the vehicle-to-vehicle distance Dn is represented by a variable corresponding to the vehicle-to-vehicle distance Dn .
  • the contact risk r n is set to 1 when the contact risk r n is as narrow as possible (D n ⁇ l).
  • the contact risk r n is set to 0.
  • the contact risk r n is a value calculated by (D n ⁇ l)/g n .
  • Equation 2 w n is the weight of the contact risk r n , and by multiplying the individual contact risk r n by a weight such that w 1 >w 2 >w 3 , the temporally preceding contact It increases the impact of risk r n .
  • the contact risk R calculated using Equations 1 and 2 is used to perform the determinations in steps St4 and St6 in FIG.
  • vehicle control similar to that of the first embodiment can be executed. This makes it possible to maintain inter-vehicle distances D 1 and D 2 such that the other vehicle V 1 in FIG. 8 can pass the other vehicle V 2 safely.
  • the contact risk R of the other vehicle V1 on a two-lane road is calculated, but in this embodiment, the contact risk R of the other vehicle V1 on a three-lane road is calculated.
  • the contact risk R of the other vehicle V1 on a three-lane road is calculated.
  • FIG. 9 when another vehicle V1 traveling in the left lane travels on a route that cuts in front of the own vehicle V0 traveling in the center lane, it travels in the left lane as the subsequent travel route.
  • Two routes are conceivable: a route to return to the left lane after overtaking another vehicle V2L , and a route to move to the right lane after overtaking another vehicle V2R traveling in the right lane.
  • the contact risk R is calculated by formulas 1 and 2 for both routes. Risk R is determined to be large.
  • the two types of contact risks R calculated using Equations 1 and 2 are used to perform the determinations in steps St4 and St6 in FIG. Even under such a situation, the own vehicle control similar to that of the first embodiment can be executed.
  • the vehicle control device 1 of the first embodiment predicts the travel route of the other vehicle V2 based on the external world information detected by the external sensor 2.
  • FIG. the vehicle control device 1 of the present embodiment switches whether to predict the travel route in consideration of the traffic information acquired through communication from the outside. For example, in a traffic jam situation, each car will try to cut in regardless of the distance D between the cars, so there is a high possibility that the travel route predicted by the method of Example 1 will not be helpful. .
  • the vehicle control device 1 of this embodiment does not predict the travel route when the traffic information in the vicinity of the own vehicle V0 acquired through communication indicates traffic congestion. On the other hand, if the acquired traffic information does not indicate traffic congestion, the travel route is predicted.
  • traffic information acquired through communication is used to switch whether or not to predict the travel route. It is also possible to manually switch whether or not to predict the travel route by operating.
  • the travel route can be predicted and reflected in the own vehicle control only under circumstances where the travel route prediction is useful.

Abstract

Provided is a vehicle control device capable of predicting a cut-off candidate vehicle that could possibly cut in front of a host vehicle, on the basis of the surrounding conditions of the host vehicle. The vehicle control device is characterized by having an adjacent lane vehicle detection part that detects an adjacent lane vehicle traveling in an adjacent lane, a travel route prediction part that predicts a travel route of a vehicle traveling in the adjacent lane, a target vehicle-to-vehicle distance determination part that determines a target vehicle-to-vehicle distance between the host vehicle and an adjacent lane preceding vehicle traveling in front of the adjacent lane vehicle, and a vehicle speed control part that controls the speed of the host vehicle on the basis of the target vehicle-to-vehicle distance.

