WO2023135961A1 - Air supply system - Google Patents

Air supply system Download PDF

Info

Publication number
WO2023135961A1
WO2023135961A1 PCT/JP2022/043950 JP2022043950W WO2023135961A1 WO 2023135961 A1 WO2023135961 A1 WO 2023135961A1 JP 2022043950 W JP2022043950 W JP 2022043950W WO 2023135961 A1 WO2023135961 A1 WO 2023135961A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
machine tool
execution
pressure
executed
Prior art date
Application number
PCT/JP2022/043950
Other languages
French (fr)
Japanese (ja)
Inventor
静雄 西川
Original Assignee
Dmg森精機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dmg森精機株式会社 filed Critical Dmg森精機株式会社
Publication of WO2023135961A1 publication Critical patent/WO2023135961A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q11/00Accessories fitted to machine tools for keeping tools or parts of the machine in good working condition or for cooling work; Safety devices specially combined with or arranged in, or specially adapted for use in connection with, machine tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q11/00Accessories fitted to machine tools for keeping tools or parts of the machine in good working condition or for cooling work; Safety devices specially combined with or arranged in, or specially adapted for use in connection with, machine tools
    • B23Q11/08Protective coverings for parts of machine tools; Splash guards
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/4155Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by programme execution, i.e. part programme or machine function execution, e.g. selection of a programme
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]

