WO2023135634A1 - Infrared measurement image analysis device and infrared measurement image analysis method - Google Patents

Infrared measurement image analysis device and infrared measurement image analysis method Download PDF

Info

Publication number
WO2023135634A1
WO2023135634A1 PCT/JP2022/000518 JP2022000518W WO2023135634A1 WO 2023135634 A1 WO2023135634 A1 WO 2023135634A1 JP 2022000518 W JP2022000518 W JP 2022000518W WO 2023135634 A1 WO2023135634 A1 WO 2023135634A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
image analysis
measurement
measurement image
infrared measurement
Prior art date
Application number
PCT/JP2022/000518
Other languages
French (fr)
Japanese (ja)
Inventor
武志 小畠
Original Assignee
株式会社赤外線高精度技術利用機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社赤外線高精度技術利用機構 filed Critical 株式会社赤外線高精度技術利用機構
Priority to PCT/JP2022/000518 priority Critical patent/WO2023135634A1/en
Publication of WO2023135634A1 publication Critical patent/WO2023135634A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/72Investigating presence of flaws

Definitions

  • the present invention relates to an infrared measurement image analysis device and an infrared measurement image analysis method. More specifically, the present invention relates to an infrared measurement image analysis apparatus and an infrared measurement image analysis method capable of high-precision analysis.
  • Patent Document 1 For an image of a structure measured by an ordinary infrared camera, a highly accurate radiation temperature distribution element coordinate diagram of the structure surface with a resolution of 0.013 ° C. (surface radiation temperature corresponding to the element coordinates of the sensor) A diagram showing the temperature distribution) is acquired.
  • current temperature sensors are capable of distinguishing to six digits after the decimal point.
  • Patent Document 1 discloses that it is possible to acquire a highly accurate radiation temperature distribution element coordinate diagram of the surface of a structure, the highly accurate radiation temperature distribution element coordinate diagram is still disclosed by anyone other than the inventor. person is not found. This is because many people cling to the idea that defects in the inner layer of a building cannot be found from mere measurement of the radiation temperature distribution. , it is difficult to find a model from which an analysis image can be obtained relatively easily. There was also a history of people trying to find defects in the inner layers of structures, but eventually giving up. In addition, in Patent Document 1, when abnormal conditions such as voids, water leaks, and cracks exist inside the structure, what kind of change appears in the temperature distribution of the above-mentioned high-precision structure surface and inner layer.
  • the present invention refers to an abnormal state of the surface and internal layers of a structure (a state in which abnormalities such as foreign matter, voids, and water leaks are detected in thermal conduction resistance by multiple elements of the sensor.
  • multiple elements of the sensor detects color with three RGB elements for visible light, and also detects temperature with multiple elements for infrared light, and converts it to temperature using, for example, Wien's displacement law) and the temperature distribution of the surface and internal layers of the structure. It is an object of the present invention to provide an infrared measurement image analysis device and an infrared measurement image analysis method that enable associated image analysis.
  • the infrared measurement image analysis device 10 for example, as shown in FIG. a program storage unit 11 that stores image analysis software that performs image analysis on the infrared measurement image measured by the measurement device 30; a measurement image data reading unit 12 that reads an infrared measurement image from the measurement storage unit 31 of the measurement device 30 or the measurement image database 20 with high-precision temperature resolution; Based on the image data read by the measurement image data reading unit 12, the three-dimensional temperature distribution of the surface and internal layers of the structure 40 to be investigated and the three-dimensional position of the abnormal portion 41 are determined with high accuracy using image analysis software.
  • a structure internal state calculation unit 13 that calculates with temperature resolution
  • an analysis image writing unit 14 that writes the calculated three-dimensional temperature distribution of the surface and internal layers of the structure 40 and the three-dimensional position of the abnormal portion 41 into the analysis image database 21
  • a display unit 15 for two-dimensionally or three-dimensionally displaying the calculated temperature distribution of the surface and internal layers of the structure 40 and the position of the abnormal portion 41;
  • the high precision temperature resolution is characterized by 0.001°C to 0.05°C.
  • infrared measurement image analysis device Infrared measurement image analysis device
  • infrared measurement image imaging
  • measuring is used because infrared rays are recorded in the sensor and output is CSV temperature data in the form
  • the measurement image database 20 and the analysis image database 21 may be built in physically different databases, or may be built in the same physical database.
  • the calculation of the temperature distribution of the surface and inner layer of the structure 40 and the calculation of the position of the abnormal portion 41 in the structure internal state calculation unit 13 may be performed integrally in relation to each other.
  • the surface temperature distribution is, in detail, a radiation temperature distribution.
  • the temperature distribution of the surface and the inner layer means the radiation temperature distribution of the surface and the temperature distribution of the inner layer
  • the three-dimensional temperature distribution means the three-dimensional radiation temperature distribution of the surface and the three-dimensional temperature distribution of the inner layer.
  • the infrared measurement image analysis device 10 in the first aspect, includes a program for improving the accuracy of the measurement image read by the measurement image data reading unit 12, and a color palette 17 for coloring the highly accurate image.
  • the structure internal state calculation unit 13 is characterized by performing calculations based on image data that has been highly accurate and colored with a color palette 17 .
  • the program for improving the accuracy of the measurement image is for improving temperature accuracy and position accuracy (see Patent Document 1).
  • the presence and condition of an abnormal portion in the internal layer of the building can be expressed in an easy-to-understand manner by increasing the accuracy of the image and coloring it.
  • the image analysis software creates a model in which the structure 40 to be investigated is a laminate of layers having different material properties. Image analysis is performed assuming that the abnormal portion 41 changes the heat conduction resistance of the layer.
  • the image analysis software determines the depth of the abnormal portion 41 in the structure 40 by inserting the abnormal portion 41. It is characterized in that it is determined based on the temperature change of the layer.
  • a structure internal layer state calculation step for calculation with temperature resolution
  • an analysis image writing step (S004) of writing the calculated three-dimensional temperature distribution of the surface and internal layers of the structure 40 and the three-dimensional position of the abnormal portion 41 into the analysis image database 21
  • a display step (S005) of displaying the calculated temperature distribution of the surface and inner layers of the structure 40 and the position of the abnormal portion 41 two-dimensionally or three-dimensionally;
  • the high precision temperature resolution is characterized by 0.001°C to 0.05°C.
  • the infrared measurement image analysis method includes a program for increasing the accuracy of the image read by the measurement image data reading unit 12, and a color palette 17 for coloring the highly accurate image
  • the structure internal state calculation unit 12 is characterized by performing calculations based on image data that has been highly accurate and colored with a color palette.
  • the image analysis software uses a model in which the structure to be investigated is a laminate of layers with different material properties, and image analysis is performed assuming that the abnormal portion 41 changes the thermal conduction resistance of the layers.
  • the image analysis software determines the depth of the abnormal portion 41 in the structure 40 by inserting the abnormal portion 41. It is characterized in that it is determined based on the temperature change of the layer.
  • an infrared measurement image analysis device and an infrared image analysis method that enable image analysis that associates the abnormal state of the surface and inner layers of the structure with the temperature distribution of the surface and inner layers of the structure. can.
  • FIG. 1 is a diagram illustrating a configuration example of an infrared measurement image analysis apparatus according to Example 1;
  • FIG. FIG. 4 is a diagram showing a flow example of an infrared measurement image analysis method according to Example 1;
  • This is an example of measurement images (steeply sloped concrete retaining wall: conventional example (top) and using a high-precision color palette (bottom)) measured by an infrared survey analysis diagnostic device. It is an example of a diagram showing the relationship between depth and temperature when there is no abnormal portion in the construct. It is an example of a diagram showing the relationship between depth and temperature when there is an abnormal portion in the construct.
  • FIG. 4 is a diagram for explaining the region P(x, y) within the construct;
  • This is an example of measurement images (concrete elevated road: visible light image (upper left), conventional example (lower left), using a high-precision color palette (right)) measured by an infrared survey analysis diagnostic device.
  • Measurement images measured by an infrared survey analysis diagnostic device (Concrete tunnel inner wall: using a high-precision color palette (upper left), conventional example (lower left), using a high-precision color palette (enlarged view of the gap on the back side of the side wall, upper right), high-precision color palette Examples of use (lower right), (upper left and lower right have different color palettes, ie, display temperature ranges).
  • FIG. 4 is a diagram (three-dimensional image) showing an example of a measurement image
  • FIG. 10 is a diagram showing the relationship between depth and temperature when abnormal portions overlap in a region P(x, y) within a construct.
  • FIG. 5 is an example showing the change in material properties of a layer when the material of construction is uniform;
  • FIG. 1 shows a configuration example of the infrared measurement image analysis device 10 according to the first embodiment.
  • An infrared measurement image analysis apparatus 10 includes a program storage unit 11 , a measurement image data reading unit 12 , a structure internal state calculation unit 13 , an analysis image writing unit 14 and a display unit 15 .
  • the program storage unit 11 stores in advance image analysis software for performing image analysis on infrared measurement image data measured by the measurement device 30 .
  • the measurement device 30 acquires a measurement image of the structure 40 to be investigated, and the acquired infrared measurement image data is first stored in the measurement storage unit 31 of the measurement device 30 .
  • the infrared measurement image data in the measurement storage unit 31 is transmitted to the measurement image database 20 by wired communication or wireless communication.
  • the measurement image data reading unit 12 reads the infrared measurement image data from the measurement storage unit 31 or the measurement image database 20 and stores it in the storage area of the infrared measurement image analysis device 10 .
  • the structure internal state calculation unit 13 uses image analysis software to determine the temperature distribution and abnormal portions (hereinafter referred to as , foreign matter) 41 is calculated.
  • the analysis image writing unit 14 writes the temperature distribution of the surface and internal layers of the structure 40 and the position of the abnormal portion 41 into the analysis image database 21 .
  • the display unit 15 two-dimensionally or three-dimensionally displays the temperature distribution of the surface and inner layers of the structure 40 and the position of the abnormal portion 41 .
  • the temperature resolution of the measurement image data reading unit 12, the structure internal state calculation unit 13, and the analysis image writing unit 14 is, for example, 0.001° C. to 0.05° C., which is high performance.
  • the temperature resolution of the display unit 15 is also high, ranging from 0.001°C to 0.05°C.
  • the temperature distribution of the internal layers of the structure 40 can also be expressed with high performance.
  • FIG. 2 shows a flow example of the infrared measurement image analysis method according to the first embodiment.
  • image analysis software for performing image analysis on infrared measurement image data measured by the measurement device 30 is stored in advance in the program storage unit 11 (S001).
  • the measurement image is first stored in the measurement storage unit 31 of the measurement device 30, and then stored in the measurement image database 20 by wired or wireless communication.
  • the measurement image data reading unit 12 reads the infrared measurement image data from the measurement storage unit 31 or the measurement image database 20, and stores it in the storage area of the infrared measurement image analysis device 10 (S002).
  • the structure internal state calculation unit 13 uses image analysis software to determine the temperature distribution of the surface and internal layers of the structure 40 to be investigated and the temperature distribution of the abnormal part 41.
  • a position is calculated (S003).
  • the analysis image writing unit 14 writes the calculated temperature distribution of the surface and inner layers of the structure 40 and the position of the abnormal portion 41 into the analysis image database 21 (S004).
  • the display unit 15 two-dimensionally or three-dimensionally displays the calculated temperature distribution of the surface and internal layers of the structure 40 and the position of the abnormal portion 41 (S005).
  • the abnormal portion is treated as a portion where abnormal heat conduction resistance occurs.
  • FIG. 3 shows an example of an infrared measurement image of a steeply sloped concrete retaining wall.
  • FIG. 3 (upper) shows a conventional example
  • FIG. 3 (lower) shows a present embodiment using a high-precision color palette.
  • These are infrared thermal radiation distribution images of the embankment recorded from the opposite bank of 500 m across the river.
  • the temperature display has a high resolution
  • the retaining wall shown in Fig. 3 (bottom) cavities are hidden behind the retaining wall in the 3rd and 4th frames from the left of the upper grid frame, and backfill soil is hidden in the 4th frame from the left in the middle row. A deep water retention state is recognized.
  • a structure 40 as an object of image analysis is modeled as a laminate of multiple layers with different material properties, and an abnormal portion (a foreign object, here, a portion where abnormal thermal conduction resistance occurs) 41 changes the thermal resistance of the layer.
  • Image analysis shall be carried out assuming that Here, an example of a wall made of a laminate of multiple layers will be described. The material or material properties of each layer shall be different. The number of layers is N, and the first layer, second layer, .
  • T o be the outside temperature of the wall
  • T i be the inside temperature
  • T jo be the outside temperature of the j-th layer
  • T ji be the inside temperature of the wall. becomes.
  • FIG. 4 shows the relationship between depth and temperature when there is no abnormal portion in the construct.
  • the relationship between the depth z inside the wall and the temperature T is shown.
  • the outer position of the wall be z o and the inner position z i
  • the j th layer outer position z jo and inner position z ji becomes.
  • the temperature gradient of each layer is a function of material properties (thermal conductivity [1/thermal resistance], layer thickness z jo -z ji , width of xy region, temperature, humidity, etc.).
  • the layer thickness is a function of the coefficient of thermal expansion.
  • the temperature gradient inside the wall is represented by a straight line
  • the air layer is represented by a curve.
  • FIG. 5 shows the relationship between depth and temperature when there is a foreign object in the structure.
  • the temperature difference T jo ⁇ T ji of the j-th layer changes due to the insertion of foreign matter.
  • the temperature difference T o ⁇ T i across the layers changes.
  • FIG. 6 is a diagram for explaining the region P(x, y) within the construct.
  • the measured image of the construct 40 is represented by xy coordinates, and the depth is represented by z coordinates.
  • the size of the foreign matter can be determined from the area of the color that has changed from the color without the foreign matter.
  • the position where the change in color is maximum is the center position P C (x, y) of the xy coordinates of the foreign matter.
  • the dimensions in the xy direction and the z direction may be different, but for the sake of simplicity, they are treated as the same (for example, the abnormal portion 41 is assumed to be spherical).
  • the four regions next to the region P(x, y) are P(x ⁇ 1, y), P(x+1, y), P(x, y ⁇ 1), P(x, y+1), and the above five
  • T j (x, y) is derived such that the heat flow in (Equation 7) is minimized.
  • Equation 7 there is an equation that defines T j (x, y).
  • simultaneous equations must be solved for the entire image region.
  • N sets of temperature data that satisfy (Eq. Since 7) is established, a correct set of temperature data can be obtained as a result.
  • anomalies 41 are generally ⁇ T o (x, y)> ⁇ T i (x, y) (Equation 8),
  • ⁇ T o (x, y) ⁇ T i (x, y) (Equation 9) becomes.
  • the position P(x, y) and depth P(z) of the foreign matter are obtained.
  • a three-dimensional temperature distribution can be obtained.
  • FIG. 7 shows an example of an infrared measurement image of a concrete elevated road.
  • FIG. 7 (upper left) shows a visible image
  • FIG. 7 (lower left) shows a conventional example
  • FIG. 7 (right) shows this embodiment using a high-precision color palette. Similar to FIG. 3, the void, moisture impregnated morphology is shown. Arrows in the figure indicate locations suggesting abnormalities. Due to the high-resolution temperature display, abnormal conditions that were not visible in the past can now be seen in relief.
  • a high-precision color palette is assigned, for example, 256 gradations of RGB between the upper limit temperature value and the lower limit temperature value of the infrared image. Various color palettes are used depending on the situation (environment, materials, etc.).
  • Figures 8A and 8B show examples of infrared measurement images of the inner wall of the concrete tunnel according to this embodiment.
  • Fig. 8A shows a conventional example
  • Figs. 8A (upper left) and Fig. 8A (lower right) show examples of using a high-precision color palette (these two are for changing the temperature display range of the color palette)
  • Figure 8A (upper right) is an enlarged view of the gap on the back side of the side wall using a high-precision color palette
  • Figure 8B (left) is an image of the leaking area using a high-precision color palette
  • Figure 8B (right) is using a high-precision color palette. shows an image of the void on the backside of the side wall of the . Arrows in the figure indicate locations suggesting abnormalities. As in FIG. 3, since the temperature display has a high resolution, abnormal conditions that could not be seen in the past can be clearly seen.
  • FIG. 9 is a diagram showing an example of a three-dimensional infrared measurement image.
  • FIG. 9 is an image obtained by three-dimensionally processing the infrared measurement image of the upper row: railway and the lower row: road. The original image can be rotated 360 degrees and viewed from any direction. Also, the needle-like portion extending vertically from the surface of the structure indicates the temperature of the gas in the vertical direction from the surface. Three-dimensional processing can also represent the temperature in the vertical direction inside the structure.
  • T j (x,y) when it is difficult to measure a single (inner) surface, such as a tunnel, T j (x,y) must be solved to minimize the heat flow.
  • the temperature in the soil (or rock) inside the tunnel may be approximated as a uniform temperature at a certain depth.
  • the temperature of the gas may also be approximated as a uniform temperature at a certain distance from the surface.
  • repeat the calculation by changing the model or parameter to improve the accuracy of the approximate solution for the abnormal part (the part where abnormal thermal conduction resistance occurs). can be done.
  • Accumulated data such as gaps, water wetness, cracks, and neutralization of concrete are referred to for identification of the abnormal heat conduction resistance occurrence portion, which is useful for judgment.
  • AI Artificial Intelligence
  • an infrared measurement image analysis device and an infrared measurement image analysis that enable image analysis that associates the abnormal state of the surface and internal layers of the structure with the temperature distribution of the surface and internal layers of the structure. can provide a method.
  • FIG. 10 shows the relationship between depth and temperature when foreign matter overlaps in the region P(x, y) within the construct.
  • FIG. 10 shows an example in which foreign matter is present in the j-th and j+1-th layers, and the temperature gradient increases in these two layers.
  • the first embodiment an example in which foreign matter does not overlap in the same region (x, y) has been described.
  • m foreign substances overlap, instead of (Equation 3) when they do not overlap, becomes. Therefore, the amount of change ⁇ T j of each layer is calculated, and the layer in which m combinations of ⁇ T j satisfying (Equation 11) are found is the layer with the foreign matter.
  • a set of temperature data including the candidate layers with foreign particles, that is, the depths of the foreign particles (m) is selected.
  • Example 2 Other relational expressions are the same as in Example 1, and finally the temperature distribution and the position and depth of the abnormal portion are obtained. As described above, the position P(x, y) and depth P(z) of the foreign matter are obtained. Also, a three-dimensional temperature distribution can be obtained. Further, according to the present embodiment, as in the first embodiment, infrared measurement image analysis that enables image analysis that associates the abnormal state of the surface and inner layers of the structure with the temperature distribution of the surface and inner layers of the structure. An apparatus and infrared measurement image analysis method can be provided.
  • FIG. 11 shows the change in the material properties of the layers when the construction material is uniform.
  • Examples 1 and 2 examples in which the material properties of each layer are different have been described, but in Example 3, an example in which the material properties of the structure are uniform will be described.
  • ⁇ Tk changes.
  • Other relational expressions are the same as in the first embodiment.
  • the position P(x, y) and depth P(z) of the foreign matter are obtained.
  • a three-dimensional temperature distribution can be obtained.
  • an infrared measurement image analysis apparatus that enables image analysis that associates the abnormal state of the surface and inner layers of the structure with the temperature distribution of the surface and inner layers of the structure. and an infrared measurement image analysis method.
  • the outer and inner sides of the wall are flat, and each layer is parallel to these planes.
  • the isothermal lines in the construct when the surface of the construct has unevenness are similar to the isoelectric lines when the electrode has unevenness.
  • the lines through which the heat flows are similar to the lines of electric force.
  • an infrared measurement image analysis device and an infrared measurement image analysis method can be provided.
  • each layer laminate
  • the present invention can also be applied when each layer has a curved surface.
  • the isothermal line is formed along the curved surface, but there is a temperature gradient between the outer and inner surfaces of each layer, and the temperature gradient changes due to the inclusion of foreign matter, which is the same as in the example where each layer is flat.
  • examples of structures having walls were dealt with, but the present invention can also be applied to cases in which structures are columns.
  • Each layer may be formed along an isothermal line in the absence of foreign matter, and the temperature gradient may change due to the presence of foreign matter.
  • the foreign matter is spherical has been described, but analysis is possible if the shape of the foreign matter and the thermal conduction resistance can be properly associated.
  • AI can be used.
  • parameters such as material characteristics can be appropriately changed according to the weather environment, location environment, structure/material of the building, and the like.
  • the present invention can be used for infrared measurement image analysis, for example, infrared measurement image analysis of tunnels, bridges, highways, embankments, buildings, etc., as well as infrared measurement image analysis of blast furnaces, moving bodies, animals, plants, etc. Image analysis of infrastructure can also be used for disaster prevention.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Radiation Pyrometers (AREA)