Description

車両制御装置、および、車両制御方法VEHICLE CONTROL DEVICE AND VEHICLE CONTROL METHOD
 本発明は、自車の前方に割込む可能性のある他車を予測する、車両制御装置、および、車両制御方法に関する。 The present invention relates to a vehicle control device and a vehicle control method for predicting other vehicles that may cut in front of the own vehicle.
 近年、障害物への衝突前に自動的に減速する衝突被害軽減制動システムや、先行車との車間距離を略一定距離に維持しながら自動追尾する車間自動制御システムや、車線逸脱抑制システムや、標識認識システムなどの、運転者支援システムを搭載した車両が普及しつつある。 In recent years, collision damage mitigation braking systems that automatically decelerate before colliding with obstacles, automatic distance control systems that automatically track while maintaining a substantially constant distance to the preceding vehicle, lane departure prevention systems, etc. Vehicles equipped with driver assistance systems, such as sign recognition systems, are becoming popular.
 このような運転者支援システムの一種として、特許文献1では、割込み車両を特定する車両制御装置が提案されており、同文献の要約書には「車両の周辺状況を認識する認識部と、前記認識部の認識結果に基づいて、前記車両がいる走行車線の側方から前記走行車線に割込みを行おうとしている割込み車両を特定する割り込み車両特定部と、前記特定された割込み車両の位置に基づいて、前記車両の加減速と操舵との少なくとも一方を制御する運転制御部と、を備え、前記割込み車両特定部は、所定期間における、前記走行車線の側方にいる他車両の道路幅方向に関して前記走行車線に向かう横移動量が閾値を超えた場合に当該他車両を割込み車両と特定し、前記他車両が相対的に前記走行車線に近い位置を走行している場合、前記走行車線から遠い位置を走行している場合に比して、前記閾値を小さくする、車両制御装置。」と記載されている。 As one type of such driver support system, Patent Document 1 proposes a vehicle control device for identifying an interrupting vehicle. an intervening vehicle identification unit that identifies an intervening vehicle that is about to intervene into the traveling lane from the side of the traveling lane in which the vehicle is present, based on the recognition result of the recognizing unit; and based on the position of the identified intervening vehicle. and a driving control unit that controls at least one of acceleration/deceleration and steering of the vehicle, and the cut-in vehicle identification unit controls, during a predetermined period of time, other vehicles on the side of the driving lane in the road width direction. When the amount of lateral movement toward the driving lane exceeds a threshold value, the other vehicle is specified as a cut-in vehicle, and when the other vehicle is traveling in a position relatively close to the driving lane, it is far from the driving lane. A vehicle control device that makes the threshold smaller than when the vehicle is traveling at a certain position."
特開2020-163870号公報Japanese Patent Application Laid-Open No. 2020-163870
 図1は、自車Vの前方に他車Vが割込む可能性のある状況の一例であり、片側2車線道路の右車線を自車Vが速度Sで走行し、左車線(隣接車線)の後方を他車Vが速度S(S<S)で走行し、左車線(隣接車線)の前方を他車Vが速度S(S<S)で走行している状況を例示している。つまり、図1は、隣接車線にて他車Vを追走する高速の他車Vが、他車Vへの追突を避けるため、破線矢印で示すルートで自車Vの前方に割込んでくる可能性の高い状況を例示している。なお、以降では、自車Vの右方向をx軸の正方向、前方向をy軸の正方向とする。 FIG. 1 shows an example of a situation in which another vehicle V1 may cut in front of the own vehicle V0 . Another vehicle V1 runs behind (adjacent lane) at speed S1 ( S0 < S1 ), and another vehicle V2 runs ahead of the left lane (adjacent lane) at speed S2 ( S2 < S1 ). It shows an example of running in In other words, in FIG. 1, another vehicle V1 , which is following another vehicle V2 in the adjacent lane at high speed, moves ahead of the own vehicle V0 along the route indicated by the dashed arrow in order to avoid rear-end collision with the other vehicle V2 . It exemplifies a situation in which there is a high possibility of interrupting. Hereinafter, the right direction of the own vehicle V0 is defined as the positive direction of the x-axis, and the forward direction thereof is defined as the positive direction of the y-axis.
 このような状況下においては、特許文献1の車両制御装置は、他車Vのx方向速度が閾値を超えた時点で、他車Vを割込み車両と特定するが、他車Vが緩やかに割り込んできたため他車Vのx方向速度が閾値に達しない場合は、他車Vを割込み車両と特定することができないという問題があった。 Under such circumstances, the vehicle control device of Patent Document 1 identifies the other vehicle V1 as an interrupting vehicle when the x-direction speed of the other vehicle V1 exceeds the threshold value. If the speed in the x direction of the other vehicle V1 does not reach the threshold because the other vehicle V1 cuts in gently, there is a problem that the other vehicle V1 cannot be identified as the cutting-in vehicle.
 また、特許文献1の車両制御装置は、他車Vが割込みを開始した後に割込みを検知するものであるため、必然的に割込みの検知タイミングが遅れ、自車Vが他車Vを回避する動作の開始タイミングも遅くなるという問題があった。 In addition, the vehicle control device of Patent Document 1 detects an interrupt after another vehicle V1 has started an interrupt. There is also the problem that the start timing of the action to avoid is delayed.
 本発明は、このような問題を鑑みてなされたものであり、自車の周囲状況に基づいて、自車の前方に割込む可能性のある割込候補車両を予測できる車両制御装置、および、車両制御方法を提供することを目的とする。 SUMMARY OF THE INVENTION The present invention has been made in view of such problems. An object of the present invention is to provide a vehicle control method.
 隣接車線を走行している隣接車線車両を検知する隣接車線車両検知部と、前記隣接車線を走行している車両の走行ルートを予測する走行ルート予測部と、前記隣接車線車両の前方を走行している隣接車線先行車両と自車の目標車間距離を決定する目標車間距離決定部と、前記目標車間距離に基づいて自車の速度を制御する車両速度制御部と、を有することを特徴とする車両制御装置。 an adjacent lane vehicle detection unit that detects an adjacent lane vehicle traveling in an adjacent lane; a travel route prediction unit that predicts a travel route of the vehicle traveling in the adjacent lane; a target inter-vehicle distance determining unit for determining a target inter-vehicle distance between the vehicle and the preceding vehicle in the adjacent lane, and a vehicle speed control unit for controlling the speed of the own vehicle based on the target inter-vehicle distance. Vehicle controller.
 本発明の車両制御装置、および、車両制御方法によれば、自車の周囲状況に基づいて、自車の前方に割込む可能性のある割込候補車両を予測することができる。 According to the vehicle control device and vehicle control method of the present invention, it is possible to predict interrupting candidate vehicles that may cut in front of the own vehicle based on the surrounding conditions of the own vehicle.
自車の前方に他車が割込む可能性のある状況の一例を示す平面図。A plan view showing an example of a situation in which another vehicle may cut in front of the own vehicle. 実施例1の車両制御装置の機能ブロック図。FIG. 2 is a functional block diagram of the vehicle control device according to the first embodiment; FIG. 実施例1での自車Vと他車Vの走行状況例(他車Vの速度S>0)。An example of the running situation of the host vehicle V0 and the other vehicle V1 in the first embodiment (the speed S2 of the other vehicle V2 >0). 実施例1での自車Vと他車Vの走行状況例(他車Vの速度S=0)。An example of the running situation of the own vehicle V0 and the other vehicle V1 in Example 1 (the speed S2 of the other vehicle V2 = 0). 実施例1での自車Vと他車Vの走行状況例(他車Vの速度S<0)。An example of the running situation of the host vehicle V0 and the other vehicle V1 in the first embodiment (the speed S2 of the other vehicle V2 < 0). 実施例1に係る車両制御装置での割込可能性の算出方法の一例。8 is an example of a calculation method of the possibility of interruption in the vehicle control device according to the first embodiment; 実施例1の車両制御装置の処理フローチャート。4 is a processing flowchart of the vehicle control device according to the first embodiment; 実施例2での自車Vと他車Vの走行状況例。An example of the running situation of the own vehicle V0 and the other vehicle V1 in Example 2. FIG. 実施例3での自車Vと他車Vの走行状況例。An example of the driving situation of own vehicle V0 and other vehicle V1 in Example 3. FIG.
