WO2023135395A1 - Ensemble pour la réalisation d'un moulage en matériau éliminable d'une aube de turbomachine - Google Patents
Ensemble pour la réalisation d'un moulage en matériau éliminable d'une aube de turbomachine Download PDFInfo
- Publication number
- WO2023135395A1 WO2023135395A1 PCT/FR2023/050048 FR2023050048W WO2023135395A1 WO 2023135395 A1 WO2023135395 A1 WO 2023135395A1 FR 2023050048 W FR2023050048 W FR 2023050048W WO 2023135395 A1 WO2023135395 A1 WO 2023135395A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- core element
- holding member
- face
- core
- fulcrum
- Prior art date
Links
- 238000000465 moulding Methods 0.000 title claims abstract description 55
- 239000000463 material Substances 0.000 title claims abstract description 27
- 238000002347 injection Methods 0.000 claims abstract description 26
- 239000007924 injection Substances 0.000 claims abstract description 26
- 238000000034 method Methods 0.000 claims description 19
- 230000000903 blocking effect Effects 0.000 claims description 9
- 238000004519 manufacturing process Methods 0.000 claims description 8
- 238000005266 casting Methods 0.000 description 9
- 238000011144 upstream manufacturing Methods 0.000 description 8
- 239000000919 ceramic Substances 0.000 description 7
- 239000000956 alloy Substances 0.000 description 4
- 229910045601 alloy Inorganic materials 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 238000007711 solidification Methods 0.000 description 4
- 230000008023 solidification Effects 0.000 description 4
- 238000001816 cooling Methods 0.000 description 3
- 238000005495 investment casting Methods 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 238000005192 partition Methods 0.000 description 2
- 238000004026 adhesive bonding Methods 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 239000012809 cooling fluid Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000007373 indentation Methods 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22C—FOUNDRY MOULDING
- B22C7/00—Patterns; Manufacture thereof so far as not provided for in other classes
- B22C7/02—Lost patterns
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22C—FOUNDRY MOULDING
- B22C23/00—Tools; Devices not mentioned before for moulding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22C—FOUNDRY MOULDING
- B22C9/00—Moulds or cores; Moulding processes
- B22C9/02—Sand moulds or like moulds for shaped castings
- B22C9/04—Use of lost patterns
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22C—FOUNDRY MOULDING
- B22C9/00—Moulds or cores; Moulding processes
- B22C9/22—Moulds for peculiarly-shaped castings
- B22C9/24—Moulds for peculiarly-shaped castings for hollow articles
Definitions
- the present disclosure relates to the field of turbomachine blades, that in particular of blades obtained by casting a molten alloy in a mold according to the technique of foundry in removable material, such as for example lost wax.
- the lost-wax casting technique consists first of all in producing a model in wax, or in any other material that can be easily removed later, of the part to be produced; this model includes an internal part forming a ceramic core which represents the cavities that one wishes to see appear inside the blading.
- the wax model is then dipped several times in slips made of a suspension of ceramic particles to make, by operations called stuccoing and drying, a shell mould.
- the carapace mold is then waxed, which is an operation by which the wax or the material constituting the original model is removed from the carapace. After this elimination, a ceramic mold is obtained, the cavity of which reproduces all the shapes of the blade and which still contains the ceramic core intended to generate the internal cavities thereof. The mold then undergoes a high temperature heat treatment or “baking” which gives it the necessary mechanical properties.
- the shell mold is then ready for the manufacture of the metal part by casting.
- the next step consists in pouring a molten metal, which fills the voids between the inner wall of the shell mold and the core, then in solidifying it.
- solidification techniques there are currently several solidification techniques and several casting techniques, depending on the nature of the alloy and the expected properties of the part resulting from the casting. It can be directed solidification with columnar structure (DS), directed solidification with monocrystalline structure (SX) or equiaxed solidification (EX).
- a tool or wax injection mold is used, in which the core is placed and then the liquid wax is injected through a channel provided for this purpose.
- the solution adopted consists in producing the core in two parts, in particular because of the complexity of the cavities forming the cooling circuit and the difficulties encountered when unmolding the core of its injection mold. But due to the too small dimensions of the core parts, and their complex geometry, it is impossible to make a connection between these core parts, for example by gluing, so as to then position the core with its assembled parts in a tool. injection molding comprising a classic six-point isostatic positioning system.
- a difficulty encountered is twofold because it consists on the one hand of very precisely positioning the different parts of the core in the wax injection mold and on the other hand to position the different parts of the core relative to each other.
- the two parts cannot each include their own classic isostatic positioning system with six points of support in relation to the mould, because this would double the number of supports to be integrated into the wax injection mould, which terms of mold size is not an option.
- the two parts of the core being punctually entangled, certain points of isostatism cannot be placed in the wax injection mould. Consequently, the simple positioning of the cores relative to the mold cannot allow complete positioning of the cores relative to each other.
- the object of the invention is in particular to provide a simple, effective and economical solution to the problems of the prior art described above.
- the present disclosure proposes an assembly for producing a molding in removable material of a turbomachine blade comprising a mold for injection of said removable material in which a first core element and a second core element are capable of being mounted in a predetermined molding position, the first and second core elements extending in a first direction, the mold comprising:
- first holding member for holding the cores in position in the injection mold, at least one first holding member extending from the first face of the mold in the second direction and at least partially passing through the first and the second core elements, the first holding member comprising a first bearing point on the first core element and a second bearing point on the second core element.
- the assembly may include the following characteristics, taken alone or in combination:
- the first core element and the second core element are shaped in such a way that the first bearing point of the first holding member provides blocking of the first core element in a first direction of a third direction perpendicular to the first and second direction and the second fulcrum of the first holding member ensures locking of the second core element in a second direction of the third direction, opposite to the first direction;
- a second holding member extends from the first molding face in the second direction, the second holding member comprising a first point of support on the first core element and a second point of support on the second element of core, said first fulcrum and second fulcrum of the second holding member being distinct from the first fulcrum and second fulcrum of the first holding member;
- the first core element and the second core element are shaped so that the first fulcrum of the second holding member locks the first core element in the first direction of a third direction perpendicular to the first and in the second direction and the second fulcrum of the second holding member provides locking of the second core element in a second direction of the third direction, opposite to the first direction;
- the second holding member comprises a spacing means between the first fulcrum of the second holding member and the second fulcrum of the second holding member, the spacing means guaranteeing, during the production of the molding in removable material, a spacing of a constant distance between said support points in the third direction;
- the first holding member comprises a spacing means between the first fulcrum of the first holding member and the second fulcrum of the first holding member, the spacing means guaranteeing, during the production of the molding in removable material, a spacing of a constant distance between said support points according to at least one of the first direction, the second direction or the third direction;
- the first holding member and/or the second holding member is movable between a holding position for at least one core element and a retracted position, the holding member comprising a retraction mechanism for positioning the holding member in the holding position or in the retracted position;
- the first holding member and/or the second holding member comprises an axis of rotation and an eccentric head relative to the axis of rotation and cooperating with the first core element and the second core element.
- a process for producing a molding in removable material of a turbine engine blade comprising:
- the mold comprising:
- the method comprising the step: positioning the first element of the core and the second core element on the first molding face so that the first holding member at least partially passes through the first and the second core elements and comprises a first point of support on the first core element and a second fulcrum on the second core element.
- the method may further comprise: the step: positioning the first core element and the second core element on the first molding face so that the second holding member comprises a first point of support on the first core element and a second bearing point on the second core element, the mold further comprising a second holding member extending from the first molding face in the second direction.
- FIG. 1 shows a perspective view of a first and a second core element placed on a first face of an injection mold of a removable material.
- FIG. 2 shows the view of Figure 1, without the first and the second core element, the first face of the injection mold comprising holding members with support points for holding the leading edge cores and trailing edge.
- FIG. 3 shows a view of the leading edge core from its extrados face, on which the support points are schematized.
- FIG. 4 shows a view of the trailing edge core from its extrados face, on which the support points are schematized.
- FIG. 5 is a sectional view of Figure 1 along the axis A-A.
- FIG. 6 is a sectional view of Figure 1 along the B-B axis.
- FIG. 7 is a sectional view of Figure 1 along the B-B axis, illustrating a first embodiment of a holding member.
- FIG. 8 is a sectional view of Figure 1 along the B-B axis, illustrating a second embodiment of a holding member.
- FIG. 9 is a top view of the example shown in Figure 8.
- upstream and downstream are subsequently defined with respect to the direction of gas flow through a turbomachine, indicated by the arrow F in FIG.
- Figure 1 illustrates the arrangement of the core elements in an injection mold, only a first molding face 20 being illustrated.
- Figure 1 illustrates that the core has a first core element and a second core element, hereinafter referred to as the leading edge core 22 and the trailing edge core 21 .
- the cores 21, 22 extend in three perpendicular directions in pairs, a first direction Z, hereinafter referred to as the longitudinal direction Z corresponding on the final blade to the longitudinal direction connecting the root to the tip of the blade , a second direction Y, hereinafter referred to as the transverse direction Y, crossing the intrados and extrados faces of the blade, and a third direction X, hereinafter the axial direction X corresponding on the final blade to the direction upstream/downstream (arrow F).
- a first direction Z hereinafter referred to as the longitudinal direction Z corresponding on the final blade to the longitudinal direction connecting the root to the tip of the blade
- a second direction Y hereinafter referred to as the transverse direction Y, crossing the intrados and extrados faces of the blade
- a third direction X hereinafter the axial direction X corresponding on the final blade to the direction upstream/downstream (arrow F).
- FIG. 1 only the underside face of the leading edge core 23a and the underside face of
- the extrados face of the leading edge core 24a and the extrados face of the trailing edge core 24f, visible for each core in Figures 3 and 4, is arranged facing the first molding face 20.
- the leading edge 22 and trailing edge 21 cores each comprise a head respectively 25a, 25f and a foot 26a, 26f respectively, the head 25a, 25f being arranged at the opposite end of the foot 26a, 26f, in the longitudinal direction Z.
- each of the cores comprises a cutout 27a, 27f, i.e. that is to say a portion without material, which extends at least partly perpendicular to the longitudinal direction Z, in the axial direction X.
- cutouts also extend from the intrados faces 23a, 23f towards the extrados faces 24a, 24f. These cutouts are provided to form in the final blade a bottom wall of the blade tub.
- the cutout 27a of the leading edge core 22 is delimited by an upper cutout wall 271a and by a lower cutout wall 272a.
- the cutout 27a of the leading edge core also extends over the entire width of the core, in the axial direction X.
- the cutout 27f of the trailing edge core 21 is delimited by an upper cutout wall 271f and by a lower cutout wall 272f.
- the cutout of the trailing edge core 27f extends for its part over only part of the width of the core, in the axial direction X.
- the cutout of the trailing edge core 27f extends from the edge upstream 28 of the trailing edge core and ends in a longitudinal cut-out portion 29 which extends longitudinally in the longitudinal direction Z in the material of the core, and therefore without passing through the core as far as its downstream edge 30.
- the feet 26a, 26f further comprise a free end 31a, 31f, corresponding to a non-functional area of the core.
- the free ends 31a, 31f can overlap, at least partially.
- the free end 31f of the trailing edge core may include a tab 33f.
- the free end 31a of the leading edge core may include an indentation 33a.
- the cavity 33a is provided to receive the tab 33f. There is thus a complementarity of form between the imprint 33a and the tab 33f. This overlap can make it possible to staple the two cores together in order to obtain a fixing of the cores between them, for example by piercing the overlapping portion of material then by inserting an aluminum rod therein.
- the trailing edge core 21 further comprises a notch 32 on its downstream edge 30.
- the notch 32 is arranged in the head zone 25f.
- the notch 32 is substantially U-shaped, oriented so that the opening of the concavity of the U is oriented in the axial direction X.
- FIG. 2 illustrates the first molding face 20, devoid of the cores 21, 22.
- the first molding face comprises holding members P1a, P1f, P2a, P2f, P3a, P3f, P4, P5, P6a , P6f for holding the cores in position in the injection mould.
- Each holding member holds in position, in one of the three directions X, Y or Z, the leading edge core 22 or the trailing edge core 21, or the two cores 21, 22.
- the leading edge core 22 is placed in the injection mold by a first positioning reference
- the trailing edge core 21 is placed in the mold injection by a second positioning reference.
- the first positioning frame of reference is formed by holding members P1a, P2a, P3a, P4, P5 and P6a.
- the second positioning reference frame is formed by holding members P1f, P2f, P3f, P4, P5 and P6f (or alternatively by a point P6f'). Consequently, the injection mold comprises two different repositories, each intended for a different core, the holding members P4 and P5 being holding members common to the two cores.
- the holding members P1a, P1f, P2a, P2f, P3a and P3f allow the holding in position along the transverse direction Y, of the leading edge core 22 or of the trailing edge core 21, or of the two cores 21,22.
- the holding members P1a, P2a, and P3a are provided for holding in position in the transverse direction Y of the leading edge core 22.
- the holding members P1f, P2f, and P3f are provided for holding in position along the transverse direction Y of the trailing edge core 21.
- Each of the holding members P1a, P1f, P2a, P2f, P3a and P3f extends from the first molding face 20, in the transverse direction Y. Each of these members is in bearing against one of the two cores, which prevents movement of the cores in the transverse direction Y.
- the holding members P1a, P2a, P2f and P1f are arranged in the foot zone 26a, 26f of the cores. These retaining members P1a, P2a, P2f and P1f are aligned in the axial direction X.
- the retaining members P1a, P2a, P2f and P1f are arranged close to the free end 31a, 31f of the cores. In other words, the holding members P1a, P2a, P2f and P1f are arranged outside the free end of the cores, but in the base area 26a, 26f of the cores.
- the holding members P1a, P2a, P2f and P1f end in a support surface for the respective core, each of these support surfaces being substantially planar.
- each of these bearing surfaces is substantially perpendicular to the transverse direction Y. These surfaces are also located outside the functional zone.
- the P3a and P3f holding members are arranged in the head zone 26a, 26f of the cores.
- the retaining member P3a and the retaining member P3f are offset in the longitudinal direction Z. In other words, the retaining members P3a and P3f are not aligned in the axial direction X.
- the retaining members P3a and P3f terminate in a bearing surface for the respective core, each of these bearing surfaces following the shape of the contact zone of the core. In other words, for optimal support, the bearing surfaces of the holding members P3a and P3f match the shape of the surface of the zone of the core with which they are in contact.
- the second molding face may comprise holding members similar to the holding members described above, so as to lock the cores in position in the transverse direction Y.
- the first mold face 20 may further comprise the holding members P6a and P6f.
- the holding members P6a and P6f allow the holding in position along the longitudinal direction Z, for example of the leading edge core 22 or of the trailing edge core 21 . Each of these members bears respectively against the leading edge core 22 and the trailing edge core 21, which prevents movement of the cores in the longitudinal direction Z.
- the holding member P6a is provided for example for holding in position along the longitudinal direction Z of the leading edge core 22.
- the holding member P6a extends from the first molding face, in the transverse direction Y.
- the holding member P6a bears against the lower wall of the cutout 272a of the leading edge core 22.
- the holding member P6f is provided for example for holding in position in the longitudinal direction Z of the trailing edge core 21 .
- the retaining member P6f extends from the first molding face, in the axial direction X, in the direction from downstream to upstream.
- the P6f holding member bears in the notch 32 of the downstream edge 30 of the trailing edge core 21 .
- the holding member P6'f is provided for holding in position along the longitudinal direction Z of the trailing edge core 21.
- the holding member P6'f extends from the first molding face 20, in the direction transverse Y.
- the retaining member P6'f rests against the lower cutting wall 272f of the trailing edge core 21 .
- the holding members P6a and P6'f are arranged so that the cutouts of the two cores are substantially aligned in the axial direction X.
- the retaining member P6 makes it possible to distribute the expansion of the trailing edge core 21 in the longitudinal direction Z, towards the head 25f and towards the foot 26f, avoiding to have too great a difference in length with the leading edge core 22, in particular in the event of very different expansions between the two cores.
- the retaining member P6'f is advantageously used so as to control the dimensions of a so-called bath bottom wall present in the final blade.
- the tub bottom wall is materialized by the cutouts 27a, 27f of the cores, which form a portion filled with material in the final blade.
- the tub bottom is substantially flat, and extends in the transverse direction Y and the axial direction X.
- the bottom wall of the bath separates the bottom of the bath into two parts, arranged at different levels in the longitudinal direction Z.
- the wall 26 extends in the longitudinal direction Z, from the bottom of the tub 24.
- the height of the low wall, in the longitudinal direction Z is a characteristic that must be controlled in order to meet the aerodynamic performance of the blade. It is in fact desirable that the height of the low wall be as small as possible, so as to avoid as far as possible too great a difference in level between the parts of the bottom of the bathtub.
- the retaining member P6'f associated with the retaining member P6a, places the cutouts 27a and 27f of the cores in the same plane, which makes it possible to obtain two bottom parts of the tub substantially in the same plane perpendicular to the longitudinal direction Z.
- the first molding face further comprises the holding members P4 and P5.
- the holding members P4 and P5 allow the holding in position along the axial direction X of the leading edge core 22 or of the trailing edge core 21, or of the two cores 21,22.
- the holding members P4 and P5 are holding members common to the two leading edge 22 and trailing edge 21 cores.
- the holding members P4 and P5 for this purpose each comprise a first bearing point on the leading edge core and a second bearing point on the trailing edge core.
- the holding members P4 and P5 together block the rotation of the cores around the transverse axis Y.
- Each of the holding members P4 and P5 extends from the first molding face, in the transverse direction Y.
- Figures 7, 8 illustrate embodiments of a holding member, in a sectional view along the axial direction X.
- Figure 9 is a top view of the example of Figure 8.
- the holding member comprises a base 30 and a head 31 .
- the base 30 is cylindrical.
- the base 30 is also arranged in the mold, and can pivot around its axis of rotation R, coinciding with its axis of revolution.
- the head 31 is a rod which extends in the transverse direction Y, from the base 30. In the example illustrated in Figure 7, the head 31 is aligned with the axis of rotation R.
- the rotation of the base 30 the holding member around the axis of rotation R does not lead to an offset of the head 31, c that is to say translational movement in the plane defined by the transverse Y and longitudinal Z directions.
- the head 31 is not aligned with the axis of rotation R of the base 30. Consequently, the head 31 has, in this example, an eccentric function: the head 31 moves in a plane defined by the transverse Y and longitudinal Z directions.