Abstract

The relationship between an abnormal condition of an interior layer of a structure and the temperature distributions of a surface and the interior layer is made clear. An infrared measurement image analysis device 10 according to the present invention is characterized by comprising: a program storage unit 11 that stores image analysis software for performing image analysis of an infrared measurement image that was measured by a measurement device 30; a measurement image data reading unit 12 that reads the infrared measurement image from a measurement memory unit 31 of the measurement device 30 or from a measurement image database 20; a structure interior condition calculation unit 13 that, on the basis of the image data read by the measurement image data reading unit 12 and using the image analysis software, calculates the temperature distributions of a surface and an interior layer of a structure 40 under investigation, and the location of an abnormal section 41; an analysis image writing unit 14 that writes, to an analysis image database 21, the calculated temperature distributions of the surface and the interior layer of the structure 40, and the calculated location of the abnormal section 41; and a display unit 15 that performs two-dimensional or three-dimensional display.

Description

赤外線測定画像解析装置及び赤外線測定画像解析方法Infrared measurement image analysis device and infrared measurement image analysis method
 本発明は赤外線測定画像解析装置及び赤外線測定画像解析方法に関する。詳しくは、高精度解析が可能な赤外線測定画像解析装置及び赤外線測定画像解析方法に関する。 The present invention relates to an infrared measurement image analysis device and an infrared measurement image analysis method. More specifically, the present invention relates to an infrared measurement image analysis apparatus and an infrared measurement image analysis method capable of high-precision analysis.
 最近、赤外線測定装置に使用可能な温度センサ(半導体素子)の精度が向上し、最小温度検知差0.02℃までの分別が可能になった。そこで、発明者は、この温度センサの精度を活かすための高分解能の画像解析方法を開発した(特許文献1参照)。特許文献1によれば、通常の赤外線カメラで測定された構築物の画像について、分解能0.013℃の高精度な構築物表面の放射温度分布素子座標図(センサの素子座標に対応して表面の放射温度分布が示された図)が取得される。また、現在の温度センサでは小数点下6桁の分別が可能になっている。 Recently, the accuracy of temperature sensors (semiconductor elements) that can be used in infrared measurement devices has improved, and it has become possible to separate materials with a minimum temperature detection difference of 0.02°C. Therefore, the inventor developed a high-resolution image analysis method to make the most of the precision of this temperature sensor (see Patent Document 1). According to Patent Document 1, for an image of a structure measured by an ordinary infrared camera, a highly accurate radiation temperature distribution element coordinate diagram of the structure surface with a resolution of 0.013 ° C. (surface radiation temperature corresponding to the element coordinates of the sensor) A diagram showing the temperature distribution) is acquired. In addition, current temperature sensors are capable of distinguishing to six digits after the decimal point.
特許第6192749号公報Japanese Patent No. 6192749
 しかしながら、特許文献1では、高精度な構築物表面の放射温度分布素子座標図が取得可能な旨が開示されているが、未だ、発明者以外にかかる高精度の放射温度分布素子座標図を開示する者が見当たらない。それは、単なる放射温度分布の計測から、構築物内部層の欠陥が解るはずがないという考えに拘泥する者が多いからであり、また、複雑で目に見えない構築物内部層を精度の高い近似モデルで、解析画像を比較的容易に得られるモデルを見出すことが難しいからである。そして、構築物内部層の欠陥を見出すことに挑戦した者もいたが、結局あきらめてしまった歴史があった。また、特許文献1では、構築物内部に空孔・水漏れ・ひび割れ等の異常状態が存在する場合に、上記の高精度な構築物表面及び内部層の温度分布にどのような変化が現れるかについては、触れられていない。また、商談では解析結果を示せば納得してもらえる場合が多いので、発明者は解析の技術内容を公開していない。
 本願では、異常状態と温度分布とを関連付けた画像解析について説明する。そして、構築物内部層の欠陥を見出すための1つのモデルを開示する。これにより、自然災害が多発し、社会インフランテーションの老朽化が進んだ我が国での災害予防に大いに役立つことが期待される。
However, although Patent Document 1 discloses that it is possible to acquire a highly accurate radiation temperature distribution element coordinate diagram of the surface of a structure, the highly accurate radiation temperature distribution element coordinate diagram is still disclosed by anyone other than the inventor. person is not found. This is because many people cling to the idea that defects in the inner layer of a building cannot be found from mere measurement of the radiation temperature distribution. , it is difficult to find a model from which an analysis image can be obtained relatively easily. There was also a history of people trying to find defects in the inner layers of structures, but eventually giving up. In addition, in Patent Document 1, when abnormal conditions such as voids, water leaks, and cracks exist inside the structure, what kind of change appears in the temperature distribution of the above-mentioned high-precision structure surface and inner layer. , not touched. In addition, the technical content of the analysis is not disclosed by the inventor, because in business negotiations, it is often the case that the analysis result will be accepted.
In this application, image analysis that associates an abnormal state with a temperature distribution will be described. A model for finding defects in construct inner layers is then disclosed. It is expected that this will greatly contribute to disaster prevention in Japan, where natural disasters occur frequently and the social infrastructure is aging.
 本発明は、構築物の表面及び内部層の異常状態(センサの複数素子により、例えば熱伝導抵抗に異物、空洞、水漏れ等の異常があると検出された状態をいう。センサの複数素子によりとは、可視光ではRGB3素子で色を検出すると同様に、赤外線でも複数素子で温度を検出し、例えばウィーンの変位則を用いて温度に変換する)と構築物の表面及び内部層の温度分布とを関連付けた画像解析を可能とする赤外線測定画像解析装置及び赤外線測定画像解析方法を提供することを目的とする。 The present invention refers to an abnormal state of the surface and internal layers of a structure (a state in which abnormalities such as foreign matter, voids, and water leaks are detected in thermal conduction resistance by multiple elements of the sensor. By multiple elements of the sensor, detects color with three RGB elements for visible light, and also detects temperature with multiple elements for infrared light, and converts it to temperature using, for example, Wien's displacement law) and the temperature distribution of the surface and internal layers of the structure. It is an object of the present invention to provide an infrared measurement image analysis device and an infrared measurement image analysis method that enable associated image analysis.
 本発明の第1の態様に係る赤外線測定画像解析装置10は、例えば図1に示すように、
 測定装置30により測定された赤外線測定画像について画像解析を行う画像解析ソフトウェアを格納するプロフラム格納部11と、
 赤外線測定画像を測定装置30の測定記憶部31又は測定画像データベース20から高精度温度分解能で読み取る測定画像データ読取部12と、
 測定画像データ読取部12で読み取られた画像データに基づいて、画像解析ソフトウェアを用いて、調査対象である構築物40の表面及び内部層の3次元温度分布及び異常部分41の3次元位置を高精度温度分解能で演算する構築物内部状態演算部13と、
 演算された構築物40の表面の及び内部層の3次元温度分布及び異常部分41の3次元位置を解析画像データベース21に書き込む解析画像書込部14と、
 演算された構築物40の表面及び内部層の温度分布及び異常部分41の位置を2次元又は3次元表示する表示部15とを備え;
 高精度温度分解能は、0.001℃乃至0.05℃であることを特徴とする。
The infrared measurement image analysis device 10 according to the first aspect of the present invention, for example, as shown in FIG.
a program storage unit 11 that stores image analysis software that performs image analysis on the infrared measurement image measured by the measurement device 30;
a measurement image data reading unit 12 that reads an infrared measurement image from the measurement storage unit 31 of the measurement device 30 or the measurement image database 20 with high-precision temperature resolution;
Based on the image data read by the measurement image data reading unit 12, the three-dimensional temperature distribution of the surface and internal layers of the structure 40 to be investigated and the three-dimensional position of the abnormal portion 41 are determined with high accuracy using image analysis software. a structure internal state calculation unit 13 that calculates with temperature resolution;
an analysis image writing unit 14 that writes the calculated three-dimensional temperature distribution of the surface and internal layers of the structure 40 and the three-dimensional position of the abnormal portion 41 into the analysis image database 21;
a display unit 15 for two-dimensionally or three-dimensionally displaying the calculated temperature distribution of the surface and internal layers of the structure 40 and the position of the abnormal portion 41;
The high precision temperature resolution is characterized by 0.001°C to 0.05°C.
 ここにおいて、「赤外線測定画像解析装置」、「赤外線測定画像」と「撮像」、「撮影」を用いず、「測定」を用いるのは、赤外線でセンサに記録され、出力されるのが、CSV形式の温度データだからである。
 測定画像データベース20と解析画像データベース21は物理的に異なるデータベース内に構築されても良く、物理的に同一データベース内に構築されても良い。また、構築物内部状態演算部13におけると構築物40の表面及び内部層の温度分布の演算と異常部分41の位置の演算は相互に関連して一体的に行われても良い。
 また、表面の温度分布とは詳しくは放射温度分布である。そして、表面及び内部層の温度分布とは表面の放射温度分布及び内部層の温度分布をいい、3次元温度分布とは表面の3次元放射温度分布及び内部層の3次元温度分布をいう。
Here, "infrared measurement image analysis device", "infrared measurement image", "imaging", and "shooting" are not used, and "measurement" is used because infrared rays are recorded in the sensor and output is CSV temperature data in the form
The measurement image database 20 and the analysis image database 21 may be built in physically different databases, or may be built in the same physical database. Further, the calculation of the temperature distribution of the surface and inner layer of the structure 40 and the calculation of the position of the abnormal portion 41 in the structure internal state calculation unit 13 may be performed integrally in relation to each other.
Further, the surface temperature distribution is, in detail, a radiation temperature distribution. The temperature distribution of the surface and the inner layer means the radiation temperature distribution of the surface and the temperature distribution of the inner layer, and the three-dimensional temperature distribution means the three-dimensional radiation temperature distribution of the surface and the three-dimensional temperature distribution of the inner layer.
 また、温度分解能0.013℃が実現されたことを前述した。このことは、0.013℃以上の分解能での解析等が可能なことを意味するが、そのうち0.013℃乃至0.05℃が実用的である。また、特許文献1では、温度の計測値間をさらに細かく分割して分解能を向上させているが、この方法により、0.02℃を2分割することにより0.01℃の温度分解能が実現可能である。さらに、バイオ研究のナノ領域では赤外線で0.000001℃の温度分解能が提示されているので、本願の画像解析においても0.001℃の温度分解能がゆとりを持って実現可能と言える。 In addition, it was mentioned above that a temperature resolution of 0.013°C was achieved. This means that analysis with a resolution of 0.013° C. or higher is possible, of which 0.013° C. to 0.05° C. is practical. In addition, in Patent Document 1, the resolution is improved by further dividing the temperature measurement values. With this method, a temperature resolution of 0.01°C can be achieved by dividing 0.02°C into two. is. Furthermore, since a temperature resolution of 0.000001° C. has been proposed for infrared rays in the nano-area of bioresearch, it can be said that a temperature resolution of 0.001° C. can be achieved with leeway in the image analysis of the present application.
 このように構成すると、構築物の表面及び内部層の異常状態と構築物の表面及び内部層の温度分布とを関連付けた画像解析を可能とする赤外線測定画像解析装置を提供できる。 With this configuration, it is possible to provide an infrared measurement image analysis device that enables image analysis that associates the abnormal state of the surface and inner layers of the structure with the temperature distribution of the surface and inner layers of the structure.
 本発明の第2の態様に係る赤外線測定画像解析装置10は、第1の態様において、
 画像解析ソフトウェアは測定画像データ読取部12で読み取った測定画像を高精度化するプログラムと、高精度化された画像を彩色するためのカラーパレット17とを備え、
 構築物内部状態演算部13は、高精度化されかつカラーパレット17で彩色された画像データに基づいて演算を行うことを特徴とする。
The infrared measurement image analysis device 10 according to the second aspect of the present invention, in the first aspect,
The image analysis software includes a program for improving the accuracy of the measurement image read by the measurement image data reading unit 12, and a color palette 17 for coloring the highly accurate image.
The structure internal state calculation unit 13 is characterized by performing calculations based on image data that has been highly accurate and colored with a color palette 17 .
 ここにおいて、測定画像を高精度化するプログラムは温度精度及び位置精度を高精度化するものである(特許文献1参照)。
 このように構成すると、画像の高精度化と彩色により、構築物内部層の異常部分の存在と状況を解りやすく表現できる。
Here, the program for improving the accuracy of the measurement image is for improving temperature accuracy and position accuracy (see Patent Document 1).
With this configuration, the presence and condition of an abnormal portion in the internal layer of the building can be expressed in an easy-to-understand manner by increasing the accuracy of the image and coloring it.
 本発明の第3の態様に係る赤外線測定画像解析装置10は、第1又は第2の態様において、画像解析ソフトウェアは、調査対象としての構築物40を材料特性が異なる層の積層体とするモデルを用い、異常部分41は層の熱伝導抵抗を変化させるものとして画像解析を行うことを特徴とする。 In the infrared measurement image analysis apparatus 10 according to the third aspect of the present invention, in the first or second aspect, the image analysis software creates a model in which the structure 40 to be investigated is a laminate of layers having different material properties. Image analysis is performed assuming that the abnormal portion 41 changes the heat conduction resistance of the layer.
 このように構成すると、構築物の表面及び内部層の異常状態と表面及び内部層の温度分布とを解りやすく結び付けられる。 With this configuration, the abnormal state of the surface and inner layers of the structure and the temperature distribution of the surface and inner layers can be easily understood.
 本発明の第4の態様に係る赤外線測定画像解析装置10は、第3の態様において、画像解析ソフトウェアは、構築物40内の異常部分41の深さを、異常部分41挿入による異常部分41がある層の温度変化に基づいて求めることを特徴とする。 In the third aspect of the infrared measurement image analysis apparatus 10 according to the fourth aspect of the present invention, the image analysis software determines the depth of the abnormal portion 41 in the structure 40 by inserting the abnormal portion 41. It is characterized in that it is determined based on the temperature change of the layer.
 このように構成すると、構築物内部層の異常部分の深さを比較的容易に求めることができる。 With this configuration, the depth of the abnormal portion of the internal layer of the structure can be obtained relatively easily.
 本発明の第5の態様に係る赤外線測定画像解析方法は、例えば図2に示すように、
 測定装置30により測定された赤外線測定画像について画像解析を行う画像解析ソフトウェアを予めプロフラム格納部11に格納しておく、画像解析ソフトウェア格納工程(S001)と、
 赤外線測定画像を測定装置30の測定記憶部31又は測定画像データベース20から高精度温度分解能で画像データを読み取る測定画像データ読取工程(S002)と、
 測定画像データ読取部12で読み取られた画像データに基づいて、画像解析ソフトウェアを用いて、調査対象である構築物40の表面及び内部層の3次元温度分布及び異常部分41の3次元位置を高精度温度分解能で演算する構築物内部層状態演算工程(S003)と、
 演算された構築物40の表面及び内部層の3次元温度分布及び異常部分41の3次元位置を解析画像データベース21に書き込む解析画像書込工程(S004)と、
 演算された構築物40の表面及び内部層の温度分布及び異常部分41の位置を2次元又は3次元表示する表示工程(S005)とを備え;
 高精度温度分解能は、0.001℃乃至0.05℃であることを特徴とする。
In the infrared measurement image analysis method according to the fifth aspect of the present invention, for example, as shown in FIG.
an image analysis software storing step (S001) of pre-storing image analysis software for performing image analysis on an infrared measurement image measured by the measuring device 30 in the program storage unit 11;
a measurement image data reading step (S002) of reading the infrared measurement image from the measurement storage unit 31 of the measurement device 30 or the measurement image database 20 with high-precision temperature resolution;
Based on the image data read by the measurement image data reading unit 12, the three-dimensional temperature distribution of the surface and internal layers of the structure 40 to be investigated and the three-dimensional position of the abnormal portion 41 are determined with high accuracy using image analysis software. a structure internal layer state calculation step (S003) for calculation with temperature resolution;
an analysis image writing step (S004) of writing the calculated three-dimensional temperature distribution of the surface and internal layers of the structure 40 and the three-dimensional position of the abnormal portion 41 into the analysis image database 21;
a display step (S005) of displaying the calculated temperature distribution of the surface and inner layers of the structure 40 and the position of the abnormal portion 41 two-dimensionally or three-dimensionally;
The high precision temperature resolution is characterized by 0.001°C to 0.05°C.
 ここにおいて、高精度温度分解能を、0.001℃乃至0.05℃とするのは、第1の態様について説明したと同様である。
 このように構成すると、構築物の表面及び内部層の異常状態と構築物の表面及び内部層の温度分布とを関連付けた画像解析を可能とする赤外線測定画像解析方法を提供できる。
Here, setting the high-precision temperature resolution to 0.001° C. to 0.05° C. is the same as described in the first aspect.
With this configuration, it is possible to provide an infrared measurement image analysis method that enables image analysis that associates the abnormal state of the surface and inner layers of the structure with the temperature distribution of the surface and inner layers of the structure.
 本発明の第6の態様に係る赤外線測定画像解析方法は、第5の態様において、
 画像解析ソフトウェアは、測定画像データ読取部12で読み取った画像を高精度化するプログラムと、高精度化された画像を彩色するためのカラーパレット17とを備え、
 構築物内部状態演算部12は、高精度化されかつカラーパレットで彩色された画像データに基づいて演算を行うことを特徴とする。
The infrared measurement image analysis method according to the sixth aspect of the present invention, in the fifth aspect,
The image analysis software includes a program for increasing the accuracy of the image read by the measurement image data reading unit 12, and a color palette 17 for coloring the highly accurate image,
The structure internal state calculation unit 12 is characterized by performing calculations based on image data that has been highly accurate and colored with a color palette.
 このように構成すると、画像の高精度化と彩色により、構築物内部層の異常部分の存在と状況を解りやすく表現できる。 With this configuration, the existence and status of abnormal parts in the internal layers of the building can be expressed in an easy-to-understand manner by increasing the accuracy and coloring of the image.
 本発明の第7の態様に係る赤外線測定画像解析方法は、第5又は第6の態様において、
 前記画像解析ソフトウェアは、調査対象としての構築物を材料特性が異なる層の積層体とするモデルを用い、異常部分41は層の熱伝導抵抗を変化させるものとして画像解析を行うことを特徴とする。
In the infrared measurement image analysis method according to the seventh aspect of the present invention, in the fifth or sixth aspect,
The image analysis software uses a model in which the structure to be investigated is a laminate of layers with different material properties, and image analysis is performed assuming that the abnormal portion 41 changes the thermal conduction resistance of the layers.
 このように構成すると、構築物の表面及び内部層の異常状態と表面及び内部層の温度分布とを解りやすく結び付けられる。 With this configuration, the abnormal state of the surface and inner layers of the structure and the temperature distribution of the surface and inner layers can be easily understood.
 本発明の第8の態様に係る赤外線測定画像解析装置10は、第7の態様において、画像解析ソフトウェアは、構築物40内の異常部分41の深さを、異常部分41挿入による異常部分41がある層の温度変化に基づいて求めることを特徴とする。 In the seventh aspect of the infrared measurement image analysis apparatus 10 according to the eighth aspect of the present invention, the image analysis software determines the depth of the abnormal portion 41 in the structure 40 by inserting the abnormal portion 41. It is characterized in that it is determined based on the temperature change of the layer.
 このように構成すると、構築物内部層の異常部分の深さを比較的容易に求めることができる。 With this configuration, the depth of the abnormal portion of the internal layer of the structure can be obtained relatively easily.
 本発明によれば、構築物の表面及び内部層の異常状態と構築物の表面及び内部層の温度分布とを関連付けた画像解析を可能とする赤外線測定画像解析装置及び赤外線画像解析方法を提供することができる。 According to the present invention, it is possible to provide an infrared measurement image analysis device and an infrared image analysis method that enable image analysis that associates the abnormal state of the surface and inner layers of the structure with the temperature distribution of the surface and inner layers of the structure. can.
実施例1に係る赤外線測定画像解析装置の構成例を示す図である。1 is a diagram illustrating a configuration example of an infrared measurement image analysis apparatus according to Example 1; FIG. 実施例1に係る赤外線測定画像解析方法のフロー例を示す図である。FIG. 4 is a diagram showing a flow example of an infrared measurement image analysis method according to Example 1; 赤外線調査解析診断装置により測定された測定画像(急傾斜コンクリート土留め擁壁:従来例(上)及び高精度カラーパレット使用(下))の例である。This is an example of measurement images (steeply sloped concrete retaining wall: conventional example (top) and using a high-precision color palette (bottom)) measured by an infrared survey analysis diagnostic device. 構築物内において異常部分が無い場合の深さと温度との関係を示す図の例である。It is an example of a diagram showing the relationship between depth and temperature when there is no abnormal portion in the construct. 構築物内において異常部分が有る場合の深さと温度との関係を示す図の例である。It is an example of a diagram showing the relationship between depth and temperature when there is an abnormal portion in the construct. 構築物内の領域P(x、y)を説明するための図である。FIG. 4 is a diagram for explaining the region P(x, y) within the construct; 赤外線調査解析診断装置により測定された測定画像(コンクリート高架道路:可視光画像(左上)、従来例(左下)、高精度カラーパレット使用(右))の例である。This is an example of measurement images (concrete elevated road: visible light image (upper left), conventional example (lower left), using a high-precision color palette (right)) measured by an infrared survey analysis diagnostic device. 赤外線調査解析診断装置により測定された測定画像(コンクリートトンネル内壁:高精度カラーパレット使用(左上)、従来例(左下)、高精度カラーパレット使用(側壁裏面空隙拡大図、右上)、高精度カラーパレット使用(右下)、(左上と右下はカラーパレットすなわち表示温度範囲が異なる。)の例である。Measurement images measured by an infrared survey analysis diagnostic device (Concrete tunnel inner wall: using a high-precision color palette (upper left), conventional example (lower left), using a high-precision color palette (enlarged view of the gap on the back side of the side wall, upper right), high-precision color palette Examples of use (lower right), (upper left and lower right have different color palettes, ie, display temperature ranges). 赤外線調査解析診断装置により測定された測定画像(コンクリートトンネル内壁:高精度カラーパレット使用(左、漏水部分)、高精度カラーパレット使用(右、側壁裏面の空隙)の例である。This is an example of measurement images (concrete tunnel inner wall: using a high-precision color palette (left, leakage part), using a high-precision color palette (right, void on the back side of the side wall)) measured by an infrared inspection analysis diagnostic device. 測定画像の例を示す図(3次元画像)である。FIG. 4 is a diagram (three-dimensional image) showing an example of a measurement image; 構築物内の領域P(x、y)で異常部分が重なる場合の深さと温度との関係を示す図である。FIG. 10 is a diagram showing the relationship between depth and temperature when abnormal portions overlap in a region P(x, y) within a construct. 構築物の材料が均一の場合の層の材料特性の変化を示す例の図である。FIG. 5 is an example showing the change in material properties of a layer when the material of construction is uniform;