 以下、本発明の車両制御装置1の実施例について、図面に基づいて説明する。 An embodiment of the vehicle control device 1 of the present invention will be described below with reference to the drawings.
 まず、図2から図7を用いて、本発明の実施例1に係る車両制御装置1を説明する。なお、上記した図1との共通点は重複説明を省略する。 First, a vehicle control device 1 according to Embodiment 1 of the present invention will be described using FIGS. 2 to 7. FIG. Duplicate descriptions of the points in common with FIG. 1 will be omitted.
 図2は、自車Vに搭載した、本実施例の車両制御装置1の機能ブロック図である。ここに示すように、車両制御装置1の入力側には、複数の外界センサ2が設置されており、出力側には、駆動系3a、制動系3b、操舵系3cが設置されている。 FIG. 2 is a functional block diagram of the vehicle control device 1 of this embodiment, which is mounted on the own vehicle V0 . As shown here, a plurality of external sensors 2 are installed on the input side of the vehicle control device 1, and a driving system 3a, a braking system 3b, and a steering system 3c are installed on the output side.
 外界センサ2は、自車Vの周囲の状況を認識するためのセンサであり、カメラやLiDAR等の各種センサである。なお、本実施例の自車Vは、複数の外界センサ2を車両の各所に備えることで、前後左右の各方向の状況(他車、障害物、路面等)を認識できるものとする。 The external sensor 2 is a sensor for recognizing the surroundings of the own vehicle V0 , and is various sensors such as a camera and LiDAR. It should be noted that the host vehicle V0 of this embodiment is equipped with a plurality of external sensors 2 at various locations on the vehicle, so that it can recognize situations (other vehicles, obstacles, road surfaces, etc.) in the front, rear, left, and right directions.
 駆動系3aは、自車Vの加速時に利用される各種装置であり、具体的には、エンジンやモータ等を含む機構である。制動系3bは、自車Vの減速時に利用される各種装置であり、具体的には、ブレーキ等を含む機構である。操舵系3cは、自車Vの旋回時に利用される各種装置であり、具体的には、ステアリング等を含む機構である。 The drive system 3a is various devices used during acceleration of the own vehicle V0 , specifically, a mechanism including an engine, a motor, and the like. The braking system 3b is various devices used during deceleration of the own vehicle V0 , specifically, a mechanism including a brake and the like. The steering system 3c is various devices used when the host vehicle V0 turns, and more specifically, it is a mechanism including steering and the like.
 <車両制御装置1>
 車両制御装置1は、図2に示すように、他車挙動予測ユニット11と自車挙動制御ユニット12を備えている。他車挙動予測ユニット11は、隣接車線車両検知部11aと、走行ルート予測部11bを有している。また、自車挙動制御ユニット12は、目標車間距離決定部12aと、速度制御部12bと、進行方向制御部12cを有している。なお、車両制御装置1は、具体的には、CPU等の演算装置、半導体メモリ等の記憶装置、および、通信装置などのハードウェアを備えたコンピュータである。そして、記憶装置に展開されたプログラムを演算装置が実行することで、他車挙動予測ユニット11と自車挙動制御ユニット12内の各機能を実現するが、以下では、このような周知技術を適宜省略しながら各ユニット内の各部を説明することとする。
<Vehicle control device 1>
The vehicle control device 1 includes an other vehicle behavior prediction unit 11 and an own vehicle behavior control unit 12, as shown in FIG. The other vehicle behavior prediction unit 11 has an adjacent lane vehicle detection section 11a and a travel route prediction section 11b. The host vehicle behavior control unit 12 also has a target inter-vehicle distance determination section 12a, a speed control section 12b, and a traveling direction control section 12c. Specifically, the vehicle control device 1 is a computer including hardware such as an arithmetic device such as a CPU, a storage device such as a semiconductor memory, and a communication device. Then, each function in the other vehicle behavior prediction unit 11 and the own vehicle behavior control unit 12 is realized by executing the program developed in the storage device by the arithmetic device. Each part in each unit will be described while omitting it.
 まず、図3の走行状況例を用いて、車両制御装置1で利用する各種パラメータを説明する。図1で説明したように、図中の速度S、S、Sは、それぞれ、自車V、他車V、Vの速度であり、速度Sは、速度Sや速度Sより速いものとする。また、自車Vの前端から隣接車両を走る先行車(他車V)の後端までのy軸方向の距離を、車間距離Dとする。 First, various parameters used by the vehicle control device 1 will be described using the example of the driving situation in FIG. As explained in FIG. 1, the speeds S 0 , S 1 , and S 2 in the drawing are the speeds of the own vehicle V 0 and the other vehicles V 1 , V 2 , respectively. Suppose it is faster than speed S2 . Further, the distance in the y-axis direction from the front end of the own vehicle V 0 to the rear end of the preceding vehicle (another vehicle V 2 ) running in the adjacent vehicle is defined as the inter-vehicle distance D.
 図3のように、左車線の他車V、Vの速度S、Sが共に正であり、かつ、他車Vと他車Vの相対速度(S-S)が正であれば、後方の他車Vはいずれ前方の他車Vに追いつくことになる。従って、他車Vへの追突を避けるため、他車Vは、図1の破線矢印のようなルートで、自車Vの前方に割込んでくる可能性が高いと予測できる。 As shown in FIG. 3, the velocities S 1 and S 2 of the other vehicles V 1 and V 2 in the left lane are both positive, and the relative velocity of the other vehicles V 1 and V 2 is (S 1 -S 2 ). is positive, the rear vehicle V1 will eventually catch up with the front vehicle V2 . Therefore, in order to avoid a rear-end collision with the other vehicle V2 , it can be predicted that there is a high possibility that the other vehicle V1 will cut in front of the own vehicle V0 along the route indicated by the dashed arrow in FIG.
 一方、図示しないが、左車線の他車V、Vの速度S、Sが共に正であっても、相対速度(S-S)が負であれば、他車Vが他車Vに追いつくことが無いため、他車Vは左車線を走行し続ける可能性が高く、自車Vの前方に割込んでくる可能性は低いと予測できる。 On the other hand, although not shown, even if the velocities S 1 and S 2 of the other vehicles V 1 and V 2 in the left lane are both positive, if the relative velocity (S 1 −S 2 ) is negative, the other vehicle V 1 does not catch up with the other vehicle V2 , it is highly likely that the other vehicle V1 will continue to run in the left lane, and the possibility of cutting in front of the own vehicle V0 is low.
 また、図4のように、渋滞等により他車Vが停車している状況では、他車Vは他車Vへの追突を避けるため、自車Vの前方に割込んでくる可能性が高いと予測できる。 Also, as shown in FIG. 4, when the other vehicle V2 is stopped due to a traffic jam or the like, the other vehicle V1 cuts in front of the own vehicle V0 in order to avoid a rear-end collision with the other vehicle V2 . can be predicted with high probability.
 さらに、図5のように、他車Vが逆走してくる状況では、他車Vは他車Vとの衝突を避けるため、自車Vの前方に割込んでくる可能性が非常に高いと予測できる。 Furthermore, as shown in FIG. 5, in a situation where the other vehicle V2 is running in the opposite direction, there is a possibility that the other vehicle V1 will cut in front of the own vehicle V0 in order to avoid a collision with the other vehicle V2 . can be expected to be very high.
