WO2023134264A1 - 误差模型确定方法、装置、电子设备、计算机可读存储介质及计算机程序产品 - Google Patents
误差模型确定方法、装置、电子设备、计算机可读存储介质及计算机程序产品 Download PDFInfo
- Publication number
- WO2023134264A1 WO2023134264A1 PCT/CN2022/128156 CN2022128156W WO2023134264A1 WO 2023134264 A1 WO2023134264 A1 WO 2023134264A1 CN 2022128156 W CN2022128156 W CN 2022128156W WO 2023134264 A1 WO2023134264 A1 WO 2023134264A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- grid
- data
- observation
- residual
- error
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 95
- 238000003860 storage Methods 0.000 title claims abstract description 18
- 238000004590 computer program Methods 0.000 title claims abstract description 9
- 238000005259 measurement Methods 0.000 claims abstract description 151
- 238000012545 processing Methods 0.000 claims abstract description 68
- 230000015654 memory Effects 0.000 claims description 36
- 238000004364 calculation method Methods 0.000 claims description 15
- 238000007667 floating Methods 0.000 claims description 7
- 238000005516 engineering process Methods 0.000 description 20
- 230000008569 process Effects 0.000 description 16
- 238000010586 diagram Methods 0.000 description 15
- 230000006870 function Effects 0.000 description 10
- 238000004422 calculation algorithm Methods 0.000 description 7
- 238000004891 communication Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 3
- 230000003993 interaction Effects 0.000 description 3
- 230000003044 adaptive effect Effects 0.000 description 2
- 238000013473 artificial intelligence Methods 0.000 description 2
- 238000013528 artificial neural network Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 238000013515 script Methods 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000013527 convolutional neural network Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 230000005294 ferromagnetic effect Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 239000005433 ionosphere Substances 0.000 description 1
- 230000005291 magnetic effect Effects 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- 239000005436 troposphere Substances 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S19/00—Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
- G01S19/38—Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
- G01S19/39—Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
- G01S19/396—Determining accuracy or reliability of position or pseudorange measurements
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/20—Design optimisation, verification or simulation
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S19/00—Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
- G01S19/01—Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
- G01S19/03—Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers
- G01S19/07—Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers providing data for correcting measured positioning data, e.g. DGPS [differential GPS] or ionosphere corrections
- G01S19/071—DGPS corrections
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S19/00—Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
- G01S19/38—Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
- G01S19/39—Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
- G01S19/40—Correcting position, velocity or attitude
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S19/00—Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
- G01S19/38—Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
- G01S19/39—Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
- G01S19/42—Determining position
- G01S19/43—Determining position using carrier phase measurements, e.g. kinematic positioning; using long or short baseline interferometry
- G01S19/44—Carrier phase ambiguity resolution; Floating ambiguity; LAMBDA [Least-squares AMBiguity Decorrelation Adjustment] method
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/10—Complex mathematical operations
- G06F17/15—Correlation function computation including computation of convolution operations
Definitions
- the embodiments of the present application relate to the field of positioning technology, and relate to but are not limited to a method, device, electronic equipment, computer-readable storage medium, and computer program product for determining an error model.
- the error calibration algorithm for the acquired observation data is complex and computationally intensive, and it is difficult to implement in various mobile terminals, and the error calibration algorithm and data error model have low universality and cannot be adapted to Different observation scenarios make the error reliability of the estimated observation data poor.
- Embodiments of the present application provide an error model determination method, device, electronic equipment, computer-readable storage medium, and computer program product, which can be applied to at least scenarios such as maps, automatic driving, and intelligent transportation.
- the data error model can be accurately determined under various mobile terminals and various observation scenarios, so that the observation data can be accurately calibrated based on the data error model, and the universality of data calibration can be improved.
- An embodiment of the present application provides an error model determination method, the method is executed by an error model determination device, and the method includes:
- An embodiment of the present application provides an error model determination device, the device includes:
- the solving module is configured to obtain the observation data collected by at least two devices to be calibrated; and according to the observation data, the pre-built observation equation is solved to obtain the data residual sequence;
- the grid processing module is configured to Perform grid processing on the data residual sequence to obtain a data residual grid;
- the grid error processing module is configured to perform grid processing on the data residual grid according to each data residual value in the data residual sequence Perform grid error processing to obtain a measurement error grid corresponding to the data residual grid;
- the nonlinear fitting module is configured to perform nonlinear fitting on the measurement error grid to obtain the at least two to-be Calibrate the data error model of the equipment.
- An embodiment of the present application provides an electronic device, including: a memory configured to store executable instructions; a processor configured to implement the above method for determining an error model when executing the executable instructions stored in the memory.
- An embodiment of the present application provides a computer program product, the computer program product includes executable instructions, and the executable instructions are stored in a computer-readable storage medium;
- the executable instruction is read in, and the processor is configured to execute the executable instruction to implement the above error model determination method.
- An embodiment of the present application provides a computer-readable storage medium, which stores executable instructions and is configured to cause a processor to execute the executable instructions to implement the above method for determining an error model.
- the embodiment of the present application has the following beneficial effects: according to the observation data collected by at least two devices to be calibrated, the pre-built observation equation is solved to obtain the data residual sequence; and then the data residual sequence is gridded, And further carry out grid error processing on the data residual grid according to each data residual value in the data residual sequence, so as to determine the measurement error grid corresponding to the data residual grid;
- the linear fitting corresponds to obtaining a data error model, and realizes the calibration of the data error models of at least two devices to be calibrated.
- the grid error processing is performed on the data residual grid based on each data residual value in the data residual sequence, a measurement error grid that can truly reflect the data error law is obtained.
- the measurement error grid can accurately determine the data error model; moreover, the method of the embodiment of the present application can realize the determination of the data error model in various mobile terminals and various observation scenarios, so that the collected data can be corrected according to the determined data error model.
- the observation data are calibrated, which improves the universality of data calibration.
- FIG. 1A is a schematic diagram of an optional architecture of an error model determination system provided in an embodiment of the present application
- Fig. 1B is a schematic diagram of the observation data collected by the equipment to be calibrated provided by the embodiment of the present application;
- FIG. 2 is a schematic structural diagram of an error model determination device provided in an embodiment of the present application.
- Fig. 3 is a schematic flowchart of an optional error model determination method provided by the embodiment of the present application.
- Fig. 4 is another optional schematic flowchart of the error model determination method provided by the embodiment of the present application.
- FIG. 5 is a schematic flowchart of another optional error model determination method provided by the embodiment of the present application.
- Fig. 6 is a schematic diagram of the determination flow of the error model determination method provided by the embodiment of the present application.
- Fig. 7 is a schematic diagram of the determination flow of the pseudorange and carrier phase observation random error model provided by the embodiment of the present application.
- Fig. 8 is a schematic diagram of carrier-to-noise ratio CNO and elevation angle grid provided by the embodiment of the present application;
- Fig. 9 is a schematic diagram of GPS, GLONASS, GALILEO and BDS system grid provided by the embodiment of the present application.
- FIG. 10 is a schematic diagram of a flow chart for determining a random error model of Doppler observations provided by an embodiment of the present application.
- the satellite positioning scenarios of the embodiments of the present application can at least be used in the field of vehicle positioning or navigation.
- Navigation system It is a space-based radio navigation and positioning system that can provide users with all-weather 3-dimensional coordinates, speed and time information at any place on the earth's surface or in near-earth space.
- Common systems include Global Positioning System (GPS, Global Positioning System), Beidou Satellite Navigation System (BDS, BeiDou Navigation Satellite System), Global Navigation Satellite System (GLONASS, Global Navigation Satellite System) and Galileo Satellite Navigation System (GALILEO, Galileo Satellite Navigation System) four major systems.
- GPS Global Positioning System
- BDS Beidou Satellite Navigation System
- GLONASS Global Navigation Satellite System
- Galileo Satellite Navigation System GALILEO, Galileo Satellite Navigation System
- Mobile terminal refers to computer equipment that can be used on the move, including mobile phones, notebooks, tablet computers, POS machines and even vehicle-mounted computers. With the rapid development of integrated circuit technology, the processing capabilities of mobile terminals have already possessed powerful processing capabilities. In addition, the mobile terminal is integrated with a navigation system positioning chip for processing satellite signals and precise positioning of users, which has been widely used in location services.
- Positioning equipment Electronic equipment used to process satellite signals and measure the geometric distance between the equipment and the satellite (pseudorange observation value), the Doppler effect of satellite signals (Doppler observation value) and carrier phase; Positioning devices usually include at least modules such as antennas and baseband signal processing. Mobile terminals integrated with positioning devices calculate the current location coordinates of mobile terminals based on pseudorange and Doppler observations. Positioning devices are widely used in map navigation, surveying and mapping, and location services. , such as smartphone map navigation, high-precision geodetic surveying, etc.
- Observation value refers to the observation value output by the positioning equipment, including parameters such as pseudo-range observation value, pseudo-range rate and accumulated delta range (ADR, Accumulated Delta Range); the pseudo-range measurement is the distance from the satellite to the positioning equipment Geometric distance; Pseudo-range rate measures the Doppler effect produced by the relative motion between the positioning device and the satellite; ADR measures the geometric distance change from the satellite to the positioning device.
- pseudo-range measurement is the distance from the satellite to the positioning equipment Geometric distance
- Pseudo-range rate measures the Doppler effect produced by the relative motion between the positioning device and the satellite
- ADR measures the geometric distance change from the satellite to the positioning device.
- Pseudorange observation value refers to the approximate distance between the signal receiver (such as positioning equipment) and the satellite during the positioning process.
- Doppler observation value it can be understood as the Doppler measurement or Doppler count of the radio signal sent by the satellite measured by the signal receiver.
- Epoch refers to the observation time of the signal receiver.
- the carrier-to-noise ratio is a standard measurement scale used to express the relationship between carrier and carrier noise.
- (9) Altitude angle, the angle between the direction line from the point where the signal receiver is located to the satellite and the horizontal plane.
- Measurement error model of positioning equipment i.e., data error model: due to multipath effects, receiver measurement noise, etc., there are measurement errors in the pseudorange, carrier phase, and Doppler observations obtained by positioning equipment;
- the error model represents the functional relational expression of the statistical characteristics (variance, standard deviation) of the measurement error of the positioning equipment with respect to factors such as signal carrier-to-noise ratio and altitude angle.
- the technologies related to error calibration include the following:
- the single-difference observation model between stars is established according to the original observation model; and the double-difference observation model between epochs is established according to the established single-difference observation model between stars; then, the public star is selected and obtained The observation values of the two adjacent epochs of the common star, and the observation values of the two adjacent epochs of the receiver; finally, according to the established single-difference observation model, double-difference observation model between epochs, The obtained observation values of two adjacent epochs of the common star and the obtained observation values of two adjacent epochs of the receiver determine the observation noise.
- this method only uses the single-difference observation model and the double-difference observation model between epochs to obtain receiver measurement noise, but does not establish a pseudorange error model based on the acquired receiver measurement noise sequence; this scheme does not give an analysis of the Doppler observation Correlation methods for value noise.
- the second method firstly, obtain the BDS observations and the residuals of the pre-adjusted observations, and determine the weight ratio of BDS observations of different orbit types; Pseudorange observation value noise; finally, use the observation value weight ratio and pseudorange observation value variance to classify and solve the observation value variance matrix in real time.
- this method is based on the Helmert (Helmert) algorithm to estimate the variance component, the algorithm is complex, the amount of calculation is large, and the estimated error model is easily affected by the positioning accuracy, troposphere and ionosphere correction model, etc., and the reliability is poor; This scheme also does not provide a relevant method for analyzing the noise of Doppler observations.
- the phase of the three-time difference between the combined observations and epochs is based on Melbourne-Wubbena (a combined observation algorithm) The degree of dispersion of the difference between the observed values; then, the sliding window and decay memory method are used to estimate the noise of the pseudorange and phase in real time; finally, the noise ratio of the pseudorange and phase is calculated as the pseudorange-phase weight ratio index in the positioning stochastic model, through The positioning random model realizes the determination of GNSS adaptive pseudorange-phase weight ratio.
- Melbourne-Wubbena a combined observation algorithm
- this method uses the sliding window and attenuation memory method to estimate the noise of pseudorange and phase in real time, and calculates the noise ratio of pseudorange and phase as the index of pseudorange-phase weight ratio in the positioning stochastic model to realize GNSS adaptive pseudorange-phase weight
- the determination of the ratio that is, only estimating the pseudorange-phase weight ratio without calibrating the pseudorange and Doppler measurement error models, is not universal.
- the fourth way firstly, obtain the GNSS observation value; then, determine the altitude angle, azimuth angle and CNR information corresponding to each observation value; and construct the fixed weight function of the altitude angle, azimuth angle and CNR; finally , the fixed weight function is used to build a stochastic model, and the GNSS navigation positioning is realized through the stochastic model.
- this method calculates the weight of GNSS observations according to a given error model, and does not take into account the difference in the measurement noise of different positioning equipment, so the universality is poor.
- the pseudorange error model, carrier phase error model and Doppler error model cannot be given at the same time for various mobile devices, that is, the calibration process of the data error model It is difficult to implement in various mobile terminals, and the error calibration algorithm has low universality and cannot be adapted to different observation scenarios, which makes the error reliability estimated by the data error model poor.
- the embodiment of the present application provides a method for determining an error model, which is an effective method for determining an observation random error model (i.e., a data error model) by using a power divider.
- the sensor divides the satellite signal into two channels to two identical devices a and b to be calibrated, and collects the respective pseudorange, carrier phase and Doppler observation data of the two identical devices a and b to be calibrated, and through the collected observations
- the data constructs a zero baseline and performs RTK calculation; then, the pseudorange double-difference residual sequence, carrier phase double-difference residual sequence and Doppler single-difference residual sequence are gridded; finally, nonlinear fitting pseudo
- the three error standard deviations of distance measurement error standard deviation, carrier phase measurement error standard deviation and Doppler measurement error standard deviation are respectively related to the functional relationship between carrier-to-noise ratio and altitude angle, so as to obtain the data errors of at least two devices to be calibrated Model.
- the observation data collected by at least two devices to be calibrated is obtained; then, according to the observation data, the pre-built observation equation is solved to obtain the data residual sequence; and Perform grid processing on the data residual sequence to obtain the data residual grid; then, according to each data residual value in the data residual sequence, perform grid error processing on the data residual grid to obtain the grid error with the data The measurement error grid corresponding to the residual grid; finally, nonlinear fitting is performed on the measurement error grid, and the corresponding data error models of at least two devices to be calibrated are obtained. In this way, the calibration of the data error models of at least two devices to be calibrated is realized.
- the data error model can be accurately determined; and, because the data error model determination method can realize the calibration of the data error model in various mobile terminals and various observation scenarios, thereby improving the The universality of the data error model determination process further improves the universality of data calibration.
- the error model determination system provided in the embodiment of the present application includes at least the device to be calibrated and the error model calibration device (ie, the error model determination device), wherein the structure of the device to be calibrated has been determined, and is used to observe the target observation object and collect A device for observing data.
- the error model calibration device can be implemented as a user terminal or as a server.
- the error model calibration device provided by the embodiment of the present application can be implemented as a notebook computer, a tablet computer, a desktop computer, a mobile device (for example, a mobile phone, a portable music player, a personal digital assistant, a dedicated message device, Portable game devices), smart robots, smart home appliances, smart speakers, smart watches and vehicle-mounted terminals, etc. any terminal with data processing functions; It is a server, where the server can be an independent physical server, or a server cluster or distributed system composed of multiple physical servers, and can also provide cloud services, cloud databases, cloud computing, cloud functions, cloud storage, network services Cloud servers for basic cloud computing services such as cloud communications, middleware services, domain name services, security services, CDN, and big data and artificial intelligence platforms.
- a server where the server can be an independent physical server, or a server cluster or distributed system composed of multiple physical servers, and can also provide cloud services, cloud databases, cloud computing, cloud functions, cloud storage, network services Cloud servers for basic cloud computing services such as cloud communications, middleware services, domain name services, security services,
- the terminal and the server may be connected directly or indirectly through wired or wireless communication, which is not limited in this embodiment of the present application.
- the error model calibration device in the embodiment of the present application is used to determine the pseudorange error model, carrier phase error model and Doppler error model in the data error model
- the error model calibration device can be implemented as a server, personal Data processing equipment such as a computer
- the error model calibration device can be a mobile device such as a smart phone or a vehicle navigation device.
- FIG. 1A is a schematic diagram of an optional architecture of the error model determination system 10 provided by the embodiment of the present application.
- the The error model determination system 10 may include at least two devices to be calibrated (the device to be calibrated 100-1 and the device to be calibrated 100-2 are exemplarily shown in FIG. 1A ), a network 200 and a server 300, wherein the server 300 constitutes the The error model calibration device of the application embodiment.
- the device to be calibrated 100-1 and the device to be calibrated 100-2 are connected to the server 300 through the network 200, and the network 200 may be a wide area network or a local area network, or a combination of both.
- the equipment to be calibrated 100 - 1 and the equipment to be calibrated 100 - 2 are used to observe the target observation object, collect observation data, and transmit the observation data to the server 300 through the network 200 .
- the error model determination system may also include a signal power divider (not shown in the figure), which is used to divide the satellite signal into two paths and transmit it to two identical devices to be calibrated 100-1 and the device to be calibrated 100 -2.
- a signal power divider (not shown in the figure), which is used to divide the satellite signal into two paths and transmit it to two identical devices to be calibrated 100-1 and the device to be calibrated 100 -2.
- the error model determination system may further include a first receiver, a second receiver, a fixing device and a fixing plate (not shown in the figure), and the device to be calibrated 100-1, the device to be calibrated 100- 2. Both the first receiver and the second receiver are fixed on the fixing plate by the fixing device.
- the phase center of the equipment to be calibrated 100-1, the phase center of the equipment to be calibrated 100-2, the phase center of the first receiver and the phase center of the second receiver are all kept on the same straight line.