 以下、図面を参照して本発明の実施の形態について説明する。なお、各図において互い
に同一又は相当する部材には同一あるいは類似の符号を付し、重複した説明は省略する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described with reference to the drawings. In each figure, the same or similar members are denoted by the same or similar reference numerals, and redundant explanations are omitted.
 図1に実施例1に係る赤外線測定画像解析装置10の構成例を示す。本実施例に係る赤外線測定画像解析装置10は、プログラム格納部11、測定画像データ読取部12、構築物内部状態演算部13、解析画像書込部14及び表示部15を備える。 FIG. 1 shows a configuration example of the infrared measurement image analysis device 10 according to the first embodiment. An infrared measurement image analysis apparatus 10 according to this embodiment includes a program storage unit 11 , a measurement image data reading unit 12 , a structure internal state calculation unit 13 , an analysis image writing unit 14 and a display unit 15 .
 プログラム格納部11は、測定装置30により測定された赤外線測定画像データについて画像解析を行う画像解析ソフトウェアを予め格納しておく。測定装置30は調査対象である構築物40の測定画像を取得し、取得した赤外線測定画像データは、まず、測定装置30の測定記憶部31に保存される。測定記憶部31の赤外線測定画像データは有線通信又は無線通信により測定画像データベース20に送信される。 The program storage unit 11 stores in advance image analysis software for performing image analysis on infrared measurement image data measured by the measurement device 30 . The measurement device 30 acquires a measurement image of the structure 40 to be investigated, and the acquired infrared measurement image data is first stored in the measurement storage unit 31 of the measurement device 30 . The infrared measurement image data in the measurement storage unit 31 is transmitted to the measurement image database 20 by wired communication or wireless communication.
 測定画像データ読取部12は、測定記憶部31又は測定画像データベース20から赤外線測定画像データを読み取り、赤外線測定画像解析装置10の記憶領域に保存する。
 構築物内部状態演算部13は、測定画像データ読取部12で読み取られた画像データに基づいて、画像解析ソフトウェアを用いて、調査対象である構築物40の表面及び内部層の温度分布及び異常部分(以下、異物ともいう)41の位置を演算する。解析画像書込部14は、構築物40の表面及び内部層の温度分布及び異常部分41の位置を解析画像データベース21に書き込む。表示部15は、構築物40の表面及び内部層の温度分布及び異常部分41の位置を2次元又は3次元表示する。測定画像データ読取部12、構築物内部状態演算部13及び解析画像書込部14の温度分解能は、例えば0.001℃乃至0.05℃と高性能である。これにより、表示部15の温度分解能も、0.001℃乃至0.05℃と高性能になる。これにより、構築物40内部層の温度分布も高性能に表現できる。
The measurement image data reading unit 12 reads the infrared measurement image data from the measurement storage unit 31 or the measurement image database 20 and stores it in the storage area of the infrared measurement image analysis device 10 .
Based on the image data read by the measurement image data reading unit 12, the structure internal state calculation unit 13 uses image analysis software to determine the temperature distribution and abnormal portions (hereinafter referred to as , foreign matter) 41 is calculated. The analysis image writing unit 14 writes the temperature distribution of the surface and internal layers of the structure 40 and the position of the abnormal portion 41 into the analysis image database 21 . The display unit 15 two-dimensionally or three-dimensionally displays the temperature distribution of the surface and inner layers of the structure 40 and the position of the abnormal portion 41 . The temperature resolution of the measurement image data reading unit 12, the structure internal state calculation unit 13, and the analysis image writing unit 14 is, for example, 0.001° C. to 0.05° C., which is high performance. As a result, the temperature resolution of the display unit 15 is also high, ranging from 0.001°C to 0.05°C. As a result, the temperature distribution of the internal layers of the structure 40 can also be expressed with high performance.
 図2に、実施例1に係る赤外線測定画像解析方法のフロー例を示す。まず、測定装置30により測定された赤外線測定画像データについて画像解析を行う画像解析ソフトウェアを予めプロフラム格納部11に格納しておく(S001)。測定画像はまず測定装置30の測定記憶部31に保存され、有線通信又は無線通信により測定画像データベース20に保存される。測定画像データ読取部12は、測定記憶部31又は測定画像データベース20の赤外線測定画像データを読み取り、赤外線測定画像解析装置10の記憶領域に保存する(S002)。 FIG. 2 shows a flow example of the infrared measurement image analysis method according to the first embodiment. First, image analysis software for performing image analysis on infrared measurement image data measured by the measurement device 30 is stored in advance in the program storage unit 11 (S001). The measurement image is first stored in the measurement storage unit 31 of the measurement device 30, and then stored in the measurement image database 20 by wired or wireless communication. The measurement image data reading unit 12 reads the infrared measurement image data from the measurement storage unit 31 or the measurement image database 20, and stores it in the storage area of the infrared measurement image analysis device 10 (S002).
 構築物内部状態演算部13は、測定画像データ読取部12で読み取られた画像データに基づいて、画像解析ソフトウェアを用いて、調査対象である構築物40の表面及び内部層の温度分布及び異常部分41の位置を演算する(S003)。解析画像書込部14は、演算された構築物40の表面及び内部層の温度分布及び異常部分41の位置を解析画像データベース21に書き込む(S004)。表示部15は、演算された構築物40の表面及び内部層の温度分布及び異常部分41の位置を2次元又は3次元表示する(S005)。なお、本実施例では、異常部分は異常熱伝導抵抗発生部分として取り扱う。 Based on the image data read by the measurement image data reading unit 12, the structure internal state calculation unit 13 uses image analysis software to determine the temperature distribution of the surface and internal layers of the structure 40 to be investigated and the temperature distribution of the abnormal part 41. A position is calculated (S003). The analysis image writing unit 14 writes the calculated temperature distribution of the surface and inner layers of the structure 40 and the position of the abnormal portion 41 into the analysis image database 21 (S004). The display unit 15 two-dimensionally or three-dimensionally displays the calculated temperature distribution of the surface and internal layers of the structure 40 and the position of the abnormal portion 41 (S005). Incidentally, in this embodiment, the abnormal portion is treated as a portion where abnormal heat conduction resistance occurs.
 図3に、急傾斜コンクリート土留め擁壁の赤外線測定画像の例を示す。図3(上)に従来例を、図3(下)に、高精度カラーパレット使用の本実施例を示す。これらは、河川を挟んだ500mの対岸から記録した堤防の赤外線熱放射分布画像である。本実施例によれば、温度表示が高分解度のため、従来見えなかった〔空隙の形と深さ〕、〔裏込め部地盤の水分含浸形態〕、〔地盤の流動状態〕、〔コンクリート柱・梁列老朽劣化〕等の存在が浮き彫りされるように見えてくる。図3(下)の擁壁において、格子状枠の上段の左から3,4番目の枠内では擁壁裏面に空洞が隠れており、中段の左から4番目の枠内では裏込め土の深くに保水状態が認められる。 Fig. 3 shows an example of an infrared measurement image of a steeply sloped concrete retaining wall. FIG. 3 (upper) shows a conventional example, and FIG. 3 (lower) shows a present embodiment using a high-precision color palette. These are infrared thermal radiation distribution images of the embankment recorded from the opposite bank of 500 m across the river. According to this embodiment, since the temperature display has a high resolution, [the shape and depth of the void], [form of moisture impregnation of the backfill ground], [flow state of the ground], [concrete column・Deterioration of beam rows] etc. will be highlighted. In the retaining wall shown in Fig. 3 (bottom), cavities are hidden behind the retaining wall in the 3rd and 4th frames from the left of the upper grid frame, and backfill soil is hidden in the 4th frame from the left in the middle row. A deep water retention state is recognized.
 本実施例では、画像解析対象としての構築物40を材料特性が異なる複数層の積層体とするモデルを用い、異常部分(異物、ここでは異常熱伝導抵抗発生部分)41は層の熱抵抗を変化させるものとして画像解析を行うものとする。ここでは、複数層の積層体からなる壁の例について説明する。各層の材料又は材料特性が異なるものとする。層数はNであり、壁の外側から1番目の層、2番目の層、・・・とし、最も内側の層をN番目の層とする。 In this embodiment, a structure 40 as an object of image analysis is modeled as a laminate of multiple layers with different material properties, and an abnormal portion (a foreign object, here, a portion where abnormal thermal conduction resistance occurs) 41 changes the thermal resistance of the layer. Image analysis shall be carried out assuming that Here, an example of a wall made of a laminate of multiple layers will be described. The material or material properties of each layer shall be different. The number of layers is N, and the first layer, second layer, .
 壁の外側の温度をT、内側の温度をTとし、j番目の層の外側の温度をTjo、内側の温度をTjiとすると、
Figure JPOXMLDOC01-appb-M000001
  となる。
Let T o be the outside temperature of the wall, T i be the inside temperature, T jo be the outside temperature of the j-th layer, and T ji be the inside temperature of the wall.
Figure JPOXMLDOC01-appb-M000001
becomes.
 図4に構築物内において異常部分が無い場合の深さと温度との関係を示す。壁内部の深さzと温度Tの関係を示す。壁の外側の位置をz、内側の位置をzとし、j番目の層の外側の位置をzjo、内側の位置をzjiとすると、
Figure JPOXMLDOC01-appb-M000002
  となる。
 各層の温度勾配は材料特性(熱伝導度〔1/熱抵抗〕、層厚zjo-zji、xy領域の広さ、温度、湿度等)の関数となる。一般に温度・湿度が高くなると熱伝導度は高くなる。なお、層厚は熱膨張率の関数となる。なお、壁内部の温度勾配を直線で表したが、空気層については曲線で表した。
 ところで、異常部分(異物、ここでは異常熱伝導抵抗発生部分)がj=k番目の層にあると、k番目の層の材料特性(主として熱伝導抵抗)が変化し、温度勾配が変わる。
FIG. 4 shows the relationship between depth and temperature when there is no abnormal portion in the construct. The relationship between the depth z inside the wall and the temperature T is shown. Let the outer position of the wall be z o and the inner position z i , and the j th layer outer position z jo and inner position z ji .
Figure JPOXMLDOC01-appb-M000002
becomes.
The temperature gradient of each layer is a function of material properties (thermal conductivity [1/thermal resistance], layer thickness z jo -z ji , width of xy region, temperature, humidity, etc.). In general, the higher the temperature and humidity, the higher the thermal conductivity. Note that the layer thickness is a function of the coefficient of thermal expansion. Although the temperature gradient inside the wall is represented by a straight line, the air layer is represented by a curve.
By the way, if an abnormal portion (foreign matter, here, an abnormal heat conduction resistance generating portion) exists in the j=kth layer, the material properties (mainly heat conduction resistance) of the kth layer change, and the temperature gradient changes.
 図5に構築物内において異物が有る場合の深さと温度との関係を示す。異物の挿入により第j番目の層の温度差Tjo-Tjiが変化する。その変化量はΔT=ΔTji+ΔTjoである。また、層全体の温度差T-Tが変化する。その変化量はΔT=ΔT+ΔTである。
 まず、異物が1個で第k番目の層にある場合について考えると、第k番目の層の温度変化は、層全体の温度変化と等しいから、
 
ΔT=ΔT・・・(式3) 
  となる。
 したがって、各層(j=1~N)の変化量ΔTを計算し、ΔT=ΔT となった層が、異物のある層である。これにより、異物のある層を求めるため、すなわち、異物の深さを求めるための1つの式が見出された。
FIG. 5 shows the relationship between depth and temperature when there is a foreign object in the structure. The temperature difference T jo −T ji of the j-th layer changes due to the insertion of foreign matter. The amount of change is ΔT j =ΔT ji +ΔT jo . Also, the temperature difference T o −T i across the layers changes. The amount of change is ΔT=ΔT i +ΔT 0 .
First, considering the case where a single foreign object is in the k-th layer, the temperature change in the k-th layer is equal to the temperature change in the entire layer, so

ΔT k =ΔT (Equation 3)
becomes.
Therefore, the amount of change ΔT j for each layer (j=1 to N) is calculated, and the layer where ΔT j =ΔT is the layer containing the foreign matter. This led to the discovery of one formula for determining the layer with the foreign object, ie the depth of the foreign object.
 また、いずれかの層(j=1~N)に異物がある場合に、N通りのケース(k=1~N)がある。どのケースについても、Tjo-Tji(Tko-Tkiを含む)及びΔT=ΔTが既知なので、異物が有る位置P(x、y)の表面外側の温度T(x、y)から表面内側の温度T(x、y)までの一連の温度の変化が解る。ここでは、この一連の温度の変化のデータを「1セットの温度データ」と称することとする。課題はNセットの温度データのうち、どれが正解かを求めることである。 In addition, there are N cases (k=1 to N) when foreign matter is present in any layer (j=1 to N). For any case, since T jo −T ji (including T ko −T ki ) and ΔT=ΔT k are known, the temperature T o (x, y) outside the surface of location P(x, y) where the foreign object is located to the surface inner temperature T i (x, y). Here, this series of temperature change data is referred to as "one set of temperature data". The task is to determine which of the N sets of temperature data is correct.
 異物が有る位置P(x、y)の表面外側の温度T(x、y)と異物の無い位置P(x、y)の表面外側の温度T(x、y)はそれぞれ、測定画像の色から求まるので、その差ΔT(x、y)も求まる。
 
   ΔT(x、y)=T(x、y)-T(x、y)・・(式4)
  となる。
 表面内側でも、同様な式が成立する。すなわち、異物の無い位置P(x、y)の温度T(x、y)と異物の有る位置P(x、y)の表面内側の温度T(x、y)のとの差をΔT(x、y)とすると、
 
   ΔT(x、y)=T(x、y)-T(x、y)・・(式5) 
  となる。
 
また、
   ΔT=ΔT(x、y)+ΔT(x、y)・・・(式6)
  となる。
 次にどのセットが正しいかを探る。
The temperature T o (x, y) on the outer surface of the position P (x, y) where the foreign matter is present and the temperature T o (x 0 , y 0 ) on the outer surface of the position P (x 0 , y 0 ) without the foreign matter are Since each can be obtained from the color of the measured image, the difference ΔT o (x, y) can also be obtained.

ΔT o (x, y)=T o (x, y)−T o (x 0 , y 0 ) (Equation 4)
becomes.
A similar equation holds for the inside of the surface. That is, the temperature T i (x 0 , y 0 ) at the position P (x 0 , y 0 ) where there is no foreign matter and the temperature T i (x, y) inside the surface at the position P (x, y) where the foreign matter is present Let ΔT i (x, y) be the difference between

ΔT i (x, y)=T i (x 0 , y 0 )−T i (x, y) (Equation 5)
becomes.

again,
ΔT=ΔT i (x, y)+ΔT o (x, y) (Formula 6)
becomes.
Then find out which set is correct.
 図6は、構築物内の領域P(x、y)を説明するための図である。構築物40の測定画像をxy座標で表し、深さをz座標で表す。異物の大きさは、異物無しの場合の色彩から変化した色彩の面積から求まる。色彩の変化が最大の位置が異物のxy座標の中心位置P(x、y)である。個別的にはxy方向とz方向で寸法が異なる場合があり得るが、ここでは簡便のため、同じとして(例えば、異常部分41を球形とみなして)取り扱うこととする。 FIG. 6 is a diagram for explaining the region P(x, y) within the construct. The measured image of the construct 40 is represented by xy coordinates, and the depth is represented by z coordinates. The size of the foreign matter can be determined from the area of the color that has changed from the color without the foreign matter. The position where the change in color is maximum is the center position P C (x, y) of the xy coordinates of the foreign matter. Individually, the dimensions in the xy direction and the z direction may be different, but for the sake of simplicity, they are treated as the same (for example, the abnormal portion 41 is assumed to be spherical).
 領域P(x、y)の隣の4つの領域をP(x-1、y)、P(x+1、y)、P(x、y-1)、P(x、y+1)とし、上記5つの領域の各層(j=1~N)の温度をT(x、y)、T(x-1、y)、T(x+1、y)、T(x、y-1)、T(x、y+1)とすると、領域P(x、y)と隣の4つの領域との間に流れる熱流は、
Figure JPOXMLDOC01-appb-M000003
  となる。
 そして、画像の全領域において、この熱流が最小になるように、T(x、y)が定められる。
The four regions next to the region P(x, y) are P(x−1, y), P(x+1, y), P(x, y−1), P(x, y+1), and the above five The temperature of each layer (j = 1 to N) in the region is T j (x, y), T j (x-1, y), T j (x+1, y), T j (x, y-1), T Given j (x,y+1), the heat flow between region P(x,y) and the four neighboring regions is
Figure JPOXMLDOC01-appb-M000003
becomes.
Then, T j (x, y) is determined such that this heat flow is minimized over the entire area of the image.
 ここで、近似的には、各領域P(x、y)において、
 (式7)の熱流が最小になるように、T(x、y)が導かれる。
 この場合、各領域P(x、y)について、T(x、y)を定める式が成立する。ただし、他の領域の関数を含むので、画像全領域で連立方程式を解くことになるのであるが、各領域毎に、(式3)を満たすNセットの温度データと熱流を最小にする(式7)が成立するので、結果として、正しい1セットの温度データを求められる。なお、領域P(x、y)について、(式7)を計算するには、領域P(x、y)と周囲の4領域について、各N通りの温度セットについて、すなわちN通りの「1セットの温度データ」の組み合わせにおける熱流をそれぞれ計算して、熱流が最小になるものを選択すればよい。
 画像を構成する各領域についてもそれぞれ計算して画像全領域で整合が取れなかった場合には、各領域について最小になったデータセットを選択して、画像全領域での熱流を再計算し、最終的に画像全領域で熱流が最小になる「1セットの温度データ」の組み合わせを求めれば良い。そして、「1セットの温度データ」の組み合わせにより、調査対象としての構築物40の2次元画像及び3次元画像を表現可能になる。
Here, approximately, in each region P (x, y),
T j (x, y) is derived such that the heat flow in (Equation 7) is minimized.
In this case, for each region P(x, y), there is an equation that defines T j (x, y). However, since functions of other regions are included, simultaneous equations must be solved for the entire image region. For each region, N sets of temperature data that satisfy (Eq. Since 7) is established, a correct set of temperature data can be obtained as a result. In addition, in order to calculate (Formula 7) for the region P (x, y), for each of the N temperature sets for the region P (x, y) and the four surrounding regions, that is, N 5 “1 The heat flow in each combination of "set of temperature data" may be calculated and the one that minimizes the heat flow may be selected.
If each area constituting the image is also calculated and the matching is not obtained in the entire image area, the data set that minimizes each area is selected and the heat flow in the entire image area is recalculated, Finally, a combination of "one set of temperature data" that minimizes the heat flow in the entire image area should be obtained. By combining "one set of temperature data", it becomes possible to express two-dimensional images and three-dimensional images of the structure 40 to be investigated.
 結果として、一般的には、異常部分41が外側表面近くでは、
   ΔT(x、y)>ΔT(x、y)・・・(式8)、
 異常部分41が内側表面近くでは、
   ΔT(x、y)<ΔT(x、y)・・・(式9) 
  となる。
 以上により、異物の位置P(x、y)及び深さP(z)が求まる。また、3次元の温度分布が求まる。
As a result, anomalies 41 are generally
ΔT o (x, y)>ΔT i (x, y) (Equation 8),
When the abnormal portion 41 is near the inner surface,
ΔT o (x, y)<ΔT i (x, y) (Equation 9)
becomes.
As described above, the position P(x, y) and depth P(z) of the foreign matter are obtained. Also, a three-dimensional temperature distribution can be obtained.
 図7にコンクリート高架道路の赤外線測定画像の例を示す。図7(左上)に可視画像を、図7(左下)に従来例を、図7(右)に高精度カラーパレット使用の本実施例を示す。図3と同様に、空隙、水分含浸形態が示されている。図中の矢印は、異常を示唆する箇所である。温度表示が高分解度のため、従来見えなかった異常状態が浮き彫りされるように見えてくる。高精度カラーパレットとは、赤外線画像の上限温度値と下限温度値の間に例えば256諧調RGBが割り当てられる。なお、状況(環境・材料等)に応じて多種のカラーパレットが使用される。 Fig. 7 shows an example of an infrared measurement image of a concrete elevated road. FIG. 7 (upper left) shows a visible image, FIG. 7 (lower left) shows a conventional example, and FIG. 7 (right) shows this embodiment using a high-precision color palette. Similar to FIG. 3, the void, moisture impregnated morphology is shown. Arrows in the figure indicate locations suggesting abnormalities. Due to the high-resolution temperature display, abnormal conditions that were not visible in the past can now be seen in relief. A high-precision color palette is assigned, for example, 256 gradations of RGB between the upper limit temperature value and the lower limit temperature value of the infrared image. Various color palettes are used depending on the situation (environment, materials, etc.).
 図8A及び図8Bに本実施例によるコンクリートトンネル内壁の赤外線測定画像の例を示す。図8A(左下)に従来例を、図8A(左上)及び図8A(右下)に高精度カラーパレット使用の例(この2つはカラーパレットの温度表示範囲を変えたものである)を、図8A(右上)に高精度カラーパレット使用の側壁裏面の空隙の拡大図を、図8B(左)に高精度カラーパレット使用の漏水部分の画像を、図8B(右)に高精度カラーパレット使用の側壁裏面の空隙の画像を示す。図中の矢印は、異常を示唆する箇所である。図3と同様に、温度表示が高分解度のため、従来見えなかった異常状態が浮き彫りされるように見えてくる。  Figures 8A and 8B show examples of infrared measurement images of the inner wall of the concrete tunnel according to this embodiment. Fig. 8A (lower left) shows a conventional example, Figs. 8A (upper left) and Fig. 8A (lower right) show examples of using a high-precision color palette (these two are for changing the temperature display range of the color palette), Figure 8A (upper right) is an enlarged view of the gap on the back side of the side wall using a high-precision color palette, Figure 8B (left) is an image of the leaking area using a high-precision color palette, and Figure 8B (right) is using a high-precision color palette. shows an image of the void on the backside of the side wall of the . Arrows in the figure indicate locations suggesting abnormalities. As in FIG. 3, since the temperature display has a high resolution, abnormal conditions that could not be seen in the past can be clearly seen.
 図9は三次元化された赤外線測定画像の例を示す図である。
 図9は、上段:鉄道、下段:道路の赤外線測定画像を3次元処理した画像である。元画像を360度回転して、任意の方向から見ることができる。また、構築物表面から垂直方向に延びている針状部分に、表面から垂直方向の気体の温度が示されている。3次元処理により、構築物内部に垂直方向の温度も表現できる。
FIG. 9 is a diagram showing an example of a three-dimensional infrared measurement image.
FIG. 9 is an image obtained by three-dimensionally processing the infrared measurement image of the upper row: railway and the lower row: road. The original image can be rotated 360 degrees and viewed from any direction. Also, the needle-like portion extending vertically from the surface of the structure indicates the temperature of the gas in the vertical direction from the surface. Three-dimensional processing can also represent the temperature in the vertical direction inside the structure.
 調査対象の構築物が壁のように両側(外側・内側)が開放された物であれば、両側表面の測定画像を取得できるので、両側表面の測定画像から異常部分(異常熱伝導抵抗発生部分)の深さを求めることが容易になる。すなわち、ΔT(x、y)及びΔT(x、y)が求まるので、
ΔT=ΔT(x、y)+ΔT(x、y)=ΔT=ΔToj(x、y)+ΔTij(x、y)・・・(式10)
 となる第j層を求めれば良い。
 また、複数個の異常部分が重なっている場合(実施例2参照)にはΔT=ΣΔT となる複数の第j層を求めれば良い。
If the structure to be investigated is open on both sides (outside and inside), such as a wall, it is possible to acquire measurement images of both surfaces. It becomes easy to find the depth of That is, since ΔT o (x, y) and ΔT i (x, y) are obtained,
ΔT=ΔT o (x, y)+ΔT i (x, y)=ΔT j =ΔT oj (x, y)+ΔT ij (x, y) (Equation 10)
It suffices to find the j-th layer where
Also, when a plurality of abnormal portions overlap (see Example 2), a plurality of j-th layers satisfying ΔT=ΣΔT j may be obtained.
 これに対し、トンネルのように片側(内側)表面の測定が困難な場合には、熱流が最小になるように、T(x、y)を解いていかねばならない。また、トンネル内側の土中(又は岩中)温度については、ある程度の深さの所では一様な温度として近似計算しても良い。気体の温度についても、表面からある程度の距離の所では一様な温度として近似計算しても良い。
 また、より測定画像に近づける可能性があるモデルやパラメータが想定された時には、モデルやパラメータを変えて演算を繰り返し、異常部分(異常熱伝導抵抗発生部分)の近似解の精度を高めていくことができる。
 異常熱伝導抵抗発生部分の特定については、空隙、水濡れ、ひび割れ、コンクリート中性化等、蓄積されたデータを参照して、判断に役立てられる。データが多量になれば、AI(人工知能、Artificial Intelligence)の利用も可能になる。
On the other hand, when it is difficult to measure a single (inner) surface, such as a tunnel, T j (x,y) must be solved to minimize the heat flow. Also, the temperature in the soil (or rock) inside the tunnel may be approximated as a uniform temperature at a certain depth. The temperature of the gas may also be approximated as a uniform temperature at a certain distance from the surface.
In addition, when a model or parameter that may bring the image closer to the measured image is assumed, repeat the calculation by changing the model or parameter to improve the accuracy of the approximate solution for the abnormal part (the part where abnormal thermal conduction resistance occurs). can be done.
Accumulated data such as gaps, water wetness, cracks, and neutralization of concrete are referred to for identification of the abnormal heat conduction resistance occurrence portion, which is useful for judgment. As the amount of data increases, the use of AI (Artificial Intelligence) will also become possible.
 以上により、本実施例によれば、構築物の表面の及び内部層の異常状態と構築物の表面及び内部層の温度分布とを関連付けた画像解析を可能とする赤外線測定画像解析装置及び赤外線測定画像解析方法を提供できる。 As described above, according to the present embodiment, an infrared measurement image analysis device and an infrared measurement image analysis that enable image analysis that associates the abnormal state of the surface and internal layers of the structure with the temperature distribution of the surface and internal layers of the structure. can provide a method.
 図10に、構築物内の領域P(x、y)で異物が重なる場合の深さと温度との関係を示す。
 図10は、異物が第j番目と第j+1番目の層に有る場合の例で、この2層で温度勾配が増加している。
 実施例1では、同じ領域(x、y)で、異物の重複が無い場合の例について説明したが、重複がある場合には、
 異物がm個重複する場合は、重複しない場合の(式3)に代えて、
Figure JPOXMLDOC01-appb-M000004
  となる。
 したがって、各層の変化量ΔTを計算し、(式11)が成立するm個のΔTの組み合わせが見出された層が、異物のある層である。これにより、異物のある層の候補、すなわち、異物(m個)の深さを含む1セットの温度データが選択される。温度データのセット数は、(N個からm個を選ぶ組み合わせの数)=N!/m!(N-m)!である。
 従って、実施例1における(式7)を計算する際のN通りに代えて、領域P(x、y)及び隣の4つの領域P(x-1、y)、P(x+1、y)、P(x、y-1)、P(x、y+1)の異物の有る層の数を、m1、m2、m3、m4、m5とすると、
  m1×m2×m3×m4×m5 通りが用いられる。
FIG. 10 shows the relationship between depth and temperature when foreign matter overlaps in the region P(x, y) within the construct.
FIG. 10 shows an example in which foreign matter is present in the j-th and j+1-th layers, and the temperature gradient increases in these two layers.
In the first embodiment, an example in which foreign matter does not overlap in the same region (x, y) has been described.
When m foreign substances overlap, instead of (Equation 3) when they do not overlap,
Figure JPOXMLDOC01-appb-M000004
becomes.
Therefore, the amount of change ΔT j of each layer is calculated, and the layer in which m combinations of ΔT j satisfying (Equation 11) are found is the layer with the foreign matter. As a result, a set of temperature data including the candidate layers with foreign particles, that is, the depths of the foreign particles (m) is selected. The number of sets of temperature data is N C m (the number of combinations for selecting m from N)=N! /m! (N−m)! is.
Therefore, instead of N 5 ways to calculate (Equation 7) in Example 1, the region P (x, y) and the adjacent four regions P (x-1, y), P (x + 1, y) , P(x, y−1), and P(x, y+1), where m1, m2, m3, m4, and m5 are the numbers of layers with foreign matter,
NC m1 × NC m2 × NC m3 × NC m4 × NC m5 patterns are used.
 その他の関係式は実施例1と同様で、最終的に、温度分布及び異常部分の位置、深さが求まる。
 以上により、異物の位置P(x、y)及び深さP(z)が求まる。また、3次元の温度分布が求まる。また、本実施例によれば、実施例1と同様に、構築物の表面及び内部層の異常状態と構築物の表面の及び内部層の温度分布とを関連付けた画像解析を可能とする赤外線測定画像解析装置及び赤外線測定画像解析方法を提供できる。
Other relational expressions are the same as in Example 1, and finally the temperature distribution and the position and depth of the abnormal portion are obtained.
As described above, the position P(x, y) and depth P(z) of the foreign matter are obtained. Also, a three-dimensional temperature distribution can be obtained. Further, according to the present embodiment, as in the first embodiment, infrared measurement image analysis that enables image analysis that associates the abnormal state of the surface and inner layers of the structure with the temperature distribution of the surface and inner layers of the structure. An apparatus and infrared measurement image analysis method can be provided.
 図11に、構築物の材料が均一の場合の層の材料特性の変化を示す。
 実施例1及び実施例2では、各層の材料特性が異なる場合の例を説明したが、実施例3では構築物の材料特性が均一の場合の例について説明する。
 壁の外側の温度To、内側の温度Tiには差があるものとする。壁をN個の層に分けると、各層の温度が異なるので、熱伝導率が層毎にことなり、熱伝導抵抗も異なる。したがって、各層の温度勾配が異なる。そして、ΔTが変化する。
 温度に代えて各層の湿度が異なる場合も熱伝導率が層毎にことなり、熱伝導抵抗も異なる。したがって、各層の温度勾配が異なる。そして、ΔTが変化する。
 その他の関係式は実施例1と同様である。
 以上により、異物の位置P(x、y)及び深さP(z)が求まる。また、3次元の温度分布が求まる。また、本実施例によれば、実施例1と同様に、構築物の表面及び内部層の異常状態と構築物の表面及び内部層の温度分布とを関連付けた画像解析を可能とする赤外線測定画像解析装置及び赤外線測定画像解析方法を提供できる。
FIG. 11 shows the change in the material properties of the layers when the construction material is uniform.
In Examples 1 and 2, examples in which the material properties of each layer are different have been described, but in Example 3, an example in which the material properties of the structure are uniform will be described.
It is assumed that there is a difference between the outside temperature To and the inside temperature Ti of the wall. If the wall is divided into N layers, the temperature of each layer is different, so the thermal conductivity is different for each layer, and the thermal conductivity resistance is also different. Therefore, each layer has a different temperature gradient. Then, ΔTk changes.
When the humidity of each layer is different instead of the temperature, the thermal conductivity is also different for each layer, and the thermal conduction resistance is also different. Therefore, each layer has a different temperature gradient. Then, ΔTk changes.
Other relational expressions are the same as in the first embodiment.
As described above, the position P(x, y) and depth P(z) of the foreign matter are obtained. Also, a three-dimensional temperature distribution can be obtained. Further, according to the present embodiment, as in the first embodiment, an infrared measurement image analysis apparatus that enables image analysis that associates the abnormal state of the surface and inner layers of the structure with the temperature distribution of the surface and inner layers of the structure. and an infrared measurement image analysis method.
 以上の実施例では、壁の外側及び内側が平面であり、各層がこれらの平面に平行である例について説明したが、本実施例では壁の外側又は内側に凹凸がある場合の例を説明する。
 構築物の表面に凹凸がある場合の構築物内の等温線は、電極に凹凸がある場合の等電位線と同様になる。そして、熱流が流れる線は電気力線と同様になる。これら凹凸のある等温線と熱流が流れる線を用いて、等温線に添うように層構造を再構成し、疑似的な平面に書き直して温度解析することにより、異物の位置P(x、y)及び深さP(z)が求まる。また、3次元の温度分布が求まる。
 以上により、本実施例によれば、実施例1と同様に、構築物の表面及び内部層の異常熱伝導抵抗発生状態と構築物の表面及び内部層の温度分布とを関連付けた画像解析を可能とする赤外線測定画像解析装置及び赤外線測定画像解析方法を提供できる。
In the above examples, the outer and inner sides of the wall are flat, and each layer is parallel to these planes. .
The isothermal lines in the construct when the surface of the construct has unevenness are similar to the isoelectric lines when the electrode has unevenness. And the lines through which the heat flows are similar to the lines of electric force. Using these uneven isotherms and lines along which the heat flow flows, the layer structure is reconfigured along the isotherms, rewritten on a pseudo plane, and subjected to temperature analysis to determine the foreign matter position P (x, y) and the depth P(z) is obtained. Also, a three-dimensional temperature distribution can be obtained.
As described above, according to the present embodiment, as in the first embodiment, it is possible to perform image analysis that associates the state of occurrence of abnormal thermal conduction resistance on the surface and inner layers of the structure with the temperature distribution of the surface and inner layers of the structure. An infrared measurement image analysis device and an infrared measurement image analysis method can be provided.
 以上、本発明の実施の形態について説明したが、実施の形態は以上の例に限られるもの
ではなく、本発明の趣旨を逸脱しない範囲で、種々の変更を加え得ることは明白である。
 例えば、以上の実施例では、主として各層(積層体)が平坦な例を扱ったが、各層が曲面の場合にも適用可能である。この場合、等温線は曲面に沿って形成されるが、各層の外側面と内側面に温度勾配があり、異物の混入により温度勾配に変化が生じるという点は各層が平坦な例と同様である。また、以上の実施例では、構造体が壁の例を扱ったが、構造体が柱の場合にも適用可能である。異物がない場合の等温線に沿って各層を形成し、異物の混入により温度勾配に変化が生じるようにすれば良い。また、以上の実施例では、異物が球状の例について説明したが、異物の形状と熱伝導抵抗との対応付けがきちんとできるのであれば、解析可能である。また、異物が多くかつ複雑になればモデルから離れるが、大量のデータを扱うことによって、精度良い解析を維持できるし、AIの利用も考えられる。その他、気象環境、立地環境、構築物の構造・材料等に応じて、材料特性等のパラメータを適宜変更可能である。
Although the embodiments of the present invention have been described above, the embodiments are not limited to the above examples, and it is clear that various modifications can be made without departing from the scope of the present invention.
For example, in the above embodiments, examples where each layer (laminate) is flat have been mainly dealt with, but the present invention can also be applied when each layer has a curved surface. In this case, the isothermal line is formed along the curved surface, but there is a temperature gradient between the outer and inner surfaces of each layer, and the temperature gradient changes due to the inclusion of foreign matter, which is the same as in the example where each layer is flat. . Also, in the above embodiments, examples of structures having walls were dealt with, but the present invention can also be applied to cases in which structures are columns. Each layer may be formed along an isothermal line in the absence of foreign matter, and the temperature gradient may change due to the presence of foreign matter. Also, in the above embodiments, an example in which the foreign matter is spherical has been described, but analysis is possible if the shape of the foreign matter and the thermal conduction resistance can be properly associated. In addition, if there are many foreign objects and the model becomes complicated, it will be removed from the model, but by handling a large amount of data, accurate analysis can be maintained and AI can be used. In addition, parameters such as material characteristics can be appropriately changed according to the weather environment, location environment, structure/material of the building, and the like.
 本発明は、赤外線測定画像解析、例えばトンネル、橋梁、高速道路、堤防、建物等の赤外線測定画像解析、その他、溶鉱炉、移動体、動物、植物等の赤外線測定画像解析に利用可能である。また、インフランテーションの画像解析は災害予防にも利用可能である。 The present invention can be used for infrared measurement image analysis, for example, infrared measurement image analysis of tunnels, bridges, highways, embankments, buildings, etc., as well as infrared measurement image analysis of blast furnaces, moving bodies, animals, plants, etc. Image analysis of infrastructure can also be used for disaster prevention.
10 赤外線測定画像解析装置
11 プログラム格納部
12 測定画像データ読取部
13 構築物内部状態演算部
14 解析画像書込部
15 表示部
20 測定画像データベース
21 解析画像データベース
30 測定装置
31 測定記憶部
40 構築物
41 異常部分(異物)