 図3から図5などの各状況下での考察を踏まえると、相対速度(S-S)と割込可能性Pの関係を次のように纏めることができる。すなわち、他車Vの速度Sが負である場合(図5参照)や、他車Vの速度Sが0である場合(図4参照)は、他車Vの割込可能性Pは100%であると推定できる。そして、他車Vの速度Sが正である場合(図3参照)は、相対速度(S-S)が小さくなるほど、他車Vの割込可能性Pも小さくなり、特に、相対速度(S-S)が負となる場合は、他車Vが他車Vに追いつくことがないため、他車Vの割込可能性Pは極めて小さくなると推定できる。このような考え方を反映させた図6のグラフを利用することで、車両制御装置1は、相対速度(S-S)に基づいて、他車Vの割込可能性Pを容易に演算することができる。なお、相対速度(S-S)が0であっても、他車Vが割り込んでくる可能性がある程度考えられるため、図6では、相対速度(S-S)=0の割込可能性Pを、正の値としている。 Based on consideration under each situation such as FIG. 3 to FIG. 5, the relationship between the relative speed (S 1 −S 2 ) and the interrupt probability P can be summarized as follows. That is, when the speed S2 of the other vehicle V2 is negative (see FIG. 5) or when the speed S2 of the other vehicle V2 is 0 (see FIG. 4), the other vehicle V1 can interrupt The sex P can be assumed to be 100%. When the speed S 2 of the other vehicle V 2 is positive (see FIG. 3), the smaller the relative speed (S 1 −S 2 ), the smaller the possibility P of the other vehicle V 1 interrupting. , when the relative speed (S 1 −S 2 ) is negative, the other vehicle V 1 will not catch up with the other vehicle V 2 , so it can be estimated that the interruption possibility P of the other vehicle V 1 is extremely small. By using the graph of FIG. 6 reflecting such a way of thinking, the vehicle control device 1 can easily calculate the interruption possibility P of the other vehicle V 1 based on the relative speed (S 1 −S 2 ). can be calculated. Note that even if the relative speed (S 1 −S 2 ) is 0, there is a certain possibility that the other vehicle V 1 will cut in, so in FIG . The interrupt possibility P is assumed to be a positive value.
 <フローチャート>
 次に、図7のフローチャートを用いて、本実施例の車両制御装置1による、割込可能性Pや接触リスクRの大小に応じた自車Vの制御方法の詳細を説明する。
<Flowchart>
Next, the details of the control method of the own vehicle V0 according to the interruption possibility P and the contact risk R by the vehicle control device 1 of the present embodiment will be described with reference to the flowchart of FIG.
 まず、ステップSt1では、他車挙動予測ユニット11の隣接車線車両検知部11aは、複数の外界センサ2からの入力に基づいて、他車V、Vの位置、速度、進行方向、車種等を検知する(図3から図5参照)。なお、ここで検知する他車位置等は、自車Vに対する相対的な位置等であっても良いし、絶対的な位置等であっても良い。 First, in step St1, the adjacent lane vehicle detection unit 11a of the other vehicle behavior prediction unit 11 detects the positions, speeds, traveling directions, vehicle types, etc. of the other vehicles V1 and V2 based on the inputs from the plurality of external sensors 2. is detected (see FIGS. 3 to 5). The other vehicle position or the like detected here may be a relative position or the like with respect to the own vehicle V0 , or may be an absolute position or the like.
 次に、ステップSt2では、隣接車線車両検知部11aは、ステップSt1で検知した各種情報に基づいて、他車Vの割込可能性Pの大小を判定する。そして、割込可能性Pが大であれば、ステップSt3に進み、割込可能性Pが小であれば、ステップSt5に進む。 Next, in step St2, the adjacent lane vehicle detection unit 11a determines the magnitude of the interruption possibility P of the other vehicle V1 based on the various information detected in step St1. Then, if the interrupt possibility P is high, the process proceeds to step St3, and if the interrupt possibility P is small, the process proceeds to step St5.
 なお、本ステップでの割込可能性Pの大小判定は様々な観点で実行することができるが、例えば、次の(1)から(3)のような判定方法が考えられ、何れかを単独で利用しても良いし、複数の判定方法を併用し、例えば、多数決で判定しても良い。
(1)図6のグラフを利用し、他車Vと他車Vの相対速度(S-S)に基づいて、他車Vの割込可能性Pを演算し、その割込可能性Pが所定値(例えば、50%)以上である場合には、割込可能性Pが大きいと判定し、そうでない場合には割込可能性Pが小さいと判定する。
(2)自車Vから他車Vまでの車間距離Dが所定値(例えば、20m)以上ある場合には割込可能性Pが大きいと判定し、そうでない場合には割込可能性Pが小さいと判定する。
(3)他車Vが普通自動車やバイク等の小型車であり、他車Vがトラックやバス等の大型車両であれば、割込可能性Pが大きいと判定し、そうでない場合には割込可能性Pが小さいと判定する。
The determination of the magnitude of the interrupt possibility P in this step can be performed from various viewpoints. may be used, or a plurality of determination methods may be used together, for example, determination may be made by majority vote.
(1) Utilizing the graph of FIG. 6, based on the relative speed (S 1 −S 2 ) of the other vehicle V 1 and the other vehicle V 2 , calculate the interruption possibility P of the other vehicle V 1 , If the interrupt probability P is equal to or greater than a predetermined value (eg, 50%), it is determined that the interrupt probability P is high, and if not, it is determined that the interrupt probability P is low.
(2) If the inter-vehicle distance D from the own vehicle V0 to the other vehicle V2 is greater than or equal to a predetermined value (for example, 20 m), it is determined that the possibility of interruption P is high; otherwise, the possibility of interruption is determined. It is determined that P is small.
(3) If the other vehicle V1 is a small vehicle such as an ordinary car or a motorcycle, and the other vehicle V2 is a large vehicle such as a truck or a bus, it is determined that the possibility of interruption P is high. It is determined that the interrupt possibility P is small.
 ステップSt3では、他車挙動予測ユニット11の走行ルート予測部11bは、ステップSt1で検知した情報に基づいて、他車Vの走行ルート(図1参照)を予測する。 At step St3, the travel route prediction section 11b of the other vehicle behavior prediction unit 11 predicts the travel route (see FIG. 1 ) of the other vehicle V1 based on the information detected at step St1.
 ステップSt4では、走行ルート予測部11bは、ステップSt1で検知した情報、および、ステップSt3で予測した他車Vの走行ルートに基づいて、他車Vの接触リスクRの大小を判定する。そして、接触リスクRが大であれば、ステップSt7に進み、接触リスクRが小であれば、ステップSt8に進む。 In step St4, the travel route prediction unit 11b determines the size of the contact risk R of the other vehicle V1 based on the information detected in step St1 and the travel route of the other vehicle V1 predicted in step St3. If the contact risk R is large, the process proceeds to step St7, and if the contact risk R is small, the process proceeds to step St8.
 なお、本ステップでの接触リスクRの大小判定は様々な観点で実行することができるが、例えば、次の(1)または(2)のような判定方法が考えられ、何れかを単独で利用しても良いし、複数を併用し、例えば、重み付けして判定しても良い。
(1)所定時間後に自車Vと他車Vの予測ルートが交差する場合には接触リスクRが大きいと判定し、そうでない場合には接触リスクRが小さいと判定する。
(2)所定時間後の自車Vと他車Vの予測位置が所定のオフセット距離(例えば、3m)内に接近する場合には接触リスクRが大きいと判定し、そうでない場合には接触リスクRが小さいと判定する。
The determination of the magnitude of the contact risk R in this step can be performed from various viewpoints. Alternatively, a plurality of them may be used together and, for example, weighted may be used for determination.
(1) If the predicted routes of the own vehicle V0 and the other vehicle V1 intersect after a predetermined time, it is determined that the contact risk R is large, and if not, it is determined that the contact risk R is small.
(2) If the predicted positions of the own vehicle V0 and the other vehicle V1 after a predetermined time approach within a predetermined offset distance (for example, 3 m), it is determined that the contact risk R is large; It is determined that the contact risk R is small.
 ステップSt5では、走行ルート予測部11bは、ステップSt3と同様に、他車Vの走行ルート(図1参照)を予測する。 At step St5, the travel route prediction unit 11b predicts the travel route (see FIG. 1 ) of the other vehicle V1, similarly to step St3.
 ステップSt6では、走行ルート予測部11bは、ステップSt4と同様に、他車Vの接触リスクRの大小を判定する。そして、接触リスクRが大であれば、ステップSt9に進み、接触リスクRが小であれば、ステップSt10に進む。 In step St6, the travel route prediction unit 11b determines the magnitude of the contact risk R of the other vehicle V1 , as in step St4. If the contact risk R is large, the process proceeds to step St9, and if the contact risk R is small, the process proceeds to step St10.