- the server 300 (that is, the error model calibration device) solves the pre-built observation equation according to the observation data to obtain the data residual difference sequence; then, the data residual sequence is gridded to obtain the data residual grid; then, according to each data residual value in the data residual sequence, the grid error is performed on the data residual grid processing to obtain the measurement error grid corresponding to the data residual grid; finally, nonlinear fitting is performed on the measurement error grid to obtain at least two data error models of the equipment to be calibrated, wherein the data error model is used to Error estimation is performed on the observation data of at least two devices to be calibrated.
- the server 300 feeds back the data error model to the device to be calibrated 100-1 and the device to be calibrated 100-2 through the network 200, or, the server 300 stores the data error model, so that any subsequent device to be positioned When performing positioning, positioning may be performed based on a data error model.
- the positioning function can also be realized according to the data error model, that is, mobile devices such as smart phones and car navigation devices can be accurately positioned based on the determined data error model .
- Figure 1B is a schematic diagram of the observation data collected by the equipment to be calibrated provided by the embodiment of the present application.
- any equipment 201 to be calibrated can receive different satellite signals, such as satellite 1, satellite 2 and satellite in Figure 1B 3.
- Obtain observation data including but not limited to pseudorange, carrier phase and Doppler observation data of each epoch.
- the method for determining the error model provided in the embodiment of the present application can also be implemented based on a cloud platform and through cloud technology.
- the above-mentioned server 300 can be a cloud server, and the pre-built observation equation is solved by the cloud server according to the observation data.
- grid processing is performed on the data residual sequence, and nonlinear fitting is performed on the measurement error grid.
- cloud technology refers to a hosting technology that unifies a series of resources such as hardware, software, and network in a wide area network or a local area network to realize data calculation, storage, processing, and sharing.
- Cloud technology refers to the general term of network technology, information technology, integration technology, management platform technology, application technology, etc. based on cloud computing model applications. It can form a resource pool and be used on demand, which is flexible and convenient. Cloud computing technology will become an important support.
- the background services of technical network systems require a lot of computing and storage resources, such as video websites, picture websites and more portal websites. With the rapid development and application of the Internet industry, each item may have its own identification mark in the future, which needs to be transmitted to the background system for logical processing. Data of different levels will be processed separately, and all kinds of industry data need to be powerful.
- the system backing support is realized through cloud computing.
- FIG. 2 is a schematic structural diagram of an error model determination device provided by an embodiment of the present application.
- the error model determination device shown in FIG. 2 includes: at least one processor 310, a memory 350, at least one network interface 320 and a user interface 330.
- Various components in the error model determination device are coupled together through the bus system 340 .
- the bus system 340 is used to realize connection and communication between these components.
- the bus system 340 also includes a power bus, a control bus and a status signal bus.
- the various buses are labeled as bus system 340 in FIG. 2 .
- Processor 310 can be a kind of integrated circuit chip, has signal processing capability, such as general-purpose processor, digital signal processor (DSP, Digital Signal Processor), or other programmable logic device, discrete gate or transistor logic device, discrete hardware Components, etc., wherein the general-purpose processor can be a microprocessor or any conventional processor, etc.
- DSP digital signal processor
- DSP Digital Signal Processor
- User interface 330 includes one or more output devices 331 that enable presentation of media content, including at least one of: one or more speakers, one or more visual displays.
- the user interface 330 also includes one or more input devices 332, including user interface components that facilitate user input, such as a keyboard, mouse, microphone, touch screen display, camera, other input buttons and controls.
- Memory 350 may be removable, non-removable or a combination thereof. Exemplary hardware devices include solid state memory, hard drives, optical drives, and the like. Memory 350 optionally includes one or more storage devices located physically remote from processor 310 . Memory 350 includes volatile memory or nonvolatile memory, and may include both volatile and nonvolatile memory. The non-volatile memory can be a read-only memory (ROM, Read Only Memory), and the volatile memory can be a random access memory (RAM, Random Access Memory). The memory 350 described in the embodiment of the present application is intended to include any suitable type of memory. In some embodiments, memory 350 is capable of storing data to support various operations, examples of which include programs, modules, and data structures, or subsets or supersets thereof, as exemplified below.
- Operating system 351 including system programs for processing various basic system services and performing hardware-related tasks, such as framework layer, core library layer, driver layer, etc., for implementing various basic services and processing hardware-based tasks; network communication Module 352 for reaching other computing devices via one or more (wired or wireless) network interfaces 320.
- Exemplary network interfaces 320 include: Bluetooth, Wireless Compatibility Authentication (WiFi), and Universal Serial Bus (USB, Universal Serial Bus) etc.
- input processing module 353 is used for one or more from one or more user input of one or more input device 332 or interaction is detected and the input of translation detection or interaction.
- the device provided by the embodiment of the present application can be realized by software.
- FIG. 2 shows an error model determination device 354 stored in the memory 350.
- the error model determination device 354 can be an error model determination device.
- the error model determining device in which can be software in the form of programs and plug-ins, includes the following software modules: solving module 3541, grid processing module 3542, grid error processing module 3543 and nonlinear fitting module 3544, these Modules are logical, so they can be combined arbitrarily or further divided according to the functions implemented. The function of each module will be explained below.
- the device provided in the embodiment of the present application may be implemented in hardware.
- the device provided in the embodiment of the present application may be a processor in the form of a hardware decoding processor, which is programmed to execute the The error model determination method provided by the embodiment, for example, the processor in the form of a hardware decoding processor can adopt one or more application-specific integrated circuits (ASIC, Application Specific Integrated Circuit), DSP, programmable logic device (PLD, Programmable Logic Device), Complex Programmable Logic Device (CPLD, Complex Programmable Logic Device), Field Programmable Gate Array (FPGA, Field-Programmable Gate Array) or other electronic components.
- ASIC application-specific integrated circuits
- DSP digital signal processor
- PLD programmable logic device
- CPLD Complex Programmable Logic Device
- FPGA Field Programmable Gate Array
- the error model determination device can be any terminal with data processing functions , or it may also be a server, that is, the method for determining an error model in the embodiment of the present application may be executed by a terminal, or by a server, or by interaction between a terminal and a server.
- Fig. 3 is an optional schematic flow chart of the error model determination method provided by the embodiment of the present application, which will be described below in conjunction with the steps shown in Fig. 3. It should be noted that the error model determination method in Fig. 3 It can be implemented by using the server as the execution subject.
- Step S301 obtaining observation data collected by at least two devices to be calibrated, and solving a pre-built observation equation according to the observation data to obtain a data residual sequence.
- observation data collected by at least two devices to be calibrated may be obtained.
- the observation data may be the observation data of the target observation object, including but not limited to at least one of the following: pseudorange observation data, carrier phase observation data and Doppler observation data.
- the device to be calibrated can be an RTK terminal, that is, the device to be calibrated can be any device such as a terminal or a receiver that can receive signals from the target observation object and collect observation data based on satellite signals.
- the embodiment of the present application can realize the error model calibration of the mobile terminal in the device to be calibrated, that is, determine the data error model for the mobile terminal.
- the error model determination method of the embodiment of the present application can be applied to the following scenarios: the equipment to be calibrated can be located in an open field or fixed on the frame, after the equipment to be calibrated is fixed, start to observe the target observation object, and collect the observed The observation data of the target observation object will be stopped until the observation time reaches the preset time; when the observation is stopped, the equipment to be calibrated will transmit the collected observation data to the server (that is, the error model determination equipment).
- the preset time length includes multiple epochs, therefore, the observation data is actually composed of sub-observation data of each of the multiple epochs.
- Each sub-observation data may include observed carrier-to-noise ratio, elevation angle, pseudo-range observation data, carrier phase observation data, Doppler observation data, and the like.
- the preset duration may be 1 day, 3 days, or other preset durations.
- the server after the server receives the observation data sent by the device to be calibrated, the server will also select the observed target observation object from the orbit data of the target observation object calculated according to the precise ephemeris according to the observation data corresponding data.
- the selected data may include the coordinates, running speed and clock error of the target observation object. After that, follow-up steps can be performed based on the coordinates, running speed and clock error of the target observation object, as well as the position of the equipment to be calibrated and each sub-observation data to determine the data error model, thereby realizing the error model of the embodiment of the present application Determine the method.
- the data residual sequence includes a pseudorange residual sequence, a carrier phase residual sequence and a Doppler residual sequence.
- the pseudorange residual sequence at least includes a pseudorange double-difference residual sequence;
- the carrier phase residual sequence at least includes a carrier phase double-difference residual sequence;
- the Doppler residual sequence includes at least a Doppler single-difference residual sequence.
- Observation equations may include RTK observation equations and Doppler observation equations, where RTK observation equations are used to process pseudorange observation data and carrier phase observation data to determine pseudorange residual sequences and carrier phase residual sequences; Doppler The Doppler observation equation is used to process the Doppler observation data to determine the Doppler residual sequence.
- the observation equation may be constructed in advance or the observation equation may be constructed after obtaining the observation data.
- the parameters in the RTK observation equation at least include: pseudorange observation data and carrier phase observation data, the position of the equipment to be calibrated, and carrier phase double-difference ambiguity.
- the pre-constructed observation equation can be solved by substituting the obtained observation data into the observation equation to obtain the position of the equipment to be calibrated in the equation and the carrier phase double-difference ambiguity, and then the obtained equipment to be calibrated
- the position and carrier phase double-difference ambiguity are fixed by ambiguity processing, and the fixed solution of the position of the equipment to be calibrated and the fixed value of the carrier phase double-difference ambiguity are obtained.
- the obtained fixed solution of the position of the equipment to be calibrated and the fixed value of the carrier phase double-difference ambiguity are substituted into the constructed observation equation to obtain the pseudo-range double-difference residual and the carrier-phase double-difference residual .
- the obtained pseudo-range double-difference residual and carrier-phase double-difference residual are the pseudo-range double-difference residual and carrier-phase double-difference residual at any moment (that is, any epoch).
- the above method can continue to be used to determine the pseudo-range double-difference residuals and carrier-phase double-difference residuals at other times. In this way, for the pseudo-range observation data and carrier phase observation data of the preset duration, the pseudo-range double-difference residuals can be determined correspondingly. difference residual sequence and carrier phase double difference residual sequence.
- the parameters in the Doppler observation equation at least include: Doppler observation data, the running speed of the target observation object, the clock drift of the equipment to be calibrated, and the clock drift of the target observation object.
- the Doppler observation data can be substituted into the observation equation to obtain the difference between the Doppler observation data of each target observation object and the Doppler observation data of the reference observation object. The difference between them, and then determine the Doppler single difference residual sequence according to the difference.
- the target observation object may be a satellite observed by the device to be calibrated, and the reference observation object may be a reference satellite.
- Step S302 performing gridding processing on the data residual sequence to obtain a data residual grid.
- the gridding process can be based on a pre-built grid, and each target observation object is corresponding to a target grid unit in the grid, and then the data residual sequence corresponding to the target observation object is classified into In the target grid unit corresponding to the target observation object.
- grids under different observation object systems may be constructed in advance, that is, a grid is respectively constructed for different observation object systems.
- a grid is respectively constructed for different observation object systems.
- different observation object systems such as GPS system, GLONASS system, GALILEO system, and Beidou satellite system
- the GPS grid under the GPS system, the GLONASS grid under the GLONASS system, and the GALILEO system can be respectively constructed.
- Each grid includes multiple grid units, and all grid units in the same grid have the same area.
- the data residual sequence When gridding the data residual sequence, the data residual sequence may be classified into the target grid unit of the target observation object corresponding to the data residual sequence to obtain a data residual grid.
- Step S303 according to each data residual value in the data residual sequence, perform grid error processing on the data residual grid to obtain a measurement error grid corresponding to the data residual grid.
- the grid error processing refers to calculating the standard deviation of the data residual sequence at each moment after calculating the data residual sequence at each moment, and then the corresponding data measurement error standard at each moment can be obtained Then, the obtained data measurement error standard deviation is classified into the target grid unit of the target observation object corresponding to the data measurement error standard deviation to obtain a measurement error grid, wherein the measurement error grid can be is the observation data measurement error standard deviation grid.
- the grid error processing can also be to directly calculate the standard deviation of the data residual sequence in each grid cell in the data residual grid to obtain the data residual sequence of each grid cell The standard deviation of , and then get the measurement error grid.
- Step S304 performing nonlinear fitting on the measurement error grid to obtain data error models of at least two devices to be calibrated.
- the measurement error grid can be nonlinearly fitted by a nonlinear fitting algorithm.
- the function relationship obtained by the fitting is at least two to be calibrated
- the data error model of the device actually refers to the nonlinear fitting of the measurement error standard deviation sequence of the observation data in the measurement error grid.
- Data error models may include: pseudorange error models, carrier phase error models, and Doppler error models. The pseudorange error model, the carrier phase error model and the Doppler error model can be jointly used to locate at least two devices to be calibrated.
- the at least two devices to be calibrated may include a first terminal and a second terminal, and the models of the first terminal and the second terminal are the same, and the first terminal and the second terminal are about The indicators of the target observation object during observation are also the same, therefore, the server will simultaneously determine the data error model for the at least two devices to be calibrated.
- the server may use the least square method to fit the observation data measurement error standard deviation sequence in the measurement error grid to obtain a data error model.
- the server can also use artificial neural networks, convolutional neural networks, etc. in artificial intelligence technology to fit the observation data measurement error standard deviation sequence (this is due to the powerful function fitting ability of the neural network ), so as to obtain the data error model.
- the method for determining the error model provided in the embodiment of the present application solves the pre-built observation equations based on the observation data collected by at least two devices to be calibrated to obtain the data residual sequence; then grids the data residual sequence processing, and further determine the measurement error grid corresponding to the data residual grid; carry out nonlinear fitting on the measurement error grid, and obtain the corresponding data error model, and realize the data error model of at least two devices to be calibrated calibration.
- the method for determining the error model can accurately determine the data error model in various mobile terminals, so that the collected observation data can be accurately calibrated based on the data error model, and the universality of data calibration is improved.
- step S303 according to each data residual value in the data residual sequence, grid error processing is performed on the data residual grid to obtain a measurement error grid corresponding to the data residual grid, It can be achieved in the following ways: First, determine the corresponding grid unit of each data residual value in the data residual sequence in the data residual grid; then, according to each data residual value in the data residual sequence, Perform error calculation on the data residual grid to obtain the error value of each grid unit in the data residual grid corresponding to the data residual sequence; finally, according to the error value corresponding to each grid unit and each grid The location of the unit determines the measurement error grid corresponding to the data residual grid.
- the data residual grid corresponds to multiple grid units, and each grid unit corresponds to at least one set of pseudorange double-difference residual sequences, one set of carrier phase double-difference residual sequences, and one set of multiple
- the pseudorange double-difference residual sequence, the carrier phase double-difference residual sequence and the Doppler single-difference residual sequence in the data residual sequence are classified into the pre-built in the grid cells of the grid.
- the standard deviation of the data residual grid can be calculated according to each data residual value in the data residual sequence to obtain that each grid cell in the data residual grid corresponds to the data The error standard deviation value of the residual series, identifying the error standard deviation value as the error value.
- the data residual value includes but not limited to: pseudorange double-difference residual value, carrier phase double-difference residual value and Doppler single-difference residual value.
- the error standard deviation value corresponding to each grid unit can be classified into the corresponding grid unit to obtain the classified grid unit; and The classified grid cells are summarized to obtain the measurement error grid.
- the position of each grid unit refers to the corresponding position of the grid unit in the grid, where the position can be the coordinate position of the grid unit, or can be for each grid unit in the constructed grid.
- a grid unit is pre-added with a position identifier, and the corresponding position of the grid unit in the grid can be determined according to the position identifier.
- the measurement error grid corresponding to the data residual grid when determining the measurement error grid corresponding to the data residual grid, it is realized based on the pre-built grid, by classifying each data residual in the data residual sequence into the grid In each grid cell in the grid, the calculated error standard deviation value can also be classified into the grid cell based on the position of the grid cell of the data residual in the grid, so as to realize the calculated Accurate matching between the error standard deviation value and the data residual sequence; and, since the pre-constructed grid includes multiple grid cells with the same area, the measurement error grid based on the grid will be used in the follow-up During nonlinear fitting, the data can be accurately fitted and an accurate data error model can be obtained.
- Fig. 4 is another optional schematic flowchart of the error model determination method provided by the embodiment of the present application. As shown in Fig. 4, the method includes the following steps:
- Step S401 obtaining observation data collected by at least two devices to be calibrated.
- the observation data includes sub-observation data for each of the plurality of epochs.
- Step S402 for the sub-observation data of each epoch, perform weighted least squares solution to the observation equation according to the sub-observation data, and obtain the residual value of the sub-observation data.
- the sub-observation data includes pseudorange and carrier phase
- the residual value of the sub-observation data may be a double-difference residual value of the sub-observation data
- the observation equation is an RTK observation equation
- step S402 can be implemented in the following manner: First, for each epoch, according to the sub-observation data of the epoch, the RTK observation equation is solved by weighted least squares to obtain the position information and carrier phase ambiguity floating point solution; then, carry out ambiguity fixation on the carrier phase ambiguity floating point solution to obtain the carrier phase ambiguity fixed value. Then, solve the fixed value of the carrier phase ambiguity to obtain the fixed solution of the position information, and substitute the fixed solution of the position information and the fixed value of the carrier phase ambiguity into the RTK observation equation to obtain the residual value of the pseudorange and the residual value of the carrier phase difference. Finally, the pseudorange residual value and the carrier phase residual value are determined as sub-observation data residual values corresponding to the sub-observation data.
- the RTK observation equation can be solved by weighted least squares to obtain the position information of the target calibration equipment and the carrier phase double-difference ambiguity floating-point solutions.
- the parameters in the RTK observation equation at least include: the geometric distance between the target calibration equipment and each target observation object, pseudo-range observation data and carrier phase observation data, the position of the equipment to be calibrated and the carrier phase double-difference ambiguity.
- the observation data residual sequence needs to be combined with the target calibration equipment and the reference station.