Definitions

  • the present invention includes one air supply source provided in common for a plurality of machine tools, and an air supply connected to each of the machine tools and supplying the air supplied from the air supply source to each of the machine tools.
  • the present invention relates to an air supply system comprising a passage and a pressure regulating valve provided in each of the air supply passages for regulating the pressure of the supplied air supplied to each of the machine tools.
  • an air supply system that supplies compressed air to a machine tool from an air supply source such as a compressor installed in a factory (see Patent Document 1, for example).
  • Compressed air supplied to the machine tool is used in air-using equipment such as a door opening/closing device using a pneumatic cylinder and an air blow device.
  • a pressure regulating valve is usually provided in an air supply path that connects an air supply source and an air-using device of a machine tool. High-pressure compressed air supplied from an air supply source is decompressed (adjusted) to a set pressure by passing through this pressure regulating valve.
  • Patent Document 1 discloses an air supply system in which one machine tool is connected to one air supply source, but in an actual factory, a plurality of machine tools are connected to one air supply source. sometimes. In this case, if the use timings of air overlap between a plurality of machine tools, the amount of air supplied to each machine tool will be insufficient. If the amount of air supplied to each machine tool is insufficient, the air pressure supplied to the air-using equipment will drop, resulting in a problem that normal operation of the air-using equipment will be hindered.
  • the present invention has been made in view of the above circumstances, and it is an object of the present invention to provide an air supply system that can prevent the supply air pressure from dropping due to overlapping air use timings of machine tools.
  • an air supply source provided in common for a plurality of machine tools; an air supply path connected to each machine tool and supplying the air supplied from the air supply source to each machine tool;
  • An air supply system comprising: a pressure regulating valve provided in each air supply path for regulating the pressure of supply air supplied to each machine tool, Each machine tool is configured to be capable of automatic operation based on an automatic operation program stored therein, a pressure detection unit provided for each of the air supply paths and detecting the pressure of the air supplied to each of the machine tools after the pressure adjustment; an execution status acquisition unit that acquires an execution status of the automatic operation program of each machine tool; Based on the execution status of the automatic operation program of each machine tool acquired by the execution status acquisition section when the pressure of the supplied air detected by the pressure detection section in one machine tool is below a predetermined pressure.
  • an air usage determination unit that determines whether or not the one machine tool is executing an air usage operation using the supplied air; based on the execution status of the automatic operation program of each machine tool acquired by the execution status acquiring section when the air usage determination section determines that the one machine tool is executing the air usage operation.
  • a pneumatic condition determination unit that determines whether When the air pressure situation determination unit determines that the overlapping air use situation is occurring, overlap of execution time zones of the air use operation between the one machine tool and the other machine tool is determined.
  • the present invention relates to an air supply system having a correction processing section that executes correction processing for correcting execution timing of the air use operation in the one machine tool or the other machine tool.
  • the machine tool when the supply air pressure after pressure adjustment by the pressure regulating valve falls below a predetermined pressure in one machine tool due to overlap of air use timings of the machine tools, the machine tool The air use determination unit determines whether or not the machine is executing an air use operation. Then, when the air usage determination unit determines that the air usage operation is being executed in the one machine tool, the air usage operation being executed in the one machine tool overlaps with the execution time period. The air pressure condition determination unit determines whether or not there is a redundant air use condition that is currently being executed or is scheduled to be executed in another machine tool. The determination processing by the air pressure status determination section is performed based on the execution status of the automatic operation program (eg, NC program) of each machine tool acquired by the execution status acquisition section.
  • the automatic operation program eg, NC program
  • the correction processing unit performs correction processing to avoid overlapping of the air use operation execution time zones. be.
  • this correction process the execution timing of the operation using air in one machine tool or another machine tool is corrected.
  • This correction processing can be realized by skipping or delaying the execution timing of the air use operation, as will be described later.
  • this correction process is performed, overlapping current or future air usage operations between one machine tool and another is avoided. This makes it possible to avoid a drop in the air pressure supplied to one machine tool.
  • the correction processing unit performs a skip process for skipping the execution of the air using operation when the air using operation whose execution timing is to be corrected is an operation scheduled to be executed in the future in another machine tool, or the air using operation. It is preferable that timing change processing for delaying the execution start time of is executed as the correction processing.
  • the skip processing skips the air use operation scheduled to be executed, and the timing change processing delays the execution start timing of the air use operation. Therefore, it is possible to prevent the execution time periods of the air-using operations from overlapping between one machine tool and another machine tool, thereby preventing a further decrease in the supplied air pressure.
  • the skip process has the advantage of enabling quick processing by skipping the air use operation, and the timing change process has the advantage of being able to reliably execute the required air use operation although the cycle time is extended. have.
  • the correction processing unit When the air using operation whose execution timing is to be corrected is the operation currently being executed, the correction processing unit performs a skip process of interrupting the air using operation and skipping the rest of the operation, or a skip process of skipping the remaining air using operation.
  • the operation may be temporarily interrupted, and after another air use operation that is continuing without being interrupted is completed, timing change processing for resuming the interrupted air use operation may be executed as the correction processing. preferable.
  • This correction process is a skip process of stopping and skipping the air using operation currently being executed, or a change in the timing of once interrupting the air using operation currently being executed and then resuming it after another air using operation is completed. Realized by processing. With this correction processing, the situation in which one machine tool and another machine tool simultaneously perform air-using operations can be quickly resolved, and the supply air pressure can be recovered. Advantages of skip processing and timing change processing are as described above.
  • a storage unit that associates a plurality of air-using operations that can be executed by each of the machine tools with predetermined execution priorities of the air-using operations and stores them as priority information
  • the correction processing unit comprises: When executing the correction process, the execution priority of the operation using air to be subjected to the correction process is specified based on the priority information stored in the storage unit, and the specified execution priority is less than a predetermined level. , the skip process is executed as the correction process, and the timing change process is executed as the correction process when the identified execution priority is equal to or higher than the predetermined level. is preferred.
  • the execution priority of the air use operation to be corrected is specified based on the priority information stored in the storage section. If the identified execution priority is less than the predetermined level, skip processing is executed as correction processing, and if the execution priority is equal to or higher than the predetermined level, timing change processing is executed as correction processing. Therefore, air-using operations with low execution priority are skipped to speed up processing, while air-using operations with high execution priority are not skipped, and the execution timing is delayed or temporarily interrupted (timing change processing). By doing so, it is possible to reliably perform the air use operation while recovering the supplied air pressure.
  • a storage unit that associates a plurality of air-using operations that can be executed by each of the machine tools with predetermined execution priorities of the air-using operations and stores them as priority information
  • the correction processing unit comprises: Air-using operations with an execution priority of a predetermined level or higher are excluded from execution targets of the correction process, and air-using operations with an execution priority level of less than a predetermined level are subjected to the correction process. is preferred.
  • the execution target of the correction processing by the correction processing unit is limited to cases where the execution priority is less than the predetermined level, and the skip processing and the timing change processing are performed for the air use operations with the execution priority of the predetermined level or higher. Such correction processing is not executed. Therefore, it is possible to prevent the operation of the machine tool from being adversely affected by skipping the air use operation with high execution priority.
  • the plurality of air-using operations includes a door opening/closing operation for driving an opening/closing door of the processing area of each machine tool by an air actuator, and an air blow operation performed by each machine tool, and execution of the door opening/closing operation.
  • the priority is equal to or higher than the predetermined level, and the execution priority of the air blow operation is lower than the predetermined level.
  • the execution priority of the door opening/closing operation is set higher than that of the air blow operation, so the door opening/closing operation will be executed as much as possible even if duplicate air usage occurs.
  • the execution priority of the air blow operation is low, priority is given to recovery of the supplied air pressure by skipping the operation when the duplicate air use operation occurs.
  • a storage unit that associates a plurality of air-using operations that can be executed by each of the machine tools with predetermined execution priorities of the air-using operations and stores them as priority information
  • the correction processing unit comprises: When it is determined by the air pressure situation determination unit that the overlapping air usage conditions are occurring, the one machine tool and the other machine tool are determined based on the priority information stored in the storage unit. to identify the execution priority of the air-using operation that causes overlapping of the execution time zones in each of the above, compare the execution priority of each of the identified air-using operations, and based on the comparison, the one machine tool and It is preferably configured to determine for which air use operation with the other machine tool the correction process is to be performed.
  • the air pressure status determining unit when it is determined by the air pressure status determining unit that an overlapping air usage status is occurring between the one machine tool and the other machine tool, the one machine tool and the other machine tool
  • the correction processing unit identifies the execution priority of the air-using operation that causes overlap of the execution time zones in each of the machine tools. Then, in the correction processing section, the execution priority of the air-using operation of the one machine tool and the other machine tools are compared, and the execution target of the correction processing is determined based on the comparison.
  • this determination process for example, it is conceivable to determine the operation using air with the lowest execution priority as the target of the correction process.
  • the air-using motions with high execution priority can be skipped or changed in timing. Processing can be prevented from being performed and adversely affecting the operation of the overall machine tool.
  • the air supply system of the present invention when the air pressure supplied to one machine tool is lower than the predetermined pressure based on the execution status of the automatic operation program of each machine tool, It is determined whether or not there is an overlapping air use situation that is currently being executed or scheduled to be executed in the future by other machine tools. , when it is determined that the redundant air usage situation is occurring, the execution timing of the air usage operation in the one machine tool or the other machine tool is corrected in order to avoid the situation. As a result, it is possible to prevent a decrease in the supply air pressure caused by overlapping air use timings of the machine tools.
  • FIG. 1 is a schematic configuration diagram showing an air supply system according to an embodiment
  • FIG. It is a figure which shows an example of the air pressure condition information produced
  • 4 is a flow chart showing an example of air pressure monitoring control of each machine tool executed by a monitoring server
  • 5 is a flow chart showing an example of correction control executed by a correction control section of each machine tool
  • FIG. FIG. 10 is a diagram showing an example of priority data stored in a priority storage unit in the air supply systems of Embodiments 3 and 4;
  • an air supply system 1 of this example is connected to a plurality of (three in this example) machine tools 10, and supplies air to air-using devices 11 mounted on each machine tool 10. do.
  • an air blow device 11a for blowing chips and the like with air and a door for driving the opening/closing door of the machining area of the machine tool 10 using a pneumatic cylinder (an example of an air actuator).
  • a pneumatic cylinder an example of an air actuator
  • the opening/closing device 11b is disclosed, it is not limited to this.
  • Each machine tool 10 is configured by, for example, a machining center or a turning center, but is not limited to this.
  • the air supply system 1 includes one air supply source 2 provided in common for three machine tools 10, one supply pipe 3 connected to the air supply source 2, and branching from the supply pipe 3.
  • a branch pipe 4 connected to each machine tool 10 via a branch pipe 4, and a pressure regulating valve 5 (of the pressure detection unit) that is provided in the middle of each branch pipe 4 and adjusts the supply air to a preset set pressure (an example of a predetermined pressure).
  • a pressure sensor 6 that is provided downstream of the pressure regulating valve 5 and measures the supply air pressure after pressure regulation
  • an NC (Numerical Control) device 12 that controls each machine tool 10, and each NC device 12 It has a monitoring server 20 connected thereto.
  • the air supply source 2 is composed of, for example, an air compressor, which compresses the sucked outside air and supplies it into the supply pipe 3 .
  • Air supplied into the supply pipe 3 flows into the three branch pipes 4 .
  • the air that has flowed into each branch pipe 4 is adjusted to a set pressure by passing through the pressure regulating valve 5 .
  • An electromagnetic flow path switching valve 7 using a solenoid or the like is provided between the pressure regulating valve 5 and the air-using device 11, and the operation of the flow path switching valve 7 is controlled by an NC device 12, which will be described later.
  • an NC device 12 which will be described later.
  • an accumulator may be arranged in the middle of the flow path in order to suppress fluctuations in the supplied air pressure.
  • the NC device 12 has a program storage section 12a, a machining control section 12b, an execution status acquisition section 12c, an air pressure status determination section 12d, and a correction processing section 12e.
  • the NC device 12 consists of a computer having a CPU, a ROM and a RAM, the program storage part 12a consists of a non-volatile storage medium such as a ROM and a magnetic storage device, and the functions of other functional parts are realized by computer programs. be.
  • the program storage unit 12a stores an NC program (an example of an automatic operation program) that is executed when the machine tool 10 is automatically operated.
  • This NC program includes code for driving the feed mechanism and spindle drive (not shown), as well as code for operating auxiliary equipment such as the air blower 11a and the door opening/closing device 11b.
  • the machining control unit 12b executes the NC program stored in the program storage unit 12a when an operation start button provided on an operation panel (not shown) is pressed.
  • the machining control unit 12b extracts operation commands relating to the feed mechanism unit and the spindle drive unit defined in the NC program, and outputs drive signals corresponding to the extracted operation commands to the feed drive unit and the spindle drive unit.
  • the machining control section 12b changes the relative position between the tool mounted on the spindle and the workpiece by the feed driving section to machine the workpiece into a predetermined shape.
  • the machining control unit 12b also extracts operation commands for auxiliary equipment such as the air blow device 11a and the door opening/closing device 11b defined in the NC program, and outputs operation signals to these auxiliary equipment.
  • the execution status acquisition unit 12c acquires the execution status of the NC programs stored in the program storage unit 12a.
  • the air pressure status determination unit 12d determines the overlapping air usage status based on the air pressure status information I (see FIG. 2) received from the monitoring server 20, which will be described later, and the execution status of the NC program acquired by the execution status acquisition unit 12c. is occurring.
  • the overlapping air use state means a state in which an air use operation whose execution time zone overlaps with the air use operation of the machine tool 10 whose air pressure shortage flag is ON is currently being executed or is scheduled to be executed in the future. do.
  • the correction processing unit 12e avoids overlapping of execution time zones of air usage operations with other machine tools 10. In order to do so, a correction process for correcting the execution timing of the air use operation currently being executed or scheduled to be executed in the future is executed under the control of the processing control unit 12b. In this example, this correction process is a skip process for skipping the execution of the air use operation, as will be described later.
  • the monitoring server 20 is communicatively connected to each NC unit 12 mounted on the three machine tools 10. Also, the monitoring server 20 is configured to be able to receive a pressure signal from a pressure sensor 6 that measures the air pressure supplied to each machine tool 10 . The monitoring server 20 monitors the operation status of each machine tool 10 by communicating with each NC device 12 . The monitoring server 20 also monitors the air pressure supplied to each machine tool 10 based on pressure signals received from each pressure sensor 6 . The monitoring server 20 then generates air pressure condition information I (see FIG. 2 described later) based on these monitoring results, and transmits the generated air pressure condition information I to the NC unit 12 of each machine tool 10 .
  • the monitoring server 20 has an execution status acquisition unit 21, an air use determination unit 22, and an air pressure information generation unit 23.