 ステップSt7は、割込可能性Pが大、かつ、接触リスクRも大である場合に実行される処理である。本ステップでは、まず、自車挙動制御ユニット12の目標車間距離決定部12aは、仮に他車Vが予測ルートに沿って割込んできた場合であっても、他車Vとの接触を回避できるような拡大距離(目標車間距離)を演算する。次に、速度制御部12bは、拡大距離以上の車間距離Dを確保するように、駆動系3aや制動系3bを制御して、自車Vを減速させる。例えば、走行ルート予測部11bによる予測が、他車Vが5秒後に車線変更し、自車Vと接触する可能性が高い、というものであれば、5秒後までに上記の拡大距離を確保するように、駆動系3aや制動系3bを制御する。なお、他車Vとの接触予測時刻までに拡大距離以上の車間距離Dを確保することが困難な場合は、進行方向制御部12cで操舵系3cを制御して自車Vを更に右側の追越車線(図示せず)に移動させるなど、拡大距離以上の車間距離Dを確保する以外の方法によって他車Vとの接触を回避しても良い。 Step St7 is a process executed when the interrupt possibility P is high and the contact risk R is also high. In this step, first, the target inter-vehicle distance determination unit 12a of the own vehicle behavior control unit 12 prevents contact with the other vehicle V1 even if the other vehicle V1 cuts in along the predicted route. An extended distance (target inter-vehicle distance) that can be avoided is calculated. Next, the speed control unit 12b controls the driving system 3a and the braking system 3b so as to secure the inter-vehicle distance D equal to or greater than the extended distance, thereby decelerating the host vehicle V0 . For example, if the prediction by the travel route prediction unit 11b indicates that there is a high possibility that the other vehicle V1 will change lanes in 5 seconds and collide with the own vehicle V0 , then the above-mentioned extended distance will be reached within 5 seconds. The driving system 3a and the braking system 3b are controlled so as to ensure If it is difficult to secure the inter-vehicle distance D equal to or greater than the extended distance by the estimated contact time with the other vehicle V1 , the traveling direction control unit 12c controls the steering system 3c to move the vehicle V0 further to the right. The collision with the other vehicle V1 may be avoided by a method other than securing the inter-vehicle distance D equal to or greater than the extended distance, such as by moving the vehicle to an overtaking lane (not shown).
 ステップSt8は、割込可能性Pが大、かつ、接触リスクRが小である場合に実行される処理である。この場合、他車Vが前方に割込んできても、現状の自車制御を継続する限り、自車Vと接触する可能性が低いため、自車挙動制御ユニット12は、上記したステップSt7のような別段の制御を実行する必要が無い。但し、他車Vとの接触リスクRをより小さくするため、加速を抑制することがより望ましい。 Step St8 is a process executed when the interrupt possibility P is high and the contact risk R is low. In this case, even if the other vehicle V1 cuts in ahead, the possibility of contact with the own vehicle V0 is low as long as the current own vehicle control is continued. There is no need to execute separate control such as St7. However, it is more desirable to suppress the acceleration in order to further reduce the contact risk R with the other vehicle V1 .
 ステップSt9は、割込可能性Pが小、かつ、接触リスクRが大である場合に実行される処理である。本ステップでは、まず、目標車間距離決定部12aは、仮に他車Vが予測ルートに沿って割込んできた場合に、他車Vの割込みを阻害できるような縮小距離(目標車間距離)を算出する。次に、速度制御部12bは、縮小距離以下の車間距離Dとなるように、駆動系3aを制御し、加速する。この結果、他車Vの予測進路を妨害することになるので、他車Vが仮に割込みを予定していたとしても、割り込みを断念すると考えられ、結果的に、他車Vとの接触を回避することができる。 Step St9 is a process executed when the interrupt possibility P is small and the contact risk R is large. In this step, first, the target inter-vehicle distance determination unit 12a determines a reduced distance (target inter-vehicle distance) that can prevent the other vehicle V1 from cutting in if the other vehicle V1 cuts in along the predicted route. Calculate Next, the speed control unit 12b controls and accelerates the drive system 3a so that the vehicle-to-vehicle distance D becomes equal to or less than the reduced distance. As a result, the predicted course of the other vehicle V1 will be obstructed, so even if the other vehicle V1 had planned to cut in, it is thought that the cut-in will be abandoned. Avoid contact.
 ステップSt10は、割込可能性Pが小、かつ、接触リスクRが小である場合に実行される処理である。この場合、自車挙動制御ユニット12は、ステップSt8と同様に、別段の制御を実行しない。 Step St10 is a process that is executed when the interruptability P is small and the contact risk R is small. In this case, the host vehicle behavior control unit 12 does not perform any separate control, as in step St8.
 以上で説明したように、本実施例の車両制御装置によれば、自車の周囲状況に基づいて、自車の前方に割込む可能性のある割込候補車両を予測できるため、割込候補車両との接触回避などに必要な行動を素早く実施することができる。 As described above, according to the vehicle control apparatus of the present embodiment, it is possible to predict an interrupting candidate vehicle that may cut in front of the own vehicle based on the surrounding conditions of the own vehicle. It is possible to quickly implement necessary actions such as avoiding contact with the vehicle.
 次に、図8を用いて、本発明の実施例2に係る車両制御装置1を説明する。なお、実施例1との共通点は重複説明を省略する。 Next, the vehicle control device 1 according to Embodiment 2 of the present invention will be described using FIG. Duplicate descriptions of common points with the first embodiment will be omitted.
 実施例1のステップSt4では、自車Vの前方に他車がいない状況での接触リスクRの大小判定方法を紹介したが、本実施例では、自車Vの前方に他車Vが走行している状況下での接触リスクRの演算方法を説明する。図8のように、自車Vの前方を他車Vが走行する状況下で、左車線の他車Vが前方の他車Vを追い抜くには、まず、自車Vの前方に割込み、次に、他車Vの前方に割込む必要がある。従って、この2回連続する割込みを考慮して他車Vの接触リスクRを演算する必要がある。そこで、本実施例では、式1と式2を利用して他車Vの接触リスクRを演算する。 In step St4 of the first embodiment, a method for determining the magnitude of the contact risk R when there is no other vehicle ahead of the own vehicle V0 was introduced. A method of calculating the contact risk R under the condition that the is running will be described. As shown in FIG. 8, in a situation where another vehicle V3 is running in front of the own vehicle V0, in order for the other vehicle V1 in the left lane to overtake the other vehicle V2 in front, first, the vehicle V0 You need to cut in front and then cut in front of the other vehicle V2 . Therefore, it is necessary to calculate the contact risk R of the other vehicle V1 in consideration of these two consecutive interruptions. Therefore, in this embodiment, the contact risk R of the other vehicle V1 is calculated using Equations 1 and 2.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 ここで、式1において、Dは車間距離であり、具体的には、自車Vと他車Vの車間距離Dと、自車Vと他車Vの車間距離Dと、他車Vと他車Vの車間距離Dである。また、rは車間距離Dを走行中の他車Vの接触リスクであり、lは衝突判定閾値(他車Vの長さ+オフセット距離(例えば3m))であり、gは車間距離Dでの設定用パラメータである。 Here, in Equation 1 , Dn is the inter-vehicle distance . and the inter-vehicle distance D3 between the other vehicle V2 and the other vehicle V3 . In addition, rn is the contact risk of the other vehicle V1 traveling the inter-vehicle distance Dn , l is the collision determination threshold (length of the other vehicle V1 + offset distance (for example, 3m)), and gn is This is a setting parameter for the inter-vehicle distance Dn .
 この式1に示すように、車間距離Dを走行中の接触リスクrは、車間距離Dの大きさに応じた変数で表現されており、車間距離Dが衝突判定閾値lに満たないほど狭い場合(D<l)の接触リスクrを1に設定している。一方、車間距離Dが衝突判定閾値lと設定用パラメータgの和以上である場合(l+g≦D)は、他車Vが接触することなく安全に走行できるため、接触リスクrを0に設定している。そして、両者の中間の場合(l≦D<l+g)は、接触リスクrを(D-l)/gで演算される値としている。 As shown in this formula 1, the contact risk rn while traveling the vehicle-to-vehicle distance Dn is represented by a variable corresponding to the vehicle-to-vehicle distance Dn . The contact risk r n is set to 1 when the contact risk r n is as narrow as possible (D n <l). On the other hand, when the inter-vehicle distance D n is equal to or greater than the sum of the collision determination threshold value l and the setting parameter g n (l+g n ≤ D n ), the other vehicle V 1 can travel safely without contact, so the contact risk r n is set to 0. In the intermediate case between the two (l≦D n <l+g n ), the contact risk r n is a value calculated by (D n −l)/g n .