 
10 infrared measurement image analysis device 11 program storage unit 12 measurement image data reading unit 13 structure internal state calculation unit 14 analysis image writing unit 15 display unit 20 measurement image database 21 analysis image database 30 measurement device 31 measurement storage unit 40 structure 41 abnormality part (foreign object)

Claims (8)

  1.  測定装置により測定された赤外線測定画像について画像解析を行う画像解析ソフトウェアを格納するプロフラム格納部と、
     前記赤外線測定画像を前記測定装置の測定記憶部又は測定画像データベースから高精度温度分解能で画像データを読み取る測定画像データ読取部と、
     前記測定影画像データ読取部で読み取られた画像データに基づいて、前記画像解析ソフトウェアを用いて、調査対象である構築物の表面及び内部層の3次元温度分布及び異常部分の3次元位置を前記高精度温度分解能で演算する構築物内部状態演算部と、
     演算された前記構築物の表面の及び内部層の3次元温度分布及び異常部分の3次元位置を解析画像データベースに書き込む解析画像書込部と、
     演算された前記構築物の表面及び内部層の温度分布及び異常部分の位置を2次元又は3次元表示する表示部とを備え;
     前記高精度温度分解能は、0.001℃乃至0.05℃であることを特徴とする;
     赤外線測定画像解析装置。
    a program storage unit that stores image analysis software that performs image analysis on infrared measurement images measured by the measurement device;
    a measurement image data reading unit that reads image data of the infrared measurement image from a measurement storage unit of the measurement device or a measurement image database with high-precision temperature resolution;
    Based on the image data read by the measurement shadow image data reading unit, the image analysis software is used to determine the three-dimensional temperature distribution of the surface and internal layers of the structure to be investigated and the three-dimensional position of the abnormal part. a structure internal state calculation unit that calculates with precision temperature resolution;
    an analysis image writing unit that writes the calculated three-dimensional temperature distribution of the surface and internal layers of the structure and the three-dimensional position of the abnormal portion into an analysis image database;
    a display unit for two-dimensionally or three-dimensionally displaying the calculated temperature distribution of the surface and internal layers of the structure and the position of the abnormal portion;
    The high-precision temperature resolution is 0.001°C to 0.05°C;
    Infrared measurement image analyzer.
  2.  前記画像解析ソフトウェアは前記測定画像データ読取部で読み取った測定画像を高精度化するプログラムと、前記高精度化された画像を彩色するためのカラーパレットとを備え、
     前記構築物内部状態演算部は、前記高精度化されかつ前記カラーパレットで彩色された画像データに基づいて演算を行うことを特徴とする;
     請求項1に記載の赤外線測定画像解析装置。
    The image analysis software comprises a program for increasing the accuracy of the measurement image read by the measurement image data reading unit, and a color palette for coloring the highly accurate image,
    The structure internal state calculation unit performs calculations based on the image data that has been highly accurate and colored with the color palette;
    The infrared measurement image analysis device according to claim 1.
  3.  前記画像解析ソフトウェアは、調査対象としての構築物を材料特性が異なる層の積層体とするモデルを用い、前記異常部分は層の熱伝導抵抗を変化させるものとして画像解析を行うことを特徴とする;
     請求項1又は請求項2に記載の赤外線測定画像解析装置。
    The image analysis software uses a model in which the structure to be investigated is a laminate of layers with different material properties, and performs image analysis assuming that the abnormal portion changes the thermal conduction resistance of the layer;
    The infrared measurement image analysis device according to claim 1 or 2.
  4.  前記画像解析ソフトウェアは、前記構築物内の異常部分の深さを、前記異常部分挿入による前記異常部分がある層の温度変化に基づいて求めることを特徴とする;
     請求項3に記載の赤外線測定画像解析装置。
    The image analysis software is characterized in that the depth of the anomaly in the construct is determined based on the change in temperature of the layer in which the anomaly is located due to the insertion of the anomaly;
    The infrared measurement image analysis device according to claim 3.
  5.  測定装置により測定された赤外線測定画像について画像解析を行う画像解析ソフトウェアを予めプロフラム格納部に格納しておく、画像解析ソフトウェア格納工程と、
     前記赤外線測定画像を前記測定装置の記憶部又は測定画像データベースから高精度温度分解能で画像データを読み取る測定画像データ読取工程と、
     前記測定画像データ読取部で読み取られた画像データに基づいて、前記画像解析ソフトウェアを用いて、調査対象である構築物の表面及び内部層の3次元温度分布及び異常部分の3次元位置を前記高精度温度分解能で演算する構築物内部状態演算工程と、
     演算された前記構築物の表面及び内部層の3次元温度分布及び異常部分の3次元位置を解析画像データベースに書き込む解析画像書込工程と、
     演算された前記構築物の表面及び内部層の温度分布及び異常部分の位置を2次元又は3次元表示する表示工程とを備え、
     前記高精度温度分解能は、0.001℃乃至0.05℃であることを特徴とする;
     赤外線測定画像解析方法。
    an image analysis software storing step of pre-storing image analysis software for performing image analysis on an infrared measurement image measured by the measuring device in a program storage unit;
    a measurement image data reading step of reading image data of the infrared measurement image from a storage unit of the measurement device or a measurement image database with high-precision temperature resolution;
    Based on the image data read by the measurement image data reading unit, the three-dimensional temperature distribution of the surface and internal layers of the structure to be investigated and the three-dimensional position of the abnormal part are determined with high accuracy using the image analysis software. a structure internal state calculation step for calculating with temperature resolution;
    an analysis image writing step of writing the calculated three-dimensional temperature distribution of the surface and inner layers of the structure and the three-dimensional position of the abnormal portion in an analysis image database;
    a display step of displaying the calculated temperature distribution of the surface and inner layers of the structure and the position of the abnormal part in two or three dimensions;
    The high-precision temperature resolution is 0.001°C to 0.05°C;
    Infrared measurement image analysis method.
  6.  前記画像解析ソフトウェアは、前記測定画像データ読取部で読み取った画像を高精度化するプログラムと、前記高精度化された画像を彩色するためのカラーパレットとを備え、
     前記構築物内部状態演算部は、前記高精度化されかつ前記カラーパレットで彩色された画像データに基づいて演算を行うことを特徴とする;
     請求項5に記載の赤外線測定画像解析方法。
    The image analysis software includes a program for increasing the accuracy of the image read by the measurement image data reading unit, and a color palette for coloring the highly accurate image,
    The structure internal state calculation unit performs calculations based on the image data that has been highly accurate and colored with the color palette;
    The infrared measurement image analysis method according to claim 5.
  7.  前記画像解析ソフトウェアは、調査対象としての構築物を材料特性が異なる層の積層体とするモデルを用い、前記異常部分は層の熱伝導抵抗を変化させるものとして画像解析を行うことを特徴とする;
     請求項5又は請求項6に記載の赤外線測定画像解析方法。
    The image analysis software uses a model in which the structure to be investigated is a laminate of layers with different material properties, and performs image analysis assuming that the abnormal portion changes the thermal conduction resistance of the layer;
    The infrared measurement image analysis method according to claim 5 or 6.
  8.  前記画像解析ソフトウェアは、前記構築物内部層の異常部分の深さを、前記異常部分挿入による前記異常部分がある層の温度変化に基づいて求めることを特徴とする;
     請求項7に記載の赤外線測定画像解析方法。

     
    The image analysis software is characterized in that the depth of the abnormal portion of the inner layer of the construct is obtained based on the temperature change of the layer where the abnormal portion is located due to the insertion of the abnormal portion;
    The infrared measurement image analysis method according to claim 7.

PCT/JP2022/000518 2022-01-11 2022-01-11 Infrared measurement image analysis device and infrared measurement image analysis method WO2023135634A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/000518 WO2023135634A1 (en) 2022-01-11 2022-01-11 Infrared measurement image analysis device and infrared measurement image analysis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/000518 WO2023135634A1 (en) 2022-01-11 2022-01-11 Infrared measurement image analysis device and infrared measurement image analysis method

Publications (1)

Publication Number Publication Date
WO2023135634A1 true WO2023135634A1 (en) 2023-07-20

Family

ID=87278561

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/000518 WO2023135634A1 (en) 2022-01-11 2022-01-11 Infrared measurement image analysis device and infrared measurement image analysis method

Country Status (1)

Country Link
WO (1) WO2023135634A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010046967A1 (en) * 2008-10-21 2010-04-29 西日本高速道路エンジニアリング四国株式会社 Infrared thermal image analyzer
US20110299752A1 (en) * 2010-06-04 2011-12-08 Uchicago Argonne, Llc Method for implementing depth deconvolution algorithm for enhanced thermal tomography 3d imaging
CN110749621A (en) * 2019-10-10 2020-02-04 天津城建大学 Infrared detection method for concrete interface void defect of steel plate composite shear wall
JP2020024184A (en) * 2018-07-26 2020-02-13 直人 今西 Structural inside deformation character detection device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010046967A1 (en) * 2008-10-21 2010-04-29 西日本高速道路エンジニアリング四国株式会社 Infrared thermal image analyzer
US20110299752A1 (en) * 2010-06-04 2011-12-08 Uchicago Argonne, Llc Method for implementing depth deconvolution algorithm for enhanced thermal tomography 3d imaging
JP2020024184A (en) * 2018-07-26 2020-02-13 直人 今西 Structural inside deformation character detection device
CN110749621A (en) * 2019-10-10 2020-02-04 天津城建大学 Infrared detection method for concrete interface void defect of steel plate composite shear wall

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
RAMDANE, BRAHIM ET AL.: "3-D Numerical Modeling of the Thermo-Inductive Technique Using Shell Elements", IEEE TRANSACTIONS ON MAGNETICS, vol. 46, no. 8, 2010, pages 3037 - 3040, XP011313973, DOI: 10. 1 109/TMAG.2010.2044022 *

Similar Documents

Publication Publication Date Title
Lagüela et al. Energy efficiency studies through 3D laser scanning and thermographic technologies
Wang et al. As-is 3D thermal modeling for existing building envelopes using a hybrid LIDAR system
Brooke Thermal imaging for the archaeological investigation of historic buildings
Solla et al. Non‐destructive testing for the analysis of moisture in the masonry arch bridge of Lubians (Spain)
Grechi et al. 3D thermal monitoring of jointed rock masses through infrared thermography and photogrammetry
Glavaš et al. Locating hidden elements in walls of cultural heritage buildings by using infrared thermography
Garrido et al. IRT and GPR techniques for moisture detection and characterisation in buildings
CN108885167A (en) System and method for analyzing core sample
Kong et al. Preserving our heritage: A photogrammetry-based digital twin framework for monitoring deteriorations of historic structures
Loche et al. An infrared thermography approach to evaluate the strength of a rock cliff
Hassan Digital image correlation for discontinuous displacement measurement using subset segmentation
González-Jorge et al. Single image rectification of thermal images for geometric studies in façade inspections
Seo Tilt mapping for zigzag-shaped concrete panel in retaining structure using terrestrial laser scanning
Dupré et al. Experimental study of the hygromechanical behaviour of a historic painting on wooden panel: devices and measurement techniques
Margottini et al. Advances in geotechnical investigations and monitoring in rupestrian settlements inscribed in the UNESCO's World Heritage List
Balado et al. Automatic detection of surface damage in round brick chimneys by finite plane modelling from terrestrial laser scanning point clouds. Case Study of Bragança Dukes’ Palace, Guimarães, Portugal
WO2023135634A1 (en) Infrared measurement image analysis device and infrared measurement image analysis method
Beer Numerical simulation in tunnelling
JP7406769B2 (en) Infrared measurement image analysis device and infrared measurement image analysis method
Zhang et al. Monitoring instantaneous dynamic displacements of masonry walls in seismic oscillation outdoors by monocular digital photography
Morena et al. Architectural survey techniques for degradation diagnostics. An application for the cultural heritage
Błaszczak-Bąk et al. Defect detection of historic structures in dark places based on the point cloud analysis by modified OptD method
Previtali et al. Generation of a GIS-based environment for infrared thermography analysis of buildings
Ham et al. Updating R-values of BIM elements using 3D thermography for accurate building energy performance simulation
Moga Thermal performance of insulated glazing units established by infrared thermography

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22920160

Country of ref document: EP

Kind code of ref document: A1