  • the monitoring server 20 is composed of a computer having a CPU, a ROM and a RAM, and each functional unit implements its function by a computer program.
  • the execution status acquisition unit 21 acquires the execution status of the NC program in the NC unit 12 of each machine tool 10 .
  • This execution status acquisition unit 21 is different from the execution status acquisition unit 12 c provided in each machine tool 10 in that it acquires the execution status of all machine tools 10 .
  • the air usage determination unit 22 calculates the pressure of the air supplied to each machine tool 10 based on the pressure signal received from each pressure sensor 6, and determines whether the calculated supply air pressure is lower than the set pressure. . Then, based on the execution status of the NC program of each machine tool 10 acquired by the execution status acquisition section 21, the air use determination section 22 determines whether the supply air pressure from the air-using equipment 11 in the machine tool 10 where the supply air pressure has fallen below the set pressure is determined. It is determined whether or not the use operation is being executed, and if it is determined that it is being executed, the air shortage flag of the machine tool 10 is turned on.
  • an air shortage flag is assigned to each machine tool 10 in, for example, an NC program, and the machine tool 10 with the air shortage flag turned on will have an air shortage in a state where the supply air pressure is lower than the set pressure. It means that a use operation is being performed.
  • the air pressure information generation unit 23 generates air pressure status information I including on/off information for the air shortage flag of each machine tool 10 .
  • FIG. 2 is an example of this air pressure status information I.
  • the air pressure status information I consists of four columns of table data, the first column being the MC number n (identification number assigned to each machine tool 10 in advance), and the second column being the air pressure shortage flag.
  • the third column is the air use operation currently being executed
  • the fourth column is the predicted time until the end of the air use operation.
  • the operation using air being executed and the predicted time until the end of the operation using air can be specified based on the execution status of the NC program in each machine tool 10. .
  • step S1 the execution status acquisition unit 21 acquires the execution status of each NC program from the NC unit 12 of each machine tool 10.
  • step S2 the air usage determination unit 22 receives pressure signals from the pressure sensors 6 and acquires (calculates) the air pressure to be supplied to each machine tool 10 based on the received pressure signals.
  • step S3 the air usage determination unit 22 temporarily sets the MC number n to 1.
  • MC numbers 1 to 3 are assigned to each machine tool 10 in serial numbers.
  • step S4 the air usage determining unit 22 determines whether or not the air pressure supplied to the machine tool 10 with the MC number n is less than the set pressure of the pressure regulating valve 5. If the determination is NO, On the other hand, if the answer is YES, the process proceeds to step S5.
  • step S5 based on the execution status of the NC program of each machine tool 10 acquired by the execution status acquisition unit 21 in step S1, it is determined whether or not the machine tool 10 with the MC number n is executing an operation using air.
  • the usage determination unit 22 determines. If the determination is NO, the process proceeds to step S7, and if the determination is YES, the process proceeds to step S6.
  • step S6 the air pressure information generation unit 23 sets the air pressure shortage flag of the machine tool 10 with the MC number n to ON, the current MC number n, the information that the air pressure shortage flag is ON, Air pressure status information I is generated by associating the air use operation being executed with the predicted time until the end of the air use operation (see FIG. 2).
  • step S7 which is followed when the determination in step S5 is NO, the air pressure information generation unit 23 sets the air pressure shortage flag of the machine tool 10 with MC number n to off, and generates air pressure status information in the same data format. Generate I.
  • step S9 the air usage determining unit 22 determines whether or not the new MC number n exceeds the total number of machine tools 10 (3 in this example). , YES, the process proceeds to step S10.
  • step S10 the air pressure information generator 23 transmits the air pressure status information I generated in steps S6 and S7 to each machine tool 10, and then returns.
  • the air pressure situation determination unit 12d receives the air pressure situation information I of each machine tool 10 from the monitoring server 20.
  • the air pressure condition determination unit 12d determines whether or not there is a machine tool 10 other than the machine tool 10 whose air pressure shortage flag is ON, based on the air pressure condition information I received at step SA101. If the determination is NO, the process returns, while if the determination is YES, the process proceeds to step SA103.
  • the pneumatic condition determination unit 12d identifies machine tools 10 other than the machine tool 10 whose pneumatic pressure shortage flag is ON based on the pneumatic condition information I received at step SA101. It is determined whether or not the machine 10 is currently executing an air use operation whose execution time zone overlaps with the air use operation of the machine 10 (overlapping air use condition), and if the determination is NO, step While proceeding to SA105, if YES, proceed to step SA104.
  • the correction processing unit 12e executes a skip process (an example of correction processing) in which the air use operation currently being executed by the processing control unit 12b is interrupted and the remaining air use operations are skipped. After execution of this skip process, the process returns.
  • a skip process an example of correction processing
  • step SA105 which is followed when the determination in step SA103 is NO, the air pressure condition determination unit 12d determines, based on the air pressure condition information I received in step SA101, machine tool 10 is specified, and it is determined whether or not it is scheduled to execute an air use operation whose execution time zone overlaps with the air use operation of the specified machine tool 10 (if an overlapped air use situation occurs is determined), and if the determination is NO, the process returns, while if the determination is YES, the process proceeds to step SA106.
  • the correction processing unit 12e sets the skip flag to ON, and then returns.
  • the skip flag is a flag that the processing control unit 12b refers to when causing the air-using device 11 to perform an air-using operation. Even if the execution timing of the air use operation comes, the air use operation is skipped and the next operation specified in the NC program is executed.
  • the other machine tool 10 executes the operation using air. Since the correction process (the process within the chain double-dashed line in FIG. 4) is executed so that the time periods do not overlap, it is possible to suppress a decrease in the air pressure supplied to the machine tool 10 whose air pressure shortage flag is ON. Furthermore, it is possible to ensure a sufficient amount of air to be supplied to the air-using equipment 11 mounted on the machine tool 10, thereby avoiding malfunction of the air-using equipment 11.
  • the correction processing executed by the correction processing unit 12e is skip processing for skipping the execution of the air using operation.
  • the correction processing unit 12e stops the operation using air halfway and skips the rest. It is configured as follows (step SA104).
  • the air pressure shortage can be resolved by increasing the amount of air supply to the machine tool 10 with the air pressure shortage flag turned on by stopping the air use operation that is currently being executed.
  • the correction processing unit 12e is configured to skip the execution of the air use operation when the air use operation to be corrected is scheduled to be executed in the future (step SA106).
  • FIG. 5 shows a second embodiment.
  • the content of the correction process (the process surrounded by the two-dot chain line in the figure) executed by the NC unit 12 of each machine tool 10 is different from that of the first embodiment.
  • the same reference numerals are assigned to the same constituent elements as in the first embodiment, and detailed description thereof will be omitted.
  • FIG. 5 is a flowchart showing an example of correction control processing executed by the NC device 12 of this embodiment.
  • steps SB101 to SB103 is the same as the processing of steps SA101 to SA103 in the first embodiment, so detailed description thereof will be omitted.
  • the correction processing unit 12e executes a process of interrupting the air use operation that is currently being executed by the machine under the control of the processing control unit 12b.
  • step SB105 based on the signal from the pressure sensor 6, the correction processing unit 12e causes the machine tool 10 whose air pressure shortage flag is on to operate using air (other air If the determination is NO, the process returns to step SB104, and if the result is YES, the process proceeds to step SB106.
  • the correction processing unit 12e executes processing for resuming the currently interrupted air use operation, and then returns.
  • step SB107 which is followed when the determination in step SB103 is NO, as in step SA105 of the first embodiment, the air pressure condition determination unit 12d determines whether the air pressure is insufficient based on the air pressure condition information I received in step SB101.
  • a machine tool 10 other than the machine tool 10 whose flag is turned on is specified, and an air use operation whose execution time zone overlaps with the air use operation of the specified machine tool 10 is scheduled to be executed in the future (duplicate air use condition). If the determination is NO, the process returns, and if the determination is YES, the process proceeds to step SB108.
  • the correction processing unit 12e sets to delay the execution timing of the air use operation scheduled to be executed in the future so that the execution time zones of the air use operation do not overlap.
  • This setting is made, for example, by changing the length of the delay time in the NC program.
  • the length of the delay time may be set slightly longer than the estimated end time of the operation using air included in the air pressure condition information I, for example.
  • the delay time may be a predetermined fixed time. This fixed time is preferably set longer than the execution time of the air using operation which takes the longest time. Then, after the process of step SB108 is completed, the process returns.
  • the second embodiment if there is a machine tool 10 with an air pressure shortage flag turned on among the three machine tools 10, the other machine tool 10 Since the correction process (the process within the chain double-dashed line in FIG. 5) is performed so that the execution time zones of the air use operation do not overlap at , the same effects as those of the first embodiment can be obtained.
  • the correction processing executed by the correction processing unit 12e is timing change processing for delaying the execution timing of the operation using air.
  • the execution timing of the air use operation is delayed so that the execution time periods of the air use operation do not overlap. Therefore, compared to skipping execution of the air using operation, it is possible to suppress a decrease in the supplied air pressure without losing an opportunity to execute the air using operation.
  • the correction processing unit 12e temporarily suspends the air use operation and corrects the air use operation in the machine tool 10 whose air pressure shortage flag is on. After the operation is finished, it is configured to resume the suspended air use operation (steps SB104 to SB106).
  • correction processing unit 12e is configured to delay the execution start timing of the air use operation when the air use operation whose execution timing is to be corrected is scheduled to be executed in the future (step SB108). .
  • FIG. 6 shows a third embodiment.
  • the NC unit 12 of each machine tool 10 is provided with a priority storage unit 12f. 12e differs from each of the above-described embodiments in that the content of the correction processing by 12e is determined.
  • the priority data (corresponding to priority information) shown in FIG. 7 is stored in advance in the priority storage unit 12f.
  • the priority storage unit 12f is composed of a non-volatile storage medium such as a ROM or hard disk.
  • the priority data consists of three columns of table data, and corresponds to the type of air use operation, the command code in the NC program of the air use operation, and the execution priority of the air use operation. It is configured with
  • the door opening/closing operation by the air cylinder of the door opening/closing device 11b and the air blowing operation by the air blowing device 11a are disclosed as examples of types of air use operation, but are not limited to these.
  • the execution priority is the degree of necessity of operation when the machine tool 10 processes a workpiece. ” can be set in three steps. Note that the execution priority is not limited to this, and may be represented by, for example, numerical values. In FIG. 7, the priority of the door opening/closing operation is set to "high” and the priority of the air blow operation is set to "low". It can be seen that the degree of necessity) is high.
  • the correction processing unit 12e determines the priority data stored in the priority storage unit 12f. , specify the execution priority of each air-using operation that causes overlapping of execution time zones between the machine tool 10 whose air shortage flag is on and the other machine tool 10, and the specified execution priority is set to "medium , skip processing (the same processing as that within the two-dot chain line in FIG. 4 described in the first embodiment) is executed as the correction processing for the air use operations lower than the specified execution priority of "medium” or higher.
  • the timing changing process (the same process as that within the chain double-dashed line in FIG. 5 described in the second embodiment) is executed as the correction process.
  • the air usage operation with a low execution priority air blow operation in this example
  • the air usage operation with a high execution priority In this example, the door opening/closing operation
  • the execution timing is delayed or temporarily interrupted (timing change processing), so that the air use operation can be reliably executed while suppressing the decrease in the supply air pressure.
  • the correction processing unit 12e excludes air use operations with an execution priority of "middle" or higher from the execution targets of the correction process, and It may be configured such that the air use operation is targeted for execution of the correction process.
  • the execution target of the correction processing by the correction processing unit 12e is limited to the case where the execution priority is less than "medium”, and the air use operation with the execution priority of "medium” or higher is skipped or executed. Correction processing such as timing change processing is not executed. Therefore, even if the supplied air pressure is insufficient, the operation using air having a high execution priority can be reliably executed to prevent the operation of the machine tool 10 from being adversely affected.
  • the fourth embodiment has a priority storage unit 12f (see FIG. 6) storing priority data (see FIG. 7) as in the third embodiment. 3 is different from the third embodiment in that the air use operation to be corrected is determined on the basis of the priority of execution.
  • the correction processing unit 12e executes the correction processing for the air use operation of a machine tool 10 other than the machine tool 10 for which the air pressure shortage flag is turned on.
  • the operation using air to be subjected to the correction process is determined according to the execution priority of the operation using air executed by each machine tool 10 .
  • the correction processing unit 12e of the present embodiment when it is determined by the execution status acquiring unit 12c that an overlapping air usage condition is occurring, the priority data stored in the priority storage unit 12f. Based on this, the execution priority of the air use operation that causes the execution time periods of the machine tool 10 whose air pressure shortage flag is ON and the other machine tool 10 to overlap is specified. Then, the correction processing unit 12e compares the execution priority of each specified air use operation, and based on the comparison, the machine tool 10 whose air pressure shortage flag is on and the other machine tool 10 It is configured to determine for which air usage operations a corrective action is to be performed.
  • the correction processing unit 12e compares the execution priority of the operation using air in the machine tool 10 whose air pressure shortage flag is ON with the execution priority of the operation using air in the other machine tools 10. , the air use operation of the machine tool 10 with the lowest execution priority is determined as a correction target. Note that the determination procedure is not limited to this, and for example, all air using operations whose execution priority is equal to or lower than a predetermined level may be determined as correction targets.
  • the skip processing and the timing of the air using operation with high execution priority can be determined. It is possible to prevent the change processing from being executed and adversely affecting the operation of the entire machine tool 10 .
  • the monitoring server 20 for monitoring the operation status of the three machine tools 10 is provided separately, but the present invention is not limited to this.
  • the monitor server 20 may be abolished, and the NC units 12 of the machine tools 10 may communicate with each other to provide each NC unit 12 with the functions of the monitor server 20 described above.
  • the set pressure of the pressure regulating valve 5 is used as an example of the predetermined pressure, but this is not the only option. 70% to 80%).
  • the door opening/closing operation by the air cylinder of the door opening/closing device 11b and the air blowing operation by the air blowing device 11a have been described as examples of the operation using air, but the operation is not limited to this.
  • it may be a driving operation of a pneumatic work chuck mechanism.
  • step SB105 after the air use operation of the machine tool 10 whose air pressure shortage flag is ON (another air use operation that is continuing without being interrupted) is completed (YES in step SB105), the interrupted air use operation Although the operation is restarted (step SB106), the operation is not limited to this. The use operation may be resumed.
  • air supply system 2 air supply source 5 pressure regulating valve 6 pressure sensor (pressure detector) 10 machine tool 11 air-using device 11a air blow device (air-using device) 11b Door opening and closing device (equipment using air) 12d air pressure condition determination unit 12e correction processing unit 12f priority storage unit (storage unit) 21 execution status acquisition unit 22 air use determination unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • General Engineering & Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Human Computer Interaction (AREA)
  • General Factory Administration (AREA)
  • Auxiliary Devices For Machine Tools (AREA)
  • Numerical Control (AREA)

Abstract

This air supply system: in a case where an air supply pressure to the one machine tool is less than a prescribed pressure, determines whether an overlapping air use state is occurring in which an air use operation, having an overlapping execution time period with an air use operation currently being executed by one machine tool, is also currently being executed or is to be executed later by another machine tool, such determination made on the basis of the execution state of an automatic operation program of the machine tools (step SA103 and SA105); and if it is determined that the overlapping air use state is occurring (YES in step SA103 or YES in step SA105), the execution timing of the air use operation by the one machine tool or the other machine tool is corrected in order to avoid such a state (step SA104 or SA106).