 車間距離D毎の接触リスクrを求めると、式2を用いて、他車Vが他車Vの追い越しを完了するまでの接触リスクRを演算する。ここで、式2において、wは接触リスクrの重みであり、w>w>wのような重みを個々の接触リスクrに乗算することで、時間的に先行する接触リスクrの影響を大きくしている。なお、車間距離Dでの接触が確実に予見される場合(接触リスクr=1)は、重ねて車間距離D、Dでの接触を考慮する必要が無く、車間距離Dでの接触が確実に予見される場合(接触リスクr=1)は、重ねて車間距離Dでの接触を考慮する必要が無いため、式2の右辺第2項に(1-r)を乗算し、右辺第3項に(1-(1-r)r)を乗算することで、式2の右辺第2項や右辺第3項を省略できるようにしている。 Once the contact risk rn for each inter-vehicle distance Dn is obtained, the contact risk R until the other vehicle V1 completes overtaking the other vehicle V2 is calculated using Equation 2. Here, in Equation 2, w n is the weight of the contact risk r n , and by multiplying the individual contact risk r n by a weight such that w 1 >w 2 >w 3 , the temporally preceding contact It increases the impact of risk r n . If contact at the inter-vehicle distance D 1 can be predicted with certainty (contact risk r 1 =1), there is no need to consider contact at the inter-vehicle distances D 2 and D 3 again, and at the inter-vehicle distance D 2 (contact risk r 2 = 1), there is no need to consider contact at the inter-vehicle distance D 3 again, so (1-r 1 ) and the third term on the right side by (1−(1−r 1 )r 2 ), the second term on the right side and the third term on the right side of Equation 2 can be omitted.
 以上で説明した本実施例によれば、式1、式2を用いて演算した接触リスクRを用いて、図7のステップSt4、St6の判定を実施することで、図8のような状況下でも、実施例1と同様の自車制御を実行することができる。これにより、図8の他車Vが他車Vを安全に追い抜けるような車間距離D、Dを維持することができる。 According to the present embodiment described above, the contact risk R calculated using Equations 1 and 2 is used to perform the determinations in steps St4 and St6 in FIG. However, vehicle control similar to that of the first embodiment can be executed. This makes it possible to maintain inter-vehicle distances D 1 and D 2 such that the other vehicle V 1 in FIG. 8 can pass the other vehicle V 2 safely.
 次に、図9を用いて、本発明の実施例3に係る車両制御装置1を説明する。なお、実施例2との共通点は重複説明を省略する。 Next, the vehicle control device 1 according to Embodiment 3 of the present invention will be described using FIG. Duplicate descriptions of the points in common with the second embodiment will be omitted.
 実施例2では、片側2車線の道路での他車Vの接触リスクRを演算したが、本実施例では、片側3車線の道路での他車Vの接触リスクRを演算する。図9に例示するように、左車線を走行する他車Vが、中央車線を走行する自車Vの前方に割込むルートを走行する場合、その後の走行ルートとして、左車線を走行する他車V2Lを追い越した後、左車線に戻るルートと、右車線を走行する他車V2Rを追い越した後、右車線に移るルートの2つのルートが考えられる。 In the second embodiment, the contact risk R of the other vehicle V1 on a two-lane road is calculated, but in this embodiment, the contact risk R of the other vehicle V1 on a three-lane road is calculated. As illustrated in FIG. 9, when another vehicle V1 traveling in the left lane travels on a route that cuts in front of the own vehicle V0 traveling in the center lane, it travels in the left lane as the subsequent travel route. Two routes are conceivable: a route to return to the left lane after overtaking another vehicle V2L , and a route to move to the right lane after overtaking another vehicle V2R traveling in the right lane.
 そのため、本実施例では、双方のルートについて式1、式2により接触リスクRを演算し、少なくとも一方の接触リスクRが所定の閾値以上であれば、図7のステップSt4、St6にて、接触リスクRを大と判定する。 Therefore, in the present embodiment, the contact risk R is calculated by formulas 1 and 2 for both routes. Risk R is determined to be large.
 以上で説明した本実施例によれば、式1、式2を用いて演算した2種類の接触リスクRを用いて、図7のステップSt4、St6の判定を実施することで、図9のような状況下でも、実施例1と同様の自車制御を実行することができる。 According to the present embodiment described above, the two types of contact risks R calculated using Equations 1 and 2 are used to perform the determinations in steps St4 and St6 in FIG. Even under such a situation, the own vehicle control similar to that of the first embodiment can be executed.
 次に、本発明の実施例4に係る車両制御装置1を説明する。なお、上記の実施例との共通点は重複説明を省略する。 Next, a vehicle control device 1 according to Embodiment 4 of the present invention will be described. Duplicate descriptions of the points in common with the above embodiment will be omitted.
 実施例1の車両制御装置1は、外界センサ2で検知した外界情報に基づいて他車Vの走行ルートを予測していた。これに対し、本実施例の車両制御装置1は、外部からの通信で取得した交通情報を考慮して、走行ルートの予測要否を切り替える。例えば、渋滞が発生している状況下では、各車は車間距離Dの大きさに拘わらず割込みを試みると考えられるため、実施例1の手法で予測した走行ルートが参考にならない可能性が高い。 The vehicle control device 1 of the first embodiment predicts the travel route of the other vehicle V2 based on the external world information detected by the external sensor 2. FIG. On the other hand, the vehicle control device 1 of the present embodiment switches whether to predict the travel route in consideration of the traffic information acquired through communication from the outside. For example, in a traffic jam situation, each car will try to cut in regardless of the distance D between the cars, so there is a high possibility that the travel route predicted by the method of Example 1 will not be helpful. .
 そこで、本実施例の車両制御装置1は、通信で取得した自車Vの近傍の交通情報が渋滞を示すものであった場合は、走行ルートを予測しないようにする。一方、取得した交通情報が渋滞を示すものでなかった場合は、走行ルートを予測するようにする。 Therefore, the vehicle control device 1 of this embodiment does not predict the travel route when the traffic information in the vicinity of the own vehicle V0 acquired through communication indicates traffic congestion. On the other hand, if the acquired traffic information does not indicate traffic congestion, the travel route is predicted.
 なお、ここでは、走行ルートの予測要否を切り替えるために、通信で取得した交通情報を利用したが、交通情報を取得する機能を持たない自車であれば、運転者(ユーザ)がスイッチを操作するなどして、走行ルートの予測要否を手動で切り替えることとしても良い。 In this example, traffic information acquired through communication is used to switch whether or not to predict the travel route. It is also possible to manually switch whether or not to predict the travel route by operating.
 以上で説明した本実施例によれば、走行ルートの予測が有用な状況下でのみ、走行ルートを予測し、自車制御に反映させることができる。 According to the present embodiment described above, the travel route can be predicted and reflected in the own vehicle control only under circumstances where the travel route prediction is useful.
1…車両制御装置、11…他車挙動予測ユニット、11a…隣接車線車両検知部、11b…走行ルート予測部、12…自車挙動制御ユニット、12a…目標車間距離決定部、12b…速度制御部、12c…進行方向制御部、2…外界センサ、3a…駆動系、3b…制動系、3c…操舵系、V…自車、V…他車(割込候補車両)、V…他車(割込候補車両の先行車)、V…他車(自車の先行車)、S…速度、D…車間距離 DESCRIPTION OF SYMBOLS 1... Vehicle control apparatus 11... Other vehicle behavior prediction unit 11a... Adjacent lane vehicle detection part 11b... Driving route prediction part 12... Own vehicle behavior control unit 12a... Target inter-vehicle distance determination part 12b... Speed control part , 12c... Traveling direction control unit, 2... External sensor, 3a... Drive system, 3b... Braking system, 3c... Steering system, V0 ... Own vehicle, V1 ... Other vehicle (interruption candidate vehicle), V2 ... Others Vehicle (preceding vehicle of the interrupting candidate vehicle), V 3 … other vehicle (preceding vehicle of own vehicle), S … speed, D … inter-vehicle distance

Claims (5)

  1.  隣接車線を走行している隣接車線車両を検知する隣接車線車両検知部と、
     前記隣接車線を走行している車両の走行ルートを予測する走行ルート予測部と、
     前記隣接車線車両の前方を走行している隣接車線先行車両と自車の目標車間距離を決定する目標車間距離決定部と、
     前記目標車間距離に基づいて自車の速度を制御する車両速度制御部と、
     を有することを特徴とする車両制御装置。
    an adjacent lane vehicle detection unit that detects an adjacent lane vehicle traveling in an adjacent lane;
    a travel route prediction unit that predicts a travel route of a vehicle traveling in the adjacent lane;
    a target inter-vehicle distance determination unit that determines a target inter-vehicle distance between the own vehicle and the adjacent lane preceding vehicle traveling in front of the adjacent lane vehicle;
    a vehicle speed control unit that controls the speed of the own vehicle based on the target inter-vehicle distance;
    A vehicle control device comprising:
  2.  請求項1に記載の車両制御装置において、
     前記走行ルート予測部は、前記隣接車線車両の進行路上にある立体物の種別及び移動速度に応じて前記走行ルートの予測を変更することを特徴とする車両制御装置。
    In the vehicle control device according to claim 1,
    The vehicle control device, wherein the travel route prediction unit changes the prediction of the travel route according to the type and moving speed of a three-dimensional object on the travel route of the adjacent lane vehicle.
  3.  請求項1に記載の車両制御装置において、
     前記目標車間距離決定部は、さらに、自車先行車両と自車の目標車間距離を決定するすることを特徴とする車両制御装置。
    In the vehicle control device according to claim 1,
    The vehicle control device, wherein the target inter-vehicle distance determination unit further determines a target inter-vehicle distance between the preceding vehicle and the vehicle.
  4.  請求項1に記載の車両制御装置において、
     前記走行ルート予測部は、ユーザ操作または通信で取得した交通情報に基づいて、走行ルート予測の要否を切り替えることを特徴とする車両制御装置。
    In the vehicle control device according to claim 1,
    The vehicle control device, wherein the travel route prediction unit switches whether or not to predict the travel route based on traffic information obtained by a user's operation or communication.
  5.  隣接車線を走行している隣接車線車両を検知するステップと、
     前記隣接車線を走行している車両の走行ルートを予測するステップと、
     前記隣接車線車両の前方を走行している隣接車線先行車両と自車の目標車間距離を決定するステップと、
     前記目標車間距離に基づいて自車の速度を制御するステップと、
     を有することを特徴とする車両制御方法。
    detecting an adjacent lane vehicle traveling in an adjacent lane;
    predicting a travel route of a vehicle traveling in the adjacent lane;
    determining a target inter-vehicle distance between the vehicle and the preceding vehicle in the adjacent lane, which is traveling in front of the vehicle in the adjacent lane;
    controlling the speed of the own vehicle based on the target inter-vehicle distance;
    A vehicle control method comprising:
PCT/JP2022/045078 2022-01-17 2022-12-07 Vehicle control device and vehicle control method WO2023135989A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-004848 2022-01-17
JP2022004848A JP2023104073A (en) 2022-01-17 2022-01-17 Vehicle control device and vehicle control method