- the parameters corresponding to each observed common target observation object are used for calibration, and it is necessary to combine the parameters corresponding to the reference observation object corresponding to each common observed target observation object for calibration, and each common target observation object
- the parameters corresponding to the object and the parameters of the reference observation object of each common target observation object are recorded as matching parameters. That is to say, the matching parameters include the parameters of the target observation object jointly observed by the target calibration device and the reference station, and the parameters of the reference observation object of the target observation object jointly observed.
- the error model calibration equipment calibrates the residual sequence of observation data, it needs to analyze the sub-observation data of all epochs and the matching parameters of all epochs in order to be able to count the different carrier-to-noise ratios and The distribution under the altitude angle, so as to obtain the observation data residual sequence corresponding to the target calibration equipment and the reference station.
- the target observation object data is obtained from the orbit data of each target observation object calculated based on the precise ephemeris based on the observation data, the matching parameters also belong to the orbit data calculated based on the precise ephemeris. A part of the orbit data of the target observation object.
- the weighted least squares calculation of the RTK observation equation can be carried out in combination with the sub-observation data of each epoch and the matching parameters of all target observation objects, so as to obtain the The position information and carrier phase double-difference ambiguity floating-point solution.
- the position information of the device to be calibrated and the carrier phase double-difference ambiguity floating-point solution can be used as parameters in the RTK observation equation and substituted back into the RTK observation equation to obtain the observation data residual sequence.
- the carrier phase ambiguity floating point solution can be the carrier phase double difference ambiguity floating point solution
- the carrier phase ambiguity fixed value can be the carrier phase double difference ambiguity degree fixed value
- the sub-observation data residual value of the sub-observation data includes a pseudo-range residual value and a carrier phase residual value.
- the pseudo-range residual value and the carrier phase residual value may be respectively The distance double-difference residual value and the carrier phase double-difference residual value.
- step S403 according to the sequence of multiple epochs, the obtained multiple sub-observation data residual values are summarized to form a data residual sequence.
- the above steps S4021 to S4025 are sequentially performed on the sub-observation data of each epoch to obtain the pseudorange double-difference residual value and carrier phase double-difference residual value under the epoch, and then, Summarize the pseudorange double-difference residual values and carrier phase double-difference residual values under multiple epochs to form a pseudorange double-difference residual value sequence and a carrier phase double-difference residual value sequence, in which the observation data residual
- the sequence includes the pseudorange double-difference residual value sequence and the carrier phase double-difference residual value sequence.
- Step S404 taking the carrier-to-noise ratio as the ordinate and the elevation angle as the abscissa, and constructing grids under different observation object systems according to the preset carrier-to-noise ratio interval and the preset elevation angle interval.
- the preset observation object system may include GPS system, GLONASS system, GALILEO system, BDS system and other systems.
- the carrier-to-noise ratio and elevation angle of the commonly observed target observation object can be obtained, and for each preset observation in one or more preset observation object systems to which the commonly observed target observation object belongs
- multiple CNR-altitude angle category units are constructed, and this CNR-altitude angle category unit is recorded as the system CNR-altitude angle category unit, so that the error model determines that the equipment will get multiple Carrier-to-noise ratio-altitude angle category unit under the system.
- multiple system carrier-to-noise ratio-altitude angle category units of each preset observation object system may form a grid corresponding to the preset observation object system.
- the preset carrier-to-noise ratio interval and the preset elevation angle interval are the side lengths of each grid unit in the grid.
- Step S405 for each observation object system, according to the observation carrier-to-noise ratio and the observation elevation angle, determine the position of the target observation object corresponding to the target grid unit in the grid.
- the target observation object corresponding to the position of the target grid unit in the grid refers to the target observation object observed by the device to be calibrated, that is, the target observation object corresponding to the observation data.
- the observation carrier-to-noise ratio and observation elevation angle of the target observation object can be obtained, and then the corresponding grid unit is determined in the grid according to the observation carrier-to-noise ratio and observation elevation angle, which is the target grid unit.
- Step S406 classify each sub-observation data residual value into the target grid unit of the corresponding target observation object to obtain a data residual grid.
- the pseudorange double-difference residual value and the carrier phase double-difference residual value in each sub-observation data residual value may be classified into the target grid unit of the corresponding target observation object middle.
- a set of pseudorange double-difference residual sequences and a set of carrier phase double-difference residual sequences correspond to the target grid unit of each target observation object.
- Step S407 according to each pseudorange double difference residual value in the pseudorange double difference residual sequence, determine the first standard deviation of the pseudorange double difference residual sequence; according to each carrier in the carrier phase double difference residual sequence The phase doubledifference residual value, which determines the second standard deviation of the carrier phase doubledifference residual sequence.
- the first standard deviation of the pseudorange double-difference residual sequence at each moment and the second standard deviation of the carrier phase double-difference residual sequence at each moment may be calculated.
- Step S408 according to the target grid unit and the first standard deviation of each target observation object, determine the pseudorange measurement error standard deviation grid.
- the obtained first standard deviation is classified into the target observation object corresponding to the first standard deviation
- the standard deviation grid of the pseudorange measurement error is obtained.
- the pseudorange measurement error standard deviation grid can describe the discrete distribution of the pseudorange measurement error standard deviation of at least two devices to be calibrated under the carrier-to-noise ratio and altitude angle of the target observation object.
- Step S409 performing nonlinear fitting on the standard deviation grid of the pseudorange measurement error, correspondingly obtaining pseudorange error models of at least two devices to be calibrated.
- nonlinear fitting can be performed on the standard deviation grid of the pseudorange measurement error to obtain the first functional relational expression of the standard deviation of the pseudorange measurement error with respect to the carrier-to-noise ratio and the altitude angle.
- Pseudorange error models of at least two devices to be calibrated are provided.
- Step S410 according to the target grid unit of each target observation object and the second standard deviation, determine the standard deviation grid of the carrier phase measurement error.
- the obtained second standard deviation is classified into the target observation object corresponding to the second standard deviation
- the standard deviation grid of the carrier phase measurement error is obtained.
- the carrier phase measurement error standard deviation grid can describe the discrete distribution of the carrier phase measurement error standard deviation of at least two devices to be calibrated under the carrier-to-noise ratio and altitude angle of the target observation object.
- Step S411 performing nonlinear fitting on the standard deviation grid of the carrier phase measurement error, correspondingly obtaining at least two carrier phase error models of the equipment to be calibrated.
- nonlinear fitting can be performed on the standard deviation grid of the carrier phase measurement error to obtain the second functional relational expression of the standard deviation of the carrier phase measurement error with respect to the carrier-to-noise ratio and the altitude angle.
- Carrier phase error models of at least two devices to be calibrated are provided.
- the first standard deviation of the pseudorange double-difference residual sequence and the second standard deviation of the carrier phase double-difference residual sequence are respectively calculated, and then the pseudorange measurement error standard deviation network is determined based on the first standard deviation Based on the second standard deviation, the carrier phase measurement error standard deviation grid is determined, so that the pseudorange error model can be obtained after nonlinear fitting of the pseudorange measurement error standard deviation grid and the carrier phase measurement error standard deviation grid respectively. and a carrier phase error model, wherein the pseudorange error model can calibrate the pseudorange in the observed data, and the carrier phase error model can calibrate the carrier phase in the observed data. In this way, the error calibration of the corresponding observation data is carried out in a targeted manner based on the two error models respectively, so that more accurate calibration of the observation data can be realized.
- Fig. 5 is another optional schematic flowchart of the error model determination method provided by the embodiment of the present application. As shown in Fig. 5, the method includes the following steps:
- Step S501 acquiring observation data collected by at least two devices to be calibrated.
- the observation data includes sub-observation data for each of the plurality of epochs.
- the observation equation is the Doppler observation equation.
- Step S502 according to the sub-observation data of each epoch, the Doppler observation equation is solved to obtain the Doppler single-difference residual sequence in the epoch.
- Step S503 determining the Doppler single-difference residual sequence in each epoch as a data residual sequence.
- Step S504 classify the Doppler single-difference residual values in the Doppler single-difference residual sequence under each epoch into the target grid unit of the corresponding target observation object, and obtain the observation data single-difference residual Poor grid.
- a set of Doppler single-difference residual sequences is corresponding to the target grid unit of each target observation object.
- Step S505 according to each Doppler single-difference residual value in the Doppler single-difference residual sequence, determine the third standard deviation of the Doppler single-difference residual sequence corresponding to each device to be calibrated.
- Step S506 according to the third standard deviation of each equipment to be calibrated, determine the Doppler standard deviation grid of the equipment to be calibrated.
- Step S507 according to the Doppler standard deviation grids of all the devices to be calibrated, determine the Doppler measurement error standard deviation grid.
- Step S508 performing nonlinear fitting on the Doppler measurement error standard deviation grid, correspondingly obtaining Doppler error models of at least two devices to be calibrated.
- nonlinear fitting can be performed on the Doppler measurement error standard deviation grid to obtain the third functional relational expression of the Doppler measurement error standard deviation with respect to the carrier-to-noise ratio and the elevation angle, according to the third functional relation
- the Doppler error models of at least two devices to be calibrated are obtained by the formula.
- the Doppler measurement error standard deviation can be calculated
- the Doppler error model is obtained after the grid is nonlinearly fitted, and the Doppler error model can realize the calibration of the Doppler data in the observed observation data. In this way, by performing targeted error calibration on the Doppler data in the corresponding observation data based on the Doppler error model, more accurate calibration on the Doppler data in the observation data can be realized.
- the embodiment of the present application provides a method for determining an error model, which is a method of using a signal power divider to calibrate and observe a random error model.
- the signal power divider divides the satellite signal into two paths to two identical RTK terminals (that is, the above-mentioned equipment to be calibrated), collect the pseudorange, carrier phase and Doppler observation data of the same positioning module a and positioning module b in the two RTK terminals, build a zero baseline based on the observation data, and perform RTK calculation on the observation data ; Then, the pseudorange double-difference residual sequence, the carrier phase double-difference residual sequence and the Doppler single-difference residual sequence are gridded, and the standard deviation of the pseudorange measurement error is nonlinearly fitted with respect to the carrier-to-noise ratio CN0 and The functional relational expression of the altitude angle, the functional relational expression of the carrier phase measurement error standard deviation on the carrier-to-noise ratio CN0 and the altitude angle, and the
- Fig. 6 is a schematic flow chart of the error model determination method provided by the embodiment of the present application. As shown in Fig. 6, the method includes the following steps:
- step S601 the signal splitter 61 divides the satellite signal into two channels and sends it to two identical RTK terminals 62 and 63 .
- Step S602 collecting observation data of two positioning modules in the same RTK terminal: pseudorange observation data, carrier phase observation data and Doppler observation data.
- Step S603 constructing a zero baseline.
- Step S604 perform RTK calculation.
- Step S605 acquiring pseudorange double-difference residual sequence, carrier phase double-difference residual sequence and Doppler single-difference residual sequence.
- Step S606 performing gridding processing on different observation object systems to construct a time series grid.
- Step S607 calculate the pseudorange observation data measurement error variance and standard deviation, the carrier phase observation data measurement error variance and standard deviation, and the Doppler observation data measurement error variance of the RTK terminal 62 to be calibrated and the RTK terminal 63 according to the time series grid and standard deviation grid.
- Step S608 non-linear fitting pseudorange measurement error standard deviation, carrier phase measurement error standard deviation, and Doppler measurement error standard deviation, with respect to the functional relationship between carrier-to-noise ratio CN0 and altitude angle, to obtain the observation random error model, namely Get the data error model.
- Fig. 7 is a schematic diagram of the determination process of the pseudorange and carrier phase observation random error model provided by the embodiment of the present application.
- the calibration data sequence 71 is the observed observation data, and the calibration data sequence 71 includes observations under multiple epochs
- the calibration data unit 72 (that is, the sub-observation data) is obtained, and the calibration data unit 72 includes the pseudo-range observation data or carrier phase observation data of the RTK terminal a and the RTK terminal b, and the precise coordinates of the RTK terminal a and the RTK terminal b.
- the calibration process includes the following steps:
- Step S701 calculating the precise coordinates of the equipment to be calibrated (ie RTK terminal a and RTK terminal b) according to the calibration data unit.
- Step S703 calculating the position of the grid unit according to the carrier-to-noise ratio and the elevation angle.
- Step S704 constructing a zero baseline and performing RTK calculation.
- Step S705 calculating the pseudorange phase double-difference residual value or the carrier phase double-difference residual value.
- RTK calculation is performed on the zero-baseline observation data, assuming that RTK terminal a and RTK terminal b share Depending on m target observation objects, the RTK observation equations z ⁇ and
- the target observation object 1 can be the reference observation object.
- RTK terminal b as the reference station, carry out weighted least squares solution or Kalman filter solution to the above formulas (1) and (2), and obtain the position r a of RTK terminal a and the carrier phase double-difference ambiguity floating-point solution; carrier-phase double-difference ambiguity is an integer, the ambiguity is fixed by the MLAMBDA method, and the carrier phase double-difference ambiguity fixed value is obtained
- the fixed solution of the position r a of the RTK terminal a is obtained by solving the fixed value of the carrier phase ambiguity Will Substituting known values into the above RTK observation equations, the pseudorange and carrier phase double-difference residual values can be obtained, see the following formulas (3) and (4):
- the pseudo-range or carrier phase data of RTK terminal a and RTK terminal b at N time points are both subjected to the above processing, and the pseudo-range and carrier phase double-difference residual sequence at N time points can be obtained.
- Step S706 classifying and placing pseudorange or carrier phase double-difference residual values according to the observation object system and grid cell position.
- the carrier-to-noise ratio CN0 and the elevation angle are formed into a grid according to a certain interval, where the certain interval may be the length and width of each grid unit in the grid.
- FIG. 8 it is a schematic diagram of the carrier-to-noise ratio CNO and the altitude angle grid provided by the embodiment of the present application.
- the observation object system usually includes GPS, GLONASS, GALILEO and Beidou satellite system, four grids corresponding to the four observation object systems can be constructed, as shown in Figure 9, which is the GPS, GLONASS, Schematic diagram of the GALILEO and BDS system grids.
- the carrier-to-noise ratio interval and elevation angle interval are ⁇ dBHz and
- the numbers 1, 2, 6, 7 and 9 in the figure indicate the numbers of the target observation objects: for example, when , if the signal-to-noise ratio of the pseudo-range observation value of the target observation object 2 is 21dBHz, and the elevation angle is 8°, then the pseudo-range double-difference residual value of the target observation object 2 is placed at the label 2 in Fig. 8, so that By analogy, the pseudo-range double-difference residual values of all epochs are classified and placed in grids.
- Step S707 constructing a time series grid.
- Step S708 calculating the pseudorange/carrier phase measurement error variance and standard deviation grid of the equipment to be calibrated according to the time series grid.
- each grid cell corresponds to a set of pseudo-range double-difference residual value sequence, which is expressed as the following formula (7):
- SYS GPS, GLO, GAL, BDS (7).
- Step S709 non-linearly fitting the functional relational expression of the pseudorange/carrier phase measurement error standard deviation with respect to the carrier-to-noise ratio and the altitude angle.
- the standard deviation of the pseudo-range measurement error can be nonlinearly fitted to the functional relationship between the carrier-to-noise ratio CN0 and the altitude angle according to the obtained pseudo-range measurement error standard deviation grid; similarly, for the carrier phase double
- the difference residual sequence also performs the above-mentioned processing, and the standard deviation grid of the carrier phase measurement error can be obtained.
- the nonlinear fitting standard deviation of the carrier phase measurement error is about the carrier-to-noise ratio CN0 and The functional relation of altitude angle.
- FIG 10 is a schematic diagram of the calibration process of the Doppler observation random error model provided by the embodiment of the present application.
- the calibration data sequence 1001 is the observed observation data, and the calibration data sequence 1001 includes the data observed in multiple epochs.
- Calibration data unit 1002 (ie, sub-observation data).
- the calibration data unit 1002 includes Doppler observation value and terminal reference motion velocity. After the calibration data unit 1002 is acquired, the calibration process includes the following steps:
- Step S101 calculate the coordinates and speed of the equipment to be calibrated (including RTK terminal a and RTK terminal b) according to the calibration data unit.
- Step S103 calculating the position of the grid unit according to the carrier-to-noise ratio and the elevation angle.
- Step S104 selecting a reference observation object and constructing a Doppler single-difference observation equation.
- Step S105 calculating the Doppler single difference residual value.
- ⁇ is the wavelength of the signal broadcast by the target observation object
- v a is the speed of RTK terminal a
- dt r is the clock drift of the terminal receiver
- c is the clock drift coefficient
- Step S106 classifying and placing the Doppler single-difference residual values according to the moving speed and the grid cell position.
- Step S107 constructing a time series grid.
- Step S108 calculating the Doppler measurement error standard deviation grid of the equipment to be calibrated according to the time series grid.
- the following steps can be used to analyze the Doppler single-difference residual sequence
- each grid cell corresponds to a set of Doppler single-difference residual sequences, which is expressed as the following formula (20):
- Step S109 according to the Doppler measurement error standard deviation grid, fitting the functional relational expression of the Doppler measurement error standard deviation with respect to the carrier-to-noise ratio and the altitude angle.
- the error model determination method provided by the embodiment of the present application can calibrate the pseudorange, Doppler and carrier phase observation random error models (ie pseudorange error model, carrier phase error model and Doppler error model) of any positioning device , thus improving the accuracy of the observation random error model, effectively improving the terminal RTK positioning accuracy, and assisting map lane-level positioning and navigation.
- pseudorange error model ie pseudorange error model, carrier phase error model and Doppler error model
- the content of user information such as the user's location information and other related data
- the embodiment of this application when the embodiment of this application is applied to a specific product or technology, it is necessary to obtain the user's permission or consent , and the collection, use and processing of relevant data need to comply with relevant laws, regulations and standards of relevant countries and regions.
- the error model determination device 354 includes: a solution module 3541 configured to obtain The observation data collected by at least two devices to be calibrated, and according to the observation data, the pre-built observation equation is solved to obtain the data residual sequence; the grid processing module 3542 is configured to carry out the data residual sequence gridding processing to obtain a data residual grid; the grid error processing module 3543 is configured to perform grid error processing on the data residual grid according to each data residual value in the data residual sequence to obtain the measurement error grid corresponding to the data residual grid; the nonlinear fitting module 3544 is configured to perform nonlinear fitting on the measurement error grid to obtain the data of the at least two devices to be calibrated error model.