- This example advantageously makes it possible to move the leading edge core 22 and the trailing edge core 21, to adjust their position in the mold, the leading edge cores trailing edge 21 cooperating with the holding member, as detailed later in the presentation.
- the P4 holding member (or first holding member) can be arranged in the head zone 25a, 25f.
- the holding member P5 (or second holding member) can be arranged in the foot zone 26a, 26f, at the junction with the free end 31a, 31f.
- the holding members P4 and P5 can also be aligned in the longitudinal direction Z.
- the holding members P4 and P5 are moreover arranged in a non-functional zone, that is to say outside the room.
- the P4 holding member is visible in Figure 5, corresponding to a sectional view along the axis A-A of Figure 1. It can be seen that the P4 holding member comprises a first point of support on the leading edge core P4a, and a second support point on the trailing edge core P4f.
- the first fulcrum P4a ensures blocking of the leading edge core 22 in a direction F1 going from upstream to downstream.
- the second support point P4f ensures blocking of the trailing edge core in a direction F2 going from downstream to upstream, that is to say a direction opposite to the direction of blocking of the edge core. of attack.
- the P4 holding member can also be through.
- the retaining member P4 extends from the first molding face 20 to the lower face of the trailing edge core 23f, respectively crossing the upper face of the edge core 24a, the intrados face of the leading edge core 23a and the extrados face of the trailing edge core 24f.
- the P5 holding member is visible in Figure 6, corresponding to a sectional view along the axis BB of Figure 1. It can be seen that the P5 holding member comprises a first point of support on the P5a leading edge core, and a second fulcrum on the P5f trailing edge core.
- the first fulcrum of the holding member P5a ensures blocking of the leading edge core 22 in a direction F1 going from upstream to downstream.
- the second fulcrum of the retaining member P5f ensures blocking of the trailing edge core 21 in a direction F2 going from downstream to upstream, that is to say a direction opposite to the direction of blocking F1 of the leading edge core.
- the P5 holding member can also be through.
- the retaining member P5 extends from the first molding face 20 in the direction of the intrados face 23a, 23f of the trailing edge and leading edge cores, and beyond. , in the transverse direction Y, of the extrados face 24a, 24f of the cores.
- the retaining member P5 crosses, in the transverse direction Y, only an alignment defined by the extrados faces 24a, 24f of the two cores, without crossing the cores.
- the retaining member P5 is arranged between the two cores, and extends beyond their extrados face 24a, 24f, without however extending beyond their intrados face. 23a, 23f.
- the retaining member P5 can extend beyond their intrados face 23a, 23f.
- the P4 holding member and / or the P5 holding member can be movable between a holding position, and a retracted position.
- the holding position visible in Figures 4 and 5, which can also be called the extended position
- the holding member is in contact with at least one of the cores.
- the retracted position the holding member is set back relative to the cores, its length being less than its length in the holding position.
- the mobility of the holding member(s) makes it easy to unmold the part obtained. Indeed, when the holding member, in its deployed position, is arranged along an axis different from the stripping axis, its retracted position allows the holding member not to oppose the stripping.
- the holding member further comprises a retraction mechanism, providing mobility between the retracted position and the holding position.
- the P4 holding member and / or the P5 holding member may further comprise a spacing means D4, D5 between their first and second support points.
- the spacing means guaranteed spacing (or spacing) of a constant spacing distance between the first and second support points, the spacing distance being measured for example along the axial direction X. More specifically, the means spacing D4, D5 keeps the two cores apart from each other, without them being in contact, that is to say without the cores touching. Since the cores extend along the three directions of space, the spacing distance can be measured along the longitudinal direction Z or the transverse direction Y.
- a spacing means is for example materialized by the diameter of the holding member.
- the holding member may for example have a constant diameter over its entire length.
- the holding member may have a smaller diameter towards its free end, and a larger diameter towards its base (that is to say on the side of the first molding face).
- the P4 holding member and / or the P5 holding member may further comprise a means for adjusting the position of the cores in the first molding face.
- the adjustment means is an eccentric, which can be pivoted around the transverse direction Y to shift the two cores in the plane formed by the transverse and axial directions.
- the first molding face 20 may further comprise counter-supports, as illustrated in Figure 2. It can thus be seen that the first molding face 20 comprises for the edge core of attack 22, a first counter-support 41a, and a second counter-support 42a. For the trailing edge core 21, the first molding face 20 also comprises a first counter-support 41f, and a second counter-support 42f.
- the counter-supports participate in maintaining the cores in the mould, as well as in the contact of the cores with the support points. For example, as can be seen in FIG. 4, the first counter-support 41a of the leading edge core 22 presses the leading edge core against the retaining member P4.
- first counter-support 41 f of the trailing edge core 21 presses the trailing edge core 21 against the retaining member P4.
- the second counter-support 42a of the leading edge core 22 presses the leading edge core against the retaining member P5.
- first counter-support 41 f of the trailing edge core 21 presses the trailing edge core 21 against the retaining member P5.
- the first counter-supports 41a, 41f and respectively the second counter-supports 42a, 42f extend in the axial direction X.
- the first counter-supports 41a, 41 f and respectively the second counter-supports 42a, 42f can be aligned in the axial direction X with the respective holding members P4 and P5.
- the elements described above for the P4 holding member can be applied to the P5 holding member, and conversely the elements described above for the holding member P5 can be applied to the retaining member P4.
- the first holding member may be the holding member P5 and the second holding member may be the holding member P4.
- the first fulcrum and the second fulcrum of the first holding member P5 can be the points P5a and P5f respectively
- the first fulcrum and the second fulcrum of the second holding member P4 can be the points P4a and P4f respectively.
- a method for producing a molding in removable material of a turbine engine blade comprising:
- the first holding member has a first bearing point on a first bearing surface of a core element, the first bearing surface extending against the core, for the maintaining said core element in position in the second direction.
- the retaining member(s) P4, P5 at least partially passes through the leading edge cores
- the method may include: closing the mold by positioning the second molding face on the core elements, with at least one additional holding member.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Moulds For Moulding Plastics Or The Like (AREA)
Abstract
Ensemble pour la réalisation d'un moulage en matériau éliminable d'une aube de turbomachine comprenant un moule d'injection dudit matériau éliminable dans lequel un premier élément de noyau (22) et un second élément noyau (21) sont aptes à venir se monter dans une position prédéterminée de moulage, les premier et second éléments 5 noyaux (22, 21) s'étendant selon une première direction (Z), le moule comprenant : - une première face (20) pour le moulage d'une face intrados de l'aube et une seconde face pour le moulage d'une face extrados de l'aube agencée en vis-à-vis de la première face selon une deuxième direction (Y) perpendiculaire à la première direction (Z), - des organes de maintien (P4, P5) en position des noyaux (22, 21) dans le moule 10 d'injection, dans lequel au moins un premier organe de maintien (P4, P5) s'étend depuis la première face du moule selon la deuxième direction et traverse au moins partiellement le premier et le second éléments de noyau (22, 21), le premier organe de maintien (P4, P5) comprenant un premier point d'appui (P4a, P5a) sur le premier élément de noyau (22) et 15 un second point d'appui (P4f, P5f) sur le second élément de noyau (21).
Description
Description
Titre : Ensemble pour la réalisation d’un moulage en matériau éliminable d’une aube de turbomachine
Domaine technique
[0001] La présente divulgation relève du domaine des aubages de turbomachine, celui en particulier des aubages obtenus par coulée d’un alliage en fusion dans un moule selon la technique de fonderie en matériau éliminable, tel que par exemple la cire perdue.
Technique antérieure
[0002] Classiquement, la technique de fonderie à cire perdue consiste en premier lieu à réaliser un modèle en cire, ou en tout autre matériau facilement éliminable par la suite, de la pièce à réaliser ; ce modèle comprend une pièce interne formant un noyau en céramique qui figure les cavités que l’on souhaite voir apparaitre à l’intérieur de l’aubage. Le modèle en cire est ensuite trempé plusieurs fois dans des barbotines constituées d’une suspension de particules céramiques pour confectionner, par des opérations dites de stucage et de séchage, un moule carapace.
[0003] On procède ensuite au décirage du moule carapace, qui est une opération par laquelle on élimine de la carapace la cire ou le matériau constituant le modèle d'origine. Après cette élimination, on obtient un moule céramique dont la cavité reproduit toutes les formes de l'aube et qui renferme encore le noyau céramique destiné à générer les cavités internes de celle-ci. Le moule subit ensuite un traitement thermique à haute température ou « cuisson » qui lui confère les propriétés mécaniques nécessaires.
[0004] Le moule carapace est alors prêt pour la fabrication de la pièce métallique par coulée. Après contrôle de l'intégrité interne et externe du moule carapace, l'étape suivante consiste à couler un métal en fusion, qui vient occuper les vides entre la paroi intérieure du moule carapace et le noyau, puis à le solidifier. Dans le domaine de la fonderie à cire perdue, on distingue actuellement plusieurs techniques de solidification, et plusieurs techniques de coulée, selon la nature de l'alliage et les propriétés attendues de la pièce résultant de la coulée. Il peut s'agir de solidification dirigée à structure colonnaire (DS), de solidification dirigée à structure monocristalline (SX) ou de solidification équiaxe (EX).
[0005] Après la coulée de l'alliage, on casse la carapace par une opération de décochage. Au cours d'une autre étape, on élimine chimiquement le noyau céramique qui est resté enfermé dans l'aube obtenue. L'aube métallique obtenue subit ensuite des opérations de parachèvement qui permettent d'obtenir la pièce finie.
[0006] Des exemples de réalisation d'aubes de turbine par la technique de fonderie à la cire perdue sont donnés dans les demandes de brevets FR2875425 et FR2874186 de la demanderesse.
[0007] Pour former le modèle en cire de l'aube on utilise un outillage, ou moule d'injection cire, dans lequel on place le noyau puis on injecte la cire liquide par un canal prévu à cet effet.
[0008] La recherche de performances accrues des moteurs implique notamment un refroidissement plus efficace des aubes de turbine situées immédiatement en aval de la chambre de combustion. Cette exigence nécessite la formation à l’intérieur de ces aubes de cavités internes de circulation du fluide de refroidissement plus élaborées. Ces aubes présentent la particularité d’avoir plusieurs parois métalliques et requièrent donc la fabrication de noyaux céramiques de plus en plus complexes.
[0009] En raison de la complexité des cavités de refroidissement à former avec leurs cloisons de séparation, et de leur agencement, une solution consiste à réaliser le noyau en plusieurs parties que l’on assemble et colle. Les noyaux élémentaires sont généralement liés entre eux au niveau du pied et du sommet. Il s'agit en effet de maîtriser l’épaisseur des parois et des cloisons formées au moment de la coulée, sans pour autant affecter la géométrie des futures cavités. L'assemblage doit permettre au noyau de supporter les contraintes subies lors des étapes d'injection de la cire, de décirage puis de la coulée.
[0010] Il convient ainsi de placer les différentes parties du noyau de façon très précise les unes relativement aux autres dans le moule d'injection de cire et de garantir un maintien des positions relatives des différentes parties du noyau. Le maintien des différentes parties du noyau tel que proposé dans la technique actuelle consiste à relier fixement ces parties ou éléments de noyaux à la carapace céramique.
[0011] Dans le cadre de la conception d’une nouvelle aube à cavités complexes, la solution retenue consiste à réaliser le noyau en deux parties, notamment en raison de la complexité des cavités formant le circuit de refroidissement et des difficultés rencontrées au démoulage du noyau de son moule d’injection. Mais en raison des dimensions trop faible des parties de noyau, et de leur géométrie complexe, il est impossible de réaliser une liaison entre ces parties de noyau, par exemple par collage, de sorte à positionner ensuite le noyau avec ses parties assemblées dans un outillage d’injection cire comprenant un système de positionnement isostatique classique à six points d’appui.
[0012] Une difficulté rencontrée est double car elle consiste d’une part à positionner très précisément les différentes parties du noyau dans le moule d'injection de cire et d’autre
part à positionner les différentes parties du noyau l’une par rapport à l’autre. En effet, les deux parties ne peuvent pas comprendre chacune leur propre système de positionnement isostatique classique à six points d’appui par rapport au moule, car ceci doublerait le nombre d’appui à intégrer dans le moule d’injection cire, ce qui en termes de dimension du moule n’est pas envisageable. En outre, les deux parties de noyau étant ponctuellement enchevêtrées, certain points d’isostatisme ne peuvent pas être placés dans le moule d’injection cire. Par conséquent, le simple positionnement des noyaux par rapport au moule ne peut pas permettre un positionnement complet des noyaux l’un par rapport à l’autre.
[0013] On comprend donc qu’il est souhaitable de réaliser une fixation différente des noyaux entre eux dans le moule d’injection cire.
[0014] L’invention a notamment pour but d’apporter une solution simple, efficace et économique aux problèmes de l’art antérieur décrit précédemment.
Résumé
[0015] A cet effet, la présente divulgation propose un ensemble pour la réalisation d’un moulage en matériau éliminable d’une aube de turbomachine comprenant un moule d’injection dudit matériau éliminable dans lequel un premier élément de noyau et un second élément noyau sont aptes à venir se monter dans une position prédéterminée de moulage, les premier et second éléments noyaux s’étendant selon une première direction, le moule comprenant :
- une première face pour le moulage d’une face intrados de l’aube et une seconde face pour le moulage d’une face extrados de l’aube agencée en vis-à-vis de la première face selon une deuxième direction perpendiculaire à la première direction,
- des organes de maintien en position des noyaux dans le moule d’injection, au moins un premier organe de maintien s’étendant depuis la première face du moule selon la deuxième direction et traverse au moins partiellement le premier et le second éléments de noyau, le premier organe de maintien comprenant un premier point d’appui sur le premier élément de noyau et un second point d’appui sur le second élément de noyau.
[0016] Alternativement ou au surplus, l’ensemble peut comprendre les caractéristiques suivantes, prises seules ou en combinaison :
- le premier élément de noyau et le second élément de noyau sont conformés de manière à ce que le premier point d’appui du premier organe de maintien assure un blocage du premier élément de noyau selon un premier sens d’une troisième direction perpendiculaire à la première et à la deuxième direction et le second point d’appui du
premier organe de maintien assure un blocage du second élément de noyau selon un deuxième sens de la troisième direction, opposé au premier sens ;
- un deuxième organe de maintien s’étend depuis la première face de moulage selon la deuxième direction, le deuxième organe de maintien comprenant un premier point d’appui sur le premier élément de noyau et un second point d’appui sur le second élément de noyau, lesdits premier point d’appui et deuxième point d’appui du deuxième organe de maintien étant distincts des premier point d’appui et deuxième point d’appui du premier organe de maintien ;
- le premier élément de noyau et le second élément de noyau sont conformés de manière à ce que le premier point d’appui du deuxième organe de maintien assure un blocage du premier élément de noyau selon le premier sens d’une troisième direction perpendiculaire à la première et à la deuxième direction et le second point d’appui du deuxième organe de maintien assure un blocage du second élément de noyau selon un deuxième sens de la troisième direction, opposé au premier sens ;
- le deuxième organe de maintien comprend un moyen d’espacement entre le premier point d’appui du deuxième organe de maintien et le second point d’appui du deuxième organe de maintien, le moyen d’espacement garantissant, au cours de la réalisation du moulage en matériau éliminable, un espacement d’une distance constante entre lesdits points d’appui selon la troisième direction ;
- le premier organe de maintien comprend un moyen d’espacement entre le premier point d’appui du premier organe de maintien et le second point d’appui du premier organe de maintien, le moyen d’espacement garantissant, au cours de la réalisation du moulage en matériau éliminable, un espacement d’une distance constante entre lesdits points d’appui selon au moins l’une parmi la première direction, la deuxième direction ou la troisième direction ;
- le premier organe de maintien et/ou le deuxième organe de maintien est mobile entre une position de maintien pour au moins un élément de noyau et une position rétractée, l’organe de maintien comprenant un mécanisme de rétractation pour positionner l’organe de maintien en position de maintien ou en position rétractée ;
- le premier organe de maintien et/ou le deuxième organe de maintien comprend un axe de rotation et une tête excentrique relativement à l’axe de rotation et coopérant avec le premier élément de noyau et le second élément de noyau.
[0017] Selon un autre aspect, il est proposé un procédé pour la réalisation d’un moulage en matériau éliminable d’une aube de turbomachine, le procédé comprenant :
- fournir un premier élément de noyau et un second élément noyau, lesdits éléments de noyau s’étendant selon une première direction,
- fournir un moule d’injection dudit matériau éliminable ; le moule comprenant :
- une première face pour le moulage d’une face intrados de l’aube et une seconde face pour le moulage d’une face extrados de l’aube agencée en vis-à-vis de la première face selon une deuxième direction perpendiculaire à la première direction,
- des organes de maintien en position des noyaux dans le moule d’injection, parmi lesquels au moins un premier organe de maintien s’étend depuis la première face de moulage selon la deuxième direction, le procédé comprenant l’étape: positionner le premier élément de noyau et le second élément de noyau sur la première face de moulage de sorte que le premier organe de maintien traverse au moins partiellement le premier et le second éléments de noyau et comprenne un premier point d’appui sur le premier élément de noyau et un second point d’appui sur le second élément de noyau.
[0018] Le procédé peut en outre comprendre : l’étape : positionner le premier élément de noyau et le second élément de noyau sur la première face de moulage de sorte que le deuxième organe de maintien comprenne un premier point d’appui sur le premier élément de noyau et un second point d’appui sur le second élément de noyau, le moule comprenant en outre un deuxième organe de maintien s’étendant depuis la première face de moulage selon la deuxième direction.
Brève description des dessins
[0019] D’autres caractéristiques, détails et avantages apparaîtront à la lecture de la description détaillée ci-après, et à l’analyse des dessins annexés, sur lesquels :
Fig. 1
[0020] [Fig. 1] montre une vue en perspective d’un premier et d’un second élément de noyau placés sur une première face d’un moule d’injection d’un matériau éliminable.
Fig. 2
[0021] [Fig. 2] montre la vue de la figure 1 , sans le premier et le second élément de noyau, la première face du moule d’injection comprenant des organes de maintien avec points d’appui pour le maintien des noyaux de bord d’attaque et de bord de fuite.
Fig. 3
[0022] [Fig. 3] montre une vue du noyau de bord d’attaque depuis sa face d’extrados, sur lequel sont schématisés des points d’appui.
[0023] [Fig. 4] montre une vue du noyau de bord de fuite depuis sa face d’extrados, sur lequel sont schématisés des points d’appui.
Fig. 5
[0024] [Fig. 5] est une vue en coupe de la figure 1 selon l’axe A-A.
Fig. 6
[0025] [Fig. 6] est une vue en coupe de la figure 1 selon l’axe B-B.
Fig. 7
[0026] [Fig. 7] est une vue en coupe de la figure 1 selon l’axe B-B, illustrant un premier exemple de réalisation d’un organe de maintien.
Fig. 8
[0027] [Fig. 8] est une vue en coupe de la figure 1 selon l’axe B-B, illustrant un deuxième exemple de réalisation d’un organe de maintien.
Fig. 9
[0028] [Fig. 9] est une vue de dessus de l’exemple illustré à la figure 8.
Description des modes de réalisation
[0029] Les termes « amont » et « aval » sont par la suite définis par rapport au sens d’écoulement des gaz au travers une turbomachine, indiqué par la flèche F sur la figure 1 .
[0030] La figure 1 illustre l’agencement des éléments de noyaux dans un moule d’injection, seule une première face de moulage 20 étant illustrée. La figure 1 illustre que le noyau se présente en un premier élément de noyau et un second élément de noyau, ci- après désignés comme le noyau de bord d'attaque 22 et le noyau de bord de fuite 21 .
[0031] Les noyaux 21 , 22 s’étendent selon trois directions perpendiculaires deux à deux, une première direction Z, ci-après désignée direction longitudinale Z correspondant sur l’aube finale à la direction longitudinale reliant le pied au sommet de l’aube, une deuxième direction Y, ci-après dénommée direction transverse Y, traversant les faces d’intrados et d’extrados de l’aube, et une troisième direction X, ci-après direction axiale X correspondant sur l’aube finale à la direction amont/aval (flèche F). Sur la figure 1 , seule la face d’intrados du noyau de bord d’attaque 23a et la face d’intrados du noyau de bord de fuite 23f est visible. La face d’extrados du noyau de bord d’attaque 24a et la face d’extrados du noyau de bord de fuite 24f, visible pour chaque noyau sur les figures 3 et 4, est agencée au regard de la première face de moulage 20. Les noyaux de bord d'attaque 22 et de bord de fuite 21 comprennent chacun une tête respectivement 25a, 25f et un
pied respectivement 26a, 26f, la tête 25a, 25f étant agencée à l’extrémité opposée du pied 26a, 26f, selon la direction longitudinale Z. Dans la zone de tête, chacun des noyaux comprend une découpe 27a, 27f, c’est-à-dire une portion sans matière, qui s’étend au moins en partie perpendiculairement à la direction longitudinale Z, en direction axiale X. Ces découpes s’étendent en outre depuis les faces d’intrados 23a, 23f vers les faces d’extrados 24a, 24f. Ces découpes sont prévues pour former dans l’aube finale une paroi de fond de baignoire d’aube. En référence à la direction longitudinale Z et à la figure 3, la découpe 27a du noyau de bord d’attaque 22 est délimitée par une paroi supérieure de découpe 271 a et par une paroi inférieure de découpe 272a. La découpe 27a du noyau de bord d’attaque s’étend par ailleurs sur toute la largeur du noyau, selon la direction axiale X. En référence à la direction longitudinale Z et à la figure 4, la découpe 27f du noyau de bord de fuite 21 est délimitée par une paroi supérieure de découpe 271 f et par une paroi inférieure de découpe 272f. La découpe du noyau de bord de fuite 27f s’étend quant à elle sur une partie seulement de la largeur du noyau, selon la direction axiale X. En particulier, la découpe du noyau de bord de fuite 27f s’étend à partir du bord amont 28 du noyau de bord de fuite et se termine par une portion longitudinale de découpe 29 qui s’étend longitudinalement suivant la direction longitudinale Z dans la matière du noyau, et donc sans traverser le noyau jusqu’à son bord aval 30. Les pieds 26a, 26f comprennent en outre une extrémité libre 31 a, 31 f, correspondant à une zone non fonctionnelle du noyau. Les extrémités libres 31 a, 31 f peuvent se chevaucher, au moins partiellement. A cet effet, l’extrémité libre 31 f du noyau de bord de fuite peut comprendre une languette 33f. En outre, l’extrémité libre 31 a du noyau de bord d’attaque peut comprendre une empreinte 33a. L’empreinte 33a est prévue pour recevoir la languette 33f. Il y a ainsi une complémentarité de forme entre l’empreinte 33a et la languette 33f. Ce chevauchement peut permettre d’agrafer les deux noyaux ensemble afin d’obtenir une fixation des noyaux entre-eux, par exemple en perçant la portion de chevauchement de matière puis en y insérant une tige d’aluminium.
[0032] Le noyau de bord de fuite 21 comprend en outre un cran 32 sur son bord aval 30. Le cran 32 est agencé dans la zone de tête 25f. Le cran 32 est de forme sensiblement en U, orienté de sorte que l’ouverture de la concavité du U est orientée dans la direction axiale X.
[0033] La figure 2 illustre la première face de moulage 20, dépourvue des noyaux 21 , 22. La première face de moulage comprend des organes de maintien P1 a, P1 f, P2a, P2f, P3a, P3f, P4, P5, P6a, P6f pour le maintien en position des noyaux dans le moule d’injection. Chaque organe de maintien maintient en position, selon une des trois directions X, Y ou Z, le noyau de bord d’attaque 22 ou le noyau de bord de fuite 21 , ou les deux noyaux 21 ,22.
En particulier, et comme détaillé ci-après, le noyau de bord d’attaque 22 est mis en place dans le moule d’injection par un premier référentiel de positionnement, et le noyau de bord de fuite 21 est mis en place dans le moule d’injection par un second référentiel de positionnement. Le premier référentiel de positionnement est formé des organes de maintien P1a, P2a, P3a, P4, P5 et P6a. Le second référentiel de positionnement est formé des organes de maintien P1f, P2f, P3f, P4, P5 et P6f (ou alternativement d’un point P6f’). Par conséquent, le moule d’injection comprend deux référentiels différents, chacun destiné à un noyau différent, les organes de maintien P4 et P5 étant des organes de maintien commun aux deux noyaux.
[0034] En particulier, les organes de maintien P1a, P1f, P2a, P2f, P3a et P3f permettent le maintien en position suivant la direction transverse Y, du noyau de bord d’attaque 22 ou du noyau de bord de fuite 21 , ou des deux noyaux 21 ,22. Les organes de maintien P1a, P2a, et P3a sont prévus pour le maintien en position suivant la direction transverse Y du noyau de bord d’attaque 22. Les organes de maintien P1f, P2f, et P3f sont prévus pour le maintien en position suivant la direction transverse Y du noyau de bord de fuite 21. Chacun des organes de maintien P1a, P1f, P2a, P2f, P3a et P3f s’étend depuis la première face de moulage 20, suivant la direction transverse Y. Chacun de ces organes est en appui contre un des deux noyaux, ce qui empêche le mouvement des noyaux selon la direction transverse Y.
[0035] En particulier, les organes de maintien P1a, P2a, P2f et P1f sont agencés dans la zone de pied 26a, 26f des noyaux. Ces organes de maintien P1a, P2a, P2f et P1f sont alignés selon la direction axiale X. Les organes de maintien P1a, P2a, P2f et P1f sont agencés à proximité de l’extrémité libre 31 a, 31 f des noyaux. En d’autres termes les organes de maintien P1a, P2a, P2f et P1f sont agencés hors de l’extrémité libre des noyaux, mais dans la zone de pied 26a, 26f des noyaux. Les organes de maintien P1a, P2a, P2f et P1f se terminent par une surface d’appui pour le noyau respectif, chacune de ces surfaces d’appui étant sensiblement plane. En outre, chacune de ces surfaces d’appui est sensiblement perpendiculaire à la direction transverse Y. Ces surfaces sont par ailleurs situées hors zone fonctionnelle.
[0036] Les organes de maintien P3a et P3f sont agencés dans la zone de tête 26a, 26f des noyaux. L’organe de maintien P3a et l’organe de maintien P3f sont décalés selon la direction longitudinale Z. En d’autres termes les organes de maintien P3a et P3f ne sont pas alignés selon la direction axiale X. Les organes de maintien P3a et P3f se terminent par une surface d’appui pour le noyau respectif, chacune de ces surfaces d’appui suivant la forme de la zone de contact du noyau. En d’autres termes, pour un maintien optimal,
les surfaces d’appui des organes de maintien P3a et P3f épousent la forme de la surface de la zone du noyau avec laquelle elles sont en contact.
[0037] Alternativement et au surplus, la seconde face de moulage peut comprendre des organes de maintien semblables aux organes de maintien décrits ci-avant, de sorte à bloquer les noyaux en position selon la direction transversale Y.
[0038] La première face de moulage 20 peut en outre comprendre les organes de maintien P6a et P6f. Les organes de maintien P6a et P6f permettent le maintien en position suivant la direction longitudinale Z par exemple du noyau de bord d’attaque 22 ou du noyau de bord de fuite 21 . Chacun de ces organes est en appui contre respectivement le noyau de bord d’attaque 22, et le noyau de bord de fuite 21 , ce qui empêche le mouvement des noyaux selon la direction longitudinale Z. L’organe de maintien P6a est prévu par exemple pour le maintien en position suivant la direction longitudinale Z du noyau de bord d’attaque 22. L’organe de maintien P6a s’étend depuis la première face de moulage, suivant la direction transverse Y. L’organe de maintien P6a est en appui contre la paroi inférieure de la découpe 272a du noyau de bord d’attaque 22. L’organe de maintien P6f est prévu par exemple pour le maintien en position suivant la direction longitudinale Z du noyau de bord de fuite 21 . L’organe de maintien P6f s’étend depuis la première face de moulage, suivant la direction axiale X, dans le sens de l’aval vers l’amont. L’organe de maintien P6f vient en appui dans le cran 32 du bord aval 30 du noyau de bord de fuite 21 .
[0039] Alternativement, on peut prévoir un organe de maintien P6’f au lieu de l’organe de maintien P6f. L’organe de maintien P6’f est prévu pour le maintien en position suivant la direction longitudinale Z du noyau de bord de fuite 21. L’organe de maintien P6’f s’étend depuis la première face de moulage 20, suivant la direction transverse Y. L’organe de maintien P6’f est en appui contre la paroi inférieure de découpe 272f du noyau de bord de fuite 21 . En outre, les organes de maintien P6a et P6’f sont agencés de sorte que les découpes des deux noyaux sont sensiblement alignées selon la direction axiale X.
[0040] Un seul des deux organes de maintien P6f et P6’f est utilisé pour la réalisation du moulage cire, pour positionner le noyau de bord de fuite 21 selon la direction longitudinale Z. Selon l’organe de maintien utilisé P6f ou P6’f, l’organe de maintien non utilisé est retiré de la surface de moulage afin de ne pas créer un système hyperstatique. Le choix d’utiliser un point ou l’autre dépend de la répartition de la dilatation des deux noyaux recherchée au cours de la coulée de l’alliage.
[0041] En effet, l’organe de maintien P6 permet de répartir la dilatation du noyau de bord de fuite 21 dans la direction longitudinale Z, vers la tête 25f et vers le pied 26f, en évitant
d’avoir une différence de longueur trop importante avec le noyau de bord d’attaque 22, notamment en cas de dilatations très différentes entre les deux noyaux. D’autre part, l’organe de maintien P6’f est avantageusement utilisé de sorte à maîtriser le dimensionnel d’une paroi dite de fond de baignoire présente dans l’aube finale. La paroi de fond de baignoire est matérialisée par les découpes 27a, 27f des noyaux, qui forment une portion remplie de matière dans l’aube finale. Le fond de baignoire est sensiblement plan, et s’étend selon la direction transverse Y et la direction axiale X. Du fait que les noyaux ne se touchent pas, c’est-à-dire qu’ils ne sont pas au contact l’un de l’autre, une portion de matière, dit muret de fond de baignoire sépare le fond de baignoire en deux parties, agencées à des niveaux différents selon la direction longitudinale Z. Le muret 26 s’étend selon la direction longitudinale Z, depuis le fond de baignoire 24. La hauteur du muret, selon la direction longitudinale Z, est une caractéristique qui doit être maitrisée afin de répondre aux performances aérodynamiques de l’aube. Il est souhaitable en effet que la hauteur du muret soit la plus petite possible, de sorte à éviter au maximum une différence de niveau trop importante entre les parties du fond de baignoire. Par conséquent, l’organe de maintien P6’f, associé à l’organe de maintien P6a, place selon le même plan les découpes 27a et 27f des noyaux, ce qui permet d’obtenir deux parties de fond de baignoire sensiblement dans le même plan perpendiculaire à la direction longitudinale Z.
[0042] La première face de moulage comprend en outre les organes de maintien P4 et P5. Les organes de maintien P4 et P5 permettent le maintien en position suivant la direction axiale X du noyau de bord d’attaque 22 ou du noyau de bord de fuite 21 , ou des deux noyaux 21 ,22. Les organes de maintien P4 et P5 sont des organes de maintien commun aux deux noyaux de bord d’attaque 22 et de bord de fuite 21 . Les organes de maintien P4 et P5 comprennent à cet effet chacun un premier point d’appui sur le noyau de bord d’attaque et un second point d’appui sur le noyau de bord de fuite. Les organes de maintien P4 et P5 bloquent ensemble la rotation des noyaux autour de l’axe transverse Y. Chacun des organes de maintien P4 et P5 s’étend depuis la première face de moulage, suivant la direction transverse Y.
[0043] Les figures 7, 8 illustrent des exemples de réalisation d’un organe de maintien, dans une vue en coupe selon la direction axiale X. La figure 9 est une vue de dessus de l’exemple de la figure 8. Ces exemples de réalisation peuvent s’appliquer par exemple à l’un ou l’autre des organes de maintien P4, P5 ou aux deux organes de maintien P4 et P5. Dans ces exemples, l’organe de maintien comprend une base 30 et une tête 31 . La base 30 est cylindrique. La base 30 est en outre agencée dans le moule, et peut pivoter autour de son axe de rotation R, confondu avec son axe de révolution. La tête 31 est une tige qui s’étend selon la direction transverse Y, depuis la base 30. Dans l’exemple illustré à la
figure 7, la tête 31 est alignée avec l’axe de rotation R. Par conséquent, la rotation de la base 30 l’organe de maintien autour de l’axe de rotation R n’entraine pas de déport de la tête 31 , c’est-à-dire de déplacement en translation dans le plan défini par les directions transverse Y et longitudinale Z. Dans l’exemple illustré aux figures 8 et 9, la tête 31 est excentrée par rapport à la base 30. En d’autres termes, la tête 31 n’est pas alignée avec l’axe de rotation R de la base 30. Par conséquent, la tête 31 a, dans cet exemple, une fonction d’excentrique : la tête 31 se déplace dans un plan défini par les directions transverse Y et longitudinale Z. Cet exemple permet avantageusement de déplacer le noyau de bord d’attaque 22 et le noyau de bord de fuite 21 , pour le réglage de leur position dans le moule, les noyaux de bord d’attaque 22 et de bord de fuite 21 coopérant avec l’organe de maintien, comme détaillé plus loin dans l’exposé.
[0044] L’organe de maintien P4 (ou premier organe de maintien) peut être agencé dans la zone de tête 25a, 25f. L’organe de maintient P5 (ou deuxième organe de maintien) peut être agencé dans la zone de pied 26a, 26f, à la jonction avec l’extrémité libre 31 a, 31 f. Les organes de maintien P4 et P5 peuvent en outre être alignés selon la direction longitudinale Z. Les organes de maintien P4 et P5 sont par ailleurs agencés dans une zone non fonctionnelle, c’est-à-dire hors pièce.
[0045] L’organe de maintien P4 est visible à la figure 5, correspondant à une vue en coupe selon l’axe A-A de la figure 1. On peut voir que l’organe de maintien P4 comprend un premier point d’appui sur le noyau de bord d’attaque P4a, et un second point d’appui sur le noyau de bord de fuite P4f. Le premier point d’appui P4a assure un blocage du noyau de bord d’attaque 22 selon un sens F1 allant de l’amont vers l’aval. Également, le second point d’appui P4f assure un blocage du noyau de bord de fuite selon un sens F2 allant de l’aval vers l’amont, c’est-à-dire un sens opposé au sens de blocage du noyau de bord d’attaque. L’organe de maintien P4 peut en outre être traversant. Par traversant, on comprend que l’organe de maintien P4 s’étend depuis la première face de moulage 20 jusqu’à la face d’intrados du noyau de bord de fuite 23f, en traversant respectivement la face d’extrados du noyau de bord d’attaque 24a, la face d’intrados du noyau de bord d’attaque 23a et la face d’extrados du noyau de bord de fuite 24f.
[0046] L’organe de maintien P5 est visible à la figure 6, correspondant à une vue en coupe selon l’axe B-B de la figure 1. On peut voir que l’organe de maintien P5 comprend un premier point d’appui sur le noyau de bord d’attaque P5a, et un second point d’appui sur le noyau de bord de fuite P5f. Le premier point d’appui de l’organe de maintien P5a assure un blocage du noyau de bord d’attaque 22 selon un sens F1 allant de l’amont vers l’aval. Également, le second point d’appui de l’organe de maintien P5f assure un blocage du noyau de bord de fuite 21 selon un sens F2 allant de l’aval vers l’amont, c’est-à-dire un
sens opposé au sens de blocage F1 du noyau de bord d’attaque. L’organe de maintien P5 peut en outre être traversant. Par traversant, on comprend que l’organe de maintien P5 s’étend depuis la première face de moulage 20 en direction de la face d’intrados 23a, 23f des noyaux de bord de fuite et de bord d’attaque, et au-delà, selon la direction transversale Y, de la face d’extrados 24a, 24f des noyaux. Toutefois, comme visible à la figure 6, l’organe de maintien P5 traverse, selon la direction transversale Y, uniquement un alignement défini par les faces d’extrados 24a, 24f des deux noyaux, sans traverser les noyaux. En d’autres termes, l’organe de maintien P5 est agencé entre les deux noyaux, et s’étend au-delà de leur face d’extrados 24a, 24f, sans toutefois s’étendre au- delà de leur face d’intrados 23a, 23f. Alternativement, l’organe de maintien P5 peut s’étendre au-delà de leur face d’intrados 23a, 23f.
[0047] En outre, l’organe de maintien P4 et/ou l’organe de maintien P5 peut être mobile entre une position de maintien, et une position rétractée. Dans la position de maintien, visible aux figure 4 et 5, que l’on peut également appeler position déployée, l’organe de maintien est en contact avec au moins un des noyaux. Dans la position rétractée, l’organe de maintien est en retrait par rapport aux noyaux, sa longueur étant inférieure à sa longueur en position de maintien. La mobilité du ou des organes de maintien permet de démouler facilement la pièce obtenue. En effet, lorsque l’organe de maintien, dans sa position déployée, est agencé selon un axe différent de l’axe de démoulage, sa position rétractée permet à l’organe de maintien de ne pas s’opposer au démoulage. L’organe de maintien comprend en outre un mécanisme de rétractation, assurant la mobilité entre la position rétractée et la position de maintien.
[0048] Alternativement, l’organe de maintien P4 et/ou l’organe de maintien P5 peuvent comprendre en outre un moyen d’espacement D4, D5 entre leur premier et second points d’appui. Le moyen d’espacement garanti un espacement (ou écartement) d’une distance d’espacement constante entre les premier et second points d’appui, la distance d’espacement étant mesurée par exemple selon la direction axiale X. Plus précisément, le moyen d’espacement D4, D5 maintient écartés l’un de l’autre les deux noyaux, sans que ceux-ci soient en contact, c’est-à-dire sans que les noyaux se touchent. Etant donné que les noyaux s’étendent selon les trois directions de l’espace, la distance d’espacement peut être mesurée selon la direction longitudinale Z ou la direction transversale Y. Un moyen d’espacement est par exemple matérialisé par le diamètre de l’organe de maintien. L’organe de maintien peut par exemple avoir un diamètre constant sur toute sa longueur. Selon un autre exemple, l’organe de maintien peut avoir un diamètre plus petit vers son extrémité libre, et un diamètre plus grand vers sa base (c’est-à-dire du côté de la première face de moulage).
[0049] Alternativement, l’organe de maintien P4 et/ou l’organe de maintien P5 peuvent comprendre en outre un moyen de réglage de la position des noyaux dans la première face de moulage. Par exemple, le moyen de réglage est un excentrique, qu’il est possible de faire pivoter autour de la direction transversale Y pour décaler dans le plan formé par les directions transversales et axiales les deux noyaux.
[0050] Dans une autre alternative, la première face de moulage 20 peut comprendre en outre des contre-appuis, tels qu’illustrés à la figure 2. On peut ainsi voir que la première face de moulage 20 comprend pour le noyau de bord d’attaque 22, un premier contre- appui 41 a, et un second contre-appui 42a. Pour le noyau de bord de fuite 21 , la première face de moulage 20 comprend également un premier contre-appui 41 f, et un second contre-appui 42f. Les contre-appui participent au maintien des noyaux dans le moule, ainsi qu’au contact des noyaux avec les points d’appuis. Par exemple, comme visible à la figure 4, le premier contre-appui 41 a du noyau de bord d’attaque 22 plaque le noyau de bord d’attaque contre l’organe de maintien P4. En outre, le premier contre-appui 41 f du noyau de bord de fuite 21 plaque le noyau de bord de fuite 21 contre l’organe de maintien P4. Également, comme visible à la figure 5, le second contre-appui 42a du noyau de bord d’attaque 22 plaque le noyau de bord d’attaque contre l’organe de maintien P5. En outre, le premier contre-appui 41 f du noyau de bord de fuite 21 plaque le noyau de bord de fuite 21 contre l’organe de maintien P5. Comme également visible sur les figures 4 et 5, les premiers contre-appuis 41 a, 41 f et respectivement les seconds contre-appuis 42a, 42f s’étendent selon la direction axiale X. En outre, les premiers contre-appuis 41 a, 41 f et respectivement les seconds contre-appuis 42a, 42f peuvent être alignés selon la direction axiale X avec les organes de maintien respectifs P4 et P5.
[0051] Alternativement, bien que non-illustré, les éléments décrits ci-avant pour l’organe de maintien P4 peuvent s’appliquer à l’organe de maintien P5, et inversement les éléments décrits ci-avant pour l’organe de maintien P5 peuvent s’appliquer à l’organe de maintien P4. A cet effet, le premier organe de maintien peut être l’organe de maintien P5 et le deuxième organe de maintien peut être l’organe de maintien P4. Ainsi, le premier point d’appui et le second point d’appui du premier organe de maintien P5 peuvent être respectivement les points P5a et P5f, et le premier point d’appui et le second point d’appui du deuxième organe de maintien P4 peuvent être respectivement les points P4a et P4f.
[0052] On décrit à présent un procédé pour la réalisation d’un moulage en matériau éliminable d’une aube de turbomachine, le procédé comprenant :
- fournir le noyau de bord d’attaque 22 et le noyau de bord de fuite 21 ;
- fournir le moule d’injection du matériau éliminable ;
- positionner le noyau de bord d’attaque 22 et le noyau de bord de fuite 21 sur la première
face de moulage 20. Dans cette position, le premier organe de maintien présente un premier point d’appui sur une première surface d’appui d’un élément de noyau, la première surface d’appui s’étendant contre le noyau, pour le maintien en position dudit élément de noyau suivant la deuxième direction. En outre, dans cette position, le ou les organes de maintien P4, P5 traverse au moins partiellement les noyaux de bord d’attaque
22 et de bord de fuite 21 .
[0053] Alternativement, le procédé peut comprendre : fermer le moule en positionnant sur les éléments de noyau la seconde face de moulage, avec au moins un organe de maintien complémentaire.
Claims
[Revendication 1] Ensemble pour la réalisation d’un moulage en matériau éliminable d’une aube de turbomachine comprenant un moule d’injection dudit matériau éliminable dans lequel un premier élément de noyau (22) et un second élément de noyau (21) sont aptes à venir se monter dans une position prédéterminée de moulage, les premier et second éléments de noyaux (22, 21 ) s’étendant selon une première direction (Z), le moule comprenant :
- une première face (20) pour le moulage d’une face intrados de l’aube et une seconde face pour le moulage d’une face extrados de l’aube agencée en vis-à-vis de la première face selon une deuxième direction (Y) perpendiculaire à la première direction (Z),
- des organes de maintien (P4, P5) en position des noyaux (22, 21 ) dans le moule d’injection, caractérisé en ce que au moins un premier organe de maintien (P4) s’étend depuis la première face du moule selon la deuxième direction et traverse au moins partiellement le premier et le second éléments de noyau (22, 21), le premier organe de maintien (P4) comprenant un premier point d’appui (P4a) sur le premier élément de noyau (22) et un second point d’appui (P4f) sur le second élément de noyau (21 ).
[Revendication 2] Ensemble selon la revendication 1 , dans lequel le premier élément de noyau (22) et le second élément de noyau (21) sont conformés de manière à ce que le premier point d’appui (P4a) du premier organe de maintien (P4) assure un blocage du premier élément de noyau (22) selon un premier sens (F1 ) d’une troisième direction (X) perpendiculaire à la première (Z) et à la deuxième direction (Y) et le second point d’appui (P4f) du premier organe de maintien (P4) assure un blocage du second élément de noyau (21 ) selon un deuxième sens (F2) de la troisième direction (X), opposé au premier sens (F1 ).
[Revendication 3] Ensemble selon la revendication 1 ou 2, dans lequel un deuxième organe de maintien (P5) s’étend depuis la première face de moulage (20) selon la deuxième direction (Y), le deuxième organe de maintien (P5) comprenant un premier point d’appui (P5a) sur le premier élément de noyau (22) et un second point d’appui (P5f) sur le second élément de noyau (21), lesdits premier point d’appui (P5a) et deuxième point d’appui (P5f) du deuxième organe de maintien (P5) étant distincts des premier point d’appui (P4a) et deuxième point d’appui (P4f) du premier organe de maintien (P4).
[Revendication 4] Ensemble selon la revendication 3, dans lequel le premier élément de noyau (22) et le second élément de noyau (21) sont conformés de manière à ce que le premier point d’appui (P5a) du deuxième organe de maintien (P5) assure un blocage du
premier élément de noyau (22) selon le premier sens (F1) d’une troisième direction (X) perpendiculaire à la première (Z) et à la deuxième direction (Y) et le second point d’appui (P5f) du deuxième organe de maintien (P5) assure un blocage du second élément de noyau (21 ) selon un deuxième sens (F2) de la troisième direction (X), opposé au premier sens (F1 ).
[Revendication 5] Ensemble selon la revendication 4, dans lequel le deuxième organe de maintien (P5) comprend un moyen d’espacement (D5) entre le premier point d’appui (P5a) du deuxième organe de maintien (P5) et le second point d’appui (P5f) du deuxième organe de maintien (P5), le moyen d’espacement garantissant, au cours de la réalisation du moulage en matériau éliminable, un espacement d’une distance constante entre lesdits points d’appui (P5a, P5f) selon la troisième direction (X).
[Revendication 6] Ensemble selon l’une quelconque des revendications précédentes, dans lequel le premier organe de maintien (P4) comprend un moyen d’espacement (D4) entre le premier point d’appui (P4a) du premier organe de maintien (P4) et le second point d’appui (P4f) du premier organe de maintien (P4), le moyen d’espacement (D4) garantissant, au cours de la réalisation du moulage en matériau éliminable, un espacement d’une distance constante entre lesdits points d’appui (P4a, P4f) selon au moins l’une parmi la première direction (Z), la deuxième direction (Y) ou la troisième direction (X).
[Revendication 7] Ensemble selon l’une quelconque des revendications précédentes, dans lequel le premier organe de maintien (P4) et/ou le deuxième organe de maintien (P5) est mobile entre une position de maintien pour au moins un élément de noyau (22, 21) et une position rétractée, l’organe de maintien (P4, P5) comprenant un mécanisme de rétractation pour positionner l’organe de maintien en position de maintien ou en position rétractée.
[Revendication 8] Ensemble selon l’une quelconque des revendications précédentes, dans lequel le premier organe de maintien (P4) et/ou le deuxième organe de maintien (P5) comprend un axe de rotation (R) et une tête (31) excentrique relativement à l’axe de rotation (R) et coopérant avec le premier élément de noyau (22) et le second élément de noyau (21).
[Revendication 9] Procédé pour la réalisation d’un moulage en matériau éliminable d’une aube de turbomachine, le procédé comprenant :
- fournir un premier élément de noyau (22) et un second élément noyau (21), lesdits éléments de noyau (22, 21) s’étendant selon une première direction (Z),
- fournir un moule d’injection dudit matériau éliminable ;
-17- le moule comprenant :
- une première face (20) pour le moulage d’une face intrados de l’aube et une seconde face pour le moulage d’une face extrados de l’aube agencée en vis-à-vis de la première face (20) selon une deuxième direction (Y) perpendiculaire à la première direction (Z),
- des organes de maintien (P4, P5) en position des noyaux dans le moule d’injection, parmi lesquels au moins un premier organe de maintien (P4) s’étend depuis la première face de moulage (20) selon la deuxième direction (Y), le procédé étant caractérisé en ce qu’il comprend l’étape: positionner le premier élément de noyau (22) et le second élément de noyau (21) sur la première face de moulage (20) de sorte que le premier organe de maintien (P4) traverse au moins partiellement le premier et le second éléments de noyau (22, 21 ) et comprenne un premier point d’appui (P4a) sur le premier élément de noyau (22) et un second point d’appui (P4f) sur le second élément de noyau (21).
[Revendication 10] Procédé selon la revendication 9, le moule comprenant en outre un deuxième organe de maintien (P5) s’étendant depuis la première face de moulage (20) selon la deuxième direction (Y), le procédé comprenant l’étape : positionner le premier élément de noyau (22) et le second élément de noyau (21 ) sur la première face de moulage (20) de sorte que le deuxième organe de maintien (P5) comprenne un premier point d’appui (P5a) sur le premier élément de noyau (22) et un second point d’appui (P5f) sur le second élément de noyau (21).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202380020968.8A CN118660773A (zh) | 2022-01-13 | 2023-01-13 | 用于生产涡轮机叶片的由可去除材料制成的模制件的组合件 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR2200251 | 2022-01-13 | ||
FR2200251A FR3131701B1 (fr) | 2022-01-13 | 2022-01-13 | Ensemble pour la réalisation d’un moulage en matériau éliminable d’une aube de turbomachine |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023135395A1 true WO2023135395A1 (fr) | 2023-07-20 |
Family
ID=81648519
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/FR2023/050048 WO2023135395A1 (fr) | 2022-01-13 | 2023-01-13 | Ensemble pour la réalisation d'un moulage en matériau éliminable d'une aube de turbomachine |
Country Status (3)
Country | Link |
---|---|
CN (1) | CN118660773A (fr) |
FR (1) | FR3131701B1 (fr) |
WO (1) | WO2023135395A1 (fr) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4283835A (en) * | 1980-04-02 | 1981-08-18 | United Technologies Corporation | Cambered core positioning for injection molding |
US4289191A (en) * | 1980-04-02 | 1981-09-15 | United Technologies Corporation | Injection molding thermoplastic patterns having ceramic cores |
FR2874186A1 (fr) | 2004-08-12 | 2006-02-17 | Snecma Moteurs Sa | Procede de fabrication par moulage a cire perdue de pieces comportant au moins une cavite. |
FR2875425A1 (fr) | 2004-09-21 | 2006-03-24 | Snecma Moteurs Sa | Procede de fabrication d'une aube de turbomachine, assemblage de noyaux pour la mise en oeuvre du procede. |
CN212822530U (zh) * | 2020-08-19 | 2021-03-30 | 四川省简阳川田机械阀业有限公司 | 一种用于阀体铸造的型芯以及阀体蜡型成型模 |
-
2022
- 2022-01-13 FR FR2200251A patent/FR3131701B1/fr active Active
-
2023
- 2023-01-13 WO PCT/FR2023/050048 patent/WO2023135395A1/fr active Application Filing
- 2023-01-13 CN CN202380020968.8A patent/CN118660773A/zh active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4283835A (en) * | 1980-04-02 | 1981-08-18 | United Technologies Corporation | Cambered core positioning for injection molding |
US4289191A (en) * | 1980-04-02 | 1981-09-15 | United Technologies Corporation | Injection molding thermoplastic patterns having ceramic cores |
FR2874186A1 (fr) | 2004-08-12 | 2006-02-17 | Snecma Moteurs Sa | Procede de fabrication par moulage a cire perdue de pieces comportant au moins une cavite. |
FR2875425A1 (fr) | 2004-09-21 | 2006-03-24 | Snecma Moteurs Sa | Procede de fabrication d'une aube de turbomachine, assemblage de noyaux pour la mise en oeuvre du procede. |
CN212822530U (zh) * | 2020-08-19 | 2021-03-30 | 四川省简阳川田机械阀业有限公司 | 一种用于阀体铸造的型芯以及阀体蜡型成型模 |
Also Published As
Publication number | Publication date |
---|---|
FR3131701A1 (fr) | 2023-07-14 |
FR3131701B1 (fr) | 2024-05-17 |
CN118660773A (zh) | 2024-09-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1637253B1 (fr) | Procédé de fabrication d'une aube de turbomachine, assemblage de noyaux pour la mise en oeuvre du procédé | |
CA2872066C (fr) | Outillage de fabrication d'un noyau de fonderie pour une aube de turbomachine | |
EP1854569B1 (fr) | Procédé de fabrication de noyaux céramiques de fonderie pour aubes de turbomachine | |
FR2874186A1 (fr) | Procede de fabrication par moulage a cire perdue de pieces comportant au moins une cavite. | |
CA2954024C (fr) | Procede de fabrication d'une aube bi-composant pour moteur a turbine a gaz et aube obtenue par un tel procede | |
EP0663249B1 (fr) | Procédé de fabrication d'un moule carapace en matériau céramique pour fonderie à modèle perdu | |
WO2023135395A1 (fr) | Ensemble pour la réalisation d'un moulage en matériau éliminable d'une aube de turbomachine | |
WO2023135277A1 (fr) | Ensemble pour la réalisation d'un moulage en matériau éliminable d'une aube de turbomachine | |
FR2987292A1 (fr) | Noyau de fonderie, secteur de stator de turbine a gaz et procede de fabrication d'un tel secteur utilisant un tel noyau. | |
EP3624967B1 (fr) | Aube de turbomachine d'aeronef et son procede de realisation par fabrication additive | |
EP3496880B1 (fr) | Procede de positionnement d'un noyau dans un moule | |
EP3395471B1 (fr) | Noyau pour la fabrication d'une aube de turbomachine | |
FR3065661B1 (fr) | Noyau pour la fabrication par moulage a la cire perdue d'une aube de turbomachine | |
FR3070285A1 (fr) | Noyau pour la fafrication d'une aube de turbomachine | |
EP3395469B1 (fr) | Ensemble pour la fabrication d'une aube de turbomachine | |
FR2874187A1 (fr) | Procede de fabrication d'une aube de turbomachine par moulage a cire perdue | |
EP3942157B1 (fr) | Aube de turbomachine equipee d'un circuit de refroidissement et procede de fabrication a cire perdue d'une telle aube | |
WO2024218455A1 (fr) | Ebauche d'aube de turbomachine obtenue par coulée de métal et procédé de fabrication d'une telle ébauche | |
EP3942155B1 (fr) | Aube de turbomachine d'aéronef et son procédé de fabrication par moulage à cire perdue | |
FR3085288A1 (fr) | Procede de fabrication par fonderie a la cire perdue d'un assemblage metallique pour turbomachine | |
FR3106849A1 (fr) | Procédé de formation d’une aube de turbine, et aube associée. | |
FR3129855A1 (fr) | Moule de fabrication d'une pièce en matériau éliminable | |
EP4308322A1 (fr) | Procédé de fabrication par moulage de cire perdue | |
WO2018002466A1 (fr) | Circuit de refroidissement d'une aube de turbomachine | |
FR3129856A1 (fr) | Ensemble pour la fabrication d’aubes de turbomachine en moulage à la cire perdue |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23703834 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2023703834 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2023703834 Country of ref document: EP Effective date: 20240813 |