Publications (1)

Publication Number Publication Date
WO2023135989A1 true WO2023135989A1 (en) 2023-07-20

Family

ID=87278819

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/045078 WO2023135989A1 (en) 2022-01-17 2022-12-07 Vehicle control device and vehicle control method

Country Status (2)

Country Link
JP (1) JP2023104073A (en)
WO (1) WO2023135989A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003288691A (en) * 2002-03-27 2003-10-10 Toyota Central Res & Dev Lab Inc Intrusion prediction device
JP2016147556A (en) * 2015-02-10 2016-08-18 株式会社デンソー Drive control device and drive control method
WO2018230152A1 (en) * 2017-06-14 2018-12-20 株式会社Jvcケンウッド Driving assistance device, driving assistance system, driving assistance method, and program
JP2019153039A (en) * 2018-03-02 2019-09-12 トヨタ自動車株式会社 Vehicle controller
US20200189596A1 (en) * 2018-12-12 2020-06-18 Hyundai Motor Company Apparatus and method for controlling running of vehicle
JP2021054293A (en) * 2019-09-30 2021-04-08 トヨタ自動車株式会社 Vehicle cutting-in coping system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003288691A (en) * 2002-03-27 2003-10-10 Toyota Central Res & Dev Lab Inc Intrusion prediction device
JP2016147556A (en) * 2015-02-10 2016-08-18 株式会社デンソー Drive control device and drive control method
WO2018230152A1 (en) * 2017-06-14 2018-12-20 株式会社Jvcケンウッド Driving assistance device, driving assistance system, driving assistance method, and program
JP2019153039A (en) * 2018-03-02 2019-09-12 トヨタ自動車株式会社 Vehicle controller
US20200189596A1 (en) * 2018-12-12 2020-06-18 Hyundai Motor Company Apparatus and method for controlling running of vehicle
JP2021054293A (en) * 2019-09-30 2021-04-08 トヨタ自動車株式会社 Vehicle cutting-in coping system

Also Published As

Publication number Publication date
JP2023104073A (en) 2023-07-28

Similar Documents

Publication Publication Date Title
US8949018B2 (en) Driving assistance device and driving assistance method
CN106985816B (en) Driver assistance system and method for collision avoidance
CN106796759B (en) Vehicle control system
JP4762610B2 (en) Vehicle travel safety device
CN111942352B (en) Adaptive AEB system considering steering path and control method thereof
WO2010140215A1 (en) Vehicular peripheral surveillance device
JP7266709B2 (en) Vehicle control method and vehicle control device
CN109435948B (en) Vehicle control device and control method
US11011059B2 (en) Vehicle control device
JP7207256B2 (en) vehicle control system
JP2008296887A (en) Vehicular control device
JP2017186011A (en) Vehicle control device and vehicle travel control system
CN112384419A (en) Vehicle driving support control device, vehicle driving support system, and vehicle driving support control method
JP2019070900A (en) Vehicle controller
JP2011227587A (en) Occupant protection device
KR20190057475A (en) Method and apparatus for controlling autonomous vehicle
JP2002248965A (en) Traveling control system for vehicle
US11210955B2 (en) Collision avoidance assist apparatus
JP7226011B2 (en) Driving support device
WO2023135989A1 (en) Vehicle control device and vehicle control method
JP2021096720A (en) Vehicle traveling environment estimation method and traveling environment estimation system
JP7109496B2 (en) Travel control device, vehicle, travel control method and program
EP4112404A1 (en) Vehicle control method and vehicle control device
JP7223550B2 (en) Driving support method and driving support device
WO2023073772A1 (en) Travel control device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22920509

Country of ref document: EP

Kind code of ref document: A1