- a solution module 3541 configured to obtain The observation data collected by at least two devices to be calibrated, and according to the observation data, the pre-built observation equation is solved to obtain the data residual sequence
- the grid processing module 3542 is configured to carry out the data residual sequence gridding processing to obtain a data residual grid
- the grid error processing module 3543 is configured to perform grid error processing on
- the grid error processing module is further configured to: determine the grid unit corresponding to each data residual value in the data residual sequence in the data residual grid; For each data residual value in the difference sequence, an error calculation is performed on the data residual grid to obtain an error value corresponding to the data residual sequence for each grid cell in the data residual grid; Determining the position of each grid unit in the pre-constructed grid; according to the error value corresponding to each grid unit and the position of each grid unit, determine the data residual network grid corresponding to the measurement error grid.
- the grid error processing module is further configured to: perform standard deviation calculation on the data residual grid according to each data residual value in the data residual sequence to obtain the data residual
- Each grid unit in the grid corresponds to the error standard deviation value of the data residual sequence; the error standard deviation value is determined as the error value; according to the position of each grid unit, each The error standard deviation value corresponding to the grid unit is classified into the grid unit corresponding to the position to obtain the classified grid unit; the classified grid unit is summarized to obtain The measurement error grid.
- the observation data includes the observation carrier-to-noise ratio and the observation elevation angle of any target observation object
- the device further includes: a grid construction module configured to take the carrier-to-noise ratio as the ordinate and the elevation angle is the abscissa, according to the preset carrier-to-noise ratio interval and the preset elevation angle interval, construct grids under different observation object systems;
- the grid position determination module is configured to, for each of the observation object systems, according to the observation Carrier-to-noise ratio and the observation elevation angle, determine the position of the target observation object corresponding to the target grid unit in the grid;
- the grid processing module is also configured to: in the data residual sequence Each data residual value of is classified into the target grid unit of the target observation object corresponding to the data residual sequence to obtain the data residual grid; wherein, the target grid of each target observation object The units correspond to at least one set of pseudorange double-difference residual sequences, one set of carrier phase double-difference residual sequences and one set of Doppler single-d
- the observation data includes sub-observation data of each epoch in a plurality of epochs; the calculation module is further configured to: for the sub-observation data of each epoch, according to the sub-observation data, performing weighted least squares solution to the observation equation to obtain the sub-observation data residual value; according to the sequence of the multiple epochs, the obtained multiple sub-observation data residual values are summarized to form the Data residual sequence.
- the sub-observation data includes pseudorange and carrier phase
- the observation equation is an RTK observation equation
- the solving module is further configured to: for each epoch, according to the epoch Sub-observation data, performing weighted least squares solution to the RTK observation equation, to obtain the position information and carrier phase ambiguity floating point solution of any of the equipment to be calibrated; fuzzing the carrier phase ambiguity floating point solution degree is fixed to obtain a fixed value of carrier phase ambiguity; the fixed value of carrier phase ambiguity is solved to obtain a fixed solution of the position information; the fixed solution of the position information and the fixed value of carrier phase ambiguity Substituting the RTK observation equation to obtain a pseudorange residual value and a carrier phase residual value; determining the pseudorange residual value and the carrier phase residual value as sub-observation data corresponding to the sub-observation data residual value.
- the at least two devices to be calibrated include a reference station and a target calibration device; the calculation module is also configured to: For the sub-observation data of the epoch, a weighted least squares solution is performed on the RTK observation equation to obtain the position information of the target calibration device and the floating-point solution of the carrier phase ambiguity.
- the measurement error grid includes: a pseudorange measurement error standard deviation grid and a carrier phase measurement error standard deviation grid; the grid error processing module is further configured to: according to the pseudorange double difference For each pseudo-range double-difference residual value in the residual sequence, determine the first standard deviation of the pseudo-range double-difference residual sequence; difference, determine the second standard deviation of the carrier phase double-difference residual sequence; determine the pseudorange measurement error standard deviation grid according to the target grid unit and the first standard deviation of each target observation object ; Determine the standard deviation grid of the carrier phase measurement error according to the target grid unit and the second standard deviation of each target observation object.
- the observation data includes sub-observation data of each epoch in a plurality of epochs; the observation equation is a Doppler observation equation; the solving module is further configured to: according to each epoch The sub-observation data of the unit, the Doppler observation equation is solved to obtain the Doppler single-difference residual sequence under the epoch; the Doppler single-difference residual sequence under each epoch The difference residual sequence is determined as the observation data residual sequence.
- the data residual grid includes observation data single-difference residual grid; the grid processing module is further configured to: the Doppler single-difference residual in each epoch The Doppler single-difference residual value in the sequence is classified into the target grid unit of the target observation object corresponding to the Doppler single-difference residual sequence, and the single-difference residual grid of the observation data is obtained; Wherein, a set of Doppler single-difference residual sequences is corresponding to the target grid unit of each target observation object.
- the measurement error grid includes: a Doppler measurement error standard deviation grid; the grid error processing module is further configured to: according to each of the Doppler single difference residual sequence Doppler single-difference residual value, determining the third standard deviation of the Doppler single-difference residual sequence corresponding to each of the equipment to be calibrated; according to the third standard deviation of each of the equipment to be calibrated , determine the Doppler standard deviation grid of the device to be calibrated; determine the Doppler measurement error standard deviation grid according to the Doppler standard deviation grid of all the devices to be calibrated.
- the measurement error grid includes: pseudorange measurement error standard deviation grid, carrier phase measurement error standard deviation grid and Doppler measurement error standard deviation grid; the nonlinear fitting module also The configuration is: performing nonlinear fitting on the standard deviation grid of the pseudo-range measurement error to obtain a first functional relational expression of the standard deviation of the pseudo-range measurement error with respect to the carrier-to-noise ratio and the altitude angle; The grid is nonlinearly fitted to obtain the second functional relational expression of the standard deviation of the carrier phase measurement error about the carrier-to-noise ratio and the elevation angle; the grid of the standard deviation of the Doppler measurement error is nonlinearly fitted to obtain the Doppler The third functional relational expression of Le measurement error standard deviation about carrier-to-noise ratio and elevation angle; According to the first functional relational expression, the second functional relational expression and the third functional relational expression, the data error model is obtained .
- An embodiment of the present application provides a computer program product, where the computer program product includes executable instructions, and the executable instructions are stored in a computer-readable storage medium.
- the processor of the electronic device reads the executable instruction from the computer-readable storage medium, and the processor executes the executable instruction, so that the electronic device executes the method described above in the embodiment of the present application.
- the embodiment of the present application provides a storage medium storing executable instructions.
- the processor When the executable instruction is executed by the processor, the processor will be caused to execute the method provided in the embodiment of the present application, for example, the method shown in FIG. 3 .
- the storage medium can be a computer-readable storage medium, for example, a ferroelectric memory (FRAM, Ferromagnetic Random Access Memory), a read-only memory (ROM, Read Only Memory), a programmable read-only memory (PROM, Programmable Read Only Memory), Erasable Programmable Read Only Memory (EPROM, Erasable Programmable Read Only Memory), Electrically Erasable Programmable Read Only Memory (EEPROM, Electrically Erasable Programmable Read Only Memory), flash memory, magnetic surface memory, optical disc, Or memory such as CD-ROM (Compact Disk-Read Only Memory); It can also be various devices including one or any combination of the above-mentioned memories.
- FRAM Ferroelectric memory
- ROM Read Only Memory
- PROM programmable read-only memory
- EPROM Erasable Programmable Read Only Memory
- EEPROM Electrically Erasable Programmable Read Only Memory
- flash memory magnetic surface memory
- optical disc Or memory such as CD-ROM (Compact Disk-Read Only Memory); It can also be various
- executable instructions may take the form of programs, software, software modules, scripts, or code written in any form of programming language, including compiled or interpreted languages, or declarative or procedural languages, and its Can be deployed in any form, including as a stand-alone program or as a module, component, subroutine or other unit suitable for use in a computing environment.
- executable instructions may, but do not necessarily correspond to files in a file system, may be stored as part of a file that holds other programs or data, for example, in a Hyper Text Markup Language (HTML) document in one or more scripts, in a single file dedicated to the program in question, or in multiple cooperating files (for example, files that store one or more modules, subroutines, or sections of code).
- executable instructions may be deployed to be executed on one computing device, or on multiple computing devices located at one site, or alternatively, on multiple computing devices distributed across multiple sites and interconnected by a communication network. to execute.
Landscapes
- Engineering & Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- General Engineering & Computer Science (AREA)
- Pure & Applied Mathematics (AREA)
- Computer Hardware Design (AREA)
- Mathematical Analysis (AREA)
- Geometry (AREA)
- Data Mining & Analysis (AREA)
- Mathematical Physics (AREA)
- Evolutionary Computation (AREA)
- Mathematical Optimization (AREA)
- Computational Mathematics (AREA)
- Computing Systems (AREA)
- Software Systems (AREA)
- Databases & Information Systems (AREA)
- Algebra (AREA)
- Position Fixing By Use Of Radio Waves (AREA)
Abstract
一种误差模型确定方法、装置、电子设备、计算机可读存储介质及计算机程序产品,可应用于地图、自动驾驶、智慧交通等场景。方法包括:获取至少两个待标定设备所采集的观测数据;根据观测数据,对预先构建的观测方程进行解算,得到数据残差序列(S301);对数据残差序列进行网格化处理,得到数据残差网格(S302);根据数据残差序列中的每一数据残差值,对数据残差网格进行网格误差处理,得到与数据残差网格对应的测量误差网格(S303);对测量误差网格进行非线性拟合,得到至少两个待标定设备的数据误差模型(S304)。能够得到准确反映数据误差规律的测量误差网格,从而准确的确定出数据误差模型,实现在各类移动终端中进行准确的误差模型标定。
Description
相关申请的交叉引用
本申请基于申请号为202210051258.9、申请日为2022年01月17日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
本申请实施例涉及定位技术领域,涉及但不限于一种误差模型确定方法、装置、电子设备、计算机可读存储介质及计算机程序产品。
随着导航技术的广泛应用,目前总的趋势是为实时应用提供高精度的服务。由于定位设备获取到的观测数据均与真实值之间存在误差,在定位之前,需要先确定出观测数据的数据误差模型,通过数据误差模型对采集的观测数据进行数据标定。
相关技术中,针对获取到的观测数据的误差标定算法复杂,计算量大,在各类移动终端中的实现难度较大,且误差标定算法和数据误差模型的普适性较低,不能适应于不同的观测场景,从而使得估计得到的观测数据的误差可靠性较差。
发明内容
本申请实施例提供一种误差模型确定方法、装置、电子设备、计算机可读存储介质及计算机程序产品,可至少应用于地图、自动驾驶、智慧交通等场景。能够实现在各类移动终端和各种观测场景下,均能准确的确定出数据误差模型,从而基于数据误差模型对观测数据进行准确的数据标定,提高数据标定的普适性。
本申请实施例的技术方案是这样实现的:
本申请实施例提供一种误差模型确定方法,所述方法由误差模型确定设备执行,所述方法包括:
获取至少两个待标定设备所采集的观测数据;根据观测数据,对预先构建的观测方程进行解算,得到数据残差序列;对所述数据残差序列进行网格化处理,得到数据残差网格;根据所述数据残差序列中的每一数据残差值,对所述数据残差网格进行网格误差处理,得到与所述数据残差网格对应的测量误差网格;对所述测量误差网格进行非线性拟合,得到所述至少两个待标定设备的数据误差模型。
本申请实施例提供一种误差模型确定装置,所述装置包括:
解算模块,配置为获取至少两个待标定设备所采集的观测数据;并根据观测数据,对预先构建的观测方程进行解算,得到数据残差序列;网格化处理模块,配置为对所述数据残差序列进行网格化处理,得到数据残差网格;网格误差处理模块,配置为根据所述数据残差序列中的每一数据残差值,对所述数据残差网格进行网格误差处理,得到与所述数据残差网格对应的测量误差网格;非线性拟合模块,配置为对所述测量 误差网格进行非线性拟合,得到所述至少两个待标定设备的数据误差模型。
本申请实施例提供一种电子设备,包括:存储器,配置为存储可执行指令;处理器,配置为执行所述存储器中存储的可执行指令时,实现上述误差模型确定方法。
本申请实施例提供一种计算机程序产品,所述计算机程序产品包括可执行指令,所述可执行指令存储在计算机可读存储介质中;其中,电子设备的处理器从所述计算机可读存储介质中读取所述可执行指令,所述处理器配置为执行所述可执行指令,实现上述的误差模型确定方法。
本申请实施例提供一种计算机可读存储介质,存储有可执行指令,配置为引起处理器执行所述可执行指令时,实现上述误差模型确定方法。
本申请实施例具有以下有益效果:根据至少两个待标定设备所采集的观测数据,对预先构建的观测方程进行解算,得到数据残差序列;然后对数据残差序列进行网格化处理,并进一步根据数据残差序列中的每一数据残差值对数据残差网格进行网格误差处理,以确定出与数据残差网格对应的测量误差网格;对测量误差网格进行非线性拟合,对应得到数据误差模型,实现了对至少两个待标定设备的数据误差模型的标定。本申请实施例中,由于基于数据残差序列中的每一数据残差值,对数据残差网格进行网格误差处理,得到能够真实反映数据误差规律的测量误差网格,因此,基于该测量误差网格能够准确的确定出数据误差模型;并且,本申请实施例的方法能够实现在各类移动终端和各种观测场景下进行数据误差模型的确定,从而根据确定的数据误差模型对采集的观测数据进行标定,提高了数据标定的普适性。
图1A是本申请实施例提供的误差模型确定系统的一个可选的架构示意图;
图1B是本申请实施例提供的待标定设备采集观测数据的示意图;
图2是本申请实施例提供的误差模型确定设备的结构示意图;
图3是本申请实施例提供的误差模型确定方法的一个可选的流程示意图;
图4是本申请实施例提供的误差模型确定方法的另一个可选的流程示意图;
图5是本申请实施例提供的误差模型确定方法的再一个可选的流程示意图;
图6是本申请实施例提供的误差模型确定方法的确定流程示意图;
图7是本申请实施例提供的伪距和载波相位观测随机误差模型确定流程示意图;
图8是本申请实施例提供的载噪比CN0和高度角网格示意图;
图9是本申请实施例提供的GPS、GLONASS、GALILEO和BDS系统网格示意图;
图10是本申请实施例提供的多普勒观测随机误差模型确定流程示意图。
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请作进一步地详细描述,所描述的实施例不应视为对本申请的限制,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本申请保护的范围。
在以下的描述中,涉及到“一些实施例”,其描述了所有可能实施例的子集,但是可以理解,“一些实施例”可以是所有可能实施例的相同子集或不同子集,并且可以在不冲突的情况下相互结合。除非另有定义,本申请实施例所使用的所有的技术和科学术语与属于本申请实施例的技术领域的技术人员通常理解的含义相同。本申请实施例所使用的术语只是为了描述本申请实施例的目的,不是旨在限制本申请。
在说明本申请实施例的方案之前,首先需要说明的是,本申请实施例的卫星定位场景至少可用于实现车辆定位领域或者导航领域。
下面对本申请实施例涉及的名词进行解释:
(1)导航系统:是能在地球表面或近地空间的任何地点为用户提供全天候的3维坐标和速度以及时间信息的空基无线电导航定位系统。常见系统有全球定位系统(GPS,Global Positioning System)、北斗卫星导航系统(BDS,BeiDou Navigation Satellite System)、全球导航卫星系统(GLONASS,Global Navigation Satellite System)和伽利略卫星导航系统(GALILEO,Galileo Satellite Navigation System)四大系统。
(2)移动终端:或者叫移动通信终端,是指可以在移动中使用的计算机设备,包括手机、笔记本、平板电脑、POS机甚至包括车载电脑。随着集成电路技术的飞速发展,移动终端的处理能力已经拥有了强大的处理能力。另外移动终端集成有导航系统定位芯片,用于处理卫星信号以及进行用户的精准定位,目前已广泛用于位置服务。
(3)定位设备:用于处理卫星信号,并测量设备与卫星之间的几何距离(伪距观测值)、卫星信号的多普勒效应(多普勒观测值)以及载波相位的电子设备;定位设备通常至少包括有天线、基带信号处理等模块,集成定位设备的移动终端根据伪距和多普勒观测值计算移动终端当前位置坐标,定位设备广泛应用于地图导航、测绘、位置服务等领域,例如智能手机地图导航、高精度大地测量等。
(4)观测值:是指由定位设备输出的观测值,包括伪距观测值、伪距率和累加距离增量(ADR,Accumulated Delta Range)等参数;伪距测量的是卫星至定位设备的几何距离;伪距率测量的是定位设备与卫星的相对运动产生的多普勒效应;ADR测量的是卫星至定位设备的几何距离变化量。
(5)伪距观测值:是指定位过程中,信号接收机(例如定位设备)到卫星之间的大概距离。
(6)多普勒观测值:可以理解为通过信号接收机测定的卫星发送的无线电信号的多普勒测量或者多普勒计数。
(7)历元:是指信号接收机的观测时刻。
(8)载噪比,是用来表示载波与载波噪音关系的标准测量尺度。
(9)高度角,从信号接收机所在的点至卫星的方向线与水平面间的夹角。
(10)定位设备测量误差模型(即数据误差模型):由于多路径效应、接收机测量噪声等影响,定位设备获取到的伪距、载波相位和多普勒观测值存在测量误差;定位设备测量误差模型表示定位设备测量误差统计特性(方差、标准差)关于信号载噪比、高度角等因素的函数关系式。
在解释本申请实施例的误差模型确定方法之前,首先对相关技术中的方法进行说明。
由于定位设备获取到的伪距测量值和多普勒观测值均与真实值之间存在误差,在定位之前,需要先确定出数据误差模型,并采用数据误差模型对误差进行标定。相关技术中,与误差标定相关的技术有以下几种:
在第一种方式中,首先,根据原始观测模型建立星间的单差观测模型;并根据建立的星间的单差观测模型建立历元间的双差观测模型;然后,选取公共星并获取该公共星相邻的两个历元的观测值,以及获取接收机的该相邻的两个历元的观测值;最后,根据建立的单差观测模型、历元间的双差观测模型、获得的公共星相邻的两个历元的观测值、以及获得的接收机的相邻的两个历元的观测值,确定观测噪声。
但是,该方式只是利用单差观测模型、历元间双差观测模型获取接收机测量噪声,而没有基于获取的接收机测量噪声序列建立伪距误差模型;该方案没有给出分析多普勒观测值噪声的相关方法。
在第二种方式中,首先,获取BDS观测值和预平差后的观测量残差,并确定BDS不同轨道类型观测值权比;然后,根据原始观测值实时求解当前历元每颗卫星的伪距观测值噪声;最后,利用观测值权比和伪距观测值方差实时分类求解观测值方差阵。
但是,该方式基于赫尔默特(Helmert)算法进行方差分量估计,算法复杂,计算量大,且估计得到的误差模型容易受到定位精度、对流层和电离层改正模型等影响,可靠性较差;该方案也没有给出分析多普勒观测值噪声的相关方法。
在第三种方式中,首先,在全球导航卫星系统(GNSS,Global Navigation Satellite System)定位数据处理过程中基于Melbourne-Wubbena(一种组合观测值算法)组合观测值和历元间三次差分的相位观测值之差的离散程度;然后,采用滑动窗口和衰减记忆法实时估计伪距和相位的噪声;最后,计算伪距和相位的噪声比作为定位随机模型中伪距-相位权比指标,通过定位随机模型实现GNSS自适应伪距-相位权比的确定。
但是,该方式采用滑动窗口和衰减记忆法实时估计伪距和相位的噪声,计算伪距和相位的噪声比作为定位随机模型中伪距-相位权比指标,实现GNSS自适应伪距-相位权比的确定,即仅估计伪距-相位权比而未标定伪距和多普勒测量误差模型,普适性不高。
在第四种方式中,首先,获取GNSS观测值;然后,确定各观测值对应的高度角、方位角和载噪比信息;并构建高度角、方位角和载噪比的定权函数;最后,将定权函数用于构建随机模型,通过该随机模型实现GNSS导航定位。
但是,该方式根据事先给定的误差模型计算GNSS观测值权重,没有考虑到不同定位设备测量噪声的差异,普适性差。
由上述相关技术中的几种实现方式可见,相关技术中,都无法针对各类移动设备同时给出伪距误差模型、载波相位误差模型和多普勒误差模型,也即数据误差模型的标定过程在各类移动终端中的实现难度较大,且误差标定算法的普适性较低,不能适应于不同的观测场景,从而使得采用数据误差模型估计得到的误差可靠性较差。
基于相关技术中所存在的上述问题,本申请实施例提供一种误差模型确定方法,该方法是一种利用功分器确定观测随机误差模型(即数据误差模型)的有效方法,由信号功分器将卫星信号分两路至两个相同的待标定设备a和b,采集两个两个相同的待标定设备a和b各自的伪距、载波相位和多普勒观测数据,通过采集的观测数据构建零基线并进行RTK解算;然后,对伪距双差残差序列、载波相位双差残差序列和多普勒单差残差序列进行网格化处理;最后,非线性拟合伪距测量误差标准差、载波相位测量误差标准差和多普勒测量误差标准差这三个误差标准差分别关于载噪比和高度角的函数关系式,从而得到至少两个待标定设备的数据误差模型。
本申请实施例提供的误差模型确定方法中,首先,获取至少两个待标定设备所采集的观测数据;然后,根据观测数据,对预先构建的观测方程进行解算,得到数据残差序列;并对数据残差序列进行网格化处理,得到数据残差网格;再然后,根据数据残差序列中的每一数据残差值,对数据残差网格进行网格误差处理,得到与数据残差网格对应的测量误差网格;最后,对测量误差网格进行非线性拟合,对应得到至少两个待标定设备的数据误差模型。如此,实现了对至少两个待标定设备的数据误差模型的标定,由于是基于数据残差序列中的每一数据残差值对数据残差网格进行网格误差处理,得到能够真实反映数据误差规律的测量误差网格,因此,能够准确的确定出数据误差模型;并且,由于该数据误差模型确定方法能够实现在各类移动终端和各种观测场景下进行数据误差模型标定,从而提高了数据误差模型确定过程的普适性,进一步提高了数据标定的普适性。
下面说明本申请实施例的误差模型确定设备的示例性应用,该误差模型确定设备是一种用于确定数据误差模型的电子设备。本申请实施例提供的误差模型确定系统至少包 括待标定设备和误差模型标定设备(即误差模型确定设备),其中,待标定设备的结构是已经确定好的,是用于观测目标观测对象并采集观测数据的设备。误差模型标定设备则可以实施为用户终端,也可以实施为服务器。在一种实现方式中,本申请实施例提供的误差模型标定设备可以实施为笔记本电脑,平板电脑,台式计算机,移动设备(例如,移动电话,便携式音乐播放器,个人数字助理,专用消息设备,便携式游戏设备)、智能机器人、智能家电、智能音箱、智能手表和车载终端等任意的具备数据处理功能的终端;在另一种实现方式中,本申请实施例提供的误差模型标定设备还可以实施为服务器,其中,服务器可以是独立的物理服务器,也可以是多个物理服务器构成的服务器集群或者分布式系统,还可以是提供云服务、云数据库、云计算、云函数、云存储、网络服务、云通信、中间件服务、域名服务、安全服务、CDN、以及大数据和人工智能平台等基础云计算服务的云服务器。终端以及服务器可以通过有线或无线通信方式进行直接或间接地连接,本申请实施例中不做限制。需要说明的是,当本申请实施例的误差模型标定设备用来确定数据误差模型中的伪距误差模型、载波相位误差模型和多普勒误差模型时,误差模型标定设备可以实施为服务器、个人电脑等数据处理设备;当误差模型标定设备用来基于伪距误差模型、载波相位误差模型和多普勒误差模型来进行定位时,误差模型标定设备可以是智能手机、车载导航设备等移动设备。下面,将说明数据处理设备实施为服务器时的示例性应用。
参见图1A,图1A是本申请实施例提供的误差模型确定系统10的一个可选的架构示意图,为实现支撑一个误差模型标定应用、基于位置服务的应用或者定位应用,本申请实施例提供的误差模型确定系统10中可以包括至少两个待标定设备(图1A中示例性的示出了待标定设备100-1和待标定设备100-2)、网络200和服务器300,其中服务器300构成本申请实施例的误差模型标定设备。其中,待标定设备100-1和待标定设备100-2通过网络200连接服务器300,网络200可以是广域网或者局域网,又或者是二者的组合。待标定设备100-1和待标定设备100-2用于观测目标观测对象,采集观测数据,并将观测数据通过网络200传输给服务器300。
在一些实施例中,误差模型确定系统还可以包括信号功分器(图中未示出),用于将卫星信号分两路传输至两个相同的待标定设备100-1和待标定设备100-2。
在一些实施例中,误差模型确定系统还可以包括第一接收机、第二接收机、固定装置和固定板(图中未示出),并且,待标定设备100-1、待标定设备100-2、第一接收机和第二接收机均通过固定装置被固定在固定板上。待标定设备100-1的相位中心、待标定设备100-2的相位中心、第一接收机的相位中心和第二接收机的相位中心,均保持在同一条直线上。
本申请实施例中,服务器300(即误差模型标定设备)在接收到至少两个待标定设备所采集的观测数据之后,根据所述观测数据,对预先构建的观测方程进行解算,得到数据残差序列;然后,对数据残差序列进行网格化处理,得到数据残差网格;再然后,根据数据残差序列中的每一数据残差值,对数据残差网格进行网格误差处理,得到与数据残差网格对应的测量误差网格;最后,对测量误差网格进行非线性拟合,对应得到至少两个待标定设备的数据误差模型,其中,数据误差模型用于对至少两个待标定设备的观测数据进行误差估计。在得到数据误差模型之后,服务器300通过网络200将数据误差模型反馈给待标定设备100-1和待标定设备100-2,或者,服务器300存储该数据误差模型,这样在后续对任意待定位设备进行定位时,可以基于数据误差模型来进行定位。
在一些实施例中,当误差模型标定设备实施为终端时,还可以依据数据误差模型来实现定位功能,即可以基于确定出的数据误差模型对智能手机、车载导航设备等移动设备进行准确的定位。
图1B是本申请实施例提供的待标定设备采集观测数据的示意图,如图1B所示,任一待标定设备201均可以接收不同的卫星信号,如图1B中的卫星1、卫星2和卫星3,得到观测数据,观测数据包括但不限于每一历元的伪距、载波相位和多普勒观测数据。
本申请实施例所提供的误差模型确定方法还可以基于云平台并通过云技术来实现,例如,上述服务器300可以是云端服务器,通过云端服务器根据观测数据,对预先构建的观测方程进行解算,以及对数据残差序列进行网格化处理、对测量误差网格进行非线性拟合。在一些实施例中,还可以具有云端存储器,可以将得到的数据误差模型存储至云端存储器中,以便于后续在进行定位时使用。
这里需要说明的是,云技术(Cloud technology)是指在广域网或局域网内将硬件、软件、网络等系列资源统一起来,实现数据的计算、储存、处理和共享的一种托管技术。云技术是指基于云计算模式应用的网络技术、信息技术、整合技术、管理平台技术、应用技术等的总称,可以组成资源池,按需所用,灵活便利。云计算技术将变成重要支撑。技术网络系统的后台服务需要大量的计算、存储资源,如视频网站、图片类网站和更多的门户网站。伴随着互联网行业的高度发展和应用,将来每个物品都有可能存在自己的识别标志,都需要传输到后台系统进行逻辑处理,不同程度级别的数据将会分开处理,各类行业数据皆需要强大的系统后盾支撑,通过云计算来实现。
图2是本申请实施例提供的误差模型确定设备的结构示意图,图2所示的误差模型确定设备包括:至少一个处理器310、存储器350、至少一个网络接口320和用户接口330。误差模型确定设备中的各个组件通过总线系统340耦合在一起。可理解,总线系统340用于实现这些组件之间的连接通信。总线系统340除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。但是为了清楚说明起见,在图2中将各种总线都标为总线系统340。
处理器310可以是一种集成电路芯片,具有信号的处理能力,例如通用处理器、数字信号处理器(DSP,Digital Signal Processor),或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等,其中,通用处理器可以是微处理器或者任何常规的处理器等。
用户接口330包括使得能够呈现媒体内容的一个或多个输出装置331,包括以下至少之一:一个或多个扬声器、一个或多个视觉显示屏。用户接口330还包括一个或多个输入装置332,包括有助于用户输入的用户接口部件,比如键盘、鼠标、麦克风、触屏显示屏、摄像头、其他输入按钮和控件。
存储器350可以是可移除的,不可移除的或其组合。示例性的硬件设备包括固态存储器,硬盘驱动器,光盘驱动器等。存储器350可选地包括在物理位置上远离处理器310的一个或多个存储设备。存储器350包括易失性存储器或非易失性存储器,也可包括易失性和非易失性存储器两者。非易失性存储器可以是只读存储器(ROM,Read Only Memory),易失性存储器可以是随机存取存储器(RAM,Random Access Memory)。本申请实施例描述的存储器350旨在包括任意适合类型的存储器。在一些实施例中,存储器350能够存储数据以支持各种操作,这些数据的示例包括程序、模块和数据结构或者其子集或超集,下面示例性说明。
操作系统351,包括用于处理各种基本系统服务和执行硬件相关任务的系统程序,例如框架层、核心库层、驱动层等,用于实现各种基础业务以及处理基于硬件的任务;网络通信模块352,用于经由一个或多个(有线或无线)网络接口320到达其他计算设备,示例性的网络接口320包括:蓝牙、无线相容性认证(WiFi)、和通用串行总线(USB,Universal Serial Bus)等;输入处理模块353,用于对一个或多个来自一个或多个输入装置332之一的一个或多个用户输入或互动进行检测以及翻译所检测的输入或互动。
在一些实施例中,本申请实施例提供的装置可采用软件方式实现,图2示出了存储在存储器350中的一种误差模型确定装置354,该误差模型确定装置354可以是误差模型确定设备中的误差模型确定装置,其可以是程序和插件等形式的软件,包括以下软件模块:解算模块3541、网格化处理模块3542、网格误差处理模块3543和非线性拟合模块3544,这些模块是逻辑上的,因此根据所实现的功能可以进行任意的组合或进一步拆分。将在下文中说明各个模块的功能。
在另一些实施例中,本申请实施例提供的装置可以采用硬件方式实现,作为示例,本申请实施例提供的装置可以是采用硬件译码处理器形式的处理器,其被编程以执行本申请实施例提供的误差模型确定方法,例如,硬件译码处理器形式的处理器可以采用一个或多个应用专用集成电路(ASIC,Application Specific Integrated Circuit)、DSP、可编程逻辑器件(PLD,Programmable Logic Device)、复杂可编程逻辑器件(CPLD,Complex Programmable Logic Device)、现场可编程门阵列(FPGA,Field-Programmable Gate Array)或其他电子元件。
下面将结合本申请实施例提供的误差模型确定设备的示例性应用和实施,说明本申请实施例提供的误差模型确定方法,其中,该误差模型确定设备可以是任意一种具备数据处理功能的终端,或者也可以是服务器,即本申请实施例的误差模型确定方法可以通过终端来执行,也可以通过服务器来执行,或者还可以通过终端与服务器进行交互来执行。
参见图3,图3是本申请实施例提供的误差模型确定方法的一个可选的流程示意图,下面将结合图3示出的步骤进行说明,需要说明的是,图3中的误差模型确定方法可以是通过服务器作为执行主体来实现的。
步骤S301,获取至少两个待标定设备所采集的观测数据,并根据观测数据,对预先构建的观测方程进行解算,得到数据残差序列。
本申请实施例中,可以获取至少两个待标定设备所采集的观测数据。其中,观测数据可以为目标观测对象的观测数据,包括但不限于以下至少之一:伪距观测数据、载波相位观测数据和多普勒观测数据。待标定设备可以是RTK终端,即待标定设备可以是终端或者接收机等任意一种能够接收目标观测对象的信号,并能够基于卫星信号采集观测数据的设备。
本申请实施例可以实现对待标定设备中的移动终端进行误差模型标定,即为移动终端确定数据误差模型。本申请实施例的误差模型确定方法可以应用于以下场景:待标定设备可以处于开阔场地或者被固定在车架上,在待标定设备被固定好之后,开始观测目标观测对象,并采集所观测到的目标观测对象的观测数据,直至观测时长达到了预设时长时停止观测;在停止观测时,待标定设备将采集到的观测数据传输给服务器(即误差模型确定设备)。需要说明的是,预设时长中包括多个历元,因而,观测数据其实是由多个历元中的每个历元的子观测数据组成的。在每一子观测数据中,可以包括观测到的载噪比、高度角、伪距观测数据、载波相位观测数据和多普勒观测数据等。可以理解的是,预设时长可以为1天,也可以为3天,还可以为设置好的其他时长。
在一些实施例中,服务器接收到待标定设备发送的观测数据之后,服务器还会依据观测数据,从依据精密星历所计算出的目标观测对象的轨道数据中,选取出所观测到的目标观测对象对应的数据。在所选取出的数据中,可以包括目标观测对象的坐标、运行速度和钟差等。之后,可以基于目标观测对象的坐标、运行速度和钟差等数据,以及待标定设备的位置和每一子观测数据执行后续的步骤,来确定数据误差模型,从而实现本申请实施例的误差模型确定方法。
本申请实施例中,数据残差序列包括伪距残差序列、载波相位残差序列和多普勒残 差序列。伪距残差序列至少包括伪距双差残差序列;载波相位残差序列至少包括载波相位双差残差序列;多普勒残差序列至少包括多普勒单差残差序列。
观测方程可以包括RTK观测方程和多普勒观测方程,其中RTK观测方程用于实现对伪距观测数据、载波相位观测数据的处理,以确定伪距残差序列和载波相位残差序列;多普勒观测方程用于实现对多普勒观测数据的处理,以确定多普勒残差序列。本申请实施例中,可以预先构建观测方程或者在得到观测数据后构建观测方程。
当观测方程为RTK观测方程时,RTK观测方程中的参数至少包括:伪距观测数据和载波相位观测数据、待标定设备的位置和载波相位双差模糊度。根据观测数据对预先构建的观测方程进行解算,可以是将获取的观测数据代入至观测方程中,得到方程中待标定设备的位置和载波相位双差模糊度,然后对得到的待标定设备的位置和载波相位双差模糊度进行模糊度固定处理,得到待标定设备的位置的固定解和载波相位双差模糊度固定值。之后,再将所得到的待标定设备的位置的固定解和载波相位双差模糊度固定值代入至所构建的观测方程中,即可得到伪距双差残差和载波相位双差残差值。此时,所得到的伪距双差残差和载波相位双差残差值为任一时刻(即任一历元)下的伪距双差残差和载波相位双差残差值。可以继续采用上述方式确定出其他时刻的伪距双差残差和载波相位双差残差值,如此,对于预设时长的伪距观测数据和载波相位观测数据,则可以对应确定出伪距双差残差序列和载波相位双差残差序列。
当观测方程为多普勒观测方程时,多普勒观测方程中的参数至少包括:多普勒观测数据、目标观测对象运行速度、待标定设备的钟漂和目标观测对象钟漂,观测的多个目标观测对象中具有一个参考观测对象。根据观测数据对预先构建的观测方程进行解算,可以是将多普勒观测数据代入至观测方程中,得到每个目标观测对象的多普勒观测数据与参考观测对象的多普勒观测数据之间的差值,进而根据差值确定多普勒单差残差序列。
本申请实施例中,目标观测对象可以是待标定设备观测的卫星,参考观测对象可以是参考卫星。
步骤S302,对数据残差序列进行网格化处理,得到数据残差网格。
这里,网格化处理可以是基于预先构建的网格,将每一目标观测对象对应到网格中的一个目标网格单元中,然后将与该目标观测对象对应的数据残差序列归类至该目标观测对象对应的目标网格单元中。
本申请实施例中,可以预先构建不同观测对象系统下的网格,也就是说,对于不同的观测对象系统,分别构建一个网格。举例来说,对于不同的观测对象系统,例如,GPS系统、GLONASS系统、GALILEO系统以及北斗卫星系统,则可以分别构建GPS系统下的GPS网格、GLONASS系统下的GLONASS网格、GALILEO系统下的GALILEO系网格以及北斗卫星系统下的BDS网格。每个网格中包括多个网格单元,同一网格中的全部网格单元的面积相等。
对数据残差序列进行网格化处理时,可以是将数据残差序列归类至该数据残差序列所对应的目标观测对象的目标网格单元中,得到数据残差网格。
步骤S303,根据数据残差序列中的每一数据残差值,对数据残差网格进行网格误差处理,得到与数据残差网格对应的测量误差网格。
本申请实施例中,网格误差处理是指在计算出每一时刻的数据残差序列之后,针对每一时刻的数据残差序列计算标准差,则可以对应得到每一时刻的数据测量误差标准差;然后,将所得到的数据测量误差标准差,归类至该数据测量误差标准差所对应的目标观测对象的目标网格单元中,得到测量误差网格,其中,该测量误差网格可以是观测数据测量误差标准差网格。或者,在其他实施例中,网格误差处理还可以是直接针对数据残差网格中每一网格单元中的数据残差序列进行标准差计算,得到每一网格单元的数据残 差序列的标准差,进而得到测量误差网格。
步骤S304,对测量误差网格进行非线性拟合,得到至少两个待标定设备的数据误差模型。
本申请实施例中,在得到测量误差网格之后,可以通过非线性拟合算法,对测量误差网格进行非线性拟合,这时拟合所得到的函数关系式,就是至少两个待标定设备的数据误差模型。这里,对测量误差网格进行非线性拟合,实际上是指对测量误差网格中的观测数据测量误差标准差序列进行非线性拟合。数据误差模型可以包括:伪距误差模型、载波相位误差模型和多普勒误差模型。伪距误差模型、载波相位误差模型和多普勒误差模型可以共同用于对至少两个待标定设备的定位。
需要说明的是,本申请实施例中,这至少两个待标定设备可以包括第一终端和第二终端,且第一终端和第二终端的型号是相同的,第一终端和第二终端关于目标观测对象在观测时的各项指标也是相同的,因此,服务器会同时为这至少两个待标定设备确定出数据误差模型。
可以理解的是,在一些实施例中,服务器可以利用最小二乘法对测量误差网格中的观测数据测量误差标准差序列进行拟合,得到数据误差模型。在另一些实施例中,服务器还可以通过人工智能技术中的人工神经网络、卷积神经网络等,来对观测数据测量误差标准差序列进行拟合(这是由于神经网络强大的函数拟合能力),从而得到数据误差模型。
本申请实施例提供的误差模型确定方法,根据至少两个待标定设备所采集的观测数据,对预先构建的观测方程进行解算,得到数据残差序列;然后对数据残差序列进行网格化处理,并进一步确定出与数据残差网格对应的测量误差网格;对测量误差网格进行非线性拟合,对应得到数据误差模型,实现了对至少两个待标定设备的数据误差模型的标定。该误差模型确定方法能够实现在各类移动终端中准确的确定出数据误差模型,从而基于数据误差模型对采集的观测数据进行准确的标定,提高了数据标定的普适性。
在一些实施例中,步骤S303中,根据数据残差序列中的每一数据残差值,对数据残差网格进行网格误差处理,得到与数据残差网格对应的测量误差网格,可以通过以下方式实现:首先,确定数据残差序列中的每一数据残差值在数据残差网格中对应的网格单元;然后,根据数据残差序列中的每一数据残差值,对数据残差网格进行误差计算,得到数据残差网格中的每一网格单元对应于数据残差序列的误差值;最后,根据每一网格单元对应的误差值和每一网格单元的位置,确定出与数据残差网格对应的测量误差网格。
本申请实施例中,数据残差网格对应有多个网格单元,每一网格单元中至少对应有一组伪距双差残差序列、一组载波相位双差残差序列和一组多普勒单差残差序列,也就是说,预先将数据残差序列中的伪距双差残差序列、载波相位双差残差序列和多普勒单差残差序列,归类至预先构建的网格的网格单元中。
这里,可以根据数据残差序列中的每一数据残差值,对所述数据残差网格进行标准差计算,得到所述数据残差网格中的每一网格单元对应于所述数据残差序列的误差标准差值,将误差标准差值确定为误差值。其中,数据残差值包括但不限于:伪距双差残差值、载波相位双差残差值和多普勒单差残差值。
在一些实施例中,可以根据每一网格单元的位置,将每一网格单元对应的误差标准差值,归类至对应的网格单元中,得到归类后的网格单元;并对归类后的网格单元进行汇总,得到测量误差网格。
本申请实施例中,每一网格单元的位置是指该网格单元在网格中对应的位置,其中,位置可以是网格单元的坐标位置,或者,可以对构建的网格中的每一网格单元预先添加 位置标识,根据位置标识可以确定出网格单元在网格中对应的位置。
本申请实施例中,在确定与数据残差网格对应的测量误差网格时,是基于预先构建的网格来实现的,通过将数据残差序列中的每一个数据残差归类至网格中的每一个网格单元中,之后,可以基于数据残差在网格中的网格单元的位置,将计算得到的误差标准差值也归类至网格单元中,从而实现所计算的误差标准差值与数据残差序列之间的准确匹配;并且,由于预先构建的网格中包括多个具有相同面积的网格单元,因此基于该网格得到的测量误差网格,在后续进行非线性拟合时,能够对数据进行准确的拟合,得到准确的数据误差模型。
图4是本申请实施例提供的误差模型确定方法的另一个可选的流程示意图,如图4所示,方法包括以下步骤:
步骤S401,获取至少两个待标定设备所采集的观测数据。
在一些实施例中,观测数据包括多个历元中的每一历元下的子观测数据。
步骤S402,针对每一历元的子观测数据,根据子观测数据,对观测方程进行加权最小二乘解算,得到子观测数据残差值。
本申请实施例中,子观测数据包括伪距和载波相位,子观测数据残差值可以是子观测数据双差残差值,观测方程为RTK观测方程。
在一些实施例中,步骤S402可以通过以下方式实现:首先,针对每一历元,根据该历元的子观测数据,对RTK观测方程进行加权最小二乘解算,得到任一待标定设备的位置信息和载波相位模糊度浮点解;然后,对载波相位模糊度浮点解进行模糊度固定,得到载波相位模糊度固定值。再然后,对载波相位模糊度固定值进行解算,得到位置信息的固定解,并将位置信息的固定解和载波相位模糊度固定值代入RTK观测方程,得到伪距残差值和载波相位残差值。最后,将伪距残差值和载波相位残差值,确定为对应于子观测数据的子观测数据残差值。
这里,可以基于参考站的子观测数据和目标标定设备所采集的该历元的子观测数据,对RTK观测方程进行加权最小二乘解算,得到目标标定设备的位置信息和载波相位双差模糊度浮点解。
RTK观测方程中的参数至少包括:目标标定设备与每一目标观测对象的几何距离、伪距观测数据和载波相位观测数据、待标定设备的位置和载波相位双差模糊度。
由于在实际过程中,每个历元下目标标定设备所观测到的目标观测对象,与参考站所观测到的目标观测对象是不同的,观测数据残差序列需要结合目标标定设备和参考站共同观测到的每个共同的目标观测对象所对应的参数来进行标定,以及需要结合每个共同观测到的目标观测对象所对应的参考观测对象对应的参数来进行标定,将每个共同的目标观测对象所对应的参数和每个共同的目标观测对象的参考观测对象的参数,记作匹配参数。也就是说,匹配参数包括目标标定设备和参考站共同观测到的目标观测对象的参数,以及共同观测到的目标观测对象的参考观测对象的参数。
误差模型标定设备在标定观测数据残差序列时,需要对所有历元的子观测数据、所有历元的匹配参数都进行分析,才能够统计出目标标定设备和参考站在不同的载噪比和高度角下的分布情况,从而得到目标标定设备和参考站共同对应的观测数据残差序列。
可以理解的是,由于目标观测对象数据是依据观测数据从依据精密星历所计算出的各个目标观测对象的轨道数据中获取到的,因而,匹配参数也是属于依据精密星历所计算出的各个目标观测对象的轨道数据中的一部分。
本申请实施例中,可以结合每一历元的子观测数据、所有目标观测对象的匹配参数,分别对RTK观测方程进行加权最小二乘解算,得到在该历元下,任一待标定设备的位置信息和载波相位双差模糊度浮点解。该待标定设备的位置信息和载波相位双差模糊度 浮点解可以作为RTK观测方程中的参数回代至RTK观测方程中,从而得到观测数据残差序列。
本申请实施例中,当子观测数据包括伪距和载波相位时,载波相位模糊度浮点解可以是载波相位双差模糊度浮点解,载波相位模糊度固定值可以是载波相位双差模糊度固定值。
本申请实施例中,子观测数据的子观测数据残差值包括伪距残差值和载波相位残差值,在一些实施例中,伪距残差值和载波相位残差值可以分别是伪距双差残差值和载波相位双差残差值。
步骤S403,根据多个历元的先后顺序,对得到的多个子观测数据残差值进行汇总,形成数据残差序列。
本申请实施例中,依次对每个历元的子观测数据进行上述步骤S4021至步骤S4025的处理,得到该历元下的伪距双差残差值和载波相位双差残差值,然后,将多个历元下的伪距双差残差值和载波相位双差残差值进行汇总,形成伪距双差残差值序列和载波相位双差残差值序列,其中,观测数据残差序列包括该伪距双差残差值序列和载波相位双差残差值序列。
步骤S404,以载噪比为纵坐标、以高度角为横坐标,按照预设载噪比间隔和预设高度角间隔,构建不同观测对象系统下的网格。
可以理解的是,两个待标定设备共同观测到的所有目标观测对象由一个或多个预设观测对象系统中的目标观测对象组成。预设观测对象系统可以包括GPS系统、GLONASS系统、GALILEO系统以及BDS系统等系统。本申请实施例中,可以获取共同观测到的目标观测对象的载噪比和高度角,并针对共同观测到的目标观测对象所属的一个或多个预设观测对象系统中的每个预设观测对象系统,都构建出多个载噪比-高度角类别单元,将这种载噪比-高度角类别单元记为系统载噪比-高度角类别单元,从而,误差模型确定设备会得到多个系统下的载噪比-高度角类别单元。可以理解的是,每个预设观测对象系统的多个系统载噪比-高度角类别单元,可以组成该预设观测对象系统对应的网格。也就是,可以以载噪比为纵坐标、以高度角为横坐标,按照预设载噪比间隔和预设高度角间隔,构建不同观测对象系统下的网格。其中,在同一网格中,预设载噪比间隔和预设高度角间隔是该网格中每个网格单元的边长。
步骤S405,针对于每一观测对象系统,根据观测载噪比和观测高度角,确定目标观测对象对应于网格中的目标网格单元的位置。
这里,对应于网格中的目标网格单元的位置的目标观测对象,是指待标定设备所观测的目标观测对象,也就是与观测数据对应的目标观测对象。可以得到该目标观测对象的观测载噪比和观测高度角,然后根据观测载噪比和观测高度角,在网格中确定出对应的网格单元,为目标网格单元。
步骤S406,将每一子观测数据残差值,归类至所对应的目标观测对象的目标网格单元中,得到数据残差网格。
本申请实施例中,可以是将每一子观测数据残差值中的伪距双差残差值和载波相位双差残差值,分别归类至所对应的目标观测对象的目标网格单元中。其中,每一目标观测对象的目标网格单元中对应有一组伪距双差残差序列和一组载波相位双差残差序列。
步骤S407,根据伪距双差残差序列中的每一伪距双差残差值,确定伪距双差残差序列的第一标准差;根据载波相位双差残差序列中的每一载波相位双差残差值,确定载波相位双差残差序列的第二标准差。
这里,可以计算每一时刻的伪距双差残差序列的第一标准差、每一时刻的载波相位双差残差序列的第二标准差。
步骤S408,根据每一目标观测对象的目标网格单元和第一标准差,确定出伪距测量误差标准差网格。
本申请实施例中,在计算出每一时刻的伪距双差残差序列的第一标准差之后,将所得到的第一标准差,归类至该第一标准差所对应的目标观测对象的目标网格单元中,得到伪距测量误差标准差网格。伪距测量误差标准差网格能够描述至少两个待标定设备的伪距测量误差标准差在目标观测对象的载噪比和高度角下的离散分布。
步骤S409,对伪距测量误差标准差网格进行非线性拟合,对应得到至少两个待标定设备的伪距误差模型。
本申请实施例中,可以对伪距测量误差标准差网格进行非线性拟合,得到伪距测量误差标准差关于载噪比和高度角的第一函数关系式,根据第一函数关系式得到至少两个待标定设备的伪距误差模型。
步骤S410,根据每一目标观测对象的目标网格单元和所述第二标准差,确定出载波相位测量误差标准差网格。
本申请实施例中,在计算出每一时刻的伪距双差残差序列的第二标准差之后,将所得到的第二标准差,归类至该第二标准差所对应的目标观测对象的目标网格单元中,得到载波相位测量误差标准差网格。载波相位测量误差标准差网格能够描述至少两个待标定设备的载波相位测量误差标准差在目标观测对象的载噪比和高度角下的离散分布。
步骤S411,对载波相位测量误差标准差网格进行非线性拟合,对应得到至少两个待标定设备的载波相位误差模型。
本申请实施例中,可以对载波相位测量误差标准差网格进行非线性拟合,得到载波相位测量误差标准差关于载噪比和高度角的第二函数关系式,根据第二函数关系式得到至少两个待标定设备的载波相位误差模型。
本申请实施例中,分别计算伪距双差残差序列的第一标准差、以及载波相位双差残差序列的第二标准差,进而基于第一标准差确定出伪距测量误差标准差网格、基于第二标准差确定出载波相位测量误差标准差网格,从而能够分别对伪距测量误差标准差网格和载波相位测量误差标准差网格进行非线性拟合后得到伪距误差模型和载波相位误差模型,其中,伪距误差模型能够实现对所观测的观测数据中的伪距进行标定,载波相位误差模型能够实现对所观测的观测数据中的载波相位进行标定。如此,分别基于两种误差模型针对性的对相应的观测数据进行误差标定,能够实现对观测数据进行更加准确的标定。
图5是本申请实施例提供的误差模型确定方法的再一个可选的流程示意图,如图5所示,方法包括以下步骤:
步骤S501,获取至少两个待标定设备所采集的观测数据。
在一些实施例中,观测数据包括多个历元中的每一历元的子观测数据。观测方程为多普勒观测方程。
步骤S502,根据每一历元的子观测数据,对多普勒观测方程进行解算,得到在该历元下的多普勒单差残差序列。
步骤S503,将每一历元下的多普勒单差残差序列,确定为数据残差序列。
步骤S504,将每一历元下的多普勒单差残差序列中的多普勒单差残差值,归类至对应的目标观测对象的目标网格单元中,得到观测数据单差残差网格。其中,每一目标观测对象的目标网格单元中对应有一组多普勒单差残差序列。
步骤S505,根据多普勒单差残差序列中的每一多普勒单差残差值,确定每一待标定设备对应的多普勒单差残差序列的第三标准差。
步骤S506,根据每一待标定设备的所述第三标准差,确定出待标定设备的多普勒 标准差网格。
步骤S507,根据全部待标定设备的多普勒标准差网格,确定出多普勒测量误差标准差网格。
步骤S508,对多普勒测量误差标准差网格进行非线性拟合,对应得到至少两个待标定设备的多普勒误差模型。
本申请实施例中,可以对多普勒测量误差标准差网格进行非线性拟合,得到多普勒测量误差标准差关于载噪比和高度角的第三函数关系式,根据第三函数关系式得到至少两个待标定设备的多普勒误差模型。
本申请实施例中,通过计算多普勒单差残差序列的第三标准差,进而基于第三标准差确定出多普勒测量误差标准差网格,从而能够对多普勒测量误差标准差网格进行非线性拟合后得到多普勒误差模型,其中,多普勒误差模型能够实现对所观测的观测数据中的多普勒数据进行标定。如此,基于多普勒误差模型针对性的对相应的观测数据中的多普勒数据进行误差标定,能够实现对观测数据中的多普勒数据进行更加准确的标定。
下面,将说明本申请实施例在一个实际的应用场景中的示例性应用。
本申请实施例提供一种误差模型确定方法,该方法是一种利用信号功分器标定观测随机误差模型的方法,由信号功分器将卫星信号分两路至两个相同RTK终端(即上述待标定设备),采集两个RTK终端中相同的定位模组a和定位模组b的伪距、载波相位和多普勒观测数据,基于观测数据构建零基线,并对观测数据进行RTK解算;然后,对伪距双差残差序列、载波相位双差残差序列和多普勒单差残差序列进行网格化处理,并非线性拟合伪距测量误差标准差关于载噪比CN0和高度角的函数关系式、载波相位测量误差标准差关于载噪比CN0和高度角的函数关系式、和多普勒测量误差标准差关于载噪比CN0和高度角的函数关系式。
图6是本申请实施例提供的误差模型确定方法的流程示意图,如图6所示,方法包括以下步骤:
步骤S601,由信号功分器61将卫星信号分两路发送至两个相同RTK终端62和RTK终端63。
步骤S602,采集两个相同RTK终端中的定位模组的观测数据:伪距观测数据、载波相位观测数据和多普勒观测数据。
步骤S603,构建零基线。
步骤S604,进行RTK解算。
步骤S605,获取伪距双差残差序列、载波相位双差残差序列和多普勒单差残差序列。
步骤S606,对不同观测对象系统进行网格化处理,构建时间序列网格。
步骤S607,根据时间序列网格计算待标定RTK终端62和RTK终端63的伪距观测数据测量误差方差和标准差、载波相位观测数据测量误差方差和标准差、和多普勒观测数据测量误差方差和标准差网格。
步骤S608,非线性拟合伪距测量误差标准差、载波相位测量误差标准差、和多普勒测量误差标准差,关于载噪比CN0和高度角的函数关系式,得到观测随机误差模型,即得到数据误差模型。
下面对伪距观测随机误差模型确定流程、载波相位观测随机误差模型确定流程和多普勒观测随机误差模型确定流程进行说明。
图7是本申请实施例提供的伪距和载波相位观测随机误差模型确定流程示意图,如图7所示,标定数据序列71为观测到的观测数据,标定数据序列71包括多个历元下观测到的标定数据单元72(即子观测数据),标定数据单元72包括RTK终端a和RTK终 端b的伪距观测数据或载波相位观测数据、RTK终端a和RTK终端b的精密坐标。在获取到标定数据单元72之后,标定流程包括以下步骤:
步骤S701,根据标定数据单元计算待标定设备(即RTK终端a和RTK终端b)精密坐标。
步骤S702,在标定数据单元中查找待标定设备观测到的相同的目标观测对象S={s1,s2…sm}。
步骤S703,根据载噪比和高度角计算网格单元位置。
步骤S704,构建零基线,进行RTK解算。
步骤S705,计算伪距相位双差残差值或载波相位双差残差值。
本申请实施例中,当获取到RTK终端a和RTK终端b的伪距或载波相位零基线观测数据后,对零基线观测数据进行RTK解算,假设在t时刻RTK终端a和RTK终端b共视m颗目标观测对象,则构建如下公式(1)和(2)的RTK观测方程z
ρ和
其中,
i=1,2,...,m表示RTK终端a与目标观测对象i的几何距离;
i=1,2,...,m表示RTK终端b与目标观测对象i的几何距离;
以此类推;其中,
i=1,2,...,m表示RTK终端a至目标观测对象i的伪距观测值,
i=1,2,...,m表示RTK终端b至目标观测对象i的伪距观测值,
表示RTK终端a和b与目标观测对象1和目标观测对象2组成的伪距双差观测值,以此类推;
i=1,2,...,m表示RTK终端a至目标观测对象i的载波相位观测值,
i=1,2,...,m表示RTK终端b至目标观测对象i的载波相位观测值,
表示RTK终端a和b与目标观测对象1和目标观测对象2组成的载波相位双差观测值,以此类推。
为双差电离层延迟,可以采用经验模型计算得到;
为双差对流层延迟,可以采用经验模型计算得到;其中,目标观测对象1可以为参考观测对象。
以RTK终端b为参考站,对上式(1)和(2)进行加权最小二乘解算或卡尔曼滤波解算,得到RTK终端a的位置r
a、载波相位双差模糊度
浮点解;载波相位双差模糊度
为整数,采用MLAMBDA方法进行模糊度固定,获取载波相位双差模糊度固定值
由载波相位模糊度固定值解算得到RTK终端a的位置r
a的固定解
将
作为已知值代入至上述RTK观测方程,可得伪距和载波相位双差残差值,见以下公式(3)和(4):
对N个时刻的RTK终端a和RTK终端b的伪距或载波相位数据均做上述处理,即可得到N个时刻的伪距和载波相位双差残差序列。
步骤S706,将伪距或载波相位双差残差值根据观测对象系统和网格单元位置归类放置。
将载噪比CN0和高度角按照一定的间隔组成网格,这里,一定的间隔可以是网格中的每一网格单元的长度和宽度。如图8所示,是本申请实施例提供的载噪比CN0和高度角网格示意图。由于观测对象系统通常包含GPS、GLONASS、GALILEO以及北斗卫星系统,因此可以构建4个与四个观测对象系统分别相应的网格,如图9所示,是本申请实施例提供的GPS、GLONASS、GALILEO和BDS系统网格示意图。假设GPS、GLONASS(图9中以GLO表示)、GALILEO(图9中以GAL表示)和BDS网格的载噪比和高度角间隔为Δ和
则网格单元可表示为以下公式(5):
{[a
i,b
i],[c
j,d
j]} (5)。
请继续参见图8,载噪比间隔和高度角间隔分别为ΔdBHz和
图中标号1、2、6、7和9表示目标观测对象编号:例如,当
时,若目标观测对象2的伪距观测值信噪比为21dBHz,高度角为8°,则将目标观测对象2的伪距双差残差值放至图8中的标号2处,以此类推,将所有历元的伪距双差残差值进行网格归类放置。
上述公式(5)中,[a
i,b
i]为网格单元的上下边界值,[c
j,d
j]为网格单元的左右边界值,且有以下公式(6):
步骤S707,构建时间序列网格。
步骤S708,根据时间序列网格计算待标定设备的伪距/载波相位测量误差方差和标准差网格。
首先,假设目标观测对象i,i=2,3,...,m的载噪比和高度角为CN0
i和el
i,计算目标观测对象i的网格单元位置,即
[·]表示取整运算;然后,将伪距双差残差
归类至相应观测对象系统的网格单元中:若目标观测对象i属于GPS系统,则归类至GPS网格单元{[a
p,b
p],[c
q,d
q]},若目标观测对象i属于GLONASS系统,则归类至GLONASS网格单元{[a
p,b
p],[c
q,d
q]},若目标观测对象i属于GALILEO系统,则归类至GALILEO网格单元{[a
p,b
p],[c
q,d
q]},若目标观测对象i属于BDS系统,则归类至BDS网格单元{[a
p,b
p],[c
q,d
q]};最后,以此类推,对伪距双差残差序列
中各个元素均做上述处理。
s
SYS([a
i,b
i],[c
j,d
j])={z
1,z
2,…,z
l},i=0,1,...;j=0,1,...;SYS=GPS,GLO,GAL,BDS (7)。
构建如下公式(8)至(11)的序列网格:
设最大载噪比和高度角为CN0
max和el
max,则有如下公式(12)的关系式:
计算网格单元对应伪距双差残差值序列s
SYS([a
i,b
i],[c
j,d
j])的标准差,得到以下公式(13):
由此,可得伪距测量误差标准差网格,即以下公式(14)至(17):
步骤S709,非线性拟合伪距/载波相位测量误差标准差关于载噪比和高度角的函数关系式。
本申请实施例中,可以根据所得到的伪距测量误差标准差网格,非线性拟合伪距测量误差标准差关于载噪比CN0和高度角的函数关系式;同样地,对载波相位双差残差序列也做上述处理,即可得到载波相位测量误差标准差网格,根据所得到的载波相位测量误差标准差网格,非线性拟合载波相位测量误差标准差关于载噪比CN0和高度角的函数关系式。
图10是本申请实施例提供的多普勒观测随机误差模型标定流程示意图,如图10所示,标定数据序列1001为观测到的观测数据,标定数据序列1001包括多个历元下观测到的标定数据单元1002(即子观测数据),标定数据单元1002包括多普勒观测值和终端参考运动速度。在获取到标定数据单元1002之后,标定流程包括以下步骤:
步骤S101,根据标定数据单元计算待标定设备(包括RTK终端a和RTK终端b)的坐标和速度。
步骤S102,由标定数据单元中获取待标定设备多普勒观测对象S={s1,s2…sm}。
步骤S103,根据载噪比和高度角计算网格单元位置。
步骤S104,选择参考观测对象并构建多普勒单差观测方程。
步骤S105,计算多普勒单差残差值。
本申请实施例中,假设在t时刻RTK终端a观测到n颗目标观测对象,则可构建如下多普勒观测方程(18):
其中,λ为目标观测对象播发信号的波长,
i=1,2,...,n为RTK终端a观测到目标观测对象i的多普勒观测值,v
i,i=1,2,......,n为目标观测对象i的运行速度,v
a为RTK终端a的速度,dt
r为终端接收机钟漂,c为钟漂系数;
i=1,2,......,n为目标观测对象i钟漂;以目标观测对象1为参考观测对象,可得多普勒单差残差序列为以下公式(19):
步骤S106,将多普勒单差残差值根据运动速度和网格单元位置归类放置。
步骤S107,构建时间序列网格。
步骤S108,根据时间序列网格计算待标定设备的多普勒测量误差标准差网格。
本申请实施例中,可以利用下述步骤对多普勒单差残差序列
进行网格化处理:首先,假设目标观测对象i,i=2,3,...,m的载噪比和高度角为CN0
i和el
i,计算目标观测对象i的网格单元位置,即
[·]表示取整运算;然后,将多普勒单差残差值
归类至网格单元中;最后,以此类推,对多普勒单差残差序列中的其他元素也做上述处理。
将RTK终端a和RTK终端b所有时刻多普勒单差残差序列均做上述处理,则每个网格单元对应一组多普勒单差残差序列,即表现为以下公式(20):
s
X([a
i,b
i],[c
j,d
j])={z
1,z
2,…,z
f},i=0,1,...;j=0,1,...;X=a,b (20)。
计算网格单元对应多普勒单差残差值序列s
SYS([a
i,b
i],[c
j,d
j])的标准差,即以下公式(21):
由此可得多普勒测量误差标准差网格,即以下公式(22)至(24):
步骤S109,根据多普勒测量误差标准差网格,拟合多普勒测量误差标准差关于载噪比和高度角的函数关系式。
本申请实施例提供的误差模型确定方法,能够标定任意一种定位设备的伪距、多普勒和载波相位观测随机误差模型(即伪距误差模型、载波相位误差模型和多普勒误差模型),从而提高了观测随机误差模型精度,有效提高终端RTK定位精度,辅助地图车道级定位导航。
可以理解的是,在本申请实施例中,涉及到用户信息的内容,例如,用户的位置信息等相关的数据,当本申请实施例运用到具体产品或技术中时,需要获得用户许可或者同意,且相关数据的收集、使用和处理需要遵守相关国家和地区的相关法律法规和标准。
下面继续说明本申请实施例提供的误差模型确定装置354实施为软件模块的示例性结构,在一些实施例中,如图2所示,误差模型确定装置354包括:解算模块3541,配置为获取至少两个待标定设备所采集的观测数据,并根据观测数据,对预先构建的观测方程进行解算,得到数据残差序列;网格化处理模块3542,配置为对所述数据残差序列进行网格化处理,得到数据残差网格;网格误差处理模块3543,配置为根据所述数据残差序列中的每一数据残差值,对所述数据残差网格进行网格误差处理,得到与所述数据残差网格对应的测量误差网格;非线性拟合模块3544,配置为对所述测量误差网格进行非线性拟合,得到所述至少两个待标定设备的数据误差模型。
在一些实施例中,网格误差处理模块还配置为:确定所述数据残差序列中的每一数据残差值在所述数据残差网格中对应的网格单元;根据所述数据残差序列中的每一数据残差值,对所述数据残差网格进行误差计算,得到所述数据残差网格中的每一网格单元对应于所述数据残差序列的误差值;确定所述每一网格单元在预先构建的网格中的位置;根据每一所述网格单元对应的所述误差值和每一网格单元的位置,确定出与所述数据残差网格对应的测量误差网格。
在一些实施例中,网格误差处理模块还配置为:根据所述数据残差序列中的每一数据残差值,对所述数据残差网格进行标准差计算,得到所述数据残差网格中的每一网格单元对应于所述数据残差序列的误差标准差值;将所述误差标准差值,确定为所述误差值;根据每一网格单元的位置,将每一所述网格单元对应的所述误差标准差值,归类至 所述位置对应的网格单元中,得到归类后的网格单元;对所述归类后的网格单元进行汇总,得到所述测量误差网格。
在一些实施例中,所述观测数据包括任一目标观测对象的观测载噪比和观测高度角,所述装置还包括:网格构建模块,配置为以载噪比为纵坐标、以高度角为横坐标,按照预设载噪比间隔和预设高度角间隔,构建不同观测对象系统下的网格;网格位置确定模块,配置为针对于每一所述观测对象系统,根据所述观测载噪比和所述观测高度角,确定所述目标观测对象对应于所述网格中的目标网格单元的位置;所述网格化处理模块还配置为:将所述数据残差序列中的每一数据残差值,归类至与所述数据残差序列对应的目标观测对象的目标网格单元中,得到所述数据残差网格;其中,每一目标观测对象的目标网格单元中至少对应有一组伪距双差残差序列、一组载波相位双差残差序列和一组多普勒单差残差序列。
在一些实施例中,所述观测数据包括多个历元中的每一历元的子观测数据;所述解算模块还配置为:针对每一历元的子观测数据,根据所述子观测数据,对所述观测方程进行加权最小二乘解算,得到子观测数据残差值;根据所述多个历元的先后顺序,对得到的多个子观测数据残差值进行汇总,形成所述数据残差序列。
在一些实施例中,所述子观测数据包括伪距和载波相位,所述观测方程为RTK观测方程;所述解算模块还配置为:针对每一所述历元,根据所述历元的子观测数据,对所述RTK观测方程进行加权最小二乘解算,得到任一所述待标定设备的位置信息和载波相位模糊度浮点解;对所述载波相位模糊度浮点解进行模糊度固定,得到载波相位模糊度固定值;对所述载波相位模糊度固定值进行解算,得到所述位置信息的固定解;将所述位置信息的固定解和所述载波相位模糊度固定值代入所述RTK观测方程,得到伪距残差值和载波相位残差值;将所述伪距残差值和所述载波相位残差值,确定为对应于所述子观测数据的子观测数据残差值。
在一些实施例中,所述至少两个待标定设备中包括参考站和目标标定设备;所述解算模块还配置为:基于所述参考站的子观测数据和所述目标标定设备所采集的所述历元的子观测数据,对所述RTK观测方程进行加权最小二乘解算,得到所述目标标定设备的所述位置信息和所述载波相位模糊度浮点解。
在一些实施例中,所述测量误差网格包括:伪距测量误差标准差网格和载波相位测量误差标准差网格;所述网格误差处理模块还配置为:根据所述伪距双差残差序列中的每一伪距双差残差值,确定所述伪距双差残差序列的第一标准差;根据所述载波相位双差残差序列中的每一载波相位双差残差值,确定所述载波相位双差残差序列的第二标准差;根据每一目标观测对象的目标网格单元和所述第一标准差,确定出所述伪距测量误差标准差网格;根据每一目标观测对象的目标网格单元和所述第二标准差,确定出所述载波相位测量误差标准差网格。
在一些实施例中,所述观测数据包括多个历元中的每一历元的子观测数据;所述观测方程为多普勒观测方程;所述解算模块还配置为:根据每一历元的所述子观测数据,对所述多普勒观测方程进行解算,得到在所述历元下的多普勒单差残差序列;将每一历元下的所述多普勒单差残差序列,确定为所述观测数据残差序列。
在一些实施例中,所述数据残差网格包括观测数据单差残差网格;所述网格化处理模块还配置为:将每一历元下的所述多普勒单差残差序列中的多普勒单差残差值,归类至与所述多普勒单差残差序列对应的目标观测对象的目标网格单元中,得到所述观测数据单差残差网格;其中,每一目标观测对象的目标网格单元中对应有一组多普勒单差残差序列。
在一些实施例中,所述测量误差网格包括:多普勒测量误差标准差网格;所述网格 误差处理模块还配置为:根据所述多普勒单差残差序列中的每一多普勒单差残差值,确定每一所述待标定设备对应的所述多普勒单差残差序列的第三标准差;根据每一所述待标定设备的所述第三标准差,确定出所述待标定设备的多普勒标准差网格;根据全部待标定设备的所述多普勒标准差网格,确定出所述多普勒测量误差标准差网格。
在一些实施例中,所述测量误差网格包括:伪距测量误差标准差网格、载波相位测量误差标准差网格和多普勒测量误差标准差网格;所述非线性拟合模块还配置为:对所述伪距测量误差标准差网格进行非线性拟合,得到伪距测量误差标准差关于载噪比和高度角的第一函数关系式;对所述载波相位测量误差标准差网格进行非线性拟合,得到载波相位测量误差标准差关于载噪比和高度角的第二函数关系式;对所述多普勒测量误差标准差网格进行非线性拟合,得到多普勒测量误差标准差关于载噪比和高度角的第三函数关系式;根据所述第一函数关系式、所述第二函数关系式和所述第三函数关系式,得到所述数据误差模型。
需要说明的是,本申请实施例装置的描述,与上述方法实施例的描述是类似的,具有同方法实施例相似的有益效果,因此不做赘述。对于本装置实施例中未披露的技术细节,请参照本申请方法实施例的描述而理解。
本申请实施例提供了一种计算机程序产品,该计算机程序产品包括可执行指令,该可执行指令存储在计算机可读存储介质中。电子设备的处理器从计算机可读存储介质读取该可执行指令,处理器执行该可执行指令,使得该电子设备执行本申请实施例上述的方法。
本申请实施例提供一种存储有可执行指令的存储介质,当可执行指令被处理器执行时,将引起处理器执行本申请实施例提供的方法,例如,如图3示出的方法。
在一些实施例中,存储介质可以是计算机可读存储介质,例如,铁电存储器(FRAM,Ferromagnetic Random Access Memory)、只读存储器(ROM,Read Only Memory)、可编程只读存储器(PROM,Programmable Read Only Memory)、可擦除可编程只读存储器(EPROM,Erasable Programmable Read Only Memory)、带电可擦可编程只读存储器(EEPROM,Electrically Erasable Programmable Read Only Memory)、闪存、磁表面存储器、光盘、或光盘只读存储器(CD-ROM,Compact Disk-Read Only Memory)等存储器;也可以是包括上述存储器之一或任意组合的各种设备。
在一些实施例中,可执行指令可以采用程序、软件、软件模块、脚本或代码的形式,按任意形式的编程语言(包括编译或解释语言,或者声明性或过程性语言)来编写,并且其可按任意形式部署,包括被部署为独立的程序或者被部署为模块、组件、子例程或者适合在计算环境中使用的其它单元。作为示例,可执行指令可以但不一定对应于文件系统中的文件,可以可被存储在保存其它程序或数据的文件的一部分,例如,存储在超文本标记语言(HTML,Hyper Text Markup Language)文档中的一个或多个脚本中,存储在专用于所讨论的程序的单个文件中,或者,存储在多个协同文件(例如,存储一个或多个模块、子程序或代码部分的文件)中。作为示例,可执行指令可被部署为在一个计算设备上执行,或者在位于一个地点的多个计算设备上执行,又或者,在分布在多个地点且通过通信网络互连的多个计算设备上执行。
以上所述,仅为本申请的实施例而已,并非用于限定本申请的保护范围。凡在本申请的精神和范围之内所作的任何修改、等同替换和改进等,均包含在本申请的保护范围之内。
Claims (16)
- 一种误差模型确定方法,所述方法由误差模型确定设备执行,所述方法包括:获取至少两个待标定设备所采集的观测数据;根据所述观测数据,对预先构建的观测方程进行解算,得到数据残差序列;对所述数据残差序列进行网格化处理,得到数据残差网格;根据所述数据残差序列中的每一数据残差值,对所述数据残差网格进行网格误差处理,得到与所述数据残差网格对应的测量误差网格;对所述测量误差网格进行非线性拟合,得到所述至少两个待标定设备的数据误差模型。
- 根据权利要求1所述的方法,其中,所述根据所述数据残差序列中的每一数据残差值,对所述数据残差网格进行网格误差处理,得到与所述数据残差网格对应的测量误差网格,包括:确定所述数据残差序列中的每一数据残差值在所述数据残差网格中对应的网格单元;根据所述数据残差序列中的每一数据残差值,对所述数据残差网格进行误差计算,得到所述数据残差网格中的每一网格单元对应于所述数据残差序列的误差值;确定所述每一网格单元在预先构建的网格中的位置;根据每一所述网格单元对应的所述误差值和每一网格单元的位置,确定与所述数据残差网格对应的测量误差网格。
- 根据权利要求2所述的方法,其中,所述根据所述数据残差序列中的每一数据残差值,对所述数据残差网格进行误差计算,得到所述数据残差网格中的每一网格单元对应于所述数据残差序列的误差值,包括:根据所述数据残差序列中的每一数据残差值,对所述数据残差网格进行标准差计算,得到所述数据残差网格中的每一网格单元对应于所述数据残差序列的误差标准差值;将所述误差标准差值,确定为所述误差值;对应地,所述根据每一所述网格单元对应的所述误差值和每一网格单元的位置,确定与所述数据残差网格对应的测量误差网格,包括:根据每一网格单元的位置,将每一所述网格单元对应的所述误差标准差值,归类至所述位置对应的网格单元中,得到归类后的网格单元;对所述归类后的网格单元进行汇总,得到所述测量误差网格。
- 根据权利要求3所述的方法,其中,所述观测数据包括任一目标观测对象的观测载噪比和观测高度角,所述方法还包括:以载噪比为纵坐标、以高度角为横坐标,按照预设载噪比间隔和预设高度角间隔,构建不同观测对象系统下的网格;针对于每一所述观测对象系统,根据所述观测载噪比和所述观测高度角,确定所述目标观测对象对应于所述网格中的目标网格单元的位置;所述对所述数据残差序列进行网格化处理,得到数据残差网格,包括:将所述数据残差序列中的每一数据残差值,归类至与所述数据残差序列对应的目标观测对象的目标网格单元中,得到所述数据残差网格;其中,每一目标观测对象的目标网格单元中至少对应有一组伪距双差残差序列、一组载波相位双差残差序列和一组多普勒单差残差序列。
- 根据权利要求1所述的方法,其中,所述观测数据包括多个历元中的每一历元的子观测数据;所述根据所述观测数据,对预先构建的观测方程进行解算,得到数据残差序列,包括:针对每一历元的子观测数据,根据所述子观测数据,对所述观测方程进行加权最小二乘解算,得到子观测数据残差值;根据所述多个历元的先后顺序,对得到的多个子观测数据残差值进行汇总,形成所述数据残差序列。
- 根据权利要求5所述的方法,其中,所述子观测数据包括伪距和载波相位,所述观测方程为RTK观测方程;所述针对每一历元的子观测数据,根据所述子观测数据,对所述观测方程进行加权最小二乘解算,得到子观测数据残差值,包括:针对每一所述历元,根据所述历元的子观测数据,对所述RTK观测方程进行加权最小二乘解算,得到任一所述待标定设备的位置信息和载波相位模糊度浮点解;对所述载波相位模糊度浮点解进行模糊度固定,得到载波相位模糊度固定值;对所述载波相位模糊度固定值进行解算,得到所述位置信息的固定解;将所述位置信息的固定解和所述载波相位模糊度固定值代入至所述RTK观测方程,得到伪距残差值和载波相位残差值;将所述伪距残差值和所述载波相位残差值,确定为对应于所述子观测数据的子观测数据残差值。
- 根据权利要求6所述的方法,其中,所述至少两个待标定设备中包括参考站和目标标定设备;所述根据所述历元的子观测数据,对所述RTK观测方程进行加权最小二乘解算,得到任一所述待标定设备的位置信息和载波相位模糊度浮点解,包括:基于所述参考站的子观测数据和所述目标标定设备所采集的所述历元的子观测数据,对所述RTK观测方程进行加权最小二乘解算,得到所述目标标定设备的所述位置信息和所述载波相位模糊度浮点解。
- 根据权利要求4所述的方法,其中,所述测量误差网格包括:伪距测量误差标准差网格和载波相位测量误差标准差网格;所述根据所述数据残差序列中的每一数据残差值,对所述数据残差网格进行网格误差处理,得到与所述数据残差网格对应的测量误差网格,包括:根据所述伪距双差残差序列中的每一伪距双差残差值,确定所述伪距双差残差序列的第一标准差;根据所述载波相位双差残差序列中的每一载波相位双差残差值,确定所述载波相位双差残差序列的第二标准差;根据每一目标观测对象的目标网格单元和所述第一标准差,确定所述伪距测量误差标准差网格;根据每一目标观测对象的目标网格单元和所述第二标准差,确定所述载波相位测量误差标准差网格。
- 根据权利要求1所述的方法,其中,所述观测数据包括多个历元中的每一历元的子观测数据;所述观测方程为多普勒观测方程;所述根据所述观测数据,对预先构建的观测方程进行解算,得到数据残差序列,包括:根据每一历元的所述子观测数据,对所述多普勒观测方程进行解算,得到在所述历元下的多普勒单差残差序列;将每一历元下的所述多普勒单差残差序列,确定为所述数据残差序列。
- 根据权利要求9所述的方法,其中,所述数据残差网格包括观测数据单差残差网格;所述对所述数据残差序列进行网格化处理,得到数据残差网格,包括:将每一历元下的所述多普勒单差残差序列中的多普勒单差残差值,归类至与所述多普勒单差残差序列对应的目标观测对象的目标网格单元中,得到所述观测数据单差残差网格;其中,每一目标观测对象的目标网格单元中对应有一组多普勒单差残差序列。
- 根据权利要求10所述的方法,其中,所述测量误差网格包括:多普勒测量误差标准差网格;所述根据所述数据残差序列中的每一数据残差值,对所述数据残差网格进行网格误差处理,得到与所述数据残差网格对应的测量误差网格,包括:根据所述多普勒单差残差序列中的每一多普勒单差残差值,确定每一所述待标定设备对应的所述多普勒单差残差序列的第三标准差;根据每一所述待标定设备的所述第三标准差,确定出所述待标定设备的多普勒标准差网格;根据全部待标定设备的所述多普勒标准差网格,确定出所述多普勒测量误差标准差网格。
- 根据权利要求1所述的方法,其中,所述测量误差网格包括:伪距测量误差标准差网格、载波相位测量误差标准差网格和多普勒测量误差标准差网格;所述对所述测量误差网格进行非线性拟合,得到所述至少两个待标定设备的数据误差模型,包括:对所述伪距测量误差标准差网格进行非线性拟合,得到伪距测量误差标准差关于载噪比和高度角的第一函数关系式;对所述载波相位测量误差标准差网格进行非线性拟合,得到载波相位测量误差标准差关于载噪比和高度角的第二函数关系式;对所述多普勒测量误差标准差网格进行非线性拟合,得到多普勒测量误差标准差关于载噪比和高度角的第三函数关系式;根据所述第一函数关系式、所述第二函数关系式和所述第三函数关系式,确定所述数据误差模型。
- 一种误差模型确定装置,所述装置包括:解算模块,配置为获取至少两个待标定设备所采集的观测数据,并根据所述观测数据,对预先构建的观测方程进行解算,得到数据残差序列;网格化处理模块,配置为对所述数据残差序列进行网格化处理,得到数据残差网格;网格误差处理模块,配置为根据所述数据残差序列中的每一数据残差值,对所述数据残差网格进行网格误差处理,得到与所述数据残差网格对应的测量误差网格;非线性拟合模块,配置为对所述测量误差网格进行非线性拟合,得到所述至少两个待标定设备的数据误差模型。
- 一种电子设备,包括:存储器,配置为存储可执行指令;处理器,配置为执行所述存储器中存储的可执行指令时,实现权利要求1至12任一项所述的误差模型确定方法。
- 一种计算机可读存储介质,存储有可执行指令,配置为引起处理器执行所述可执行指令时,实现权利要求1至12任一项所述的误差模型确定方法。
- 一种计算机程序产品,包括可执行指令,其中所述可执行指令被处理器执行时,实现权利要求1至12任一项所述的误差模型确定方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP22919898.1A EP4394450A1 (en) | 2022-01-17 | 2022-10-28 | Error model determination method and apparatus, electronic device, computer readable storage medium, and computer program product |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210051258.9 | 2022-01-17 | ||
CN202210051258.9A CN114397680A (zh) | 2022-01-17 | 2022-01-17 | 误差模型确定方法、装置、设备及计算机可读存储介质 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023134264A1 true WO2023134264A1 (zh) | 2023-07-20 |
Family
ID=81230603
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/128156 WO2023134264A1 (zh) | 2022-01-17 | 2022-10-28 | 误差模型确定方法、装置、电子设备、计算机可读存储介质及计算机程序产品 |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP4394450A1 (zh) |
CN (1) | CN114397680A (zh) |
WO (1) | WO2023134264A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117705099A (zh) * | 2023-11-17 | 2024-03-15 | 武汉大学 | 基于变参考历元tdcp/mems imu的实时动态定位方法及系统 |
CN117804670A (zh) * | 2024-02-28 | 2024-04-02 | 深圳市沃感科技有限公司 | 一种板式压力传感器的误差修正方法及装置 |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114397680A (zh) * | 2022-01-17 | 2022-04-26 | 腾讯科技(深圳)有限公司 | 误差模型确定方法、装置、设备及计算机可读存储介质 |
CN115242297B (zh) * | 2022-09-21 | 2022-11-25 | 腾讯科技(深圳)有限公司 | 移动终端的运动参数确定方法、装置、设备和存储介质 |
CN116125507B (zh) * | 2023-02-16 | 2024-08-09 | 腾讯科技(深圳)有限公司 | 移动终端的定位方法、装置、设备及存储介质 |
CN117697769B (zh) * | 2024-02-06 | 2024-04-30 | 成都威世通智能科技有限公司 | 一种基于深度学习的机器人控制系统和方法 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101802643A (zh) * | 2007-09-18 | 2010-08-11 | 莱卡地球系统公开股份有限公司 | 对卫星辅助定位系统的基于网络的校正进行精确度估计的方法 |
US20110018763A1 (en) * | 2009-07-06 | 2011-01-27 | Denso Corporation | Positioning apparatus, positioning method, and program product |
CN104880717A (zh) * | 2015-05-27 | 2015-09-02 | 中国科学院嘉兴微电子与系统工程中心 | 一种卫星测量值多路径误差检测装置及其算法 |
CN107576975A (zh) * | 2017-08-14 | 2018-01-12 | 北京航空航天大学 | 应用于卫星导航系统的误差评估的模型的处理方法和装置 |
CN108957490A (zh) * | 2018-06-22 | 2018-12-07 | 东南大学 | 基于高度角的多路径误差改正方法 |
CN109459778A (zh) * | 2018-10-31 | 2019-03-12 | 东南大学 | 基于抗差方差分量估计的码伪距/多普勒联合测速方法及其应用 |
CN112433236A (zh) * | 2021-01-27 | 2021-03-02 | 腾讯科技(深圳)有限公司 | 误差模型标定方法、装置、设备及计算机可读存储介质 |
CN112902989A (zh) * | 2021-05-07 | 2021-06-04 | 腾讯科技(深圳)有限公司 | 数据误差标定方法、装置、电子设备和存储介质 |
CN114397680A (zh) * | 2022-01-17 | 2022-04-26 | 腾讯科技(深圳)有限公司 | 误差模型确定方法、装置、设备及计算机可读存储介质 |
-
2022
- 2022-01-17 CN CN202210051258.9A patent/CN114397680A/zh active Pending
- 2022-10-28 WO PCT/CN2022/128156 patent/WO2023134264A1/zh active Application Filing
- 2022-10-28 EP EP22919898.1A patent/EP4394450A1/en active Pending
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101802643A (zh) * | 2007-09-18 | 2010-08-11 | 莱卡地球系统公开股份有限公司 | 对卫星辅助定位系统的基于网络的校正进行精确度估计的方法 |
US20110018763A1 (en) * | 2009-07-06 | 2011-01-27 | Denso Corporation | Positioning apparatus, positioning method, and program product |
CN104880717A (zh) * | 2015-05-27 | 2015-09-02 | 中国科学院嘉兴微电子与系统工程中心 | 一种卫星测量值多路径误差检测装置及其算法 |
CN107576975A (zh) * | 2017-08-14 | 2018-01-12 | 北京航空航天大学 | 应用于卫星导航系统的误差评估的模型的处理方法和装置 |
CN108957490A (zh) * | 2018-06-22 | 2018-12-07 | 东南大学 | 基于高度角的多路径误差改正方法 |
CN109459778A (zh) * | 2018-10-31 | 2019-03-12 | 东南大学 | 基于抗差方差分量估计的码伪距/多普勒联合测速方法及其应用 |
CN112433236A (zh) * | 2021-01-27 | 2021-03-02 | 腾讯科技(深圳)有限公司 | 误差模型标定方法、装置、设备及计算机可读存储介质 |
CN112902989A (zh) * | 2021-05-07 | 2021-06-04 | 腾讯科技(深圳)有限公司 | 数据误差标定方法、装置、电子设备和存储介质 |
CN114397680A (zh) * | 2022-01-17 | 2022-04-26 | 腾讯科技(深圳)有限公司 | 误差模型确定方法、装置、设备及计算机可读存储介质 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117705099A (zh) * | 2023-11-17 | 2024-03-15 | 武汉大学 | 基于变参考历元tdcp/mems imu的实时动态定位方法及系统 |
CN117705099B (zh) * | 2023-11-17 | 2024-05-28 | 武汉大学 | 基于变参考历元tdcp/mems imu的实时动态定位方法及系统 |
CN117804670A (zh) * | 2024-02-28 | 2024-04-02 | 深圳市沃感科技有限公司 | 一种板式压力传感器的误差修正方法及装置 |
Also Published As
Publication number | Publication date |
---|---|
CN114397680A (zh) | 2022-04-26 |
EP4394450A1 (en) | 2024-07-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2023134264A1 (zh) | 误差模型确定方法、装置、电子设备、计算机可读存储介质及计算机程序产品 | |
US8571800B2 (en) | User interactive actual time networked survey system | |
WO2022161229A1 (zh) | 一种误差模型标定方法、装置、电子设备、基于误差模型的定位方法、装置、终端及计算机可读存储介质、程序产品 | |
Grejner-Brzezinska et al. | On accuracy and reliability of instantaneous network RTK as a function of network geometry, station separation, and data processing strategy | |
Tsakiri et al. | The use of low-cost, single-frequency GNSS receivers in mapping surveys | |
Taylor et al. | Modelling and prediction of GPS availability with digital photogrammetry and LiDAR | |
Dabove et al. | GNSS network products for post-processing positioning: limitations and peculiarities | |
Bento et al. | Cooperative GNSS positioning aided by road-features measurements | |
Hodgson | On the accuracy of low-cost dual-frequency GNSS network receivers and reference data | |
Weaver et al. | Hybrid survey networks: Combining real-time and static GNSS observations for optimizing height modernization | |
Zhao et al. | SUPREME: an open-source single-frequency uncombined precise point positioning software | |
Bae et al. | Performance Analysis of Network‐RTK Techniques for Drone Navigation considering Ionospheric Conditions | |
Soler et al. | Interpreting OPUS-static results accurately | |
Schwarz et al. | Accuracy assessment of the National Geodetic Survey’s OPUS-RS utility | |
Forrest et al. | Moving wildlife tracking forward under forested conditions with the SWIFT GPS algorithm | |
Mora et al. | Precision performance evaluation of RTK and RTN solutions: a case study | |
El-Hattab | Assessment of PPP for establishment of CORS network for municipal surveying in Middle East | |
El-Diasty | Evaluation of KSACORS-based network GNSS-INS integrated system for Saudi coastal hydrographic surveys | |
Kazmierski et al. | Positioning performance with dual-frequency low-cost GNSS receivers | |
Yi et al. | A method of undifferenced ambiguity resolution for GPS+ GLONASS precise point positioning | |
Lu et al. | Calibration method of rotation and displacement systematic errors for ship-borne mobile surveying systems | |
CN113917509B (zh) | 一种双差模糊度固定方法、设备以及可读存储介质 | |
Sholarin et al. | Global navigation satellite system (GNSS) | |
El-Diasty | A real-time KSACORS-based NRTK GNSS positioning system for Saudi coastal navigation | |
Tu et al. | Real time monitoring ground motion using GPS with real time corrections |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22919898 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2022919898 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2022919898 Country of ref document: EP Effective date: 20240326 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |