WO2023135894A1 - Linear motor and electric suspension device provided with same - Google Patents

Linear motor and electric suspension device provided with same Download PDF

Info

Publication number
WO2023135894A1
WO2023135894A1 PCT/JP2022/039883 JP2022039883W WO2023135894A1 WO 2023135894 A1 WO2023135894 A1 WO 2023135894A1 JP 2022039883 W JP2022039883 W JP 2022039883W WO 2023135894 A1 WO2023135894 A1 WO 2023135894A1
Authority
WO
WIPO (PCT)
Prior art keywords
linear motor
slit
teeth
peripheral side
slits
Prior art date
Application number
PCT/JP2022/039883
Other languages
French (fr)
Japanese (ja)
Inventor
康明 青山
Original Assignee
日立Astemo株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立Astemo株式会社 filed Critical 日立Astemo株式会社
Publication of WO2023135894A1 publication Critical patent/WO2023135894A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • H02K41/03Synchronous motors; Motors moving step by step; Reluctance motors

Definitions

  • the present invention relates to a linear motor and an electric suspension device equipped with the same.
  • the suspension described in Patent Document 1 includes a bottomed cylindrical outer cylinder having a magnet on the inner peripheral side, a movably inserted into the outer cylinder, one end extending from the outer cylinder, and an outer periphery on the other end side.
  • a hollow first rod having an armature on one side;
  • a second rod having one end slidably fitted to the inner peripheral side of the first rod and the other end fixed to the bottom of the outer cylinder; It is composed of
  • a gap is formed between the inner periphery of the first rod on one end side and the outer periphery of the second rod.
  • Wiring is arranged in the clearance, one end of which is connected to the armature and the other end of which extends to the outside.
  • the suspension of Patent Document 1 is composed of a bottomed cylindrical outer cylinder having a magnet on the inner peripheral side and a linear motor that relatively drives an armature inserted inside the outer cylinder.
  • a linear motor has a permanent magnet on the outer peripheral side and a magnetic outer cylinder that circulates the magnetic flux of the permanent magnet, and an armature made up of coils and teeth is arranged inside the outer cylinder.
  • a permanent magnet that can be made thin (a structure with small radial dimensions) and an outer cylinder made of a magnetic material are arranged, and by arranging coils and teeth with large radial dimensions, the gap surface It is possible to dispose (the opposing surface of the permanent magnet and the armature) on the outer peripheral side, and a large thrust force can be obtained.
  • the armature In general, the armature consists of magnetic teeth and a magnetic path that surrounds the coil, so the dimension in the radial direction is inevitably large. For this reason, in a structure in which the armature is arranged on the outer peripheral side, the gap surface is arranged on the inner diameter side, so the area of the gap surface becomes small, and the thrust that can be obtained is small. Therefore, a large thrust force can be obtained by providing a permanent magnet and a magnetic outer cylinder for returning the magnetic flux of the permanent magnet on the outer peripheral side, and arranging an armature composed of a coil and teeth inside the permanent magnet.
  • the magnetic material that surrounds the armature coil in a U-shape is disk-shaped, and the cross-sectional area of the magnetic flux path in the magnetic material decreases toward the inner circumference, so magnetic flux saturation is likely to occur.
  • the magnetic flux density increases.
  • the magnetic flux density increases toward the inner circumference, and the loss generated by the power of the magnetic flux density B in the magnetic material increases, the thrust of the linear motor decreases, and the temperature of the magnetic material in the center of the armature increases. I had a problem.
  • An object of the present invention is to solve the above problems and to provide a linear motor that suppresses a decrease in thrust and an increase in temperature, and an electric suspension device equipped with the same.
  • the present invention has an armature having teeth and coils provided on the teeth, permanent magnets provided on the outer peripheral side of the armature, and the armature and the permanent magnets are provided. is relatively moved, wherein the teeth are provided with high resistance portions that increase the resistance value of the eddy current path flowing through the teeth.
  • FIG. 1 is a schematic diagram showing an example of a linear motor according to Example 1 of the present invention
  • FIG. 1 is an external perspective view of an armature according to Example 1 of the present invention
  • FIG. It is the front view which looked at the linear motor concerning Example 1 of this invention from the Z direction.
  • It is the back view which looked at the linear motor which concerns on Example 1 of this invention from the Z direction.
  • 1 is a schematic side view of a linear motor 1 according to Example 1 of the present invention cut along a YZ plane
  • FIG. FIG. 4 is a diagram showing the distribution of loss at a certain moment when a three-phase alternating current is passed through six coils 5
  • FIG. 4 is a diagram comparing the ratio of eddy current loss with and without slits 7 using magnetic field analysis.
  • FIG. 7 is an external perspective view of an armature according to Example 2 of the present invention; It is the back view which looked at the linear motor based on Example 2 of this invention from the Z direction. It is the front view which looked at the linear motor which concerns on a comparative example from the Z direction.
  • FIG. 10 is a schematic diagram showing an example of a linear motor according to Example 3 of the present invention;
  • FIG. 8 is an external perspective view of an armature according to Example 3 of the present invention; It is the back view which looked at the linear motor based on Example 3 of this invention from the Z direction.
  • FIG. 5 is a schematic diagram showing an example of a linear motor according to Example 4 of the present invention;
  • FIG. 4 is an external perspective view of an armature according to Example 2 of the present invention.
  • FIG. 11 is an external perspective view of an armature according to Example 4 of the present invention; It is the back view which looked at the linear motor based on Example 4 of this invention from the Z direction.
  • FIG. 11 is an external perspective view of an armature according to an application example of Example 4 of the present invention
  • FIG. 11 is a rear view of a linear motor according to an application example of Example 4 of the present invention, viewed from the Z direction
  • FIG. 11 is a schematic diagram showing an example of a linear motor according to Example 5 of the present invention
  • FIG. 11 is an external perspective view of an armature according to Example 5 of the present invention
  • FIG. 11 is a schematic side view of the linear motor 1 according to Example 5 of the present invention cut along the YZ plane.
  • FIG. 11 is a schematic diagram showing an example of a linear motor according to an application example of Example 5 of the present invention
  • FIG. 11 is an external perspective view of an armature according to an application example of Example 5 of the present invention
  • FIG. 11 is a schematic diagram showing an example of a linear motor according to Example 6 of the present invention
  • FIG. 11 is an external perspective view of an armature according to Example 6 of the present invention
  • It is the back view which looked at the linear motor based on Example 6 of this invention from the Z direction.
  • FIG. 11 is a schematic diagram showing an example of a linear motor according to Application Example 1 of Example 6 of the present invention
  • FIG. 11 is an external perspective view of an armature according to Application Example 1 of Example 6 of the present invention
  • FIG. 11 is a schematic diagram showing an example of a linear motor according to Application Example 1 of Example 6 of the present invention
  • FIG. 11 is an external perspective view of an armature according to Application Example 1 of Example 6 of the present invention
  • FIG. 11 is a rear view of a linear motor according to Application Example 1 of Embodiment 6 of the present invention, viewed from the Z direction;
  • FIG. 11 is a schematic diagram showing an example of a linear motor according to Application Example 2 of Example 6 of the present invention;
  • FIG. 11 is an external perspective view of an armature according to Application Example 2 of Example 6 of the present invention;
  • FIG. 11 is a rear view of a linear motor according to Application Example 2 of Embodiment 6 of the present invention, viewed from the Z direction;
  • FIG. 11 is a configuration diagram of an electric suspension device equipped with a linear motor according to Embodiment 7 of the present invention;
  • constituent elements of the present invention do not necessarily have to be independent entities, and one constituent element may consist of a plurality of members, a plurality of constituent elements may consist of one member, a certain constituent element may part of a component, part of one component overlaps part of another component, and so on.
  • FIG. 1 is a schematic diagram showing an example of a linear motor according to Example 1 of the present invention.
  • a linear motor has an armature that reciprocates inside a cylindrical outer cylinder.
  • the axial direction in which the armature moves is the Z direction
  • the direction perpendicular to the Z direction is the Y direction
  • the direction perpendicular to the Z and Y directions is the X direction.
  • the schematic diagram of FIG. 1 is a diagram of the linear motor 1 cut along the YZ plane.
  • the linear motor 1 shown in FIG. 1 is an example of a linear motor having a five-pole, six-slot configuration in which six coils or teeth are arranged for five permanent magnets.
  • the combination of permanent magnets, coils, and teeth is an example, and the combination is not limited to this combination. For example, any combination of 7 poles and 6 slots, 10 poles and 12 slots, 8 poles and 9 slots can be applied if the same effect can be obtained.
  • An armature 8 composed of a coil 5 and teeth 2 (core) is linearly driven relative to a member on the secondary side of a permanent magnet 10 provided inside an outer cylinder 20 composed of a magnetic material.
  • a motor 1 is constructed.
  • the armature 8 and the secondary side member are connected to the tire side (not shown) and the vehicle body side (not shown) via rods (not shown) or the like to form an electric suspension device that suppresses vibrations on the vehicle body side.
  • the coil 5 of the linear motor 1 is normally connected to a three-phase inverter (not shown) of U-phase, V-phase, and W-phase, and by controlling the three-phase current, the linear motor 1 moves in the axial direction ( Z direction) thrust is generated to suppress vibration.
  • teeth 2 are made of hollow convex magnetic bodies with through holes 3 formed in the center, and a plurality of teeth 2 are arranged in the Z direction to form an armature 8 .
  • FIG. 2 is an external perspective view of the armature according to Example 1 of the present invention.
  • FIG. 3 is a front view of the linear motor according to Example 1 of the present invention as seen from the Z direction.
  • FIG. 4 is a rear view of the linear motor according to the first embodiment of the present invention as seen from the Z direction.
  • FIG. 5 is a schematic side view of the linear motor 1 according to Example 1 of the present invention cut along the YZ plane.
  • the armature 8 is composed of a plurality of coils 5 and teeth 2 (core).
  • the tooth 2 includes a protruding portion 2a protruding in the axial direction (Z direction) and a flat plate portion 2b extending radially outward (peripheral side) from the protruding portion 2a.
  • a through hole 3 penetrating in the axial direction (Z direction) is formed on the inner peripheral side of the projecting portion 2a.
  • the teeth 2 (core) of the armature 8 are provided with slits 7 (notches) arranged so as to extend from the inner peripheral side to the outer peripheral side.
  • the slit 7 is formed from the projecting portion 2a to the flat plate portion 2b.
  • the slits 7 function as high resistance portions that increase the resistance value of the eddy current path flowing through the teeth 2 (core), as will be described later.
  • the number of slits 7 is six in this embodiment, it is not limited to this number. If the number of slits is small, the loss suppression effect is small, but if the number of slits is one or more, the loss suppression effect can be obtained.
  • the slit 7 formed from the projecting portion 2a to the flat plate portion 2b is provided from the inner peripheral side of the tooth 2 (core) and has a depth that allows the coil 5 to be seen. . That is, as shown in FIG. 5, let Rc be the distance from the center O of the tooth 2 to the inner peripheral side of the recess of the tooth into which the coil 5 is inserted, and let Rc be the distance from the center O of the tooth 2 to the outermost periphery of the slit 7.
  • Rs there is a relationship such that the distance Rs is greater than Rc (Rs>Rc). That is, the coil 5 can be seen through the slit 7 .
  • the cooling medium for example, cooling air, cooling oil, cooling water, coolant, etc.
  • the cooling medium is enclosed in the hole in the center of the slit 7 or is flowed from one direction, so that the cooling medium directly transfers heat from the coil 5. can be taken away and cooled.
  • FIG. 6 is a diagram showing the distribution of loss at a certain moment when a three-phase alternating current is passed through six coils 5.
  • the magnetic path area of the tooth 2 (core) increases toward the outer diameter side, the magnetic flux density decreases on the outer peripheral side of the tooth 2 (core).
  • the inner peripheral side of the tooth 2 (core) has a high magnetic flux density.
  • the tooth 2 (core) is integrally formed, loss due to eddy current increases on the inner peripheral side where the magnetic flux density is high.
  • the eddy current loss is distributed on the inner peripheral side (lower side of the drawing) of the teeth 2 where the coil 5 is accommodated, and a high loss area occurs particularly on the center side of the coil 5 .
  • the teeth 2 (core) are provided with slits 7 in order to divide the eddy current path.
  • the slits 7 are arranged so that the distance Rs from the center O to the outermost peripheral position of the slit 7 is larger than the distance Rc from the center O to the inner peripheral surface of the recess into which the coil 5 of the tooth 2 is inserted.
  • the slit 7 becomes a high resistance portion that increases the resistance value of the eddy current path flowing through the tooth 2 (core), which is a magnetic material, so that the magnetic material can be divided in the area where the loss due to the eddy current is high, thereby suppressing the loss. You can increase the effect.
  • FIG. 7 is a diagram comparing the ratio of eddy current loss with and without the slit 7 using magnetic field analysis.
  • the vertical axis indicates the loss ratio
  • the horizontal axis indicates the Z-direction position (Z1 to Z3) of the armature 8.
  • the loss ratio varies depending on the Z-direction position of the armature 8, but by inserting the slits 7 in the teeth 2 (core), the loss can be suppressed, and in this example, the average loss can be suppressed by about 30%. ing.
  • the teeth 2 are provided with slits 7, and the slits 7 are arranged so that the center Since the distance Rs from O to the outermost peripheral position of the slit 7 is made large, the effect of suppressing loss due to eddy current can be enhanced.
  • FIG. 8 is a schematic diagram showing an example of a linear motor according to Example 2 of the present invention.
  • the schematic diagram of FIG. 8 is a diagram of the linear motor 1 cut along the YZ plane.
  • FIG. 9 is an external perspective view of an armature according to Example 2 of the present invention.
  • FIG. 10 is a rear view of the linear motor according to the second embodiment of the invention as seen from the Z direction.
  • the same reference numerals are assigned to the same configurations as those of the first embodiment, and detailed description thereof will be omitted.
  • the linear motor 1 of Example 2 has six slits 7a (first slits) arranged to extend from the inner peripheral side to the outer peripheral side of the armature (teeth 2), and arranged to extend from the outer peripheral side to the inner peripheral side.
  • Six slits 7b (second slits) are provided.