Description

空気供給システムair supply system
 本発明は、複数の工作機械に対して共通に設けられた1つの空気供給源と、該各工作機械に接続され、前記空気供給源から供給される空気を該各工作機械に供給する空気供給路と、該各空気供給路に設けられ、前記各工作機械に供給される供給空気の圧力調整を行う圧力調整弁とを備えた空気供給システムに関する。 The present invention includes one air supply source provided in common for a plurality of machine tools, and an air supply connected to each of the machine tools and supplying the air supplied from the air supply source to each of the machine tools. The present invention relates to an air supply system comprising a passage and a pressure regulating valve provided in each of the air supply passages for regulating the pressure of the supplied air supplied to each of the machine tools.
 従来より、工場内に設けられたコンプレッサーなどの空気供給源から工作機械に圧縮空気を供給する空気供給システムが知られている(例えば、特許文献1参照)。工作機械に供給された圧縮空気は、例えば空圧シリンダを使用した扉開閉装置やエアーブロー装置などの空気使用機器に利用される。空気供給源と工作機械の空気使用機器とを接続する空気供給路には通常、圧力調整弁が設けられている。空気供給源から供給された高圧の圧縮空気は、この圧力調整弁を通過することにより設定圧力に減圧(調整)される。 Conventionally, there has been known an air supply system that supplies compressed air to a machine tool from an air supply source such as a compressor installed in a factory (see Patent Document 1, for example). Compressed air supplied to the machine tool is used in air-using equipment such as a door opening/closing device using a pneumatic cylinder and an air blow device. A pressure regulating valve is usually provided in an air supply path that connects an air supply source and an air-using device of a machine tool. High-pressure compressed air supplied from an air supply source is decompressed (adjusted) to a set pressure by passing through this pressure regulating valve.
特開平11-019846号公報JP-A-11-019846
 特許文献1の空気供給システムでは、1つの空気供給源に1つの工作機械を接続した空気供給システムが開示されているが、実際の工場内では、1つの空気供給源に複数の工作機械を接続する場合がある。この場合、複数の工作機械同士で空気の使用タイミングが重なると、各工作機械への供給空気量が不足してしまう。各工作機械への供給空気量が不足すると、空気使用機器への供給空気圧が低下し、この結果、空気使用機器の正常な作動が妨げられるという問題が生じる。 The air supply system of Patent Document 1 discloses an air supply system in which one machine tool is connected to one air supply source, but in an actual factory, a plurality of machine tools are connected to one air supply source. sometimes. In this case, if the use timings of air overlap between a plurality of machine tools, the amount of air supplied to each machine tool will be insufficient. If the amount of air supplied to each machine tool is insufficient, the air pressure supplied to the air-using equipment will drop, resulting in a problem that normal operation of the air-using equipment will be hindered.
 本発明は、以上の実情に鑑みてなされたものであって、工作機械同士の空気使用タイミングが重なることによる供給空気圧の低下を防止可能な空気供給システムを提供することを、その目的とする。 The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide an air supply system that can prevent the supply air pressure from dropping due to overlapping air use timings of machine tools.
 前記課題を解決するための本発明の一局面では、
 複数の工作機械に対して共通に設けられた1つの空気供給源と、該各工作機械に接続され、前記空気供給源から供給される空気を該各工作機械に供給する空気供給路と、該各空気供給路に設けられ、前記各工作機械に供給される供給空気の圧力調整を行う圧力調整弁とを備えた空気供給システムであって、
 前記各工作機械は、それぞれが記憶している自動運転プログラムに基づいて自動運転可能に構成され、
 前記各空気供給路のそれぞれに対して設けられ、前記各工作機械に供給される前記圧力調整後の供給空気の圧力を検出する圧力検出部と、
 前記各工作機械の自動運転プログラムの実行状況を取得する実行状況取得部と、
 一の工作機械における前記圧力検出部により検出された前記供給空気の圧力が所定圧力を下回っている場合に、前記実行状況取得部により取得された前記各工作機械の自動運転プログラムの実行状況を基に、前記一の工作機械が前記供給空気を使用した空気使用動作を実行中であるか否かを判定する空気使用判定部と、
 前記空気使用判定部によって前記一の工作機械が前記空気使用動作を実行中であると判定された場合に、前記実行状況取得部により取得された前記各工作機械の自動運転プログラムの実行状況を基に、前記一の工作機械にて実行中の空気使用動作と実行時間帯が重なる空気使用動作が他の工作機械にて現在実行中又は今後実行予定となる重複空気使用状況が発生しているか否かを判定する空圧状況判定部と、
 前記空圧状況判定部により前記重複空気使用状況が発生していると判定された場合に、前記一の工作機械と前記他の工作機械との間における前記空気使用動作の実行時間帯の重なりを回避するべく、前記一の工作機械又は前記他の工作機械における前記空気使用動作の実行タイミングを補正する補正処理を実行する補正処理部とを有している空気供給システムに係る。
In one aspect of the present invention for solving the above problems,
an air supply source provided in common for a plurality of machine tools; an air supply path connected to each machine tool and supplying the air supplied from the air supply source to each machine tool; An air supply system comprising: a pressure regulating valve provided in each air supply path for regulating the pressure of supply air supplied to each machine tool,
Each machine tool is configured to be capable of automatic operation based on an automatic operation program stored therein,
a pressure detection unit provided for each of the air supply paths and detecting the pressure of the air supplied to each of the machine tools after the pressure adjustment;
an execution status acquisition unit that acquires an execution status of the automatic operation program of each machine tool;
Based on the execution status of the automatic operation program of each machine tool acquired by the execution status acquisition section when the pressure of the supplied air detected by the pressure detection section in one machine tool is below a predetermined pressure. an air usage determination unit that determines whether or not the one machine tool is executing an air usage operation using the supplied air;
based on the execution status of the automatic operation program of each machine tool acquired by the execution status acquiring section when the air usage determination section determines that the one machine tool is executing the air usage operation. (2) whether or not there is an overlapping air use situation in which an air use operation that is currently being executed by the one machine tool and an air use operation that overlaps the execution time zone is currently being executed or will be executed in the future by another machine tool; A pneumatic condition determination unit that determines whether
When the air pressure situation determination unit determines that the overlapping air use situation is occurring, overlap of execution time zones of the air use operation between the one machine tool and the other machine tool is determined. In order to avoid this, the present invention relates to an air supply system having a correction processing section that executes correction processing for correcting execution timing of the air use operation in the one machine tool or the other machine tool.
 この空気供給システムによれば、工作機械同士の空気の使用タイミングの重なりが生じることにより、一の工作機械において圧力調整弁による圧力調整後の供給空気圧が所定圧力を下回った場合には、該工作機械にて空気使用動作を実行中であるか否かが空気使用判定部にて判定される。そして、空気使用判定部にて前記一の工作機械にて空気使用動作が実行中であると判定された場合には、該一の工作機械にて実行中の空気使用動作と実行時間帯が重なる空気使用動作が他の工作機械にて現在実行中又は今後実行予定となる重複空気使用状況が発生しているか否かが空圧状況判定部にて判定される。空圧状況判定部による該判定処理は、実行状況取得部により取得された各工作機械の自動運転プログラム(例えばNCプログラム)の実行状況を基に行われる。そして、空圧状況判定部にて、前記重複空気使用状況が発生していると判定された場合には、空気使用動作の実行時間帯の重なりを回避するべく補正処理部による補正処理が実行される。この補正処理では、一の工作機械、又は他の工作機械における空気使用動作の実行タイミングを補正する。この補正処理は、後述するように、例えば空気使用動作の実行タイミングをスキップしたり遅延したりすることで実現可能である。この補正処理が実行されると、一の工作機械と他の工作機械との間で現在又は今後生じる空気使用動作の重なりが回避される。これにより、一の工作機械への供給空気圧の低下を回避することができる。  According to this air supply system, when the supply air pressure after pressure adjustment by the pressure regulating valve falls below a predetermined pressure in one machine tool due to overlap of air use timings of the machine tools, the machine tool The air use determination unit determines whether or not the machine is executing an air use operation. Then, when the air usage determination unit determines that the air usage operation is being executed in the one machine tool, the air usage operation being executed in the one machine tool overlaps with the execution time period. The air pressure condition determination unit determines whether or not there is a redundant air use condition that is currently being executed or is scheduled to be executed in another machine tool. The determination processing by the air pressure status determination section is performed based on the execution status of the automatic operation program (eg, NC program) of each machine tool acquired by the execution status acquisition section. Then, when the air pressure condition determination unit determines that the overlapping air use condition occurs, the correction processing unit performs correction processing to avoid overlapping of the air use operation execution time zones. be. In this correction process, the execution timing of the operation using air in one machine tool or another machine tool is corrected. This correction processing can be realized by skipping or delaying the execution timing of the air use operation, as will be described later. When this correction process is performed, overlapping current or future air usage operations between one machine tool and another is avoided. This makes it possible to avoid a drop in the air pressure supplied to one machine tool. 
 尚、空気使用動作の補正処理を、一の工作機械と他の工作機械とのいずれに対して実行するかは、予め決めておいてもよいし、後述するように空気使用動作の実行優先度に応じて決定するようにしてもよい。 It should be noted that it may be determined in advance which of the one machine tool and the other machine tool should be subjected to the air-using operation correction process. You may make it determine according to.
 前記補正処理部は、実行タイミングの補正を行う空気使用動作が他の工作機械において今後実行予定の動作である場合には、当該空気使用動作の実行をスキップするスキップ処理、又は、当該空気使用動作の実行開始時期を遅延させるタイミング変更処理を前記補正処理として実行するように構成されていることが好ましい。 The correction processing unit performs a skip process for skipping the execution of the air using operation when the air using operation whose execution timing is to be corrected is an operation scheduled to be executed in the future in another machine tool, or the air using operation. It is preferable that timing change processing for delaying the execution start time of is executed as the correction processing.
 これによれば、一の工作機械にて空気使用動作を実行中にその供給空気圧力が所定圧力を下回っている場合には、補正処理部による制御の下、他の工作機械にて今後実行予定の空気使用動作のスキップ処理又はタイミング変更処理が実行される。スキップ処理では、実行予定の空気使用動作をスキップし、タイミング変更処理では、当該空気使用動作の実行開始時期が遅延される。したがって、一の工作機械と他の工作機械とで空気使用動作の実行時間帯が重なることを未然に防止して供給空気圧のさらなる低下を防止することができる。尚、スキップ処理では、空気使用動作をスキップすることで迅速な処理が可能になるという利点を有し、タイミング変更処理では、サイクルタイムは延びるものの必要な空気使用動作を確実に実行できるという利点を有している。 According to this, when one machine tool is executing an operation using air and the supplied air pressure is lower than a predetermined pressure, another machine tool is scheduled to execute it under the control of the correction processing unit. air use operation skip processing or timing change processing is executed. The skip processing skips the air use operation scheduled to be executed, and the timing change processing delays the execution start timing of the air use operation. Therefore, it is possible to prevent the execution time periods of the air-using operations from overlapping between one machine tool and another machine tool, thereby preventing a further decrease in the supplied air pressure. The skip process has the advantage of enabling quick processing by skipping the air use operation, and the timing change process has the advantage of being able to reliably execute the required air use operation although the cycle time is extended. have.
 前記補正処理部は、実行タイミングの補正を行う空気使用動作が現在実行中の動作である場合には、当該空気使用動作を途中で中止してその残りをスキップするスキップ処理、又は、当該空気使用動作を一旦中断し、中断せずに継続中の他の空気使用動作が終了した後に、中断中の空気使用動作を再開させるタイミング変更処理を前記補正処理として実行するように構成されていることが好ましい。 When the air using operation whose execution timing is to be corrected is the operation currently being executed, the correction processing unit performs a skip process of interrupting the air using operation and skipping the rest of the operation, or a skip process of skipping the remaining air using operation. The operation may be temporarily interrupted, and after another air use operation that is continuing without being interrupted is completed, timing change processing for resuming the interrupted air use operation may be executed as the correction processing. preferable.
 すなわち、一の工作機械と他の工作機械とで空気使用動作が同時に実行されている場合には、一の工作機械又は他の工作機械にて現在実行中の空気使用動作に対して補正処理部による補正処理が実行される。そして、この補正処理は、現在実行中の空気使用動作を中止してスキップするスキップ処理、又は、現在実行中の空気使用動作を一旦中断した後、他の空気使用動作の終了後に再開するタイミング変更処理によって実現される。この補正処理によって、一の工作機械と他の工作機械とが空気使用動作を同時に実行する状況が早期に解消され、供給空気圧の回復を図ることができる。尚、スキップ処理及びタイミング変更処理のそれぞれの利点は上述した通りである。 That is, when one machine tool and another machine tool are simultaneously executing air-using operations, the correction processing unit is performed. This correction process is a skip process of stopping and skipping the air using operation currently being executed, or a change in the timing of once interrupting the air using operation currently being executed and then resuming it after another air using operation is completed. Realized by processing. With this correction processing, the situation in which one machine tool and another machine tool simultaneously perform air-using operations can be quickly resolved, and the supply air pressure can be recovered. Advantages of skip processing and timing change processing are as described above.
 前記各工作機械が実行可能な複数の空気使用動作と、予め定めた該各空気使用動作の実行優先度とを対応付けて優先度情報として記憶する記憶部をさらに備え、前記補正処理部は、前記補正処理を実行する際には、前記記憶部に記憶された優先度情報を基に該補正処理の対象となる空気使用動作の実行優先度を特定し、特定した実行優先度が所定レベル未満である場合には、該補正処理として前記スキップ処理を実行し、特定した実行優先度が前記所定レベル以上である場合には、該補正処理として前記タイミング変更処理を実行するように構成されていることが好ましい。 A storage unit that associates a plurality of air-using operations that can be executed by each of the machine tools with predetermined execution priorities of the air-using operations and stores them as priority information, wherein the correction processing unit comprises: When executing the correction process, the execution priority of the operation using air to be subjected to the correction process is specified based on the priority information stored in the storage unit, and the specified execution priority is less than a predetermined level. , the skip process is executed as the correction process, and the timing change process is executed as the correction process when the identified execution priority is equal to or higher than the predetermined level. is preferred.
 この構成によれば、補正処理部により補正処理を実行する際には、記憶部に記憶された優先度情報を基に、補正処理の対象となる空気使用動作の実行優先度が特定され、この特定された実行優先度が所定レベル未満である場合には補正処理としてスキップ処理が実行され、実行優先度が所定レベル以上である場合には補正処理としてタイミング変更処理が実行される。したがって、実行優先度が低い空気使用動作についてはスキップして処理の迅速化を図りつつ、実行優先度が高い空気使用動作についてはスキップせずに実行タイミングの遅延又は一時中断(タイミング変更処理)を図ることで、供給空気圧の回復を図りつつ当該空気使用動作を確実に実行することができる。 According to this configuration, when the correction processing is executed by the correction processing section, the execution priority of the air use operation to be corrected is specified based on the priority information stored in the storage section. If the identified execution priority is less than the predetermined level, skip processing is executed as correction processing, and if the execution priority is equal to or higher than the predetermined level, timing change processing is executed as correction processing. Therefore, air-using operations with low execution priority are skipped to speed up processing, while air-using operations with high execution priority are not skipped, and the execution timing is delayed or temporarily interrupted (timing change processing). By doing so, it is possible to reliably perform the air use operation while recovering the supplied air pressure.
 前記各工作機械が実行可能な複数の空気使用動作と、予め定めた該各空気使用動作の実行優先度とを対応付けて優先度情報として記憶する記憶部をさらに備え、前記補正処理部は、実行優先度が所定レベル以上である空気使用動作については前記補正処理の実行対象から除外し、実行優先度が所定レベル未満の空気使用動作を前記補正処理の実行対象とするように構成されていることが好ましい。 A storage unit that associates a plurality of air-using operations that can be executed by each of the machine tools with predetermined execution priorities of the air-using operations and stores them as priority information, wherein the correction processing unit comprises: Air-using operations with an execution priority of a predetermined level or higher are excluded from execution targets of the correction process, and air-using operations with an execution priority level of less than a predetermined level are subjected to the correction process. is preferred.
 この構成によれば、補正処理部による補正処理の実行対象は、実行優先度が所定レベル未満の場合に限定され、実行優先度が所定レベル以上の空気使用動作については、スキップ処理やタイミング変更処理などの補正処理が実行されることはない。よって、実行優先度の高い空気使用動作がスキップされるなどして工作機械の作動に悪影響が及ぶのを防止することができる。 According to this configuration, the execution target of the correction processing by the correction processing unit is limited to cases where the execution priority is less than the predetermined level, and the skip processing and the timing change processing are performed for the air use operations with the execution priority of the predetermined level or higher. Such correction processing is not executed. Therefore, it is possible to prevent the operation of the machine tool from being adversely affected by skipping the air use operation with high execution priority.
 前記複数の空気使用動作は、前記各工作機械の加工エリアの開閉扉を空気アクチュエータによって駆動する扉開閉動作と、各工作機械にて実行されるエアーブロー動作とを含み、前記扉開閉動作の実行優先度は、前記所定レベル以上であり、前記エアーブロー動作の実行優先度は、前記所定レベル未満であることが好ましい。 The plurality of air-using operations includes a door opening/closing operation for driving an opening/closing door of the processing area of each machine tool by an air actuator, and an air blow operation performed by each machine tool, and execution of the door opening/closing operation. Preferably, the priority is equal to or higher than the predetermined level, and the execution priority of the air blow operation is lower than the predetermined level.
 これによれば、扉開閉動作の実行優先度は、エアーブロー動作に比べて高く設定されているので、重複空気使用状況が発生した場合であっても扉開閉動作は極力実行される。一方、エアーブロー動作は実行優先度が低いので、重複空気使用動作が発生した場合にはスキップされるなどして供給空気圧の回復が優先される。 According to this, the execution priority of the door opening/closing operation is set higher than that of the air blow operation, so the door opening/closing operation will be executed as much as possible even if duplicate air usage occurs. On the other hand, since the execution priority of the air blow operation is low, priority is given to recovery of the supplied air pressure by skipping the operation when the duplicate air use operation occurs.
 前記各工作機械が実行可能な複数の空気使用動作と、予め定めた該各空気使用動作の実行優先度とを対応付けて優先度情報として記憶する記憶部をさらに備え、前記補正処理部は、前記空圧状況判定部により前記重複空気使用状況が発生していると判定された場合には、前記記憶部に記憶された優先度情報を基に、前記一の工作機械と前記他の工作機械とのそれぞれにおいて実行時間帯の重なりを生じさせる空気使用動作の実行優先度を特定し、特定した各空気使用動作の実行優先度を比較して、該比較を基に、前記一の工作機械と前記他の工作機械とのいずれの空気使用動作に対して前記補正処理を実行するかを決定するように構成されていることが好ましい。 A storage unit that associates a plurality of air-using operations that can be executed by each of the machine tools with predetermined execution priorities of the air-using operations and stores them as priority information, wherein the correction processing unit comprises: When it is determined by the air pressure situation determination unit that the overlapping air usage conditions are occurring, the one machine tool and the other machine tool are determined based on the priority information stored in the storage unit. to identify the execution priority of the air-using operation that causes overlapping of the execution time zones in each of the above, compare the execution priority of each of the identified air-using operations, and based on the comparison, the one machine tool and It is preferably configured to determine for which air use operation with the other machine tool the correction process is to be performed.
 この構成によれば、空圧状況判定部により一の工作機械と他の工作機械との間で重複空気使用状況が発生していると判定された場合には、前記一の工作機械と前記他の工作機械とのそれぞれにおいて実行時間帯の重なりを生じさせる空気使用動作の実行優先度が補正処理部により特定される。そして、補正処理部において、一の工作機械と他の工作機械とのそれぞれの空気使用動作の実行優先度が比較され、該比較を基に補正処理の実行対象が決定される。この決定処理の一例として、例えば実行優先度が最も低い空気使用動作を補正処理の対象として決定することが考えられる。このように空気使用動作の実行優先度を考慮して、補正処理部による補正処理の対象となる空気使用動作を決定することで、実行優先度が高い空気使用動作に対してスキップ処理やタイミング変更処理が実行されて工作機械全体の作動に悪影響を及ぼすのを防止することができる。 According to this configuration, when it is determined by the air pressure status determining unit that an overlapping air usage status is occurring between the one machine tool and the other machine tool, the one machine tool and the other machine tool The correction processing unit identifies the execution priority of the air-using operation that causes overlap of the execution time zones in each of the machine tools. Then, in the correction processing section, the execution priority of the air-using operation of the one machine tool and the other machine tools are compared, and the execution target of the correction processing is determined based on the comparison. As an example of this determination process, for example, it is conceivable to determine the operation using air with the lowest execution priority as the target of the correction process. In this way, by taking into consideration the execution priority of the air-using motions and determining the air-using motions to be corrected by the correction processing unit, the air-using motions with high execution priority can be skipped or changed in timing. Processing can be prevented from being performed and adversely affecting the operation of the overall machine tool.
 以上のように、本発明に係る空気供給システムによれば、各工作機械の自動運転プログラムの実行状況を基に、一の工作機械への供給空気圧が所定圧力を下回っている場合に、該一の工作機械にて実行中の空気使用動作と実行時間帯が重なる空気使用動作が他の工作機械にて現在実行中又は今後実行予定となる重複空気使用状況が発生しているか否かを判定し、該重複空気使用状況が発生していると判定した場合には、当該状況を回避するべく、前記一の工作機械又は前記他の工作機械における前記空気使用動作の実行タイミングを補正するようにしたことで、工作機械同士の空気使用タイミングが重なることに起因する供給空気圧の低下を防止することができる。 As described above, according to the air supply system of the present invention, when the air pressure supplied to one machine tool is lower than the predetermined pressure based on the execution status of the automatic operation program of each machine tool, It is determined whether or not there is an overlapping air use situation that is currently being executed or scheduled to be executed in the future by other machine tools. , when it is determined that the redundant air usage situation is occurring, the execution timing of the air usage operation in the one machine tool or the other machine tool is corrected in order to avoid the situation. As a result, it is possible to prevent a decrease in the supply air pressure caused by overlapping air use timings of the machine tools.
実施形態に係る空気供給システムを示す概略構成図である。1 is a schematic configuration diagram showing an air supply system according to an embodiment; FIG. 監視サーバにて生成される空圧状況情報の一例を示す図である。It is a figure which shows an example of the air pressure condition information produced|generated by the monitoring server. 監視サーバにて実行される各工作機械の空圧監視制御の一例を示すフローチャートである。4 is a flow chart showing an example of air pressure monitoring control of each machine tool executed by a monitoring server; 各工作機械の補正制御部にて実行される補正制御の一例を示すフローチャートである。5 is a flow chart showing an example of correction control executed by a correction control section of each machine tool; 実施形態2を示す図4相当図である。4 equivalent view showing Embodiment 2. FIG. 実施形態3及び4を示す図1相当図である。1 equivalent view showing Embodiments 3 and 4. FIG. 実施形態3及び4の空気供給システムにおいて優先度記憶部に記憶された優先度データの一例を示す図である。FIG. 10 is a diagram showing an example of priority data stored in a priority storage unit in the air supply systems of Embodiments 3 and 4;
 以下、本発明の具体的な実施の形態について、図面を参照しながら説明する。 Specific embodiments of the present invention will be described below with reference to the drawings.
 (実施形態1)
 まず、本発明の実施形態1について説明する。図1に示すように、本例の空気供給システム1は、複数(本例では3つ)の工作機械10に接続されていて、各工作機械10に搭載された空気使用機器11に空気を供給する。図1では、空気使用機器11の一例として、切屑などのエアーブローを行うエアーブロー装置11aと、空圧シリンダ(空気アクチュエータの一例)を用いて工作機械10の加工エリアの開閉扉を駆動する扉開閉装置11bとを開示しているが、これに限定されない。また、各工作機械10は、例えばマシニングセンタやターニングセンタなどにより構成されるが、これに限定されない。
(Embodiment 1)
First, Embodiment 1 of the present invention will be described. As shown in FIG. 1, an air supply system 1 of this example is connected to a plurality of (three in this example) machine tools 10, and supplies air to air-using devices 11 mounted on each machine tool 10. do. In FIG. 1, as an example of the air-using device 11, an air blow device 11a for blowing chips and the like with air, and a door for driving the opening/closing door of the machining area of the machine tool 10 using a pneumatic cylinder (an example of an air actuator). Although the opening/closing device 11b is disclosed, it is not limited to this. Each machine tool 10 is configured by, for example, a machining center or a turning center, but is not limited to this.
 前記空気供給システム1は、3つの工作機械10に対して共通に設けられた1つの空気供給源2と、空気供給源2に接続された1つの供給管3と、該供給管3から分岐して各工作機械10に接続される分岐管4と、各分岐管4の途中に設けられ、供給空気を予め設定した設定圧力(所定圧力の一例)に調整する圧力調整弁5(圧力検出部の一例)と、圧力調整弁5の下流側に設けられ、圧力調整後の供給空気圧を計測する圧力センサ6と、各工作機械10を制御するNC(Numerical Control)装置12と、各NC装置12に接続された監視サーバ20とを有している。 The air supply system 1 includes one air supply source 2 provided in common for three machine tools 10, one supply pipe 3 connected to the air supply source 2, and branching from the supply pipe 3. A branch pipe 4 connected to each machine tool 10 via a branch pipe 4, and a pressure regulating valve 5 (of the pressure detection unit) that is provided in the middle of each branch pipe 4 and adjusts the supply air to a preset set pressure (an example of a predetermined pressure). an example), a pressure sensor 6 that is provided downstream of the pressure regulating valve 5 and measures the supply air pressure after pressure regulation, an NC (Numerical Control) device 12 that controls each machine tool 10, and each NC device 12 It has a monitoring server 20 connected thereto.
 空気供給源2は、例えばエアコンプレッサにより構成されていて、吸引した外気を圧縮して前記供給管3内に供給する。供給管3内に供給された空気は、3つの分岐管4に流入する。各分岐管4に流入した空気は、圧力調整弁5を通過することで設定圧力に調整される。圧力調整弁5と空気使用機器11との間には、ソレノイド等を使用した電磁式の流路切替弁7が設けられており、後述するNC装置12により流路切替弁7の作動を制御することで各空気使用機器11への空気の供給制御が実行される。尚、供給空気圧の変動を抑制するために流路の途中にアキュムレータを配置するなどしてもよい。 The air supply source 2 is composed of, for example, an air compressor, which compresses the sucked outside air and supplies it into the supply pipe 3 . Air supplied into the supply pipe 3 flows into the three branch pipes 4 . The air that has flowed into each branch pipe 4 is adjusted to a set pressure by passing through the pressure regulating valve 5 . An electromagnetic flow path switching valve 7 using a solenoid or the like is provided between the pressure regulating valve 5 and the air-using device 11, and the operation of the flow path switching valve 7 is controlled by an NC device 12, which will be described later. Thus, air supply control to each air-using device 11 is executed. In addition, an accumulator may be arranged in the middle of the flow path in order to suppress fluctuations in the supplied air pressure.
 前記NC装置12は、プログラム記憶部12a、加工制御部12b、実行状況取得部12c、空圧状況判定部12d、及び補正処理部12eを有している。NC装置12は、CPU、ROM及びRAMを有するコンピュータからなり、プログラム記憶部12aは、ROMや磁気記憶装置などの不揮発性記憶媒体により構成され、その他の機能部はコンピュータプログラムによってその機能が実現される。 The NC device 12 has a program storage section 12a, a machining control section 12b, an execution status acquisition section 12c, an air pressure status determination section 12d, and a correction processing section 12e. The NC device 12 consists of a computer having a CPU, a ROM and a RAM, the program storage part 12a consists of a non-volatile storage medium such as a ROM and a magnetic storage device, and the functions of other functional parts are realized by computer programs. be.
 プログラム記憶部12aには、工作機械10を自動運転させる際に実行されるNCプログラム(自動運転プログラムの一例)が記憶されている。このNCプログラムは、送り機構部及び主軸駆動部(いずれも図示省略)を駆動するためのコードの他に、前記エアーブロー装置11a及び扉開閉装置11bなどの補助機器を作動させるためのコードが含まれている。 The program storage unit 12a stores an NC program (an example of an automatic operation program) that is executed when the machine tool 10 is automatically operated. This NC program includes code for driving the feed mechanism and spindle drive (not shown), as well as code for operating auxiliary equipment such as the air blower 11a and the door opening/closing device 11b. is
 加工制御部12bは、不図示の操作盤に設けられた運転開始ボタンが押されると、プログラム記憶部12aに記憶されたNCプログラムを実行する。加工制御部12bは、NCプログラムに規定された送り機構部及び主軸駆動部に関する動作指令を抽出し、抽出した動作指令に対応する駆動信号を該送り駆動部及び主軸駆動部に出力する。そうして、加工制御部12bは、主軸に装着された工具とワークとの相対位置を送り駆動部により変化させてワークを所定形状に加工する。また、加工制御部12bは、NCプログラムに規定されたエアーブロー装置11aや扉開閉装置11bなどの補助機器の動作指令を抽出して、これらの補助機器に対して動作信号を出力する。 The machining control unit 12b executes the NC program stored in the program storage unit 12a when an operation start button provided on an operation panel (not shown) is pressed. The machining control unit 12b extracts operation commands relating to the feed mechanism unit and the spindle drive unit defined in the NC program, and outputs drive signals corresponding to the extracted operation commands to the feed drive unit and the spindle drive unit. Then, the machining control section 12b changes the relative position between the tool mounted on the spindle and the workpiece by the feed driving section to machine the workpiece into a predetermined shape. The machining control unit 12b also extracts operation commands for auxiliary equipment such as the air blow device 11a and the door opening/closing device 11b defined in the NC program, and outputs operation signals to these auxiliary equipment.
 実行状況取得部12cは、プログラム記憶部12aに記憶されたNCプログラムの実行状況を取得する。 The execution status acquisition unit 12c acquires the execution status of the NC programs stored in the program storage unit 12a.
 空圧状況判定部12dは、後述する監視サーバ20から受信した空圧状況情報I(図2参照)と、実行状況取得部12cにより取得したNCプログラムの実行状況とを基に、重複空気使用状況が発生しているか否かを判定する。ここで、重複空気使用状況とは、空圧不足フラグがオンとなっている工作機械10の空気使用動作と実行時間帯が重なる空気使用動作を現在実行しているか又は今後実行予定の状況を意味する。 The air pressure status determination unit 12d determines the overlapping air usage status based on the air pressure status information I (see FIG. 2) received from the monitoring server 20, which will be described later, and the execution status of the NC program acquired by the execution status acquisition unit 12c. is occurring. Here, the overlapping air use state means a state in which an air use operation whose execution time zone overlaps with the air use operation of the machine tool 10 whose air pressure shortage flag is ON is currently being executed or is scheduled to be executed in the future. do.
 補正処理部12eは、空圧状況判定部12dにより重複空気使用状況が発生していると判定された場合には、他の工作機械10との間における空気使用動作の実行時間帯の重なりを回避するべく、加工制御部12bによる制御下で現在実行中又は今後実行予定の空気使用動作の実行タイミングを補正する補正処理を実行する。本例では、この補正処理は、後述するように空気使用動作の実行をスキップするスキップ処理とされている。 When the air pressure condition determination unit 12d determines that an overlapped air usage condition is occurring, the correction processing unit 12e avoids overlapping of execution time zones of air usage operations with other machine tools 10. In order to do so, a correction process for correcting the execution timing of the air use operation currently being executed or scheduled to be executed in the future is executed under the control of the processing control unit 12b. In this example, this correction process is a skip process for skipping the execution of the air use operation, as will be described later.
 前記監視サーバ20は、前記3つの工作機械10に搭載された各NC装置12に通信可能に接続されている。また、監視サーバ20は、各工作機械10への供給空気圧を計測する圧力センサ6からの圧力信号を受信可能に構成されている。監視サーバ20は、各NC装置12と通信を行うことにより各工作機械10の作動状況を監視する。また、監視サーバ20は、各圧力センサ6から受信した圧力信号を基に、各工作機械10への供給空気圧を監視する。そして、監視サーバ20は、これらの監視結果に基づいて空圧状況情報I(後述する図2参照)を生成し、生成した空圧状況情報Iを各工作機械10のNC装置12に送信する。 The monitoring server 20 is communicatively connected to each NC unit 12 mounted on the three machine tools 10. Also, the monitoring server 20 is configured to be able to receive a pressure signal from a pressure sensor 6 that measures the air pressure supplied to each machine tool 10 . The monitoring server 20 monitors the operation status of each machine tool 10 by communicating with each NC device 12 . The monitoring server 20 also monitors the air pressure supplied to each machine tool 10 based on pressure signals received from each pressure sensor 6 . The monitoring server 20 then generates air pressure condition information I (see FIG. 2 described later) based on these monitoring results, and transmits the generated air pressure condition information I to the NC unit 12 of each machine tool 10 .
 具体的には、監視サーバ20は、実行状況取得部21、空気使用判定部22、及び空圧情報生成部23を有している。監視サーバ20は、CPU、ROM及びRAMを有するコンピュータからなり、各機能部はコンピュータプログラムによってその機能が実現される。 Specifically, the monitoring server 20 has an execution status acquisition unit 21, an air use determination unit 22, and an air pressure information generation unit 23. The monitoring server 20 is composed of a computer having a CPU, a ROM and a RAM, and each functional unit implements its function by a computer program.
 実行状況取得部21は、各工作機械10のNC装置12におけるNCプログラムの実行状況を取得する。この実行状況取得部21は、全ての工作機械10の実行状況を取得する点で、各工作機械10に設けられた実行状況取得部12cとは異なっている。 The execution status acquisition unit 21 acquires the execution status of the NC program in the NC unit 12 of each machine tool 10 . This execution status acquisition unit 21 is different from the execution status acquisition unit 12 c provided in each machine tool 10 in that it acquires the execution status of all machine tools 10 .
 空気使用判定部22は、各圧力センサ6から受信した圧力信号を基に各工作機械10への供給空気の圧力を算出し、算出した供給空気圧が前記設定圧力を下回っているか否かを判定する。そして、空気使用判定部22は、実行状況取得部21により取得された各工作機械10のNCプログラムの実行状況を基に、供給空気圧が設定圧力を下回った工作機械10において空気使用機器11による空気使用動作が実行中であるか否かを判定し、実行中であると判定した場合には当該工作機械10の空気不足フラグをオンにする。ここで、空気不足フラグは、例えばNCプログラム中において各工作機械10のそれぞれに割り当てられており、空気不足フラグがオンとなっている工作機械10は、供給空気圧が設定圧力を下回った状態で空気使用動作が実行されていることを意味する。 The air usage determination unit 22 calculates the pressure of the air supplied to each machine tool 10 based on the pressure signal received from each pressure sensor 6, and determines whether the calculated supply air pressure is lower than the set pressure. . Then, based on the execution status of the NC program of each machine tool 10 acquired by the execution status acquisition section 21, the air use determination section 22 determines whether the supply air pressure from the air-using equipment 11 in the machine tool 10 where the supply air pressure has fallen below the set pressure is determined. It is determined whether or not the use operation is being executed, and if it is determined that it is being executed, the air shortage flag of the machine tool 10 is turned on. Here, an air shortage flag is assigned to each machine tool 10 in, for example, an NC program, and the machine tool 10 with the air shortage flag turned on will have an air shortage in a state where the supply air pressure is lower than the set pressure. It means that a use operation is being performed.
 空圧情報生成部23は、各工作機械10の空気不足フラグのオン/オフ情報を含む空圧状況情報Iを生成する。図2は、この空圧状況情報Iの一例である。この図の例では、空圧状況情報Iは、4列のテーブルデータからなり、1列目がMC番号n(予め各工作機械10に割り当てられた識別番号)、2列目が空圧不足フラグのオン/オフ情報、3列目が現在実行中の空気使用動作、4列目が空気使用動作の終了までの予測時間とされている。尚、実行中の空気使用動作及び当該空気使用動作の終了までの予測時間(3列目及び4列面のデータ)は、各工作機械10におけるNCプログラムの実行状況を基に特定することができる。 The air pressure information generation unit 23 generates air pressure status information I including on/off information for the air shortage flag of each machine tool 10 . FIG. 2 is an example of this air pressure status information I. As shown in FIG. In the example of this figure, the air pressure status information I consists of four columns of table data, the first column being the MC number n (identification number assigned to each machine tool 10 in advance), and the second column being the air pressure shortage flag. , the third column is the air use operation currently being executed, and the fourth column is the predicted time until the end of the air use operation. The operation using air being executed and the predicted time until the end of the operation using air (data on the third and fourth rows) can be specified based on the execution status of the NC program in each machine tool 10. .
 次に、図3を参照して、監視サーバ20にて実行される各工作機械10の空圧監視制御の一例を説明する。 Next, an example of air pressure monitoring control of each machine tool 10 executed by the monitoring server 20 will be described with reference to FIG.
 ステップS1では、実行状況取得部21が、各工作機械10のNC装置12からそれぞれのNCプログラムの実行状況を取得する。 In step S1, the execution status acquisition unit 21 acquires the execution status of each NC program from the NC unit 12 of each machine tool 10.
 ステップS2では、空気使用判定部22が、各圧力センサ6からの圧力信号を受信し、受信した圧力信号を基に各工作機械10への供給空気圧を取得(算出)する。 In step S2, the air usage determination unit 22 receives pressure signals from the pressure sensors 6 and acquires (calculates) the air pressure to be supplied to each machine tool 10 based on the received pressure signals.
 ステップS3では、空気使用判定部22が、MC番号nを1として仮設定する。尚、本例では、工作機械10の台数は3台であるため、各工作機械10には1~3のMC番号が通し番号で割り当てられている。 In step S3, the air usage determination unit 22 temporarily sets the MC number n to 1. In this example, since the number of machine tools 10 is three, MC numbers 1 to 3 are assigned to each machine tool 10 in serial numbers.
 ステップS4では、空気使用判定部22が、MC番号nの工作機械10への供給空気圧が前記圧力調整弁5の設定圧力未満であるか否かを判定し、この判定がNOである場合にはリターンする一方、YESである場合にはステップS5に進む。 In step S4, the air usage determining unit 22 determines whether or not the air pressure supplied to the machine tool 10 with the MC number n is less than the set pressure of the pressure regulating valve 5. If the determination is NO, On the other hand, if the answer is YES, the process proceeds to step S5.
 ステップS5では、ステップS1で実行状況取得部21が取得した各工作機械10のNCプログラムの実行状況を基に、MC番号nの工作機械10において空気使用動作を実行中であるか否かを空気使用判定部22が判定する。この判定がNOである場合にはステップS7に進む一方、YESである場合にはステップS6に進む。 In step S5, based on the execution status of the NC program of each machine tool 10 acquired by the execution status acquisition unit 21 in step S1, it is determined whether or not the machine tool 10 with the MC number n is executing an operation using air. The usage determination unit 22 determines. If the determination is NO, the process proceeds to step S7, and if the determination is YES, the process proceeds to step S6.
 ステップS6では、空圧情報生成部23が、MC番号nの工作機械10の空圧不足フラグをオンに設定し、現時点のMC番号nと、空圧不足フラグがオンであるとの情報と、実行中の空気使用動作と、当該空気使用動作の終了までの予測時間とを対応付けて空圧状況情報Iを生成する(図2参照)。 In step S6, the air pressure information generation unit 23 sets the air pressure shortage flag of the machine tool 10 with the MC number n to ON, the current MC number n, the information that the air pressure shortage flag is ON, Air pressure status information I is generated by associating the air use operation being executed with the predicted time until the end of the air use operation (see FIG. 2).
 ステップS5の判定がNOである場合に進むステップS7では、空圧情報生成部23が、MC番号nの工作機械10の空圧不足フラグをオフに設定し、同様のデータ形式で空圧状況情報Iを生成する。 In step S7, which is followed when the determination in step S5 is NO, the air pressure information generation unit 23 sets the air pressure shortage flag of the machine tool 10 with MC number n to off, and generates air pressure status information in the same data format. Generate I.
 ステップS8では、空気使用判定部22が、MC番号nを1繰り上げて(n=n+1)として、新たなMC番号nの工作機械10を判定対象に設定する。 In step S8, the air use determination unit 22 increments the MC number n by 1 (n=n+1), and sets the machine tool 10 with the new MC number n as the determination target.
 ステップS9では、新たなMC番号nが工作機械10の総数(本例では3)を超えるか否かを空気使用判定部22が判定し、この判定がNOである場合にはステップS4に戻る一方、YESである場合にはステップS10に進む。 In step S9, the air usage determining unit 22 determines whether or not the new MC number n exceeds the total number of machine tools 10 (3 in this example). , YES, the process proceeds to step S10.
 ステップS10では、空圧情報生成部23が、ステップS6及びS7で生成した空圧状況情報Iを各工作機械10に送信し、しかる後にリターンする。 In step S10, the air pressure information generator 23 transmits the air pressure status information I generated in steps S6 and S7 to each machine tool 10, and then returns.
 次に、図4を参照して、監視サーバ20にて生成された空圧状況情報Iを基に、各工作機械10のNC装置12にて実行される補正制御処理の一例を説明する。 Next, with reference to FIG. 4, an example of correction control processing executed by the NC unit 12 of each machine tool 10 based on the air pressure status information I generated by the monitoring server 20 will be described.
 ステップSA101では、空圧状況判定部12dが、各工作機械10の空圧状況情報Iを監視サーバ20より受信する。 At step SA101, the air pressure situation determination unit 12d receives the air pressure situation information I of each machine tool 10 from the monitoring server 20.
 ステップSA102では、空圧状況判定部12dが、ステップSA101で受信した空圧状況情報Iを基に、空圧不足フラグがオンとなっている工作機械10が自機以外に存在するか否かを判定し、この判定がNOである場合にはリターンする一方、YESである場合にはステップSA103に進む。 At step SA102, the air pressure condition determination unit 12d determines whether or not there is a machine tool 10 other than the machine tool 10 whose air pressure shortage flag is ON, based on the air pressure condition information I received at step SA101. If the determination is NO, the process returns, while if the determination is YES, the process proceeds to step SA103.
 ステップSA103では、空圧状況判定部12dが、ステップSA101で受信した空圧状況情報Iを基に、空圧不足フラグがオンとなっている自機以外の工作機械10を特定し、特定した工作機械10の空気使用動作と実行時間帯が重なる空気使用動作を自機にて現在実行中の状況(重複空気使用状況)にあるか否かを判定し、この判定がNOである場合にはステップSA105に進む一方、YESである場合にはステップSA104に進む。 At step SA103, the pneumatic condition determination unit 12d identifies machine tools 10 other than the machine tool 10 whose pneumatic pressure shortage flag is ON based on the pneumatic condition information I received at step SA101. It is determined whether or not the machine 10 is currently executing an air use operation whose execution time zone overlaps with the air use operation of the machine 10 (overlapping air use condition), and if the determination is NO, step While proceeding to SA105, if YES, proceed to step SA104.
 ステップSA104では、補正処理部12eが、加工制御部12bにて現在実行中の空気使用動作を途中で中止して残りの空気使用動作をスキップするスキップ処理(補正処理の一例)を実行する。このスキップ処理の実行後はリターンする。 At step SA104, the correction processing unit 12e executes a skip process (an example of correction processing) in which the air use operation currently being executed by the processing control unit 12b is interrupted and the remaining air use operations are skipped. After execution of this skip process, the process returns.
 ステップSA103の判定がNOである場合に進むステップSA105では、空圧状況判定部12dが、ステップSA101で受信した空圧状況情報Iを基に、空圧不足フラグがオンとなっている自機以外の工作機械10を特定し、特定した工作機械10の空気使用動作と実行時間帯が重なる空気使用動作を自機にて今後実行予定であるか否かを判定し(重複空気使用状況が発生しているか否かを判定し)、この判定がNOである場合にはリターンする一方、YESである場合にはステップSA106に進む。 In step SA105, which is followed when the determination in step SA103 is NO, the air pressure condition determination unit 12d determines, based on the air pressure condition information I received in step SA101, machine tool 10 is specified, and it is determined whether or not it is scheduled to execute an air use operation whose execution time zone overlaps with the air use operation of the specified machine tool 10 (if an overlapped air use situation occurs is determined), and if the determination is NO, the process returns, while if the determination is YES, the process proceeds to step SA106.
 ステップSA106では、補正処理部12eがスキップフラグをオンに設定し、しかる後にリターンする。スキップフラグは、加工制御部12bが、空気使用機器11に空気使用動作を実行させる際に参照するフラグであり、加工制御部12bは、スキップフラグがオンになっている場合には、予定される空気使用動作の実行タイミングが到来したとしても、当該空気使用動作をスキップしてNCプログラムに規定される次の動作を実行する。 At step SA106, the correction processing unit 12e sets the skip flag to ON, and then returns. The skip flag is a flag that the processing control unit 12b refers to when causing the air-using device 11 to perform an air-using operation. Even if the execution timing of the air use operation comes, the air use operation is skipped and the next operation specified in the NC program is executed.
 以上説明したように、本実施形態では、3つの工作機械10のうち空圧不足フラグがオンになっている工作機械10が存在する場合には、他の工作機械10にて空気使用動作の実行時間帯が重ならないように補正処理(図4の2点鎖線内の処理)が実行されるので、空圧不足フラグがオンの工作機械10への供給空気圧の低下を抑制することができる。延いては、該工作機械10に搭載された空気使用機器11への供給空気量を十分に確保して、空気使用機器11の作動不良を回避することができる。 As described above, in the present embodiment, when there is a machine tool 10 for which the air pressure shortage flag is ON among the three machine tools 10, the other machine tool 10 executes the operation using air. Since the correction process (the process within the chain double-dashed line in FIG. 4) is executed so that the time periods do not overlap, it is possible to suppress a decrease in the air pressure supplied to the machine tool 10 whose air pressure shortage flag is ON. Furthermore, it is possible to ensure a sufficient amount of air to be supplied to the air-using equipment 11 mounted on the machine tool 10, thereby avoiding malfunction of the air-using equipment 11.
 また、本実施形態では、補正処理部12eにより実行される補正処理は、空気使用動作の実行をスキップするスキップ処理とされている。 Further, in the present embodiment, the correction processing executed by the correction processing unit 12e is skip processing for skipping the execution of the air using operation.
 これによれば、他の工作機械10におけるサイクルタイムを増加させることなく空圧不足を迅速に解消することができる。 According to this, the lack of air pressure can be quickly resolved without increasing the cycle time of the other machine tools 10.
 具体的には、補正処理部12eは、他の工作機械10において補正対象である空気使用動作が現在実行中の動作である場合には、空気使用動作を途中で中止してその残りをスキップするように構成されている(ステップSA104)。 Specifically, when the operation using air to be corrected is currently being executed in another machine tool 10, the correction processing unit 12e stops the operation using air halfway and skips the rest. It is configured as follows (step SA104).
 これによれば、現在実行中の空気使用動作が中止されることにより、空圧不足フラグがオンの工作機械10への空気供給量を増加させて空圧不足を解消することができる。  According to this, the air pressure shortage can be resolved by increasing the amount of air supply to the machine tool 10 with the air pressure shortage flag turned on by stopping the air use operation that is currently being executed. 
 一方、補正処理部12eは、補正対象である空気使用動作が今後実行予定の動作である場合には、当該空気使用動作の実行をスキップするように構成されている(ステップSA106)。 On the other hand, the correction processing unit 12e is configured to skip the execution of the air use operation when the air use operation to be corrected is scheduled to be executed in the future (step SA106).
 これによれば、空圧不足フラグがオンとなっている工作機械10と他の工作機械10との間で空気使用動作の実行時間帯に重なりが生じるのを未然に防止することができる。よって、空圧不足フラグがオンとなっている工作機械10への空気供給量が、他の工作機械10との空気使用動作の重なりによってさらに低下するのを防止することができる。  According to this, it is possible to prevent overlap between the execution time zones of the air use operation between the machine tool 10 whose air pressure shortage flag is ON and another machine tool 10 . Therefore, it is possible to prevent the amount of air supplied to the machine tool 10 whose air pressure shortage flag is ON from being further reduced due to overlap of air use operations with other machine tools 10 . 
 (実施形態2)
 図5は、実施形態2を示している。この実施形態では、各工作機械10のNC装置12にて実行される補正処理(図中の2点鎖線で囲む部分の処理)の内容が実施形態1とは異なっている。尚、以下の説明において、実施形態1と同じ構成要素には同じ符号を付して詳細な説明を省略する。
(Embodiment 2)
FIG. 5 shows a second embodiment. In this embodiment, the content of the correction process (the process surrounded by the two-dot chain line in the figure) executed by the NC unit 12 of each machine tool 10 is different from that of the first embodiment. In the following description, the same reference numerals are assigned to the same constituent elements as in the first embodiment, and detailed description thereof will be omitted.
 図5は、本実施形態のNC装置12により実行される補正制御処理の一例を示すフローチャートである。 FIG. 5 is a flowchart showing an example of correction control processing executed by the NC device 12 of this embodiment.
 ステップSB101~SB103の処理は、実施形態1のステップSA101~SA103の処理と同じであるため詳細な説明を省略する。 The processing of steps SB101 to SB103 is the same as the processing of steps SA101 to SA103 in the first embodiment, so detailed description thereof will be omitted.
 ステップSB104では、補正処理部12eが、加工制御部12bによる制御下で自機にて現在実行中の空気使用動作を途中で中断させる処理を実行する。 At step SB104, the correction processing unit 12e executes a process of interrupting the air use operation that is currently being executed by the machine under the control of the processing control unit 12b.
 ステップSB105では、補正処理部12eが、圧力センサ6からの信号を基に、空圧不足フラグがオンとなっている前記工作機械10にて空気使用動作(中断せずに継続中の他の空気使用動作)が終了したか否かを判定し、この判定がNOである場合にはステップSB104に戻る一方、YESである場合にはステップSB106に進む。 At step SB105, based on the signal from the pressure sensor 6, the correction processing unit 12e causes the machine tool 10 whose air pressure shortage flag is on to operate using air (other air If the determination is NO, the process returns to step SB104, and if the result is YES, the process proceeds to step SB106.
 ステップSB106では、補正処理部12eが、現在中断中の空気使用動作を再開させる処理を実行し、しかる後にリターンする。 At step SB106, the correction processing unit 12e executes processing for resuming the currently interrupted air use operation, and then returns.
 ステップSB103の判定がNOである場合に進むステップSB107では、実施形態1のステップSA105と同様に、空圧状況判定部12dが、ステップSB101で受信した空圧状況情報Iを基に、空圧不足フラグがオンとなっている自機以外の工作機械10を特定し、特定した工作機械10の空気使用動作と実行時間帯が重なる空気使用動作を今後実行予定の状況(重複空気使用状況)にあるか否かを判定し、この判定がNOである場合にはリターンする一方、YESである場合にはステップSB108に進む。 In step SB107, which is followed when the determination in step SB103 is NO, as in step SA105 of the first embodiment, the air pressure condition determination unit 12d determines whether the air pressure is insufficient based on the air pressure condition information I received in step SB101. A machine tool 10 other than the machine tool 10 whose flag is turned on is specified, and an air use operation whose execution time zone overlaps with the air use operation of the specified machine tool 10 is scheduled to be executed in the future (duplicate air use condition). If the determination is NO, the process returns, and if the determination is YES, the process proceeds to step SB108.
 ステップSB108では、補正処理部12eが、空気使用動作の実行時間帯の重なりを生じないように今後実行予定の空気使用動作の実行タイミングを遅延させる設定を行う。この設定は、例えばNCプログラム内の遅延時間の長さを変更することで行われる。遅延時間の長さは、例えば、前記空圧状況情報Iに含まれる空気使用動作の終了予測時間よりもやや長く設定すればよい。また、遅延時間は、予め定めた固定時間であってもよい。この固定時間は、最も長い時間を要する空気使用動作の実行時間よりも長く設定することが好ましい。そうして、本ステップSB108の処理が終了した後はリターンする。 At step SB108, the correction processing unit 12e sets to delay the execution timing of the air use operation scheduled to be executed in the future so that the execution time zones of the air use operation do not overlap. This setting is made, for example, by changing the length of the delay time in the NC program. The length of the delay time may be set slightly longer than the estimated end time of the operation using air included in the air pressure condition information I, for example. Also, the delay time may be a predetermined fixed time. This fixed time is preferably set longer than the execution time of the air using operation which takes the longest time. Then, after the process of step SB108 is completed, the process returns.
 以上説明したように本実施形態2では、実施形態1と同様に、3つの工作機械10のうち空圧不足フラグがオンになっている工作機械10が存在する場合には、他の工作機械10にて空気使用動作の実行時間帯が重ならないように補正処理(図5の2点鎖線内の処理)が実行されるので、実施形態1と同様の作用効果を得ることができる。 As described above, in the second embodiment, as in the first embodiment, if there is a machine tool 10 with an air pressure shortage flag turned on among the three machine tools 10, the other machine tool 10 Since the correction process (the process within the chain double-dashed line in FIG. 5) is performed so that the execution time zones of the air use operation do not overlap at , the same effects as those of the first embodiment can be obtained.
 また、本実施形態では、補正処理部12eにより実行される補正処理は、空気使用動作の実行タイミングを遅延させるタイミング変更処理とされている。 Further, in the present embodiment, the correction processing executed by the correction processing unit 12e is timing change processing for delaying the execution timing of the operation using air.
 これによれば、空圧不足フラグがオンの工作機械10以外の他の工作機械10では、空気使用動作の実行時間帯が重ならないように空気使用動作の実行タイミングが遅延される。したがって、空気使用動作の実行をスキップする場合に比べて、空気使用動作の実行機会を失うことなく供給空気圧の低下を抑制することができる。 According to this, in the machine tools 10 other than the machine tools 10 whose air pressure shortage flag is ON, the execution timing of the air use operation is delayed so that the execution time periods of the air use operation do not overlap. Therefore, compared to skipping execution of the air using operation, it is possible to suppress a decrease in the supplied air pressure without losing an opportunity to execute the air using operation.
 補正処理部12eは、実行タイミングの補正を行う空気使用動作が現在実行中の動作である場合には、当該空気使用動作を一旦中断して、空圧不足フラグがオンの工作機械10における空気使用動作が終了した後に、中断中の空気使用動作を再開させるように構成されている(ステップSB104~ステップSB106)。 If the air use operation whose execution timing is to be corrected is currently being executed, the correction processing unit 12e temporarily suspends the air use operation and corrects the air use operation in the machine tool 10 whose air pressure shortage flag is on. After the operation is finished, it is configured to resume the suspended air use operation (steps SB104 to SB106).
 これによれば、空圧不足フラグがオンの工作機械10とは異なる他の工作機械において、現在実行中の空気使用動作が一旦中断されることにより、空圧不足フラグがオンの工作機械10への空気供給量を増加させて空圧不足を改善することができる。  According to this, in another machine tool different from the machine tool 10 with the air pressure shortage flag on, the operation using air currently being executed is temporarily interrupted, so that the machine tool 10 with the air pressure shortage flag on Insufficient air pressure can be improved by increasing the amount of air supplied to the 
 また、補正処理部12eは、実行タイミングの補正を行う空気使用動作が今後実行予定の動作である場合には、当該空気使用動作の実行開始時期を遅延させるように構成されている(ステップSB108)。 Further, the correction processing unit 12e is configured to delay the execution start timing of the air use operation when the air use operation whose execution timing is to be corrected is scheduled to be executed in the future (step SB108). .
 これによれば、空圧不足フラグがオンとなっている工作機械10と他の工作機械10との間で空気使用動作の実行時間帯に重なりが生じるのを未然に防止することができる。よって、空圧不足フラグがオンとなっている工作機械10への空気供給量が、他の工作機械10との空気使用動作の重なりによってさらに低下するのを防止することができる。 According to this, it is possible to prevent overlap between the execution time zones of the air use operation between the machine tool 10 whose air pressure shortage flag is ON and another machine tool 10 . Therefore, it is possible to prevent the amount of air supplied to the machine tool 10 whose air pressure shortage flag is ON from being further reduced due to overlap of air use operations with other machine tools 10 .
 (実施形態3)
 図6は、実施形態3を示している。この実施形態では、各工作機械10のNC装置12には優先度記憶部12fが設けられており、この優先度記憶部12fに記憶された各空気使用動作の実行優先度に応じて補正処理部12eによる補正処理の内容を決定する点が前記各実施形態とは異なる。
(Embodiment 3)
FIG. 6 shows a third embodiment. In this embodiment, the NC unit 12 of each machine tool 10 is provided with a priority storage unit 12f. 12e differs from each of the above-described embodiments in that the content of the correction processing by 12e is determined.
 優先度記憶部12fには、図7に示す優先度データ(優先度情報に相当)が予め記憶されている。優先度記憶部12fは、例えばROMやハードディスク等の不揮発性記憶媒体により構成される。 The priority data (corresponding to priority information) shown in FIG. 7 is stored in advance in the priority storage unit 12f. The priority storage unit 12f is composed of a non-volatile storage medium such as a ROM or hard disk.
 図7に示すように、優先度データは、3列のテーブルデータからなり、空気使用動作の種別と、当該空気使用動作のNCプログラムにおける指令コードと、当該空気使用動作の実行優先度とを対応付けて構成されている。  As shown in FIG. 7, the priority data consists of three columns of table data, and corresponds to the type of air use operation, the command code in the NC program of the air use operation, and the execution priority of the air use operation. It is configured with 
 図7では、空気使用動作の種別の一例として、扉開閉装置11bの空気シリンダによる扉開閉動作と、エアーブロー装置11aによるエアーブロー動作とを開示しているが、これらに限定されない。 In FIG. 7, the door opening/closing operation by the air cylinder of the door opening/closing device 11b and the air blowing operation by the air blowing device 11a are disclosed as examples of types of air use operation, but are not limited to these.
 ここで、実行優先度とは、工作機械10によるワークの加工を行う際の動作の必須度であって、本例では、作業者が操作盤を介して「高」、「中」、「低」の3段階で設定可能になっている。尚、実行優先度の表し方はこれに限定されず、例えば数値の大小で表してもよい。図7では、扉開閉動作の優先度が「高」に設定され、エアーブロー動作の優先度が「低」に設定されており、扉開閉動作の方がエアーブロー動作に比べて実行優先度(必須度)が高いことがわかる。 Here, the execution priority is the degree of necessity of operation when the machine tool 10 processes a workpiece. ” can be set in three steps. Note that the execution priority is not limited to this, and may be represented by, for example, numerical values. In FIG. 7, the priority of the door opening/closing operation is set to "high" and the priority of the air blow operation is set to "low". It can be seen that the degree of necessity) is high.
 そして、補正処理部12eは、空圧状況判定部12dにて上述の重複空気使用状況が発生していると判定された場合には、優先度記憶部12fに記憶された優先度データを基に、空気不足フラグがオンの工作機械10と他の工作機械10との間で実行時間帯の重なりを生じさせるそれぞれの空気使用動作の実行優先度を特定し、特定した実行優先度が、「中」よりも低い空気使用動作については前記補正処理としてスキップ処理(実施形態1で説明した図4の二点鎖線内と同様の処理)を実行し、特定した実行優先度が「中」以上の空気使用動作については前記補正処理としてタイミング変更処理(実施形態2で説明した図5の二点鎖線内と同様の処理)を実行するように構成されている。 Then, when the air pressure condition determination unit 12d determines that the above-described overlapping air usage condition is occurring, the correction processing unit 12e determines the priority data stored in the priority storage unit 12f. , specify the execution priority of each air-using operation that causes overlapping of execution time zones between the machine tool 10 whose air shortage flag is on and the other machine tool 10, and the specified execution priority is set to "medium , skip processing (the same processing as that within the two-dot chain line in FIG. 4 described in the first embodiment) is executed as the correction processing for the air use operations lower than the specified execution priority of "medium" or higher. As for the use operation, the timing changing process (the same process as that within the chain double-dashed line in FIG. 5 described in the second embodiment) is executed as the correction process.
 したがって、重複空気使用状況が発生した際に、実行優先度が低い空気使用動作(本例ではエアーブロー動作)についてはスキップして処理の迅速化を図りつつ、実行優先度が高い空気使用動作(本例では扉開閉動作)についてはスキップせずに実行タイミングの遅延又は一時中断(タイミング変更処理)を図ることで、供給空気圧の低下を抑制しながら当該空気使用動作を確実に実行することができる。 Therefore, when a duplicate air usage situation occurs, the air usage operation with a low execution priority (air blow operation in this example) is skipped to speed up the processing, while the air usage operation with a high execution priority ( In this example, the door opening/closing operation) is not skipped, but the execution timing is delayed or temporarily interrupted (timing change processing), so that the air use operation can be reliably executed while suppressing the decrease in the supply air pressure. .
 尚、本実施形態3の変形例として、補正処理部12eは、実行優先度が「中」以上の空気使用動作については前記補正処理の実行対象から除外し、実行優先度が「中」未満の空気使用動作を前記補正処理の実行対象とするように構成されていてもよい。 As a modification of the third embodiment, the correction processing unit 12e excludes air use operations with an execution priority of "middle" or higher from the execution targets of the correction process, and It may be configured such that the air use operation is targeted for execution of the correction process.
 この構成によれば、補正処理部12eによる補正処理の実行対象は、実行優先度が「中」未満の場合に限定され、実行優先度が「中」以上の空気使用動作については、スキップ処理やタイミング変更処理などの補正処理が実行されることはない。よって、実行優先度の高い空気使用動作は、仮に供給空気圧が不足していても確実に実行して工作機械10の作動に悪影響が及ぶのを防止することができる。 According to this configuration, the execution target of the correction processing by the correction processing unit 12e is limited to the case where the execution priority is less than "medium", and the air use operation with the execution priority of "medium" or higher is skipped or executed. Correction processing such as timing change processing is not executed. Therefore, even if the supplied air pressure is insufficient, the operation using air having a high execution priority can be reliably executed to prevent the operation of the machine tool 10 from being adversely affected.
 (実施形態4)
 実施形態4は、実施形態3と同様に優先度データ(図7参照)を記憶した優先度記憶部12f(図6参照)を有しているが、この優先度データに規定された空気使用動作の実行優先度に基づいて補正処理の対象となる空気使用動作を決定する点が前記実施形態3とは異なっている。
(Embodiment 4)
The fourth embodiment has a priority storage unit 12f (see FIG. 6) storing priority data (see FIG. 7) as in the third embodiment. 3 is different from the third embodiment in that the air use operation to be corrected is determined on the basis of the priority of execution.
 すなわち、前記実施形態1及び2では、補正処理部12eは、空圧不足フラグがオンとなっている工作機械10とは異なる他の工作機械10の空気使用動作に対して前記補正処理を実行するようにしているが、本実施形態は、各工作機械10が実行する空気使用動作の実行優先度に応じて前記補正処理を行う空気使用動作を決定するようにしている。 That is, in Embodiments 1 and 2, the correction processing unit 12e executes the correction processing for the air use operation of a machine tool 10 other than the machine tool 10 for which the air pressure shortage flag is turned on. However, in this embodiment, the operation using air to be subjected to the correction process is determined according to the execution priority of the operation using air executed by each machine tool 10 .
 具体的には、本実施形態の補正処理部12eは、実行状況取得部12cにより重複空気使用状況が発生していると判定された場合には、優先度記憶部12fに記憶された優先度データを基に、空圧不足フラグがオンとなっている工作機械10と他の工作機械10とのそれぞれにおいて実行時間帯の重なりを生じさせる空気使用動作の実行優先度を特定する。そして、補正処理部12eは、特定した各空気使用動作の実行優先度を比較して、該比較を基に、空圧不足フラグがオンとなっている工作機械10と他の工作機械10とのいずれの空気使用動作に補正処理を実行するかを決定するように構成されている。本例では、補正処理部12eは、空圧不足フラグがオンとなっている工作機械10における空気使用動作の実行優先度と、他の工作機械10の空気使用動作の実行優先度と比較して、実行優先度が最も低い工作機械10の空気使用動作を補正対象として決定する。尚、決定手順はこれに限ったものではなく、例えば実行優先度が所定レベル以下の空気使用動作全てを補正対象として決定してもよい。 Specifically, the correction processing unit 12e of the present embodiment, when it is determined by the execution status acquiring unit 12c that an overlapping air usage condition is occurring, the priority data stored in the priority storage unit 12f. Based on this, the execution priority of the air use operation that causes the execution time periods of the machine tool 10 whose air pressure shortage flag is ON and the other machine tool 10 to overlap is specified. Then, the correction processing unit 12e compares the execution priority of each specified air use operation, and based on the comparison, the machine tool 10 whose air pressure shortage flag is on and the other machine tool 10 It is configured to determine for which air usage operations a corrective action is to be performed. In this example, the correction processing unit 12e compares the execution priority of the operation using air in the machine tool 10 whose air pressure shortage flag is ON with the execution priority of the operation using air in the other machine tools 10. , the air use operation of the machine tool 10 with the lowest execution priority is determined as a correction target. Note that the determination procedure is not limited to this, and for example, all air using operations whose execution priority is equal to or lower than a predetermined level may be determined as correction targets.
 このように空気使用動作の実行優先度を考慮して、補正処理部12eにおける補正処理の対象となる空気使用動作を決定することで、実行優先度が高い空気使用動作に対してスキップ処理やタイミング変更処理が実行されて工作機械10全体の作動に悪影響を及ぼすのを防止することができる。 In this way, by considering the execution priority of the air using operation and determining the air using operation to be corrected by the correction processing unit 12e, the skip processing and the timing of the air using operation with high execution priority can be determined. It is possible to prevent the change processing from being executed and adversely affecting the operation of the entire machine tool 10 .
(他の実施形態)
 前記各実施形態では、3つの工作機械10の動作状況を監視する監視サーバ20を別途設けるようにしているが、これに限ったものではない。例えば監視サーバ20を廃止して、各工作機械10のNC装置12同士で通信を行うことにより各NC装置12に上述した監視サーバ20の機能を持たせるようにしてもよい。
(Other embodiments)
In each of the above-described embodiments, the monitoring server 20 for monitoring the operation status of the three machine tools 10 is provided separately, but the present invention is not limited to this. For example, the monitor server 20 may be abolished, and the NC units 12 of the machine tools 10 may communicate with each other to provide each NC unit 12 with the functions of the monitor server 20 described above.
 前記各実施形態では、所定圧力の一例として、圧力調整弁5の設定圧力を採用しているが、これに限ったものではなく、例えば圧力調整弁5の設定圧力よりも低い圧力(例えば設定圧力の70%~80%)であってもよい。 In each of the above embodiments, the set pressure of the pressure regulating valve 5 is used as an example of the predetermined pressure, but this is not the only option. 70% to 80%).
 前記各実施形態では、空気使用動作の一例として、扉開閉装置11bのエアシリンダによる扉開閉動作と、エアーブロー装置11aによるエアーブロー動作とを挙げて説明したが、これに限ったものではなく、例えば、空圧式のワークチャック機構の駆動動作などであってもよい。 In each of the above-described embodiments, the door opening/closing operation by the air cylinder of the door opening/closing device 11b and the air blowing operation by the air blowing device 11a have been described as examples of the operation using air, but the operation is not limited to this. For example, it may be a driving operation of a pneumatic work chuck mechanism.
 前記実施形態2では、空圧不足フラグがオンの工作機械10の空気使用動作(中断せずに継続中の他の空気使用動作)が終了した後に(ステップSB105でYES)、中断中の空気使用動作を再開するようにしているが(ステップSB106)、これに限ったものではなく、例えば、空圧不足フラグがオンの工作機械10にて供給空気圧が設定圧力に回復した後に、中断中の空気使用動作を再開するようにしてもよい。 In the second embodiment, after the air use operation of the machine tool 10 whose air pressure shortage flag is ON (another air use operation that is continuing without being interrupted) is completed (YES in step SB105), the interrupted air use operation Although the operation is restarted (step SB106), the operation is not limited to this. The use operation may be resumed.
 尚、上述した実施形態の説明は、すべての点で例示であって、制限的なものではない。当業者にとって変形および変更が適宜可能である。本発明の範囲は、上述の実施形態ではなく、特許請求の範囲によって示される。さらに、本発明の範囲には、特許請求の範囲内と均等の範囲内での実施形態からの変更が含まれる。 It should be noted that the above description of the embodiment is illustrative in all respects and is not restrictive. Modifications and modifications are possible for those skilled in the art. The scope of the invention is indicated by the claims rather than the above-described embodiments. Furthermore, the scope of the present invention includes modifications from the embodiments within the scope of claims and equivalents.
1   空気供給システム
2   空気供給源
5   圧力調整弁
6   圧力センサ(圧力検出部)
10  工作機械
11  空気使用機器
11a エアーブロー装置(空気使用機器)
11b 扉開閉装置(空気使用機器)
12d 空圧状況判定部
12e 補正処理部
12f 優先度記憶部(記憶部)
21  実行状況取得部
22  空気使用判定部
 
1 air supply system 2 air supply source 5 pressure regulating valve 6 pressure sensor (pressure detector)
10 machine tool 11 air-using device 11a air blow device (air-using device)
11b Door opening and closing device (equipment using air)
12d air pressure condition determination unit 12e correction processing unit 12f priority storage unit (storage unit)
21 execution status acquisition unit 22 air use determination unit

Claims (5)

  1.  複数の工作機械に対して共通に設けられた1つの空気供給源と、該各工作機械に接続され、前記空気供給源から供給される空気を該各工作機械に供給する空気供給路と、各空気供給路に設けられ、前記各工作機械に供給される供給空気の圧力調整を行う圧力調整弁とを備えた空気供給システムであって、
     前記各工作機械は、それぞれが記憶している自動運転プログラムに基づいて自動運転可能に構成され、
     前記各空気供給路のそれぞれに対して設けられ、前記各工作機械に供給される前記圧力調整後の供給空気の圧力を検出する圧力検出部と、
     前記各工作機械の自動運転プログラムの実行状況を取得する実行状況取得部と、
     一の工作機械における前記圧力検出部により検出された前記供給空気の圧力が所定圧力を下回っている場合に、前記実行状況取得部により取得された前記各工作機械の自動運転プログラムの実行状況を基に、前記一の工作機械が前記供給空気を使用した空気使用動作を実行中であるか否かを判定する空気使用判定部と、
     前記空気使用判定部によって前記一の工作機械が前記空気使用動作を実行中であると判定された場合に、前記実行状況取得部により取得された前記各工作機械の自動運転プログラムの実行状況を基に、前記一の工作機械にて実行中の空気使用動作と実行時間帯が重なる空気使用動作が他の工作機械にて現在実行中又は今後実行予定となる重複空気使用状況が発生しているか否かを判定する空圧状況判定部と、
     前記空圧状況判定部により前記重複空気使用状況が発生していると判定された場合に、前記一の工作機械と前記他の工作機械との間における前記空気使用動作の実行時間帯の重なりを回避するべく、前記一の工作機械又は前記他の工作機械における前記空気使用動作の実行タイミングを補正する補正処理を実行する補正処理部とを有し、
     前記補正処理部は、実行タイミングの補正を行う空気使用動作が他の工作機械において今後実行予定の動作である場合には、当該空気使用動作の実行をスキップするスキップ処理、又は、当該空気使用動作の実行開始時期を遅延させるタイミング変更処理を前記補正処理として実行するように構成され、
     前記各工作機械が実行可能な複数の空気使用動作と、予め定めた該各空気使用動作の実行優先度とを対応付けて優先度情報として記憶する記憶部をさらに備え、
     前記補正処理部は、前記補正処理を実行する際には、前記記憶部に記憶された優先度情報を基に該補正処理の対象となる空気使用動作の実行優先度を特定し、特定した実行優先度が所定レベル未満である場合には、該補正処理として前記スキップ処理を実行し、特定した実行優先度が前記所定レベル以上である場合には、該補正処理として前記タイミング変更処理を実行するように構成されていることを特徴とする空気供給システム。
    one air supply source provided in common for a plurality of machine tools; an air supply path connected to each machine tool and supplying the air supplied from the air supply source to each machine tool; An air supply system comprising a pressure regulating valve provided in an air supply path for regulating the pressure of supply air supplied to each machine tool,
    Each machine tool is configured to be capable of automatic operation based on an automatic operation program stored therein,
    a pressure detection unit provided for each of the air supply paths and detecting the pressure of the air supplied to each of the machine tools after the pressure adjustment;
    an execution status acquisition unit that acquires an execution status of the automatic operation program of each machine tool;
    Based on the execution status of the automatic operation program of each machine tool acquired by the execution status acquisition section when the pressure of the supplied air detected by the pressure detection section in one machine tool is below a predetermined pressure. an air usage determination unit that determines whether or not the one machine tool is executing an air usage operation using the supplied air;
    based on the execution status of the automatic operation program of each machine tool acquired by the execution status acquiring section when the air usage determination section determines that the one machine tool is executing the air usage operation. (2) whether or not there is an overlapping air use situation in which an air use operation that is currently being executed by the one machine tool and an air use operation that overlaps the execution time zone is currently being executed or will be executed in the future by another machine tool; A pneumatic condition determination unit that determines whether
    When the air pressure situation determination unit determines that the overlapping air use situation is occurring, overlap of execution time zones of the air use operation between the one machine tool and the other machine tool is determined. a correction processing unit that executes correction processing for correcting the execution timing of the air-using operation in the one machine tool or the other machine tool,
    The correction processing unit performs a skip process for skipping the execution of the air using operation when the air using operation whose execution timing is to be corrected is an operation scheduled to be executed in the future in another machine tool, or the air using operation. is configured to execute a timing change process for delaying the execution start time of as the correction process,
    further comprising a storage unit that associates a plurality of air-using operations that can be executed by each machine tool with a predetermined execution priority of each of the air-using operations and stores them as priority information;
    When executing the correction processing, the correction processing unit specifies execution priority of the air using operation to be subjected to the correction processing based on the priority information stored in the storage unit, and performs the specified execution. If the priority is less than a predetermined level, the skip process is executed as the correction process, and if the specified execution priority is equal to or higher than the predetermined level, the timing change process is executed as the correction process. An air supply system characterized by being configured as follows.
  2.  複数の工作機械に対して共通に設けられた1つの空気供給源と、該各工作機械に接続され、前記空気供給源から供給される空気を該各工作機械に供給する空気供給路と、各空気供給路に設けられ、前記各工作機械に供給される供給空気の圧力調整を行う圧力調整弁とを備えた空気供給システムであって、
     前記各工作機械は、それぞれが記憶している自動運転プログラムに基づいて自動運転可能に構成され、
     前記各空気供給路のそれぞれに対して設けられ、前記各工作機械に供給される前記圧力調整後の供給空気の圧力を検出する圧力検出部と、
     前記各工作機械の自動運転プログラムの実行状況を取得する実行状況取得部と、
     一の工作機械における前記圧力検出部により検出された前記供給空気の圧力が所定圧力を下回っている場合に、前記実行状況取得部により取得された前記各工作機械の自動運転プログラムの実行状況を基に、前記一の工作機械が前記供給空気を使用した空気使用動作を実行中であるか否かを判定する空気使用判定部と、
     前記空気使用判定部によって前記一の工作機械が前記空気使用動作を実行中であると判定された場合に、前記実行状況取得部により取得された前記各工作機械の自動運転プログラムの実行状況を基に、前記一の工作機械にて実行中の空気使用動作と実行時間帯が重なる空気使用動作が他の工作機械にて現在実行中又は今後実行予定となる重複空気使用状況が発生しているか否かを判定する空圧状況判定部と、
     前記空圧状況判定部により前記重複空気使用状況が発生していると判定された場合に、前記一の工作機械と前記他の工作機械との間における前記空気使用動作の実行時間帯の重なりを回避するべく、前記一の工作機械又は前記他の工作機械における前記空気使用動作の実行タイミングを補正する補正処理を実行する補正処理部とを有し、
     前記補正処理部は、実行タイミングの補正を行う空気使用動作が現在実行中の動作である場合には、当該空気使用動作を途中で中止してその残りをスキップするスキップ処理、又は、当該空気使用動作を一旦中断し、中断せずに継続中の他の空気使用動作が終了した後に、中断中の空気使用動作を再開させるタイミング変更処理を前記補正処理として実行するように構成され、
     前記各工作機械が実行可能な複数の空気使用動作と、予め定めた該各空気使用動作の実行優先度とを対応付けて優先度情報として記憶する記憶部をさらに備え、
     前記補正処理部は、前記補正処理を実行する際には、前記記憶部に記憶された優先度情報を基に該補正処理の対象となる空気使用動作の実行優先度を特定し、特定した実行優先度が所定レベル未満である場合には、該補正処理として前記スキップ処理を実行し、特定した実行優先度が前記所定レベル以上である場合には、該補正処理として前記タイミング変更処理を実行するように構成されていることを特徴とする空気供給システム。
    one air supply source provided in common for a plurality of machine tools; an air supply path connected to each machine tool and supplying the air supplied from the air supply source to each machine tool; An air supply system comprising a pressure regulating valve provided in an air supply path for regulating the pressure of supply air supplied to each machine tool,
    Each machine tool is configured to be capable of automatic operation based on an automatic operation program stored therein,
    a pressure detection unit provided for each of the air supply paths and detecting the pressure of the air supplied to each of the machine tools after the pressure adjustment;
    an execution status acquisition unit that acquires an execution status of the automatic operation program of each machine tool;
    Based on the execution status of the automatic operation program of each machine tool acquired by the execution status acquisition section when the pressure of the supplied air detected by the pressure detection section in one machine tool is below a predetermined pressure. an air usage determination unit that determines whether or not the one machine tool is executing an air usage operation using the supplied air;
    based on the execution status of the automatic operation program of each machine tool acquired by the execution status acquiring section when the air usage determination section determines that the one machine tool is executing the air usage operation. (2) whether or not there is an overlapping air use situation in which an air use operation that is currently being executed by the one machine tool and an air use operation that overlaps the execution time zone is currently being executed or will be executed in the future by another machine tool; A pneumatic condition determination unit that determines whether
    When the air pressure situation determination unit determines that the overlapping air use situation is occurring, overlap of execution time zones of the air use operation between the one machine tool and the other machine tool is determined. a correction processing unit that executes correction processing for correcting the execution timing of the air-using operation in the one machine tool or the other machine tool,
    When the air using operation whose execution timing is to be corrected is the operation currently being executed, the correction processing unit performs a skip process of interrupting the air using operation and skipping the rest of the operation, or a skip process of skipping the remaining air using operation. The operation is temporarily interrupted, and after another air use operation that is continuing without being interrupted is completed, a timing change process for resuming the interrupted air use operation is executed as the correction process,
    further comprising a storage unit that associates a plurality of air-using operations that can be executed by each machine tool with a predetermined execution priority of each of the air-using operations and stores them as priority information;
    When executing the correction processing, the correction processing unit specifies execution priority of the air using operation to be subjected to the correction processing based on the priority information stored in the storage unit, and performs the specified execution. If the priority is less than a predetermined level, the skip process is executed as the correction process, and if the specified execution priority is equal to or higher than the predetermined level, the timing change process is executed as the correction process. An air supply system characterized by being configured as follows.
  3.  複数の工作機械に対して共通に設けられた1つの空気供給源と、該各工作機械に接続され、前記空気供給源から供給される空気を該各工作機械に供給する空気供給路と、各空気供給路に設けられ、前記各工作機械に供給される供給空気の圧力調整を行う圧力調整弁とを備えた空気供給システムであって、
     前記各工作機械は、それぞれが記憶している自動運転プログラムに基づいて自動運転可能に構成され、
     前記各空気供給路のそれぞれに対して設けられ、前記各工作機械に供給される前記圧力調整後の供給空気の圧力を検出する圧力検出部と、
     前記各工作機械の自動運転プログラムの実行状況を取得する実行状況取得部と、
     一の工作機械における前記圧力検出部により検出された前記供給空気の圧力が所定圧力を下回っている場合に、前記実行状況取得部により取得された前記各工作機械の自動運転プログラムの実行状況を基に、前記一の工作機械が前記供給空気を使用した空気使用動作を実行中であるか否かを判定する空気使用判定部と、
     前記空気使用判定部によって前記一の工作機械が前記空気使用動作を実行中であると判定された場合に、前記実行状況取得部により取得された前記各工作機械の自動運転プログラムの実行状況を基に、前記一の工作機械にて実行中の空気使用動作と実行時間帯が重なる空気使用動作が他の工作機械にて現在実行中又は今後実行予定となる重複空気使用状況が発生しているか否かを判定する空圧状況判定部と、
     前記空圧状況判定部により前記重複空気使用状況が発生していると判定された場合に、前記一の工作機械と前記他の工作機械との間における前記空気使用動作の実行時間帯の重なりを回避するべく、前記一の工作機械又は前記他の工作機械における前記空気使用動作の実行タイミングを補正する補正処理を実行する補正処理部とを有し、
     前記各工作機械が実行可能な複数の空気使用動作と、予め定めた該各空気使用動作の実行優先度とを対応付けて優先度情報として記憶する記憶部をさらに備え、
     前記補正処理部は、実行優先度が所定レベル以上である空気使用動作については前記補正処理の実行対象から除外し、実行優先度が所定レベル未満の空気使用動作を前記補正処理の実行対象とするように構成されていることを特徴とする空気供給システム。
    one air supply source provided in common for a plurality of machine tools; an air supply path connected to each machine tool and supplying the air supplied from the air supply source to each machine tool; An air supply system comprising a pressure regulating valve provided in an air supply path for regulating the pressure of supply air supplied to each machine tool,
    Each machine tool is configured to be capable of automatic operation based on an automatic operation program stored therein,
    a pressure detection unit provided for each of the air supply paths and detecting the pressure of the air supplied to each of the machine tools after the pressure adjustment;
    an execution status acquisition unit that acquires an execution status of the automatic operation program of each machine tool;
    Based on the execution status of the automatic operation program of each machine tool acquired by the execution status acquisition section when the pressure of the supplied air detected by the pressure detection section in one machine tool is below a predetermined pressure. an air usage determination unit that determines whether or not the one machine tool is executing an air usage operation using the supplied air;
    based on the execution status of the automatic operation program of each machine tool acquired by the execution status acquiring section when the air usage determination section determines that the one machine tool is executing the air usage operation. (2) whether or not there is an overlapping air use situation in which an air use operation that is currently being executed by the one machine tool and an air use operation that overlaps the execution time zone is currently being executed or will be executed in the future by another machine tool; A pneumatic condition determination unit that determines whether
    When the air pressure situation determination unit determines that the overlapping air use situation is occurring, overlap of execution time zones of the air use operation between the one machine tool and the other machine tool is determined. a correction processing unit that executes correction processing for correcting the execution timing of the air-using operation in the one machine tool or the other machine tool,
    further comprising a storage unit that associates a plurality of air-using operations that can be executed by each machine tool with a predetermined execution priority of each of the air-using operations and stores them as priority information;
    The correction processing unit excludes air-using operations whose execution priority is equal to or higher than a predetermined level from execution targets of the correction processing, and sets air-using operations whose execution priority is lower than a predetermined level as execution targets of the correction processing. An air supply system characterized by being configured as follows.
  4.  複数の工作機械に対して共通に設けられた1つの空気供給源と、該各工作機械に接続され、前記空気供給源から供給される空気を該各工作機械に供給する空気供給路と、各空気供給路に設けられ、前記各工作機械に供給される供給空気の圧力調整を行う圧力調整弁とを備えた空気供給システムであって、
     前記各工作機械は、それぞれが記憶している自動運転プログラムに基づいて自動運転可能に構成され、
     前記各空気供給路のそれぞれに対して設けられ、前記各工作機械に供給される前記圧力調整後の供給空気の圧力を検出する圧力検出部と、
     前記各工作機械の自動運転プログラムの実行状況を取得する実行状況取得部と、
     一の工作機械における前記圧力検出部により検出された前記供給空気の圧力が所定圧力を下回っている場合に、前記実行状況取得部により取得された前記各工作機械の自動運転プログラムの実行状況を基に、前記一の工作機械が前記供給空気を使用した空気使用動作を実行中であるか否かを判定する空気使用判定部と、
     前記空気使用判定部によって前記一の工作機械が前記空気使用動作を実行中であると判定された場合に、前記実行状況取得部により取得された前記各工作機械の自動運転プログラムの実行状況を基に、前記一の工作機械にて実行中の空気使用動作と実行時間帯が重なる空気使用動作が他の工作機械にて現在実行中又は今後実行予定となる重複空気使用状況が発生しているか否かを判定する空圧状況判定部と、
     前記空圧状況判定部により前記重複空気使用状況が発生していると判定された場合に、前記一の工作機械と前記他の工作機械との間における前記空気使用動作の実行時間帯の重なりを回避するべく、前記一の工作機械又は前記他の工作機械における前記空気使用動作の実行タイミングを補正する補正処理を実行する補正処理部とを有し、
     前記各工作機械が実行可能な複数の空気使用動作と、予め定めた該各空気使用動作の実行優先度とを対応付けて優先度情報として記憶する記憶部をさらに備え、
     前記補正処理部は、前記空圧状況判定部により前記重複空気使用状況が発生していると判定された場合には、前記記憶部に記憶された優先度情報を基に、前記一の工作機械と前記他の工作機械とのそれぞれにおいて実行時間帯の重なりを生じさせる空気使用動作の実行優先度を特定し、特定した各空気使用動作の実行優先度を比較し、該比較を基に、前記一の工作機械と前記他の工作機械とのいずれの空気使用動作に対して前記補正処理を実行するかを決定するように構成されていることを特徴とする空気供給システム。
    one air supply source provided in common for a plurality of machine tools; an air supply path connected to each machine tool and supplying the air supplied from the air supply source to each machine tool; An air supply system comprising a pressure regulating valve provided in an air supply path for regulating the pressure of supply air supplied to each machine tool,
    Each machine tool is configured to be capable of automatic operation based on an automatic operation program stored therein,
    a pressure detection unit provided for each of the air supply paths and detecting the pressure of the air supplied to each of the machine tools after the pressure adjustment;
    an execution status acquisition unit that acquires an execution status of the automatic operation program of each machine tool;
    Based on the execution status of the automatic operation program of each machine tool acquired by the execution status acquisition section when the pressure of the supplied air detected by the pressure detection section in one machine tool is below a predetermined pressure. an air usage determination unit that determines whether or not the one machine tool is executing an air usage operation using the supplied air;
    based on the execution status of the automatic operation program of each machine tool acquired by the execution status acquiring section when the air usage determination section determines that the one machine tool is executing the air usage operation. (2) whether or not there is an overlapping air use situation in which an air use operation that is currently being executed by the one machine tool and an air use operation that overlaps the execution time zone is currently being executed or will be executed in the future by another machine tool; A pneumatic condition determination unit that determines whether
    When the air pressure situation determination unit determines that the overlapping air use situation is occurring, overlap of execution time zones of the air use operation between the one machine tool and the other machine tool is determined. a correction processing unit that executes correction processing for correcting the execution timing of the air-using operation in the one machine tool or the other machine tool,
    further comprising a storage unit that associates a plurality of air-using operations that can be executed by each machine tool with a predetermined execution priority of each of the air-using operations and stores them as priority information;
    The correction processing unit, when the air pressure situation determination unit determines that the duplicated air usage situation is occurring, determines whether the one machine tool and the other machine tool, the execution priority of the air-using operation that causes overlapping of the execution time zones is specified, the execution priority of each of the specified air-using operations is compared, and based on the comparison, the An air supply system, wherein the air supply system is configured to determine which of the air-using operations of one machine tool and the other machine tool is to be subjected to the correction process.
  5.  前記複数の空気使用動作は、前記各工作機械の加工エリアの開閉扉を空気アクチュエータによって駆動する扉開閉動作と、各工作機械にて実行されるエアーブロー動作とを含み、
     前記扉開閉動作の実行優先度は、前記所定レベル以上であり、
     前記エアーブロー動作の実行優先度は、前記所定レベル未満であることを特徴とする請求項1から3のいずれか1つに記載の空気供給システム。
     
    The plurality of air-using operations include a door opening/closing operation for driving an opening/closing door of the processing area of each machine tool by an air actuator, and an air blow operation performed by each machine tool,
    the execution priority of the door opening/closing operation is equal to or higher than the predetermined level;
    4. The air supply system according to any one of claims 1 to 3, wherein the execution priority of said air blow operation is lower than said predetermined level.
PCT/JP2022/043950 2022-01-14 2022-11-29 Air supply system WO2023135961A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022004255A JP7093897B1 (en) 2022-01-14 2022-01-14 Air supply system
JP2022-004255 2022-03-02

Publications (1)

Publication Number Publication Date
WO2023135961A1 true WO2023135961A1 (en) 2023-07-20

Family

ID=82217748

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/043950 WO2023135961A1 (en) 2022-01-14 2022-11-29 Air supply system

Country Status (2)

Country Link
JP (1) JP7093897B1 (en)
WO (1) WO2023135961A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010128625A (en) * 2008-11-26 2010-06-10 Panasonic Corp Operation system and method for factory
WO2010137409A1 (en) * 2009-05-27 2010-12-02 ホーコス株式会社 Cutting liquid supply device for machine tool
JP2020168692A (en) * 2019-04-04 2020-10-15 ファナック株式会社 Machine tool, machining system, and additional table unit

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010128625A (en) * 2008-11-26 2010-06-10 Panasonic Corp Operation system and method for factory
WO2010137409A1 (en) * 2009-05-27 2010-12-02 ホーコス株式会社 Cutting liquid supply device for machine tool
JP2020168692A (en) * 2019-04-04 2020-10-15 ファナック株式会社 Machine tool, machining system, and additional table unit

Also Published As

Publication number Publication date
JP2023103628A (en) 2023-07-27
JP7093897B1 (en) 2022-06-30

Similar Documents

Publication Publication Date Title
US7222016B2 (en) System and method for transfer of feedback control for a process control device
US8271131B2 (en) Robot with learning control function
US10061295B2 (en) Numerical controller equipped with drawing path correction function
US7254461B2 (en) Numerical controller having a function of learning control
US8744604B2 (en) Method and apparatus for configuring a blackout period for scheduled diagnostic checks of a field device in a process plant
US10732616B2 (en) Numerical controller including means for checking execution status of program
WO2023135961A1 (en) Air supply system
US7024269B2 (en) Numerical control apparatus
US11931903B2 (en) Robot controller and method of controlling robot
CN109856958A (en) A kind of control method for preventing integral to be saturated
US20170021438A1 (en) Wire electric discharge machine
US20200030908A1 (en) Controller
JP6448787B2 (en) Control device for vehicle transmission
JP6172845B2 (en) Control device for arc welding robot
JP6852012B2 (en) Vehicle transmission control device
JPS6161742A (en) Numerical control device
US10802454B2 (en) Device for coordinated controlling of an operating state of a production plant and production system and method
JP2003001547A (en) Control device for machine tool
CN117032043A (en) Industrial control restarting method and system
JPS6367615A (en) Power supply control system at time of automatic operation
JP2000351536A (en) Elevator controller
JPH0363801A (en) Control mechanism for controller
JP2004192432A (en) Control system
JP2001330205A (en) Steam pressure controller for boiler

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22920481

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE