WO2023132548A1 - Dissolver - Google Patents

Dissolver Download PDF

Info

Publication number
WO2023132548A1
WO2023132548A1 PCT/KR2022/021436 KR2022021436W WO2023132548A1 WO 2023132548 A1 WO2023132548 A1 WO 2023132548A1 KR 2022021436 W KR2022021436 W KR 2022021436W WO 2023132548 A1 WO2023132548 A1 WO 2023132548A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
pipe
flow
venturi
gas
Prior art date
Application number
PCT/KR2022/021436
Other languages
French (fr)
Korean (ko)
Inventor
홍승훈
Original Assignee
주식회사 퓨리텍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 퓨리텍 filed Critical 주식회사 퓨리텍
Publication of WO2023132548A1 publication Critical patent/WO2023132548A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F21/00Dissolving
    • B01F21/20Dissolving using flow mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/232Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using flow-mixing means for introducing the gases, e.g. baffles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • B01F25/31Injector mixers in conduits or tubes through which the main component flows
    • B01F25/312Injector mixers in conduits or tubes through which the main component flows with Venturi elements; Details thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/45Magnetic mixers; Mixers with magnetically driven stirrers
    • B01F33/451Magnetic mixers; Mixers with magnetically driven stirrers wherein the mixture is directly exposed to an electromagnetic field without use of a stirrer, e.g. for material comprising ferromagnetic particles or for molten metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/71Feed mechanisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/71Feed mechanisms
    • B01F35/717Feed mechanisms characterised by the means for feeding the components to the mixer
    • B01F35/71805Feed mechanisms characterised by the means for feeding the components to the mixer using valves, gates, orifices or openings

Definitions

  • the present invention relates to a dissolving device configured to dissolve a gas in a liquid, and more particularly, to a dissolving device using a venturi device to dissolve a gas in a liquid.
  • a dissolved solution means a liquid in which a predetermined gas is dissolved.
  • the dissolved gas may exist in a very small size, for example, a micro or nano size in the solution, that is, as micro bubbles or nano bubbles.
  • Such a solution may have various new characteristics depending on the type and properties of a liquid as a solvent and a gas as a solute, and accordingly, it is used in various industrial fields such as agriculture, industry, and medicine.
  • water is typically used as a liquid solvent in the solution, and air, oxygen, and carbon dioxide may be used as gaseous solutes.
  • the dissolving solution is usually prepared by a dissolving device, and the dissolving device is configured to mix and dissolve a gas in a liquid to create a dissolving solution.
  • a dissolving device is configured to mix and dissolve a gas in a liquid to create a dissolving solution.
  • Various devices can be applied for mixing and dissolving these gases, and among these, a venturi device capable of achieving high solubility is mainly applied to the dissolution device.
  • venturi devices have been continuously improved to have more improved performance
  • these improved venturi devices include an injector unit that receives liquid and gas from the outside and dissolves the gas in the liquid, and a bypass pipe connected to the injector unit can include The bypass pipe bypasses a part of the liquid to control the flow rate of the liquid supplied to the injector unit, and accordingly, the amount of dissolved gas, that is, the gas concentration of the dissolved solution can be adjusted.
  • the quality of the lysate can be evaluated by a number of factors, for example, the solubility of the gas, the size of the dissolved gas (i.e., the particle size of the bubbles), and the duration of the dissolved gas. may affect quality. Therefore, there is a continuous need for improvement of dissolution equipment to produce high quality dissolution solutions.
  • the present invention has been made to solve the above-mentioned conventional problems, and an object of the present invention is to simplify the manufacturing process, reduce manufacturing cost, and provide a dissolution device capable of responding to a change in capacity.
  • Another object of the present invention is to provide a dissolution apparatus configured to produce a higher quality dissolution solution.
  • the present invention is a dissolution device for generating a solution in which gas is dissolved in a liquid, a flow path configured to flow the liquid is formed therein, and a nozzle installed in the flow path and the a duct formed in the flow path and including a chamber disposed at an outlet of the nozzle; and a venturi device configured to mix liquid and gas supplied from the duct to produce the dissolved solution and to discharge the generated dissolved solution into the chamber of the duct.
  • the venturi device includes: a housing provided therein with a flow pipe through which the liquid or the dissolved solution selectively flows and a bypass pipe communicating with the flow pipe and selectively bypassing the liquid flowing through the flow pipe; an injector unit detachably inserted into the flow pipe and configured to receive the liquid and the gas and dissolve the gas in the liquid; and a valve member provided in the bypass pipe and configured to selectively open and close the bypass pipe.
  • the chamber is disposed in the duct to communicate with the flow path and may include a suction port connected to the flow path to introduce the liquid therein and an outlet connected to the flow path to discharge the introduced liquid into the flow path.
  • the melting device of the present invention may further include a magnetization device installed in the pipe and configured to magnetize the liquid flowing along the pipe.
  • the venturi device has a sealed and integrated housing and has a replaceable injector unit according to the required capacity. Therefore, the melting device of the present invention has a simplified manufacturing process, can reduce manufacturing costs, and can respond to capacity changes.
  • the melting device according to the present invention includes a chamber connected to the venturi device and a nozzle built into the chamber, as well as various other additional devices.
  • a chamber connected to the venturi device and a nozzle built into the chamber as well as various other additional devices.
  • FIG. 1 is a perspective view showing a dissolution device according to an embodiment of the present invention.
  • Figure 2 is a cross-sectional view of the melting device obtained along the line A-A in Figure 1.
  • Figure 3 is a cross-sectional view of the venturi device taken along line B-B in Figure 1;
  • FIG. 4 is a right side view showing a venturi device included in the melting device of FIG. 1;
  • FIG. 5 is a left side view showing a venturi device included in the melting device of FIG. 1;
  • Figure 6 is a cross-sectional view of the venturi device taken along line C-C in Figure 4;
  • FIG. 7 is a perspective view illustrating an injector unit of a venturi device included in the melting device of FIGS. 1 and 2;
  • FIG. 8 is a cross-sectional view of the injector unit taken along line D-D in FIG. 7 .
  • FIG. 9 is an exploded perspective view and a partial cross-sectional view illustrating a magnetization device included in the melting device of FIG. 1;
  • FIG. 10 is cross-sectional views showing examples of cross-sections of the holder of FIG. 9 .
  • 11 and 12 are cross-sectional views showing the operation of a venturi device in a melting device according to an embodiment of the present invention.
  • the present specification describes a dissolving device for mixing gas and liquid as an example of the present invention, but the described examples can dissolve solvents and solutes in different states without substantial modification to their principles and configurations. It can be applied as it is to mixing and dissolving.
  • FIG. 1 is a perspective view showing a dissolution device according to an embodiment of the present invention.
  • 2 is a cross-sectional view of the melting device taken along line A-A in FIG. 1
  • FIG. 3 is a cross-sectional view of the venturi device taken along line B-B in FIG.
  • FIGS. 4 and 5 are right side views and left side views showing the Venturi device included in the melting device of FIG. 1, respectively
  • FIG. 6 is a cross-sectional view of the Venturi device taken along the line C-C in FIG.
  • the melting device of the present invention may include a duct 100 and a venturi device 1 connected thereto.
  • the duct 100 may be basically configured to transport a liquid for generating a dissolution solution.
  • the duct 100 may be configured to similarly convey the lysate produced in the venturi device 1 connected thereto.
  • the duct 100 may include a flow path 100a configured to flow the liquid and the solution for the transfer thereof.
  • the flow path 100a is formed inside the duct 100 and may extend along the duct 100 .
  • the duct 100 may include one end (or upstream part) connected to a liquid supply source and the other end (or downstream part) connected to a predetermined external device.
  • the other end (or the downstream part) of the duct 100 may be connected to another device using the dissolution solution or a storage container for storing the dissolution solution.
  • the duct 100 receives liquid from an external supply source through the flow path 100a, supplies the liquid to the venturi device 1 connected to the middle of the duct 100, and returns the dissolved solution generated from the venturi device 1 to the duct 100. It can be supplied and supplied to a designated external device through the flow path 100a.
  • the duct 100 may include a first auxiliary duct 101 configured to supply liquid to the venturi device 1 .
  • the first auxiliary duct 101 is connected to the duct 100, precisely its body and the venturi device 1, respectively.
  • the duct 100 is formed on its body and includes an outlet 101a communicating with its flow path 100a, and the first auxiliary duct 101 is connected to the outlet 101a.
  • the liquid flowing along the flow path 100a may flow through the outlet 101a and the first auxiliary duct 101 and be supplied to the venturi device 1 .
  • the duct 100 may include a second auxiliary duct 102 configured to receive the dissolving solution generated in the venturi device 1 .
  • the second auxiliary duct 102 is connected to the body of the duct 100 and the venturi device 1, respectively.
  • the duct 100 is formed on its body and includes a suction port 102a communicating with the flow path 100a, and the second auxiliary duct 102 is connected to the suction port 102a. Therefore, the dissolved solution generated and discharged from the venturi device 1 can be supplied to the duct 100, more precisely, to the flow path 100a thereof by flowing through the second auxiliary duct 102 and the intake port 102a.
  • the supplied dissolved solution may flow along the flow path 100a of the duct 100 and be provided to a designated external device. That is, by such auxiliary ducts 101 and 102 , the liquid may bypass the flow path 100a of the duct 100 , be converted into a dissolved solution in the venturi device 1 , and return to the flow path 100a again.
  • Such ducts and auxiliary ducts 100, 101, and 102 may be dedicated pipes for the dissolution device when the dissolution device is an independent device, that is, a separate device configured to form only the dissolution solution, and a processing system using the dissolution solution generated by the dissolution device. If part of, it may be part of such processing system piping.
  • Venturi device 1 may also be connected to duct 100 and configured to produce a solution, as described above.
  • the venturi device 1 may be configured to receive liquid from the duct 100 to generate a dissolution solution and supply the generated dissolution solution to the duct 100 again.
  • the venturi device 1 includes a housing 10, an injector unit 20, a valve member 30, A stopper member 40 and a gas supply member 50 may be included.
  • the housing 10 may have a body that houses or permits the related parts of the venturi device 1, i.e., components 20-50, to be installed therein.
  • the body of the housing 10 may be made of a solid member to have appropriate strength and rigidity for the stable embedding and installation of related parts.
  • the housing 10 may be made of a solid body.
  • Such a housing 10 has a flow pipe 11 and a flow pipe 11 in which at least one of liquid and gas dissolved liquid (ie, a solution) selectively flows inside the housing 10, precisely inside the solid body thereof, and It may include a bypass pipe 12 that communicates and selectively bypasses the liquid flowing through the flow pipe 11 .
  • the flow pipe 11 may be a pipe member installed or inserted into the body of the housing 10 to flow at least one of the liquid and the dissolved solution.
  • the flow pipe 11 is formed by processing the body of the solid housing 10, and thus may actually consist of a flow path integrally formed with the body of the housing 10. .
  • the flow pipe 11 may extend in one direction.
  • the flow tube 11 is provided at a position opposite to the supply end 11a and the supply end 11a, which is open to selectively supply liquid, and the discharge end 11b, which is open to discharge the dissolved solution. ) and a flow observation passage 11c provided between the supply end 11a and the discharge end 11b, through which at least one of the liquid and the dissolved solution selectively flows.
  • an injector unit 20 is installed in the flow path 11c, and when gas is supplied to the injector unit 20, a dissolved solution is generated from the injector unit 20. Accordingly, only the liquid flows upstream of the injector unit 20 in the flow passage 11c, and the dissolved solution can flow downstream of the injector unit 20 by selective gas supply.
  • the supply end 11a may be formed in one end of the solid housing 10 body, and the discharge end 11b may be formed in the housing 10 It may be formed in the other end of the body.
  • the flow path portion 11c may be formed or extended while penetrating the solid body of the housing 10 between the supply end 11a and the discharge end 11b. This flow path 11c may be referred to as a first flow path to be distinguished from the flow path 12c of the bypass pipe 12 described later.
  • the first auxiliary duct 101 is connected to such a supply end 11a, and the liquid from the duct 100 passes through the first auxiliary duct 101 and the supply end 11a. It can be supplied to the flow pipe (11).
  • the second auxiliary duct 102 is connected to the discharge end 11b, and the generated dissolved solution flows through the flow pipe 11, more precisely, from the flow path 11c to the discharge end 11b and the second auxiliary duct 102. It can be supplied to the duct 100 through.
  • the diameter D1 of the supply end 11a may be substantially the same as the diameter D2 of the discharge end 11b.
  • the injector unit 20 can be inserted through this supply end 11a.
  • a step 11d may be provided in the flow pipe passage 11c. This step 11d may be formed by protruding at least a part of the inner surface of the flow observation passage 11c.
  • the step 11d comes into contact with the end of the injector unit 20 inserted through the supply end 11a to prevent the injector unit 20 from being separated from the discharge end 11b, and also prevents the injector unit 20 from escaping to the discharge end 11b. ) can also be prevented from being inserted through the discharge end 11b.
  • the bypass pipe 12 may be a pipe member installed or inserted into the body of the housing 10 to bypass the liquid flowing through the flow pipe 11 .
  • the bypass pipe 12 is formed by processing the body of the solid housing 10, and accordingly, it is actually made of a flow path integrally formed with the body of the housing 10. may be At this time, the bypass pipe 12 may be connected in communication with the flow pipe 11 through at least one connection part. More specifically, the bypass pipe 12 is connected to the inlet (or inlet) for introducing liquid into the bypass pipe 12 by being connected to the flow pipe 11 and the bypass pipe 12 by being connected to the flow pipe 11. An outlet (or outlet) for discharging the flowing liquid back into the flow pipe 11 may be included.
  • the bypass pipe 12 may be spaced apart from each other by a predetermined distance in a direction perpendicular to the extension direction of the flow pipe 11 .
  • the bypass pipe 12 includes an insertion end 12a opened to accommodate the valve member 30, a closed end 12b provided at a position opposite to the insertion end 12a and closed, and an insertion end 12a. ) and the closed end 12b, and may include a bypass tube passage 12c through which liquid selectively flows.
  • the insertion end 12a may be formed within one end of the solid housing 10 body. As shown, the insertion end 12a may be disposed adjacent to the inlet or inlet of the bypass pipe 12, and accordingly, the valve member 30 provided at the insertion end 12a facilitates the inflow of liquid. You can control it.
  • the insertion end 12a may be formed of a channel extending from the inside of the bypass pipe 12, that is, from the flow path 12c to the outside of the body of the housing 10. That is, the insertion end 12a may be formed of a channel connecting the inside of the bypass pipe 12, that is, the flow path 12c and the outside of the housing 10 body. Accordingly, the insertion end 12a can communicate the flow path 12c with the outside of the body of the housing 10, and the flow path 12c as well as the insertion end 12a can communicate with the outside of the housing 10 body. can be opened to the outside. For this reason, the valve member 30 in the open insertion end 12a can be easily inserted and installed from the outside of the housing 10, and has access to the flow path 12c to open and close the bypass pipe 12.
  • the closed end 12b may be formed in the other end of the body of the housing 10, but is not communicated with or open to the outside of the housing 10 to prevent liquid from flowing out. does not
  • the closed end 12b may be disposed adjacent to the outlet or outlet of the bypass tube 12, as shown.
  • the passage portion 12c may be formed or extended while penetrating the solid body of the housing 10 between the insertion end 12a and the closed end 12b. This flow path 12c may be referred to as a second flow path to be distinguished from the flow path 11c of the flow pipe 11 described above.
  • the flow pipe 11 and the bypass pipe 12 may be integrally formed within the housing 10 body so as to be disposed within the housing 10 body. That is, the flow pipe 11 and the bypass pipe 12 are formed as a kind of flow passages within the body of the solid housing 10, and thus can be integrated with the housing 10. Thus, in the present invention, the flow pipe 11 and the bypass pipe 12 can be formed as a single module sharing the same body as the housing 10 .
  • the injector unit 20 may dissolve the gas into the liquid by mixing the liquid and the gas. To this end, the injector unit 20 may be detachably inserted into the flow pipe 11 of the housing 10 .
  • Such an injector unit 20 will be described in more detail below with reference to related drawings in addition to the previously referenced FIGS. 2 to 6 .
  • FIG. 7 is a perspective view showing an injector unit of the venturi device included in the melting device of FIGS. 1 and 2
  • FIG. 8 is a cross-sectional view of the injector unit taken along line D-D in FIG. 7 .
  • the injector unit 20 forms an external appearance, and is provided inside the main body 21 that is replaceably inserted into the flow pipe 11 and the main body 21, and gas and liquid are mixed.
  • a venturi member 22 having a venturi passage 221 capable of flowing and having one end connected to the main body 21 and the other end connected to the venturi member 22, the circumferential direction of the venturi member 22 It may include a plurality of spray members 23 spaced apart along the.
  • the body 21 may include an O-ring insertion portion 211 in which at least a portion of an outer surface protrudes toward the inside of the body 21 in the radial direction.
  • the O-ring insertion portion 211 may extend along the circumferential direction of the main body 21 and may be provided in plurality.
  • the plurality of O-ring insertion parts 211 may be spaced apart at predetermined intervals along the longitudinal direction of the main body 21 .
  • an O-ring member 213 may be inserted into the O-ring insertion part 211, and airtightness between the flow pipe 11 of the housing 10 and the main body 21 may be maintained by the O-ring member 213. .
  • the inner radial direction of the main body 21 means a direction from the inner surface of the main body 21 toward the center of the main body 21, and the circumferential direction of the main body 21 is the main body ( 21) means a direction of rotation along the outer circumferential surface, and the longitudinal direction of the main body 21 means the x-axis direction in FIG. 1 .
  • the circumferential direction of the body 21 may be any one of clockwise and counterclockwise directions, and unless otherwise specified, the directions are both positive and negative directions. cover
  • the main body 21 may include a protrusion 212 protruding inward in the radial direction of at least a portion of the outer surface of the main body 21 .
  • the degree of protrusion of the protruding part 212 radially inward of the main body 21 may be greater than the degree of protruding of the O-ring insertion part 211 to the inner side of the main body 21 in the radial direction.
  • the protrusion 212 may extend along the circumferential direction of the main body 21 and may be provided between two adjacent O-ring insertion parts 211 in the longitudinal direction of the main body 21 .
  • the injector unit 20 more precisely, the main body 21 may have a protruding portion 212 that protrudes radially inward from the outer periphery of the main body 21 to a predetermined depth and extends in the circumferential direction.
  • the other end of the spray member 23 may be connected to the inner surface of the protrusion 212 in communication.
  • the protrusion 212 protrudes radially inward from the main body 21, the outer surface of the protrusion 212 and the inner surface of the flow pipe passage 11c are spaced apart to form a predetermined space 212a.
  • the space portion 212a may be used as a space in which gas supplied from the gas supply member 50 flows, and the gas flowing through the space portion 212a is spraying member 23 connected to the inner surface of the protruding portion 212.
  • the injector unit 20 is formed to continuously extend along the circumferential direction on the outer circumference of the main body 21 and includes a space 212a forming a space in which gas supplied from the outside of the venturi device 1 flows.
  • the venturi member 22 may serve to form a vortex of liquid supplied from the outside by using the venturi effect. To this end, the venturi member 22 may have a venturi passage 221 in which gas and liquid may be mixed and flowed.
  • the venturi member 22 includes a first downwardly inclined portion 222 inclined downward from one end to the other end, a second downwardly inclined portion 223 downwardly inclined from the other end to one end, and a first downwardly inclined portion 223.
  • a neck portion 224 connected between the portion 222 and the second downwardly inclined portion 223 may be included.
  • the cross-sectional area of the first downwardly inclined portion 222 may decrease from one end to the other end, and the cross-sectional area of the second downwardly inclined portion 223 may also decrease from the other end to one end.
  • one end of the injection member 23 may be connected to the neck portion 224 in communication.
  • the injection member 23 is connected in communication with the neck portion 224 where the flow rate increases, liquid and gas can be smoothly mixed in the venturi passage 221 .
  • the liquid is introduced through the first downwardly inclined portion 222, mixed with the gas at the neck portion 224, and produced as a dissolved solution, and the produced dissolved solution passes through the second downwardly inclined portion 223 through a venturi. It can be discharged to the outside of the member 22 .
  • the flow rate passing through the venturi passage 221 of the venturi member 22 may be determined according to the diameters of one end and the other end of the venturi member 22 .
  • the venturi member 22 according to an embodiment of the present invention is coupled to the inside of the main body 21, As the main body 21 is detachably coupled to the flow pipe 11, when it is necessary to respond to a change in flow rate, after selecting the main body 21 coupled with the venturi member 22 having a diameter suitable for the changed flow rate, By combining with (11), it is possible to respond to flow rate change differently from the prior art. That is, the amount of dissolving liquid produced, i.e., the capacity, of the venturi device 1 can be controlled by this replaceable venturi member 22.
  • the plurality of injection members 23 may transfer the gas provided from the gas supply member 50 to the venturi member 22 .
  • the plurality of injection members 23 may increase a contact area between the liquid flowing through the venturi member 22 and the gas supplied from the gas supply member 50 .
  • the plurality of injection members 23 are located inside the main body 21 and may be installed between the space portion 212a and the venturi member 22 .
  • the plurality of injection members 23 may be spaced apart from each other at a predetermined interval along the circumferential direction of the venturi member 22 .
  • the injection members 23 may extend in a radial direction between the space portion 212a and the venturi member 22, and may be oriented in a direction perpendicular to the central axis of the venturi member 22.
  • each of the injection members 23 may be made of a 5-member member configured to inject the gas in the space 212a to the neck 224 of the venturi member 22 .
  • each spray member 23 may be communicatively connected to the protrusion 212 of the body 21, and the other end of the spray bonsai 23 may be communicatively connected to the neck 224 of the venturi member 22.
  • the plurality of ejection members 23 are spaced apart along the circumferential direction of the venturi member 22, and the gas supplied from the gas supply member 50 is radially inside the venturi passage 221 of the venturi member 22, That is, it may be injected toward the inside of the neck portion 224 in the radial direction. That is, each injection member 23 has one end directly connected to the space 212a and the other end directly connected to the neck 224 inside the venturi member 22 having a relatively reduced cross-sectional area. , It may be configured to spray the gas flowing in the space portion 212a to the neck portion 224 of the venturi member.
  • Gas supplied to the injector unit 20 from the outside first enters the space 212a, which is a preliminary flow area. Since the space portion 212a continuously extends along the outer circumference of the main body 21 of the injector unit 20, the supplied gas flows while turning on the outer circumference of the main body 21 along the space portion 212a. . Therefore, the gas supplied by the generated rotational force can be advantageously accelerated by the space portion 212a to be primarily supplied to the inside of the venturi member 22, and is uniformly distributed outside the outer circumference of the venturi member 22. It can be. Subsequently, the accelerated and uniformly distributed gas is supplied to the inside of the venturi member 22 through the plurality of injection members 23, precisely to the neck portion 224, which is a reduced cross-sectional area thereof.
  • the gas flows through the injection members 23 throughout the inside of the neck 224 of the venturi member 22. can be sprayed across. Gas can be uniformly injected into the neck portion 224 of the venturi member 22 while being accelerated by the space portion 212a of the injector unit 20 and the injection members 23 . Accordingly, the liquid forming a vortex in the venturi passage 221 and the gas injected toward the inside of the venturi passage 221 in the radial direction collide with each other, so that the gas can be efficiently dissolved in the liquid. For this reason, according to the present invention, the gas can be uniformly mixed with the fluid in a large amount in the venturi member 22, and the overall performance of the melting device can be greatly improved.
  • the valve member 30 is provided in the bypass pipe 12 and may be configured to selectively allow liquid in the flow pipe 12 to flow from the flow pipe 12 to the bypass pipe 12 .
  • the valve member 30 may be configured to selectively open the bypass pipe 12.
  • the valve member 30 may be movably installed or inserted into the body of the housing 10 .
  • the insertion end 12a of the bypass pipe 12 is connected to the outside of the housing 10 body while being connected to the flow path 12c within the housing body 10, or is connected thereto. can be opened
  • the valve member 30 is inserted into the insertion end 12a of the bypass pipe 12 from the outside of the housing 10, and can be configured to slide within the insertion end 12a. That is, the valve member 30 can be slidably inserted into the insertion end 12a.
  • the insertion end 12a is a channel that continuously extends from the outside of the housing 10 body to the bypass pipe 12 inside the housing 10 body, precisely to its flow path 12c, so that the valve The member 30 is movable along this insertion end 12a. Therefore, while the valve member 30 moves along the insertion end 12a, it selectively opens the bypass pipe 12, that is, the flow passage 12c to communicate with the flow pipe 11, or does not communicate with the flow pipe 11. You can close it to avoid it.
  • valve member 30 when the valve member 30 moves toward the bypass pipe 12 (or flow path portion 12c) along the insertion end 12a (ie, the valve member 30) is completely inserted into the insertion end 12a), the end of the valve member 30 can reach into the bypass pipe 12 (or flow path 12c) and close it.
  • a stopper is formed on the outer circumference of the valve member 30, and a stopper may be formed on the inner circumference of the insertion end 12a. . Accordingly, the valve member 30 can be inserted or moved until these stoppers are engaged with each other, and the valve member 30 can be configured to close the bypass pipe 12 when the stoppers are engaged with each other.
  • the valve member 30 adjusts the amount of liquid and the liquid pressure supplied to the injector unit 20 by selectively opening and closing the bypass pipe 12 and thereby bypassing the liquid, thereby controlling the pressure and amount of gas supplied. It is possible to adjust the gas concentration (i.e., solubility) in the solution by this control.
  • valve member 30 since the valve member 30 is configured to slide along the insertion end 12a, the amount of movement of the valve member 30 can be easily adjusted. Therefore, the degree of opening of the bypass pipe 12 can be adjusted by adjusting the amount of movement of the valve member 30, and by adjusting the amount of liquid flow through the bypass pipe 12 according to the opening control, the injector unit 20 The gas concentration of the dissolved solution produced within can also be adjusted. As shown in FIGS. 2, 11 and 12, a part of the valve member 30, that is, its end may be configured to continuously protrude out of the body of the housing 10. Therefore, by using the exposed end, the operator manually moves the valve member 30 along the insertion end 12a, thereby easily controlling the opening and closing of the bypass pipe 12. Instead of such a manual operation, the valve member 30 may be operated using a predetermined driving mechanism.
  • valve member 30 described above may be formed of, for example, a plug member movably inserted into the insertion end 12a, but this is only an example, and thus the spirit of the present invention is not limited thereto.
  • the valve member 30 may include an O-ring insertion portion 31 in which at least a portion of an outer surface protrudes radially inward of the valve member 30 .
  • the O-ring insertion portion 31 may extend along the circumferential direction of the valve member 30 .
  • an O-ring member 32 may be inserted into the O-ring insertion portion 31, and airtightness between the bypass pipe 12 of the housing 10 and the valve member 30 is maintained by the O-ring member 32. It can be.
  • valve member 30 is coupled to the insertion end 12a of the bypass pipe 12 as an example, but this is for convenience of description.
  • the idea of the invention is not limited.
  • a male thread is formed on at least a portion of the outer surface of the valve member 30, and a female thread is formed on at least a portion of the inner surface of the insertion end 12a, so that the valve member 30 and the insertion end 12a It is also possible that the is screwed together.
  • the stopper member 40 allows the injector unit 20 inserted through the supply end 11a of the flow pipe 11 to escape through the supply end 11a of the flow pipe 11. can prevent it from happening.
  • the stopper member 40 may be selectively inserted into the housing 10 . At this time, at least a portion of the stopper member 40 may be inserted into the stopper member insertion hole 14 formed in the housing 10 .
  • the stopper member 40 may be provided in a columnar shape extending in one direction, for example.
  • the stopper member 40 may be inserted into the stopper member insertion hole 14 after the injector unit 20 is inserted through the supply end 11a of the flow pipe 11 .
  • the injector unit 20 can be separated from the supply end 11a.
  • a male thread is formed on at least a portion of an outer surface of the stopper member 40 and a female thread is formed on at least a portion of an inner surface of the stopper member insertion hole 14 so that the stopper member 40 is formed through the stopper member insertion hole It may be coupled to (14) by screwing.
  • the gas supply member 50 may selectively supply gas to the injector unit 20 from the outside. To this end, the gas supply member 50 may be provided to be connectable to the housing 10. At this time, referring to FIGS. 3 and 6, the end of the gas supply member 50 is provided in the housing 10 It may be inserted into the gas supply member insertion hole 13 .
  • the gas supply member 50 may be connected in communication with the injection member 23 of the injector unit 20 .
  • the external gas supplied through the gas supply member 50 flows in the space 212a formed spaced apart between the inner surface of the flow observation passage 11c and the outer surface of the protrusion 212, and the space 212a
  • the gas flowing in may be supplied to the plurality of injection members 23 and injected into the venturi member 22 .
  • the duct 100 may also be modified in various forms or include various additional devices, and these modifications and devices make it more A high quality lysate can be produced.
  • the deformable structure and additional devices of the duct 100 will be described in more detail below.
  • the duct 100 may include a nozzle 110 disposed within its flow path 100a.
  • the nozzle 110 may include a body made of a hollow tube extending to a predetermined length and suction and discharge ports 111 and 112 respectively provided at both ends of the body.
  • the outlet 112 has a smaller size than the inlet 111, and thus the liquid flowing into the inlet 111 and discharged to the outlet 112 has an increased flow rate.
  • the nozzle 110 precisely its body, has a gradually decreasing diameter (or inner diameter) from the inlet 111 to the outlet 112, so that the liquid flows smoothly through the inlet 111 of the nozzle 110 without substantial resistance. It can flow out through the outlet 112 from.
  • such a nozzle 110 that is, its body extends and is oriented along the flow path 100a of the duct 100, and its inlet 111 and outlet ( 112) is also disposed and oriented along the flow path 100a, i.e., its flow direction.
  • the nozzle 110 causes the liquid to flow in the same direction as the flow direction of the flow path 100a, and is configured to accelerate the liquid during this flow. That is, the inlet 111 of the nozzle 110 sucks in the liquid in the same direction as the flow direction in the flow path 100a, and the outlet 112 of the nozzle 110 discharges the liquid in the same direction as the flow direction. Therefore, the nozzle 110 can be configured to accelerate the fluid in the flow path 100a in the same flow direction without any loss.
  • the duct 100 may include a chamber 120 of a predetermined size provided in its flow path 100a.
  • the chamber 120 may be disposed at the outlet 112 of the nozzle 110 to receive the liquid discharged from the nozzle 110 .
  • the chamber 120 is disposed within the duct 100 to communicate with the flow path 110a and may be located downstream of the nozzle 110 .
  • the chamber 120 communicates with at least the outlet 112 of the nozzle 110, and accordingly, the liquid discharged through the exposure 110 can be directly accommodated in the chamber 120.
  • the chamber 120 partially accommodates the tip of the nozzle 110 including the discharge port 112 therein, and thus the discharge port 112 is also included in the chamber 120. can be accommodated within. That is, the tip of the nozzle 110 including the outlet 112 may be partially inserted into the chamber 120 .
  • the chamber 120 includes a suction port 121 connected to the flow path 100a to introduce liquid therein and connected to the flow path 100a to discharge the introduced liquid into the flow path 100a. It may include an outlet 122 to be.
  • the inlet 121 and the outlet 122 of the chamber 121 are arranged and oriented along the flow path 100a, that is, its flow direction. Therefore, the chamber 120 is formed as a part of the flow path 100a, and basically, like the nozzle 110, it is configured to allow the liquid to flow in the same direction as the flow direction of the flow path 100a so as not to disturb the flow of the liquid. do.
  • the nozzle 110 is actually tightly fitted into the inlet 121 of the chamber 121, and may be partially inserted into the inner space of the chamber 120 through the inlet 121. Therefore, as mentioned above, the outlet 112 of the nozzle 110 is disposed in the chamber 121 to discharge the liquid directly into the chamber 121 .
  • the chamber 120 may include an auxiliary inlet 123 configured to introduce the dissolution solution generated by communicating with the venturi device 1 into the chamber 120 .
  • the auxiliary inlet 123 is directly connected to the inlet 102a of the duct 100, and thus may communicate with the second auxiliary duct 102.
  • the chamber 120 may be directly connected to the venturi device 1, precisely its discharge end 11b, through the auxiliary inlet 123, the inlet 102a, and the second auxiliary duct 102.
  • the chamber 120 can be supplied with the produced lysate from the venturi device 1 . That is, the venturi device 1 may be configured to discharge the generated lysate into the chamber 120 .
  • the chamber 120 is in a relatively low pressure state, that is, negative pressure. environment can be created. Therefore, the dissolved solution generated in the venturi device 1 due to this negative pressure environment can be more smoothly sucked into the chamber 120 through the second auxiliary duct 102, the suction port 102a, and the auxiliary suction port 123. .
  • the flow rate of the lysate can be substantially increased by the negative pressure environment during such suction.
  • the accelerated dissolving solution collides with the liquid accelerated by the nozzle 110 in the chamber 120 as well, and the gas in the dissolving solution can be split into smaller sizes by this collision.
  • a large vortex is generated by such a collision, and the gas decomposed by the generated vortex can be better dissolved in the liquid. Therefore, by the configuration of the duct 100 described above, that is, the chamber 120 mixing the liquid supplied from the nozzle 110 and the dissolved liquid supplied from the venturi device 1, as well as the gas bubbles of smaller size, more A high quality lysate with a high amount of dissolved gas (i.e., increased solubility or gas concentration) can be produced.
  • the dissolved solution additionally treated in this way may be supplied to an intended external device along the flow path 100a through the outlet 122 of the chamber 120 .
  • the venturi device 1 may be configured to discharge the solution to the side of the nozzle 110, as best seen in FIG. 2 .
  • the dissolved solution collides with the side of the nozzle 110 in addition to the collision with the sprayed liquid.
  • the collided solution naturally forms a rotational flow or a vortex while turning along the side of the nozzle 110 .
  • Such additional collisions and vortices further promote the formation of small gas bubbles and an increase in solubility or gas concentration for the same reason as described above, and the quality of the dissolution solution can be further improved. As shown in FIG.
  • the auxiliary inlet 123 of the chamber 120 may be disposed to face the side of the nozzle 110 so that the dissolved solution is discharged to the side of the nozzle 110 .
  • the nozzle 110 extends long into the chamber 120 so that the discharge port 112 of the nozzle may be disposed beyond the auxiliary suction port 123 . This configuration allows the dissolved solution to be discharged to the side of the nozzle 110, and can ensure the aforementioned effect.
  • the pipe 100 may include an expansion pipe 130 provided in the flow path 100a.
  • the expansion tube 130 is formed as a part of the flow path 100a and may be disposed downstream of the chamber 120 to communicate with the chamber 120 . More specifically, the expansion tube 130 includes a suction port 131 connected to the chamber 120 to introduce dissolved water in the chamber 120 therein and discharges the introduced dissolved water into the flow path 100a. It may include an outlet 132 connected to the flow path 100a to do so.
  • the inlet 131 and the outlet 132 of the expansion pipe 130 are arranged and oriented along the flow path 100a, that is, its flow direction. Therefore, like the nozzle 110 and the chamber 120, the expander 130 basically flows the dissolved solution processed in the chamber 120 in the same direction as the flow direction of the flow path 100a so as not to disturb the flow of the liquid. It is configured to allow
  • the inlet 131 of the expansion pipe 130 is directly connected to the outlet 122 of the chamber 120, and at the same time is also configured to communicate with the outlet 112 of the nozzle 110 in the chamber 120. More specifically, the inlet 131 of the expansion tube 130 may be aligned with the outlet 112 of the nozzle 110 and the outlet 122 of the chamber 120 . Furthermore, the inlet 131 of the expansion pipe 130 may be arranged concentrically with the outlet 112 of the nozzle 110 and the outlet 122 of the chamber 120, that is, on a common central axis. Due to this arrangement, the lysate in the chamber 120 can smoothly flow into the flow path 100a directly through the expansion tube 130 without substantial resistance, that is, without loss. In addition, due to the gradually expanding structure, the flow rate of the dissolving solution in the expansion tube 130 is lowered, allowing sufficient time for the gas to be additionally dissolved in the liquid. Therefore, such a pipe expansion unit 130 can further improve the quality of the produced solution.
  • the nozzle 110 and the expansion pipe 130 are fluidly connected to each other and can substantially form an additional venturi structure, using which additional gas dissolution can be performed.
  • the pipe 100 is disposed adjacent to the outlet 112 of the nozzle 110 and may include an injection pipe 140 configured to discharge gas to the outlet 112 of the nozzle 110.
  • a supply pipe 141 may be connected to the pipe 100 to supply gas to the injection pipe 140 .
  • the injection pipe 140 is disposed at the outlet 122 of the chamber 120 corresponding to the neck of the formed venturi structure and/or the inlet 131 of the expansion section 130 to gas can be injected. Gas may be additionally dissolved in the dissolving liquid by the sprayed gas, and the solubility and gas concentration of the dissolving liquid may be substantially improved.
  • the duct 100 may additionally include an agitator 150 configured to form a vortex in the liquid in the flow path 100a.
  • the stirrer 150 is provided in the flow path 100a and may be disposed at the inlet 111 of the nozzle 110.
  • the stirrer 150 may be implemented according to various mechanisms for forming a vortex, and may be formed of, for example, a blade, an impeller, or a spiral flow path.
  • a vortex is already formed in the liquid supplied to the nozzle 110 by the agitator 150, and such a vortex may be formed when discharged. Therefore, in the chamber 120, the liquid can be more smoothly mixed with the dissolution solution.
  • the dissolution device may further include an additional device to improve the quality of the dissolution solution in addition to the configuration of the duct 100 described above.
  • the melting device may further include a magnetization device 200 installed in the duct 100 to magnetize the liquid in the duct 100 .
  • a magnetization device 200 installed in the duct 100 to magnetize the liquid in the duct 100 .
  • radicals are formed therein, and the radicals can impart various additional useful properties to the liquid.
  • Such a magnetization device 200 will be described in more detail in the following with reference to additionally related drawings in FIG. 2 .
  • FIG. 9 is an exploded perspective view and a partial cross-sectional view illustrating a magnetizer included in the dissolution device of FIG. 1
  • FIG. 10 is cross-sectional views showing examples of cross sections of the holder of FIG. 9 .
  • the magnetization device 200 is provided on the outer periphery of the duct 100 and may include a mounter 210 configured to surround the duct 100. there is.
  • the mounter 210 functions as a platform for mounting other parts of the magnetizer 200 to be described later on the duct 100. More specifically, the mounter 210 may include a sleeve 210a mounted on the duct 100 while surrounding it, and flanges 210b provided at both ends of the sleeve 210a.
  • the flange 210b may extend a predetermined length in a radial direction from both ends of the sleeve 210a.
  • the magnetization device 200 is installed on the mounter 210 and may include a plurality of holders 220 disposed at predetermined intervals along the circumferential direction of the mounter 210 .
  • the holders 220 may be formed of a member in the form of a rod extending long, and may be actually installed on the flange 210b of the mounter 210a.
  • the flange 210b includes a plurality of seats 210c, and these seats 210c may be made of recesses or through holes. Accordingly, both ends of the holder 220 are fitted into the seat portion 210c of the flange 210b, and thus the holder 220 can be mounted on the mounter 210.
  • the magnetization device 200 may include a permanent magnet 230 disposed within each holder 220 .
  • the permanent magnet 230 serves to magnetize the liquid in the duct 100 by actually forming a magnetic field. If the permanent magnet 230 protrudes to the outside of the holder 220, the volume of the magnetizer 200 increases, making installation and maintenance difficult. For this reason, the permanent magnet 230 may be embedded inside each of the holders so as not to protrude outward.
  • the holder 220 may include through-holes 220a formed in a radial direction or a width direction, and the permanent magnet 230 may be embedded in the through-holes 220a so as not to protrude.
  • the holder 220 may also be made of a strong magnetic material, and thus a stronger magnetic field may be formed.
  • the magnetic holder 220 may have a smooth outer surface.
  • the holder 220 has a polygonal cross section, as shown in FIGS. 10(b) and (c)
  • it has more surfaces from which magnetic lines of force are emitted, and is advantageous for forming a strong magnetic field.
  • the holder 220 preferably has a polygonal cross section as shown in Figs. 10(b) and (c).
  • FIG. 10( b ) shows a holder 220 having a pentagonal cross-section with five surfaces from which magnetic lines of force are emitted.
  • FIG. 10(c) shows the holder 220 having a serrated cross section, and since it includes more surfaces than FIG. 10(c), it is advantageous to form a stronger magnetic field.
  • Such a magnetization device 200 may be provided not only to the duct 100 but also to the first and second auxiliary ducts 101 and 102, and in this case, a higher quality solution may be produced.
  • the injector unit 20 is inserted through the supply end 11a of the flow pipe 11 provided inside the housing 10 .
  • the stopper member 40 is inserted into the stopper member insertion hole 14 pre-installed in the housing 10 to prevent the injector unit 20 from being separated from the flow pipe 11, thereby opening the housing
  • the installation of the injector unit 20 to (10) is completed.
  • the gas supply member 50 is connected to the gas supply member insertion hole 13 previously installed in the housing 10 .
  • the duct 100 is connected to the housing 10, that is, the venturi device 1 using the auxiliary ducts 101 and 102, and is ready to produce a solution.
  • the liquid is supplied to the venturi device 1 from the outside through the supply end 11a of the flow pipe 11 using the duct 100 .
  • the valve member 30 is completely inserted into the insertion end 12a of the bypass pipe 12 provided inside the housing 10, liquid supplied from the outside is not bypassed to the bypass pipe 12. and can be supplied only through the flow pipe 11.
  • the supplied liquid flows along the venturi passage 221 provided in the venturi member 22 of the injector unit 20 to form a vortex.
  • the gas provided from the gas supply member 50 is supplied to the venturi passage 221 through the plurality of spray members 23 and is dissolved in the liquid while colliding with the vortex of the liquid.
  • the dissolved liquid in the liquid in which the gas is dissolved may pass through the venturi flow path 221 and be discharged through the discharge end 11b of the flow pipe 11.
  • the inlet of the bypass pipe 12 may be opened.
  • At least a portion of the liquid supplied from the outside may be bypassed to the bypass pipe 12 . Due to this bypass, the flow rate of the liquid supplied to the injector unit 20 is reduced, and the reduced flow rate also results in a decrease in pressure inside the injector unit 20 . Accordingly, the pressure of the gas injected from the plurality of injection members 23 of the injector unit 20 is relatively increased due to the decrease in internal pressure, and the amount of gas injected may also increase.
  • the amount of gas dissolved in the liquid in the injector unit 20, that is, the gas concentration of the dissolved solution can be increased. That is, by bypassing the fluid through the bypass pipe 12, the fluid amount and fluid pressure supplied to the injector unit 20 are reduced while the supplied gas pressure and gas amount are increased, and by this adjustment, a higher gas concentration ( That is, a solution having a solubility) can be produced.
  • the flow pipe and the bypass pipe are integrally formed in the body of the housing.
  • the valve member is movably installed in the body of the housing to selectively open the bypass pipe.
  • the claimed flow pipe and bypass pipe are formed as a kind of flow passages in the housing body, and the housing is formed as a single module incorporating flow passages required for gas and water mixing, such as the flow pipe and bypass pipe, into its body.
  • the venturi device is capable of integrating all required parts and flow passages into one module (i.e. housing). , more specifically, it can be configured as an all-in-one device integrated into one body.
  • the venturi device of the melting device of the present invention since the required parts and flow paths are integrated into one module (ie, housing), the intended device can be manufactured with relatively few processes and low cost.
  • flow channels such as the flow pipe and the bypass pipe can be integrally formed within the body of the housing by a single process such as casting and molding, manufacturing costs and processes can be greatly reduced.
  • the valve member since the valve member is also built into the housing body and is configured to slide, it can have a simple and small size unlike conventional valves, thereby reducing manufacturing costs and processes.
  • the venturi device of the melting device of the present invention the parts and the flow path are integrally formed in a single housing body or disposed together in the same body. Therefore, these parts and the connection parts of the passage are naturally sealed by the body of the housing without being exposed to the outside. Therefore, in the venturi device of the melting device of the present invention, leakage of gas and water and performance degradation due to this do not occur, and required performance can be stably exhibited.
  • the dissolving device includes various attachments provided to the duct and venturi device, and a higher quality dissolving solution can be produced by these attachments.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Abstract

Disclosed in the present invention is a dissolver capable of generating a high quality solution. The present invention may provide a dissolver for generating a solution in which gas is dissolved in a liquid, the dissolver comprising: a duct forming a flow path configured to make the liquid flow therein, and including a nozzle installed in the flow path and a chamber formed in the flow path and disposed at an outlet of the nozzle; and a venturi device configured to mix the liquid and the gas supplied from the duct so as to generate the solution, and to discharge the generated solution into the chamber of the duct.

Description

용해장치melting device
본 발명은 액체에 기체를 용해시키도록 구성되는 용해장치에 관한 것이며, 보다 상세하게는, 액체에 기체를 용해하기 위해 벤츄리 장치를 이용하는 용해장치에 관한 것이다. The present invention relates to a dissolving device configured to dissolve a gas in a liquid, and more particularly, to a dissolving device using a venturi device to dissolve a gas in a liquid.
일반적으로, 용해액은 소정의 기체가 용해된 액체를 의미한다. 용해된 기체는 용해액내에서 아주작은 크기, 예를 들어 마이크로 또는 나노 단위의 크기로, 즉 마이크로 버블 또는 나노 버블로서 존재할 수 있다. 이러한 용해액은 용매인 액체 및 용질인 기체의 종류 및 성질에 따라 다양한 새로운 특성을 가질 수 있으며, 이에 따라 농업, 공업 및 의학등과 같은 다양한 산업분야에 사용되고 있다. 예를 들어, 용해액에서 액체 용매는 물이 대표적으로 사용되며, 기체 용질로서는 공기, 산소, 및 이산화탄소등이 사용될 수 있다. Generally, a dissolved solution means a liquid in which a predetermined gas is dissolved. The dissolved gas may exist in a very small size, for example, a micro or nano size in the solution, that is, as micro bubbles or nano bubbles. Such a solution may have various new characteristics depending on the type and properties of a liquid as a solvent and a gas as a solute, and accordingly, it is used in various industrial fields such as agriculture, industry, and medicine. For example, water is typically used as a liquid solvent in the solution, and air, oxygen, and carbon dioxide may be used as gaseous solutes.
용해액은 통상적으로 용해장치에 의해 제조되며, 용해장치는 액체에 기체를 혼합 및 용해시켜 용해액을 생성하도록 구성된다. 이러한 기체의 혼합 및 용해를 위해 다양한 장치들이 적용될 수 있으며, 이들중 높은 용해도 달성이 가능한 벤츄리 장치가 주로 용해장치에 적용된다. The dissolving solution is usually prepared by a dissolving device, and the dissolving device is configured to mix and dissolve a gas in a liquid to create a dissolving solution. Various devices can be applied for mixing and dissolving these gases, and among these, a venturi device capable of achieving high solubility is mainly applied to the dissolution device.
이러한 벤츄리 장치는 보다 향상된 성능을 갖도록 지속적으로 개량되어 오고 있으며, 이러한 개량된 벤츄리 장치는 일 예로서 외부로부터 액체 및 기체를 공급받아서 기체를 액체에 용해시키는 인젝터 유닛 및 인젝터 유닛과 연결되는 바이패스관을 포함할 수 있다. 바이패스관은 액체의 일부를 우회시켜 인젝터 유닛에 공급되는 액체 유량을 조절하며, 이에 따라 용해되는 기체량, 즉 용해액의 기체 농도가 조절될 수 있다. These venturi devices have been continuously improved to have more improved performance, and these improved venturi devices, for example, include an injector unit that receives liquid and gas from the outside and dissolves the gas in the liquid, and a bypass pipe connected to the injector unit can include The bypass pipe bypasses a part of the liquid to control the flow rate of the liquid supplied to the injector unit, and accordingly, the amount of dissolved gas, that is, the gas concentration of the dissolved solution can be adjusted.
그러나, 이와 같은 개량된 벤츄리 장치에 있어서도, 바이패스관이 별도로 마련되어야 하므로, 벤츄리 장치를 제조하기 위한 제조 공정이 복잡해지고, 제조 비용이 증가하는 문제가 있다. 또한, 인젝터 유닛과 바이패스관이 연결된 부분을 통해 액체, 기체 및 용해액 중 적어도 하나가 누수될 염려가 있다. 또한, 인젝터 유닛이 기 설정된 량의 용해액만을 생성하도록 설계되므로, 요구되는 용해액 용량의 변화에 적절하게 대응할 수 없다는 문제가 있다. However, even in such an improved venturi device, since the bypass pipe must be separately provided, the manufacturing process for manufacturing the venturi device becomes complicated and the manufacturing cost increases. In addition, there is a concern that at least one of liquid, gas, and dissolved solution may leak through a portion where the injector unit and the bypass pipe are connected. In addition, since the injector unit is designed to generate only a predetermined amount of the lysate, there is a problem that it cannot properly respond to changes in the required volume of the lysate.
더 나아가, 용해액의 품질은 어려가지 인자들로 평가될 수 있으며, 예를 들어, 기체의 용해도, 용해된 기체의 크기(즉, 버블의 입도) 및 용해된 기체의 잔존기간등이 용해액의 품질에 영향을 미칠 수 있다. 따라서, 높은 품질의 용해액을 생성하도록 용해장치가 계속적으로 개량될 필요가 있다.Furthermore, the quality of the lysate can be evaluated by a number of factors, for example, the solubility of the gas, the size of the dissolved gas (i.e., the particle size of the bubbles), and the duration of the dissolved gas. may affect quality. Therefore, there is a continuous need for improvement of dissolution equipment to produce high quality dissolution solutions.
본 발명은 상술한 종래의 문제점을 해결하고자 안출된 것으로, 본 발명의 목적은 제조 공정이 단순화되고, 제조 비용을 절감할 수 있으며, 용량 변화에 대응할 수 있는 용해장치를 제공하는 것이다. The present invention has been made to solve the above-mentioned conventional problems, and an object of the present invention is to simplify the manufacturing process, reduce manufacturing cost, and provide a dissolution device capable of responding to a change in capacity.
또한, 본 발명의 다른 목적은 보다 높은 품질의 용해액을 생성하도록 구성된 용해장치를 제공하는 것이다. Another object of the present invention is to provide a dissolution apparatus configured to produce a higher quality dissolution solution.
상술된 목적을 달성하기 위해, 본 발명은 액체에 기체가 용해된 용해액을 생성하는 용해장치에 있어서, 상기 액체를 유동시키도록 구성된 유로를 그 내부에 형성하며, 상기 유로내에 설치되는 노즐 및 상기 유로에 형성되며 상기 노즐의 토출구에 배치되는 챔버를 포함하는 덕트; 및 상기 용해액을 생성하도록 상기 덕트로부터 공급된 액체와 기체를 혼합시키며, 상기 생성된 용해액을 상기 덕트의 챔버에 토출하도록 구성되는 벤츄리 장치로 이루어지는 용해장치를 제공할 수 있다. In order to achieve the above object, the present invention is a dissolution device for generating a solution in which gas is dissolved in a liquid, a flow path configured to flow the liquid is formed therein, and a nozzle installed in the flow path and the a duct formed in the flow path and including a chamber disposed at an outlet of the nozzle; and a venturi device configured to mix liquid and gas supplied from the duct to produce the dissolved solution and to discharge the generated dissolved solution into the chamber of the duct.
보다 상세하게는, 상기 벤츄리 장치는: 상기 액체 또는 상기 용해액이 선택적으로 유동하는 유동관 및 상기 유동관과 연통되어 상기 유동관을 유동하는 액체를 선택적으로 우회시키는 바이패스관이 내부에 구비되는 하우징; 상기 유동관에 탈착 가능하게 삽입되고, 상기 액체 및 상기 기체를 공급받아서 상기 기체를 상기 액체에 용해시키도록 구성되는 인젝터 유닛; 및 상기 바이패스관에 제공되어 상기 바이패스관을 선택적으로 개폐하도록 구성되는 밸브 부재를 포함할 수 있다. More specifically, the venturi device includes: a housing provided therein with a flow pipe through which the liquid or the dissolved solution selectively flows and a bypass pipe communicating with the flow pipe and selectively bypassing the liquid flowing through the flow pipe; an injector unit detachably inserted into the flow pipe and configured to receive the liquid and the gas and dissolve the gas in the liquid; and a valve member provided in the bypass pipe and configured to selectively open and close the bypass pipe.
또한, 상기 챔버는 상기 유로와 연통하도록 상기 덕트내에 배치되며 상기 액체를 그 내부에 유입시키도록 상기 유로와 연결되는 흡입구 및 상기 유입된 액체를 상기 유로로 배출하도록 상기 유로와 연결되는 배출구를 포함할 수 있다. In addition, the chamber is disposed in the duct to communicate with the flow path and may include a suction port connected to the flow path to introduce the liquid therein and an outlet connected to the flow path to discharge the introduced liquid into the flow path. can
한편, 본 발명의 용해장치는 상기 배관에 설치되어 상기 배관을 따라 유동하는 상기 액체를 자화시키도록 구성되는 자화장치를 더 포함할 수 있다.Meanwhile, the melting device of the present invention may further include a magnetization device installed in the pipe and configured to magnetize the liquid flowing along the pipe.
본 발명에 따른 용해장치에서 벤츄리 장치는 밀폐화되고 일체화된 하우징을 가지며, 요구되는 용량에 따라 교체가능한 인젝터 유닛을 갖는다. 따라서, 본 발명의 용해장치는 단순회된 제조공정을 가지며, 제조 비용을 절감할 수 있으며, 용량 변화에 대응할 수 있다. In the melting device according to the present invention, the venturi device has a sealed and integrated housing and has a replaceable injector unit according to the required capacity. Therefore, the melting device of the present invention has a simplified manufacturing process, can reduce manufacturing costs, and can respond to capacity changes.
또한, 본 발명에 따른 용해장치는 벤츄리장치와 연결된 챔버 및 이에 내장된 노즐 뿐만 아니라 다른 여러가지 부가장치들을 포함한다. 따라서, 본 발명의 용해장치에 의해 더 작은 크기의 기체 버블 뿐만 아니라 증가된 용해도 또는 기체 농도가 가능하게 되며, 이는 생성된 용해액의 품질을 크게 증가시킬수 있다.In addition, the melting device according to the present invention includes a chamber connected to the venturi device and a nozzle built into the chamber, as well as various other additional devices. Thus, increased solubility or gas concentration as well as smaller size gas bubbles are made possible by the dissolution apparatus of the present invention, which can greatly increase the quality of the resulting dissolution solution.
도 1은 본 발명의 일 실시예에 따른 용해장치를 나타내는 사시도이다.1 is a perspective view showing a dissolution device according to an embodiment of the present invention.
도 2는 도 1의 A-A 선을 따라 얻어진 용해장치의 단면도이다. Figure 2 is a cross-sectional view of the melting device obtained along the line A-A in Figure 1.
도 3은 도 1의 B-B 선을 따라 얻어진 벤츄리 장치의 단면도이다.Figure 3 is a cross-sectional view of the venturi device taken along line B-B in Figure 1;
도 4는 도 1의 용해장치에 포함된 벤츄리 장치를 나타내는 우측면도이다.4 is a right side view showing a venturi device included in the melting device of FIG. 1;
도 5는 도 1의 용해장치에 포함된 벤츄리 장치를 나타내는 좌측면도이다.5 is a left side view showing a venturi device included in the melting device of FIG. 1;
도 6은 도 4의 C-C 선을 따라 얻어진 벤츄리 장치의 단면도이다.Figure 6 is a cross-sectional view of the venturi device taken along line C-C in Figure 4;
도 7은 도 1 및 도 2의 용해장치에 포함된 벤츄리 장치의 인젝터 유닛을 나타내는 사시도이다.7 is a perspective view illustrating an injector unit of a venturi device included in the melting device of FIGS. 1 and 2;
도 8은 도 7의 D-D 선을 따라 얻어진 인젝터 유닛의 단면도이다.FIG. 8 is a cross-sectional view of the injector unit taken along line D-D in FIG. 7 .
도 9는 도 1의 용해장치에 포함된 자화장치를 나타내는 분해사시도 및 부분단면도이다. 9 is an exploded perspective view and a partial cross-sectional view illustrating a magnetization device included in the melting device of FIG. 1;
도 10은 도 9의 홀더의 단면들의 예들을 나타내는 단면도들이다. FIG. 10 is cross-sectional views showing examples of cross-sections of the holder of FIG. 9 .
도 11 및 도 12은 본 발명의 일 실시예에 따른 용해장치에서 벤츄리 장치의작동을 나타내는 단면도들이다. 11 and 12 are cross-sectional views showing the operation of a venturi device in a melting device according to an embodiment of the present invention.
첨부된 도면을 참조하여 본 발명의 사상을 구체화한 용해장치의 예들이 다음에서 상세히 설명된다. Examples of melting devices embodying the spirit of the present invention with reference to the accompanying drawings will be described in detail in the following.
이러한 예들의 설명에 있어서, 도면 부호에 관계없이 동일하거나 유사한 구성요소는 동일한 참조 번호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다. 이하의 설명에서 사용되는 구성요소에 대한 접미사 "모듈" 및 "부"는 명세서 작성의 용이함만이 고려되어 부여되거나 혼용되는 것으로서, 그 자체로 서로 구별되는 의미 또는 역할을 갖는 것은 아니다. 또한, 본 명세서에 개시된 실시 예를 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 명세서에 개시된 실시 예의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다. 또한, 첨부된 도면은 본 명세서에 개시된 예를 쉽게 이해할 수 있도록 하기 위한 것일 뿐, 첨부된 도면에 의해 본 명세서에 개시된 기술적 사상이 제한되지 않으며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 마찬가지의 이유로 첨부 도면에 있어서 일부 구성요소는 과장되거나 생략되거나 또는 개략적으로 도시되었으며, 각 구성요소의 크기는 실제 크기를 전적으로 반영하는 것이 아니다.In the description of these examples, the same or similar elements are given the same reference numerals regardless of reference numerals, and duplicate descriptions thereof will be omitted. The suffixes "module" and "unit" for components used in the following description are given or used together in consideration of ease of writing the specification, and do not have meanings or roles that are distinct from each other by themselves. In addition, in describing the embodiments disclosed in this specification, if it is determined that a detailed description of a related known technology may obscure the gist of the embodiment disclosed in this specification, the detailed description thereof will be omitted. In addition, the accompanying drawings are only for easy understanding of the examples disclosed in this specification, and the technical idea disclosed in this specification is not limited by the accompanying drawings, and all changes included in the spirit and technical scope of the present invention, It should be understood to include equivalents or alternatives. For the same reason, some components in the accompanying drawings are exaggerated, omitted, or schematically illustrated, and the size of each component does not entirely reflect the actual size.
제 1, 제 2 등과 같이 서수를 포함하는 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되지는 않는다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다.Terms including ordinal numbers, such as first and second, may be used to describe various components, but the components are not limited by the terms. These terms are only used for the purpose of distinguishing one component from another.
어떤 구성요소가 다른 구성요소에 "연결되어" 있다거나 "접속되어" 있다고 언급된 때에는, 그 다른 구성요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다. 반면에, 어떤 구성요소가 다른 구성요소에 "직접 연결되어" 있다거나 "직접 접속되어" 있다고 언급된 때에는, 중간에 다른 구성요소가 존재하지 않는 것으로 이해되어야 할 것이다.It is understood that when an element is referred to as being "connected" or "connected" to another element, it may be directly connected or connected to the other element, but other elements may exist in the middle. It should be. On the other hand, when an element is referred to as “directly connected” or “directly connected” to another element, it should be understood that no other element exists in the middle.
단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. Singular expressions include plural expressions unless the context clearly dictates otherwise.
본 발명에서, "이루어진다(comprise)", "포함한다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다. 또한, 같은 이유에서, 본 발명은 개시된 발명의 의도된 기술적 목적 및 효과에서 벗어나지 않는 한 앞선 언급된 용어를 사용하여 설명된 관련 특징, 숫자, 단계, 동작, 구성요소, 부품의 조합으로부터도 일부 특징, 숫자, 단계, 동작, 구성요소, 부품등이 생략된 조합도 포괄하고 있음도 이해되어야 한다. In the present invention, terms such as "comprise", "include" or "have" are intended to designate that the features, numbers, steps, operations, components, parts, or combinations thereof described in the specification exist. However, it should be understood that it does not preclude the possibility of the presence or addition of one or more other features, numbers, steps, operations, components, parts, or combinations thereof. In addition, for the same reason, the present invention may also provide some features from combinations of related features, numbers, steps, operations, components, and parts described using the above-mentioned terms, unless departing from the intended technical purpose and effect of the disclosed invention. However, it should also be understood that combinations in which numbers, steps, operations, components, parts, etc. are omitted are also included.
다음에서 본 명세서는 기체 및 액체를 혼합하는 용해장치를 본 발명의 일 예로서 설명하지만, 설명된 예들은 이들의 원리(principle) 및 구성(configuration)에 대한 실질적인 변형없이 다른 상태의 용매 및 용질들을 혼합 및 용해시키는데도 그대로 적용될 수 있다. In the following, the present specification describes a dissolving device for mixing gas and liquid as an example of the present invention, but the described examples can dissolve solvents and solutes in different states without substantial modification to their principles and configurations. It can be applied as it is to mixing and dissolving.
도 1은 본 발명의 일 실시예에 따른 용해장치를 나타내는 사시도이다. 도 2는 도 1의 A-A 선을 따라 얻어진 용해장치의 단면도이며, 도 3은 도 1의 B-B 선을 따라 얻어진 벤츄리 장치의 단면도이다. 또한, 도 4 및 도 5는 각각 도 1의 용해장치에 포함된 벤츄리 장치를 나타내는 우측면도 및 좌측면도이며, 도 6은 도 4의 C-C 선을 따라 얻어진 벤츄리 장치의 단면도이다. 이들 도면들을 참조하여 본 발명에 따른 용해장치가 다음에서 상세하게 설명된다. 1 is a perspective view showing a dissolution device according to an embodiment of the present invention. 2 is a cross-sectional view of the melting device taken along line A-A in FIG. 1, and FIG. 3 is a cross-sectional view of the venturi device taken along line B-B in FIG. In addition, FIGS. 4 and 5 are right side views and left side views showing the Venturi device included in the melting device of FIG. 1, respectively, and FIG. 6 is a cross-sectional view of the Venturi device taken along the line C-C in FIG. With reference to these figures, the dissolution apparatus according to the present invention is described in detail in the following.
도 1 및 도 2에 도시된 바와 같이, 본 발명의 용해장치는 덕트(100) 및 이에 연결된 벤츄리 장치(1)를 포함할 수 있다. As shown in FIGS. 1 and 2 , the melting device of the present invention may include a duct 100 and a venturi device 1 connected thereto.
먼저, 덕트(100)는 기본적으로 용해액을 생성하기 위한 액체를 이송하도록 구성될 수 있다. 또한, 덕트(100)는 이에 연결된 벤츄리 장치(1)에서 생성된 용해액을 마찬가지로 이송하도록 구성될 수 있다. 덕트(100)는 이와 같은 액체 및 용해액의 이송을 위해 이들을 유동시키도록 구성되는 유로(100a)를 포함할 수 있다. 유로(100a)는 덕트(100)의 내부에 형성되며, 덕트(100)를 따라 연장될 수 있다. 덕트(100)는 액체 공급원과 연결되는 일단(또는 상류부) 및 일정 외부장치에 연결되는 타단(또는 하류부)을 포함할 수 있다. 예를 들어, 덕트(100)의 타단(또는 하류부)은 용해액을 사용하는 다른 장치 또는 상기 용해액을 저장하는 저장용기등에 연결될 수 있다. 덕트(100)는 외부 공급원으로부터 유로(100a)를 통해 액체를 공급받아 상기 액체를 상기 덕트(100) 중간에 연결된 벤츄리 장치(1)에 공급하고, 다시 벤츄리 장치(1)로부터 생성된 용해액을 공급받아 이를 지정된 외부장치에 유로(100a)를 통해 공급할 수 있다. First, the duct 100 may be basically configured to transport a liquid for generating a dissolution solution. In addition, the duct 100 may be configured to similarly convey the lysate produced in the venturi device 1 connected thereto. The duct 100 may include a flow path 100a configured to flow the liquid and the solution for the transfer thereof. The flow path 100a is formed inside the duct 100 and may extend along the duct 100 . The duct 100 may include one end (or upstream part) connected to a liquid supply source and the other end (or downstream part) connected to a predetermined external device. For example, the other end (or the downstream part) of the duct 100 may be connected to another device using the dissolution solution or a storage container for storing the dissolution solution. The duct 100 receives liquid from an external supply source through the flow path 100a, supplies the liquid to the venturi device 1 connected to the middle of the duct 100, and returns the dissolved solution generated from the venturi device 1 to the duct 100. It can be supplied and supplied to a designated external device through the flow path 100a.
보다 상세하게는, 덕트(100)는 벤츄리 장치(1)에 액체를 공급하도록 구성되는 제 1 보조덕트(101)를 포함할 수 있다. 제 1 보조덕트(101)는 덕트(100), 정확하게는 이의 몸체 및 벤츄리 장치(1)에 각각 연결된다. 덕트(100)는 도 2에 도시된 바와 같이, 이의 몸체에 형성되며 이의 유로(100a)와 연통하는 배출구(101a)를 포함하며, 제 1 보조덕트(101)는 상기 배출구(101a)에 연결된다. 따라서, 유로(100a)를 따라 유동하는 액체는 배출구(101a) 및 제 1 보조덕트(101)를 통해 유동하여 벤츄리 장치(1)에 공급될 수 있다. 한편, 덕트(100)는 벤츄리 장치(1)에서 생성된 용해액을 공급받도록 구성되는 제 2 보조덕트(102)를 포함할 수 있다. 제 2 보조덕트(102)는 덕트(100)의 몸체 및 벤츄리 장치(1)에 각각 연결된다. 덕트(100)는 도 2를 참조하면, 이의 몸체 형성되며, 유로(100a)와 연통하는 흡입구(102a)를 포함하며, 제 2 보조덕트(102)는 상기 흡입구(102a)에 연결된다. 따라서, 벤츄리 장치(1)에서 생성되어 배출된 용해액은 제 2 보조덕트(102) 및 흡입구(102a)를 통해 유통하여 덕트(100), 정확하게는 이의 유로(100a)에 공급될 수 있다. 공급된 용해액은 덕트(100)의 유로(100a)를 따라 유동하여 지정된 외부장치에 제공될 수 있다. 즉, 이와 같은 보조덕트(101,102)에 의해 액체는 덕트(100)의 유로(100a)를 우회하여 벤츄리 장치(1)에서 용해액으로 변환되어 다시 상기 유로(100a)로 복귀될 수 있다. More specifically, the duct 100 may include a first auxiliary duct 101 configured to supply liquid to the venturi device 1 . The first auxiliary duct 101 is connected to the duct 100, precisely its body and the venturi device 1, respectively. As shown in FIG. 2, the duct 100 is formed on its body and includes an outlet 101a communicating with its flow path 100a, and the first auxiliary duct 101 is connected to the outlet 101a. . Accordingly, the liquid flowing along the flow path 100a may flow through the outlet 101a and the first auxiliary duct 101 and be supplied to the venturi device 1 . Meanwhile, the duct 100 may include a second auxiliary duct 102 configured to receive the dissolving solution generated in the venturi device 1 . The second auxiliary duct 102 is connected to the body of the duct 100 and the venturi device 1, respectively. Referring to FIG. 2, the duct 100 is formed on its body and includes a suction port 102a communicating with the flow path 100a, and the second auxiliary duct 102 is connected to the suction port 102a. Therefore, the dissolved solution generated and discharged from the venturi device 1 can be supplied to the duct 100, more precisely, to the flow path 100a thereof by flowing through the second auxiliary duct 102 and the intake port 102a. The supplied dissolved solution may flow along the flow path 100a of the duct 100 and be provided to a designated external device. That is, by such auxiliary ducts 101 and 102 , the liquid may bypass the flow path 100a of the duct 100 , be converted into a dissolved solution in the venturi device 1 , and return to the flow path 100a again.
이와 같은 덕트 및 보조덕트들(100,101,102)은 용해장치가 독립된 장치, 즉 용해액만을 형성하도록 구성된 분리된 장치인 경우, 용해장치 전용 배관이 될 수 있으며, 용해장치가 생성된 용해액을 이용하는 처리 시스템의 일부인 경우, 그와 같은 처리 시스템 배관의 일부가 될 수 있다. Such ducts and auxiliary ducts 100, 101, and 102 may be dedicated pipes for the dissolution device when the dissolution device is an independent device, that is, a separate device configured to form only the dissolution solution, and a processing system using the dissolution solution generated by the dissolution device. If part of, it may be part of such processing system piping.
또한, 벤츄리 장치(1)는 앞서 설명된 바와 같이, 덕트(100)에 연결되며 용해액을 생성하도록 구성될 수 있다. 벤츄리 장치(1)는 용해액을 생성하기 위해 덕트(100)로부터 액체를 공급받으며, 생성된 용해액을 다시 덕트(100)에 공급하도록 구성될 수 있다. Venturi device 1 may also be connected to duct 100 and configured to produce a solution, as described above. The venturi device 1 may be configured to receive liquid from the duct 100 to generate a dissolution solution and supply the generated dissolution solution to the duct 100 again.
앞서 참조된 도 1 및 도 2에 추가적으로 도 3-도 6을 참조하면, 본 발명의 일 실시예에 따른 벤츄리 장치(1)는 하우징(10), 인젝터 유닛(20), 밸브 부재(30), 스토퍼 부재(40) 및 기체 공급 부재(50)를 포함할 수 있다. Referring to FIGS. 3 to 6 in addition to FIGS. 1 and 2 previously referred to, the venturi device 1 according to an embodiment of the present invention includes a housing 10, an injector unit 20, a valve member 30, A stopper member 40 and a gas supply member 50 may be included.
하우징(10)은 벤츄리 장치(1)의 관련부품, 즉 구성요소들(20-50)을 내장하거나 이에 설치되게 허용하는 몸체를 가질 수 있다. 이러한 하우징(10)의 몸체는 관련부품들의 안정적인 내장 및 설치를 위한 적절한 강도 및 강성을 갖도록 중실(solid) 부재로 이루어질 수 있다. 따라서, 도시된 바와 같이, 하우징(10)은 솔리드한 몸체로 이루어질 수 있다. 이와 같은 하우징(10)은 이의 내부에, 정확하게는 이의 솔리드한 몸체 내부에 액체 및 기체가 용해된 액체(즉, 용해액) 중 적어도 하나가 선택적으로 유동하는 유동관(11) 및 유동관(11)과 연통되어 유동관(11)을 유동하는 액체를 선택적으로 우회시키는 바이패스관(12)을 포함할 수 있다. The housing 10 may have a body that houses or permits the related parts of the venturi device 1, i.e., components 20-50, to be installed therein. The body of the housing 10 may be made of a solid member to have appropriate strength and rigidity for the stable embedding and installation of related parts. Thus, as shown, the housing 10 may be made of a solid body. Such a housing 10 has a flow pipe 11 and a flow pipe 11 in which at least one of liquid and gas dissolved liquid (ie, a solution) selectively flows inside the housing 10, precisely inside the solid body thereof, and It may include a bypass pipe 12 that communicates and selectively bypasses the liquid flowing through the flow pipe 11 .
유동관(11)은 액체 및 용해액 중 적어도 하나를 유동시키기 위해 하우징(10)의 몸체내에 설치 또는 삽입되는 관 부재일 수 있다. 또한, 유동관(11)은 도 2에 도시된 바와 같이, 솔리드한 하우징(10)의 몸체를 가공하여 형성되며, 이에 따라 실제적으로 상기 하우징(10)의 몸체와 일체로 형성되는 유로로 이루어질 수도 있다. 이러한 유동관(11)은 일 방향으로 연장 형성될 수 있다. The flow pipe 11 may be a pipe member installed or inserted into the body of the housing 10 to flow at least one of the liquid and the dissolved solution. In addition, as shown in FIG. 2, the flow pipe 11 is formed by processing the body of the solid housing 10, and thus may actually consist of a flow path integrally formed with the body of the housing 10. . The flow pipe 11 may extend in one direction.
보다 상세하게는, 유동관(11)은 액체가 선택적으로 공급되도록 개방된 공급 단부(11a), 공급 단부(11a)와 대향하는 위치에 구비되고, 용해액이 배출될 수 있도록 개방된 배출 단부(11b) 및 공급 단부(11a)와 배출 단부(11b)의 사이에 마련되고, 액체 및 용해액 중 적어도 하나가 선택적으로 유동하는 유동관측 유로부(11c)를 포함할 수 있다. 후술되는 바와 같이, 유로부(11c)내에는 인젝터유닛(20)이 설치되며, 상기 인젝터 유닛(20)에 기체가 공급되면, 인젝터 유닛(20)으로부터 용해액이 생성된다. 따라서, 유로부(11c)내에서, 인젝터 유닛(20)의 상류에서는 액체만이 유동하며, 선택적인 기체공급에 의해 인젝터 유닛(20)의 하류에서는 용해액이 유동할 수 있다. 이러한 구성으로 인해, 유로부(11c)내에는 액체 및 용해액중 적어도 하나가 선택적으로 유동하게 된다. 하우징(10)의 몸체에 일체화된 유로인 유동관(11)의 경우, 공급단부(11a)는 솔리드한 하우징(10) 몸체의 일단부내에 형성될 수 있으며, 배출단부(11b)는 하우징(10) 몸체의 타단부내에 형성될 수 있다. 또한, 유로부(11c)는 공급 단부(11a)와 배출 단부(11b)의 사이에서 하우징(10)의 솔리드한 몸체를 관통하면서 형성 또는 연장될 수 있다. 이러한 유로부(11c)는 후술되는 바이패스관(12)의 유로부(12c)와 구별되도록 제 1 유로부로 언급될 수 있다. More specifically, the flow tube 11 is provided at a position opposite to the supply end 11a and the supply end 11a, which is open to selectively supply liquid, and the discharge end 11b, which is open to discharge the dissolved solution. ) and a flow observation passage 11c provided between the supply end 11a and the discharge end 11b, through which at least one of the liquid and the dissolved solution selectively flows. As will be described later, an injector unit 20 is installed in the flow path 11c, and when gas is supplied to the injector unit 20, a dissolved solution is generated from the injector unit 20. Accordingly, only the liquid flows upstream of the injector unit 20 in the flow passage 11c, and the dissolved solution can flow downstream of the injector unit 20 by selective gas supply. Due to this configuration, at least one of the liquid and the dissolved solution selectively flows in the flow path portion 11c. In the case of the flow pipe 11, which is a flow path integrated with the body of the housing 10, the supply end 11a may be formed in one end of the solid housing 10 body, and the discharge end 11b may be formed in the housing 10 It may be formed in the other end of the body. In addition, the flow path portion 11c may be formed or extended while penetrating the solid body of the housing 10 between the supply end 11a and the discharge end 11b. This flow path 11c may be referred to as a first flow path to be distinguished from the flow path 12c of the bypass pipe 12 described later.
도 2에 잘 도시된 바와 같이, 이와 같은 공급단부(11a)에 제 1 보조덕트(101)가 연결되며, 덕트(100)로부터 액체가 제 1 보조덕트(101) 및 공급단부(11a)를 통해 유동관(11)에 공급될 수 있다. 또한, 배출단부(11b)에 제 2 보조덕트(102)가 연결되며, 생성된 용해액이 유동관(11), 정확하게는 유로부(11c)로부터 배출단부(11b) 및 제 2 보조덕트(102)를 통해 덕트(100)에 공급될 수 있다.As well shown in FIG. 2, the first auxiliary duct 101 is connected to such a supply end 11a, and the liquid from the duct 100 passes through the first auxiliary duct 101 and the supply end 11a. It can be supplied to the flow pipe (11). In addition, the second auxiliary duct 102 is connected to the discharge end 11b, and the generated dissolved solution flows through the flow pipe 11, more precisely, from the flow path 11c to the discharge end 11b and the second auxiliary duct 102. It can be supplied to the duct 100 through.
한편, 도 4 및 도 5에 도시된 바와 같이, 공급 단부(11a)의 직경(D1)은 배출 단부(11b)의 직경(D2)과 실질적으로 동일할 수 있다. 이러한 공급 단부(11a)를 통해 인젝터 유닛(20)이 삽입될 수 있다. 한편, 공급 단부(11a)를 통해 삽입된 인젝터 유닛(20)이 배출 단부(11b)로 이탈되는 것을 방지하기 위해, 유동관측 유로부(11c)에는 단턱(11d)이 구비될 수 있다. 이러한 단턱(11d)은 유동관측 유로부(11c)의 내측면 중 적어도 일부가 돌출됨으로써 형성될 수 있다. 이때, 단턱(11d)은 공급 단부(11a)를 통해 삽입된 인젝터 유닛(20)의 단부와 접촉되어 인젝터 유닛(20)이 배출 단부(11b)로 이탈되는 것을 방지할 뿐만 아니라, 인젝터 유닛(20)이 배출 단부(11b)를 통해 삽입되는 것 역시 방지할 수 있다.Meanwhile, as shown in FIGS. 4 and 5 , the diameter D1 of the supply end 11a may be substantially the same as the diameter D2 of the discharge end 11b. The injector unit 20 can be inserted through this supply end 11a. Meanwhile, in order to prevent the injector unit 20 inserted through the supply end 11a from escaping to the discharge end 11b, a step 11d may be provided in the flow pipe passage 11c. This step 11d may be formed by protruding at least a part of the inner surface of the flow observation passage 11c. At this time, the step 11d comes into contact with the end of the injector unit 20 inserted through the supply end 11a to prevent the injector unit 20 from being separated from the discharge end 11b, and also prevents the injector unit 20 from escaping to the discharge end 11b. ) can also be prevented from being inserted through the discharge end 11b.
바이패스관(12)은 유동관(11)을 유동하는 액체를 우회시키기 위해 하우징(10)의 몸체내에 설치 또는 삽입되는 관 부재일 수 있다. 또한, 바이패스관(12)은 도 2에 도시된 바와 같이, 솔리드한 하우징(10)의 몸체를 가공하여 형성되며, 이에 따라 실제적으로 상기 하우징(10)의 몸체와 일체로 형성되는 유로로 이루어질 수도 있다. 이때, 바이패스관(12)은 적어도 하나의 연결부를 통해 유동관(11)과 연통되게 연결될 수 있다. 보다 상세하게는, 바이패스관(12)은 유동관(11)과 연결되어 액체를 바이패스관(12)내로 유입시키는 입구(또는 유입구) 및 유동관(11)과 연결되어 바이패스관(12)을 유동한 액체를 다시 유동관(11)로 토출하는 출구(또는 토출구)를 포함할 수 있다. 또한, 바이패스관(12)은 유동관(11)의 연장방향과 수직하는 방향으로 소정 간격 이격 배치될 수 있다.The bypass pipe 12 may be a pipe member installed or inserted into the body of the housing 10 to bypass the liquid flowing through the flow pipe 11 . In addition, as shown in FIG. 2, the bypass pipe 12 is formed by processing the body of the solid housing 10, and accordingly, it is actually made of a flow path integrally formed with the body of the housing 10. may be At this time, the bypass pipe 12 may be connected in communication with the flow pipe 11 through at least one connection part. More specifically, the bypass pipe 12 is connected to the inlet (or inlet) for introducing liquid into the bypass pipe 12 by being connected to the flow pipe 11 and the bypass pipe 12 by being connected to the flow pipe 11. An outlet (or outlet) for discharging the flowing liquid back into the flow pipe 11 may be included. In addition, the bypass pipe 12 may be spaced apart from each other by a predetermined distance in a direction perpendicular to the extension direction of the flow pipe 11 .
구체적으로, 바이패스관(12)은 밸브 부재(30)를 수용하도록 개방된 삽입 단부(12a), 삽입 단부(12a)와 대향하는 위치에 구비되면서 폐쇄되는 폐쇄 단부(12b) 및 삽입 단부(12a)와 폐쇄 단부(12b)의 사이에 마련되고, 액체가 선택적으로 유동하는 바이패스관측 유로부(12c)를 포함할 수 있다. 하우징(10)의 몸체에 일체화된 유로인 바이패스관(12)의 경우, 삽입단부(12a)는 솔리드한 하우징(10) 몸체의 일단부내에 형성될 수 있다. 삽입단부(12a)는 도시된 바와 같이, 바이패스관(12)의 입구 또는 유입구에 인접하게 배치될 수 있으며, 이에 따라 삽입단부(12a)에 제공된 밸브부재(30)가 액체의 유입을 용이하게 제어할 수 있다. 또한, 삽입단부(12a)는 바이패스관(12)의 내부, 즉 유로부(12c)로부터 하우징(10) 몸체의 외부까지 연장되는 채널로 이루어질 수 있다. 즉, 삽입단부(12a)는 바이패스관(12)의 내부, 즉 유로부(12c) 및 하우징(10) 몸체의 외부를 연결하는 채널로 이루어질 수 있다. 따라서, 삽입단부(12a)는 유로부(12c)를 하우징(10) 몸체의 외부와 연통(communicate)시킬 수 있으며, 이러한 삽입단부(12a) 뿐만 아니라 유로부(12c)로 하우징(10) 몸체의 외부로 개방될 수 있다. 이러한 이유로, 개방된 삽입단부(12a)내에 밸브부재(30)는 용이하게 하우징(10)의 외부에서 삽입 및 설치될 수 있으며, 바이패스관(12)의 개폐를 위해 유로부(12c)에 접근할 수 있다. 이와 같은 삽입단부(12a)와 유사하게, 폐쇄단부(12b)는 하우징(10) 몸체의 타단부내에 형성될 수 있으나, 액체의 유출을 방지하기 위해 하우징(10)외부와 연통되거나 외부에 개방되지는 않는다. 폐쇄단부(12b)는 도시된 바와 같이, 바이패스관(12)의 출구 또는 유출구에 인접하게 배치될 수 있다. 또한, 유로부(12c)는 삽입 단부(12a)와 폐쇄 단부(12b)의 사이에서 하우징(10)의 솔리드한 몸체를 관통하면서 형성 또는 연장될 수 있다. 이러한 유로부(12c)는 앞서 설명된 유동관(11)의 유로부(11c)와 구별되도록 제 2 유로부로 언급될 수 있다.Specifically, the bypass pipe 12 includes an insertion end 12a opened to accommodate the valve member 30, a closed end 12b provided at a position opposite to the insertion end 12a and closed, and an insertion end 12a. ) and the closed end 12b, and may include a bypass tube passage 12c through which liquid selectively flows. In the case of the bypass pipe 12, which is a flow path integrated into the body of the housing 10, the insertion end 12a may be formed within one end of the solid housing 10 body. As shown, the insertion end 12a may be disposed adjacent to the inlet or inlet of the bypass pipe 12, and accordingly, the valve member 30 provided at the insertion end 12a facilitates the inflow of liquid. You can control it. In addition, the insertion end 12a may be formed of a channel extending from the inside of the bypass pipe 12, that is, from the flow path 12c to the outside of the body of the housing 10. That is, the insertion end 12a may be formed of a channel connecting the inside of the bypass pipe 12, that is, the flow path 12c and the outside of the housing 10 body. Accordingly, the insertion end 12a can communicate the flow path 12c with the outside of the body of the housing 10, and the flow path 12c as well as the insertion end 12a can communicate with the outside of the housing 10 body. can be opened to the outside. For this reason, the valve member 30 in the open insertion end 12a can be easily inserted and installed from the outside of the housing 10, and has access to the flow path 12c to open and close the bypass pipe 12. can do. Similar to the insertion end 12a, the closed end 12b may be formed in the other end of the body of the housing 10, but is not communicated with or open to the outside of the housing 10 to prevent liquid from flowing out. does not The closed end 12b may be disposed adjacent to the outlet or outlet of the bypass tube 12, as shown. In addition, the passage portion 12c may be formed or extended while penetrating the solid body of the housing 10 between the insertion end 12a and the closed end 12b. This flow path 12c may be referred to as a second flow path to be distinguished from the flow path 11c of the flow pipe 11 described above.
앞서 설명된 바와 같이, 유동관(11) 및 바이패스관(12)은 하우징(10) 몸체내에 배치되도록 상기 하우징(10) 몸체내에 일체로 형성될 수 있다. 즉, 유동관(11) 및 바이패스관(12)은 솔리드(solid)한 하우징(10) 몸체내에 일종의 유로들로써 형성되며, 이에 따라 하우징(10)과 일체화될 수 있다. 따라서, 본 발명에서, 유동관(11) 및 바이패스관(12)은 하우징(10)과 동일한 몸체를 공유하는 단일 모듈로서 형성될 수 있다. As described above, the flow pipe 11 and the bypass pipe 12 may be integrally formed within the housing 10 body so as to be disposed within the housing 10 body. That is, the flow pipe 11 and the bypass pipe 12 are formed as a kind of flow passages within the body of the solid housing 10, and thus can be integrated with the housing 10. Thus, in the present invention, the flow pipe 11 and the bypass pipe 12 can be formed as a single module sharing the same body as the housing 10 .
인젝터 유닛(20)은 액체와 기체를 혼합시켜서 기체를 액체에 용해시킬 수 있다. 이를 위해, 인젝터 유닛(20)은 하우징(10)의 유동관(11)에 탈착 가능하게 삽입될 수 있다. 이와 같은 인젝터 유닛(20)이 앞서 참조된 도 2-도 6에 추가적으로 관련 도면들을 참조하여 다음에서 보다 상세하게 설명된다. 도 7은 도 1 및 도 2의 용해장치에 포함된 벤츄리 장치의 인젝터 유닛을 나타내는 사시도이며, 도 8은 도 7의 D-D 선을 따라 얻어진 인젝터 유닛의 단면도이다.The injector unit 20 may dissolve the gas into the liquid by mixing the liquid and the gas. To this end, the injector unit 20 may be detachably inserted into the flow pipe 11 of the housing 10 . Such an injector unit 20 will be described in more detail below with reference to related drawings in addition to the previously referenced FIGS. 2 to 6 . FIG. 7 is a perspective view showing an injector unit of the venturi device included in the melting device of FIGS. 1 and 2 , and FIG. 8 is a cross-sectional view of the injector unit taken along line D-D in FIG. 7 .
도 7 및 도 8을 참조하면, 인젝터 유닛(20)은 외관을 형성하고, 유동관(11)에 교체 가능하게 삽입되는 본체(21), 본체(21)의 내부에 구비되고, 기체와 액체가 혼합되어 유동할 수 있는 벤츄리 유로(221)를 구비하는 벤츄리 부재(22) 및 일단부가 본체(21)에 연결되고, 타단부가 벤츄리 부재(22)에 연결되며, 벤츄리 부재(22)의 원주방향을 따라 이격 배치되는 복수의 분사 부재(23)를 포함할 수 있다.Referring to FIGS. 7 and 8 , the injector unit 20 forms an external appearance, and is provided inside the main body 21 that is replaceably inserted into the flow pipe 11 and the main body 21, and gas and liquid are mixed. A venturi member 22 having a venturi passage 221 capable of flowing and having one end connected to the main body 21 and the other end connected to the venturi member 22, the circumferential direction of the venturi member 22 It may include a plurality of spray members 23 spaced apart along the.
본체(21)는 외측면 중 적어도 일부가 본체(21)의 반경방향 내측으로 돌출되는 오링 삽입부(211)를 포함할 수 있다. 이러한 오링 삽입부(211)는 본체(21)의 원주방향을 따라 연장 형성될 수 있으며, 복수로 제공될 수 있다. 또한, 이러한 복수의 오링 삽입부(211)는 본체(21)의 길이방향을 따라 소정 간격으로 이격 배치될 수 있다. 이때, 오링 삽입부(211)에는 오링 부재(213)가 끼워질 수 있으며, 이러한 오링 부재(213)에 의해 하우징(10)의 유동관(11)과 본체(21) 사이의 기밀성이 유지될 수 있다. 여기서, 방향에 대한 용어를 정의하면, 본체(21)의 반경방향 내측은 본체(21)의 내측면에서 본체(21)의 중심부를 향하는 방향을 의미하고, 본체(21)의 원주방향은 본체(21)의 외주면에 따라 회전하는 방향을 의미하며, 본체(21)의 길이방향은 도 1의 x축 방향을 의미한다. 이때, 본체(21)의 원주방향은 본체(21)의 측면에서 보았을 때, 시계 방향 및 반시계 방향 중 어느 하나일 수 있으며, 특별한 언급이 없다면, 상기 방향들은 양의 방향 및 음의 방향 모두를 포괄한다.The body 21 may include an O-ring insertion portion 211 in which at least a portion of an outer surface protrudes toward the inside of the body 21 in the radial direction. The O-ring insertion portion 211 may extend along the circumferential direction of the main body 21 and may be provided in plurality. In addition, the plurality of O-ring insertion parts 211 may be spaced apart at predetermined intervals along the longitudinal direction of the main body 21 . At this time, an O-ring member 213 may be inserted into the O-ring insertion part 211, and airtightness between the flow pipe 11 of the housing 10 and the main body 21 may be maintained by the O-ring member 213. . Here, if the terms for the direction are defined, the inner radial direction of the main body 21 means a direction from the inner surface of the main body 21 toward the center of the main body 21, and the circumferential direction of the main body 21 is the main body ( 21) means a direction of rotation along the outer circumferential surface, and the longitudinal direction of the main body 21 means the x-axis direction in FIG. 1 . At this time, when viewed from the side of the body 21, the circumferential direction of the body 21 may be any one of clockwise and counterclockwise directions, and unless otherwise specified, the directions are both positive and negative directions. cover
한편, 본체(21)는 외측면 중 적어도 일부가 본체(21)의 반경방향 내측으로 돌출되는 돌출부(212)를 포함할 수 있다. 여기서, 돌출부(212)가 본체(21)의 반경방향 내측으로 돌출되는 정도는 오링 삽입부(211)가 본체(21)의 반경방향 내측으로 돌출되는 정도보다 클 수 있다. 이때, 돌출부(212)는 본체(21)의 원주방향을 따라 연장될 수 있으며, 본체(21)의 길이방향으로 인접하는 두 개의 오링 삽입부(211) 사이에 구비될 수 있다. 따라서, 인젝터 유닛(20) 정확하게는, 본체(21)는 본체(21)의 외주부로부터 반경방향 안쪽으로 소정 깊이로 돌출되며 원주방향으로 연장되는 돌출부(212)를 가질 수 있다. On the other hand, the main body 21 may include a protrusion 212 protruding inward in the radial direction of at least a portion of the outer surface of the main body 21 . Here, the degree of protrusion of the protruding part 212 radially inward of the main body 21 may be greater than the degree of protruding of the O-ring insertion part 211 to the inner side of the main body 21 in the radial direction. At this time, the protrusion 212 may extend along the circumferential direction of the main body 21 and may be provided between two adjacent O-ring insertion parts 211 in the longitudinal direction of the main body 21 . Accordingly, the injector unit 20, more precisely, the main body 21 may have a protruding portion 212 that protrudes radially inward from the outer periphery of the main body 21 to a predetermined depth and extends in the circumferential direction.
한편, 돌출부(212)의 내측면에는 분사 부재(23)의 타단부가 연통되게 연결될 수 있다. 돌출부(212)가 본체(21)의 반경방향 내측으로 돌출됨에 따라, 돌출부(212)의 외측면과 유동관측 유로부(11c)의 내측면 사이가 이격되어 소정의 공간부(212a)를 형성할 수 있다(도 2 참조). 이러한 공간부(212a)는 기체 공급 부재(50)로부터 공급되는 기체가 유동하는 공간으로 이용될 수 있고, 공간부(212a)를 유동하는 기체는 돌출부(212)의 내측면에 연결된 분사 부재(23)의 타단부를 통해 벤츄리 부재(22)로 공급될 수 있다. 따라서, 인젝터 유닛(20)은 본체(21)의 외주부에 원주방향을 따라 연속적으로 연장되어 형성되며, 벤츄리 장치(1)의 외부로부터 공급되는 기체가 유동하는 공간을 형성하는 공간부(212a)를 포함할 수 있다. Meanwhile, the other end of the spray member 23 may be connected to the inner surface of the protrusion 212 in communication. As the protrusion 212 protrudes radially inward from the main body 21, the outer surface of the protrusion 212 and the inner surface of the flow pipe passage 11c are spaced apart to form a predetermined space 212a. can (see Figure 2). The space portion 212a may be used as a space in which gas supplied from the gas supply member 50 flows, and the gas flowing through the space portion 212a is spraying member 23 connected to the inner surface of the protruding portion 212. ) It can be supplied to the venturi member 22 through the other end. Therefore, the injector unit 20 is formed to continuously extend along the circumferential direction on the outer circumference of the main body 21 and includes a space 212a forming a space in which gas supplied from the outside of the venturi device 1 flows. can include
벤츄리 부재(22)는 벤츄리 효과를 이용하여 외부로부터 공급되는 액체의 와류를 형성하는 역할을 수행할 수 있다. 이를 위해, 벤츄리 부재(22)는 내부에 기체와 액체가 혼합되어 유동할 수 있는 벤츄리 유로(221)를 구비할 수 있다.The venturi member 22 may serve to form a vortex of liquid supplied from the outside by using the venturi effect. To this end, the venturi member 22 may have a venturi passage 221 in which gas and liquid may be mixed and flowed.
구체적으로, 벤츄리 부재(22)는 일단부에서 타단부로 갈수록 하향 경사진 제1 하향 경사부(222), 타단부에서 일단부로 갈수록 하향 경사진 제2 하향 경사부(223) 및 제1 하향 경사부(222)와 제2 하향 경사부(223) 사이에 연결되는 목부(224)를 포함할 수 있다. 여기서, 제1 하향 경사부(222)의 단면적은 일단부에서 타단부로 갈수록 작아질 수 있으며, 제2 하향 경사부(223)의 단면적도 타단부에서 일단부로 갈수록 작아질 수 있다. 이때, 목부(224)에는 분사 부재(23)의 일단부가 연통되게 연결될 수 있다. 이와 같이, 유속이 빨라지는 목부(224)에 분사 부재(23)가 연통되게 연결됨으로써, 벤츄리 유로(221)에서 액체와 기체가 원활하게 혼합될 수 있다. 일 예로서, 액체는 제 1 하향 경사부(222)를 통해 유입되어, 목부(224)에서 기체와 혼합되어 용해액으로 생성되며, 생성된 용해액은 제 2 하향 경사부(223)를 통해 벤츄리 부재(22) 외부로 배출될 수 있다. Specifically, the venturi member 22 includes a first downwardly inclined portion 222 inclined downward from one end to the other end, a second downwardly inclined portion 223 downwardly inclined from the other end to one end, and a first downwardly inclined portion 223. A neck portion 224 connected between the portion 222 and the second downwardly inclined portion 223 may be included. Here, the cross-sectional area of the first downwardly inclined portion 222 may decrease from one end to the other end, and the cross-sectional area of the second downwardly inclined portion 223 may also decrease from the other end to one end. At this time, one end of the injection member 23 may be connected to the neck portion 224 in communication. As such, since the injection member 23 is connected in communication with the neck portion 224 where the flow rate increases, liquid and gas can be smoothly mixed in the venturi passage 221 . As an example, the liquid is introduced through the first downwardly inclined portion 222, mixed with the gas at the neck portion 224, and produced as a dissolved solution, and the produced dissolved solution passes through the second downwardly inclined portion 223 through a venturi. It can be discharged to the outside of the member 22 .
한편, 벤츄리 부재(22)의 일단부 및 타단부의 직경에 따라 벤츄리 부재(22)의 벤츄리 유로(221)를 통과하는 유량이 결정될 수 있다. 종래의 벤츄리 부재는 배관 내부에 결합되어 있으므로, 벤츄리 부재의 기 설정된 직경에 따른 유량만을 소화하였으나, 본 발명의 일 실시예에 따른 벤츄리 부재(22)는 본체(21)의 내부에 결합되어 있고, 본체(21)는 유동관(11)에 탈착 가능하게 결합됨에 따라, 유량 변화에 대응이 필요할 경우, 변화된 유량에 맞는 직경을 갖는 벤츄리 부재(22)가 결합된 본체(21)를 선택한 후, 이를 유동관(11)에 결합시킴으로써, 종래와는 다르게 유량 변화에 대응이 가능하다. 즉, 벤츄리 장치(1)의 생산되는 용해액의 량, 즉 용량(capacity)가 이러한 교체가능한 벤츄리 부재(22)에 의해 조절될 수 있다. Meanwhile, the flow rate passing through the venturi passage 221 of the venturi member 22 may be determined according to the diameters of one end and the other end of the venturi member 22 . Since the conventional venturi member is coupled to the inside of the pipe, only the flow rate according to the predetermined diameter of the venturi member is digested, but the venturi member 22 according to an embodiment of the present invention is coupled to the inside of the main body 21, As the main body 21 is detachably coupled to the flow pipe 11, when it is necessary to respond to a change in flow rate, after selecting the main body 21 coupled with the venturi member 22 having a diameter suitable for the changed flow rate, By combining with (11), it is possible to respond to flow rate change differently from the prior art. That is, the amount of dissolving liquid produced, i.e., the capacity, of the venturi device 1 can be controlled by this replaceable venturi member 22.
복수의 분사 부재(23)는 기체 공급 부재(50)로부터 제공되는 기체를 벤츄리 부재(22)로 전달할 수 있다. 또한, 복수의 분사 부재(23)는 벤츄리 부재(22)를 유동하는 액체와 기체 공급 부재(50)로부터 제공되는 기체의 접촉 면적을 증대시킬 수 있다.The plurality of injection members 23 may transfer the gas provided from the gas supply member 50 to the venturi member 22 . In addition, the plurality of injection members 23 may increase a contact area between the liquid flowing through the venturi member 22 and the gas supplied from the gas supply member 50 .
이를 위해, 복수의 분사부재(23)는 본체(21)의 내부에서 위치되며 공간부(212a) 및 벤츄리 부재(22) 사이에 설치될 수 있다. 또한, 복수의 분사부재(23)는 벤츄리 부재(22)의 원주방향을 따라 서로 소정간격으로 이격되게 배치될 수 있다. 또한, 분사부재들(23)은 공간부(212a) 및 벤츄리 부재(22)사이에서 반경방향으로 연장될 수 있으며, 상기 벤츄리 부재(22)의 중심축에 수직한 방향으로 배향될 수 있다. 일예로, 각각의 상기 분사부재들(23)은 공간부(212a)의 기체를 벤츄리 부재(22)의 목부(224)에 분사하도록 구성되는 파이브 부재로 이루어질 수 있다. To this end, the plurality of injection members 23 are located inside the main body 21 and may be installed between the space portion 212a and the venturi member 22 . In addition, the plurality of injection members 23 may be spaced apart from each other at a predetermined interval along the circumferential direction of the venturi member 22 . In addition, the injection members 23 may extend in a radial direction between the space portion 212a and the venturi member 22, and may be oriented in a direction perpendicular to the central axis of the venturi member 22. For example, each of the injection members 23 may be made of a 5-member member configured to inject the gas in the space 212a to the neck 224 of the venturi member 22 .
각각의 분사 부재(23)의 일 단부는 본체(21)의 돌출부(212)에 연통되게 연결되고, 분사 분재(23)의 타 단부는 벤츄리 부재(22)의 목부(224)에 연통되게 연결될 수 있다. 또한, 복수의 분사 부재(23)는 벤츄리 부재(22)의 원주방향을 따라 이격 배치되어 기체 공급 부재(50)로부터 제공되는 기체를 벤츄리 부재(22)의 벤츄리 유로(221)의 반경방향 내측, 즉 목부(224)의 반경방향 내측을 향해 분사할 수 있다. 즉, 각각의 분사부재(23)은 공간부(212a)에 직접적으로 연결되는 일단부 및 상대적으로 축소된 단면적을 갖는 벤츄리 부재(22) 내부의 목부(224)에 직접적으로 연결되는 타단부를 가지며, 상기 공간부(212a)에서 유동하는 기체를 상기 벤츄리 부재의 목부(224)에 분사하도록 구성될 수 있다. One end of each spray member 23 may be communicatively connected to the protrusion 212 of the body 21, and the other end of the spray bonsai 23 may be communicatively connected to the neck 224 of the venturi member 22. there is. In addition, the plurality of ejection members 23 are spaced apart along the circumferential direction of the venturi member 22, and the gas supplied from the gas supply member 50 is radially inside the venturi passage 221 of the venturi member 22, That is, it may be injected toward the inside of the neck portion 224 in the radial direction. That is, each injection member 23 has one end directly connected to the space 212a and the other end directly connected to the neck 224 inside the venturi member 22 having a relatively reduced cross-sectional area. , It may be configured to spray the gas flowing in the space portion 212a to the neck portion 224 of the venturi member.
외부에서 인젝터 유닛(20)에 공급되는 기체는 먼저 예비적인 유동영역인 공간부(212a)에 진입한다. 공간부(212a)는 인젝터 유닛(20)의 본체(21)의 외주부를 따라 연속적으로 연장되므로, 공급된 기체는 이러한 공간부(212a)를 따라 상기 본체(21)의 외주부 상을 선회하면서 유동한다. 따라서, 발생된 회전력에 의해 공급된 기체는 공간부(212a)에 의해 일차적으로 벤츄리 부재(22)내부에 공급되기에 유리하게 가속될 수 있으며, 또한 벤츄리 부재(22)의 외주부 외부에 균일하게 분포될 수 있다. 계속해서, 이러한 가속되고 균일 분포된 기체는 다수개의 분사부재들(23)을 통해 벤츄리 부재(22)의 내부, 정확하게 이의 축소단면영역인 목부(224)에 공급된다. 이러한 다수개의 분사부재들(23)은 벤츄리 부재(22)의 원주방향을 따라 이격되게 배치되므로, 이러한 분사부재들(23)을 통해 기체들은 벤츄리 부재(22)의 목부(224) 내부에 전체에 걸쳐 분사될 수 있다. 이러한 인젝터 유닛(20)의 공간부(212a) 및 분사부재들(23)에 의해, 기체는 가속되면서 균일하게 벤츄리 부재(22)의 목부(224)내에 균일하게 분사될 수 있다. 따라서, 벤츄리 유로(221)에서 와류를 형성하는 액체와 벤츄리 유로(221)의 반경방향 내측을 향해 분사되는 기체가 서로 충돌됨으로써, 기체가 액체에 효율적으로 용해될 수 있다. 이러한 이유로, 본 발명에 따라, 벤츄리 부재(22)내에서 기체는 유체에 균일하면서도 많은 량이 혼합될 수 있으며, 용해장치의 전체적인 성능이 크게 향상될 수 있다. Gas supplied to the injector unit 20 from the outside first enters the space 212a, which is a preliminary flow area. Since the space portion 212a continuously extends along the outer circumference of the main body 21 of the injector unit 20, the supplied gas flows while turning on the outer circumference of the main body 21 along the space portion 212a. . Therefore, the gas supplied by the generated rotational force can be advantageously accelerated by the space portion 212a to be primarily supplied to the inside of the venturi member 22, and is uniformly distributed outside the outer circumference of the venturi member 22. It can be. Subsequently, the accelerated and uniformly distributed gas is supplied to the inside of the venturi member 22 through the plurality of injection members 23, precisely to the neck portion 224, which is a reduced cross-sectional area thereof. Since the plurality of injection members 23 are spaced apart from each other along the circumferential direction of the venturi member 22, the gas flows through the injection members 23 throughout the inside of the neck 224 of the venturi member 22. can be sprayed across. Gas can be uniformly injected into the neck portion 224 of the venturi member 22 while being accelerated by the space portion 212a of the injector unit 20 and the injection members 23 . Accordingly, the liquid forming a vortex in the venturi passage 221 and the gas injected toward the inside of the venturi passage 221 in the radial direction collide with each other, so that the gas can be efficiently dissolved in the liquid. For this reason, according to the present invention, the gas can be uniformly mixed with the fluid in a large amount in the venturi member 22, and the overall performance of the melting device can be greatly improved.
밸브 부재(30)는 바이패스관(12)에 제공되며, 유동관(12)내의 액체가 상기 유동관(12)으로부터 바이패스관(12)으로 선택적으로 유동하게 허용하도록 구성될 수 있다. 이와 같은 액체의 선택적인 바이패스관(12)으로의 유동을 위해, 밸브부재(30)는 바이패스관(12)을 선택적으로 개방하도록 구성될 수 있다. 또한, 선택적으로 개방을 위해 밸브부재(30)는 하우징(10)의 몸체내에 이동가능하게 설치 또는 삽입될 수 있다. The valve member 30 is provided in the bypass pipe 12 and may be configured to selectively allow liquid in the flow pipe 12 to flow from the flow pipe 12 to the bypass pipe 12 . For the selective flow of the liquid to the bypass pipe 12, the valve member 30 may be configured to selectively open the bypass pipe 12. Also, for selective opening, the valve member 30 may be movably installed or inserted into the body of the housing 10 .
보다 상세하게는, 앞서 설명된 바와 같이, 바이패스관(12)의 삽입단부(12a)는 하우징 몸체(10)내에서 유로부(12c)와 연결되면서 하우징(10) 몸체의 외부와 연결되거나 이에 개방될 수 있다. 밸브부재(30)는 하우징(10)의 외부로부터 바이패스관(12)의 삽입단부(12a)내에 삽입되며, 상기 삽입단부(12a)내에서 슬라이드하도록 구성될 수 있다. 즉, 밸브부재(30)는 삽입단부(12a)내에 슬라이드 가능하게 삽입될 수 있다. 앞서 설명된 바와 같이, 삽입단부(12a)는 하우징(10) 몸체 외부로부터 하우징(10)몸체 내부의 바이패스관(12), 정확하게는 이의 유로부(12c)까지 연속적으로 연장되는 채널이므로, 밸브부재(30)는 이와 같은 삽입단부(12a)를 따라 이동할 수 있다. 따라서, 밸브부재(30)는 삽입단부(12a)를 따라 이동하면서, 바이패스관(12), 즉 유로부(12c)를 유동관(11)과 연통되게 선택적으로 개방하거나 유동관(11)과 연통하지 않도록 폐쇄할 수 있다. More specifically, as described above, the insertion end 12a of the bypass pipe 12 is connected to the outside of the housing 10 body while being connected to the flow path 12c within the housing body 10, or is connected thereto. can be opened The valve member 30 is inserted into the insertion end 12a of the bypass pipe 12 from the outside of the housing 10, and can be configured to slide within the insertion end 12a. That is, the valve member 30 can be slidably inserted into the insertion end 12a. As described above, the insertion end 12a is a channel that continuously extends from the outside of the housing 10 body to the bypass pipe 12 inside the housing 10 body, precisely to its flow path 12c, so that the valve The member 30 is movable along this insertion end 12a. Therefore, while the valve member 30 moves along the insertion end 12a, it selectively opens the bypass pipe 12, that is, the flow passage 12c to communicate with the flow pipe 11, or does not communicate with the flow pipe 11. You can close it to avoid it.
도 2 및 도 11에 도시된 바와 같이, 밸브부재(30)가 삽입 단부(12a)을 따라 바이패스관(12)(또는 유로부(12c))를 향해 이동하면(즉, 밸브부재(30)가 삽입단부(12a)에 완전히 삽입되면), 밸브부재(30)의 끝단은 바이패스관(12)(또는 유로부(12c))내에 도달하여 이를 폐쇄할 수 있다. 이러한 밸브부재(30)의 이동 또는 삽입을 제어하기 위해 도 2에 도시된 바와 같이, 밸브부재(30)의 외주부에는 스토퍼가 형성되며, 삽입단부(12a)의 내주부에는 스토퍼가 형성될 수 있다. 따라서, 이들 스토퍼가 서로 맞물릴 때까지 밸브부재(30)는 삽입 또는 이동할 수 있으며, 밸브부재(30)는 스토퍼들이 서로 맞물릴 때, 바이패스관(12)을 폐쇄하도록 구성될 수 있다. 이와 같이, 바이패스관(12)이 밸브부재(30)에 의해 폐쇄되면, 유동관(11)의 유로부(11c)의 액체가 바이패스관(12)의 유로부(12c)로 우회될 수 없다. 한편, 도 12에 도시된 바와 같이, 이러한 폐쇄위치로부터, 밸브부재(30)가 삽입 단부(12a)을 따라 반대방향으로, 즉 바이패스관(12)(또는 유로부(12c))로부터 멀어지게 이동하면, 바이패스관(12)이 밸브부재(30)에 의해 개방되면서 유로부(11c)의 유체의 적어도 일부가 바이패스관의 유로부(12c)로 우회될 수 있다. 이러한 우회로 인해 인젝터 유닛(20)에 공급되는 액체의 유량이 변화되며 유량변화는 인젝터 유닛(20) 내부의 압력 변화를 가져온다. 따라서, 인젝터 유닛(20)의 복수의 분사 부재(23)에서 분사되는 기체의 압력이 변화되면서 분사되는 기체량도 변화되며, 인젝터 유닛(20)에서 액체에 용해되는 기체량, 즉 용해액의 기체 농도가 변화될 수 있다. 이러한 이유로, 밸브부재(30)는 바이패스관(12)의 선택적 개폐 및 이에 의한 액체의 우회에 의해 인젝터 유닛(20)에 공급되는 액체량 및 액체압력을 조절함으로써 공급되는 기체 압력 및 기체량을 조절하며, 이러한 조절에 의해 용해액내의 기체 농도(즉, 용해도)를 조절할 수 있다. 2 and 11, when the valve member 30 moves toward the bypass pipe 12 (or flow path portion 12c) along the insertion end 12a (ie, the valve member 30) is completely inserted into the insertion end 12a), the end of the valve member 30 can reach into the bypass pipe 12 (or flow path 12c) and close it. As shown in FIG. 2 to control the movement or insertion of the valve member 30, a stopper is formed on the outer circumference of the valve member 30, and a stopper may be formed on the inner circumference of the insertion end 12a. . Accordingly, the valve member 30 can be inserted or moved until these stoppers are engaged with each other, and the valve member 30 can be configured to close the bypass pipe 12 when the stoppers are engaged with each other. In this way, when the bypass pipe 12 is closed by the valve member 30, the liquid in the flow passage portion 11c of the flow pipe 11 cannot be diverted to the flow passage portion 12c of the bypass pipe 12. . On the other hand, as shown in FIG. 12, from this closed position, the valve member 30 moves in the opposite direction along the insertion end 12a, that is, away from the bypass pipe 12 (or flow path portion 12c). When moved, the bypass pipe 12 is opened by the valve member 30, and at least a portion of the fluid in the flow passage 11c may be bypassed to the flow passage 12c of the bypass pipe. Due to this detour, the flow rate of the liquid supplied to the injector unit 20 is changed, and the change in flow rate results in a change in pressure inside the injector unit 20 . Therefore, as the pressure of the gas injected from the plurality of injection members 23 of the injector unit 20 changes, the amount of gas injected also changes, and the amount of gas dissolved in the liquid in the injector unit 20, that is, the gas of the dissolved solution. Concentration may vary. For this reason, the valve member 30 adjusts the amount of liquid and the liquid pressure supplied to the injector unit 20 by selectively opening and closing the bypass pipe 12 and thereby bypassing the liquid, thereby controlling the pressure and amount of gas supplied. It is possible to adjust the gas concentration (i.e., solubility) in the solution by this control.
또한, 밸브부재(30)가 삽입단부(12a)를 따라 슬라이딩하도록 구성되므로, 밸브부재(30)의 이동량은 용이하게 조절될 수 있다. 따라서, 밸브부재(30)의 이동량을 조절함으로써 바이패스관(12)의 개방정도도 조절될 수 있으며, 이러한 개방조절에 따른 바이패스관(12)을 통한 액체 유동량을 조절함으로써 인젝터 유닛(20)내에서 생성되는 용해액의 기체농도도 조절될 수 있다. 도 2, 도 11 및 도 12에 도시된 바와 같이, 밸브부재(30)의 일부, 즉 이의 끝단은 계속적으로 하우징(10)의 몸체 외부로 돌출되게 구성될 수 있다. 따라서, 이러한 노출된 끝단을 이용하여 작업자는 수동으로 밸브부재(30)를 삽입단부(12a)를 따라 이동시키고, 이에 따라 바이패스관(12)의 개폐 및 개방정도를 용이하게 제어할 수 있다. 이와 같은 수동조작을 대신하여 밸브부재(30)는 소정의 구동메커니즘을 이용하여 작동될 수도 있다. In addition, since the valve member 30 is configured to slide along the insertion end 12a, the amount of movement of the valve member 30 can be easily adjusted. Therefore, the degree of opening of the bypass pipe 12 can be adjusted by adjusting the amount of movement of the valve member 30, and by adjusting the amount of liquid flow through the bypass pipe 12 according to the opening control, the injector unit 20 The gas concentration of the dissolved solution produced within can also be adjusted. As shown in FIGS. 2, 11 and 12, a part of the valve member 30, that is, its end may be configured to continuously protrude out of the body of the housing 10. Therefore, by using the exposed end, the operator manually moves the valve member 30 along the insertion end 12a, thereby easily controlling the opening and closing of the bypass pipe 12. Instead of such a manual operation, the valve member 30 may be operated using a predetermined driving mechanism.
앞서 설명된 밸브부재(30)는 예를 들어, 삽입단부(12a)에 이동가능하게 삽입되는 플러그 부재로 이루어질 수 있으나, 이는 예시에 불과하고, 이로 인해 본 발명의 사상이 제한되는 것은 아니다.The valve member 30 described above may be formed of, for example, a plug member movably inserted into the insertion end 12a, but this is only an example, and thus the spirit of the present invention is not limited thereto.
이때, 도 2를 참조하면, 밸브 부재(30)는 외측면 중 적어도 일부가 밸브 부재(30)의 반경방향 내측으로 돌출되는 오링 삽입부(31)를 포함할 수 있다. 이러한 오링 삽입부(31)는 밸브 부재(30)의 원주방향을 따라 연장 형성될 수 있다. 이때, 오링 삽입부(31)에는 오링 부재(32)가 끼워질 수 있으며, 이러한 오링 부재(32)에 의해 하우징(10)의 바이패스관(12)과 밸브 부재(30) 사이의 기밀성이 유지될 수 있다.At this time, referring to FIG. 2 , the valve member 30 may include an O-ring insertion portion 31 in which at least a portion of an outer surface protrudes radially inward of the valve member 30 . The O-ring insertion portion 31 may extend along the circumferential direction of the valve member 30 . At this time, an O-ring member 32 may be inserted into the O-ring insertion portion 31, and airtightness between the bypass pipe 12 of the housing 10 and the valve member 30 is maintained by the O-ring member 32. It can be.
한편, 본 실시예에서는 밸브 부재(30)가 바이패스관(12)의 삽입 단부(12a)에 끼움 결합되는 방식으로 결합되는 것을 일 예로 들어 설명하였으나, 이는 설명의 편의를 위한 것이고, 이로 인해 본 발명의 사상이 제한되는 것은 아니다. 예를 들어, 밸브 부재(30)의 외측면 중 적어도 일부에 수나사산이 형성되고, 삽입 단부(12a)의 내측면 중 적어도 일부에 암나나산이 형성되어 밸브 부재(30)와 삽입 단부(12a)가 나사 결합되는 것도 가능하다.Meanwhile, in the present embodiment, the valve member 30 is coupled to the insertion end 12a of the bypass pipe 12 as an example, but this is for convenience of description. The idea of the invention is not limited. For example, a male thread is formed on at least a portion of the outer surface of the valve member 30, and a female thread is formed on at least a portion of the inner surface of the insertion end 12a, so that the valve member 30 and the insertion end 12a It is also possible that the is screwed together.
스토퍼 부재(40)는 도 2 및 도 3에 도시된 바와 같이, 유동관(11)의 공급 단부(11a)를 통해 삽입된 인젝터 유닛(20)이 유동관(11)의 공급 단부(11a)를 통해 이탈되는 것을 방지할 수 있다.As shown in FIGS. 2 and 3 , the stopper member 40 allows the injector unit 20 inserted through the supply end 11a of the flow pipe 11 to escape through the supply end 11a of the flow pipe 11. can prevent it from happening.
이를 위해, 스토퍼 부재(40)는 하우징(10)에 선택적으로 삽입될 수 있다. 이때, 스토퍼 부재(40)는 하우징(10)에 형성되는 스토퍼 부재 삽입홀(14)에 적어도 일부가 삽입될 수 있다.To this end, the stopper member 40 may be selectively inserted into the housing 10 . At this time, at least a portion of the stopper member 40 may be inserted into the stopper member insertion hole 14 formed in the housing 10 .
이때, 스토퍼 부재(40)는 일 예로 일 방향으로 연장되는 기둥 형상으로 마련될 수 있다. 예를 들어, 스토퍼 부재(40)는 인젝터 유닛(20)이 유동관(11)의 공급 단부(11a)를 통해 삽입된 다음, 스토퍼 부재 삽입홀(14)에 삽입될 수 있다. 반면, 인젝터 유닛(20)의 교체가 필요한 경우, 스토퍼 부재 삽입홀(14)에 삽입된 스토퍼 부재(40)가 스토퍼 부재 삽입홀(14)로부터 먼저 분리됨에 따라, 공급 단부(11a)에 삽입된 인젝터 유닛(20)이 공급 단부(11a)로부터 분리될 수 있다.At this time, the stopper member 40 may be provided in a columnar shape extending in one direction, for example. For example, the stopper member 40 may be inserted into the stopper member insertion hole 14 after the injector unit 20 is inserted through the supply end 11a of the flow pipe 11 . On the other hand, when replacement of the injector unit 20 is required, as the stopper member 40 inserted into the stopper member insertion hole 14 is first separated from the stopper member insertion hole 14, the inserted into the supply end 11a The injector unit 20 can be separated from the supply end 11a.
한편, 본 실시예에서는 스토퍼 부재(40)가 하우징(10)의 스토퍼 부재 삽입홀(14)에 끼움 결합되는 방식으로 결합되는 경우를 일 예로 들어 설명하였으나, 본 발명의 사상이 이에 제한되는 것은 아니다. 예를 들어, 스토퍼 부재(40)의 외측면 중 적어도 일부에는 수나사산이 형성되고, 스토퍼 부재 삽입홀(14)의 내측면 중 적어도 일부에는 암나사산이 형성되어 스토퍼 부재(40)가 스토퍼 부재 삽입홀(14)에 나사 결합 방식으로 결합될 수도 있다.On the other hand, in the present embodiment, the case where the stopper member 40 is fitted in the stopper member insertion hole 14 of the housing 10 has been described as an example, but the spirit of the present invention is not limited thereto. . For example, a male thread is formed on at least a portion of an outer surface of the stopper member 40 and a female thread is formed on at least a portion of an inner surface of the stopper member insertion hole 14 so that the stopper member 40 is formed through the stopper member insertion hole It may be coupled to (14) by screwing.
기체 공급 부재(50)는 외부로부터 기체를 인젝터 유닛(20)에 선택적으로 공급할 수 있다. 이를 위해, 기체 공급 부재(50)는 하우징(10)과 연결 가능하게 제공될 수 있으며, 이때, 도 3 및 도 6을 참조하면, 기체 공급 부재(50)의 단부는 하우징(10)에 구비되는 기체 공급 부재 삽입홀(13)에 삽입될 수 있다.The gas supply member 50 may selectively supply gas to the injector unit 20 from the outside. To this end, the gas supply member 50 may be provided to be connectable to the housing 10. At this time, referring to FIGS. 3 and 6, the end of the gas supply member 50 is provided in the housing 10 It may be inserted into the gas supply member insertion hole 13 .
또한, 도 2 에 도시된 바와 같이, 기체 공급 부재(50)는 인젝터 유닛(20)의 분사 부재(23)와 연통되게 연결될 수 있다. 기체 공급 부재(50)를 통해 제공되는 외부의 기체는 유동관측 유로부(11c)의 내측면과 돌출부(212)의 외측면 사이에 이격 형성된 공간부(212a)에서 유동하고, 공간부(212a)에서 유동하는 기체는 복수의 분사 부재(23)로 공급되어 벤츄리 부재(22)의 내부로 분사될 수 있다.Also, as shown in FIG. 2 , the gas supply member 50 may be connected in communication with the injection member 23 of the injector unit 20 . The external gas supplied through the gas supply member 50 flows in the space 212a formed spaced apart between the inner surface of the flow observation passage 11c and the outer surface of the protrusion 212, and the space 212a The gas flowing in may be supplied to the plurality of injection members 23 and injected into the venturi member 22 .
한편, 앞서 설명된 바와 같은 벤츄리 장치(1)에 추가적으로, 도 2에 도시된 바와 같이, 덕트(100)도 다양한 형태로 변형되거나 다양한 추가장치들을 포함할 수 있으며, 이러한 변형 및 장치들에 의해 보다 높은 품질의 용해액이 생성될 수 있다. 이와 같은 덕트(100)의 변형구조 및 추가장치들이 다음에서 보다 상세하게 설명된다. On the other hand, in addition to the venturi device 1 as described above, as shown in FIG. 2, the duct 100 may also be modified in various forms or include various additional devices, and these modifications and devices make it more A high quality lysate can be produced. The deformable structure and additional devices of the duct 100 will be described in more detail below.
먼저, 덕트(100)는 이의 유로(100a)내에 배치되는 노즐(110)을 포함할 수 있다. 노즐(110)은 소정길이로 연장되는 중공관으로 이루어지는 몸체와 상기 몸체의 양 끝단들에 각각 제공되는 흡입구 및 배출구(111,112)를 포함할 수 있다. 배출구(112)는 흡입구(111)에 비해 작은 크기를 가지며 이에 따라 흡입구(111)로 유입되어 배출구(112)로 배출되는 액체는 증가된 유동속도를 갖게 된다. 노즐(110), 정확하게는 이의 몸체는 흡입구(111)로부터 배출구(112)까지 점차적으로 감소되는 직경(또는 내경)을 가지며, 이에 따라 액체는 실질적인 저항없이 원활하게 노즐(110)의 흡입구(111)로부터 배출구(112)을 통해 유동해 나갈 수 있다. First, the duct 100 may include a nozzle 110 disposed within its flow path 100a. The nozzle 110 may include a body made of a hollow tube extending to a predetermined length and suction and discharge ports 111 and 112 respectively provided at both ends of the body. The outlet 112 has a smaller size than the inlet 111, and thus the liquid flowing into the inlet 111 and discharged to the outlet 112 has an increased flow rate. The nozzle 110, precisely its body, has a gradually decreasing diameter (or inner diameter) from the inlet 111 to the outlet 112, so that the liquid flows smoothly through the inlet 111 of the nozzle 110 without substantial resistance. It can flow out through the outlet 112 from.
이와 같은 노즐(110), 즉 이의 몸체는 도 2에 도시된 바와 같이, 덕트(100)의 유로(100a)내에서 상기 유로(100a)를 따라 연장 및 배향되며, 이의 흡입구(111) 및 배출구(112)도 유로(100a), 즉 이의 유동방향을 따라 배치 및 배향된다. 따라서, 노즐(110)은 유로(100a)의 유동방향과 동일한 방향으로 액체를 유동되게 하며, 이러한 유동중 액체를 가속시키도록 구성된다. 즉, 노즐(110)의 흡입구(111)는 유로(100a)내의 유동방향과 동일한 방향으로 액체를 흡입하며, 이의 배출구(112)는 상기 유동방향과 동일한 방향으로 액체를 배출한다. 따라서, 노즐(110)은 어떠한 손실없이 유로(100a)내의 유체를 동일한 유동방향으로 가속하도록 구성될 수 있다. As shown in FIG. 2, such a nozzle 110, that is, its body extends and is oriented along the flow path 100a of the duct 100, and its inlet 111 and outlet ( 112) is also disposed and oriented along the flow path 100a, i.e., its flow direction. Accordingly, the nozzle 110 causes the liquid to flow in the same direction as the flow direction of the flow path 100a, and is configured to accelerate the liquid during this flow. That is, the inlet 111 of the nozzle 110 sucks in the liquid in the same direction as the flow direction in the flow path 100a, and the outlet 112 of the nozzle 110 discharges the liquid in the same direction as the flow direction. Therefore, the nozzle 110 can be configured to accelerate the fluid in the flow path 100a in the same flow direction without any loss.
또한, 덕트(100)는 이의 유로(100a)에 제공되는 소정 크기의 챔버(120)를 포함할 수 있다. 챔버(120)는 노즐(110)에서 배출되는 액체를 수용하도록 상기 노즐(110)의 배출구(112)에 배치될 수 있다. 보다 상세하게는, 챔버(120)는 유로(110a)와 연통하도록 덕트(100)내에 배치되며, 노즐(110)의 하류에 위치될 수 있다. 또한, 챔버(120)는 적어도 노즐(110)의 배출구(112)와 연통되며, 이에 따라 노출(110)에 배출되는 액체는 바로 챔버(120)내에 수용될 수 있다. 더 나아가, 배출되는 액체를 안정적으로 수용하도록, 챔버(120)는 배출구(112)를 포함하는 노즐(110)의 끝단부를 부분적으로 그 내부에 수용하며, 이에 따라 배출구(112)도 챔버(120)내에 수용될 수 있다. 즉, 노즐(110)의 배출구(112)를 포함하는 끝단부는 부분적으로 챔버(120)내에 삽입될 수 있다. In addition, the duct 100 may include a chamber 120 of a predetermined size provided in its flow path 100a. The chamber 120 may be disposed at the outlet 112 of the nozzle 110 to receive the liquid discharged from the nozzle 110 . More specifically, the chamber 120 is disposed within the duct 100 to communicate with the flow path 110a and may be located downstream of the nozzle 110 . In addition, the chamber 120 communicates with at least the outlet 112 of the nozzle 110, and accordingly, the liquid discharged through the exposure 110 can be directly accommodated in the chamber 120. Furthermore, to stably accommodate the discharged liquid, the chamber 120 partially accommodates the tip of the nozzle 110 including the discharge port 112 therein, and thus the discharge port 112 is also included in the chamber 120. can be accommodated within. That is, the tip of the nozzle 110 including the outlet 112 may be partially inserted into the chamber 120 .
보다 상세하게는, 챔버(120)는 액체를 그 내부에 유입시키도록 유로(100a)와 연결되는 흡입구(121) 및 상기 유입된 액체를 상기 유로(100a)로 배출하도록 상기 유로(100a)와 연결되는 배출구(122)를 포함할 수 있다. 이러한 챔버(121)의 흡입구(121) 및 배출구(122)는 유로(100a), 즉 이의 유동방향을 따라 배치 및 배향된다. 따라서, 챔버(120)는 유로(100a)의 일부로서 형성되어, 기본적으로 노즐(110)과 마찬가지로 액체의 유동을 방해하지 않도록 유로(100a)의 유동방향과 동일한 방향으로 액체를 유동되게 허용하도록 구성된다. 노즐(110)은 도시된 바와 같이, 실제적으로 챔버(121)의 흡입구(121)에 타이트하게 끼워지며, 상기 흡입구(121)를 통해 챔버(120)의 내부공간으로 부분적으로 삽입될 수 있다. 따라서, 앞서 언급된 바와 같이, 노즐(110)의 배출구(112)는 챔버(121)내에 배치되어 상기 챔버(121)내에 바로 액체를 배출할 수 있다. More specifically, the chamber 120 includes a suction port 121 connected to the flow path 100a to introduce liquid therein and connected to the flow path 100a to discharge the introduced liquid into the flow path 100a. It may include an outlet 122 to be. The inlet 121 and the outlet 122 of the chamber 121 are arranged and oriented along the flow path 100a, that is, its flow direction. Therefore, the chamber 120 is formed as a part of the flow path 100a, and basically, like the nozzle 110, it is configured to allow the liquid to flow in the same direction as the flow direction of the flow path 100a so as not to disturb the flow of the liquid. do. As shown, the nozzle 110 is actually tightly fitted into the inlet 121 of the chamber 121, and may be partially inserted into the inner space of the chamber 120 through the inlet 121. Therefore, as mentioned above, the outlet 112 of the nozzle 110 is disposed in the chamber 121 to discharge the liquid directly into the chamber 121 .
또한, 챔버(120)는 벤츄리 장치(1)와 연통되어 생성된 용해액을 챔버(120)내에 유입시키도록 구성되는 보조흡입구(123)를 포함할 수 있다. 보다 상세하게는, 보조 흡입구(123)는 덕트(100)의 흡입구(102a)와 직결되며, 이에 따라 제 2 보조덕트(102)와 연통될 수 있다. 따라서, 챔버(120)는 보조 흡입구(123), 흡입구(102a) 및 제 2 보조덕트(102)를 통해 벤츄리 장치(1), 정확하게는 이의 배출단부(11b)와 직접적으로 연결될 수 있다. 이러한 이유로, 챔버(120)는 생성된 용해액을 벤츄리 장치(1)로부터 공급받을 수 있다. 즉, 벤츄리 장치(1)는 생성된 용해액을 챔버(120)에 배출하도록 구성될 수 있다. In addition, the chamber 120 may include an auxiliary inlet 123 configured to introduce the dissolution solution generated by communicating with the venturi device 1 into the chamber 120 . More specifically, the auxiliary inlet 123 is directly connected to the inlet 102a of the duct 100, and thus may communicate with the second auxiliary duct 102. Accordingly, the chamber 120 may be directly connected to the venturi device 1, precisely its discharge end 11b, through the auxiliary inlet 123, the inlet 102a, and the second auxiliary duct 102. For this reason, the chamber 120 can be supplied with the produced lysate from the venturi device 1 . That is, the venturi device 1 may be configured to discharge the generated lysate into the chamber 120 .
앞서 설명된 바와 같이, 일차적으로 노즐(110)에 의해 가속된 액체가 챔버(120)내에 배출되므로, 이러한 배출된 액체의 높은 유속으로 인해 챔버(120)내에는 상대적으로 낮은 압력상태, 즉 음압의 환경이 조성될 수 있다. 따라서, 이러한 음압환경으로 인해 벤츄리 장치(1)에서 생성된 용해액은 보다 원활하게 제 2 보조 덕트(102), 흡입구(102a) 및 보조 흡입구(123)를 통해 챔버(120)로 흡입될 수 있다. 실제적으로 이러한 흡입동안 음압환경에 의해 용해액의 유속은 실질적으로 증가될 수 있다. 이러한 가속된 용해액은 챔버(120)내에서 마찬가지로 노즐(110)에 의해 가속된 액체와 충돌하게 되며, 이러한 충돌에 의해 용해액내의 기체는 더 작은 크기로 쪼개질 수 있다. 또한, 이러한 충돌에 의해 와류가 크게 발생하며, 발생된 와류에 의해 분해된 기체는 더 잘 액체에 용해될 수 있다. 따라서, 앞서 설명된 덕트(100)의 구성, 즉 노즐(110)로부터 공급된 액체와 벤츄리 장치(1)로부터 공급된 용해액을 혼합하는 챔버(120)에 의해 더 작은 크기의 기체 버블 뿐만 아니라 더 많은 용해된 기체량(즉, 증가된 용해도 또는 기체 농도)를 갖는 높은 품질의 용해액이 생성될 수 있다. 이와같이 추가적으로 처리된 용해액은 챔버(120)의 배출구(122)를 통해 유로(100a)를 따라 의도된 외부장치로 공급될 수 있다. As described above, since the liquid accelerated by the nozzle 110 is primarily discharged into the chamber 120, due to the high flow rate of the discharged liquid, the chamber 120 is in a relatively low pressure state, that is, negative pressure. environment can be created. Therefore, the dissolved solution generated in the venturi device 1 due to this negative pressure environment can be more smoothly sucked into the chamber 120 through the second auxiliary duct 102, the suction port 102a, and the auxiliary suction port 123. . In practice, the flow rate of the lysate can be substantially increased by the negative pressure environment during such suction. The accelerated dissolving solution collides with the liquid accelerated by the nozzle 110 in the chamber 120 as well, and the gas in the dissolving solution can be split into smaller sizes by this collision. In addition, a large vortex is generated by such a collision, and the gas decomposed by the generated vortex can be better dissolved in the liquid. Therefore, by the configuration of the duct 100 described above, that is, the chamber 120 mixing the liquid supplied from the nozzle 110 and the dissolved liquid supplied from the venturi device 1, as well as the gas bubbles of smaller size, more A high quality lysate with a high amount of dissolved gas (i.e., increased solubility or gas concentration) can be produced. The dissolved solution additionally treated in this way may be supplied to an intended external device along the flow path 100a through the outlet 122 of the chamber 120 .
더 나아가, 용해액의 품질을 더 향상시키도록 벤츄리 장치(1)는 도 2에 잘 도시된 바와 같이, 용해액을 노즐(110)의 측부에 배출하도록 구성될 수 있다. 용해액이 노즐(110)의 측부로 배출되면, 용해액은 분사된 액체와의 충돌에 추가적으로 노즐(110) 측부에 충돌하게 된다. 또한, 충돌된 용해액은 노즐(110) 측부를 따라 선회하면서 자연스럽게 회전류 또는 와류를 형성하게 된다. 이와 같은 추가적인 충돌 및 와류는 앞서 설명된 것과 같은 이유로, 작은 기체버블의 형성 및 용해도 또는 기체농도의 증가를 더욱 촉진하게 되며, 용해액의 품질이 추가적으로 향상될 수 있다. 이와 같이 용해액을 노즐(110) 측부에 배출하도록, 도 2에 도시된 바와 같이 챔버(120)의 보조 흡입구(123)는 상기 노즐(110)의 측부를 마주하도록 배치될 수 있다. 또한, 같은 목적으로, 노즐(110)은 챔버(120)의 내측으로 길게 연장되어 노즐의 토출구(112)가 보조 흡입구(123)를 넘어서 배치될 수 있다. 이와 같은 구성은 용해액이 노즐(110) 측부로 배출되게 하며, 앞서 언급한 효과를 보장할 수 있다. Furthermore, to further improve the quality of the solution, the venturi device 1 may be configured to discharge the solution to the side of the nozzle 110, as best seen in FIG. 2 . When the dissolved solution is discharged to the side of the nozzle 110, the dissolved solution collides with the side of the nozzle 110 in addition to the collision with the sprayed liquid. In addition, the collided solution naturally forms a rotational flow or a vortex while turning along the side of the nozzle 110 . Such additional collisions and vortices further promote the formation of small gas bubbles and an increase in solubility or gas concentration for the same reason as described above, and the quality of the dissolution solution can be further improved. As shown in FIG. 2 , the auxiliary inlet 123 of the chamber 120 may be disposed to face the side of the nozzle 110 so that the dissolved solution is discharged to the side of the nozzle 110 . Also, for the same purpose, the nozzle 110 extends long into the chamber 120 so that the discharge port 112 of the nozzle may be disposed beyond the auxiliary suction port 123 . This configuration allows the dissolved solution to be discharged to the side of the nozzle 110, and can ensure the aforementioned effect.
또한, 배관(100)은 도 2에 도시된 바와 같이, 유로(100a)내에 제공되는 확관부(130)를 포함할 수 있다. 확관부(130)는 유로(100a)의 일부로서 형성되며, 챔버(120)의 하류에 배치되어 상기 챔버(120)와 연통될 수 있다. 보다 상세하게는, 확관부(130)는 챔버(120)내의 용해수를 그 내부에 유입시키도록 챔버(120)와 연결되는 흡입구(131) 및 상기 유입된 용해수를 상기 유로(100a)로 배출하도록 상기 유로(100a)와 연결되는 배출구(132)를 포함할 수 있다. 이러한 확관부(130)의 흡입구(131) 및 배출구(132)는 유로(100a), 즉 이의 유동방향을 따라 배치 및 배향된다. 따라서, 확관부(130)도 기본적으로 노즐(110) 및 챔버(120)과 마찬가지로 액체의 유동을 방해하지 않도록 유로(100a)의 유동방향과 동일한 방향으로 챔버(120)에서 처리된 용해액을 유동되게 허용하도록 구성된다. In addition, as shown in FIG. 2 , the pipe 100 may include an expansion pipe 130 provided in the flow path 100a. The expansion tube 130 is formed as a part of the flow path 100a and may be disposed downstream of the chamber 120 to communicate with the chamber 120 . More specifically, the expansion tube 130 includes a suction port 131 connected to the chamber 120 to introduce dissolved water in the chamber 120 therein and discharges the introduced dissolved water into the flow path 100a. It may include an outlet 132 connected to the flow path 100a to do so. The inlet 131 and the outlet 132 of the expansion pipe 130 are arranged and oriented along the flow path 100a, that is, its flow direction. Therefore, like the nozzle 110 and the chamber 120, the expander 130 basically flows the dissolved solution processed in the chamber 120 in the same direction as the flow direction of the flow path 100a so as not to disturb the flow of the liquid. It is configured to allow
또한, 확관부(130)의 흡입구(131)는 챔버(120)의 배출구(122)와 직접적으로 연결되며, 동시에 챔버(120)내의 노즐(110)의 배출구(112)와도 연통되게 구성된다. 보다 상세하게는, 확관부(130)의 흡입구(131)는 노즐(110)의 배출구(112) 및 챔버(120)의 배출구(122)와 정렬될 수 있다. 더 나아가, 확관부(130)의 흡입구(131)는 노즐(110)의 배출구(112) 및 챔버(120)의 배출구(122)와 동심상으로 즉 공통 중심축상에 배열될 수 있다. 이러한 배열로 인해, 챔버(120)내의 용해액은 실질적인 저항없이 즉, 손실없이 바로 확관부(130)를 통해 원활하게 유로(100a)로 유동해 들어갈 수 있다. 또한, 점차적으로 확장되는 구조로 인해 확관부(130)내에서 용해액의 유속이 저하되면서 추가적으로 기체가 액체에 용해될 수 있는 충분한 시간을 가질 수 있다. 따라서, 이와 같은 확관부(130)는 생성된 용해액의 품질을 더 향상시킬 수 있다. In addition, the inlet 131 of the expansion pipe 130 is directly connected to the outlet 122 of the chamber 120, and at the same time is also configured to communicate with the outlet 112 of the nozzle 110 in the chamber 120. More specifically, the inlet 131 of the expansion tube 130 may be aligned with the outlet 112 of the nozzle 110 and the outlet 122 of the chamber 120 . Furthermore, the inlet 131 of the expansion pipe 130 may be arranged concentrically with the outlet 112 of the nozzle 110 and the outlet 122 of the chamber 120, that is, on a common central axis. Due to this arrangement, the lysate in the chamber 120 can smoothly flow into the flow path 100a directly through the expansion tube 130 without substantial resistance, that is, without loss. In addition, due to the gradually expanding structure, the flow rate of the dissolving solution in the expansion tube 130 is lowered, allowing sufficient time for the gas to be additionally dissolved in the liquid. Therefore, such a pipe expansion unit 130 can further improve the quality of the produced solution.
더 나아가, 앞서 설명된 구성으로 인해, 노즐(110) 및 확관부(130)는 서로 유체적으로 연결되며 실질적으로 추가적인 벤츄리 구조를 형성할 수 있으며, 이를 이용하여 추가적인 기체의 용해가 수행될 수 있다. 보다 상세하게는, 배관(100)은 노즐(110)의 배출구(112)에 인접하게 배치되며, 상기 노즐(110)의 배출구(112)에 기체를 배출하도록 구성되는 분사관(140)을 포함할 수 있다. 이러한 분사관(140)에 기체를 공급하도록 공급관(141)이 배관(100)에 연결될 수 있다. 실제적으로 안정적인 기체분사를 위해 분사관(140)은 형성된 벤츄리 구조의 목부에 해당하는 챔버(120)의 배출구(122) 및/또는 확관부(130)의 흡입구(131)에 배치되어 이들(122,131)에 기체를 분사할 수 있다. 분사된 기체에 의해 용해액에 추가적으로 기체가 용해될 수 있으며, 용해액의 용해도 및 기체농도가 실질적으로 향상될 수 있다. Furthermore, due to the configuration described above, the nozzle 110 and the expansion pipe 130 are fluidly connected to each other and can substantially form an additional venturi structure, using which additional gas dissolution can be performed. . More specifically, the pipe 100 is disposed adjacent to the outlet 112 of the nozzle 110 and may include an injection pipe 140 configured to discharge gas to the outlet 112 of the nozzle 110. can A supply pipe 141 may be connected to the pipe 100 to supply gas to the injection pipe 140 . For practically stable gas injection, the injection pipe 140 is disposed at the outlet 122 of the chamber 120 corresponding to the neck of the formed venturi structure and/or the inlet 131 of the expansion section 130 to gas can be injected. Gas may be additionally dissolved in the dissolving liquid by the sprayed gas, and the solubility and gas concentration of the dissolving liquid may be substantially improved.
또한, 덕트(100)는 추가적으로 유로(100a)의 액체에 와류를 형성하도록 구성되는 교반기(150)을 포함할 수 있다. 교반기(150)는 유로(100a)내에 제공되며, 노즐(110)의 흡입구(111)에 배치될 수 있다. 교반기(150)는 와류를 형성하는 여러가지 메커니즘에 따라 구현될 수 있으며, 예를 들어 블레이드, 임펠러 또는 나선형 유로로 이루어질 수 있다. 이러한 교반기(150)에 의해 노즐(110)에 공급된 액체에는 이미 와류가 형성되며, 배출될 때에서 이러한 와류를 형성할 수 있다. 따라서, 챔버(120)내에서 액체는 보다 원활하게 용해액과 혼합될 수 있다. In addition, the duct 100 may additionally include an agitator 150 configured to form a vortex in the liquid in the flow path 100a. The stirrer 150 is provided in the flow path 100a and may be disposed at the inlet 111 of the nozzle 110. The stirrer 150 may be implemented according to various mechanisms for forming a vortex, and may be formed of, for example, a blade, an impeller, or a spiral flow path. A vortex is already formed in the liquid supplied to the nozzle 110 by the agitator 150, and such a vortex may be formed when discharged. Therefore, in the chamber 120, the liquid can be more smoothly mixed with the dissolution solution.
한편, 용해장치는 앞서 설명된 덕트(100)의 구성에 추가적으로 용해액의 품질을 향상시키기 위해 추가적인 장치를 더 포함할 수 있다. 일 예로서, 도 2에 도시된 바와 같이, 용해장치는 덕트(100)에 설치되어 덕트(100)내의 액체를 자화시키도록 구성되는 자화장치(200)를 더 포함할 수 있다. 액체가 자화되면 그 내부에 래디컬이 형성되며 래디컬은 액체에 여러가지 부가적인 유용한 특성을 부여할 수 있다. 이와 같은 자화장치(200)가 도 2에 추가적으로 관련된 도면들을 참조하여 다음에서 보다 상세하게 설명된다. On the other hand, the dissolution device may further include an additional device to improve the quality of the dissolution solution in addition to the configuration of the duct 100 described above. As an example, as shown in FIG. 2 , the melting device may further include a magnetization device 200 installed in the duct 100 to magnetize the liquid in the duct 100 . When a liquid is magnetized, radicals are formed therein, and the radicals can impart various additional useful properties to the liquid. Such a magnetization device 200 will be described in more detail in the following with reference to additionally related drawings in FIG. 2 .
도 9는 도 1의 용해장치에 포함된 자화장치를 나타내는 분해사시도 및 부분단면도이며, 도 10은 도 9의 홀더의 단면들의 예들을 나타내는 단면도들이다. FIG. 9 is an exploded perspective view and a partial cross-sectional view illustrating a magnetizer included in the dissolution device of FIG. 1 , and FIG. 10 is cross-sectional views showing examples of cross sections of the holder of FIG. 9 .
도 2에 추가적으로 도 9 및 도 10을 참조하면, 자화장치(200)는 덕트(100)의 외주부에 제공되며, 상기 덕트(100)를 감싸도록 구성되는 마운터(mounter)(210)를 포함할 수 있다. 마운터(210)는 후술되는 자화장치(200)의 다른 부품들을 덕트(100)에 장착시키는 플랫폼으로서 기능한다. 보다 상세하게는, 마운터(210)는 덕트(100)를 감싸면서 이에 장착되는 슬리브(210a) 및 상기 슬리브(210a)의 양 끝단에 제공되는 플랜지(210b)를 포함할 수 있다. 플랜지(210b)는 슬리브(210a)의 양 끝단으로부터 반경방향으로 소정길이로 연장될 수 있다. Referring to FIGS. 9 and 10 in addition to FIG. 2 , the magnetization device 200 is provided on the outer periphery of the duct 100 and may include a mounter 210 configured to surround the duct 100. there is. The mounter 210 functions as a platform for mounting other parts of the magnetizer 200 to be described later on the duct 100. More specifically, the mounter 210 may include a sleeve 210a mounted on the duct 100 while surrounding it, and flanges 210b provided at both ends of the sleeve 210a. The flange 210b may extend a predetermined length in a radial direction from both ends of the sleeve 210a.
또한, 자화장치(200)는 마운터(210)에 설치되며, 상기 마운터(210)의 원주방향을 따라 소정간격으로 배치되는 다수개의 홀더들(220)을 포함할 수 있다. 홀더들(220)은 길게 연장되는 로드(rod) 형태의 부재로 이루어질 수 있으며, 실제적으로 마운터(210a)의 플랜지(210b)에 설치될 수 있다. 보다 상세하게는, 플랜지(210b)는 다수개의 자리부(seat)(210c)를 포함하며, 이들 자리부(210c)는 리세스 또는 통공으로 이루어질 수 있다. 따라서, 홀더(220)의 양 끝단이 플랜지(210b)의 자리부(210c)에 끼워지며, 이에 따라 홀더(220)가 마운터(210)에 장착될 수 있다. In addition, the magnetization device 200 is installed on the mounter 210 and may include a plurality of holders 220 disposed at predetermined intervals along the circumferential direction of the mounter 210 . The holders 220 may be formed of a member in the form of a rod extending long, and may be actually installed on the flange 210b of the mounter 210a. More specifically, the flange 210b includes a plurality of seats 210c, and these seats 210c may be made of recesses or through holes. Accordingly, both ends of the holder 220 are fitted into the seat portion 210c of the flange 210b, and thus the holder 220 can be mounted on the mounter 210.
더 나아가, 자화장치(200)는 각 홀더(220)내에 배치되는 영구자석(230)을 포함할 수 있다. 영구자석(230)은 실제적으로 자기장을 형성하여 덕트(100)내의 액체를 자화시키는 역할을 수행한다. 만일 영구자석(230)이 홀더(220)외부로 돌출되면 자화장치(200)의 부피가 커지므로 설치 및 유지보수가 어려워진다. 이러한 이유로 영구자석(230)는 각각의 상기 홀더 내부에 외부로 돌출되지 않게 매립될 수 있다. 일 예로서, 홀더(220)는 반경방향 또는 폭방향으로 형성되는 관통공들(220a)를 포함할 수 있으며, 이들 관통공(220a)내에 영구자석(230)이 돌출되지 않게 매립될 수 있다. 또한, 홀더(220)도 강한 자성체로 이루어질 수 있으며, 이에 따라 보다 강력한 자기장이 형성될 수 있다. Furthermore, the magnetization device 200 may include a permanent magnet 230 disposed within each holder 220 . The permanent magnet 230 serves to magnetize the liquid in the duct 100 by actually forming a magnetic field. If the permanent magnet 230 protrudes to the outside of the holder 220, the volume of the magnetizer 200 increases, making installation and maintenance difficult. For this reason, the permanent magnet 230 may be embedded inside each of the holders so as not to protrude outward. As an example, the holder 220 may include through-holes 220a formed in a radial direction or a width direction, and the permanent magnet 230 may be embedded in the through-holes 220a so as not to protrude. In addition, the holder 220 may also be made of a strong magnetic material, and thus a stronger magnetic field may be formed.
이러한 경우, 일반적으로 도 10(a)에 도시된 바와 같이, 자성체 홀더(220)는 매끄러운 외면을 가질 수 있다. 그러나, 홀더(220)가 도 10(b) 및 (c)에 도시된 바와 같이, 다각형 단면을 갖는 경우, 자력선이 방출되는 보다 많은 표면들을 갖게 되며, 강한 자기장의 형성에 유리하다. 이러한 이유로, 홀더(220)는 도 10(b) 및 (c)에 도시된 바와 같이 다각형 단면을 갖는 것이 바람직하다. 일 예로서, 도 10(b)는 자력선이 방출되는 다섯개의 표면을 갖는 오각형 단면을 갖는 홀더(220)를 보여준다. 또한, 도 10(c)는 세레이션 형상의 단면의 홀더(220)를 보여주며, 도 10(c)에 비해 더 많은 표면들을 포함하므로 더 강한 자기장의 형성에 유리하다. In this case, generally as shown in FIG. 10 (a), the magnetic holder 220 may have a smooth outer surface. However, when the holder 220 has a polygonal cross section, as shown in FIGS. 10(b) and (c), it has more surfaces from which magnetic lines of force are emitted, and is advantageous for forming a strong magnetic field. For this reason, the holder 220 preferably has a polygonal cross section as shown in Figs. 10(b) and (c). As an example, FIG. 10( b ) shows a holder 220 having a pentagonal cross-section with five surfaces from which magnetic lines of force are emitted. In addition, FIG. 10(c) shows the holder 220 having a serrated cross section, and since it includes more surfaces than FIG. 10(c), it is advantageous to form a stronger magnetic field.
이와 같은 자화장치(200)는 덕트(100) 뿐만 아니라 제 1 및 제 2 보조덕트(101,102)에도 제공될 수 있으며 이러한 경우 보다 높은 품질의 용해액이 생성될 수 있다. Such a magnetization device 200 may be provided not only to the duct 100 but also to the first and second auxiliary ducts 101 and 102, and in this case, a higher quality solution may be produced.
이하, 도 11 및 도 12을 참조하여, 상술한 바와 같은 구성을 갖는 용해장치 의 작용 및 효과에 대하여 설명하면 다음과 같다. Hereinafter, with reference to FIGS. 11 and 12, the action and effect of the dissolution device having the above configuration will be described.
도 11을 참조하면, 하우징(10)의 내부에 구비된 유동관(11)의 공급 단부(11a)를 통해 인젝터 유닛(20)이 삽입된다. 인젝터 유닛(20)의 삽입이 완료되면, 인젝터 유닛(20)이 유동관(11)으로부터 이탈되지 않도록 하우징(10)에 기 설치된 스토퍼 부재 삽입홀(14)에 스토퍼 부재(40)가 삽입됨으로써, 하우징(10)에 대한 인젝터 유닛(20)의 설치가 완료된다. 다음으로, 하우징(10)에 기 설치된 기체 공급 부재 삽입홀(13)에 기체 공급 부재(50)가 연결된다. 최종적으로, 보조덕트(101,102)를 이용하여 덕트(100)가 하우징(10)즉, 벤츄리 장치(1)에 연결되어 용해액을 생성할 준비가 된다.Referring to FIG. 11 , the injector unit 20 is inserted through the supply end 11a of the flow pipe 11 provided inside the housing 10 . When the insertion of the injector unit 20 is completed, the stopper member 40 is inserted into the stopper member insertion hole 14 pre-installed in the housing 10 to prevent the injector unit 20 from being separated from the flow pipe 11, thereby opening the housing The installation of the injector unit 20 to (10) is completed. Next, the gas supply member 50 is connected to the gas supply member insertion hole 13 previously installed in the housing 10 . Finally, the duct 100 is connected to the housing 10, that is, the venturi device 1 using the auxiliary ducts 101 and 102, and is ready to produce a solution.
이 후, 유동관(11)의 공급 단부(11a)를 통해 외부로부터 덕트(100)를 이용하여 액체가 벤츄리장치(1)에 공급된다. 이때, 하우징(10)의 내부에 구비되는 바이패스관(12)의 삽입 단부(12a)에 밸브 부재(30)가 완전히 삽입되어 있으므로, 외부로부터 공급되는 액체가 바이패스관(12)으로 우회되지 않고, 유동관(11)으로만 공급될 수 있다. Then, the liquid is supplied to the venturi device 1 from the outside through the supply end 11a of the flow pipe 11 using the duct 100 . At this time, since the valve member 30 is completely inserted into the insertion end 12a of the bypass pipe 12 provided inside the housing 10, liquid supplied from the outside is not bypassed to the bypass pipe 12. and can be supplied only through the flow pipe 11.
한편, 이와 같이 공급된 액체는 인젝터 유닛(20)의 벤츄리 부재(22)에 구비되는 벤츄리 유로(221)를 따라 유동되어 와류를 형성한다. 이때, 기체 공급 부재(50)로부터 제공되는 기체가 복수의 분사 부재(23)를 통해 벤츄리 유로(221)로 공급되어 액체의 와류와 충돌되면서 액체에 용해된다. 기체가 용해된 액체안 용해액은 벤츄리 유로(221)를 통과하여 유동관(11)의 배출 단부(11b)를 통해 배출될 수 있다. Meanwhile, the supplied liquid flows along the venturi passage 221 provided in the venturi member 22 of the injector unit 20 to form a vortex. At this time, the gas provided from the gas supply member 50 is supplied to the venturi passage 221 through the plurality of spray members 23 and is dissolved in the liquid while colliding with the vortex of the liquid. The dissolved liquid in the liquid in which the gas is dissolved may pass through the venturi flow path 221 and be discharged through the discharge end 11b of the flow pipe 11.
다른 한편, 도 12를 참조하면, 바이패스관(12)의 삽입 단부(12a)에 삽입된 밸브 부재(30)의 삽입 정도가 조절됨에 따라, 바이패스관(12)의 입구가 개방될 수 있으며, 외부로부터 공급되는 액체의 적어도 일부가 바이패스관(12)으로 우회될 수 있다. 이러한 우회로 인해 인젝터 유닛(20)에 공급되는 액체의 유량이 감소되며 감소된 유량은 인젝터 유닛(20) 내부의 압력감소 또한 가져온다. 따라서, 이러한 내부 압력감소로 인해 인젝터 유닛(20)의 복수의 분사 부재(23)에서 분사되는 기체의 압력이 상대적으로 증가되면서 분사되는 기체량도 증가될 수 있다. 따라서, 인젝터 유닛(20)에서 액체에 용해되는 기체량, 즉 용해액의 기체 농도가 증가될 수 있다. 즉, 바이패스관(12)를 통한 유체의 우회에 의해 인젝터 유닛(20)에 공급되는 유체량 및 유체압력이 감소되면서 공급되는 기체 압력 및 기체량이 증가되며, 이러한 조절에 의해 보다 높은 기체 농도(즉, 용해도)를 갖는 용해액이 생성될 수 있다.On the other hand, referring to FIG. 12, as the degree of insertion of the valve member 30 inserted into the insertion end 12a of the bypass pipe 12 is adjusted, the inlet of the bypass pipe 12 may be opened. , At least a portion of the liquid supplied from the outside may be bypassed to the bypass pipe 12 . Due to this bypass, the flow rate of the liquid supplied to the injector unit 20 is reduced, and the reduced flow rate also results in a decrease in pressure inside the injector unit 20 . Accordingly, the pressure of the gas injected from the plurality of injection members 23 of the injector unit 20 is relatively increased due to the decrease in internal pressure, and the amount of gas injected may also increase. Therefore, the amount of gas dissolved in the liquid in the injector unit 20, that is, the gas concentration of the dissolved solution can be increased. That is, by bypassing the fluid through the bypass pipe 12, the fluid amount and fluid pressure supplied to the injector unit 20 are reduced while the supplied gas pressure and gas amount are increased, and by this adjustment, a higher gas concentration ( That is, a solution having a solubility) can be produced.
앞서 설명된 본 발명의 구성에 따른 기술적 효과를 보다 상세하게 설명하면 다음과 같다. The technical effects according to the configuration of the present invention described above are described in more detail as follows.
용해장치의 벤츄리장치에서, 유동관 및 바이패스관은 하우징의 몸체내에 일체로 형성된다. 또한, 밸브부재는 하우징의 몸체내에 이동가능하게 설치되어 바이패스관을 선택적으로 개방하도록 구성된다. 이러한 구성에 따라, 청구된 유동관 및 바이패스관은 하우징 몸체내에 일종의 유로들로써 형성되며, 하우징은 유동관 및 바이패스관과 같은 가스 및 물의 혼합에 요구되는 유로를 이의 몸체내에 내장하는 단일모듈로서 형성된다. 또한, 인젝터 유닛과 함께 밸브부재도 이러한 하우징의 몸체내에 유로들(즉, 유동관 및 바이패스관) 함께 배치되므로, 벤츄리장치는 요구되는 모든 부품 및 유로가 하나의 모듈(즉, 하우징)내에 통합되는, 보다 상세하게는 하나의 몸체내에 일체화되는 all-in-one 장치로서 구성될 수 있다. In the venturi device of the melting device, the flow pipe and the bypass pipe are integrally formed in the body of the housing. In addition, the valve member is movably installed in the body of the housing to selectively open the bypass pipe. According to this configuration, the claimed flow pipe and bypass pipe are formed as a kind of flow passages in the housing body, and the housing is formed as a single module incorporating flow passages required for gas and water mixing, such as the flow pipe and bypass pipe, into its body. . In addition, since the valve member together with the injector unit is disposed together with flow passages (i.e. flow pipe and bypass pipe) in the body of the housing, the venturi device is capable of integrating all required parts and flow passages into one module (i.e. housing). , more specifically, it can be configured as an all-in-one device integrated into one body.
통상적인 용해장치에서는 요구되는 부품 및 유로가 서로 분리되어 별도로 제작되므로, 제조공정이 복잡하고 높은 제조비용이 발생된다. 반면, 본 발명의 용해장치의 벤츄리장치에 있어서, 요구되는 부품 및 유로가 하나의 모듈(즉, 하우징)에 통합되므로, 상대적으로 적은 공정 및 낮은 비용으로 의도된 장치가 제작될 수 있다. 특히, 유동관 및 바이패스관과 같은 유로는 하우징의 몸체내에 주조 및 성형과 같은 단일 공정에 의해 일체로 형성될 수 있으므로, 제조비용 및 공정이 크게 감소될 있다. 또한, 밸브부재도 하우징 몸체에 내장되어 슬라이딩 이동하도록 구성되므로, 통상적인 밸브들과 달리 단순하고 작은 크기를 가질 수 있으며 이에 따라 제조비용 및 공정을 감소시킬 수 있다. In a conventional melting device, since required parts and passages are separated from each other and manufactured separately, the manufacturing process is complicated and high manufacturing cost is generated. On the other hand, in the venturi device of the melting device of the present invention, since the required parts and flow paths are integrated into one module (ie, housing), the intended device can be manufactured with relatively few processes and low cost. In particular, since flow channels such as the flow pipe and the bypass pipe can be integrally formed within the body of the housing by a single process such as casting and molding, manufacturing costs and processes can be greatly reduced. In addition, since the valve member is also built into the housing body and is configured to slide, it can have a simple and small size unlike conventional valves, thereby reducing manufacturing costs and processes.
또한, 요구되는 부품 및 유로가 서로 별도로 제작되어 연결되는 경우, 이들이 연결부에서 가스 및 물의 누출이 발생될 수 있으며, 이러한 누출을 방지하지 위해 추가적으로 상당한 수준의 밀폐 구조 또는 부재가 요구된다. 반면, 본 발명의 용해장치의 벤츄리장치에서는, 부품 및 유로가 단일의 하우징 몸체내에 일체로 형성되거나 동일 몸체내에 함께 배치된다. 따라서, 이들 부품들 및 유로의 연결부들은 외부로 노출되지 않으면서 하우징의 몸체에 의해 자연스럽게 밀폐된다. 따라서, 본 발명의 용해장치의 벤츄리장치에서는 가스 및 물의 누출 및 이에 의한 성능저하가 발생되지 않으며, 요구되는 성능을 안정적으로 발휘할 수 있다. In addition, when required parts and flow paths are manufactured separately from each other and connected, gas and water leakage may occur at the connection part, and an additional sealing structure or member of a considerable level is required to prevent such leakage. On the other hand, in the venturi device of the melting device of the present invention, the parts and the flow path are integrally formed in a single housing body or disposed together in the same body. Therefore, these parts and the connection parts of the passage are naturally sealed by the body of the housing without being exposed to the outside. Therefore, in the venturi device of the melting device of the present invention, leakage of gas and water and performance degradation due to this do not occur, and required performance can be stably exhibited.
이외에도, 용해장치는 덕트 및 벤츄리 장치에 제공되는 다양한 부가장치들을 포함하며, 이들 부가장치에 의해 보다 높은 품질의 용해액이 생성될 수 있다. In addition, the dissolving device includes various attachments provided to the duct and venturi device, and a higher quality dissolving solution can be produced by these attachments.
이상 본 발명의 실시예들을 구체적인 실시 형태로서 설명하였으나, 이는 예시에 불과한 것으로서, 본 발명은 이에 한정되지 않는 것이며, 본 명세서에 개시된 기초 사상에 따르는 최광의 범위를 갖는 것으로 해석되어야 한다. 당업자는 개시된 실시형태들을 조합 또는 치환하여 적시되지 않은 형상의 패턴을 실시할 수 있으나, 이 역시 본 발명의 범위를 벗어나지 않는 것이다. 이외에도 당업자는 본 명세서에 기초하여 개시된 실시형태를 용이하게 변경 또는 변형할 수 있으며, 이러한 변경 또는 변형도 본 발명의 권리범위에 속함은 명백하다.Although the embodiments of the present invention have been described as specific embodiments, this is merely an example, and the present invention is not limited thereto, and should be construed as having the widest scope according to the basic ideas disclosed herein. A person skilled in the art may implement a pattern of a shape not indicated by combining or substituting the disclosed embodiments, but this also does not depart from the scope of the present invention. In addition, those skilled in the art can easily change or modify the disclosed embodiments based on this specification, and it is clear that such changes or modifications also fall within the scope of the present invention.

Claims (10)

  1. 액체에 기체가 용해된 용해액을 생성하는 용해장치에 있어서, In the dissolution device for generating a solution in which gas is dissolved in a liquid,
    상기 액체를 유동시키도록 구성된 유로를 그 내부에 형성하며, 상기 유로내에 설치되는 노즐 및 상기 유로에 형성되며 상기 노즐의 토출구에 배치되는 챔버를 포함하는 덕트; 및a duct forming a flow path configured to flow the liquid therein, including a nozzle installed in the flow path and a chamber formed in the flow path and disposed at an outlet of the nozzle; and
    상기 용해액을 생성하도록 상기 덕트로부터 공급된 액체와 기체를 혼합시키며, 상기 생성된 용해액을 상기 덕트의 챔버에 토출하도록 구성되는 벤츄리 장치로 이루어지는 용해장치. A dissolving device comprising a venturi device configured to mix liquid and gas supplied from the duct to produce the dissolved solution, and to discharge the generated dissolved solution into a chamber of the duct.
  2. 제 1 항에 있어서, According to claim 1,
    상기 벤츄리 장치는: The venturi device:
    상기 액체 또는 상기 용해액이 선택적으로 유동하는 유동관 및 상기 유동관과 연통되어 상기 유동관을 유동하는 액체를 선택적으로 우회시키는 바이패스관을 내부에 포함하는 하우징;a housing including a flow pipe through which the liquid or the dissolved solution selectively flows and a bypass pipe communicating with the flow pipe and selectively bypassing the liquid flowing through the flow pipe;
    상기 유동관에 탈착 가능하게 삽입되고, 상기 액체 및 상기 기체를 공급받아서 상기 기체를 상기 액체에 용해시키도록 구성되는 인젝터 유닛; 및an injector unit detachably inserted into the flow pipe and configured to receive the liquid and the gas and dissolve the gas in the liquid; and
    상기 바이패스관에 제공되어 상기 바이패스관을 선택적으로 개폐하도록 구성되는 밸브 부재를 포함하는 용해장치. Dissolution apparatus comprising a valve member provided in the bypass pipe and configured to selectively open and close the bypass pipe.
  3. 제 2 항에 있어서, According to claim 2,
    상기 인젝터 유닛은:The injector unit is:
    외관을 형성하고, 상기 유동관에 교체 가능하게 삽입되는 본체;A main body that forms an exterior and is inserted into the flow pipe to be replaceable;
    상기 본체의 내부에 구비되고, 상기 기체와 상기 액체가 혼합되어 유동할 수 있는 벤츄리 유로를 구비하는 벤츄리 부재; 및a venturi member provided inside the main body and having a venturi passage through which the gas and the liquid are mixed and flowed; and
    일단부가 상기 본체에 연결되고, 타단부가 상기 벤츄리 부재에 연결되며, 상기 벤츄리 부재의 원주방향을 따라 이격 배치되는 복수의 분사 부재를 포함하는 용해장치. Dissolving device comprising a plurality of injection members having one end connected to the main body and the other end connected to the venturi member and spaced apart from each other along a circumferential direction of the venturi member.
  4. 제 1 항에 있어서, According to claim 1,
    상기 챔버는 상기 유로와 연통하도록 상기 덕트내에 배치되며 상기 액체를 그 내부에 유입시키도록 상기 유로와 연결되는 흡입구 및 상기 유입된 액체를 상기 유로로 배출하도록 상기 유로와 연결되는 배출구를 포함하는 용해장치. The chamber is disposed in the duct to communicate with the flow path and includes a suction port connected to the flow path to introduce the liquid therein and an outlet connected to the flow path to discharge the introduced liquid into the flow path. .
  5. 제 4 항에 있어서, According to claim 4,
    상기 챔버는 상기 벤츄리 장치와 연통되어 상기 생성된 용해액을 그 내부에 유입시키도록 구성되는 보조흡입구를 포함하는 용해장치. The chamber is a dissolution device comprising an auxiliary inlet configured to communicate with the venturi device to introduce the generated dissolution solution therein.
  6. 제 5 항에 있어서, According to claim 5,
    상기 보조 흡입구는 상기 노즐의 측부를 마주하도록 배치되는 용해장치. The auxiliary inlet is dissolving device disposed to face the side of the nozzle.
  7. 제 4 항에 있어서, According to claim 4,
    상기 배관은 상기 챔버의 배출구와 연결 또는 연통되는 확관부를 포함하는 용해장치. The pipe is a dissolution device including an expansion pipe connected to or in communication with the outlet of the chamber.
  8. 제 7 항에 있어서,According to claim 7,
    상기 확관부는 상기 챔버의 배출구로부터 유동방향을 따라 연장되며, 점차적으로 확장되는 직경을 갖는 용해장치. The expansion part extends along the flow direction from the outlet of the chamber and has a diameter that gradually expands.
  9. 제 1 항에 있어서,According to claim 1,
    상기 배관에 설치되어 상기 배관을 따라 유동하는 상기 액체를 자화시키도록 구성되는 자화장치를 더 포함하는 용해장치.Dissolution device further comprising a magnetization device installed in the pipe and configured to magnetize the liquid flowing along the pipe.
  10. 제 9 항에 있어서, According to claim 9,
    상기 자화장치는:The magnetizer is:
    상기 배관의 외주부에 제공되며, 상기 외주부를 감싸도록 구성되는 마운터(mounter);a mounter provided on the outer circumference of the pipe and configured to surround the outer circumference;
    상기 마운터에 설치되며, 상기 마운터의 원주방향을 따라 소정간격으로 배치되는 다수개의 홀더들; 및 a plurality of holders installed on the mounter and arranged at predetermined intervals along the circumferential direction of the mounter; and
    각각의 상기 홀더 내부에 매립되는 영구자석을 포함하는 용해장치. A melting device including a permanent magnet embedded in each of the holders.
PCT/KR2022/021436 2022-01-07 2022-12-27 Dissolver WO2023132548A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020220002553A KR102446818B1 (en) 2022-01-07 2022-01-07 Device for dissolving gas into liquid
KR10-2022-0002553 2022-01-07

Publications (1)

Publication Number Publication Date
WO2023132548A1 true WO2023132548A1 (en) 2023-07-13

Family

ID=83452638

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/021436 WO2023132548A1 (en) 2022-01-07 2022-12-27 Dissolver

Country Status (2)

Country Link
KR (2) KR102446818B1 (en)
WO (1) WO2023132548A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4344752A (en) * 1980-03-14 1982-08-17 The Trane Company Water-in-oil emulsifier and oil-burner boiler system incorporating such emulsifier
JP2009154049A (en) * 2007-12-25 2009-07-16 Kawamura:Kk Liquid mixing apparatus
KR20140007228A (en) * 2012-07-09 2014-01-17 이상호 Magnetized water treatment plant efficiency
KR20160099207A (en) * 2015-02-12 2016-08-22 주식회사 해담 Method and Apparatus for drinking water for domestic animals by using magnetized water containing mud stone
JP2017104841A (en) * 2015-12-07 2017-06-15 秀幸 西澤 Fine bubble generator, and production method of water containing fine bubble

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101051367B1 (en) * 2011-06-17 2011-07-22 유양기술 주식회사 Micro bubble aerator

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4344752A (en) * 1980-03-14 1982-08-17 The Trane Company Water-in-oil emulsifier and oil-burner boiler system incorporating such emulsifier
JP2009154049A (en) * 2007-12-25 2009-07-16 Kawamura:Kk Liquid mixing apparatus
KR20140007228A (en) * 2012-07-09 2014-01-17 이상호 Magnetized water treatment plant efficiency
KR20160099207A (en) * 2015-02-12 2016-08-22 주식회사 해담 Method and Apparatus for drinking water for domestic animals by using magnetized water containing mud stone
JP2017104841A (en) * 2015-12-07 2017-06-15 秀幸 西澤 Fine bubble generator, and production method of water containing fine bubble

Also Published As

Publication number Publication date
KR20230107094A (en) 2023-07-14
KR102446818B1 (en) 2022-09-26

Similar Documents

Publication Publication Date Title
WO2016013801A2 (en) Microbubble nozzle
US5492404A (en) Mixing apparatus
WO2023132548A1 (en) Dissolver
CN209557359U (en) Compact type vacuum generator
JP2003269259A (en) Exhaust gas recirculation system
MY129477A (en) Injection quill for water treatment
WO2021091156A1 (en) Portable container having refillable structure
WO2010117124A1 (en) Device for removing impurities such as rust, scales or the like in pipe
US8453667B2 (en) Cleaning water supply device
WO2013129774A1 (en) Dual venturi for water heater
CN109026856A (en) Compact type vacuum generator
WO2017051965A1 (en) Cutting oil dilution device
WO2017007041A1 (en) Dust collection device
WO2019078482A1 (en) Dental impression material mixing tip structure
CN113062817A (en) Multi-channel gas mixer
WO2023210927A1 (en) Purge pin cylinder
WO2018070562A1 (en) Apparatus for mixing and discharging fluids
JP7320855B2 (en) venturi nozzle device
KR20190056603A (en) Apparatus for mixing chemicals with a liquid carrier
WO2024143929A1 (en) Spiral water jet nozzle
JP2020195931A (en) Fine bubble generation nozzle
KR102546417B1 (en) Anesthetic gas distribution device
CN212982504U (en) Chemical adding module for industrial circulating water system
CN100490987C (en) Injection disperser
WO2020180137A1 (en) Pneumatic cylinder system and cut-off valve including same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22919085

Country of ref document: EP

Kind code of ref document: A1