WO2023134105A1 - 原子干涉惯性导航信息探测系统及探测方法 - Google Patents

原子干涉惯性导航信息探测系统及探测方法 Download PDF

Info

Publication number
WO2023134105A1
WO2023134105A1 PCT/CN2022/095964 CN2022095964W WO2023134105A1 WO 2023134105 A1 WO2023134105 A1 WO 2023134105A1 CN 2022095964 W CN2022095964 W CN 2022095964W WO 2023134105 A1 WO2023134105 A1 WO 2023134105A1
Authority
WO
WIPO (PCT)
Prior art keywords
atomic beam
atomic
interference
raman light
detection laser
Prior art date
Application number
PCT/CN2022/095964
Other languages
English (en)
French (fr)
Inventor
冯焱颖
颜培强
孟至欣
Original Assignee
清华大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 清华大学 filed Critical 清华大学
Publication of WO2023134105A1 publication Critical patent/WO2023134105A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/10Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
    • G01C21/12Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
    • G01C21/16Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
    • GPHYSICS
    • G04HOROLOGY
    • G04FTIME-INTERVAL MEASURING
    • G04F5/00Apparatus for producing preselected time intervals for use as timing standards
    • G04F5/14Apparatus for producing preselected time intervals for use as timing standards using atomic clocks

Definitions

  • the application relates to the field of quantum precision inertial measurement and the field of time and frequency measurement, in particular to an atomic interference inertial navigation information detection system and detection method.
  • Navigation and timing are important national key technologies, which have penetrated into various fields such as national economy, national defense and security, and can be applied to intelligent transportation systems, digital earth, and precision-guided weapons and equipment.
  • navigation is to guide the carrier to move according to the specified speed and trajectory by measuring and outputting the moving speed and position of the carrier; timing is to provide time information for other devices or systems through standard or customized interfaces and protocols.
  • inertial navigation is a typical autonomous navigation method, which does not require the assistance of the ground and other external equipment, and has the characteristics of autonomy, continuity, and concealment.
  • the inertial measurement technology based on atomic interference has high precision Acceleration and rotational angular velocity measurement potential.
  • the atomic beam undergoes Raman-Mach-Zehnder (Raman-Mach-Zehnder) interference, the interference fringes are obtained through detection, and the acceleration or rotational angular rate of the carrier can be calculated by summing or differencing the phase shifts of the interference fringes of two atomic beams facing each other.
  • atomic clocks can be used as a precise time keeping device to generate time signals, which calculate time based on the oscillation frequency between atomic hyperfine energy levels.
  • Raman-Ramsey interference Taking an optically pumped beam atomic clock based on Raman-Ramsey interference as an example, two pairs of co-directional Raman lasers are used to perform ⁇ /2- ⁇ /2 coherent manipulation of the atomic beam, so that the atomic beam generates Raman-Ramsey interference uses the Raman-Ramsey interference signal as feedback to control the crystal oscillator to output a standard frequency signal.
  • atomic inertial sensors and atomic clocks are two independent devices. Therefore, atomic inertial sensors and atomic clock devices are bulky and occupy too much total space. Unavailable on limited platforms.
  • this application proposes an atomic interference inertial navigation information detection system and detection method.
  • the atomic interference inertial navigation information detection system includes a sensing device and a calculation system, wherein the sensing device includes a first atomic source cavity and a second atom source cavity, an interference cavity, two first detectors and at least one second detector, wherein the first atom source cavity is filled with two kinds of atoms, and the second atom source cavity is filled with the At least one of the two kinds of atoms, the first atom source cavity is used to provide the first atomic beam and the third atomic beam moving in the positive direction of the first direction, and the second atom source cavity is used to provide The filled atoms provide a second beam of atoms moving in a negative direction of the first direction, the method comprising:
  • Raman light is used to interfere with the first atomic beam, the second atomic beam and the third atomic beam, and then a detection laser is used to pass through the first atomic beam after the interference beam, said second atomic beam and said third atomic beam;
  • the two first detectors respectively receive the first detection laser light passing through the first atomic beam and the second detection laser light passing through the second atomic beam, and the second detector receives the first detection laser light passing through the first atomic beam.
  • the first detector and the second detector send corresponding electrical signals to the calculation system according to the first detection laser, the second detection laser, and the third detection laser, so that the The calculation system determines the detection result according to the electrical signals sent by the first detector and the second detector.
  • the cavity of the second atomic source is filled with a kind of atoms, and in the interference cavity, the first atomic beam, the second atomic beam and the first atomic beam are treated with Raman light. After the three atomic beams are interfered, the first atomic beam, the second atomic beam and the third atomic beam after the interference are respectively passed through by using a detection laser, including:
  • the third probe laser light along the third direction is used to pass through the interfered third atomic beam.
  • the first detector and the second detector respectively send corresponding An electrical signal, so that the calculation system determines the detection result according to the electrical signals sent by the first detector and the second detector, including:
  • the two first detectors respectively convert the optical signals of the first detection laser light and the second detection laser light into electrical signals, and then send them to the calculation system, so that the calculation system according to the The electrical signals sent by the two first detectors determine the angular rate of rotation in the third direction and the acceleration in the second direction;
  • the second detector converts the optical signal of the third detection laser into an electrical signal, and sends it to the calculation system, so that the calculation system determines the standard according to the electrical signal sent by the second detector. frequency signal.
  • the second atom source cavity is filled with two kinds of atoms, and the second atom source cavity is also used to provide a fourth atomic beam moving in the negative direction of the first direction,
  • An atomic beam, said second atomic beam and said third atomic beam comprising:
  • the sensing device includes two second detectors, the first detector and the second detector are respectively based on the first detection laser, the second detection laser, the third The detection laser sends a corresponding electrical signal to the resolution system, so that the resolution system determines the detection result according to the electrical signals sent by the first detector and the second detector, including:
  • the two first detectors respectively convert the optical signals of the first detection laser light and the second detection laser light into electrical signals, and then send them to the calculation system, so that the calculation system according to the The electrical signals sent by the two first detectors determine the angular rate of rotation in the third direction and the acceleration in the second direction;
  • the two second detectors respectively convert the optical signals of the third detection laser and the fourth detection laser into electrical signals, and then send them to the calculation system, so that the calculation system according to the The electrical signals sent by the two second detectors determine the angular rate of rotation in the second direction and the acceleration in the third direction.
  • An atomic interference inertial navigation information detection system includes a first sensing device and a calculation system, wherein the first sensing device includes: a first atom source cavity and a second atom source cavity, the The first atom source cavity is filled with two kinds of atoms, the second atom source cavity is filled with at least one kind of atoms in the two kinds of atoms, and the first atom source cavity is used to provide positive movement along the first direction The first atomic beam and the third atomic beam, the second atomic source cavity is used to provide the second atomic beam moving in the negative direction of the first direction according to the filled atoms;
  • the first sensing device also includes an interference cavity, which is used to carry out the interference reaction between the first atomic beam, the second atomic beam and the third atomic beam and Raman light, and use the detection laser light to pass through the the first atomic beam, the second atomic beam, and the third atomic beam after interference;
  • the first sensing device also includes two first detectors arranged in the second direction and at least one second detector arranged in the third direction, and the two first detectors are respectively used to receive The first detection laser light of the first atomic beam and the second detection laser light passing through the second atomic beam, and according to the first detection laser light and the second detection laser light, send corresponding The first electrical signal, the second detector is used to receive a third detection laser light passing through the third atomic beam, and send a corresponding second electrical signal to the calculation system according to the third detection laser light;
  • the calculating system is used for determining a first detection result according to the first electrical signal and the second electrical signal.
  • the atomic interference inertial navigation information detection system further includes a radio frequency system, which is used to generate radio frequency signals of different frequencies under the control of the solving system;
  • An optical system used to provide the detection laser light directed to the first detector and the second detector according to the radio frequency signals of different frequencies, and to provide Raman light in the same direction as the detection laser light .
  • the cavity of the second atom source is filled with a kind of atom
  • the first sensing device includes a second detector
  • the atom interference inertial navigation information detection system further includes a crystal oscillator for outputting a standard frequency signal to the radio frequency system
  • the optical system is used to provide three pairs of Raman light in the second direction, two pairs of Raman light in the third direction, and the first detection laser light directed to the two first detectors respectively , the second detection laser, and the third detection laser directed toward the second detector.
  • the first sensing device when the cavity of the second atom source is filled with two kinds of atoms, the first sensing device includes two second detectors, and the optical system is used to provide the first Three pairs of Raman light in two directions, three pairs of Raman light in the third direction, and the first detection laser, the second detection laser and the third detection laser light and the fourth detection laser light to the two second detectors.
  • it includes the atomic interference inertial navigation information detection system described in any of the above embodiments, and further includes a second sensing device, the second sensing device is vertically arranged with the first sensing device, so The calculation system is further configured to determine a corresponding second detection result according to the electrical signal transmitted by the second sensing device.
  • the atomic interference inertial navigation information detection system includes a sensing device and a calculation system, and the sensing device includes a first atomic source cavity and a second An atom source cavity, an interference cavity, two first detectors and at least one second detector.
  • the cavity of the first atom source is filled with two kinds of atoms
  • the cavity of the second source of atoms is filled with at least one of the two kinds of atoms.
  • the first atom source cavity is used to provide the first atomic beam and the third atomic beam moving in the positive direction along the first direction
  • the second atom source cavity is used to provide the negative direction along the first direction according to the filled atoms.
  • the probe laser light passes through the first atomic beam after the interference respectively beam, the second atomic beam and the third atomic beam.
  • the two first detectors respectively receive the first detection laser light passing through the first atomic beam and the second detection laser light passing through the second atomic beam, and the second detector receives the first detection laser light passing through the first atomic beam.
  • a third probe laser for the triatomic beam. The first detector and the second detector send corresponding electrical signals to the calculation system according to the first detection laser, the second detection laser, and the third detection laser, so that the The calculation system determines the detection result according to the electrical signals sent by the first detector and the second detector.
  • the atomic interference inertial navigation information detection system and detection method provided in the embodiments of the present application change the number of atomic beams emitted by the second atomic source cavity by changing the number of atomic species filled in the second atomic source cavity, and cooperate with the Different Raman light and detectors can simultaneously realize the measurement of inertia and atomic clock in one system, and the two share a first atomic source cavity, a second atomic source cavity and an interference cavity, which reduces the volume of the device. Therefore, the atomic interference inertial navigation information detection system provided in the embodiment of the present application can be applied to a platform that requires both navigation and timing and has limited space.
  • Fig. 1 is a structural schematic diagram of a sensing device used for uniaxial acceleration, uniaxial angular rate measurement and atomic clock measurement in an embodiment provided by the present application.
  • Fig. 2 is a front view of a sensor device for uniaxial acceleration, uniaxial angular rate measurement and atomic clock measurement in an embodiment provided by the present application.
  • Fig. 3 is a top view of a sensor device for uniaxial acceleration, uniaxial angular rate measurement and atomic clock measurement in an embodiment provided by the present application.
  • FIG. 4 is a schematic diagram of Raman-Mach-Zehnder interference in an embodiment provided by the present application.
  • FIG. 5 is a schematic diagram of Raman-Ramsey interference in an embodiment provided by the present application.
  • FIG. 6 is a schematic flowchart of an atomic interference inertial navigation information detection method in an embodiment provided by the present application.
  • Fig. 6(a) is a schematic flowchart of an atom interference inertial navigation information detection method in another embodiment provided by the present application.
  • Fig. 7 is a structural schematic diagram of a sensor device for dual-axis inertial measurement in an embodiment provided by the present application.
  • Fig. 8 is a front view of a sensor device for dual-axis inertial measurement in an embodiment provided by the present application.
  • Fig. 9 is a top view of a sensor device for dual-axis inertial measurement in an embodiment provided by the present application.
  • Fig. 10 is a schematic diagram of an atomic interference inertial navigation information detection system in an embodiment provided by the present application.
  • Fig. 11 is a schematic diagram of an atomic interference inertial navigation information detection system in another embodiment provided by the present application.
  • FIG. 12 is a combined schematic diagram of a sensing device in an embodiment provided by the present application.
  • Fig. 13 is a front view of the first sensing device in the sensing device combination in an embodiment provided by the present application.
  • Fig. 14 is a top view of the first sensing device in the sensing device combination in an embodiment provided by the present application.
  • Fig. 15 is a front view of the second sensing device in the sensing device combination in an embodiment provided by the present application.
  • Fig. 16 is a top view of the second sensing device in the sensing device combination in an embodiment provided by the present application.
  • Fig. 17 is a combined schematic diagram of the sensing device in another embodiment provided by the present application.
  • Fig. 18 is a front view of the first sensing device in the sensing device combination in another embodiment provided by the present application.
  • Fig. 19 is a top view of the first sensing device in the sensing device combination in another embodiment provided by the present application.
  • Fig. 20 is a front view of the second sensing device in the sensing device combination in another embodiment provided by the present application.
  • Fig. 21 is a top view of the second sensing device in the sensing device combination in another embodiment provided by the present application.
  • Fig. 22 is a combined schematic diagram of sensing devices in another embodiment provided by the present application.
  • Fig. 23 is a front view of the first sensing device in the sensing device combination in another embodiment provided by the present application.
  • Fig. 24 is a top view of the first sensing device in the sensing device combination in another embodiment provided by the present application.
  • Fig. 25 is a front view of the second sensing device in the sensing device combination in another embodiment provided by the present application.
  • Fig. 26 is a top view of the second sensing device in the sensing device combination in another embodiment provided by the present application.
  • Atom interference inertial navigation information detection system 10 first sensing device 20, second sensing device 30, sensing device 100, first atom source cavity 101, second atom source cavity 102, interference cavity 103, first detector 104 , a second detector 105 , a solution system 110 , a radio frequency system 120 , an optical system 130 , and a crystal oscillator 140 .
  • connection and “connection” mentioned in this application all include direct and indirect connection (connection) unless otherwise specified.
  • connection connection
  • a first feature being "on” or “under” a second feature may mean that the first and second features are in direct contact, or that the first and second features are indirect through an intermediary. touch.
  • “above”, “above” and “above” the first feature on the second feature may mean that the first feature is directly above or obliquely above the second feature, or simply means that the first feature is higher in level than the second feature.
  • “Below”, “beneath” and “beneath” the first feature may mean that the first feature is directly below or obliquely below the second feature, or simply means that the first feature is less horizontally than the second feature.
  • the embodiment of the present application provides an atomic interference inertial navigation information detection method, which is applied to the atomic interference inertial navigation information detection system 10 .
  • the atomic interference inertial navigation information detection system 10 includes a sensing device 100 and a computing system 110 . As shown in FIG. 1 , the sensing device 100 includes a first atom source cavity 101 and a second atom source cavity 102 , an interference cavity 103 , two first detectors 104 and at least one second detector 105 .
  • the first atom source cavity 101 is filled with two kinds of atoms
  • the second atom source cavity 102 is filled with at least one kind of atoms in the two kinds of atoms
  • the first atom source cavity 101 is used to provide positive direction along the first direction
  • the moving first atomic beam and the third atomic beam, the second atom source chamber 102 is used to provide the second atomic beam moving in the negative direction of the first direction according to the filled atoms.
  • the atomic interference inertial navigation information detection method includes steps S11-S13.
  • Step S11 in the interference cavity 103, use Raman light to interfere with the first atomic beam, the second atomic beam and the third atomic beam, and then use the detection laser to respectively pass through the first atomic beam and the second atomic beam after interference and the third atomic beam.
  • Step S12 the two first detectors 104 respectively receive the first detection laser light passing through the first atomic beam and the second detection laser light passing through the second atomic beam, and the second detector 105 receives the first detection laser light passing through the third atomic beam Three detection lasers.
  • Step S13 the first detector 104 and the second detector 105 respectively send corresponding electrical signals to the resolution system 110 according to the first detection laser, the second detection laser, and the third detection laser, so that the resolution system 110 according to the first
  • the electrical signals sent by the detector 104 and the second detector 105 determine the detection result.
  • the first atom source cavity 101 , the second atom source cavity 102 and the interference cavity 103 together form a fully enclosed container in the shape of a strip.
  • the fully enclosed container can be made of all glass material or metal material with a glass window.
  • the embodiment of the present application does not specifically limit the shapes and materials of the first atom source cavity 101 , the second atom source cavity 102 and the interference cavity 103 .
  • the above-mentioned fully enclosed container can be connected with a vacuum pump to maintain the vacuum inside, and the absolute pressure inside is usually lower than 10 ⁇ 6 Pa.
  • the atoms filled in the first atom source cavity 101 and the second atom source cavity 102 may be alkali metal or alkaline earth metal atoms.
  • the two kinds of atoms filled in the first atom source chamber 101 include but not limited to any two kinds of elements or isotopes such as sodium, potassium, rubidium, cesium, calcium and strontium.
  • the second atom source chamber 102 is filled with at least one of any two kinds of atoms filled in the above-mentioned first atom source chamber 101 .
  • the first atom source cavity 101 is filled with two isotopes of Rb 85 Rb and 87 Rb
  • the second atom source cavity 102 can be filled with 85 Rb, 87 Rb, or 85 Rb and 87 Rb.
  • the first atomic beam, the second atomic beam and the third atomic beam can enter the interference cavity 103 through the differential pipe.
  • the differential pipeline is used to connect the interference cavity 103 and the first atom source cavity 101 and the second atom source cavity 102 located on both sides of the interference cavity 103, and has the function of maintaining the absolute pressure in the interference cavity 103 lower than that of the first atom source cavity 101 and the second atom source cavity. The effect of the absolute pressure of the atomic source chamber 102.
  • the interference cavity 103 includes an optical window through which the aforementioned Raman light and probe laser light can enter the interior of the interference cavity 103 and pass through the first atomic beam, the second atomic beam and the third atomic beam.
  • the Raman light is used to interfere the first atomic beam, the second atomic beam and the third atomic beam, the first atomic beam, the second atomic beam and the third atomic beam first pass through the state-prepared laser to separate the atoms in each atomic beam Prepared to a specific energy level.
  • the photodetector is a general-purpose light intensity measuring instrument, including a photodiode or a photomultiplier tube and its auxiliary optical path/circuit, which can convert the intensity of the first detection laser and the second detection laser according to a certain photoelectric conversion coefficient converted into the first electrical signal and the second electrical signal.
  • the direction of the above-mentioned Raman light is perpendicular to the movement direction of the atomic beams corresponding to the interference.
  • the atomic interference inertial navigation information detection method changes the number of atomic species filled in the second atomic source cavity 102, changes the number of atomic beams emitted by the second atomic source cavity 102, and cooperates with different Raman light
  • the detector and the detector can simultaneously realize the measurement of inertia and atomic clock in one system, and the two share a first atomic source cavity 101, a second atomic source cavity 102 and an interference cavity 103, which reduces the volume of the device.
  • the interference cavity 10 when the second atom source cavity 102 is filled with one kind of atoms, in the interference cavity 10, Raman light is used to interfere the first atomic beam, the second atomic beam and the third atomic beam, Then, the probe laser light is used to respectively pass through the first atomic beam, the second atomic beam and the third atomic beam after interference, including the following steps S1101 and S1102.
  • Step S1101 using three pairs of Raman light along the second direction to interfere the first atomic beam and the second atomic beam, and then using the first detection laser and the second detection laser along the second direction to respectively pass through the interfering first A beam of atoms and a second beam of atoms.
  • Step S1102 using two pairs of Raman light along the third direction to interfere with the third atomic beam, and then using the third probe laser along the third direction to pass through the interfering third atomic beam.
  • the atoms in the first atomic beam may be the same as the atoms in the second atomic beam, and the atoms in the third atomic beam may be different from the atoms in the first atomic beam and the atoms in the second atomic beam.
  • the first direction, the second direction, and the third direction are perpendicular to each other, and jointly construct a three-axis coordinate system of X, Y, and Z.
  • the first detector 104 and the second detector 105 respectively send corresponding electrical signals to the resolution system 110 according to the first detection laser, the second detection laser, and the third detection laser, so that the resolution system 110 According to the electrical signals sent by the first detector 104 and the second detector 105, determining the detection result includes the following steps S1301 and S1302.
  • step S1301 the two first detectors 104 respectively convert the optical signals of the first detection laser and the second detection laser into electrical signals, and then send them to the resolution system 110, so that the resolution system 110
  • the electrical signal sent by the detector 104 determines the angular rate of rotation in the third direction and the acceleration in the second direction.
  • Step S1302 the second detector 105 converts the optical signal of the third detection laser into an electrical signal, and sends it to the calculating system 110 , so that the calculating system 110 determines a standard frequency signal according to the electrical signal sent by the second detector 105 .
  • the detector can detect the number of atoms at a certain energy level and obtain interference signals.
  • the solution system calculates the rotational angular rate, acceleration and standard frequency signals based on the interference signals.
  • the second atom source cavity 102 is filled with one kind of atoms.
  • the calculation system 110 determines the Z-axis direction according to the electrical signals sent by the two first detectors 104 The angular rate of rotation and the acceleration of the Y axis.
  • the calculation system 110 determines the Z axis according to the electrical signals sent by the two first detectors 104 The angular rate of rotation of the axis and the acceleration of the X axis.
  • the calculating system 110 determines the standard frequency signal according to the electrical signal sent by the second detector 105 .
  • first direction is the X-axis direction
  • second direction is the Y-axis direction
  • third direction is the Z-axis direction and the first direction is the Y-axis direction
  • second direction is the X-axis direction
  • third direction is The Z-axis direction is only an example of the first direction, the second direction, and the third direction of the present application.
  • first direction, the second direction, and the third direction are three different directions, and the embodiment of the present application can be applied.
  • the embodiment of the present application does not specifically limit the specific combination of the first direction, the second direction, and the third direction.
  • the first direction is the X axis
  • the second direction is the Y axis direction
  • the third direction is the Z axis direction.
  • the first atomic source cavity 101 is filled with two isotopes 85 Rb and 87 Rb of Rb.
  • a beam of atomic beams mixed with 85 Rb and 87 Rb components is generated along the X axis.
  • the 87 Rb atomic beams therein are used as the first atomic beam
  • the 85 Rb atomic beams are used as the third atomic beam.
  • the second atomic source cavity 102 is filled with 85 Rb.
  • a 85 Rb atomic beam is generated as the second atomic beam, which moves into the interference cavity 103 along the negative direction of the X axis.
  • the two pairs of Raman light in the third direction are Raman light 4 and Raman light 6 in the Z-axis direction in FIG. 1 .
  • the third atomic beam enters the interference cavity 103, it is firstly prepared in the Z-axis direction, frequency-locked at 85 Rb
  • 5 2 S 1/2 , F 3> ⁇
  • 5 2 P 3/2 , F 3>
  • the laser 3 acts to prepare the atoms in the third atomic beam to the 85 Rb
  • 5 2 S 1/2 , F 2> energy level.
  • the third atomic beam prepared at a specific energy level is sequentially affected by Raman light 4 and Raman light 6 in the Z-axis direction, and Raman-Ramsey interference occurs.
  • the third detection laser is the detection laser 3 in the Z-axis direction in Figure 1, the frequency is locked at 85 Rb
  • 5 2 S 1/2 , F 3> ⁇
  • 5 2 P 3/2 , F 4>transition resonance frequency
  • One second detector 105 is the photodetector 3 in FIG. 1 .
  • the photodetector 3 is set opposite to the detection laser 3 .
  • the third atomic beam after Raman-Ramsey interference is affected by the detection laser 3 , the photodetector 3 receives the detection laser 3 , and converts the optical signal of the detection laser 3 into an electrical signal to obtain an absorption signal s 3 .
  • a real-time Ramsey interference signal S 0 can be obtained.
  • the interference signal S 0 can refer to the following formula (1).
  • is the detuning amount of the Raman light
  • L is the spacing of the Raman light
  • d is the width of the Raman light
  • v is the longitudinal velocity of the atomic beam.
  • the interference phase obtained by the Raman-Mach-Zehnder interference of the first atomic beam and the second atomic beam moving along the X-axis direction contains the phase caused by the rotational angular rate in the Z direction and the acceleration in the Y direction.
  • the information of the rotational angular rate and acceleration can be calculated from the interference phase difference between the emitted first atomic beam and the second atomic beam.
  • the three pairs of Raman light along the second direction are Raman light 1 , Raman light 2 and Raman light 3 in FIG. 1 .
  • the first atomic beam and the second atomic beam enter the interference cavity 103 along the X-axis direction, they are firstly locked to the frequency along the Y-axis direction at 87 Rb
  • 5 2 S 1/2 , F 2> ⁇
  • 5 2 P 3/2 , F 2>
  • the state preparation laser 1 and the state preparation laser 2 of the transition resonance frequency act to prepare the atoms in the first atomic beam and the second atomic beam to 87 Rb
  • 5 2 S 1/2 , F 1> on the energy level.
  • the first atomic beam prepared to a specific energy level is subjected to the effects of Raman light 1, Raman light 2 and Raman light 3 in the Y-axis direction in turn, and the second atomic beam prepared to a specific energy level is subjected to the Y-axis direction in turn.
  • Raman-Mach-Zehnder interference occurs due to the effects of Raman light 3, Raman light 2 and Raman light 1.
  • the first atomic beam and the second atomic beam simultaneously generate their own Raman-Mach-Zehnder interference.
  • This synchronization avoids the size or installation deviation of the glass window, the collimation or shaping optical path size or installation deviation, air disturbance, and external vibration.
  • the inconsistency of the parameters of Raman light 1, Raman light 2, and Raman light 3 interacting with the first atomic beam and the second atomic beam caused by factors such as temperature changes, etc., makes the noise from the external environment and the sensing device
  • the influence of noise inside 100 (mainly from Raman optical parameters) on two sets of interference fringes is synchronous and can be eliminated by common mode.
  • the positions where Raman light 4 and Raman light 6 interact with the third atomic beam can coincide with the positions where Raman light 1 and Raman light 3 interact with the first atomic beam (or the second atomic beam), as shown in Figure 1 Show. It is also possible to shorten the distance between Raman light 4 and Raman light 6, so that the position where Raman light 4 and Raman light 6 interact with the third atomic beam is the same as that between Raman light 1, Raman light 3 and the first atomic beam ( Or the position of the second atomic beam) is spaced apart to reduce the interference of Raman light 4 and Raman light 6 on the first atomic beam, the second atomic beam and Raman light 1 and Raman light 3 on the third atomic beam, This mutual interference may produce optical frequency shift, which will deteriorate the measurement results of the atomic interference inertial navigation information detection system 10 .
  • the first detection laser is the detection laser 1 in the Y-axis direction in Figure 1, the frequency is locked at 87 Rb
  • 5 2 S 1/2 , F 2> ⁇
  • 5 2 P 3/2 , F 3>transition resonance frequency .
  • the second detection laser is the detection laser 2 in the Y-axis direction in Figure 1, the frequency is locked at 87 Rb
  • 5 2 S 1/2 , F 2> ⁇
  • 5 2 P 3/2 , F 3>transition resonance frequency .
  • the two first detectors 104 are photodetector 1 and photodetector 2 in FIG. 1 .
  • the photodetector 1 is set opposite to the detection laser 1
  • the photodetector 2 is set opposite to the detection laser 2 .
  • the first atomic beam and the second atomic beam are respectively affected by the detection laser 1 and the detection laser 2
  • the photodetector 1 and the photodetector 2 respectively receive the detection laser 1 and the detection laser 2
  • the optical signals of the detection laser 1 and the detection laser 2 are converted into electrical signals to obtain absorption signals s 1 and s 2 .
  • the calculation system 110 first calibrates the absorption signals s 1 and s 2 , and then performs normalization Interference signals S 1 and S 2 are obtained after the correction.
  • the interference signal S 1 can refer to the following formula (2)
  • the interference signal S 2 can refer to the following formula (3).
  • A is the offset value of the interference signal
  • C/2 is the amplitude of the interference signal
  • ⁇ 1 and ⁇ 2 are the interference phase
  • k eff is the effective wave vector of Raman light for 87 Rb
  • L is the spacing of Raman light
  • v is the longitudinal velocity of the atomic beam
  • ⁇ z is the angular rate of rotation in the direction of the Z axis
  • a y is the acceleration in the direction of the Y axis.
  • the sensing device 100 can be used to obtain the uniaxial rotational angular rate, uniaxial acceleration and standard frequency signal. That is, the atomic interference inertial navigation information detection system 10 including the above-mentioned sensing device 100 can realize both atomic inertial measurement and the function of an atomic clock.
  • the atomic source cavity of the sensing device 100 provides a continuous atomic beam
  • the radio frequency system uses the output of the crystal oscillator as a reference to output a radio frequency driving signal, which is provided to the optical system.
  • the optical system generates lasers of different frequencies with the help of radio frequency driving signals, and the lasers of different frequencies are output to the sensing device and interact with the atomic beam.
  • the photodetector of the sensing device detects and converts the signal, and outputs it to the calculation system.
  • the solution system outputs inertial quantities, including acceleration and angular rate.
  • the solver system adjusts the output of the crystal oscillator.
  • the crystal oscillator outputs a standard frequency signal.
  • the output of the crystal oscillator is used as a reference from the radio frequency system to output a radio frequency drive signal, and the step of providing it to the optical system begins to repeat the above steps.
  • the second atom source cavity 102 when the second atom source cavity 102 is filled with two kinds of atoms, the second atom source cavity 102 is also used to provide a fourth atomic beam moving in the negative direction of the first direction.
  • the probing laser is used to pass through the interfered first atomic beam, second atomic beam and The third atomic beam includes the following steps S1111 and S1112.
  • step S1111 after interfering the first atomic beam and the second atomic beam with three pairs of Raman light along the second direction, the first detection laser and the second detection laser along the second direction pass through the interferometric A first atomic beam and a second atomic beam.
  • step S1112 after using three pairs of Raman light along the third direction to interfere the third atomic beam and the fourth atomic beam, using the third probe laser and the fourth probe laser along the third direction to pass through all Describe the third atomic beam and the fourth atomic beam.
  • the atoms in the first atomic beam and the second atomic beam are the same, the atoms in the third atomic beam and the fourth atomic beam are the same, and the atoms in the third atomic beam are different from those in the first atomic beam.
  • the first direction, the second direction and the third direction jointly construct a three-axis coordinate system of X, Y and Z.
  • the sensing device 100 includes two second detectors 105, the first detector 104 and the second detector 105 respectively guide the solution system according to the first detection laser, the second detection laser, and the third detection laser 110 sends a corresponding electrical signal, so that the calculation system 110 determines the detection result according to the electrical signals sent by the first detector 104 and the second detector 105, including the following steps S1311 and S1312.
  • step S1311 the two first detectors 104 respectively convert the optical signals of the first detection laser and the second detection laser into electrical signals, and then send them to the resolution system 110, so that the resolution system 110
  • the electrical signal sent by the device 104 determines the rotational angular rate in the third direction and the acceleration in the second direction.
  • step S1312 the two second detectors 105 respectively convert the optical signals of the third detection laser light and the fourth detection laser light into electrical signals, and then send them to the calculation system 110, so that the calculation system 110
  • the electrical signal sent by the controller 105 determines the rotational angular rate in the second direction and the acceleration in the third direction.
  • the second atom source cavity 102 is filled with two kinds of atoms.
  • the solving system 110 determines the rotational angular rate and The acceleration of the Y axis.
  • the calculation system 110 determines the rotational angular rate of the Y axis and the acceleration of the Z axis according to the electrical signals sent by the two second detectors 105 .
  • the solving system 110 determines the rotational angular velocity and The acceleration of the X axis.
  • the solving system 110 determines the rotational angular rate of the X-axis and the acceleration of the Z-axis according to the electrical signals sent by the two second detectors 105 .
  • the first direction is the X axis
  • the second direction is the Y axis direction
  • the third direction is the Z axis direction.
  • the sensing device 100 in FIG. 7 combines two directions of interference in one device, but uses different types of atoms and corresponding lasers of different frequencies. 87 Rb atoms are used for interference in the Y-axis direction, and the corresponding laser wavelength used is around 780nm.
  • the interference in the Z-axis direction uses 85 Rb atoms, and the corresponding laser wavelength is around 795nm.
  • the 780nm laser cannot act on 85 Rb, and the 795nm laser cannot act on 87 Rb, so the interference in the Y-axis direction and the interference in the Z-axis direction have no influence on each other. Therefore, the function of simultaneously measuring the biaxial acceleration and the biaxial rotational angular rate in one sensing device 100 is realized.
  • the specific method is as follows.
  • the first atomic source cavity 101 is filled with two isotopes 85 Rb and 87 Rb of Rb.
  • a beam of atomic beams mixed with 85 Rb and 87 Rb components is generated along the X axis. Moving in the positive direction into the interference cavity 103, the 87 Rb atomic beams therein are used as the first atomic beam, and the 85 Rb atomic beams are used as the third atomic beam.
  • the second atomic source cavity 102 is filled with two isotopes 85 Rb and 87 Rb of Rb, and when the atomic interference inertial navigation information detection system 10 is working, a beam of atomic beams mixed with 85 Rb and 87 Rb components is generated along the X axis
  • the movement in the negative direction enters the interference cavity 103, and the 87 Rb atomic beams therein are used as the second atomic beam, and the 85 Rb atomic beams are used as the fourth atomic beam.
  • the interferometric phase obtained by Raman-Mach-Zehnder interference between the first atomic beam and the second atomic beam moving along the X-axis direction includes the phase caused by the rotational angular rate in the Z-axis direction and the acceleration in the Y-axis direction.
  • the three pairs of Raman light in the second direction are Raman light 1 , Raman light 2 and Raman light 3 in FIG. 7 .
  • the first atomic beam and the second atomic beam enter the interference cavity 103 along the X-axis direction, they are firstly locked to the frequency along the Y-axis direction at 87 Rb
  • 5 2 S 1/2 , F 2> ⁇
  • 5 2 P 3/2 , F 2>
  • the state preparation laser 1 and the state preparation laser 2 of the transition resonance frequency act to prepare the atoms in the first atomic beam and the second atomic beam to 87 Rb
  • 5 2 S 1/2 , F 1> on the energy level.
  • the first atomic beam prepared at a specific energy level is subjected to the effects of Raman light 1, Raman light 2 and Raman light 3 in the Y-axis direction in turn, and the second atomic beam prepared at a specific energy level is sequentially pulled up in the Y-axis direction.
  • the Raman-Mach-Zehnder interference occurs due to the action of Mann light 3, Raman light 2 and Raman light 1.
  • the first atomic beam and the second atomic beam simultaneously generate their own Raman-Mach-Zehnder interference.
  • This synchronization avoids the size or installation deviation of the glass window, the collimation or shaping optical path size or installation deviation, air disturbance, and external vibration.
  • the inconsistency of the parameters of Raman light 1, Raman light 2, and Raman light 3 interacting with the first atomic beam and the second atomic beam caused by factors such as temperature changes, etc., makes the noise from the external environment and the sensing device
  • the influence of noise inside 100 (mainly from Raman optical parameters) on two sets of interference fringes is synchronous and can be eliminated by common mode.
  • the first detection laser is the detection laser 1 in the Y-axis direction in Figure 7, the frequency is locked at 87 Rb
  • 5 2 S 1/2 , F 2> ⁇
  • 5 2 P 3/2 , F 3>transition resonance frequency .
  • the second detection laser is the detection laser 2 in the Y-axis direction in Figure 7, the frequency is locked at 87 Rb
  • 5 2 S 1/2 , F 2> ⁇
  • 5 2 P 3/2 , and F 3> transition resonance frequency .
  • the two first detectors 104 are photodetector 1 and photodetector 2 in FIG. 7 .
  • the photodetector 1 is set opposite to the detection laser 1
  • the photodetector 2 is set opposite to the detection laser 2 .
  • the first atomic beam and the second atomic beam are respectively affected by the detection laser 1 and the detection laser 2
  • the photodetector 1 and the photodetector 2 respectively receive the detection laser 1 and the detection laser 2
  • the optical signals of the detection laser 1 and the detection laser 2 are converted into electrical signals to obtain absorption signals s 1 and s 2 .
  • the calculation system 110 first calibrates the absorption signals s 1 and s 2 , and then performs normalization Interference signals S 1 and S 2 are obtained after the correction.
  • the calculation of the interference signals S 1 and S 2 can refer to formula (2) and formula (3) in the above embodiment.
  • Carry out k eff vector inversion for Raman light 1, Raman light 2, and Raman light 3, and also perform the aforementioned Raman-Mach-Zehnder interference process to obtain interference signals S′ 1 , S′ 2 , and interference signal S′ 1 , S' 2 can be calculated with reference to formula (4) and formula (5) in the above-mentioned embodiment.
  • the interference phase obtained by the Raman-Mach-Zehnder interference of the third atomic beam and the fourth atomic beam moving along the X-axis direction includes the phase caused by the rotational angular rate in the Y-axis direction and the acceleration in the Z-axis direction.
  • the three pairs of Raman light along the third direction are Raman light 4 , Raman light 5 and Raman light 6 in FIG. 7 .
  • the third atomic beam and the fourth atomic beam enter the interference cavity 103 along the X-axis direction, they are firstly locked to the frequencies along the Z-axis direction at 85 Rb
  • 5 2 S 1/2 , F 3> ⁇
  • 5 2 P 3/2 , F 3>The state-preparation laser 3 and state-preparation laser 4 of the transition resonance frequency act to prepare the atoms of the third atomic beam and the fourth atomic beam to 85 Rb
  • 5 2 S 1/2 , F 2> on the energy level.
  • the third atomic beam prepared at a specific energy level is sequentially affected by Raman light 4, Raman light 5 and Raman light 6 in the Z-axis direction, and the fourth atomic beam prepared at a specific energy level is sequentially pulled up in the Z-axis direction.
  • Raman-Mach-Zehnder interference occurs due to the effects of Mann light 6, Raman light 5 and Raman light 4.
  • the third atomic beam and the fourth atomic beam simultaneously generate their own Raman-Mach-Zehnder interference.
  • This synchronization avoids the size or installation deviation of the glass window, the collimation or shaping optical path size or installation deviation, air disturbance, and external vibration.
  • the inconsistency of the parameters of the Raman light 4, Raman light 5, and Raman light 6 interacting with the third atomic beam and the fourth atomic beam caused by factors such as temperature changes, etc., makes the noise from the external environment and the sensing device
  • the influence of noise inside 100 (mainly from Raman optical parameters) on two sets of interference fringes is synchronous and can be eliminated by common mode.
  • the third detection laser is the detection laser 3 in the direction of the Z axis in Figure 7, the frequency is locked at 85 Rb
  • 5 2 S 1/2 , F 3> ⁇
  • 5 2 P 3/2 , and F 4>transition resonance frequency .
  • the fourth detection laser is the detection laser 4 in the Z-axis direction in Figure 7, the frequency is locked at 85 Rb
  • 5 2 S 1/2 , F 3> ⁇
  • 5 2 P 3/2 , F 4>transition resonance frequency .
  • the two second detectors 105 are photodetectors 3 and 4 in FIG. 7 .
  • the photodetector 3 is set opposite to the detection laser 3
  • the photodetector 4 is set opposite to the detection laser 4 .
  • the third atomic beam and the fourth atomic beam after the Raman-Mach-Zehnder interference are respectively affected by the detection laser 3 and the detection laser 4, the photodetector 3 and the photodetector 4 respectively receive the detection laser 3 and the detection laser 4, and The optical signals of the detection laser 3 and the detection laser 4 are converted into electrical signals to obtain absorption signals s 3 and s 4 .
  • the flux, interference effect, detection efficiency and other factors of different atomic beams are different, resulting in differences in the intensity and contrast of the detection signals. Therefore, the calculation system 110 first calibrates the absorption signals s 3 and s 4 , and then performs normalization Interference signals S 3 and S 4 are obtained after the correction.
  • the interference signal S 3 can refer to the following formula (8)
  • the interference signal S 4 can refer to the following formula (9).
  • A is the offset value of the interference signal
  • C/2 is the amplitude of the interference signal
  • ⁇ 3 and ⁇ 4 are the interference phase
  • k′ eff is the effective wave vector of Raman light for 85 Rb
  • L is the Raman light
  • v is the longitudinal velocity of the atomic beam
  • ⁇ y is the angular rate of rotation in the direction of the Y axis
  • a Z is the acceleration in the direction of the Z axis
  • interference signals S′ 3 , S′ 4 , and interference signal S′ 3 can refer to the following formula (10), and the interference signal S' 4 can refer to the following formula (11).
  • ⁇ y can refer to the following formula (12)
  • a 2 can refer to the following formula (13).
  • the sensing device 100 can be used to obtain biaxial rotational angular rate and biaxial acceleration. That is, the atomic interference inertial navigation information detection system 10 including the above-mentioned sensing device 100 can realize the function of dual-axis atomic inertial measurement.
  • the embodiment of the present application also provides an atomic interference inertial navigation information detection system 10 .
  • the atomic interference inertial navigation information detection system 10 includes a first sensing device 20 and a calculation system 110 .
  • the first sensing device 20 includes a first atom source cavity 101 and a second atom source cavity 102 .
  • the first atom source chamber 101 is filled with two kinds of atoms
  • the second atom source chamber 102 is filled with at least one kind of atoms in the two kinds of atoms.
  • the first atom source chamber 101 is used to provide the first atomic beam and the third atomic beam moving in the positive direction of the first direction.
  • the second atom source chamber 102 is used to provide a second atomic beam moving in the negative direction of the first direction according to the filled atoms.
  • the first sensing device 20 also includes an interference cavity 103 .
  • the interference cavity 103 is used to carry out the interference reaction between the first atomic beam, the second atomic beam and the third atomic beam and the Raman light, and use the detection laser to pass through the first atomic beam, the second atomic beam and the third atomic beam respectively after interference. atomic beam.
  • the first sensing device 20 further includes two first detectors 104 arranged in the second direction and at least one second detector 105 arranged in the third direction.
  • the two first detectors 104 are respectively used to receive the first detection laser light that passes through the first atomic beam and the second detection laser light that passes through the second atomic beam, and provide the calculation system with the first detection laser light and the second detection laser light 110 Send a corresponding first electrical signal.
  • the second detector 105 is used for receiving the third detection laser light passing through the third atomic beam, and sending a corresponding second electrical signal to the calculation system 110 according to the third detection laser light.
  • the solving system 110 is used for determining a first detection result according to the first electrical signal and the second electrical signal.
  • the working process and structure of the first sensing device 20 in the embodiment of the present application can be described with reference to the sensing device 100 in the foregoing embodiment, and will not be repeated here in the embodiment of the present application.
  • the atomic interference inertial navigation information detection system 10 changes the number of atomic beams emitted by the second atomic source cavity 102 by changing the number of atomic species filled in the second atomic source cavity 102, and cooperates with different Raman light and
  • the detector can simultaneously realize the measurement of the inertia and the atomic clock in one system, and the two share a first atomic source cavity 101, a second atomic source cavity 102 and an interference cavity 103, which reduces the size of the device.
  • the atomic interference inertial navigation information detection system 10 further includes a radio frequency system 120 and an optical system 130 .
  • the radio frequency system 120 is used for generating radio frequency signals of different frequencies under the control of the solving system 110 .
  • the optical system 130 is used to provide probing laser light directed to the first detector 104 and the second detector 105 according to radio frequency signals of different frequencies, and to provide Raman light in the same direction as the probing laser.
  • a semiconductor frequency-stabilized laser can be used as the laser source inside the optical system 130.
  • the laser output from the laser source is divided into several paths through an optical fiber beam splitter, and then processed by an acousto-optic modulator or an electro-optic modulator. Afterwards, lasers of different frequencies are obtained and output to the first sensing device 20 via optical fibers.
  • Optical system 130 may include lasers, laser beam splitters, laser power amplifiers, electro-optic modulators, acousto-optic modulators, optical switches, and other laser and optical devices.
  • the radio frequency signals of different frequencies provided by the radio frequency system 120 can be output to the acousto-optic and electro-optic devices of the optical system 130 to realize the frequency shift of the beam so that the optical system 130 can obtain laser light of different frequencies.
  • the above lasers with different frequencies are the state preparation laser, Raman light and probe laser mentioned in the embodiments of the present application.
  • Lasers of different frequencies can enter the lens barrel with beam collimation and shaping functions through the free space optical path or fiber optic device, be collimated and shaped into the required size and shape, and then enter the interior through the optical window on the interference cavity 103 , interact with the atomic beam, and output the detection signal to the solving system 110 .
  • the radio frequency system 120 can also generate radio frequency signals of different powers under the control of the solving system 110 according to actual needs, so that the optical system 130 can provide laser beams of different powers.
  • the solution system 110 can be composed of computer, analog and digital I/O interface, analog/digital conversion interface, digital/analog conversion interface, serial communication interface, control software and other parts, and is used to control the entire atomic interference inertial navigation information detection system Parts of 10 work.
  • the solution system 110 can adjust the frequency and power of the output signal of the radio frequency system 120, control the power and frequency of each laser beam output by the optical system 130, control the temperature and flux of the atomic beam of the sensing device 100, and collect the detection signals of each detector And convert, process, store, solve, and output the values of acceleration and angular rate.
  • the first sensing device 20 includes a second detector 105 under the condition that the second atom source chamber 102 is filled with one kind of atoms, the first sensing device 20 includes a second detector 105 .
  • the atomic interference inertial navigation information detection system 10 further includes a crystal oscillator 140 for outputting a standard frequency signal to the radio frequency system 120 .
  • the atomic interference inertial navigation information detection system 10 may also include a servo module. After the interference signal is input into the servo module, it is used for feedback control of the crystal oscillator to output a standard frequency signal.
  • the optical system 130 is used to provide three pairs of Raman light in the second direction, two pairs of Raman light in the third direction, and the first detection laser, the second detection laser, The third detection laser of the second detector 105 .
  • the first sensing device 20 is the sensing device 100 in the above-mentioned embodiment of the present application that can realize both the atomic inertia measurement and the atomic clock function, and the specific method will not be repeated here.
  • the solving system 110 may also include a servo system. After the interference signal S3 is input into the servo system of the calculation system 110, it is used for feedback control of the crystal oscillator 140 to output a standard frequency signal, and the standard frequency signal is counted and converted to obtain a time signal, which realizes the function of an atomic clock.
  • the crystal oscillator 140 outputs a standard frequency signal to the radio frequency system 120, and the radio frequency system 120 uses the standard frequency signal as a reference (baseline) to generate radio frequency signals of different frequencies to drive the electro-optic modulator in the optical system 130 to generate Raman light of different frequencies.
  • the crystal oscillator outputs a standard frequency signal of 10MHz frequency, which is used as a reference (reference) to the radio frequency system 120, and the radio frequency system 120 generates a 6.834GHz radio frequency signal on the basis of the 10MHz standard frequency signal to drive the optical system 130.
  • the electro-optic modulator generates Raman light, and the Ramsey interference signal S3 can only be seen at the detection end after the Raman light acts on the atomic beam.
  • the first sensing device 20 when the second atom source chamber 102 is filled with two kinds of atoms, the first sensing device 20 includes two second detectors 105 .
  • the optical system 130 is used to provide three pairs of Raman light in the second direction, three pairs of Raman light in the third direction, and the first detection laser, the second detection laser and The third detection laser and the fourth detection laser to the two second detectors 105 .
  • the first sensing device 20 is the sensing device 100 in the above-mentioned embodiment of the present application that can realize two-axis atomic inertial measurement, and the specific method will not be repeated here.
  • the atomic interference inertial navigation information detection system 10 in any of the above embodiments further includes a second sensing device 30 .
  • the second sensing device 30 is arranged vertically to the first sensing device 20 .
  • the calculating system 110 is further configured to determine a corresponding second detection result according to the electrical signal transmitted by the second sensing device 30 .
  • the first sensing device 20 is a sensing device 100 for realizing biaxial atomic inertial measurement, that is, the cavity of the second atomic source in the first sensing device 20 is filled with two kinds of atom, the number of second detectors is 2.
  • the second sensing device 30 is a sensing device 100 for realizing biaxial atomic inertial measurement, that is, the second atom source cavity in the second sensing device 30 is filled with two kinds of atoms, and the number of second detectors is 2 .
  • the first sensing device 20 and the second sensing device 30 are arranged vertically, as shown in FIG. 12 .
  • the first detection result of the first sensing device 20 is the rotational angular rate and acceleration in the Y-axis and Z-axis directions.
  • the second detection result of the second sensing device 30 is the rotational angular rate and acceleration in the X-axis and Z-axis directions.
  • the first atomic beam, the second atomic beam, the third atomic beam and the fourth atomic beam are atomic beam 1, atomic beam 2, atomic beam 3 and atomic beam 4 in Figs. 13-16. Therefore, the atomic interference inertial navigation information detection system 10 including the first sensing device 20 and the second sensing device 30 can realize three-axis inertial measurement at the same time.
  • the first sensing device 20 is a sensing device 100 for realizing uniaxial rotational angular rate, uniaxial acceleration and an atomic clock at the same time, that is, the second atom in the first sensing device 20
  • the source cavity is filled with one kind of atoms, and the number of the second detector is one.
  • the second sensing device 30 is a sensing device 100 for realizing biaxial atomic inertial measurement, that is, the second atom source cavity in the second sensing device 30 is filled with two kinds of atoms, and the number of second detectors is 2 .
  • the first sensing device 20 and the second sensing device 30 are arranged vertically, as shown in FIG. 17 .
  • the first detection results of the first sensing device 20 are the rotational angular rate in the Z-axis direction, the acceleration in the Y-axis direction and the standard frequency signal.
  • the second detection result of the second sensing device 30 is the rotational angular rate and acceleration in the X-axis and Z-axis directions. Therefore, the atomic interference inertial navigation information detection system 10 including the above-mentioned first sensing device 20 and second sensing device 30 can simultaneously realize the measurement of the rotational angular rate in the X-axis and Z-axis directions, and the acceleration in the X-axis, Y-axis and Z-axis directions. measurement and standard frequency signals.
  • the first sensing device 20 is different from the second sensing device 30 in the setting of the first direction, the second direction and the third direction, that is, the first sensing device 20 can also realize
  • the sensor device 100 for single-axis rotational angular rate, single-axis acceleration and atomic clock can measure the rotational angular rate of the Y-axis and the acceleration a Z of the Z-axis.
  • the above-mentioned atomic interference inertial navigation information detection system 10 shown in Fig. 12 to Fig. 26 is only an example of the embodiment of the present application. The sensing device is specifically limited.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Gyroscopes (AREA)

Abstract

一种原子干涉惯性导航信息探测系统(10),包括第一传感装置(20)和解算系统(110),第一传感装置(20)包括第一原子源腔(101)和第二原子源腔(102)、干涉腔(103),两个第一探测器(104)和至少1个第二探测器(105)。第一原子源腔(101)内填充两种原子,第二原子源腔(102)内填充两种原子中的至少一种原子。还提供了一种原子干涉惯性导航信息探测方法,应用于原子干涉惯性导航信息探测系统(10)。

Description

原子干涉惯性导航信息探测系统及探测方法
相关申请的交叉引用
本申请要求于2022年1月11日提交中国专利局,申请号为202210024736.7,申请名称为“原子干涉惯性导航信息探测系统及探测方法”的中国专利申请的优先权,在此将其全文引入作为参考。
技术领域
本申请涉及量子精密惯性测量领域及时间与频率计量领域,尤其涉及一种原子干涉惯性导航信息探测系统及探测方法。
背景技术
导航与授时是重要的国家关键技术,已经深入到国民经济、国防安全等各个领域,可以应用于智能化交通运输系统、数字化地球、精确制导武器装备等。其中,导航是通过测量并输出载体的运动速度和位置,引导载体按指定速度和轨迹运动;授时是通过标准或定制的接口和协议,为其它设备或系统提供时间信息。
在多种导航技术中,惯性导航是一种典型的自主式导航方式,不需要地面及其它外部设备的辅助,具有自主、连续、隐蔽的特点,其中基于原子干涉的惯性测量技术具有高精度的加速度和转动角速度测量潜力。以常规的三脉冲原子干涉惯性传感器为例,使用三对拉曼激光对原子束或原子云团进行π/2-π-π/2相干操纵后,使原子束发生拉曼-马赫-曾德尔(Raman-Mach-Zehnder)干涉,经过检测获得干涉条纹,将两束方向相对的原子束的干涉条纹相移进行求和或差分后可以解算载体的加速度或转动角速率。而在授时(Time Service)领域里,原子钟可作为一种精密的守时(Time Keeping)装置产生时间信号,其借助原子超精细能级间振荡频率为基准来计算时间。以基于拉曼-拉姆齐(Raman-Ramsey)干涉的光抽运束型原子钟为例,使用两对同向拉曼激光对原子束进行π/2-π/2相干操纵,使原子束发生Raman-Ramsey干涉,借助Raman-Ramsey干涉信号作为反馈,控制晶振输出标准频率信号。
传统技术中在导航-授时联用领域,原子惯性传感器、原子钟是两种独立的装置,因此原子惯性传感器和原子钟装置体积大,占用过多的总空间,在对导航-授时同时存在需求且空间有限的平台无法使用。
发明内容
基于此,为了解决传统技术中原子惯性传感器与原子钟无法在空间有限的平台中同时使用时的问题,本申请提出一种原子干涉惯性导航信息探测系统及探测方法。
一种原子干涉惯性导航信息探测方法,应用于原子干涉惯性导航信息探测系统,所述原子干涉惯性导航信息探测系统包括传感装置和解算系统,其中,所述传感装置包括第一原子源腔和第二原子源腔、干涉腔,两个第一探测器和至少1个第二探测器,其中,所述第一原子源腔内填充两种原子,所述第二原子源腔内填充所述两种原子中的至少一种原子,所述第一原子源腔用于提供沿第一方向的正方向运动的第一原子束和第三原子束,所述第二原子源腔用于根据填充的原子提供沿所述第一方向的负方向运动的第二原子束,所述方法包括:
在所述干涉腔内,采用拉曼光对所述第一原子束、所述第二原子束和所述第三原子束进 行干涉,再采用探测激光分别穿过干涉后的所述第一原子束、所述第二原子束和所述第三原子束;
所述两个第一探测器分别接收穿过所述第一原子束的第一探测激光和穿过所述第二原子束的第二探测激光,所述第二探测器接收穿过所述第三原子束的第三探测激光;
所述第一探测器和所述第二探测器分别根据所述第一探测激光、所述第二探测激光、所述第三探测激光向所述解算系统发送对应的电信号,以使所述解算系统根据所述第一探测器和所述第二探测器发送的电信号,确定探测结果。
在一个实施例中,所述第二原子源腔内填充一种原子,所述在所述干涉腔内,采用拉曼光对所述第一原子束、所述第二原子束和所述第三原子束进行干涉后,采用探测激光分别穿过干涉后的所述第一原子束、所述第二原子束和所述第三原子束,包括:
采用沿第二方向的三对拉曼光对所述第一原子束和所述第二原子束进行干涉后,采用沿所述第二方向的所述第一探测激光和所述第二探测激光分别穿过干涉后的所述第一原子束和所述第二原子束;
采用沿第三方向的两对拉曼光对所述第三原子束进行干涉后,采用沿所述第三方向的所述第三探测激光穿过干涉后的所述第三原子束。
在一个实施例中,所述第一探测器和所述第二探测器分别根据所述第一探测激光、所述第二探测激光、所述第三探测激光向所述解算系统发送对应的电信号,以使所述解算系统根据所述第一探测器和所述第二探测器发送的电信号,确定探测结果,包括:
所述两个第一探测器分别将所述第一探测激光和所述第二探测激光的光信号转化为电信号后,发送至所述解算系统,以使所述解算系统根据所述两个第一探测器发送的电信号确定所述第三方向的转动角速率和所述第二方向的加速度;
所述第二探测器将所述第三探测激光的光信号转化为电信号后,发送至所述解算系统,以使所述解算系统根据所述第二探测器发送的电信号确定标准频率信号。
在一个实施例中,所述第二原子源腔内填充两种原子,所述第二原子源腔还用于提供沿所述第一方向的负方向运动的第四原子束,
所述在所述干涉腔内,采用拉曼光对所述第一原子束、所述第二原子束和所述第三原子束进行干涉后,采用探测激光分别穿过干涉后的所述第一原子束、所述第二原子束和所述第三原子束,包括:
采用沿所述第二方向的三对拉曼光对所述第一原子束和所述第二原子束进行干涉后,采用沿所述第二方向的所述第一探测激光和所述第二探测激光分别穿过干涉后的所述第一原子束和所述第二原子束;
采用沿所述第三方向的三对拉曼光对所述第三原子束和所述第四原子束进行干涉后,采用沿所述第三方向的所述第三探测激光和第四探测激光穿过干涉后的所述第三原子束和所述第四原子束。
在一个实施例中,所述传感装置包括两个第二探测器,所述第一探测器和所述第二探测器分别根据第一探测激光、所述第二探测激光、所述第三探测激光向所述解算系统发送对应的电信号,以使所述解算系统根据所述第一探测器和所述第二探测器发送的电信号,确定探测结果,包括:
所述两个第一探测器分别将所述第一探测激光和所述第二探测激光的光信号转化为电信号后,发送至所述解算系统,以使所述解算系统根据所述两个第一探测器发送的电信号确定 所述第三方向的转动角速率和所述第二方向的加速度;
所述两个第二探测器分别将所述第三探测激光和所述第四探测激光的光信号转化为电信号后,发送至所述解算系统,以使所述解算系统根据所述两个第二探测器发送的电信号确定所述第二方向的转动角速率和所述第三方向的加速度。
一种原子干涉惯性导航信息探测系统,其特征在于,包括第一传感装置及解算系统,其中,所述第一传感装置包括:第一原子源腔和第二原子源腔,所述第一原子源腔内填充两种原子,所述第二原子源腔内填充所述两种原子中的至少一种原子,所述第一原子源腔用于提供沿第一方向的正方向运动的第一原子束和第三原子束,所述第二原子源腔用于根据填充的原子提供沿所述第一方向的负方向运动的第二原子束;
所述第一传感装置还包括干涉腔,用于进行所述第一原子束、所述第二原子束和所述第三原子束与拉曼光的干涉反应后,采用探测激光分别穿过干涉后的所述第一原子束、所述第二原子束和所述第三原子束;
所述第一传感装置还包括设置在第二方向的两个第一探测器及设置在第三方向上的至少1个第二探测器,所述两个第一探测器分别用于接收穿过所述第一原子束的第一探测激光和穿过所述第二原子束的第二探测激光,并根据所述第一探测激光、所述第二探测激光向所述解算系统发送对应的第一电信号、所述第二探测器用于接收穿过所述第三原子束的第三探测激光,并根据所述第三探测激光向所述解算系统发送对应的第二电信号;
所述解算系统用于根据所述第一电信号和所述第二电信号,确定第一探测结果。
在一个实施例中,所述原子干涉惯性导航信息探测系统还包括射频系统,用于在所述解算系统的控制下,产生不同频率的射频信号;
光学系统,用于根据所述不同频率的射频信号提供射向所述第一探测器及所述第二探测器的所述探测激光,及用于提供与所述探测激光同方向的拉曼光。
在一个实施例中,所述第二原子源腔内填充一种原子,所述第一传感装置包括一个所述第二探测器,所述原子干涉惯性导航信息探测系统还包括晶振,用于向所述射频系统输出标准频率信号;
所述光学系统用于提供所述第二方向的三对拉曼光、所述第三方向的两对拉曼光,及分别射向所述两个第一探测器的所述第一探测激光、所述第二探测激光、射向所述第二探测器的所述第三探测激光。
在一个实施例中,在所述第二原子源腔内填充两种原子的情况下,所述第一传感装置包括两个所述第二探测器,所述光学系统用于提供所述第二方向的三对拉曼光、所述第三方向的三对拉曼光,及分别射向所述两个第一探测器的所述第一探测激光、所述第二探测激光和分别射向所述两个第二探测器的所述第三探测激光和第四探测激光。
在一个实施例中,包括上述任一实施例所述的原子干涉惯性导航信息探测系统,还包括第二传感装置,所述第二传感装置与所述第一传感装置垂直设置,所述解算系统还用于根据所述第二传感装置传递的电信号,确定对应的第二探测结果。
本申请实施例提供的所述原子干涉惯性导航信息探测系统及探测方法,所述原子干涉惯性导航信息探测系统包括传感装置和解算系统,所述传感装置包括第一原子源腔和第二原子源腔、干涉腔,两个第一探测器和至少1个第二探测器。所述第一原子源腔内填充两种原子,所述第二原子源腔内填充所述两种原子中的至少一种原子。所述第一原子源腔用于提供沿第一方向的正方向运动的第一原子束和第三原子束,所述第二原子源腔用于根据填充的原子提 供沿第一方向的负方向运动的第二原子束。在所述干涉腔内,采用拉曼光对所述第一原子束、所述第二原子束和所述第三原子束进行干涉后,采用探测激光分别穿过干涉后的所述第一原子束、所述第二原子束和所述第三原子束。所述两个第一探测器分别接收穿过所述第一原子束的第一探测激光和穿过所述第二原子束的第二探测激光,所述第二探测器接收穿过所述第三原子束的第三探测激光。所述第一探测器和所述第二探测器分别根据所述第一探测激光、所述第二探测激光、所述第三探测激光向所述解算系统发送对应的电信号,以使所述解算系统根据所述第一探测器和所述第二探测器发送的电信号,确定探测结果。本申请实施例提供的所述原子干涉惯性导航信息探测系统及探测方法,通过改变所述第二原子源腔内填充的原子种类数目,改变所述第二原子源腔出射的原子束数量,配合不同的拉曼光和探测器能够在一个系统内同时实现惯性与原子钟的测量,二者共用一个第一原子源腔、第二原子源腔和干涉腔,缩小了装置体积。因此本申请实施例提供的所述原子干涉惯性导航信息探测系统可以应用于对导航-授时同时存在需求且空间有限的平台。
附图说明
图1为本申请提供的一实施例中用于单轴加速度、单轴角速率测量和原子钟测量的传感装置的结构原理图。
图2为本申请提供的一实施例中用于单轴加速度、单轴角速率测量和原子钟测量的传感装置的正视图。
图3为本申请提供的一实施例中用于单轴加速度、单轴角速率测量和原子钟测量的传感装置的俯视图。
图4为本申请提供的一实施例中拉曼-马赫-曾德尔干涉原理图。
图5为本申请提供的一实施例中拉曼-拉姆齐干涉原理图。
图6为本申请提供的一实施例中原子干涉惯性导航信息探测方法的流程示意图。
图6(a)为本申请提供的另一实施例中原子干涉惯性导航信息探测方法的流程示意图。
图7为本申请提供的一实施例中用于双轴惯性测量的传感装置的结构原理图。
图8为本申请提供的一实施例中用于双轴惯性测量的传感装置的正视图。
图9为本申请提供的一实施例中用于双轴惯性测量的传感装置的俯视图。
图10为本申请提供的一实施例中原子干涉惯性导航信息探测系统的示意图。
图11为本申请提供的另一实施例中原子干涉惯性导航信息探测系统的示意图。
图12为本申请提供的一实施例中传感装置的组合示意图。
图13为本申请提供的一实施例中传感装置组合中第一传感装置的正视图。
图14为本申请提供的一实施例中传感装置组合中第一传感装置的俯视图。
图15为本申请提供的一实施例中传感装置组合中第二传感装置的正视图。
图16为本申请提供的一实施例中传感装置组合中第二传感装置的俯视图。
图17为本申请提供的另一实施例中传感装置的组合示意图。
图18为本申请提供的另一实施例中传感装置组合中第一传感装置的正视图。
图19为本申请提供的另一实施例中传感装置组合中第一传感装置的俯视图。
图20为本申请提供的另一实施例中传感装置组合中第二传感装置的正视图。
图21为本申请提供的另一实施例中传感装置组合中第二传感装置的俯视图。
图22为本申请提供的另一实施例中传感装置的组合示意图。
图23为本申请提供的另一实施例中传感装置组合中第一传感装置的正视图。
图24为本申请提供的另一实施例中传感装置组合中第一传感装置的俯视图。
图25为本申请提供的另一实施例中传感装置组合中第二传感装置的正视图。
图26为本申请提供的另一实施例中传感装置组合中第二传感装置的俯视图。
附图标号说明
原子干涉惯性导航信息探测系统10、第一传感装置20、第二传感装置30、传感装置100、第一原子源腔101、第二原子源腔102、干涉腔103、第一探测器104、第二探测器105、解算系统110、射频系统120、光学系统130、晶振140。
具体实施方式
为使本申请的上述目的、特征和优点能够更加明显易懂,下面结合附图对本申请的具体实施方式做详细的说明。在下面的描述中阐述了很多具体细节以便于充分理解本申请。但是本申请能够以很多不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本申请内涵的情况下做类似改进,因此本申请不受下面公开的具体实施的限制。
本文中为部件所编序号本身,例如“第一”、“第二”等,仅用于区分所描述的对象,不具有任何顺序或技术含义。而本申请所说“连接”、“联接”,如无特别说明,均包括直接和间接连接(联接)。在本申请的描述中,需要理解的是,术语“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
在本申请中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
本申请实施例提供一种原子干涉惯性导航信息探测方法,应用于原子干涉惯性导航信息探测系统10。原子干涉惯性导航信息探测系统10包括传感装置100和解算系统110。如图1所示,传感装置100包括第一原子源腔101和第二原子源腔102、干涉腔103,两个第一探测器104和至少1个第二探测器105。其中,第一原子源腔101内填充两种原子,第二原子源腔102内填充所述两种原子中的至少一种原子,第一原子源腔101用于提供沿第一方向的正方向运动的第一原子束和第三原子束,第二原子源腔102用于根据填充的原子提供沿第一方向的负方向运动的第二原子束。如图6所示,原子干涉惯性导航信息探测方法包括步骤S11-S13。
步骤S11,在干涉腔103内,采用拉曼光对第一原子束、第二原子束和第三原子束进行干涉,再采用探测激光分别穿过干涉后的第一原子束、第二原子束和第三原子束。
步骤S12,两个第一探测器104分别接收穿过第一原子束的第一探测激光和穿过第二原子束的第二探测激光,第二探测器105接收穿过第三原子束的第三探测激光。
步骤S13,第一探测器104和第二探测器105分别根据第一探测激光、第二探测激光、第三探测激光向解算系统110发送对应的电信号,以使解算系统110根据第一探测器104和 第二探测器105发送的电信号,确定探测结果。
本申请实施例中,第一原子源腔101、第二原子源腔102和干涉腔103共同组成一种呈长条形结构的全封闭容器。该全封闭容器可以采用全玻璃材料或包含有玻璃窗口的金属材料制成。本申请实施例对第一原子源腔101、第二原子源腔102和干涉腔103的形状、材料不做具体限定。上述全封闭容器可以连接有真空泵以维持内部的真空度,其内部的绝对压强通常低于10 -6Pa。
第一原子源腔101和第二原子源腔102内部填充的原子可以为碱金属或碱土金属原子。第一原子源腔101内填充的两种原子包括但不限于钠、钾、铷、铯、钙、锶等元素或同位素中的任意两种。第二原子源腔102内填充上述第一原子源腔101内填充的任意两种原子中的至少一种。举例来说,第一原子源腔101内填充Rb的两种同位素 85Rb和 87Rb,第二原子源腔102内可以填充 85Rb,也可以填充 87Rb,还可以填充 85Rb和 87Rb。第一原子束、第二原子束和第三原子束可以通过差分管道进入干涉腔103内。差分管道用于连接干涉腔103和位于干涉腔103两侧的第一原子源腔101、第二原子源腔102,并且具有维持干涉腔103内的绝对压强低于第一原子源腔101和第二原子源腔102的绝对压强的作用。
干涉腔103包括光学窗口,上述拉曼光和探测激光可以通过光学窗口进入干涉腔103内部,穿过第一原子束、第二原子束和第三原子束。在采用拉曼光对第一原子束、第二原子束和第三原子束进行干涉前,第一原子束、第二原子束和第三原子束先经过态制备激光将各个原子束中的原子制备到特定能级。
本申请中探测器均可以为光电探测器,以下不再特殊说明。光电探测器为一种通用的光强测量仪器,包括光电二极管或光电倍增管及其辅助光路/电路,能够将所述第一探测激光和所述第二探测激光的强度按照一定的光电转换系数转换为所述第一电信号和所述第二电信号。
本申请中上述拉曼光的方向与其各自对应进行干涉作用的原子束运动方向垂直。
本申请实施例提供的原子干涉惯性导航信息探测方法,通过改变第二原子源腔102内填充的原子种类的数目,改变第二原子源腔102出射的原子束的数量,配合不同的拉曼光和探测器能够在一个系统内同时实现惯性与原子钟的测量,二者共用一个第一原子源腔101、第二原子源腔102和干涉腔103,缩小了装置体积。
在一个实施例中,在第二原子源腔102内填充一种原子的情况下,在干涉腔10内,采用拉曼光对第一原子束、第二原子束和第三原子束进行干涉,再采用探测激光分别穿过干涉后的第一原子束、第二原子束和第三原子束,包括如下步骤S1101和S1102。
步骤S1101,采用沿第二方向的三对拉曼光对第一原子束和第二原子束进行干涉,再采用沿第二方向的第一探测激光和第二探测激光分别穿过干涉后的第一原子束和第二原子束。
步骤S1102,采用沿第三方向的两对拉曼光对第三原子束进行干涉,再采用沿第三方向的第三探测激光穿过干涉后的第三原子束。
本申请实施例中,第一原子束的原子可以与第二原子束中的原子相同,第三原子束中的原子可以与第一原子束中的原子和第二原子束中原子不同。第一方向、第二方向和第三方向相互垂直,共同构建X、Y、Z三轴坐标系。第一原子束依次穿越第二方向的拉曼光1、拉曼光2、拉曼光3以及第二原子束依次穿越第二方向的拉曼光3、拉曼光2、拉曼光1时,均产生π/2-π-π/2的拉比相位,发生拉曼-马赫-曾德尔(Raman-Mach-Zehnder)干涉,以利用干涉后的第一原子束和第二原子束测量转动角速率和加速度。拉曼-马赫-曾德尔(Raman- Mach-Zehnder)干涉原理图参见图4。第三原子束依次穿越第三方向的拉曼光4、拉曼光6时产生π/2-π/2的拉比相位,发生拉曼-拉姆齐(Raman-Ramsey)干涉,以利用干涉后的第三原子束测量标准频率信号。拉曼-拉姆齐(Raman-Ramsey)干涉原理图参见图5。
在一个实施例中,第一探测器104和第二探测器105分别根据第一探测激光、第二探测激光、第三探测激光向解算系统110发送对应的电信号,以使解算系统110根据所述第一探测器104和所述第二探测器105发送的电信号,确定探测结果,包括如下步骤S1301和S1302。
步骤S1301,两个第一探测器104分别将第一探测激光和第二探测激光的光信号转化为电信号后,发送至解算系统110,以使所述解算系统110根据两个第一探测器104发送的电信号确定第三方向的转动角速率和第二方向的加速度。
步骤S1302,第二探测器105将第三探测激光的光信号转化为电信号后,发送至解算系统110,以使解算系统110根据第二探测器105发送的电信号确定标准频率信号。探测器可以对处于某一能级的原子数目进行检测,得到干涉信号。解算系统根据干涉信号计算得到转动角速率、加速度和标准频率信号。
此时,第二原子源腔102内填充一种原子。示例性的,以第一方向为X轴方向、第二方向为Y轴方向、第三方向为Z轴方向为例,解算系统110根据两个第一探测器104发送的电信号确定Z轴的转动角速率和Y轴的加速度。再示例性的,以第一方向为Y轴方向、第二方向为X轴方向、第三方向为Z轴方向为例,解算系统110根据两个第一探测器104发送的电信号确定Z轴的转动角速率和X轴的加速度。解算系统110根据第二探测器105发送的电信号确定标准频率信号。
需要说明的是,以上第一方向为X轴方向、第二方向为Y轴方向、第三方向为Z轴方向及第一方向为Y轴方向、第二方向为X轴方向、第三方向为Z轴方向仅作为本申请第一方向、第二方向、第三方向的一种示例,实际上,第一方向、第二方向、第三方向为三个不同方向即可适用本申请实施例,本申请实施例对第一方向、第二方向、第三方向的具体组合方式不做具体限定。
示例性地,参见图1-图3。第一方向为X轴,第二方向为Y轴方向、第三方向为Z轴方向。第一原子源腔101内装填有Rb的两种同位素 85Rb和 87Rb,在原子干涉惯性导航信息探测系统10工作时产生一束混合有 85Rb和 87Rb成分的原子束,沿着X轴正方向运动进入干涉腔103,将其中的 87Rb原子束作为第一原子束, 85Rb原子束作为第三原子束。第二原子源腔102内装填有 85Rb,在原子干涉惯性导航信息探测系统10工作时产生一束 85Rb原子束作为第二原子束,沿着X轴负方向运动进入干涉腔103。
第三方向的两对拉曼光即为图1中的Z轴方向的拉曼光4和拉曼光6。第三原子束进入干涉腔103后,首先与Z轴方向的、频率锁定在 85Rb|5 2S 1/2,F=3>→|5 2P 3/2,F=3>的态制备激光3发生作用,将第三原子束中的原子制备到 85Rb|5 2S 1/2,F=2>能级上。制备特定能级后的第三原子束依次受到Z轴方向上拉曼光4和拉曼光6的作用,发生Raman-Ramsey干涉。
第三探测激光即为图1中Z轴方向、频率锁定在 85Rb|5 2S 1/2,F=3>→|5 2P 3/2,F=4>跃迁共振频率的检测激光3。1个第二探测器105即为图1中的光电探测器3。光电探测器3与检测激光3相对设置。发生Raman-Ramsey干涉后的第三原子束受到检测激光3的作用,光电探测器3接收检测激光3,并将检测激光3的光信号转化为电信号得到吸收信号s 3。解算系统110对吸收信号s 3进行强度、对比度的标定后,进行归一化修正后可以得到实时的Ramsey干涉信号S 0,干涉信号S 0可以参照下述公式(1)。
Figure PCTCN2022095964-appb-000001
其中,δ为拉曼光失谐量,L为拉曼光的间距,d为拉曼光的宽度,v为原子束的纵向速度。干涉信号S 0输入解算系统110的伺服系统后,用于反馈控制晶振140输出一个标准频率信号,对该标准频率信号进行计数换算得到时间信号,即实现了原子钟的功能。
沿着X轴方向运动的第一原子束、第二原子束发生Raman-Mach-Zehnder干涉所得到的干涉相位中包含了Z方向转动角速率和Y方向加速度引起的相位,通过测量这两束对射的第一原子束、第二原子束的干涉相位差可以解算出转动角速率和加速度的信息。
沿第二方向的三对拉曼光即为图1中的拉曼光1、拉曼光2和拉曼光3。第一原子束和第二原子束沿X轴方向进入干涉腔103后,首先分别与沿Y轴方向的、频率均锁定在 87Rb|5 2S 1/2,F=2>→|5 2P 3/2,F=2>跃迁共振频率的态制备激光1、态制备激光2发生作用,将第一原子束和第二原子束中的原子制备到 87Rb|5 2S 1/2,F=1>能级上。制备到特定能级后的第一原子束依次受到Y轴方向上拉曼光1、拉曼光2和拉曼光3的作用,制备到特定能级后的第二原子束依次受到Y轴方向上拉曼光3、拉曼光2和拉曼光1的作用,发生Raman-Mach-Zehnder干涉。
第一原子束和第二原子束同时产生各自的Raman-Mach-Zehnder干涉,这种同步作用避免了玻璃窗片的尺寸或安装偏差、准直或整形光路尺寸或安装偏差、空气扰动、外界振动、温度变化等因素造成的与第一原子束和第二原子束中相作用的拉曼光1、拉曼光2、拉曼光3的参数的不一致,使得来自外部环境的噪声和传感装置100内部的噪声(主要为来自拉曼光参数的噪声)对两组干涉条纹的影响是同步的且可以被共模消除。
拉曼光4和拉曼光6与第三原子束作用的位置可以和拉曼光1、拉曼光3与第一原子束(或第二原子束)作用的位置相重合,如图1所示。也可以将拉曼光4和拉曼光6的间距缩短,使得拉曼光4和拉曼光6与第三原子束作用的位置和拉曼光1、拉曼光3与第一原子束(或第二原子束)作用的位置间隔开,减少拉曼光4、拉曼光6对第一原子束、第二原子束以及拉曼光1、拉曼光3对第三原子束的干扰,这种相互的干扰可能产生光频移,使原子干涉惯性导航信息探测系统10的测量结果变差。
第一探测激光即为图1中Y轴方向、频率锁定在 87Rb|5 2S 1/2,F=2>→|5 2P 3/2,F=3>跃迁共振频率的检测激光1。第二探测激光即为图1中Y轴方向、频率锁定在 87Rb|5 2S 1/2,F=2>→|5 2P 3/2,F=3>跃迁共振频率的检测激光2。两个第一探测器104即为图1中的光电探测器1和光电探测器2。光电探测器1与检测激光1相对设置,光电探测器2与检测激光2相对设置。发生Raman-Mach-Zehnder干涉后的第一原子束、第二原子束分别受到检测激光1、检测激光2的作用,光电探测器1和光电探测器2分别接收检测激光1、检测激光2,并将检测激光1、检测激光2的光信号转化为电信号得到吸收信号s 1、s 2
不同原子束的通量、干涉效果、检测效率等因素存在差异,导致检测信号的强度、对比度等存在差异,因此解算系统110先对吸收信号s 1、s 2进行标定,然后再进行归一化修正后得到干涉信号S 1、S 2,干涉信号S 1可以参照下述公式(2),干涉信号S 2可以参照下述公式(3)。
Figure PCTCN2022095964-appb-000002
Figure PCTCN2022095964-appb-000003
其中A是干涉信号的偏置值,C/2是干涉信号的幅值,Δφ 1和Δφ 2是干涉相位,k eff为针对 87Rb的拉曼光有效波矢,L为拉曼光的间距,v为原子束的纵向速度,
Figure PCTCN2022095964-appb-000004
Figure PCTCN2022095964-appb-000005
是非惯性相 移,Ω z是Z轴方向的转动角速率,a y是Y轴方向的加速度。
对拉曼光1、拉曼光2、拉曼光3进行k eff矢量反向,同样执行前述的Raman-Mach-Zehnder干涉过程,得到干涉信号S′ 1、S′ 2,干涉信号S′ 1可以参照下述公式(4),干涉信号S′ 2可以参照下述公式(5)。
Figure PCTCN2022095964-appb-000006
Figure PCTCN2022095964-appb-000007
提取计算出Δφ 1、Δφ 2、Δφ′ 1、Δφ′ 2的值,再解方程得到Z轴方向的转动角速率Ω z和Y轴方向的加速度a y,Z轴方向的转动角速率Ω z可以参照下述公式(6),Y轴方向的加速度a y可以参照下述公式(7)。
Figure PCTCN2022095964-appb-000008
Figure PCTCN2022095964-appb-000009
因此,在第二原子源腔102内填充一种原子,传感装置100包括1个第二探测器105的情况下,传感装置100可以用来获得单轴转动角速率、单轴加速度及标准频率信号。即包括上述传感装置100的原子干涉惯性导航信息探测系统10既可以实现原子惯性测量又可以实现原子钟的功能。
为使本领域技术人员更好的理解本申请实施例,以下通过具体示例对本申请实施例加以说明。
示例性的,参照图6(a)所示,传感装置100的原子源腔提供连续的原子束,射频系统以晶振的输出作为参考,输出射频驱动信号,提供给光学系统。光学系统借助射频驱动信号产生不同频率的激光,不同频率的激光输出到传感装置,并与原子束发生相互作用。传感装置的光电探测器检测信号并转换,输出到解算系统。解算系统输出惯性量,包括加速度和角速率。解算系统调节晶振的输出。晶振输出标准频率信号。如果需要原子干涉惯性导航信息探测系统10连续输出,则从射频系统以晶振的输出作为参考,输出射频驱动信号,提供给光学系统步骤开始重复上述步骤。
在一个实施例中,在第二原子源腔102内填充两种原子的情况下,第二原子源腔102还用于提供沿第一方向的负方向运动的第四原子束。
在干涉腔103内,采用拉曼光对所述第一原子束、第二原子束和第三原子束进行干涉后,采用探测激光分别穿过干涉后的第一原子束、第二原子束和第三原子束,包括以下步骤S1111和S1112。
在步骤S1111,采用沿第二方向的三对拉曼光对第一原子束和第二原子束进行干涉后,采用沿第二方向的第一探测激光和第二探测激光分别穿过干涉后的第一原子束和第二原子束。
在步骤S1112,采用沿第三方向的三对拉曼光对第三原子束和第四原子束进行干涉后,采用沿第三方向的第三探测激光和第四探测激光穿过干涉后的所述第三原子束和第四原子束。
示例性地,第一原子束和第二原子束中原子相同,第三原子束和第四原子束中原子相同,第三原子束与第一原子束中原子不同。第一方向、第二方向和第三方向共同构建X、Y、Z三轴坐标系。第一原子束依次穿越第二方向的拉曼光1、拉曼光2、拉曼光3以及第二原子束依次穿越第二方向的拉曼光3、拉曼光2、拉曼光1时均产生π/2-π-π/2的拉比相位,发生 拉曼-马赫-曾德尔(Raman-Mach-Zehnder)干涉。第三原子束依次穿越第三方向的拉曼光4、拉曼光5和拉曼光6以及第四原子束依次穿越第三方向的拉曼光6、拉曼光5、拉曼光4时均产生π/2-π-π/2的拉比相位,发生拉曼-马赫-曾德尔(Raman-Mach-Zehnder)干涉。
在一个实施例中,传感装置100包括两个第二探测器105,第一探测器104和第二探测器105分别根据第一探测激光、第二探测激光、第三探测激光向解算系统110发送对应的电信号,以使解算系统110根据第一探测器104和第二探测器105发送的电信号,确定探测结果,包括如下步骤S1311和S1312。
在步骤S1311,两个第一探测器104分别将第一探测激光和第二探测激光的光信号转化为电信号后,发送至解算系统110,以使解算系统110根据两个第一探测器104发送的电信号确定第三方向的转动角速率和第二方向的加速度。
在步骤S1312,两个第二探测器105分别将第三探测激光和第四探测激光的光信号转化为电信号后,发送至解算系统110,以使解算系统110根据两个第二探测器105发送的电信号确定第二方向的转动角速率和第三方向的加速度。
此时,第二原子源腔102内填充两种原子。当第一方向为X轴方向、第二方向为Y轴方向、第三方向为Z轴方向时,解算系统110根据两个第一探测器104发送的电信号确定Z轴的转动角速率和Y轴的加速度。解算系统110根据两个第二探测器105发送的电信号确定Y轴的转动角速率和Z轴的加速度。当第一方向为Y轴方向、第二方向为X轴方向、第三方向为Z轴方向时,解算系统110根据两个第一探测器104发送的电信号确定Z轴的转动角速率和X轴的加速度。解算系统110根据两个第二探测器105发送的电信号确定X轴的转动角速率和Z轴的加速度。
示例性地,参见图7-9。第一方向为X轴,第二方向为Y轴方向、第三方向为Z轴方向。图7中传感装置100将两个方向的干涉组合在一个装置里,但是采用了不同类型的原子及相应的不同频率的激光。Y轴方向干涉用 87Rb原子,对应使用的激光波长在780nm附近。Z轴方向的干涉用 85Rb原子,对应激光波长在795nm附近。780nm激光不能作用 85Rb,795nm激光也不能作用 87Rb,因此Y轴方向干涉和Z轴方向的干涉相互之间是没有影响。从而实现了在一个传感装置100内,同时测量双轴加速度和双轴转动角速率的功能。具体方法如下。
第一原子源腔101内装填有Rb的两种同位素 85Rb和 87Rb,在原子干涉惯性导航信息探测系统10工作时产生一束混合有 85Rb和 87Rb成分的原子束,沿着X轴正方向运动进入干涉腔103,将其中的 87Rb原子束作为第一原子束, 85Rb原子束作为第三原子束。第二原子源腔102内装填有Rb的两种同位素 85Rb和 87Rb,在原子干涉惯性导航信息探测系统10工作时产生一束混合有 85Rb和 87Rb成分的原子束,沿着X轴负方向运动进入干涉腔103,将其中的 87Rb原子束作为第二原子束, 85Rb原子束作为第四原子束。
沿着X轴方向运动的第一原子束和第二原子束发生Raman-Mach-Zehnder干涉所得到的干涉相位中包含了Z轴方向转动角速率和Y轴方向加速度引起的相位,通过测量这两束对射的第一原子束和第二原子束的干涉相位差可以解算出转动角速率和加速度的信息。
第二方向的三对拉曼光即为图7中的拉曼光1、拉曼光2和拉曼光3。第一原子束和第二原子束沿X轴方向进入干涉腔103后,首先分别与沿Y轴方向的、频率均锁定在 87Rb|5 2S 1/2,F=2>→|5 2P 3/2,F=2>跃迁共振频率的态制备激光1、态制备激光2发生作用,将第一原子束和第二原子束中的原子制备到 87Rb|5 2S 1/2,F=1>能级上。制备特定能级后的第一原子束依次受到Y轴方向上拉曼光1、拉曼光2和拉曼光3的作用,制备特定能级后的第二原子束依次受到 Y轴方向上拉曼光3、拉曼光2和拉曼光1的作用,发生Raman-Mach-Zehnder干涉。
第一原子束和第二原子束同时产生各自的Raman-Mach-Zehnder干涉,这种同步作用避免了玻璃窗片的尺寸或安装偏差、准直或整形光路尺寸或安装偏差、空气扰动、外界振动、温度变化等因素造成的与第一原子束和第二原子束中相作用的拉曼光1、拉曼光2、拉曼光3的参数的不一致,使得来自外部环境的噪声和传感装置100内部的噪声(主要为来自拉曼光参数的噪声)对两组干涉条纹的影响是同步的且可以被共模消除。
第一探测激光即为图7中Y轴方向、频率锁定在 87Rb|5 2S 1/2,F=2>→|5 2P 3/2,F=3>跃迁共振频率的检测激光1。第二探测激光即为图7中Y轴方向、频率锁定在 87Rb|5 2S 1/2,F=2>→|5 2P 3/2,F=3>跃迁共振频率的检测激光2。两个第一探测器104即为图7中的光电探测器1和光电探测器2。光电探测器1与检测激光1相对设置,光电探测器2与检测激光2相对设置。发生Raman-Mach-Zehnder干涉后的第一原子束、第二原子束分别受到检测激光1、检测激光2的作用,光电探测器1和光电探测器2分别接收检测激光1、检测激光2,并将检测激光1、检测激光2的光信号转化为电信号得到吸收信号s 1、s 2
不同原子束的通量、干涉效果、检测效率等因素存在差异,导致检测信号的强度、对比度等存在差异,因此解算系统110先对吸收信号s 1、s 2进行标定,然后再进行归一化修正后得到干涉信号S 1、S 2,干涉信号S 1、S 2的计算可以参照上述实施例中公式(2)和公式(3)。
对拉曼光1、拉曼光2、拉曼光3进行k eff矢量反向,同样执行前述的Raman-Mach-Zehnder干涉过程,得到干涉信号S′ 1、S′ 2,干涉信号S′ 1、S′ 2的计算可以参照上述实施例中公式(4)和公式(5)。
提取计算出Δφ 1、Δφ 2、Δφ′ 1、Δφ′ 2的值,再解方程得到Z轴方向的转动角速率Ω z和Y轴方向的加速度a y,Ω z、a y的计算可以参照上述实施例中公式(6)和公式(7)。
沿着X轴方向运动的第三原子束、第四原子束发生Raman-Mach-Zehnder干涉所得到的干涉相位中包含了Y轴方向转动角速率和Z轴方向加速度引起的相位,通过测量这两束对射的第三原子束、第四原子束的干涉相位差可以解算出转动角速率和加速度的信息。
沿第三方向的三对拉曼光即为图7中的拉曼光4、拉曼光5和拉曼光6。第三原子束、第四原子束沿X轴方向进入干涉腔103后,首先分别与沿Z轴方向的、频率均锁定在 85Rb|5 2S 1/2,F=3>→|5 2P 3/2,F=3>跃迁共振频率的态制备激光3、态制备激光4发生作用,将第三原子束、第四原子束的原子制备到 85Rb|5 2S 1/2,F=2>能级上。制备特定能级后的第三原子束依次受到Z轴方向上拉曼光4、拉曼光5和拉曼光6的作用,制备特定能级后的第四原子束依次受到Z轴方向上拉曼光6、拉曼光5和拉曼光4的作用,发生Raman-Mach-Zehnder干涉。
第三原子束和第四原子束同时产生各自的Raman-Mach-Zehnder干涉,这种同步作用避免了玻璃窗片的尺寸或安装偏差、准直或整形光路尺寸或安装偏差、空气扰动、外界振动、温度变化等因素造成的与第三原子束和第四原子束中相作用的拉曼光4、拉曼光5、拉曼光6的参数的不一致,使得来自外部环境的噪声和传感装置100内部的噪声(主要为来自拉曼光参数的噪声)对两组干涉条纹的影响是同步的且可以被共模消除。
第三探测激光即为图7中Z轴方向、频率锁定在 85Rb|5 2S 1/2,F=3>→|5 2P 3/2,F=4>跃迁共振频率的检测激光3。第四探测激光即为图7中Z轴方向、频率锁定在 85Rb|5 2S 1/2,F=3>→|5 2P 3/2,F=4>跃迁共振频率的检测激光4。两个第二探测器105即为图7中的光电探测器3和光电探测器4。光电探测器3与检测激光3相对设置,光电探测器4与检测激光4相对设置。 发生Raman-Mach-Zehnder干涉后的第三原子束、第四原子束分别受到检测激光3、检测激光4的作用,光电探测器3和光电探测器4分别接收检测激光3、检测激光4,并将检测激光3、检测激光4的光信号转化为电信号得到吸收信号s 3、s 4
不同原子束的通量、干涉效果、检测效率等因素存在差异,导致检测信号的强度、对比度等存在差异,因此解算系统110先对吸收信号s 3、s 4进行标定,然后再进行归一化修正后得到干涉信号S 3、S 4,干涉信号S 3可以参照下述公式(8),干涉信号S 4可以参照下述公式(9)。
Figure PCTCN2022095964-appb-000010
Figure PCTCN2022095964-appb-000011
其中,A是干涉信号的偏置值,C/2是干涉信号的幅值,Δφ 3和Δφ 4是干涉相位,k′ eff为针对 85Rb的拉曼光有效波矢,L为拉曼光的间距,v为原子束的纵向速度,Ω y是Y轴方向的转动角速率,a Z是Z轴方向的加速度,
Figure PCTCN2022095964-appb-000012
Figure PCTCN2022095964-appb-000013
是非惯性相移。
对拉曼光4、拉曼光5、拉曼光6进行k′ eff矢量反向,同样执行前述的Raman-Mach-Zehnder干涉过程,得到干涉信号S′ 3、S′ 4,干涉信号S′ 3可以参照下述公式(10),干涉信号S′ 4可以参照下述公式(11)。
Figure PCTCN2022095964-appb-000014
Figure PCTCN2022095964-appb-000015
提取计算出Δφ 3、Δφ 4、Δφ′ 3、Δφ′ 4的值,再解方程得到Y轴方向的转动角速率Ω y和Z轴方向加速度a z,Ω y可以参照下述公式(12),a 2可以参照下述公式(13)。
Figure PCTCN2022095964-appb-000016
Figure PCTCN2022095964-appb-000017
因此,在第二原子源腔102内填充两种原子,传感装置100包括两个第二探测器105的情况下,传感装置100可以用来获得双轴转动角速率、双轴加速度。即包括上述传感装置100的原子干涉惯性导航信息探测系统10可以实现双轴原子惯性测量的功能。
本申请实施例还提供一种原子干涉惯性导航信息探测系统10。参见图10,原子干涉惯性导航信息探测系统10包括第一传感装置20及解算系统110。其中,第一传感装置20包括第一原子源腔101和第二原子源腔102。第一原子源腔101内填充两种原子,第二原子源腔102内填充两种原子中的至少一种原子。第一原子源腔101用于提供沿第一方向的正方向运动的第一原子束和第三原子束。第二原子源腔102用于根据填充的原子提供沿第一方向的负方向运动的第二原子束。
第一传感装置20还包括干涉腔103。干涉腔103用于进行第一原子束、第二原子束和第三原子束与拉曼光的干涉反应后,采用探测激光分别穿过干涉后的第一原子束、第二原子束和第三原子束。
第一传感装置20还包括设置在第二方向的两个第一探测器104及设置在第三方向上的至少1个第二探测器105。两个第一探测器104分别用于接收穿过第一原子束的第一探测激光和穿过第二原子束的第二探测激光,并根据第一探测激光、第二探测激光向解算系统110发送对应的第一电信号。第二探测器105用于接收穿过第三原子束的第三探测激光,并根据 第三探测激光向解算系统110发送对应的第二电信号。
解算系统110用于根据第一电信号和第二电信号,确定第一探测结果。
本申请实施例中第一传感装置20的工作过程和结构参照前述实施例的传感装置100描述即可,本申请实施例在此不再赘述。
本申请实施例提供的原子干涉惯性导航信息探测系统10,通过改变第二原子源腔102内填充的原子种类数目,改变第二原子源腔102出射的原子束数量,配合不同的拉曼光和探测器能够在一个系统内同时实现惯性与原子钟的测量,二者共用一个第一原子源腔101、第二原子源腔102和干涉腔103,缩小了装置体积。
如图11所示,在一个实施例中,原子干涉惯性导航信息探测系统10还包括射频系统120和光学系统130。射频系统120用于在解算系统110的控制下,产生不同频率的射频信号。光学系统130用于根据不同频率的射频信号提供射向第一探测器104及第二探测器105的探测激光,及用于提供与探测激光同方向的拉曼光。
本申请实施例中,光学系统130内部可以以一台半导体稳频激光器作为激光源,激光源输出的激光经过光纤分束器分为若干路,再通过声光调制器或电光调制器等设备处理后获得不同频率的激光,经由光纤输出到第一传感装置20。光学系统130可以包括激光器、激光分束器、激光功率放大器、电光调制器、声光调制器、光开关及其他激光与光学器件。射频系统120提供的不同频率的射频信号可以输出给光学系统130的声光、电光设备,实现光束的移频,以使光学系统130获得不同频率的激光。上述不同频率的激光即为本申请实施例中提到的态制备激光、拉曼光和探测激光等。不同频率的激光可以由自由空间光路或光纤器件进入具有光束准直、整形功能的镜筒中,被准直、整形为所需的尺寸及形状,再穿过干涉腔103上的光学窗口进入其内部,与原子束发生相互作用,并将检测信号输出到解算系统110。射频系统120还可以根据实际需要在解算系统110的控制下,产生不同功率的射频信号,以使光学系统130提供不同功率的激光光束。
解算系统110可以由计算机、模拟及数字I/O接口、模/数转换接口、数/模转换接口、串行通信接口、控制软件等部分组成,用于控制整个原子干涉惯性导航信息探测系统10的各部分工作。解算系统110可以调节射频系统120输出信号的频率和功率、控制光学系统130输出的各个激光束的功率和频率、控制传感装置100的原子束温度及通量、采集各个探测器的检测信号并加以转换、处理、存储、解算、输出加速度和角速率的值。
在一个实施例中,在第二原子源腔102内填充一种原子的情况下,第一传感装置20包括一个第二探测器105。参见图11,原子干涉惯性导航信息探测系统10还包括晶振140,用于向射频系统120输出标准频率信号。原子干涉惯性导航信息探测系统10还可以包括伺服模块,干涉信号输入伺服模块后,用于反馈控制晶振输出一个标准频率信号。光学系统130用于提供第二方向的三对拉曼光、第三方向的两对拉曼光,及分别射向两个第一探测器104的第一探测激光、第二探测激光、射向第二探测器105的第三探测激光。
此时,第一传感装置20为上述本申请实施例中既可以实现原子惯性测量又可以实现原子钟功能的传感装置100,具体方法不再赘述。解算系统110还可以包括伺服系统。干涉信号S 3输入解算系统110的伺服系统后,用于反馈控制晶振140输出一个标准频率信号,对该标准频率信号进行计数换算得到时间信号,即实现了原子钟的功能。
晶振140向射频系统120输出标准频率信号,射频系统120以此标准频率信号作为参考(基准),生成不同频率的射频信号,驱动光学系统130中的电光调制器产生不同频率的拉曼 光。示例性地,晶振输出10MHz频率的标准频率信号,该10MHz标准频率信号给射频系统120作为参考(基准),射频系统120在10MHz标准频率信号的基础上生成6.834GHz射频信号驱动光学系统130里面的电光调制器,产生拉曼光,拉曼光作用到原子束后,在检测端才能看到Ramsey干涉信号S3。
在一个实施例中,在第二原子源腔102内填充两种原子的情况下,第一传感装置20包括两个第二探测器105。光学系统130用于提供第二方向的三对拉曼光、第三方向的三对拉曼光,及分别射向两个第一探测器104的第一探测激光、第二探测激光和分别射向两个第二探测器105的第三探测激光和第四探测激光。此时,第一传感装置20为上述本申请实施例中可以实现双轴原子惯性测量的传感装置100,具体方法不再赘述。
在一个实施例中,上述任一实施例中的原子干涉惯性导航信息探测系统10还包括第二传感装置30。第二传感装置30与所述第一传感装置20垂直设置。解算系统110还用于根据第二传感装置30传递的电信号,确定对应的第二探测结果。
示例性地,参见图12-16,第一传感装置20为用于实现双轴原子惯性测量的传感装置100,也即第一传感装置20中第二原子源腔内填充有两种原子,第二探测器的数量为2。第二传感装置30为用于实现双轴原子惯性测量的传感装置100,也即第二传感装置30中第二原子源腔内填充有两种原子,第二探测器的数量为2。第一传感装置20和第二传感装置30垂直设置,如图12所示。第一传感装置20的第一探测结果为Y轴和Z轴方向的转动角速率和加速度。第二传感装置30的第二探测结果为X轴和Z轴方向的转动角速率和加速度。第一原子束、第二原子束、第三原子束和第四原子束即为图13-16中的原子束1、原子束2、原子束3和原子束4。因此包括上述第一传感装置20和第二传感装置30的原子干涉惯性导航信息探测系统10可以同时实现三轴惯性测量。
示例性地,参见图17-21,第一传感装置20为用于同时实现单轴转动角速率、单轴加速度和原子钟的传感装置100,也即第一传感装置20中第二原子源腔内填充有一种原子,第二探测器的数量为1。第二传感装置30为用于实现双轴原子惯性测量的传感装置100,也即第二传感装置30中第二原子源腔内填充有两种原子,第二探测器的数量为2。第一传感装置20和第二传感装置30垂直设置,如图17所示。第一传感装置20的第一探测结果为Z轴方向的转动角速率、Y轴方向的加速度和标准频率信号。第二传感装置30的第二探测结果为X轴和Z轴方向的转动角速率和加速度。因此包括上述第一传感装置20和第二传感装置30的原子干涉惯性导航信息探测系统10可以同时实现X轴和Z轴方向的转动角速率测量、X轴、Y轴和Z轴方向加速度的测量及标准频率信号。
或者,参见图22-26,第一传感装置20与第二传感装置30中关于第一方向、第二方向和第三方向的设置不同,也即第一传感装置20同样为可以实现单轴转动角速率、单轴加速度和原子钟的传感装置100,其可以测量得到Y轴的转动角速率和Z轴的加速度a Z。需要说明的是,上述图12至图26所示的原子干涉惯性导航信息探测系统10仅作为本申请实施例的一种示例,实际上本申请实施例并不对第一传感装置和第二传感装置做具体限定。
以上所述实施例仅表达了本发明的几种实施方式,随其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (20)

  1. 一种原子干涉惯性导航信息探测方法,其特征在于,应用于原子干涉惯性导航信息探测系统(10),所述原子干涉惯性导航信息探测系统(10)包括传感装置(100)和解算系统(110),其中,所述传感装置(100)包括第一原子源腔(101)和第二原子源腔(102)、干涉腔(103)、两个第一探测器(104)和至少1个第二探测器(105),其中,所述第一原子源腔(101)内填充两种原子,所述第二原子源腔(102)内填充所述两种原子中的至少一种原子,所述第一原子源腔(101)用于提供沿第一方向的正方向运动的第一原子束和第三原子束,所述第二原子源腔(102)用于根据填充的原子提供沿所述第一方向的负方向运动的第二原子束,所述方法包括:
    在所述干涉腔(103)内,采用拉曼光对所述第一原子束、所述第二原子束和所述第三原子束进行干涉,再采用探测激光分别穿过干涉后的所述第一原子束、所述第二原子束和所述第三原子束;
    所述两个第一探测器(104)分别接收穿过所述第一原子束的第一探测激光和穿过所述第二原子束的第二探测激光,所述第二探测器(105)接收穿过所述第三原子束的第三探测激光;
    所述第一探测器(104)和所述第二探测器(105)分别根据所述第一探测激光、所述第二探测激光、所述第三探测激光向所述解算系统(110)发送对应的电信号,以使所述解算系统(110)根据所述第一探测器(104)和所述第二探测器(105)发送的电信号,确定探测结果。
  2. 如权利要求1所述的原子干涉惯性导航信息探测方法,其特征在于,所述第二原子源腔(102)内填充一种原子,所述在所述干涉腔(103)内,采用拉曼光对所述第一原子束、所述第二原子束和所述第三原子束进行干涉后,采用探测激光分别穿过干涉后的所述第一原子束、所述第二原子束和所述第三原子束,包括:
    采用沿第二方向的三对拉曼光对所述第一原子束和所述第二原子束进行干涉后,采用沿所述第二方向的所述第一探测激光和所述第二探测激光分别穿过干涉后的所述第一原子束和所述第二原子束;
    采用沿第三方向的两对拉曼光对所述第三原子束进行干涉后,采用沿所述第三方向的所述第三探测激光穿过干涉后的所述第三原子束,其中,所述第一方向、所述第二方向和所述第三方向相互垂直。
  3. 如权利要求2所述的原子干涉惯性导航信息探测方法,其特征在于,所述第一探测器(104)和所述第二探测器(105)分别根据所述第一探测激光、所述第二探测激光、所述第三探测激光向所述解算系统(110)发送对应的电信号,以使所述解算系统(110)根据所述第一探测器(104)和所述第二探测器(105)发送的电信号,确定探测结果,包括:
    所述两个第一探测器(104)分别将所述第一探测激光和所述第二探测激光的光信号转化为电信号后,发送至所述解算系统(110),以使所述解算系统(110)根据所述两个第一探测器(104)发送的电信号确定所述第三方向的转动角速率和所述第二方向的加速度;
    所述第二探测器(105)将所述第三探测激光的光信号转化为电信号并发送至所述解算系统(110),所述解算系统(110)根据所述第二探测器(105)发送的电信号确定标准频率信号。
  4. 如权利要求1所述的原子干涉惯性导航信息探测方法,其特征在于,所述第二原子源腔(102)内填充两种原子,所述第二原子源腔(102)还用于提供沿所述第一方向的负方向运动的第四原子束,
    所述在所述干涉腔(103)内,采用拉曼光对所述第一原子束、所述第二原子束和所述第三原子束进行干涉后,采用探测激光分别穿过干涉后的所述第一原子束、所述第二原子束和所述第三原子束,包括:
    采用沿所述第二方向的三对拉曼光对所述第一原子束和所述第二原子束进行干涉后,采用沿所述第二方向的所述第一探测激光和所述第二探测激光分别穿过干涉后的所述第一原子束和所述第二原子束;
    采用沿所述第三方向的三对拉曼光对所述第三原子束和所述第四原子束进行干涉后,采用沿所述第三方向的所述第三探测激光和第四探测激光穿过干涉后的所述第三原子束和所述第四原子束,其中,所述第一方向、所述第二方向和所述第三方向相互垂直。
  5. 如权利要求4所述的原子干涉惯性导航信息探测方法,其特征在于,所述传感装置(100)包括两个第二探测器(105),所述第一探测器(104)和所述第二探测器(105)分别根据第一探测激光、所述第二探测激光、所述第三探测激光向所述解算系统(110)发送对应的电信号,以使所述解算系统(110)根据所述第一探测器(104)和所述第二探测器(105)发送的电信号,确定探测结果,包括:
    所述两个第一探测器(104)分别将所述第一探测激光和所述第二探测激光的光信号转化为电信号后,发送至所述解算系统(110),以使所述解算系统(110)根据所述两个第一探测器(104)发送的电信号确定所述第三方向的转动角速率和所述第二方向的加速度;
    所述两个第二探测器(105)分别将所述第三探测激光和所述第四探测激光的光信号转化为电信号后,发送至所述解算系统(110),以使所述解算系统(110)根据所述两个第二探测器(105)发送的电信号确定所述第二方向的转动角速率和所述第三方向的加速度。
  6. 如权利要求1所述的原子干涉惯性导航信息探测方法,其特征在于,所述第一原子源腔(101)内填充的两种原子包括钠、钾、铷、铯、钙、锶元素或同位素中的任意两种。
  7. 如权利要求1所述的原子干涉惯性导航信息探测方法,其特征在于,在所述干涉腔(103)内,采用拉曼光对所述第一原子束、所述第二原子束和所述第三原子束进行干涉之前,所述的原子干涉惯性导航信息探测方法还包括:态制备激光将所述第一原子束、所述第二原子束和所述第三原子束中的原子制备到特定能级。
  8. 如权利要求2所述的原子干涉惯性导航信息探测方法,其特征在于,所述第一原子束的原子与所述第二原子束中的原子相同,所述第三原子束中的原子与所述第一原子束中的原子和所述第二原子束中原子不同。
  9. 如权利要求8所述的原子干涉惯性导航信息探测方法,其特征在于,所述采用拉曼光对所述第一原子束、所述第二原子束和所述第三原子束进行干涉,包括:所述第一原子束依次穿越所述第二方向的拉曼光(1)、拉曼光(2)、和拉曼光(3);所述第二原子束依次穿越 所述第二方向的所述拉曼光(3)、所述拉曼光(2)、和所述拉曼光(1);所述第三原子束依次穿越所述第三方向的拉曼光(4)和拉曼光(6)。
  10. 如权利要求9所述的原子干涉惯性导航信息探测方法,其特征在于,所述拉曼光(4)和所述拉曼光(6)对所述第三原子束作用的位置和所述拉曼光(1)、所述拉曼光(3)对所述第一原子束作用的位置间隔开。
  11. 如权利要求4所述的原子干涉惯性导航信息探测方法,其特征在于:所述第一原子束和所述第二原子束中原子相同;所述第三原子束和所述第四原子束中原子相同;所述第三原子束与所述第一原子束中原子不同。
  12. 如权利要求11所述的原子干涉惯性导航信息探测方法,其特征在于:
    所述第一原子束依次穿越所述第二方向的拉曼光(1)、拉曼光(2)和拉曼光(3),所述第二原子束依次穿越所述第二方向的所述拉曼光(3)、所述拉曼光(2)和所述拉曼光(1);
    所述第三原子束依次穿越所述第三方向的拉曼光(4)、拉曼光(5)和拉曼光(6),以及所述第四原子束依次穿越所述第三方向的拉曼光(6)、所述拉曼光(5)和所述拉曼光(4)。
  13. 一种原子干涉惯性导航信息探测系统(10),其特征在于,包括第一传感装置(20)及解算系统(110),其中,所述第一传感装置(20)包括:第一原子源腔(101)和第二原子源腔(102),所述第一原子源腔(101)内填充两种原子,所述第二原子源腔(102)内填充所述两种原子中的至少一种原子,所述第一原子源腔(101)用于提供沿第一方向的正方向运动的第一原子束和第三原子束,所述第二原子源腔(102)用于根据填充的原子提供沿所述第一方向的负方向运动的第二原子束;
    所述第一传感装置(20)还包括干涉腔(103),用于进行所述第一原子束、所述第二原子束和所述第三原子束与拉曼光的干涉反应,再采用探测激光分别穿过干涉后的所述第一原子束、所述第二原子束和所述第三原子束;
    所述第一传感装置(20)还包括设置在第二方向的两个第一探测器(104)及设置在第三方向上的至少1个第二探测器(105),所述两个第一探测器(104)分别用于接收穿过所述第一原子束的第一探测激光和穿过所述第二原子束的第二探测激光,并根据所述第一探测激光、所述第二探测激光向所述解算系统(110)发送对应的第一电信号、所述第二探测器(105)用于接收穿过所述第三原子束的第三探测激光,并根据所述第三探测激光向所述解算系统(110)发送对应的第二电信号,其中,所述第一方向、所述第二方向和所述第三方向相互垂直;
    所述解算系统(110)用于根据所述第一电信号和所述第二电信号,确定第一探测结果。
  14. 如权利要求13所述的原子干涉惯性导航信息探测系统,其特征在于,所述系统还包括:射频系统(120),用于在所述解算系统(110)的控制下,产生不同频率的射频信号;
    光学系统(130),用于根据所述不同频率的射频信号提供射向所述第一探测器(104)及所述第二探测器(105)的所述探测激光,及用于提供与所述探测激光同方向的拉曼光。
  15. 如权利要求14所述的原子干涉惯性导航信息探测系统,其特征在于,所述第二原子 源腔(102)内填充一种原子,所述第一传感装置(20)包括一个所述第二探测器(105),所述原子干涉惯性导航信息探测系统还包括晶振(140),用于向所述射频系统(120)输出标准频率信号;
    所述光学系统(130)用于提供所述第二方向的三对拉曼光、所述第三方向的两对拉曼光,及分别射向所述两个第一探测器(104)的所述第一探测激光、所述第二探测激光、射向所述第二探测器(105)的所述第三探测激光。
  16. 如权利要求14所述的原子干涉惯性导航信息探测系统,其特征在于,所述第二原子源腔(102)内填充两种原子,所述第一传感装置(20)包括两个所述第二探测器(105),所述光学系统(130)用于提供所述第二方向的三对拉曼光、所述第三方向的三对拉曼光,及分别射向所述两个第一探测器(104)的所述第一探测激光、所述第二探测激光和分别射向所述两个第二探测器(105)的所述第三探测激光和第四探测激光。
  17. 如权利要求13-16任一所述的原子干涉惯性导航信息探测系统,其特征在于,还包括第二传感装置(30),所述第二传感装置(30)与所述第一传感装置(20)垂直设置,所述解算系统(110)还用于根据所述第二传感装置(30)传递的电信号确定对应的第二探测结果。
  18. 如权利要求13所述的原子干涉惯性导航信息探测系统,其特征在于,所述第一原子源腔(101)、所述第二原子源腔(102)和所述干涉腔(103)共同组成一呈长条形结构的全封闭容器。
  19. 如权利要求18所述的原子干涉惯性导航信息探测系统,其特征在于,所述全封闭容器采用全玻璃材料或包含有玻璃窗口的金属材料制成。
  20. 如权利要求13所述的原子干涉惯性导航信息探测系统,其特征在于,所述第一探测器(104)和所述第二探测器(105)均为光电探测器,包括光电二极管或光电倍增管及其辅助光路和辅助电路,设置为将所述第一探测激光和所述第二探测激光的强度按照一定的光电转换系数分别转换为所述第一电信号和所述第二电信号。
PCT/CN2022/095964 2022-01-11 2022-05-30 原子干涉惯性导航信息探测系统及探测方法 WO2023134105A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210024736.7A CN114353790B (zh) 2022-01-11 2022-01-11 原子干涉惯性导航信息探测系统及探测方法
CN202210024736.7 2022-01-11

Publications (1)

Publication Number Publication Date
WO2023134105A1 true WO2023134105A1 (zh) 2023-07-20

Family

ID=81108587

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/095964 WO2023134105A1 (zh) 2022-01-11 2022-05-30 原子干涉惯性导航信息探测系统及探测方法

Country Status (2)

Country Link
CN (1) CN114353790B (zh)
WO (1) WO2023134105A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117805706A (zh) * 2024-02-28 2024-04-02 中国科学院国家授时中心 采用组合分离振荡场的原子束磁共振方法及系统

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114353790B (zh) * 2022-01-11 2024-04-30 清华大学 原子干涉惯性导航信息探测系统及探测方法
CN114923485B (zh) * 2022-06-23 2024-06-18 清华大学 闭环原子干涉惯性测量方法及装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007155584A (ja) * 2005-12-07 2007-06-21 Japan Agengy For Marine-Earth Science & Technology 慣性航法システム
CN103837904A (zh) * 2014-03-20 2014-06-04 中国科学院武汉物理与数学研究所 基于多组份原子干涉仪的组合惯性传感器及其测量方法
CN105066991A (zh) * 2015-08-07 2015-11-18 中国船舶重工集团公司第七一七研究所 基于冷原子干涉原理的惯性测量设备
CN105674982A (zh) * 2014-11-17 2016-06-15 中国航空工业第六八研究所 一种六参数量子惯性传感器及其测量方法
US10288428B1 (en) * 2018-02-12 2019-05-14 AOSense, Inc. Velocity selective thermal atomic beam inertial sensor
CN112229390A (zh) * 2020-10-12 2021-01-15 中国科学院精密测量科学与技术创新研究院 一种三轴原子干涉陀螺仪及实现方法
CN113566818A (zh) * 2021-07-23 2021-10-29 清华大学 原子干涉惯性测量方法及系统
CN114353790A (zh) * 2022-01-11 2022-04-15 清华大学 原子干涉惯性导航信息探测系统及探测方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102538775B (zh) * 2010-12-24 2014-08-06 清华大学 一种冷原子束干涉陀螺装置
WO2016069341A1 (en) * 2014-10-31 2016-05-06 The Charles Stark Draper Laboratory, Inc. Systems and methods for multiple species atom interferometry
FR3063141B1 (fr) * 2017-02-23 2021-02-12 Ixblue Systeme et procede hybride de mesure inertielle base sur un interferometre a atomes froids et a impulsions lumineuses
CN112254717B (zh) * 2020-10-12 2023-10-03 中国科学院精密测量科学与技术创新研究院 一种基于冷原子干涉陀螺仪的惯性导航装置及方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007155584A (ja) * 2005-12-07 2007-06-21 Japan Agengy For Marine-Earth Science & Technology 慣性航法システム
CN103837904A (zh) * 2014-03-20 2014-06-04 中国科学院武汉物理与数学研究所 基于多组份原子干涉仪的组合惯性传感器及其测量方法
CN105674982A (zh) * 2014-11-17 2016-06-15 中国航空工业第六八研究所 一种六参数量子惯性传感器及其测量方法
CN105066991A (zh) * 2015-08-07 2015-11-18 中国船舶重工集团公司第七一七研究所 基于冷原子干涉原理的惯性测量设备
US10288428B1 (en) * 2018-02-12 2019-05-14 AOSense, Inc. Velocity selective thermal atomic beam inertial sensor
CN112229390A (zh) * 2020-10-12 2021-01-15 中国科学院精密测量科学与技术创新研究院 一种三轴原子干涉陀螺仪及实现方法
CN113566818A (zh) * 2021-07-23 2021-10-29 清华大学 原子干涉惯性测量方法及系统
CN114353790A (zh) * 2022-01-11 2022-04-15 清华大学 原子干涉惯性导航信息探测系统及探测方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LI XIAOJIE; MENG ZHIXIN; YAN PEIQIANG; ZHANG JIANWEI; FENG YANYING: "A Multi-Axis Atom Interferometer Gyroscope Based on a Grating Chip", 2020 IEEE INTERNATIONAL SYMPOSIUM ON INERTIAL SENSORS AND SYSTEMS (INERTIAL), IEEE, 23 March 2020 (2020-03-23), pages 1 - 4, XP033770284, DOI: 10.1109/INERTIAL48129.2020.9090092 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117805706A (zh) * 2024-02-28 2024-04-02 中国科学院国家授时中心 采用组合分离振荡场的原子束磁共振方法及系统
CN117805706B (zh) * 2024-02-28 2024-05-28 中国科学院国家授时中心 采用组合分离振荡场的原子束磁共振方法及系统

Also Published As

Publication number Publication date
CN114353790B (zh) 2024-04-30
CN114353790A (zh) 2022-04-15

Similar Documents

Publication Publication Date Title
WO2023134105A1 (zh) 原子干涉惯性导航信息探测系统及探测方法
EP3112879B1 (en) Optical-mechanical vibrating beam accelerometer
US10535981B1 (en) Integrated optical detection for atomic clocks and sensors
US9568319B2 (en) Angular velocity detection method adopting bi-directional full reciprocal coupling optoelectronic oscillator
EP3336586B1 (en) Atom beam gyroscope
CN103278150B (zh) 一种检测角速度的光载微波陀螺方法
CN109357672B (zh) 一种基于环形器结构的双向光载微波谐振系统及其检测角速度的方法
US11874113B2 (en) Bidirectional optical-carrying microwave resonance system based on circulator structure and method for detecting angular velocity by said system
CN102032905B (zh) 一种慢光效应增强的光纤陀螺
CN102003957A (zh) 四频激光陀螺零偏补偿方法
CN103267522B (zh) 用于消除光载微波陀螺非互易性误差的双向锁频交换方法
CN103267521B (zh) 采用单环两路双向谐振光载微波检测角速度的方法
US11378401B2 (en) Polarization-maintaining fully-reciprocal bi-directional optical carrier microwave resonance system and angular velocity measurement method thereof
CN103075966A (zh) 位移测量系统
Meng et al. Closed-loop dual-atom-interferometer inertial sensor with continuous cold atomic beams
CN106525019B (zh) 一种双内态Bragg原子干涉惯性传感器
CN102023006A (zh) 四频激光陀螺电子读出系统
CN206756173U (zh) 一种双气室核自旋陀螺仪
JPS5947788A (ja) 角速度センサのロツクインレ−トを表わす信号を発生する装置
CN109323690B (zh) 一种保偏全互易双向光载微波谐振系统及其检测角速度的方法
US10371523B1 (en) Rotation and acceleration sensor based on superluminal ring lasers
Jia et al. A Dual Atomic Interferometric Inertial Sensor Utilizing Transversely Cooled Atomic Beams
CN113418520B (zh) 基于互补压控振荡器电磁陀螺工作角速率测量装置及方法
Yan et al. A Continuous Dual-Axis Atomic Interferometric Inertial Sensor
Li et al. Four-state modulation in fiber optic gyro

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22919744

Country of ref document: EP

Kind code of ref document: A1