  • the magnetic flux concentrates from the outer peripheral portion toward the inner peripheral portion of the circumference of the teeth 2 . That is, the magnetic flux density is sparse in the outer peripheral portion and dense in the inner peripheral portion. It is effective to provide a slit in the inner peripheral portion where the magnetic flux is dense, but the magnetic flux is dense in the inner peripheral portion and saturation of the magnetic flux is likely to occur. If many slits are provided in this area, the magnetic material itself on the inner peripheral side is reduced, and the saturation of the magnetic flux is further enhanced.
  • the slits 7a are arranged to extend from the inner peripheral side to the outer peripheral side of the armature magnetic body (teeth 2), and the slits 7a (first slits) are arranged to extend from the outer peripheral side to the inner peripheral side.
  • the loss suppression effect is enhanced.
  • the pattern for arranging the slits is not limited to that shown in FIG. 10, the slits 7a arranged to extend from the inner peripheral side to the outer peripheral side and the slits 7b arranged to extend from the outer peripheral side to the inner peripheral side ( The loss can be effectively suppressed by providing the second slits evenly and alternately.
  • Li is the depth of the slit 7a (first slit) arranged so as to extend from the central axis side of the core on the inner peripheral side toward the outer peripheral side (coil and permanent magnet side).
  • Lo is the depth of the slit 7b (second slit) arranged to extend from the outer peripheral side to the inner peripheral side of the tooth
  • Lt is the radial length (radial thickness) from the inner peripheral side to the outer peripheral side.
  • FIG. 11 is a front view of a linear motor according to a comparative example viewed from the Z direction.
  • six slits 7a first slits
  • 7b second slit
  • the sum of the lengths of the inner and outer circumferences of the slits is shorter than the radial thickness Lt of the tooth, that is, Lt>Li+Lo.
  • the slit 7a (first slit) and the slit 7b (second slit) are arranged so as not to overlap in the circumferential direction.
  • the magnetic flux flows in from the outer peripheral side of the teeth 2 so as to be orthogonal to the surfaces. Therefore, if Lt>Li+Lo with respect to this magnetic flux, the surface that receives the inflowing magnetic flux is connected to one on the circumference, for example, in the range shown by D to D' in FIG. There is a side to it. That is, the range indicated by D to D' forms an eddy current path.
  • the loss in the plane of D to D' increases, and the loss suppressing effect of the slit decreases. That is, when slits are formed from the inside and outside of the teeth 2, it is effective to set the relationship between the lengths Li and Lo of the slits and the thickness Lt of the teeth in the radial direction to Lt ⁇ Li+Lo.
  • the loss suppression effect of the slits can be further enhanced.
  • FIG. 12 is a schematic diagram showing an example of a linear motor according to Example 3 of the present invention.
  • the schematic diagram of FIG. 12 is a diagram of the linear motor 1 cut along the YZ plane.
  • FIG. 13 is an external perspective view of an armature according to Example 3 of the present invention.
  • FIG. 14 is a rear view of the linear motor according to the third embodiment of the present invention as seen from the Z direction.
  • the same reference numerals are assigned to the same configurations as those of the first and second embodiments, and detailed description thereof will be omitted.
  • the linear motor 1 of Example 3 is provided with 6 slits 7a (first slits) from the inner peripheral side of the magnetic body (teeth 2) of the armature and 12 slits 7b (second slits) from the outer peripheral side.
  • the number of slits 7a (first slits) arranged so as to extend from the central axis side of the teeth 2 (core) on the inner peripheral side toward the outer peripheral side (coil and permanent magnet side) is Si
  • the teeth 2 When So is the number of slits 7b (second slits) arranged to extend from the outer peripheral side to the inner peripheral side of the core), there is a relationship of So ⁇ Si.
  • Magnetic flux is sparse in the magnetic material of the armature, that is, in the outer periphery of the teeth 2 .
  • the cross-sectional area of the magnetic path decreases and the magnetic flux becomes denser, making it easier for magnetic flux saturation to occur. That is, it is possible to increase the number of slits in that area of the magnetic flux, and it is effective to increase the number of slits So on the outer peripheral side where the magnetic flux is sparse than the number of slits Si on the inner peripheral side.
  • the width of the slit is narrowed to obtain the loss effect of the eddy current, and widened to obtain the cooling effect, so that the intended effect can be obtained more efficiently. Also, by increasing the number of slits, the surface area is increased and the cooling performance is greatly improved.
  • the surface area of the armature is increased by inserting many slits in consideration of the width of the slits according to the density of the magnetic fluxes on the outer peripheral side and the inner peripheral side of the armature. is possible, the cooling effect is improved, and the loss control effect can also be obtained.
  • FIG. 15 is a schematic diagram showing an example of a linear motor according to Example 4 of the present invention.
  • the schematic diagram of FIG. 15 is a diagram of the linear motor 1 cut along the YZ plane.
  • FIG. 16 is an external perspective view of an armature according to Example 4 of the present invention.
  • FIG. 17 is a rear view of the linear motor according to the fourth embodiment of the present invention as seen from the Z direction.
  • the same reference numerals are given to the same configurations as those of the first to third embodiments, and detailed description thereof will be omitted.
  • the linear motor 1 of Example 4 has six slits 7a (first slits) arranged so as to extend from the inner peripheral side of the magnetic body (teeth 2) of the armature 8 toward the outer peripheral side, Six slits 7b (second slits) are provided so as to extend sideways. Six slits 7a (first slits) extending from the inner peripheral side of the magnetic bodies (teeth 2) of the armature 8 are provided in parallel in the depth direction (outside in the radial direction). On the other hand, six slits 7b (second slits) extending from the outer peripheral side of the magnetic bodies (teeth 2) of the armature 8 are tapered in the depth direction (radially inward). That is, the width of the slit 7b (second slit) increases toward the outer periphery.
  • the slit opening can be enlarged by providing the slit 7b (second slit) whose width becomes wider toward the outer peripheral side from the outer peripheral side of the magnetic body (teeth 2).
  • the influence of the magnetic path cross-sectional area reduction due to the provision of the slit can be reduced, enabling efficient cooling.
  • FIG. 18 is an external perspective view of an armature according to an application example of Example 4 of the present invention.
  • FIG. 19 is a rear view of a linear motor according to an application example of Embodiment 4 of the present invention, viewed from the Z direction.
  • the linear motor 1 of the application example has six slits 7a (first slits) on the inner peripheral side of the magnetic bodies (teeth 2) of the armature 8, and slits 7b (first slits) that widen from the inner peripheral side to the outer peripheral side. 2 slits) are provided.
  • the high thermal conductivity member 9 is inserted into each of the slit 7a (first slit) and the slit 7b (second slit).
  • the magnetic material of the armature 8 is generally made of iron.
  • the heat transfer in the axial direction (Z direction) is improved, and the heat generated by the coil 5 can be efficiently dispersed. Furthermore, since the loss suppression effect of the slit can be expected, the loss is small and local heat rise can be suppressed.
  • FIG. 20 is a schematic diagram showing an example of a linear motor according to Example 5 of the present invention.
  • the schematic diagram of FIG. 20 is a diagram of the linear motor 1 cut along the YZ plane.
  • FIG. 21 is an external perspective view of an armature according to Example 5 of the present invention.
  • FIG. 22 is a schematic side view of the linear motor 1 according to Example 5 of the present invention cut along the YZ plane.
  • the same reference numerals are assigned to the same configurations as those of the first to fourth embodiments, and detailed description thereof will be omitted.
  • the linear motor 1 of Example 5 has six slits 7a (first slits) arranged so as to extend from the inner peripheral side to the outer peripheral side of the magnetic body (teeth 2) of the armature 8, and the magnetic body of the armature 8
  • Two slits 7c are provided on the outer peripheral surface side, that is, on the outer peripheral surface side of the teeth 2 so as to extend along the circumferential direction of the teeth 2 .
  • the slits 7a and 7c are provided for each tooth 2 arranged in the axial direction (Z direction).
  • the slit 7c third slit
  • the loss at the outer peripheral portion of the tooth 2 can also be suppressed.
  • the slits 7c (third slits) at the tips of the teeth higher-order components are included in the components of the magnetic flux density distribution in the axial direction of the gap, and a pulsation reduction effect can be expected.
  • the depth of the slit 7c (third slit) and the slit is set larger than the distance between the inner and outer peripheries of armature 8 (teeth 2) (thickness of ring-shaped armature 8).
  • the slit 7c (third slit) in the circumferential direction and the slit 7a (first slit) extending from the inner peripheral side communicate with each other inside the armature (teeth 2).
  • the cooling medium flows in from the axial direction (slits provided from the inner diameter side), flows out from the teeth (circumferential slits) to the gap surface, and flows on the side opposite to the inflow side (in the Z direction).
  • the cooling effect can be enhanced by flowing out from the opposite side).
  • the inside of the armature 8 can be cooled as a whole, and the temperature distribution can be suppressed.
  • FIG. 23 and 24 show an application example of the fifth embodiment.
  • FIG. 23 is a schematic diagram showing an example of a linear motor according to an application example of Example 5 of the present invention.
  • FIG. 24 is an external perspective view of an armature according to an application example of Example 5 of the present invention.
  • a slit 7c (third slit) provided in the circumferential direction from the outer peripheral side of the tooth 2 and a slit 7b (second slit) provided in the inner peripheral side from the outer peripheral side of the tooth 2 and penetrating in the axial direction (Z direction).
  • slits) and slits 7a (first slits) provided from the inner peripheral side to the outer peripheral side of the teeth 2 and penetrating in the axial direction (Z direction), and the respective slits are communicated within the armature 8 (teeth 2).
  • the inside of the armature 8 can be uniformly cooled, and the occurrence of loss can be made uniform, and local temperature rise can be suppressed.
  • it is preferable to make each slit uniformly it is also possible to change the position of the slits made in the circumferential direction in the axial direction in consideration of suppression of harmonics.
  • FIG. 25 is a schematic diagram showing an example of a linear motor according to Example 6 of the present invention.
  • FIG. 26 is an external perspective view of an armature according to Example 6 of the present invention.
  • FIG. 27 is a rear view of the linear motor according to the sixth embodiment of the present invention as seen from the Z direction.
  • the same reference numerals are assigned to the same configurations as those of the first to fifth embodiments, and detailed description thereof will be omitted.
  • the armature 8 has a plurality of convex teeth 2 arranged in the moving direction ((axial direction (Z direction)), and a through hole 3 is provided in the central portion of the teeth 2.
  • the teeth 2 are divided in the circumferential direction. It is divided into 6 by 7d, and the adjacent portions are in contact.Even in this case, since contact resistance (a portion with high electrical resistance) occurs between the contact surfaces, a loss suppression effect can be expected.
  • the divided portion 7d serves as a high resistance portion that increases the resistance value of the eddy current path flowing through the tooth 2 (core), so that the loss due to the eddy current can be reduced.In other words, the high resistance portion divides the tooth 2 into a plurality of parts. are formed.
  • only the projecting portions (A and B in the figure) of the convex teeth 2 may be physically divided. According to the sixth embodiment, by doing so, the six parts divided in the circumferential direction can be connected and held. As shown in FIG. 6, since the loss occurs on the outer peripheral side of the coil 5, even if only the surface in contact with the coil 5 is divided, a sufficient effect can be obtained.
  • FIG. 28 is a schematic diagram showing an example of a linear motor according to Application Example 1 of Example 6 of the present invention.
  • FIG. 29 is an external perspective view of an armature according to Application 1 of Embodiment 6 of the present invention.
  • FIG. 30 is a rear view of the linear motor according to application example 1 of embodiment 6 of the present invention as seen from the Z direction.
  • the through holes 3 are not formed in the convex teeth 2 .
  • the teeth 2 are circumferentially divided into six parts by the dividing parts 7d, and the adjacent parts are in contact with each other. Similar effects can be obtained in such a case as well. Also, as in FIG. 26, only the protruding portions (A and B in the drawing) of the convex teeth 2 may be physically divided.
  • FIG. 31 is a schematic diagram showing an example of a linear motor according to Application Example 2 of Example 6 of the present invention.
  • FIG. 32 is an external perspective view of an armature according to Application 2 of Embodiment 6 of the present invention.
  • FIG. 33 is a rear view of a linear motor according to application example 2 of embodiment 6 of the present invention, viewed from the Z direction.
  • through holes 3 are not formed in convex teeth 2 .
  • slits 7 are formed in convex teeth 2 .
  • the slits may be provided from the inner peripheral side of the teeth 2 and may be provided on the outer peripheral side.
  • FIG. 34 is a configuration diagram of an electric suspension device equipped with a linear motor according to Embodiment 7 of the present invention.
  • the electric suspension device 100 has an inner rod 90 connected to the inside of an armature composed of teeth 2 and coils 5 , and a rod end 30 and an inner tube 60 are arranged at the ends of the inner rod 90 .
  • the rod end 30 is connected to a suspension link on the tire side.
  • a permanent magnet 10 facing each other with a gap is provided on the outer peripheral side of the armature, and an outer cylinder 20 made of a magnetic material is provided on the outer peripheral side of the permanent magnet 10 .
  • a spring stopper 50 is connected to the outer cylinder 20 and a compressed spring 40 is arranged.
  • the armature connected to the tire side and the secondary side members (permanent magnet 10, outer cylinder 20, etc.) connected to the vehicle body move relatively linearly and are supported by the inner tube sliding member 80.
  • FIG. A rod support member 70 is coupled to the outer cylinder 20, and the rod support member 70 is provided with, for example, a bearing or a slide bearing so that the movable portion can relatively move linearly.
  • any one of the first to sixth embodiments described above may be applied to the linear motor of the seventh embodiment. According to the seventh embodiment, it is possible to provide an electric suspension device having the effects of the first to sixth embodiments.
  • the present invention reduces eddy current loss due to concentration of magnetic flux generated on the central axis side of the armature.
  • slits provided in the magnetic material are used to divide the eddy current path and lengthen the path of the eddy current path. It is not limited to slits.
  • a method of inserting a high resistance member a method of dividing a part without a gap such as a slit, etc., and the like can be obtained if a high resistance portion is generated on the teeth (core) due to contact resistance. That is, even if the width of the cut or slit is zero, there may be a high resistance portion such as contact resistance generated when two members come into contact with each other.
  • the effective depth of the cuts and slits is described as an example. It doesn't matter if

Abstract

The purpose of the present invention is to provide a linear motor in which the reduction of thrust and the rise of temperature are suppressed. The linear motor according to the present invention has an armature 8 having teeth 2 and coils 5 provided on the teeth 2 and permanent magnets 10 provided on the outer circumferential side of the armature 8, wherein the armature 8 and the permanent magnets 10 move relative to each other. The teeth 2 are provided with slits 7 for increasing the resistance value of the path of eddy current flowing through the teeth 2. The slits 7 are disposed so as to extend from the inner circumferential side of the teeth to the outer circumferential side thereof.

Description

リニアモータ及びこれを備えた電動サスペンション装置Linear motor and electric suspension device equipped with the same
 本発明はリニアモータ及びこれを備えた電動サスペンション装置に関する。 The present invention relates to a linear motor and an electric suspension device equipped with the same.
 リニアモータを備えたサスペンションとして、例えば特許文献1に記載の技術がある。 As a suspension equipped with a linear motor, there is a technique described in Patent Document 1, for example.
 特許文献1に記載のサスペンションは、内周側に磁石を備えた有底筒状の外筒と、前記外筒に移動可能に挿入され、一端側が前記外筒から延出し、他端側の外周側に電機子を備えた中空の第1ロッドと、一端側が前記第1ロッドの内周側に摺動可能に嵌合され、他端側が前記外筒の底部に固定される第2ロッドと、により構成されている。第1ロッドの一端側の内周には、前記第2ロッドの外周との間に隙間部が形成されている。隙間部には、一端側が前記電機子と接続され、他端側が外部へ延びる配線が配されている。 The suspension described in Patent Document 1 includes a bottomed cylindrical outer cylinder having a magnet on the inner peripheral side, a movably inserted into the outer cylinder, one end extending from the outer cylinder, and an outer periphery on the other end side. a hollow first rod having an armature on one side; a second rod having one end slidably fitted to the inner peripheral side of the first rod and the other end fixed to the bottom of the outer cylinder; It is composed of A gap is formed between the inner periphery of the first rod on one end side and the outer periphery of the second rod. Wiring is arranged in the clearance, one end of which is connected to the armature and the other end of which extends to the outside.
特開2013-29159号公報JP 2013-29159 A
 特許文献1のサスペンションは、内周側に磁石を備えた有底筒状の外筒と、前記外筒の内側に挿入された電機子が、相対的に駆動するリニアモータで構成している。リニアモータは、外周側に永久磁石と永久磁石の磁束を還流させる磁性体の外筒を有しており、その内側にコイルおよびティースからなる電機子を配置している。この構造では、薄肉化(径方向の寸法が小さい構造)が可能である永久磁石と磁性体からなる外筒とが配置され、径方向の寸法が大きいコイルとティースを配置することで、ギャップ面(永久磁石と電機子の対向面)を外周側に配置することが可能となり、大きな推力が得られる。 The suspension of Patent Document 1 is composed of a bottomed cylindrical outer cylinder having a magnet on the inner peripheral side and a linear motor that relatively drives an armature inserted inside the outer cylinder. A linear motor has a permanent magnet on the outer peripheral side and a magnetic outer cylinder that circulates the magnetic flux of the permanent magnet, and an armature made up of coils and teeth is arranged inside the outer cylinder. In this structure, a permanent magnet that can be made thin (a structure with small radial dimensions) and an outer cylinder made of a magnetic material are arranged, and by arranging coils and teeth with large radial dimensions, the gap surface It is possible to dispose (the opposing surface of the permanent magnet and the armature) on the outer peripheral side, and a large thrust force can be obtained.
 一般的に電機子はコイルの周りを囲うように磁性体のティースや磁路を構成するため、必然的に径方向の寸法が大きくなる。このため、電機子を外周側に配置した構造では、ギャップ面が内径側に配置されるため、ギャップ面の面積が小さくなり得られる推力が小さくなる。従って、外周側に永久磁石と永久磁石の磁束を還流させる磁性体の外筒を有し、その内側にコイルおよびティースからなる電機子を配置することで大きな推力が得られる。 In general, the armature consists of magnetic teeth and a magnetic path that surrounds the coil, so the dimension in the radial direction is inevitably large. For this reason, in a structure in which the armature is arranged on the outer peripheral side, the gap surface is arranged on the inner diameter side, so the area of the gap surface becomes small, and the thrust that can be obtained is small. Therefore, a large thrust force can be obtained by providing a permanent magnet and a magnetic outer cylinder for returning the magnetic flux of the permanent magnet on the outer peripheral side, and arranging an armature composed of a coil and teeth inside the permanent magnet.
 しかしながら、電機子のコイルをU字状に囲う磁性体は、円盤形状をしており、内周側に行くほど磁性体における磁束の経路の断面積が小さくなるため、磁束の飽和が発生しやすく、磁束密度が高くなる。磁束密度は内周側に行くほど高くなり、磁性体中の磁束密度Bのべき乗で発生する損失が大きくなり、リニアモータの推力が減少し、電機子中央部の磁性体の温度が高くなるといった課題があった。 However, the magnetic material that surrounds the armature coil in a U-shape is disk-shaped, and the cross-sectional area of the magnetic flux path in the magnetic material decreases toward the inner circumference, so magnetic flux saturation is likely to occur. , the magnetic flux density increases. The magnetic flux density increases toward the inner circumference, and the loss generated by the power of the magnetic flux density B in the magnetic material increases, the thrust of the linear motor decreases, and the temperature of the magnetic material in the center of the armature increases. I had a problem.
 本発明の目的は、上記課題を解決し、推力の低下、温度の上昇を抑制したリニアモータ及びこれを備えた電動サスペンション装置を提供することにある。 An object of the present invention is to solve the above problems and to provide a linear motor that suppresses a decrease in thrust and an increase in temperature, and an electric suspension device equipped with the same.
 上記目的を達成するために本発明は、ティース及び前記ティースに備えられたコイルを有する電機子と、前記電機子の外周側に備えられた永久磁石とを有し、前記電機子と前記永久磁石が相対的に移動するリニアモータであって、前記ティースには、前記ティースに流れる渦電流路の抵抗値を上げる高抵抗部を備えたことを特徴とする。 In order to achieve the above object, the present invention has an armature having teeth and coils provided on the teeth, permanent magnets provided on the outer peripheral side of the armature, and the armature and the permanent magnets are provided. is relatively moved, wherein the teeth are provided with high resistance portions that increase the resistance value of the eddy current path flowing through the teeth.
 本発明によれば、推力の低下、温度の上昇を抑制したリニアモータ及びこれを備えた電動サスペンション装置を提供することができる。 According to the present invention, it is possible to provide a linear motor that suppresses a decrease in thrust and an increase in temperature, and an electric suspension device including the same.
本発明の実施例1に係るリニアモータの一例を示す模式図である。1 is a schematic diagram showing an example of a linear motor according to Example 1 of the present invention; FIG. 本発明の実施例1に係る電機子の外観斜視図である。1 is an external perspective view of an armature according to Example 1 of the present invention; FIG. 本発明の実施例1に係るリニアモータをZ方向から見た正面図である。It is the front view which looked at the linear motor concerning Example 1 of this invention from the Z direction. 本発明の実施例1に係るリニアモータをZ方向から見た背面図である。It is the back view which looked at the linear motor which concerns on Example 1 of this invention from the Z direction. 本発明の実施例1に係るリニアモータ1をYZ平面で切り取った側面の模式図である。1 is a schematic side view of a linear motor 1 according to Example 1 of the present invention cut along a YZ plane; FIG. 6つのコイル5に3相交流を流した、ある瞬間の損失の分布を示す図である。FIG. 4 is a diagram showing the distribution of loss at a certain moment when a three-phase alternating current is passed through six coils 5; 磁界解析を用いたスリット7がある場合と、ない場合における渦電流損失の比率を比較する図である。FIG. 4 is a diagram comparing the ratio of eddy current loss with and without slits 7 using magnetic field analysis. 本発明の実施例2に係るリニアモータの一例を示す模式図である。It is a schematic diagram which shows an example of the linear motor based on Example 2 of this invention. 本発明の実施例2に係る電機子の外観斜視図である。FIG. 7 is an external perspective view of an armature according to Example 2 of the present invention; 本発明の実施例2に係るリニアモータをZ方向から見た背面図である。It is the back view which looked at the linear motor based on Example 2 of this invention from the Z direction. 比較例に係るリニアモータをZ方向から見た正面図である。It is the front view which looked at the linear motor which concerns on a comparative example from the Z direction. 本発明の実施例3に係るリニアモータの一例を示す模式図である。FIG. 10 is a schematic diagram showing an example of a linear motor according to Example 3 of the present invention; 本発明の実施例3に係る電機子の外観斜視図である。FIG. 8 is an external perspective view of an armature according to Example 3 of the present invention; 本発明の実施例3に係るリニアモータをZ方向から見た背面図である。It is the back view which looked at the linear motor based on Example 3 of this invention from the Z direction. 本発明の実施例4に係るリニアモータの一例を示す模式図である。FIG. 5 is a schematic diagram showing an example of a linear motor according to Example 4 of the present invention; 本発明の実施例4に係る電機子の外観斜視図である。FIG. 11 is an external perspective view of an armature according to Example 4 of the present invention; 本発明の実施例4に係るリニアモータをZ方向から見た背面図である。It is the back view which looked at the linear motor based on Example 4 of this invention from the Z direction. 本発明の実施例4の応用例に係る電機子の外観斜視図である。FIG. 11 is an external perspective view of an armature according to an application example of Example 4 of the present invention; 本発明の実施例4の応用例に係るリニアモータをZ方向から見た背面図である。FIG. 11 is a rear view of a linear motor according to an application example of Example 4 of the present invention, viewed from the Z direction; 本発明の実施例5に係るリニアモータの一例を示す模式図である。FIG. 11 is a schematic diagram showing an example of a linear motor according to Example 5 of the present invention; 本発明の実施例5に係る電機子の外観斜視図である。FIG. 11 is an external perspective view of an armature according to Example 5 of the present invention; 本発明の実施例5に係るリニアモータ1をYZ平面で切り取った側面の模式図である。FIG. 11 is a schematic side view of the linear motor 1 according to Example 5 of the present invention cut along the YZ plane. 本発明の実施例5の応用例に係るリニアモータの一例を示す模式図である。FIG. 11 is a schematic diagram showing an example of a linear motor according to an application example of Example 5 of the present invention; 本発明の実施例5の応用例に係る電機子の外観斜視図である。FIG. 11 is an external perspective view of an armature according to an application example of Example 5 of the present invention; 本発明の実施例6に係るリニアモータの一例を示す模式図である。FIG. 11 is a schematic diagram showing an example of a linear motor according to Example 6 of the present invention; 本発明の実施例6に係る電機子の外観斜視図である。FIG. 11 is an external perspective view of an armature according to Example 6 of the present invention; 本発明の実施例6に係るリニアモータをZ方向から見た背面図である。It is the back view which looked at the linear motor based on Example 6 of this invention from the Z direction. 本発明の実施例6の応用例1に係るリニアモータの一例を示す模式図である。FIG. 11 is a schematic diagram showing an example of a linear motor according to Application Example 1 of Example 6 of the present invention; 本発明の実施例6の応用例1に係る電機子の外観斜視図である。FIG. 11 is an external perspective view of an armature according to Application Example 1 of Example 6 of the present invention; 本発明の実施例6の応用例1に係るリニアモータをZ方向から見た背面図である。FIG. 11 is a rear view of a linear motor according to Application Example 1 of Embodiment 6 of the present invention, viewed from the Z direction; 本発明の実施例6の応用例2に係るリニアモータの一例を示す模式図である。FIG. 11 is a schematic diagram showing an example of a linear motor according to Application Example 2 of Example 6 of the present invention; 本発明の実施例6の応用例2に係る電機子の外観斜視図である。FIG. 11 is an external perspective view of an armature according to Application Example 2 of Example 6 of the present invention; 本発明の実施例6の応用例2に係るリニアモータをZ方向から見た背面図である。FIG. 11 is a rear view of a linear motor according to Application Example 2 of Embodiment 6 of the present invention, viewed from the Z direction; 本発明の実施例7に係るリニアモータを搭載した電動サスペンション装置の構成図である。FIG. 11 is a configuration diagram of an electric suspension device equipped with a linear motor according to Embodiment 7 of the present invention;
 以下、本発明の実施例について添付の図面を参照しつつ説明する。同様の構成要素には同様の符号を付し、同様の説明は繰り返さない。 Hereinafter, embodiments of the present invention will be described with reference to the attached drawings. Similar components are denoted by similar reference numerals, and similar descriptions are not repeated.
 本発明の各種の構成要素は必ずしも個々に独立した存在である必要はなく、一の構成要素が複数の部材から成ること、複数の構成要素が一の部材から成ること、或る構成要素が別の構成要素の一部であること、或る構成要素の一部と他の構成要素の一部とが重複すること、などを許容する。 The various constituent elements of the present invention do not necessarily have to be independent entities, and one constituent element may consist of a plurality of members, a plurality of constituent elements may consist of one member, a certain constituent element may part of a component, part of one component overlaps part of another component, and so on.
 本実施例では、電動サンペンション装置に適用するリニアモータの例を説明する。図1は、本発明の実施例1に係るリニアモータの一例を示す模式図である。 In this embodiment, an example of a linear motor applied to an electric suspension device will be described. FIG. 1 is a schematic diagram showing an example of a linear motor according to Example 1 of the present invention.
 リニアモータは、筒状に形成された外筒の内部を電機子が往復動する。電機子が移動する軸方向をZ方向、Z方向と直交する方向をY方向、Z方向及びY方向と直交する方向をX方向とする。 A linear motor has an armature that reciprocates inside a cylindrical outer cylinder. The axial direction in which the armature moves is the Z direction, the direction perpendicular to the Z direction is the Y direction, and the direction perpendicular to the Z and Y directions is the X direction.
 図1の模式図は、リニアモータ1をYZ平面で切り取った図である。図1のリニアモータ1は永久磁石5個に対し、コイル乃至ティースが6個配置される5極6スロット構成のリニアモータの例である。永久磁石とコイル、及びティースの組み合わせは一例であって、この組み合わせに限定されるものではない。例えば、7極6スロット、10極12スロット、8極9スロットなどどのような組み合わせでも同様の効果が得られれば適用可能である。 The schematic diagram of FIG. 1 is a diagram of the linear motor 1 cut along the YZ plane. The linear motor 1 shown in FIG. 1 is an example of a linear motor having a five-pole, six-slot configuration in which six coils or teeth are arranged for five permanent magnets. The combination of permanent magnets, coils, and teeth is an example, and the combination is not limited to this combination. For example, any combination of 7 poles and 6 slots, 10 poles and 12 slots, 8 poles and 9 slots can be applied if the same effect can be obtained.
 コイル5とティース2(コア)で構成される電機子8は、磁性体で構成される外筒20の内側に設けられた永久磁石10の2次側の部材と相対的に直線駆動し、リニアモータ1を構成する。電機子8と2次側部材は、ロッド(図示しない)等を介してタイヤ側(図示しない)、車体側(図示しない)に接続され、車体側の振動を抑制する電動サスペンション装置を構成する。ここで、リニアモータ1のコイル5は通常、U相、V相、W相の3相のインバータ(図示しない)に接続され、3相の電流を制御することで、リニアモータ1が軸方向(Z方向)の推力を発生させ振動を抑制するものである。各相のコイル5に電流を流した際に、電流の変化の大きいコイルの近傍の磁性体に損失が発生する。本実施例のリニアモータ1は、中心部に貫通孔3が形成された中空で凸状の磁性体でティース2を構成し、それをZ方向に複数並べて電機子8が構成されている。 An armature 8 composed of a coil 5 and teeth 2 (core) is linearly driven relative to a member on the secondary side of a permanent magnet 10 provided inside an outer cylinder 20 composed of a magnetic material. A motor 1 is constructed. The armature 8 and the secondary side member are connected to the tire side (not shown) and the vehicle body side (not shown) via rods (not shown) or the like to form an electric suspension device that suppresses vibrations on the vehicle body side. Here, the coil 5 of the linear motor 1 is normally connected to a three-phase inverter (not shown) of U-phase, V-phase, and W-phase, and by controlling the three-phase current, the linear motor 1 moves in the axial direction ( Z direction) thrust is generated to suppress vibration. When a current is passed through the coil 5 of each phase, a loss occurs in the magnetic material near the coil where the current changes greatly. In the linear motor 1 of this embodiment, teeth 2 are made of hollow convex magnetic bodies with through holes 3 formed in the center, and a plurality of teeth 2 are arranged in the Z direction to form an armature 8 .
 図2は、本発明の実施例1に係る電機子の外観斜視図である。図3は、本発明の実施例1に係るリニアモータをZ方向から見た正面図である。図4は、本発明の実施例1に係るリニアモータをZ方向から見た背面図である。図5は、本発明の実施例1に係るリニアモータ1をYZ平面で切り取った側面の模式図である。電機子8は、複数のコイル5及びティース2(コア)で構成される。ティース2は、軸方向(Z方向)の突出した突出部2aと、突出部2aから径方向外側(外周側)の延びた平板部2bを備えている。突出部2aの内周側には、軸方向(Z方向)に向かって貫通した貫通孔3が形成されている。 FIG. 2 is an external perspective view of the armature according to Example 1 of the present invention. FIG. 3 is a front view of the linear motor according to Example 1 of the present invention as seen from the Z direction. FIG. 4 is a rear view of the linear motor according to the first embodiment of the present invention as seen from the Z direction. FIG. 5 is a schematic side view of the linear motor 1 according to Example 1 of the present invention cut along the YZ plane. The armature 8 is composed of a plurality of coils 5 and teeth 2 (core). The tooth 2 includes a protruding portion 2a protruding in the axial direction (Z direction) and a flat plate portion 2b extending radially outward (peripheral side) from the protruding portion 2a. A through hole 3 penetrating in the axial direction (Z direction) is formed on the inner peripheral side of the projecting portion 2a.
 電機子8のティース2(コア)には、内周側から外周側に延びるように配置したスリット7(切り込み)が設けられている。スリット7は、突出部2aから平板部2bに亘って形成されている。またスリット7は、後述するようにティース2(コア)に流れる渦電流路の抵抗値を上げる高抵抗部として機能する。本実施例ではスリット7の数は6本であるが、この本数に限定されるわけではない。スリットが少ないと損失抑制効果は小さいが、1本以上の本数があれば、抑制効果は得られる。 The teeth 2 (core) of the armature 8 are provided with slits 7 (notches) arranged so as to extend from the inner peripheral side to the outer peripheral side. The slit 7 is formed from the projecting portion 2a to the flat plate portion 2b. Also, the slits 7 function as high resistance portions that increase the resistance value of the eddy current path flowing through the teeth 2 (core), as will be described later. Although the number of slits 7 is six in this embodiment, it is not limited to this number. If the number of slits is small, the loss suppression effect is small, but if the number of slits is one or more, the loss suppression effect can be obtained.
 図3乃至図4に示すように、突出部2aから平板部2bに亘って形成されたスリット7は、ティース2(コア)の内周側から設けられ、コイル5が見える深さまで深さがある。
つまり、図5に示すように、ティース2の中心Oからコイル5が挿入されるティースの窪みの内周側面までの距離をRcとし、ティース2の中心Oからスリット7の最外周までの距離をRsとしたとき、距離RsがRcより大きくなるような関係にある(Rs>Rc)。つまり、スリット7からコイル5が見える状態になっている。このようにすることで、スリット7に冷却媒体(例えば冷却風、冷却油、冷却水、クーラントなど)を中央部の穴に封入または、一方向から流し込むことにより冷却媒体が直接、コイル5から熱を奪い、冷却することができる。
As shown in FIGS. 3 and 4, the slit 7 formed from the projecting portion 2a to the flat plate portion 2b is provided from the inner peripheral side of the tooth 2 (core) and has a depth that allows the coil 5 to be seen. .
That is, as shown in FIG. 5, let Rc be the distance from the center O of the tooth 2 to the inner peripheral side of the recess of the tooth into which the coil 5 is inserted, and let Rc be the distance from the center O of the tooth 2 to the outermost periphery of the slit 7. When Rs, there is a relationship such that the distance Rs is greater than Rc (Rs>Rc). That is, the coil 5 can be seen through the slit 7 . By doing so, the cooling medium (for example, cooling air, cooling oil, cooling water, coolant, etc.) is enclosed in the hole in the center of the slit 7 or is flowed from one direction, so that the cooling medium directly transfers heat from the coil 5. can be taken away and cooled.
 図6は、6つのコイル5に3相交流を流した、ある瞬間の損失の分布を示す図である。
ティース2(コア)では、外径側に向かって磁路面積が拡大するため、ティース2(コア)の外周側は磁束密度が低くなる。一方、ティース2(コア)の内周側は磁束密度が高くなる。ティース2(コア)を一体で形成した場合、磁束密度が高い内周側で渦電流による損失が大きくなる。図6に示すように、渦電流損失は、ティース2のコイル5が収まる内周側(紙面下側)に分布し、とくに、コイル5の中心側に高い損失の領域が発生する。
FIG. 6 is a diagram showing the distribution of loss at a certain moment when a three-phase alternating current is passed through six coils 5. As shown in FIG.
Since the magnetic path area of the tooth 2 (core) increases toward the outer diameter side, the magnetic flux density decreases on the outer peripheral side of the tooth 2 (core). On the other hand, the inner peripheral side of the tooth 2 (core) has a high magnetic flux density. When the tooth 2 (core) is integrally formed, loss due to eddy current increases on the inner peripheral side where the magnetic flux density is high. As shown in FIG. 6 , the eddy current loss is distributed on the inner peripheral side (lower side of the drawing) of the teeth 2 where the coil 5 is accommodated, and a high loss area occurs particularly on the center side of the coil 5 .
 そこで、本実施例では、渦電流路を分断するために、ティース2(コア)にスリット7を備えている。スリット7は、中心Oからティース2のコイル5が挿入される窪みの内周側の面までの距離Rcに対して、中心Oからスリット7の最外周位置までの距離Rsが大きくなるようにしている。スリット7は、磁性体であるティース2(コア)に流れる渦電流路の抵抗値を上げる高抵抗部となるので、渦電流による損失が高い領域での磁性体を分断することができ、損失抑制効果を高めることができる。 Therefore, in this embodiment, the teeth 2 (core) are provided with slits 7 in order to divide the eddy current path. The slits 7 are arranged so that the distance Rs from the center O to the outermost peripheral position of the slit 7 is larger than the distance Rc from the center O to the inner peripheral surface of the recess into which the coil 5 of the tooth 2 is inserted. there is The slit 7 becomes a high resistance portion that increases the resistance value of the eddy current path flowing through the tooth 2 (core), which is a magnetic material, so that the magnetic material can be divided in the area where the loss due to the eddy current is high, thereby suppressing the loss. You can increase the effect.
 図7は、磁界解析を用いたスリット7がある場合と、ない場合における渦電流損失の比率を比較する図である。図7では、縦軸に損失比、横軸に電機子8のZ方向位置(Z1~Z3)を示している。損失比は電機子8のZ方向位置に応じて変化するが、ティース2(コア)にスリット7を入れることで、損失が抑制され、本例では平均値で約30%程度の損失が抑制できている。 FIG. 7 is a diagram comparing the ratio of eddy current loss with and without the slit 7 using magnetic field analysis. In FIG. 7, the vertical axis indicates the loss ratio, and the horizontal axis indicates the Z-direction position (Z1 to Z3) of the armature 8. In FIG. The loss ratio varies depending on the Z-direction position of the armature 8, but by inserting the slits 7 in the teeth 2 (core), the loss can be suppressed, and in this example, the average loss can be suppressed by about 30%. ing.
 本実施例によれば、ティース2(コア)にスリット7を備え、このスリット7は中心Oからティース2のコイル5が挿入される窪みの内周側の面までの距離Rcに対して、中心Oからスリット7の最外周位置までの距離Rsが大きくなるようにしているので、渦電流による損失抑制効果を高めることができる。 According to this embodiment, the teeth 2 (cores) are provided with slits 7, and the slits 7 are arranged so that the center Since the distance Rs from O to the outermost peripheral position of the slit 7 is made large, the effect of suppressing loss due to eddy current can be enhanced.
 本発明の実施例2について説明する。図8は、本発明の実施例2に係るリニアモータの一例を示す模式図である。図8の模式図は、リニアモータ1をYZ平面で切り取った図である。図9は、本発明の実施例2に係る電機子の外観斜視図である。図10は、本発明の実施例2に係るリニアモータをZ方向から見た背面図である。実施例1と同一の構成については同一の符号を付し、その詳細な説明は省略する。 Example 2 of the present invention will be described. FIG. 8 is a schematic diagram showing an example of a linear motor according to Example 2 of the present invention. The schematic diagram of FIG. 8 is a diagram of the linear motor 1 cut along the YZ plane. FIG. 9 is an external perspective view of an armature according to Example 2 of the present invention. FIG. 10 is a rear view of the linear motor according to the second embodiment of the invention as seen from the Z direction. The same reference numerals are assigned to the same configurations as those of the first embodiment, and detailed description thereof will be omitted.
 実施例2のリニアモータ1は、電機子(ティース2)の内周側から外周側に延びるように配置した6本のスリット7a(第1スリット)、外周側から内周側に延びるように配置した6本のスリット7b(第2スリット)が設けられている。電機子8の内周側の磁性体は、ティース2の円周の外周部から内周部に向かって磁束が集中する。つまり、磁束密度が外周部で疎、内周部で密になる。この磁束が密になる内周部にスリットを設けるのが効果的であるが、内周部は磁束が密になり、磁束の飽和が発生しやすい。この領域に多くのスリットを設けてしまうと、内周側の磁性体自体が減少し、さらに磁束の飽和が強まってしまう。 The linear motor 1 of Example 2 has six slits 7a (first slits) arranged to extend from the inner peripheral side to the outer peripheral side of the armature (teeth 2), and arranged to extend from the outer peripheral side to the inner peripheral side. Six slits 7b (second slits) are provided. In the magnetic material on the inner peripheral side of the armature 8 , the magnetic flux concentrates from the outer peripheral portion toward the inner peripheral portion of the circumference of the teeth 2 . That is, the magnetic flux density is sparse in the outer peripheral portion and dense in the inner peripheral portion. It is effective to provide a slit in the inner peripheral portion where the magnetic flux is dense, but the magnetic flux is dense in the inner peripheral portion and saturation of the magnetic flux is likely to occur. If many slits are provided in this area, the magnetic material itself on the inner peripheral side is reduced, and the saturation of the magnetic flux is further enhanced.
 そこで、実施例2では、電機子の磁性体(ティース2)の内周側から外周側に延びるように配置したスリット7a(第1スリット)、および外周側から内周側に延びるように配置したスリット7b(第2スリット)を効率よく配置することで、より損失抑制効果を高めている。スリットを配置するパターンは、図10のものに限定されるわけではないが、内周側から外周側に延びるように配置したスリット7aと外周側から内周側に延びるように配置したスリット7b(第2スリット)を均等に、交互に設ける方が効果的に損失を抑制できる。 Therefore, in Example 2, the slits 7a (first slits) are arranged to extend from the inner peripheral side to the outer peripheral side of the armature magnetic body (teeth 2), and the slits 7a (first slits) are arranged to extend from the outer peripheral side to the inner peripheral side. By efficiently arranging the slits 7b (second slits), the loss suppression effect is enhanced. Although the pattern for arranging the slits is not limited to that shown in FIG. 10, the slits 7a arranged to extend from the inner peripheral side to the outer peripheral side and the slits 7b arranged to extend from the outer peripheral side to the inner peripheral side ( The loss can be effectively suppressed by providing the second slits evenly and alternately.
 ここで、図10に示すように、内周側のコアの中心軸側から外周側(コイルや永久磁石側)に向かって延びるように配置したスリット7a(第1スリット)の深さをLiとし、ティースの外周側から内周側に延びるように配置したスリット7b(第2スリット)の深さをLoとし、内周側から外周側までの径方向長さ(径方向の厚さ)をLtとしたとき、Lt≦Li+Loの関係とすることにより、中心軸に対して同一半径にある磁性体の円周面が必ずスリットによって分断されることになる。換言すると、スリット7a(第1スリット)とスリット7b(第2スリット)とは周方向において一部が重なるように配置されている。 Here, as shown in FIG. 10, Li is the depth of the slit 7a (first slit) arranged so as to extend from the central axis side of the core on the inner peripheral side toward the outer peripheral side (coil and permanent magnet side). , Lo is the depth of the slit 7b (second slit) arranged to extend from the outer peripheral side to the inner peripheral side of the tooth, and Lt is the radial length (radial thickness) from the inner peripheral side to the outer peripheral side. Then, by setting the relationship Lt≦Li+Lo, the circumferential surface of the magnetic body having the same radius with respect to the central axis is always divided by the slit. In other words, the slit 7a (first slit) and the slit 7b (second slit) are arranged so as to partially overlap in the circumferential direction.
 図11は、比較例に係るリニアモータをZ方向から見た正面図である。図11では、リニアモータ1のティース2の内周側から外周側に延びるように配置した6本のスリット7a(第1スリット)、外周側から内周側に延びるように配置した6本のスリット7b(第2スリット)が入っている。比較例では、スリットの内外周の長さの総和が、ティースの径方向の厚さLtより短く、つまりLt>Li+Loとなっている。換言すると、スリット7a(第1スリット)とスリット7b(第2スリット)とは周方向において重ならないように配置されている。通常、磁束はティース2の外周側から面に直交するように流入する。したがって、この磁束に対し、Lt>Li+Loであると、図11において、例えば、D~D’で示した範囲の部分のように、流入した磁束を受ける面が円周上に1つに繋がってしまう面が生じる。すなわち、D~D’で示した範囲が渦電流路を形成する。このため、D~D’の面での損失が大きくなり、スリットによる損失抑制効果が減少してしまう。つまり、ティース2の内外からスリットを入れる場合、各スリットの長さLi、Loと、ティースにおける径方向の厚さLtの関係を、Lt≦Li+Loとすることが効果的である。 FIG. 11 is a front view of a linear motor according to a comparative example viewed from the Z direction. In FIG. 11, six slits 7a (first slits) arranged to extend from the inner circumference side to the outer circumference side of the teeth 2 of the linear motor 1, and six slits arranged to extend from the outer circumference side to the inner circumference side. 7b (second slit) is included. In the comparative example, the sum of the lengths of the inner and outer circumferences of the slits is shorter than the radial thickness Lt of the tooth, that is, Lt>Li+Lo. In other words, the slit 7a (first slit) and the slit 7b (second slit) are arranged so as not to overlap in the circumferential direction. Normally, the magnetic flux flows in from the outer peripheral side of the teeth 2 so as to be orthogonal to the surfaces. Therefore, if Lt>Li+Lo with respect to this magnetic flux, the surface that receives the inflowing magnetic flux is connected to one on the circumference, for example, in the range shown by D to D' in FIG. There is a side to it. That is, the range indicated by D to D' forms an eddy current path. As a result, the loss in the plane of D to D' increases, and the loss suppressing effect of the slit decreases. That is, when slits are formed from the inside and outside of the teeth 2, it is effective to set the relationship between the lengths Li and Lo of the slits and the thickness Lt of the teeth in the radial direction to Lt≦Li+Lo.
 実施例2によれば、実施例1に効果に加え、スリットによる損失抑制効果をより高めることができる。 According to the second embodiment, in addition to the effects of the first embodiment, the loss suppression effect of the slits can be further enhanced.
 本発明の実施例3について説明する。図12は、本発明の実施例3に係るリニアモータの一例を示す模式図である。図12の模式図は、リニアモータ1をYZ平面で切り取った図である。図13は、本発明の実施例3に係る電機子の外観斜視図である。図14は、本発明の実施例3に係るリニアモータをZ方向から見た背面図である。実施例1、2と同一の構成については同一の符号を付し、その詳細な説明は省略する。 Example 3 of the present invention will be explained. FIG. 12 is a schematic diagram showing an example of a linear motor according to Example 3 of the present invention. The schematic diagram of FIG. 12 is a diagram of the linear motor 1 cut along the YZ plane. FIG. 13 is an external perspective view of an armature according to Example 3 of the present invention. FIG. 14 is a rear view of the linear motor according to the third embodiment of the present invention as seen from the Z direction. The same reference numerals are assigned to the same configurations as those of the first and second embodiments, and detailed description thereof will be omitted.
 実施例3のリニアモータ1は、電機子の磁性体(ティース2)の内周側から6本のスリット7a(第1スリット)、外周側から12本のスリット7b(第2スリット)を設けている。このとき、内周側のティース2(コア)の中心軸側から外周側(コイルや永久磁石側)に向かって延びるように配置したスリット7a(第1スリット)の数をSiとし、ティース2(コア)の外周側から内周側に延びるように配置したスリット7b(第2スリット)の数をSoとしたとき、So≧Siの関係にある。電機子の磁性体、つまりティース2の外周部は磁束が疎になる。スリットの本数が増えると磁路断面積が減少し、磁束が密になっていくため磁束の飽和が発生しやすくなる。つまり、磁束のその領域のスリットは数を多くすることが可能であり、磁束が疎になる外周側のスリット数Soを、内周側のスリット数Siより多くするのが効果的である。また、スリットの幅は渦電流の損失効果を得る場合は細く、冷却効果を得る場合は太くすることでより効率的に、狙った効果が得られる。また、スリット本数を増加させることにより表面積が増大し、冷却性能が大きく向上する。 The linear motor 1 of Example 3 is provided with 6 slits 7a (first slits) from the inner peripheral side of the magnetic body (teeth 2) of the armature and 12 slits 7b (second slits) from the outer peripheral side. there is At this time, the number of slits 7a (first slits) arranged so as to extend from the central axis side of the teeth 2 (core) on the inner peripheral side toward the outer peripheral side (coil and permanent magnet side) is Si, and the teeth 2 ( When So is the number of slits 7b (second slits) arranged to extend from the outer peripheral side to the inner peripheral side of the core), there is a relationship of So≧Si. Magnetic flux is sparse in the magnetic material of the armature, that is, in the outer periphery of the teeth 2 . As the number of slits increases, the cross-sectional area of the magnetic path decreases and the magnetic flux becomes denser, making it easier for magnetic flux saturation to occur. That is, it is possible to increase the number of slits in that area of the magnetic flux, and it is effective to increase the number of slits So on the outer peripheral side where the magnetic flux is sparse than the number of slits Si on the inner peripheral side. Further, the width of the slit is narrowed to obtain the loss effect of the eddy current, and widened to obtain the cooling effect, so that the intended effect can be obtained more efficiently. Also, by increasing the number of slits, the surface area is increased and the cooling performance is greatly improved.
 実施例3によれば、電機子の外周側および電機子の内周側の磁束の粗密に合わせて、スリットの幅を考慮し、多くのスリットを入れることで、電機子の表面積を大きくすることが可能となり、冷却効果が向上するとともに、損失抑制効果も得ることができる。 According to the third embodiment, the surface area of the armature is increased by inserting many slits in consideration of the width of the slits according to the density of the magnetic fluxes on the outer peripheral side and the inner peripheral side of the armature. is possible, the cooling effect is improved, and the loss control effect can also be obtained.
 本発明の実施例4について説明する。図15は、本発明の実施例4に係るリニアモータの一例を示す模式図である。図15の模式図は、リニアモータ1をYZ平面で切り取った図である。図16は、本発明の実施例4に係る電機子の外観斜視図である。図17は、本発明の実施例4に係るリニアモータをZ方向から見た背面図である。実施例1乃至3と同一の構成については同一の符号を付し、その詳細な説明は省略する。 Example 4 of the present invention will be described. FIG. 15 is a schematic diagram showing an example of a linear motor according to Example 4 of the present invention. The schematic diagram of FIG. 15 is a diagram of the linear motor 1 cut along the YZ plane. FIG. 16 is an external perspective view of an armature according to Example 4 of the present invention. FIG. 17 is a rear view of the linear motor according to the fourth embodiment of the present invention as seen from the Z direction. The same reference numerals are given to the same configurations as those of the first to third embodiments, and detailed description thereof will be omitted.
 実施例4のリニアモータ1は、電機子8の磁性体(ティース2)の内周側から外周側に向かって延びるように配置した6本のスリット7a(第1スリット)、外周側から内周側に向かって延びるように配置した6本のスリット7b(第2スリット)が設けている。電機子8の磁性体(ティース2)の内周側から延びる6本のスリット7a(第1スリット)は深さ方向(径方向外側)に並行に設けられている。一方で、電機子8の磁性体(ティース2)の外周側から延びる6本のスリット7b(第2スリット)は、深さ方向(径方向内側)に向かって細くなる形状をしている。つまり、外周側に行くほどスリット7b(第2スリット)の幅が広くなる。 The linear motor 1 of Example 4 has six slits 7a (first slits) arranged so as to extend from the inner peripheral side of the magnetic body (teeth 2) of the armature 8 toward the outer peripheral side, Six slits 7b (second slits) are provided so as to extend sideways. Six slits 7a (first slits) extending from the inner peripheral side of the magnetic bodies (teeth 2) of the armature 8 are provided in parallel in the depth direction (outside in the radial direction). On the other hand, six slits 7b (second slits) extending from the outer peripheral side of the magnetic bodies (teeth 2) of the armature 8 are tapered in the depth direction (radially inward). That is, the width of the slit 7b (second slit) increases toward the outer periphery.
 これは、電機子8のティース2に流れる磁束が、外周側で疎になるため、外周側に行くにしたがって磁束密度が低くなる。このため、外周側に行くほどスリットの幅が広くなるスリット7b(第2スリット)を、磁性体(ティース2)の外周側から設けることにより、スリット開口部を大きくすることができる。 This is because the magnetic flux flowing through the teeth 2 of the armature 8 becomes sparse on the outer peripheral side, so the magnetic flux density decreases toward the outer peripheral side. Therefore, the slit opening can be enlarged by providing the slit 7b (second slit) whose width becomes wider toward the outer peripheral side from the outer peripheral side of the magnetic body (teeth 2).
 実施例4によれば、冷却効果が高まる一方、スリットを設けることによる磁路断面積減少の影響を少なくすることができ、効率よく冷却をすることが可能となる。 According to the fourth embodiment, while the cooling effect is enhanced, the influence of the magnetic path cross-sectional area reduction due to the provision of the slit can be reduced, enabling efficient cooling.
 本実施例の応用例を図18および図19に示す。図18は、本発明の実施例4の応用例に係る電機子の外観斜視図である。図19は、本発明の実施例4の応用例に係るリニアモータをZ方向から見た背面図である。 An application example of this embodiment is shown in FIGS. FIG. 18 is an external perspective view of an armature according to an application example of Example 4 of the present invention. FIG. 19 is a rear view of a linear motor according to an application example of Embodiment 4 of the present invention, viewed from the Z direction.
 応用例のリニアモータ1は、電機子8の磁性体(ティース2)の内周側に6本のスリット7a(第1スリット)、内周側から外周側に向かって幅が広がるスリット7b(第2スリット)を6本設けている。応用例では、スリット7a(第1スリット)及びスリット7b(第2スリット)のそれぞれに高熱伝導部材9が挿入されている。電機子8の磁性体は、一般的に鉄で構成されている。高熱伝導部材9としては、鉄より熱伝導率が高い部材、例えば銅等を用いる。また、同以外の磁性材を用いるようにしても良い。 The linear motor 1 of the application example has six slits 7a (first slits) on the inner peripheral side of the magnetic bodies (teeth 2) of the armature 8, and slits 7b (first slits) that widen from the inner peripheral side to the outer peripheral side. 2 slits) are provided. In the application example, the high thermal conductivity member 9 is inserted into each of the slit 7a (first slit) and the slit 7b (second slit). The magnetic material of the armature 8 is generally made of iron. As the high thermal conductivity member 9, a member having higher thermal conductivity than iron, such as copper, is used. Also, a magnetic material other than the same may be used.
 応用例によれば、軸方向(Z方向)の熱伝達がよくなり、コイル5の発生する熱を効率よく分散できる。さらに、スリットによる損失抑制効果も期待できるため、損失が小さく、局所的な熱の上昇を抑制することができる。 According to the application example, the heat transfer in the axial direction (Z direction) is improved, and the heat generated by the coil 5 can be efficiently dispersed. Furthermore, since the loss suppression effect of the slit can be expected, the loss is small and local heat rise can be suppressed.
 本発明の実施例5について説明する。図20は、本発明の実施例5に係るリニアモータの一例を示す模式図である。図20の模式図は、リニアモータ1をYZ平面で切り取った図である。図21は、本発明の実施例5に係る電機子の外観斜視図である。図22は、本発明の実施例5に係るリニアモータ1をYZ平面で切り取った側面の模式図である。実施例1乃至4と同一の構成については同一の符号を付し、その詳細な説明は省略する。 Example 5 of the present invention will be described. FIG. 20 is a schematic diagram showing an example of a linear motor according to Example 5 of the present invention. The schematic diagram of FIG. 20 is a diagram of the linear motor 1 cut along the YZ plane. FIG. 21 is an external perspective view of an armature according to Example 5 of the present invention. FIG. 22 is a schematic side view of the linear motor 1 according to Example 5 of the present invention cut along the YZ plane. The same reference numerals are assigned to the same configurations as those of the first to fourth embodiments, and detailed description thereof will be omitted.
 実施例5のリニアモータ1は、電機子8の磁性体(ティース2)の内周側から外周側に延びるように配置したスリット7a(第1スリット)を6本、電機子8の磁性体の外周面側、つまりティース2の外周面側に、ティース2の周方向に沿って延びるように配置した2本のスリット7c(第3スリット)を設けたものである。スリット7a,7cは、軸方向(Z方向)に並んだティース2毎に設けられている。ティース2の外周側の先端に周方向にスリット7c(第3スリット)を設けることで、ティース2の外周部での損失も抑制できる。さらに、ティース先端にスリット7c(第3スリット)を設けることで、ギャップの軸方向の磁束密度分布の成分において高次成分が含まれ、脈動低減効果も期待できる。 The linear motor 1 of Example 5 has six slits 7a (first slits) arranged so as to extend from the inner peripheral side to the outer peripheral side of the magnetic body (teeth 2) of the armature 8, and the magnetic body of the armature 8 Two slits 7c (third slits) are provided on the outer peripheral surface side, that is, on the outer peripheral surface side of the teeth 2 so as to extend along the circumferential direction of the teeth 2 . The slits 7a and 7c are provided for each tooth 2 arranged in the axial direction (Z direction). By providing the slit 7c (third slit) in the circumferential direction at the tip of the tooth 2 on the outer peripheral side, the loss at the outer peripheral portion of the tooth 2 can also be suppressed. Furthermore, by providing the slits 7c (third slits) at the tips of the teeth, higher-order components are included in the components of the magnetic flux density distribution in the axial direction of the gap, and a pulsation reduction effect can be expected.
 ここで、実施例5では、電機子8(ティース2)の内周と外周の間の距離(リング状の電機子8の厚さ)に対して、スリット7c(第3スリット)の深さとスリット7a(第1スリット)の深さの合計は、電機子8(ティース2)の内周と外周の間の距離(リング状の電機子8の厚さ)よりも大きくしている。この場合、周方向のスリット7c(第3スリット)と内周側から延びたスリット7a(第1スリット)が電機子(ティース2)の内部で連通する。 Here, in Example 5, the depth of the slit 7c (third slit) and the slit The total depth of 7a (first slit) is set larger than the distance between the inner and outer peripheries of armature 8 (teeth 2) (thickness of ring-shaped armature 8). In this case, the slit 7c (third slit) in the circumferential direction and the slit 7a (first slit) extending from the inner peripheral side communicate with each other inside the armature (teeth 2).
 従って、実施例5によれば、例えば冷却媒体が軸方向(内径側から設けたスリット)から流入し、ティース(周方向スリット)からギャップ面に流出するとともに、流入側と逆側(Z方向の逆側)から流出することにより、冷却効果を高めることができる。さらに、電機子8の内部を全体的に冷却することが可能となり、温度分布を抑制できる。 Therefore, according to the fifth embodiment, for example, the cooling medium flows in from the axial direction (slits provided from the inner diameter side), flows out from the teeth (circumferential slits) to the gap surface, and flows on the side opposite to the inflow side (in the Z direction). The cooling effect can be enhanced by flowing out from the opposite side). Furthermore, the inside of the armature 8 can be cooled as a whole, and the temperature distribution can be suppressed.
 図23および図24に、実施例5の応用例を示す。図23は、本発明の実施例5の応用例に係るリニアモータの一例を示す模式図である。図24は、本発明の実施例5の応用例に係る電機子の外観斜視図である。 23 and 24 show an application example of the fifth embodiment. FIG. 23 is a schematic diagram showing an example of a linear motor according to an application example of Example 5 of the present invention. FIG. 24 is an external perspective view of an armature according to an application example of Example 5 of the present invention.
 応用例では、ティース2の外周側から周方向に設けたスリット7c(第3スリット)と、ティース2の外周側から内周側に設け軸方向(Z方向)に貫通させたスリット7b(第2スリット)と、ティース2の内周側から外周側に設け軸方向(Z方向)に貫通させたスリット7a(第1スリット)とを設け、各スリットが電機子8(ティース2)内で連通している。 In the application example, a slit 7c (third slit) provided in the circumferential direction from the outer peripheral side of the tooth 2 and a slit 7b (second slit) provided in the inner peripheral side from the outer peripheral side of the tooth 2 and penetrating in the axial direction (Z direction). slits) and slits 7a (first slits) provided from the inner peripheral side to the outer peripheral side of the teeth 2 and penetrating in the axial direction (Z direction), and the respective slits are communicated within the armature 8 (teeth 2). ing.
 応用例によれば、スリット7a、7b、7cを電機子8内で連通させることにより、電機子8の内部を均一に冷却させることができるとともに、損失の発生も均一化することができ、局所的な温度上昇を抑制できる。各スリットは均一に入れるのが好ましいが、周方向に入れたスリットは高調波の抑制を考慮して軸方向の位置を変えることも可能である。 According to the application example, by connecting the slits 7a, 7b, and 7c in the armature 8, the inside of the armature 8 can be uniformly cooled, and the occurrence of loss can be made uniform, and local temperature rise can be suppressed. Although it is preferable to make each slit uniformly, it is also possible to change the position of the slits made in the circumferential direction in the axial direction in consideration of suppression of harmonics.
 本発明の実施例6について説明する。図25は、本発明の実施例6に係るリニアモータの一例を示す模式図である。図26は、本発明の実施例6に係る電機子の外観斜視図である。図27は、本発明の実施例6に係るリニアモータをZ方向から見た背面図である。実施例1乃至5と同一の構成については同一の符号を付し、その詳細な説明は省略する。 Example 6 of the present invention will be described. FIG. 25 is a schematic diagram showing an example of a linear motor according to Example 6 of the present invention. FIG. 26 is an external perspective view of an armature according to Example 6 of the present invention. FIG. 27 is a rear view of the linear motor according to the sixth embodiment of the present invention as seen from the Z direction. The same reference numerals are assigned to the same configurations as those of the first to fifth embodiments, and detailed description thereof will be omitted.
 電機子8は凸形状のティース2を移動方向((軸方向(Z方向))に複数並べ、ティース2の中央部に貫通孔3が備えられている。また、ティース2は周方向に分割部7dによって6分割されており、その隣接する部位は接触している。この場合でも、接触面間で接触抵抗(電気的に抵抗が高い部位)が発生するため、損失抑制効果が期待できる。すなわち、分割部7dは、ティース2(コア)に流れる渦電流路の抵抗値を上げる高抵抗部となるので、渦電流による損失を低減できる。換言すると、高抵抗部はティース2を複数に分割して形成している。 The armature 8 has a plurality of convex teeth 2 arranged in the moving direction ((axial direction (Z direction)), and a through hole 3 is provided in the central portion of the teeth 2. The teeth 2 are divided in the circumferential direction. It is divided into 6 by 7d, and the adjacent portions are in contact.Even in this case, since contact resistance (a portion with high electrical resistance) occurs between the contact surfaces, a loss suppression effect can be expected. , The divided portion 7d serves as a high resistance portion that increases the resistance value of the eddy current path flowing through the tooth 2 (core), so that the loss due to the eddy current can be reduced.In other words, the high resistance portion divides the tooth 2 into a plurality of parts. are formed.
 また、図26に示すように、凸形状したティース2の突出した部分(図のAおよびB)のみを物理的に分断しても構わない。実施例6によれば、このようにすることで、周方向に分割した6つの部位を連結保持できる。図6に示したように、損失はコイル5の外周側、に発生しているため、コイル5に接触している面のみを分断しても、十分な効果が得られる。 Also, as shown in FIG. 26, only the projecting portions (A and B in the figure) of the convex teeth 2 may be physically divided. According to the sixth embodiment, by doing so, the six parts divided in the circumferential direction can be connected and held. As shown in FIG. 6, since the loss occurs on the outer peripheral side of the coil 5, even if only the surface in contact with the coil 5 is divided, a sufficient effect can be obtained.
 実施例6の応用例を図28乃至図30を用いて説明する。図28は、本発明の実施例6の応用例1に係るリニアモータの一例を示す模式図である。図29は、本発明の実施例6の応用例1に係る電機子の外観斜視図である。図30は、本発明の実施例6の応用例1に係るリニアモータをZ方向から見た背面図である。 An application example of the sixth embodiment will be described with reference to FIGS. 28 to 30. FIG. FIG. 28 is a schematic diagram showing an example of a linear motor according to Application Example 1 of Example 6 of the present invention. FIG. 29 is an external perspective view of an armature according to Application 1 of Embodiment 6 of the present invention. FIG. 30 is a rear view of the linear motor according to application example 1 of embodiment 6 of the present invention as seen from the Z direction.
 応用例1では、凸形状したティース2に貫通孔3が形成されていない。ティース2は周方向に分割部7dによって6分割されており、その隣接する部位は接触している。このような場合も同様の効果が得られる。また、図26と同様に、凸形状したティース2の突出した部分(図のAおよびB)のみを物理的に分断しても構わない。 In the application example 1, the through holes 3 are not formed in the convex teeth 2 . The teeth 2 are circumferentially divided into six parts by the dividing parts 7d, and the adjacent parts are in contact with each other. Similar effects can be obtained in such a case as well. Also, as in FIG. 26, only the protruding portions (A and B in the drawing) of the convex teeth 2 may be physically divided.
 また、応用例2を図31乃至図33を用いて説明する。図31は、本発明の実施例6の応用例2に係るリニアモータの一例を示す模式図である。図32は、本発明の実施例6の応用例2に係る電機子の外観斜視図である。図33は、本発明の実施例6の応用例2に係るリニアモータをZ方向から見た背面図である。 Further, application example 2 will be described with reference to FIGS. 31 to 33. FIG. FIG. 31 is a schematic diagram showing an example of a linear motor according to Application Example 2 of Example 6 of the present invention. FIG. 32 is an external perspective view of an armature according to Application 2 of Embodiment 6 of the present invention. FIG. 33 is a rear view of a linear motor according to application example 2 of embodiment 6 of the present invention, viewed from the Z direction.
 応用例2は応用例1と同様、凸形状したティース2に貫通孔3が形成されていない。応用例2では、凸形状したティース2にスリット7が形成されている。スリットは、ティース2の内周側から設け、外周側に設けることも可能である。このようにすることで電機子の磁性体を一体で構成し、スリットを設けることが可能となり、構造上、剛性の高い電機子を構成できる。 In application example 2, as in application example 1, through holes 3 are not formed in convex teeth 2 . In application example 2, slits 7 are formed in convex teeth 2 . The slits may be provided from the inner peripheral side of the teeth 2 and may be provided on the outer peripheral side. By doing so, the magnetic bodies of the armature can be formed integrally and the slits can be provided, so that the armature can be structured with high rigidity.
 本発明の実施例7について説明する。図34は、本発明の実施例7に係るリニアモータを搭載した電動サスペンション装置の構成図である。電動サスペンション装置100は、ティース2とコイル5で構成された電機子の内側にインナーロッド90が接続され、インナーロッド90の端部には、ロッドエンド30、インナーチューブ60が配置される。例えば、ロッドエンド30にはタイヤ側のサスペンションのリンクが結合される。また、電機子の外周側には、ギャップをもって対向する永久磁石10と、永久磁石10外周側に磁性体で構成される外筒20が設けられる。外筒20には、ばね止め50が接続され、圧縮されたばね40が配置される。タイヤ側に接続された電機子と車体側に接続された2次側部材(永久磁石10や外筒20など)は相対的に直線運動をし、インナーチューブ摺動部材80で支持される。また、外筒20には、ロッド支持部材70が結合され、ロッド支持部材70に、例えば、ベアリングやすべり軸受などが設けられ、可動部が相対的に直線運動できるように構成されている。 Example 7 of the present invention will be described. FIG. 34 is a configuration diagram of an electric suspension device equipped with a linear motor according to Embodiment 7 of the present invention. The electric suspension device 100 has an inner rod 90 connected to the inside of an armature composed of teeth 2 and coils 5 , and a rod end 30 and an inner tube 60 are arranged at the ends of the inner rod 90 . For example, the rod end 30 is connected to a suspension link on the tire side. A permanent magnet 10 facing each other with a gap is provided on the outer peripheral side of the armature, and an outer cylinder 20 made of a magnetic material is provided on the outer peripheral side of the permanent magnet 10 . A spring stopper 50 is connected to the outer cylinder 20 and a compressed spring 40 is arranged. The armature connected to the tire side and the secondary side members (permanent magnet 10, outer cylinder 20, etc.) connected to the vehicle body move relatively linearly and are supported by the inner tube sliding member 80. FIG. A rod support member 70 is coupled to the outer cylinder 20, and the rod support member 70 is provided with, for example, a bearing or a slide bearing so that the movable portion can relatively move linearly.
 実施例7のリニアモータには、上述した実施例1乃至6の何れかを適用すると良い。実施例7によれば、実施例1乃至6の作用効果を備えた電動サスペンション装置を提供することができる。
〔各実施例に共通する説明〕
 本発明は電機子の中心軸側で生じる磁束の集中による渦電流損失を低減するものである。上述した各実施例においては、渦電流路を分断、渦電流路の経路を長くするために磁性体に設けたスリットを用いて説明したが、渦電流路を分断するものであれば、切り込みやスリットに限定されるものではない。例えば、高抵抗部材を挿入する方法、スリットのような隙間はないが部品を分割する方法等、接触抵抗によりティース(コア)に高抵抗部が生じれば同様の効果が得られる。つまり、切り込みやスリットの幅がゼロであっても、2つの部材が接触する際に生じる接触抵抗などの高抵抗部が存在しても構わない。また、その深さも本実施例では効果的な切り込みやスリットの深さを例として記載したが、切り込みやスリットが貫通し、電機子中央部の損失な大きな部位の磁性体が周方向に分割されていても構わない。
Any one of the first to sixth embodiments described above may be applied to the linear motor of the seventh embodiment. According to the seventh embodiment, it is possible to provide an electric suspension device having the effects of the first to sixth embodiments.
[Description common to each embodiment]
The present invention reduces eddy current loss due to concentration of magnetic flux generated on the central axis side of the armature. In each of the above-described embodiments, slits provided in the magnetic material are used to divide the eddy current path and lengthen the path of the eddy current path. It is not limited to slits. For example, a method of inserting a high resistance member, a method of dividing a part without a gap such as a slit, etc., and the like can be obtained if a high resistance portion is generated on the teeth (core) due to contact resistance. That is, even if the width of the cut or slit is zero, there may be a high resistance portion such as contact resistance generated when two members come into contact with each other. In this embodiment, the effective depth of the cuts and slits is described as an example. It doesn't matter if
 1…リニアモータ、2…ティース、2a…突出部、2b…平板部、3…貫通孔、5…コイル、7、7a、7b、7c…スリット、8…電機子、9…高熱伝導部材、10…永久磁石、20…外筒、30…ロッドエンド、40…ばね、50…ばね止め、60…       インナーチューブ、70…ロッド支持部材、80…インナーチューブ摺動部材、90…インナーロッド、100…電動サスペンション装置 DESCRIPTION OF SYMBOLS 1... Linear motor 2... Teeth 2a... Protruding part 2b... Flat plate part 3... Through hole 5... Coil 7, 7a, 7b, 7c... Slit 8... Armature 9... High thermal conductivity member 10 Permanent magnet 20 Outer cylinder 30 Rod end 40 Spring 50 Spring stopper 60 Inner tube 70 Rod support member 80 Inner tube sliding member 90 Inner rod 100 Electric motor suspension device

Claims (18)

  1.  ティース及び前記ティースに備えられたコイルを有する電機子と、前記電機子の外周側に備えられた永久磁石とを有し、前記電機子と前記永久磁石が相対的に移動するリニアモータであって、
     前記ティースには、前記ティースに流れる渦電流路の抵抗値を上げる高抵抗部を備えたことを特徴とするリニアモータ。
    A linear motor comprising: an armature having teeth and coils provided on the teeth; and a permanent magnet provided on an outer peripheral side of the armature, wherein the armature and the permanent magnets move relative to each other. ,
    A linear motor, wherein the teeth are provided with high resistance portions that increase a resistance value of an eddy current path flowing through the teeth.
  2.  請求項1において、
     前記ティースの中心から前記コイルが挿入される前記ティースの窪みの内周側面までの距離をRcとし、前記ティースの中心から前記高抵抗部の最外周までの距離をRsとしたとき、Rs>Rcの関係にあることを特徴とするリニアモータ。
    In claim 1,
    When the distance from the center of the tooth to the inner peripheral side surface of the recess of the tooth into which the coil is inserted is Rc, and the distance from the center of the tooth to the outermost periphery of the high resistance portion is Rs, Rs>Rc A linear motor characterized by having a relationship of
  3.  請求項2において、
     前記ティースは中心部に貫通孔を備えたことを特徴とするリニアモータ。
    In claim 2,
    A linear motor, wherein each of the teeth has a through hole at its center.
  4.  請求項3において、
     前記ティースは移動方向に複数備えたことを特徴とするリニアモータ。
    In claim 3,
    A linear motor, wherein a plurality of said teeth are provided in the moving direction.
  5.  請求項1において、
     前記高抵抗部はスリットであることを特徴とするリニアモータ。
    In claim 1,
    A linear motor, wherein the high resistance portion is a slit.
  6.  請求項5において、
     前記スリットは、前記ティースの内周側から外周側に延びるように配置した第1スリットであることを特徴とするリニアモータ。
    In claim 5,
    The linear motor, wherein the slit is a first slit arranged to extend from the inner peripheral side to the outer peripheral side of the tooth.
  7.  請求項6において、
     前記ティースの外周側から内周側に延びるように配置した第2スリットを備えたことを特徴とするリニアモータ。
    In claim 6,
    A linear motor, comprising: a second slit arranged to extend from an outer peripheral side to an inner peripheral side of the teeth.
  8.  請求項7において、
     前記第1スリット及び前記第2スリットはそれぞれ複数備え、
     前記第2スリットは、隣り合う前記第1スリットの間に位置させたことを特徴とするリニアモータ。
    In claim 7,
    A plurality of the first slits and the second slits are provided,
    A linear motor, wherein the second slit is positioned between the adjacent first slits.
  9.  請求項7又は8において、
     前記第1スリットの深さをLiとし、前記第2スリットの深さをLoとし、前記ティースの内周側から外周側までの径方向長さをLtとしたとき、Lt≦Li+Loの関係にあることを特徴とするリニアモータ。
    In claim 7 or 8,
    When Li is the depth of the first slit, Lo is the depth of the second slit, and Lt is the radial length from the inner peripheral side to the outer peripheral side of the tooth, there is a relationship of Lt≦Li+Lo. A linear motor characterized by:
  10.  請求項7又は8において、
     前記第1スリットの数をSiとし、前記第2スリットの数をSoとしたとき、So≧Siの関係にあることを特徴とするリニアモータ。
    In claim 7 or 8,
    A linear motor, wherein the number of said first slits is Si and the number of said second slits is So, wherein a relationship of So≧Si is satisfied.
  11.  請求項7又は8において、
     前記第2スリットは、内周側から外周側に向かって幅が広がることを特徴とするリニアモータ。
    In claim 7 or 8,
    The linear motor, wherein the width of the second slit increases from the inner peripheral side to the outer peripheral side.
  12.  請求項11において、
     前記第1スリット及び前記第2スリットには、鉄より熱伝導率が高い部材を挿入したことを特徴とするリニアモータ。
    In claim 11,
    A linear motor, wherein a member having a higher thermal conductivity than iron is inserted into the first slit and the second slit.
  13.  請求項6において、
     前記ティースの外周面に、周方向に延びるように配置した第3スリットを備えたことを特徴とするリニアモータ。
    In claim 6,
    A linear motor, comprising a third slit extending in a circumferential direction on an outer peripheral surface of the tooth.
  14.  請求項13において、
     前記第1スリットの深さと、前記第3スリットの深さの合計は、前記ティースの内周と外周の間の距離によりも大きくしたことを特徴とするリニアモータ。
    In claim 13,
    A linear motor, wherein the sum of the depth of the first slit and the depth of the third slit is larger than the distance between the inner circumference and the outer circumference of the tooth.
  15.  請求項14において、
     前記第1スリットと、前記第3スリットとは、前記ティースの内部で連通していることを特徴とするリニアモータ。
    In claim 14,
    A linear motor, wherein the first slit and the third slit communicate with each other inside the teeth.
  16.  請求項7において、
     前記ティースの外周面に、周方向に延びるように配置した第3スリットを備え、
    前記第1スリット、前記第2スリット、前記第3スリットは、前記ティースの内部で連通していることを特徴とするリニアモータ。
    In claim 7,
    A third slit arranged to extend in the circumferential direction is provided on the outer peripheral surface of the tooth,
    A linear motor, wherein the first slit, the second slit, and the third slit communicate with each other inside the teeth.
  17.  請求項1において、
     前記高抵抗部は、前記ティースを複数に分割して形成したことを特徴とするリニアモータ。
    In claim 1,
    A linear motor, wherein the high resistance portion is formed by dividing the tooth into a plurality of pieces.
  18.  請求項1乃至請求項17の何れか1項に記載のリニアモータを備えた電動サスペンション装置。 An electric suspension device comprising the linear motor according to any one of claims 1 to 17.
PCT/JP2022/039883 2022-01-14 2022-10-26 Linear motor and electric suspension device provided with same WO2023135894A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022004213A JP2023103600A (en) 2022-01-14 2022-01-14 Linear motor and electric suspension device including the same
JP2022-004213 2022-01-14

Publications (1)

Publication Number Publication Date
WO2023135894A1 true WO2023135894A1 (en) 2023-07-20

Family

ID=87278780

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/039883 WO2023135894A1 (en) 2022-01-14 2022-10-26 Linear motor and electric suspension device provided with same

Country Status (2)

Country Link
JP (1) JP2023103600A (en)
WO (1) WO2023135894A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005151753A (en) * 2003-11-18 2005-06-09 Canon Inc Linear motor
JP2010035287A (en) * 2008-07-25 2010-02-12 Hitachi Ltd Cylindrical linear motor, and electromagnetic suspension and motor-driven power steering device using the same
JP2012205397A (en) * 2011-03-25 2012-10-22 Toyota Central R&D Labs Inc Linear drive device and linear generator
JP2021136719A (en) * 2020-02-25 2021-09-13 株式会社日立産機システム Linear motor, compressor equipped with linear motor, and air suspension for refrigerator and vehicle equipped with compressor
JP2022007249A (en) * 2020-06-26 2022-01-13 Kyb株式会社 Tubular linear motor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005151753A (en) * 2003-11-18 2005-06-09 Canon Inc Linear motor
JP2010035287A (en) * 2008-07-25 2010-02-12 Hitachi Ltd Cylindrical linear motor, and electromagnetic suspension and motor-driven power steering device using the same
JP2012205397A (en) * 2011-03-25 2012-10-22 Toyota Central R&D Labs Inc Linear drive device and linear generator
JP2021136719A (en) * 2020-02-25 2021-09-13 株式会社日立産機システム Linear motor, compressor equipped with linear motor, and air suspension for refrigerator and vehicle equipped with compressor
JP2022007249A (en) * 2020-06-26 2022-01-13 Kyb株式会社 Tubular linear motor

Also Published As

Publication number Publication date
JP2023103600A (en) 2023-07-27

Similar Documents

Publication Publication Date Title
KR102225323B1 (en) Electric machine
JP5292707B2 (en) Moving magnet type linear motor
EP1422806A2 (en) Electric motor
JP2007104888A (en) Rotary electric machine
WO2014188628A1 (en) Rotor and motor
KR101673333B1 (en) Cooling unit of drive motor
US9112386B2 (en) Electric motor with improved flux path and power density
US10483817B2 (en) Rotor for an electric motor including a structure for retaining rotor segments and permanent magnets on a hub thereof
US20140117793A1 (en) Transverse flux motor
Zhang et al. Mechanical construction and analysis of an axial flux segmented armature torus machine
JP4775760B2 (en) Cylinder type linear motor and its guide device
KR20200093868A (en) Structure for cooling of a motor
JP2002369485A (en) Means for generating magnetic centripetal force
WO2023135894A1 (en) Linear motor and electric suspension device provided with same
EP4096061A1 (en) Stator and rotating electric machine using same
JP6589721B2 (en) Rotating electric machine
WO2018216304A1 (en) Rotary electric machine
JP2019161828A (en) Rotary electric machine
JP2009136118A (en) Synchronous linear motor
JP3341696B2 (en) Linear actuator
EP2793375B1 (en) A stator for an electrical machine of a mobile working machine
JP5913684B2 (en) Transverse magnetic flux type motor
WO2023182381A1 (en) Vernier motor
JP6070329B2 (en) Stator core for rotating electrical machines
JP7240569B2 (en) Cylindrical linear motor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22920417

Country of ref document: EP

Kind code of ref document: A1