WO2023132128A1 - Radiation detector, and radiation detector array - Google Patents

Radiation detector, and radiation detector array Download PDF

Info

Publication number
WO2023132128A1
WO2023132128A1 PCT/JP2022/042126 JP2022042126W WO2023132128A1 WO 2023132128 A1 WO2023132128 A1 WO 2023132128A1 JP 2022042126 W JP2022042126 W JP 2022042126W WO 2023132128 A1 WO2023132128 A1 WO 2023132128A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiation detector
semiconductor substrate
scintillator
semiconductor
photodetection
Prior art date
Application number
PCT/JP2022/042126
Other languages
French (fr)
Japanese (ja)
Inventor
正吾 鎌倉
隼人 西宮
真太郎 鎌田
Original Assignee
浜松ホトニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浜松ホトニクス株式会社 filed Critical 浜松ホトニクス株式会社
Publication of WO2023132128A1 publication Critical patent/WO2023132128A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors

Definitions

  • the present invention relates to radiation detectors and radiation detector arrays.
  • a known radiation detector includes a hexahedral scintillator and a semiconductor photodetector having a semiconductor substrate disposed on the scintillator (see, for example, Patent Document 1).
  • the scintillator generates scintillation light upon receiving radiation.
  • a semiconductor photodetector detects the generated scintillation light.
  • a first aspect of the present invention aims to provide a radiation detector with high time resolution and high detection sensitivity.
  • An object of the second and third aspects of the present invention is to provide a radiation detector array comprising radiation detectors having high temporal resolution and high detection sensitivity.
  • Patent Document 1 does not disclose a radiation detector with high temporal resolution and high detection sensitivity.
  • the scintillator When radiation enters a scintillator having a pair of end faces facing each other in a first direction and elongated in the first direction from one of the pair of end faces, the scintillator emits radiation in a high energy range. It reliably absorbs and emits scintillation light.
  • the scintillator tends to reliably absorb radiation in the high energy range.
  • the semiconductor photodetector detects scintillation light emitted from the other end face. It is difficult to obtain high temporal resolution in a configuration in which the length of the scintillator in the first direction is longer than the length in the direction intersecting the first direction.
  • the side surface connecting the pair of end faces and extending in the first direction is shorter in distance from the scintillation light generation point than the other end faces. Therefore, the semiconductor photodetector arranged on the side surface extending in the first direction can easily detect scintillation light with high time resolution. In the radiation detector, it is desirable to arrange the semiconductor photodetector at a position where each scintillation light generated at the same position at the same time can be detected at a short distance.
  • This arrangement of semiconductor photodetectors detects incident radiation with high temporal resolution.
  • a configuration in which the scintillator has a plurality of side surfaces can have semiconductor photodetectors arranged on each of the plurality of side surfaces.
  • a radiation detector in which semiconductor photodetectors are arranged on each of a plurality of side surfaces achieves higher detection sensitivity than a radiation detector in which one semiconductor photodetector is arranged only on one end face.
  • a radiation detector includes a pair of end faces facing each other in a first direction, and a second end face connecting the pair of end faces facing each other in a second direction intersecting the first direction.
  • the first has a scintillator which has one side and a second side and has a rectangular shape when viewed from the first direction, and a first semiconductor substrate arranged to face the first side.
  • a first wiring member and a second wiring member electrically connected to the second semiconductor photodetector are provided.
  • the length of the scintillator in the first direction is greater than the length of the scintillator in the second direction and the length of the scintillator in the third direction parallel to the first side.
  • the length of the first side in the first direction is greater than the width of the first side in the third direction.
  • the length of the second side in the first direction is greater than the width of the second side in the third direction.
  • the first semiconductor substrate has a first portion covered by the first side surface and a second portion aligned in the first direction with the first portion and exposed from the first side surface.
  • the second semiconductor substrate has a third portion covered with the second side surface and a fourth portion aligned with the third portion in the first direction and exposed from the second side surface.
  • Each of the first semiconductor photodetector and the second semiconductor photodetector includes at least one avalanche photodiode operating in Geiger mode and one of the anode or cathode of the corresponding avalanche photodiode of the at least one avalanche photodiode. and at least one quenching resistor electrically connected in series.
  • the first semiconductor photodetector includes a plurality of quenching resistors electrically connected to at least one quenching resistor of the first semiconductor photodetector included in a corresponding photodetection region among the plurality of photodetection regions.
  • the first electrode is electrically connected to the other of the anode or the cathode of the avalanche photodiode of the first semiconductor photodetector included in the corresponding photodetection region among the plurality of photodetection regions. and an electrode.
  • the second semiconductor photodetector is included in a corresponding photodetection region among the plurality of photodetection regions and is electrically connected to at least one quenching resistor of the second semiconductor photodetector.
  • the third electrode is electrically connected to the other of the anode or the cathode of the avalanche photodiode of the second semiconductor photodetector included in the corresponding photodetection region among the plurality of photodetection regions. and an electrode.
  • a plurality of photodetection regions of the first semiconductor photodetector are arranged in the first portion.
  • a plurality of first and second electrodes are disposed on the second portion.
  • a plurality of photodetection regions of the second semiconductor photodetector are arranged in the third portion.
  • a plurality of third and fourth electrodes are disposed on the fourth portion.
  • the first wiring member has a plurality of conductors electrically connected to corresponding first electrodes among the plurality of first electrodes, and a conductor connected to the second electrode.
  • the second wiring member has a plurality of conductors electrically connected to corresponding third electrodes among the plurality of third electrodes, and a conductor connected to the fourth electrode.
  • the first aspect includes a scintillator long in a first direction, a first semiconductor substrate arranged on the first side surface of the scintillator, and a second semiconductor substrate arranged on the second side surface of the scintillator. ing.
  • the first semiconductor photodetector detects scintillation light incident on the first side surface.
  • the second semiconductor photodetector detects scintillation light incident on the second side surface.
  • the length of the scintillator in the second direction is less than the length of the scintillator in the first direction. Therefore, the distances from the scintillation light generation point to each of the first side surface and the second side surface are short.
  • the arrival time of scintillation light to each of the first and second semiconductor photodetectors is short, and the first aspect achieves high time resolution.
  • the first aspect includes a first semiconductor photodetector and a second semiconductor photodetector. Therefore, the first aspect achieves higher detection sensitivity than a radiation detector having a single semiconductor photodetector arranged on one side of the scintillator.
  • the first aspect includes a first semiconductor photodetector and a second semiconductor photodetector in which a plurality of photodetection regions arranged in the first direction are respectively arranged.
  • the distance in the first direction between the point where the scintillation light is generated and one end surface of the scintillator is obtained. Therefore, the magnitude of the energy of radiation incident from one end surface of the scintillator can be accurately measured. As a result, the first aspect achieves high energy resolution.
  • one region configured by the contours of the plurality of photodetection regions of the first semiconductor substrate has a contour shape corresponding to the contour shape of the first side surface.
  • one region formed by the contours of the plurality of photodetection regions of the second semiconductor substrate may have a contour shape corresponding to the contour shape of the second side surface.
  • the plurality of photodetection regions are formed by the first semiconductor substrate.
  • the scintillator may have a plurality of portions arranged independently of each other in the first direction.
  • Each of the plurality of portions may be positioned corresponding to a corresponding photodetection region among the plurality of photodetection regions arranged on each of the first semiconductor substrate and the second semiconductor substrate.
  • Each of the plurality of portions may have a pair of facing surfaces facing each other in the first direction, and a first connecting surface and a second connecting surface connecting the pair of facing surfaces.
  • the first connecting surface may face the first semiconductor substrate.
  • the second connecting surface may face the second semiconductor substrate and face the first connecting surface in the second direction.
  • the plurality of portions may be joined together.
  • a configuration in which multiple sections are bonded together enhances the physical strength of the scintillator. Therefore, this configuration more reliably achieves high energy resolution.
  • the first aspect may include a light reflecting member.
  • a light reflecting member may be arranged between the plurality of portions.
  • scintillation light generated in each portion is reliably confined within the portion.
  • a photodetection region corresponding to the portion more reliably detects scintillation light generated within the portion. Therefore, this configuration achieves a high energy resolution even more reliably.
  • each of the plurality of photodetection regions of the first semiconductor substrate when viewed from the second direction, is the first connecting surface of the corresponding portion of the plurality of portions facing the first semiconductor substrate. may exhibit a contour shape corresponding to the contour shape of When viewed from the second direction, each of the plurality of photodetection regions of the second semiconductor substrate has a contour corresponding to the contour of the second connecting surface facing the second semiconductor substrate of the corresponding portion among the plurality of portions. It may have a shape.
  • each of the plurality of photodetection regions of the first semiconductor substrate has a contour shape corresponding to the contour shape of the first connecting surface facing the first semiconductor substrate of the corresponding portion among the plurality of portions. It is difficult for the plurality of photodetection regions to be arranged in locations on the first semiconductor substrate where scintillation light cannot be received.
  • each of the plurality of photodetection regions of the second semiconductor substrate has a contour shape corresponding to the contour shape of the second connecting surface facing the second semiconductor substrate in the corresponding portion among the plurality of portions, It is difficult for the plurality of photodetection regions to be arranged in locations on the second semiconductor substrate where scintillation light cannot be received. Therefore, these configurations suppress dark count and capacity build-up in multiple photodetection regions. As a result, this arrangement reliably improves the time resolution and energy resolution of the radiation detector.
  • the plurality of photodetection regions may include a first photodetection region and a second photodetection region closer to the second portion than the first photodetection region.
  • the width of the conductive wire electrically connecting the first electrode corresponding to the first photodetection region and the first photodetection region is equal to the width of the first electrode corresponding to the second photodetection region It may be larger than the width of the conductive wire electrically connecting the two photodetection regions.
  • a first electrode corresponding to the first photodetection region and a conductive wire electrically connecting the first photodetection region have a width corresponding to the second photodetection region
  • a configuration greater than the width of the conductive line electrically connecting the two photodetecting regions reduces the electrical resistance difference.
  • the length of the conductive wire electrically connecting the first electrode corresponding to the first photodetection region and the first photodetection region is the first electrode corresponding to the second photodetection region, greater than the length of the conductor electrically connecting the second photodetection region.
  • the first aspect may comprise a reinforcement located between the second portion and the fourth portion.
  • the reinforcing body may cover the second portion and the fourth portion and may connect the second portion and the fourth portion.
  • the reinforcement located between the second and fourth parts may be positioned between the second and fourth parts. Improve mechanical strength.
  • the first semiconductor substrate has a first surface facing the scintillator in the second direction and a second surface facing the first surface in the second direction.
  • the second semiconductor substrate may have a third surface facing the scintillator in the second direction and a fourth surface facing the third surface in the second direction.
  • the second and fourth surfaces may be polished surfaces.
  • the thickness of the first semiconductor substrate can be reduced by polishing the second surface.
  • the thickness of the second semiconductor substrate can be reduced by polishing the fourth surface.
  • the size of the radiation detector can be reduced in the thickness direction of the first semiconductor substrate.
  • the size of the radiation detector can be reduced in the thickness direction of the second semiconductor substrate.
  • the first aspect has a fifth surface and a sixth surface facing each other in the second direction, and is arranged such that the first semiconductor substrate is positioned between the fifth surface and the scintillator. and a seventh surface and an eighth surface facing each other in a second direction, and arranged such that the second semiconductor substrate is positioned between the seventh surface and the scintillator.
  • the first base has a fifth portion covered with the first semiconductor substrate, and a sixth portion aligned with the fifth portion in the first direction and exposed from the first semiconductor substrate. good too.
  • the second base has a seventh portion covered with the second semiconductor substrate and an eighth portion aligned with the seventh portion in the first direction and exposed from the second semiconductor substrate. good too.
  • Each first terminal and second terminal may be located on the sixth portion.
  • Each third terminal and fourth terminal may be located on the eighth portion.
  • a configuration comprising a first substrate and a second substrate improves the mechanical strength of the radiation detector. Therefore, this configuration reliably realizes a radiation detector with improved mechanical strength.
  • the first cover is arranged so that the first semiconductor substrate is positioned between the scintillator, and the second cover is arranged so that the second semiconductor substrate is positioned between the scintillator. and a second covering.
  • Each of the first covering and the second covering may include at least one of a light reflector and an electrical insulator.
  • each of the first cover and the second cover includes a light reflector improves the light reflection properties of scintillation light.
  • a configuration in which each of the first covering and the second covering includes an electrical insulator improves electrical insulation between adjacent radiation detectors.
  • the first wiring member may be arranged on the same side as the scintillator with respect to the first semiconductor substrate.
  • the second wiring member may be arranged on the same side as the scintillator with respect to the second semiconductor substrate.
  • the configuration in which the first wiring member is arranged on the same side as the scintillator with respect to the first semiconductor substrate is, for example, a substrate for connecting the first wiring member to the first electrode and the second electrode by die bonding. do not need.
  • the configuration in which the second wiring member is arranged on the same side as the scintillator with respect to the second semiconductor substrate is, for example, a substrate for connecting the second wiring member to the first electrode and the second electrode by die bonding. do not need. Therefore, these configurations more reliably simplify the configuration of the radiation detector.
  • the first wiring member and the second wiring member, and the first semiconductor substrate and the second semiconductor substrate may have flexibility.
  • the flexibility of the first wiring member may be greater than the flexibility of the first semiconductor substrate.
  • the flexibility of the second wiring member may be greater than the flexibility of the second semiconductor substrate.
  • the vibration of the first wiring member is less likely to be transmitted to the first semiconductor substrate.
  • the force from the first wiring member is less likely to be applied to the first semiconductor substrate, and the first semiconductor substrate is less susceptible to physical damage.
  • the vibration of the second wiring member is less likely to be transmitted to the second semiconductor substrate.
  • the force from the second wiring member is less likely to be applied to the second semiconductor substrate, and the second semiconductor substrate is less susceptible to physical damage.
  • a radiation detector array includes a plurality of radiation detectors arranged one-dimensionally.
  • Each of the plurality of radiation detectors is the radiation detector described above.
  • the scintillator has a pair of third side surfaces connecting the pair of end surfaces and connecting the first side surface and the second side surface. Any two radiation detectors adjacent to each other among the plurality of radiation detectors have the third side surface of the scintillator of one radiation detector and the third side surface of the scintillator of the other radiation detector facing each other. are arranged so that
  • the second aspect realizes a radiation detector array in which a plurality of radiation detectors having high time resolution and high detection sensitivity are arranged in one dimension.
  • the first semiconductor photodetecting elements included in the plurality of radiation detectors may be integrally formed.
  • the second semiconductor photodetecting elements included in the plurality of radiation detectors may be integrally formed.
  • the configuration in which the above-described first semiconductor photodetection elements are integrally formed and the above-described second semiconductor photodetection elements are integrally formed is a radiation detector in which a plurality of radiation detectors are arranged in one dimension. Improve the mechanical strength of the detector array.
  • the second aspect may include a plurality of radiation detectors arranged two-dimensionally in a matrix.
  • Each of the plurality of radiation detectors arranged in the row direction among the plurality of radiation detectors may be the radiation detector array.
  • any two radiation detectors adjacent to each other in the column direction are either a first semiconductor photodetector or a second semiconductor photodetector provided in one radiation detector, and the other Either the first semiconductor photodetector element or the second semiconductor photodetector element of the radiation detector may be arranged so as to face each other in the column direction.
  • a configuration in which multiple radiation detectors are arranged two-dimensionally in a matrix provides a radiation detector array in which radiation detectors with high time resolution and high detection sensitivity are arranged two-dimensionally in a matrix. do.
  • a radiation detector array includes a plurality of radiation detectors arranged one-dimensionally.
  • Each of the plurality of radiation detectors is the radiation detector described above.
  • the scintillator has a pair of third side surfaces connecting the pair of end surfaces and connecting the first side surface and the second side surface. Any two radiation detectors adjacent to each other among a plurality of radiation detectors are composed of the third side surface of the scintillator provided by one radiation detector and the first semiconductor photodetector element or second semiconductor provided by the other radiation detector. Either one of the photodetecting elements is arranged so as to face each other.
  • the above third aspect realizes a radiation detector array in which radiation detectors having high time resolution and high detection sensitivity are arranged one-dimensionally.
  • the third aspect may include a plurality of radiation detectors arranged two-dimensionally in a matrix.
  • Each of the plurality of radiation detectors arranged in the row direction among the plurality of radiation detectors may be the radiation detector array. Any two radiation detectors adjacent to each other in the column direction among the plurality of radiation detectors are composed of the third side surface of the scintillator provided by one radiation detector and the first semiconductor photodetector element provided by the other radiation detector, or Either one of the second semiconductor photodetectors may be arranged so as to face each other in the column direction.
  • a configuration in which multiple radiation detectors are arranged two-dimensionally in a matrix provides a radiation detector array in which radiation detectors with high time resolution and high detection sensitivity are arranged two-dimensionally in a matrix. do.
  • the first semiconductor photodetector element and the second A plurality of radiation detectors are arranged two-dimensionally in a smaller space than in a configuration in which two semiconductor photodetectors face each other.
  • a first aspect of the present invention provides a radiation detector with high temporal resolution and high detection sensitivity.
  • Second and third aspects of the present invention provide radiation detector arrays comprising radiation detectors having high temporal resolution and high detection sensitivity.
  • FIG. 1 is a perspective view showing a radiation detector according to the first embodiment.
  • FIG. FIG. 2 is a perspective view showing the radiation detector according to the first embodiment.
  • FIG. 3 is a plan view showing the first semiconductor photodetector.
  • FIG. 4 is a plan view showing the second semiconductor photodetector.
  • FIG. 5 is a diagram showing an equivalent circuit of the photodetection region.
  • FIG. 6 is a side view showing the radiation detector according to the first embodiment.
  • FIG. 7 is a side view showing the radiation detector according to the first embodiment;
  • FIG. 8 is a side view showing the radiation detector according to the first embodiment;
  • FIG. 9 is a perspective view showing the radiation detector according to the first embodiment.
  • FIG. 10 is a perspective view showing a radiation detector according to the first embodiment;
  • FIG. 10 is a perspective view showing a radiation detector according to the first embodiment;
  • FIG. 10 is a perspective view showing a radiation detector according to the first embodiment;
  • FIG. 10 is a
  • FIG. 11 is a perspective view showing a radiation detector according to a modification of the first embodiment
  • FIG. 12 is a diagram showing paths of a part of scintillation light.
  • FIG. 13 is a perspective view showing a radiation detector array according to the second embodiment.
  • FIG. 14 is a perspective view showing a radiation detector array according to the second embodiment.
  • FIG. 15 is a perspective view showing a radiation detector array according to the third embodiment.
  • FIG. 16 is a perspective view showing a radiation detector array according to the third embodiment.
  • FIG. 17 is a flow chart showing a method of manufacturing a radiation detector.
  • FIG. 1 and 2 are perspective views showing the radiation detector according to the first embodiment.
  • FIG. 3 is a plan view showing the first semiconductor photodetector.
  • FIG. 4 is a plan view showing the second semiconductor photodetector.
  • FIG. 5 is a diagram showing an equivalent circuit of the photodetection region.
  • 6 to 8 are side views showing the radiation detector according to the first embodiment.
  • 9 and 10 are perspective views showing the radiation detector according to the first embodiment. 1 and 9 omit illustration of part of the second semiconductor photodetector for the sake of explanation. 2 and 10 omit illustration of part of the first semiconductor photodetector for the sake of explanation.
  • Figures 9 and 10 show the reinforcing bodies by a two-dot chain line.
  • the radiation detector RD1 includes a scintillator 1, a semiconductor photodetector 10a, a semiconductor photodetector 10b, a wiring member 30a, and a wiring member 30b.
  • the scintillator 1 generates scintillation light in response to radiation incident on the scintillator 1 .
  • Scintillation light includes, for example, fluorescence.
  • the semiconductor photodetectors 10 a and 10 b detect scintillation light generated by the scintillator 1 .
  • the semiconductor photodetector 10a has a semiconductor substrate 11a and is electrically connected to the wiring member 30a.
  • the semiconductor photodetector 10b has a semiconductor substrate 11b and is electrically connected to the wiring member 30b.
  • the semiconductor photodetector 10a constitutes the first semiconductor photodetector
  • the semiconductor photodetector 10b constitutes the second semiconductor photodetector.
  • the wiring member 30a constitutes the first wiring member
  • the wiring member 30b constitutes the second wiring member.
  • the semiconductor substrate 11a constitutes the first semiconductor substrate
  • the semiconductor substrate 11b constitutes the second semiconductor substrate.
  • the scintillator 1 has a pair of end faces 1a and 1b facing each other, a pair of side faces 1c and 1d facing each other, and a pair of side faces 1e and 1f facing each other.
  • the end faces 1a and 1b, the side faces 1c and 1d, and the side faces 1e and 1f constitute the outer surface of the scintillator 1.
  • the end surfaces 1a and 1b face each other in the first direction D1.
  • the end surfaces 1a and 1b define both ends of the scintillator 1 in the first direction D1.
  • the side surfaces 1c and 1d are opposed to each other in a second direction D2 intersecting the first direction D1 and connect the pair of end surfaces 1a and 1b.
  • the second direction D2 coincides with the direction perpendicular to the side surface 1c.
  • the side surfaces 1c and 1d define both ends of the scintillator 1 in the second direction D2.
  • the side surfaces 1e and 1f connect the end surfaces 1a and 1b and also connect the side surfaces 1c and 1d.
  • the side surfaces 1e and 1f face each other in a third direction D3 intersecting the first direction D1 and the second direction D2.
  • the third direction D3 matches the direction parallel to the side surface 1c.
  • the first direction D1, the second direction D2, and the third direction D3 are orthogonal to each other.
  • the side surfaces 1e and 1f define both ends of the scintillator 1 in the third direction D3.
  • the side surface 1c constitutes the first side surface
  • the side surface 1d constitutes the second side surface
  • the side surfaces 1e and 1f constitute a pair of third side surfaces.
  • the end face 1a and the end face 1b extend in the second direction D2 so as to connect the side face 1c and the side face 1d.
  • the end face 1a and the end face 1b extend in the third direction D3 so as to connect the side face 1e and the side face 1f.
  • the side surface 1c and the side surface 1d extend in the first direction D1 so as to connect the end surface 1a and the end surface 1b.
  • the side surface 1c and the side surface 1d extend in the third direction D3 so as to connect the side surface 1e and the side surface 1f.
  • the side surface 1e and the side surface 1f extend in the first direction D1 so as to connect the end surface 1a and the end surface 1b.
  • the side surface 1e and the side surface 1f extend in the second direction D2 so as to connect the side surface 1c and the side surface 1d. Side 1e and side 1f are adjacent to side 1c.
  • the length of the scintillator 1 in the first direction D1 is greater than the length of the scintillator 1 in the second direction D2.
  • the length of the scintillator 1 in the first direction D1 is greater than the length of the scintillator 1 in the third direction D3.
  • the first direction D1 is the longitudinal direction of the scintillator 1 .
  • the length of the side surface 1c in the first direction D1 is greater than the width of the side surface 1c in the third direction D3.
  • the length of the side surface 1d in the first direction D1 is greater than the width of the side surface 1d in the third direction D3.
  • the end faces 1a and 1b have a rectangular shape when viewed from a direction perpendicular to the end faces 1a and 1b.
  • the side surfaces 1c and 1d have a rectangular shape when viewed from a direction orthogonal to the side surfaces 1c and 1d.
  • the side surfaces 1e and 1f have a rectangular shape when viewed from a direction orthogonal to the side surfaces 1e and 1f.
  • the scintillator 1 has a rectangular shape when viewed from the first direction D1, and has a rectangular shape when viewed from the second direction D2 and the third direction D3.
  • the scintillator 1 has, for example, a rectangular parallelepiped shape.
  • the length of the scintillator 1 in the first direction D1 is, for example, approximately 20 mm.
  • the length of the scintillator 1 in the second direction D2 is, for example, approximately 4 mm.
  • the length of the scintillator 1 in the third direction D3 is, for example, approximately 4 mm.
  • "Rectangular” in this specification includes, for example, a shape with chamfered corners and a shape with rounded corners.
  • the term "rectangular parallelepiped shape” as used herein includes a rectangular parallelepiped shape with chamfered corners and edges, and a rectangular parallelepiped shape with rounded corners and edges.
  • the scintillator 1 includes, for example, a crystalline scintillator, a ceramic scintillator, or a plastic scintillator.
  • Crystalline scintillators include, for example, CsI, NaI, LaBr3 , cerium-doped lutetium yttrium orthosilicate (LYSO(Ce)), gadolinium aluminum gallium garnet (GAGG), lutetium oxyorthosilicate (LSO), bismuth germanate (BGO), or ruthenium aluminum garnet (LuAG).
  • a ceramic scintillator contains, for example, a sintered body of an inorganic phosphor.
  • Plastic scintillators include, for example, polyethylene terephthalate (PET).
  • the semiconductor substrate 11a is arranged so as to face the side surface 1c.
  • the semiconductor substrate 11b is arranged so as to face the side surface 1d.
  • the semiconductor substrates 11a and 11b contain Si, for example.
  • Semiconductor substrate 11b has, for example, the same form as semiconductor substrate 11a arranged on side surface 1c, except that semiconductor substrate 11b is arranged on side surface 1d, and exhibits the same function.
  • Semiconductor substrate 11a is arranged on side surface 1c, for example, by means of an adhesive.
  • the semiconductor substrate 11b is arranged on the side surface 1d, for example, by means of an adhesive.
  • the semiconductor substrate 11a has a portion 21a and a portion 22a.
  • portion 21a is covered with side surface 1c.
  • the portion 22a is exposed from the side surface 1c.
  • the portion 21a and the portion 22a are arranged in the first direction D1.
  • the semiconductor substrate 11b has a portion 21b and a portion 22b.
  • the portion 21b is covered with the side 1d.
  • the portion 22b is exposed from the side surface 1d.
  • the portion 21b and the portion 22b are arranged in the first direction D1. For example, if the portion 21a constitutes the first portion, the portion 22a constitutes the second portion.
  • the portion 22b constitutes the fourth portion.
  • Each of the semiconductor photodetector element 10a and the semiconductor photodetector element 10b includes a plurality of photodetection regions 23a, 23b, 23c, and 23d.
  • a plurality of photodetection regions 23a, 23b, 23c, and 23d of the semiconductor photodetector 10a are arranged in the portion 21a.
  • a plurality of photodetection regions 23a, 23b, 23c, and 23d of semiconductor photodetector 10b are arranged in portion 21b.
  • the plurality of photodetection regions 23a, 23b, 23c, and 23d are arranged in the first direction D1. In this embodiment, four photodetection regions 23a, 23b, 23c, and 23d are arranged.
  • the plurality of photodetection regions 23a, 23b, 23c, 23d each have at least one avalanche photodiode 12 and at least one quenching resistor 13. As shown in FIG. In the examples shown in FIGS. 3 and 4, the plurality of photodetection regions 23a, 23b, 23c, and 23d have a plurality of avalanche photodiodes 12 and a plurality of quenching resistors 13, respectively.
  • the avalanche photodiode 12 receives scintillation light and generates photoelectrons from the received scintillation light through photoelectric conversion.
  • Conductors 14a, 14b, 14c, 14d and a conducting wire 14e are arranged in the portion 21a.
  • Conductors 14a, 14b, 14c, 14d and a conducting wire 14e are arranged in the portion 21b.
  • Conductors 14a, 14b, 14c, and 14d form a wiring pattern for signal readout.
  • the conductors 14a, 14b, 14c, and 14d are patterned, for example, in a lattice when viewed from the second direction D2.
  • Each of the grid patterns of the conductors 14a, 14b, 14c, and 14d surrounds one photodetector 15. As shown in FIG.
  • One photodetector 15 includes one avalanche photodiode 12 and one quenching resistor 13 .
  • One quenching resistor 13 is electrically connected in series with the avalanche photodiode 12 corresponding to one quenching resistor 13 .
  • a plurality of photodetectors 15 are arranged in each of the portions 21a and 21b.
  • the photodetectors 15 are arranged two-dimensionally in a matrix, for example.
  • the photodetection regions 23a, 23b, 23c, and 23d are in contact with each other.
  • the photodetection regions 23a, 23b, 23c, 23d may be in contact with each other or may be spaced apart from each other.
  • One photodetector 15 may be arranged in each of the plurality of photodetection regions 23a, 23b, 23c, and 23d. Therefore, each of the plurality of photodetection regions 23a, 23b, 23c, and 23d may have one avalanche photodiode 12 and one quenching resistor 13. FIG.
  • At least one quenching resistor 13 is electrically connected in series with one of the anode or cathode of the corresponding avalanche photodiode 12 among the at least one avalanche photodiodes 12 .
  • the avalanche photodiode 12 has contact electrodes 16 .
  • the contact electrode 16 is electrically connected to either the anode or the cathode.
  • One end of the quenching resistor 13 is electrically connected in series with the contact electrode 16 .
  • the other end of each quenching resistor 13 is electrically connected in series with conductors 14a, 14b, 14c, 14d forming the wiring pattern.
  • Conductors 14a, 14b, 14c, and 14d electrically connect a plurality of quenching resistors 13 in parallel.
  • a conducting wire 14e electrically connects the other of the anodes and cathodes of the plurality of avalanche photodiodes 12 in parallel.
  • a plurality of electrodes 17a, 17b, 17c, 17d and an electrode 18 are arranged in each of the portions 22a and 22b. That is, each of the semiconductor photodetectors 10a and 10b includes electrodes 17a, 17b, 17c, 17d and an electrode 18. As shown in FIG. The electrodes 17a, 17b, 17c, and 17d are connected to the corresponding photodetection regions 23a, 23b, 23c, and 23d of the plurality of photodetection regions 23a, 23b, 23c, and 23d via the conductors 14a, 14b, 14c, and 14d, respectively. is electrically connected to at least one quenching resistor 13 contained in the . In the examples shown in FIGS.
  • electrodes 17a, 17b, 17c, and 17d are connected to corresponding electrodes of the plurality of photodetection regions 23a, 23b, 23c, and 23d via conductors 14a, 14b, 14c, and 14d, respectively.
  • a plurality of quenching resistors 13 included in the corresponding photodetection regions 23a, 23b, 23c, 23d are electrically connected in parallel.
  • electrode 17a is connected to photodetection region 23a via conductor 14a.
  • the electrode 17b is connected to the photodetection region 23b via the conductor 14b.
  • the electrode 17c is connected to the photodetection region 23c via the conductor 14c.
  • the electrode 17d is connected to the photodetection region 23d via a lead wire 14d.
  • photodetection regions 23a, 23b, 23c, 23d each include one quenching resistor 13
  • electrodes 17a, 17b, 17c, 17d are connected via leads 14a, 14b, 14c, 14d, respectively.
  • the quenching resistors 13 included in the photodetection regions 23a, 23b, 23c and 23d are electrically connected in series.
  • the electrodes 18 are connected to the anodes or cathodes of the avalanche photodiodes 12 included in the corresponding photodetection regions 23a, 23b, 23c, and 23d among the plurality of photodetection regions 23a, 23b, 23c, and 23d via the lead wire 14e. It is electrically connected with the other. In the example shown in FIGS. 3 and 4, the electrode 18 electrically connects the other of the anodes or cathodes of the plurality of avalanche photodiodes 12 in parallel via the lead wire 14e.
  • the electrode 18 is included in the photodetection regions 23a, 23b, 23c, and 23d via the lead 14e.
  • the other of the anode and cathode of one avalanche photodiode 12 is electrically connected in parallel.
  • Electrodes 17a, 17b, 17c, 17d and electrode 18 contain, for example, aluminum or an aluminum composite.
  • Aluminum composites include, for example, AlSi, AlCu, or AlSiCu.
  • Electrodes 17a, 17b, 17c, 17d and electrode 18 are formed by plating, vapor deposition, or sputtering, for example.
  • the electrical resistivity of the quenching resistor 13 is greater than the electrical resistivity of the electrodes 17a, 17b, 17c, 17d and the electrode 18.
  • Quenching resistor 13 contains, for example, polysilicon.
  • the material of the quenching resistor 13 may contain SiCr, NiCr, or FeCr, for example.
  • the quenching resistor 13 is formed by, for example, a CVD (Chemical Vapor Deposition) method or a sputtering method.
  • CVD Chemical Vapor Deposition
  • the electrode 18 constitutes the second electrode.
  • the electrode 18 constitutes the fourth electrode.
  • each of the at least one quenching resistors 13 is electrically connected to the anode of the corresponding avalanche photodiode 12 among the at least one avalanche photodiodes 12, for example.
  • the electrodes 18 are electrically connected to the cathodes of the multiple avalanche photodiodes 12 .
  • At least one quenching resistor 13 may be electrically connected to the cathode of the corresponding avalanche photodiode 12 among the at least one avalanche photodiodes 12 .
  • electrode 18 is electrically connected to the anode of at least one avalanche photodiode 12 .
  • Each avalanche photodiode 12 operates in Geiger mode.
  • a reverse bias voltage is applied to the avalanche photodiode 12 .
  • the reverse bias voltage is, for example, a reverse voltage higher than the breakdown voltage of the avalanche photodiode 12 .
  • the anode of the avalanche photodiode 12 is applied with a potential V1
  • the cathode of the avalanche photodiode 12 is applied with a positive potential V2 with respect to the potential V1.
  • the polarities of these potentials are relative, and for example, one of the potentials may be the ground potential.
  • Each photodetector 15 is electrically connected in parallel.
  • Each avalanche photodiode 12 may be a so-called reach-through avalanche photodiode or a so-called reverse avalanche photodiode.
  • a reach-through type avalanche photodiode 12 is included in, for example, a radiation detector RD1 having a scintillator 1 that generates long-wavelength scintillation light, and is used, for example, when the scintillation light is long-wavelength light.
  • the reverse type avalanche photodiode 12 is used, for example, when the scintillation light is short wavelength light.
  • a reach-through or reverse avalanche photodiode 12 operates in Geiger mode.
  • Radiation detector RD1 may comprise an avalanche photodiode 12 configured to operate in linear mode.
  • the avalanche photodiode 12 configured to operate in the linear mode may be a so-called reach-through avalanche photodiode or a so-called reverse avalanche photodiode.
  • An electrode 18 connected to 14e is arranged.
  • An insulating layer 19 is arranged on the semiconductor substrates 11a, 11b, for example, on the conductors 14a, 14b, 14c, 14d and the conductor 14e. In semiconductor substrate 11a, insulating layer 19 extends through portion 21a and portion 22a. In semiconductor substrate 11b, insulating layer 19 extends through portion 21b and portion 22b.
  • the electrodes 17a, 17b, 17c, 17d and the conductors 14a, 14b, 14c, 14d are insulated from the electrode 18 and the conductor 14e by the insulating layer 19.
  • FIG. The insulating layer 19 is formed on the plurality of photodetectors 15 in the portions 21a and 21b. Insulating layer 19 contains, for example, SiO 2 or SiN. The insulating layer 19 is formed by thermal oxidation, sputtering, or CVD, for example.
  • the wiring member 30a is arranged, for example, on the same side as the scintillator 1 with respect to the semiconductor substrate 11a. At least part of the wiring member 30a and the scintillator 1 are arranged in front of the same surface of the semiconductor substrate 11a, for example.
  • the wiring member 30a, the semiconductor substrate 11a, and the scintillator 1 are arranged on the surface 11c.
  • the wiring member 30b is arranged, for example, on the same side as the scintillator 1 with respect to the semiconductor substrate 11b. At least part of the wiring member 30b and the scintillator 1 are arranged in front of the same surface of the semiconductor substrate 11b, for example.
  • Wiring member 30b has the same form and functions as wiring member 30a electrically connected to semiconductor substrate 11a, for example, except that wiring member 30b is electrically connected to semiconductor substrate 11b.
  • the wiring members 30a, 30b have conductors 31a, 31b, 31c, 31d and a conductor 32, respectively.
  • the conductors 31a, 31b, 31c, 31d of the wiring member 30a are electrically connected to the electrodes 17a, 17b, 17c, 17d of the semiconductor photodetector 10a, respectively.
  • the conductors 31a, 31b, 31c, 31d of the wiring member 30b are electrically connected to the electrodes 17a, 17b, 17c, 17d of the semiconductor photodetector 10b, respectively.
  • the conductor 32 of the wiring member 30a is electrically connected to the electrode 18 of the semiconductor photodetector 10a.
  • the conductor 32 of the wiring member 30b is electrically connected to the electrode 18 of the semiconductor photodetector 10b.
  • Conductors 31a, 31b, 31c, and 31d of the wiring member 30a are electrically connected via conductive bumps 33 to electrodes 17a, 17b, 17c, and 17d of the semiconductor photodetector 10a.
  • Conductors 31a, 31b, 31c and 31d of wiring member 30b are electrically connected to electrodes 17a, 17b, 17c and 17d of semiconductor photodetector 10b via conductive bumps 33, for example.
  • the conductor 32 of the wiring member 30a is connected to the electrode 18 of the semiconductor photodetector 10a via a conductive bump 33, for example.
  • Conductive bumps 33 include, for example, solder, ACF (anisotropic conductive film), or ACP (anisotropic conductive paste). Solders include, for example, Sn--Ag--Cu solders. Conductive bumps 33 may include, for example, Au bumps, Ni bumps, or Cu bumps.
  • the potential V1 is applied to the anode of the avalanche photodiode 12 via the conductors 31a, 31b, 31c, and 31d, and the avalanche photodiode 12 is applied via the conductor 32.
  • potential V2 is applied to the cathode of .
  • Potential V1 may be applied to the cathode of avalanche photodiode 12 via conductor 32, and potential V2 may be applied to the anode of avalanche photodiode 12 via conductors 31a, 31b, 31c, and 31d. In FIG. 3, only the conductor 31a is drawn.
  • Conductors 31a, 31b, 31c, 31d and conductor 32 contain, for example, Al, Cu, Cu/Ni/Au, or Cu/Ni/Pd/Au.
  • the conductors 31a, 31b, 31c, 31d and the conductor 32 are formed by sputtering or plating, for example.
  • the wiring members 30a and 30b and the semiconductor substrates 11a and 11b have flexibility.
  • the flexibility of the wiring member 30a is greater than that of the semiconductor substrate 11a.
  • the flexibility of the wiring member 30b is greater than that of the semiconductor substrate 11b.
  • the flexibility of the wiring member 30a and the flexibility of the wiring member 30b are, for example, the same.
  • the flexibility of the wiring member 30a and the flexibility of the wiring member 30b may be different from each other.
  • one area configured by the plurality of photodetection areas 23a, 23b, 23c, and 23d of the semiconductor substrate 11a follows the contour of the side surface 1c. Therefore, the plurality of edges forming the contours of the light detection regions 23a, 23b, 23c, and 23d are aligned with the corresponding edges among the plurality of edges forming the contour of the side surface 1c when viewed from the second direction D2. along.
  • one area configured by the contours of the plurality of photodetection areas 23a, 23b, 23c, and 23d has a shape corresponding to the contour shape of the side surface 1c.
  • each photodetector 15 has a contour shape corresponding to the contour shape of the side surface 1c when viewed from the second direction D2. are arranged so that Each of the photodetection regions 23a, 23b, 23c, and 23d has, for example, a rectangular contour shape corresponding to the contour shape of the side surface 1c.
  • one area configured by the plurality of photodetection areas 23a, 23b, 23c, and 23d of the semiconductor substrate 11b follows the contour of the side surface 1d.
  • a plurality of edges forming the contours of the light detection regions 23a, 23b, 23c, and 23d are arranged along the corresponding edges among the plurality of edges forming the contour of the side surface 1d when viewed from the second direction D2.
  • one area configured by the contours of the plurality of photodetection areas 23a, 23b, 23c, and 23d has a shape corresponding to the contour shape of the side surface 1d.
  • each photodetector 15 has a contour shape corresponding to the contour shape of the side face 1d when viewed from the second direction D2. are arranged so that Each of the photodetection regions 23a, 23b, 23c, and 23d has, for example, a rectangular contour shape corresponding to the contour shape of the side surface 1d.
  • the photodetection units 15 are arranged in three rows in the first direction D1, and three rows in the third direction D3. They are lined up.
  • the photodetection region 23a includes a total of nine photodetectors 15.
  • five photodetection units 15 are arranged in each row in the first direction D1, and three photodetection units 15 are arranged in each row in the third direction D3.
  • the photodetection area 23 d includes a total of 15 photodetectors 15 .
  • the photodetection areas 23a, 23b, 23c, and 23d are arranged in the first direction D1, for example.
  • the photodetection regions 23a, 23b, 23c, and 23d are arranged in this order.
  • Photodetection area 23d is closer to portions 22a and 22b than photodetection area 23a, photodetection area 23b, and photodetection area 23c.
  • the photodetection area 23c is closer to the portions 22a and 22b than the photodetection areas 23a and 23b.
  • Photodetection area 23b is closer to portions 22a and 22b than photodetection area 23a.
  • the width of the conductor 14a is greater than the width of the conductors 14b, 14c and 14d.
  • the width of the conductor 14b is greater than the widths of the conductors 14c and 14d.
  • the width of the conductor 14c is greater than the width of the conductor 14d.
  • the conductor 14d is arranged, for example, between the conductor 14a and the conductors 14b and 14c.
  • the conducting wires 14a, 14b, 14c, 14d extend in the first direction D1.
  • the width of the conductors 14a, 14b, 14c, 14d is the width in the direction perpendicular to the extending direction of the conductors 14a, 14b, 14c, 14d.
  • the widths of the conductors 14a, 14b, 14c, 14d are widths in the third direction D3. For example, when the photodetection region 23a constitutes the first photodetection region, the photodetection region 23d constitutes the second photodetection region.
  • the radiation detector RD1 includes a reinforcing body 45, for example.
  • Reinforcing body 45 is arranged, for example, between portion 22a and portion 22b.
  • the reinforcing body 45 covers the portions 22a and 22b and connects the portions 22a and 22b.
  • the reinforcing body 45 is in contact with the portions 22a and 22b and the scintillator 1, for example.
  • the reinforcing body 45 has surfaces 45a, 45b, and 45c, for example.
  • the surfaces 45a, 45b, 45c are exposed from the portions 22a and 22b and the scintillator 1, for example.
  • the surface 45a faces the end surface 1b in the first direction D1, for example.
  • the surfaces 45b and 45c face each other, for example, in the third direction D3.
  • the reinforcing body 45 contains resin, for example.
  • the resin of the reinforcing body 45 fills, for example, the space defined by the portions 22 a and 22 b and the scintillator 1 .
  • the resin of the reinforcing body 45 contains, for example, a thermosetting resin.
  • the resin of the reinforcing body 45 contains, for example, epoxy resin, silicone resin, acrylic resin, polyimide resin, phenol resin, or paraxylylene polymer.
  • the reinforcement 45 includes, for example, blocks.
  • the block of the reinforcing body 45 has a shape that matches the space defined by the portions 22a and 22b and the scintillator 1, for example.
  • a recess is formed in the block of the reinforcing body 45 so as not to interfere with the wiring member 30a and the wiring member 30b.
  • a block of reinforcement 45 is arranged, for example, between portion 22a and portion 22b.
  • the blocks of reinforcement 45 are fixed to the portions 22a and 22b, for example by means of an adhesive.
  • Adhesives include, for example, epoxy resins, silicone resins, acrylic resins, polyimide resins, or phenolic resins.
  • the blocks of reinforcement 45 contain, for example, metal.
  • Metal blocks include, for example, Al, titanium alloys, nickel alloys, or stainless steel.
  • the blocks of reinforcement 45 include, for example, glass blocks.
  • the glass block contains, for example, quartz glass or borosilicate glass.
  • the blocks of reinforcement 45 include, for example, ceramic blocks. Ceramic blocks include, for example, alumina, silicon nitride, silicon carbide, sapphire, zirconia, cordierite, yttria, aluminum nitride, cermet, mullite, steatite, or forsterite.
  • the blocks of the reinforcing body 45 include, for example, resin blocks.
  • the resin blocks include, for example, epoxy resins, silicone resins, acrylic resins, polyimide resins, phenolic resins, or paraxylylene-based polymers.
  • the semiconductor substrate 11a has a surface 11c and a surface 11d facing each other in the second direction D2.
  • the surface 11c faces the scintillator 1 in the second direction D2.
  • the surface 11d faces the surface 11c in the second direction D2.
  • one of the anode or cathode of the avalanche photodiode 12 is arranged on the surface 11c, and the other of the anode or cathode of the avalanche photodiode 12 is arranged on the surface 11d.
  • the surface 11d constitutes the first surface
  • the surface 11d constitutes the second surface.
  • the semiconductor substrate 11b has a surface 11e and a surface 11f facing each other in the second direction D2.
  • the surface 11e faces the scintillator 1 in the second direction D2.
  • the surface 11f faces the surface 11e in the second direction D2.
  • one of the anode or cathode of the avalanche photodiode 12 is arranged on the surface 11e, and the other of the anode or cathode of the avalanche photodiode 12 is arranged on the surface 11f.
  • the surface 11f constitutes the fourth surface.
  • the surfaces 11d and 11f are, for example, polished surfaces.
  • surfaces 11d and 11f are polished.
  • FIG. 7 is a side view showing the radiation detector RD1 before surfaces 11d and 11f are polished.
  • FIG. 8 is a side view showing the radiation detector RD1 after the surfaces 11d and 11f have been polished. As shown in FIGS. 7 and 8, in this embodiment, the surface 11d is polished to thin the semiconductor substrate 11a, and the surface 11f is polished to thin the semiconductor substrate 11b.
  • the surfaces 11d and 11f are mechanically polished, for example.
  • the faces 11d and 11f are mechanically polished, for example by grinding, lapping or dry polishing with a polishing foil.
  • the surfaces 11d and 11f may be mechanically and chemically polished.
  • the surfaces 11d and 11f are chemically polished, for example by wet polishing with CMP slurry.
  • the thickness of the semiconductor substrates 11a and 11b is, for example, 10 to 200 ⁇ m.
  • the surface roughness of the polished surface is, for example, 0.001 to 200 ⁇ m.
  • surface roughness of a surface is represented by maximum height (Rz).
  • the maximum height (Rz) is defined in JIS B 0601:2001 (ISO 4287:1997).
  • the thickness of the semiconductor substrates 11a and 11b is, for example, 250 to 1000 ⁇ m before the surfaces 11d and 11f are polished.
  • the radiation detector RD1 has, for example, a covering 47a.
  • the cover 47a is arranged so that the semiconductor substrate 11a is positioned between the scintillator 1 and the cover 47a.
  • the covering 47a is arranged on the surface 11d.
  • the cover 47a is arranged on at least part of the surface 11d.
  • the cover 47a may be arranged on the entire surface 11d. Therefore, the cover 47a may be arranged only on the area corresponding to the portion 21a of the surface 11d, or may be arranged on the entire area of the surface 11d corresponding to the portions 21a and 22a.
  • . 1 and 6 show an example in which the cover 47a is arranged over the entire region of the surface 11d corresponding to the portions 21a and 22a.
  • the radiation detector RD1 may not have the cover 47a.
  • the radiation detector RD1 has, for example, a covering 47b.
  • the cover 47b is arranged so that the semiconductor substrate 11b is positioned between the scintillator 1 and the cover 47b.
  • the covering 47b is arranged on the surface 11f.
  • the covering 47b is arranged on at least part of the surface 11f.
  • the covering 47b may be arranged on the entire surface 11f. Therefore, the covering 47b may be arranged only on the region corresponding to the portion 21b on the surface 11f, or may be arranged on the entire region corresponding to the portions 21b and 22b on the surface 11f. .
  • the cover 47b is arranged over the entire region of the surface 11f corresponding to the portions 21b and 22b.
  • the radiation detector RD1 may not have the covering 47b.
  • the covering 47a constitutes the first covering
  • the covering 47b constitutes the second covering.
  • the coverings 47a and 47b include light reflectors 48, for example.
  • Light reflector 48 includes, for example, a film.
  • the membrane is made of metal, for example. Metals include, for example, Al, Ag, Ti, Pt, Ni, or Au.
  • Light reflector 48 includes, for example, a metal thin film.
  • Light reflector 48 may include multilayer optical films or Teflon films.
  • the light reflector 48 is formed by plating, vapor deposition, or sputtering, for example.
  • the thickness of the light reflector 48 is, for example, 0.05 to 100 ⁇ m.
  • the coverings 47a, 47b include electrical insulators 49, for example.
  • Electrical insulator 49 includes, for example, a membrane.
  • the membrane contains, for example, an electrically insulating material.
  • Electrically insulating materials include, for example, silicon compounds, epoxy resins, silicone resins, acrylic resins, polyimide resins, phenolic resins, or paraxylylene-based polymers.
  • Electrical insulator 49 includes, for example, an electrically insulating thin film. Silicon compounds include, for example, SiO 2 or SiN. Polymers include, for example, para-xylylene-based polymers.
  • Electrical insulator 49 is formed, for example, by chemical vapor deposition (CVD), thermal oxidation, sputtering, vapor deposition, or potting.
  • the electrical insulator 49 included in the cover 47a may be formed by winding an electrical insulating film around the semiconductor substrate 11a arranged on the scintillator 1, for example.
  • the electrical insulator 49 included in the cover 47b may be formed by winding an electrical insulating film around the semiconductor substrate 11b arranged on the scintillator 1, for example.
  • the thickness of the electrical insulator 49 is, for example, 0.05-100 ⁇ m.
  • the coverings 47a, 47b include, for example, a light reflector 48 and an electrical insulator 49.
  • the coverings 47a, 47b have, for example, a two-layer structure including a light reflector 48 and an electrical insulator 49. As shown in FIG. In a configuration in which the coverings 47a, 47b have a two-layer structure, the light reflector 48 may be arranged between the semiconductor substrate 11a and the electrical insulator 49, the electrical insulator 49 being between the semiconductor substrate 11a and the electrical insulator 49. It may be arranged between the light reflector 48 .
  • a light reflector 48 may be positioned between the semiconductor substrate 11 b and an electrical insulator 49
  • the electrical insulator 49 may be positioned between the semiconductor substrate 11 b and the light reflector 48
  • the coverings 47a and 47b include at least one of a light reflector 48 and an electrical insulator 49.
  • Covers 47a and 47b have, for example, a single-layer structure including either light reflector 48 or electrical insulator 49 only.
  • the coverings 47a, 47b may, for example, have light reflector properties and electrical insulating properties.
  • FIG. 6 shows an example in which the electrical insulator 49 is arranged between the semiconductor substrate 11a and the light reflector 48 and between the semiconductor substrate 11b and the light reflector 48. As shown in FIG.
  • the cover 47a is arranged, for example, on the surface 11d.
  • the cover 47a is arranged, for example, on the entire surface 11d and on the side surface 11g.
  • the side surface 11g connects, for example, the surface 11c and the surface 11d in the second direction D2.
  • 11 g of side surfaces comprise the outer peripheral edge of the covering 47a, for example, seeing from the second direction D2.
  • a light reflector 48 may be disposed on the entire surface 11d, and an electrical insulator 49 may be disposed on the light reflector 48 disposed on the surface 11d and on the side surface 11g.
  • the cover 47b is arranged, for example, on the surface 11f.
  • the cover 47b is arranged, for example, on the entire surface 11f and on the side surface 11h.
  • the side surface 11h connects the surface 11e and the surface 11f in the second direction D2.
  • the side surface 11h constitutes, for example, the outer peripheral edge of the cover 47b when viewed from the second direction D2.
  • a light reflector 48 may be disposed on the entire surface 11f, and an electrical insulator 49 may be disposed on the light reflector 48 disposed on the surface 11f and on the side surface 11h.
  • the electrical insulator 49 may not be arranged on the surface 11d. In configurations where the potential of the anode or cathode of the avalanche photodiode 12 on the surface 11d is not ground potential, an electrical insulator 49 may be arranged on the surface 11d. In a configuration in which the potential of the anode or cathode of the avalanche photodiode 12 on the surface 11f is ground potential, the electrical insulator 49 may not be arranged on the surface 11f. In configurations where the potential of the anode or cathode of the avalanche photodiode 12 on surface 11f is not ground potential, an electrical insulator 49 may be arranged on surface 11f.
  • the radiation detector RD1 includes, for example, substrates 40a and 40b.
  • the base 40a has a surface 40c and a surface 40d facing each other in the second direction D2.
  • the substrate 40a is arranged such that the semiconductor substrate 11a is positioned between the surface 40c and the scintillator 1.
  • at least part of the wiring member 30a and the scintillator 1 are arranged in front of the same surface of the substrate 40a, for example.
  • the base 40b has a surface 40e and a surface 40f facing each other in the second direction D2.
  • the substrate 40b is arranged such that the semiconductor substrate 11b is positioned between the surface 40e and the scintillator 1. As shown in FIG.
  • Substrate 40b has, for example, the same form as substrate 40a and exhibits the same function.
  • the base 40a constitutes the first base
  • the base 40b constitutes the second base.
  • the surface 40c constitutes the fifth surface
  • the surface 40d constitutes the sixth surface.
  • the surface 40e constitutes the seventh surface
  • the surface 40f constitutes the eighth surface.
  • the base 40a has a portion 51a and a portion 52a.
  • the portion 51a is covered with the semiconductor substrate 11a.
  • the portion 52a is exposed from the semiconductor substrate 11a.
  • the portion 51a and the portion 52a are arranged in the first direction D1.
  • the base 40b has a portion 51b and a portion 52b.
  • the portion 51b is covered with the semiconductor substrate 11b.
  • the portion 52b is exposed from the semiconductor substrate 11b.
  • the portion 51b and the portion 52b are arranged in the first direction D1. For example, if the portion 51a constitutes the fifth portion, the portion 52a constitutes the sixth portion. For example, if portion 51b constitutes the seventh portion, portion 52b constitutes the eighth portion.
  • the radiation detector RD1 includes terminals 41a, 41b, 41c, 41d, a terminal 42, and wires 43 and 44, for example.
  • the terminals 41a, 41b, 41c, 41d and the terminal 42 are arranged on the surface 40c.
  • the terminals 41a, 41b, 41c, 41d and the terminal 42 are arranged on the same side as the scintillator 1, for example, with respect to the semiconductor substrate 11a. That is, the terminals 41a, 41b, 41c, 41d and the scintillator 1 are arranged in front of the same surface of the substrate 40a.
  • the terminal 42 and the scintillator 1 are arranged in front of the same surface of the substrate 40a.
  • Terminals 41a, 41b, 41c, and 41d arranged on base 40a are located on portion 52a and are electrically connected through wires 43 to electrodes 17 of semiconductor photodetector 10a.
  • a terminal 42 arranged on the substrate 40a is positioned on the portion 52a and is electrically connected through a wire 44 to the electrode 18 of the semiconductor photodetector 10a.
  • Wires 43 and 44 are covered and protected by, for example, the resin of reinforcing body 45 .
  • the wiring member 30a is electrically connected via conductive bumps 46 to the electrodes 17a, 17b, 17c, 17d and the electrode 18 of the semiconductor photodetector 10a.
  • the terminal 42 constitutes the second terminals.
  • the wire 44 constitutes the second wire. Wires 43 , 44 may be protected by blocks of reinforcement 45 , for example.
  • the terminals 41a, 41b, 41c, 41d and the terminal 42 are arranged on the surface 40e.
  • the terminals 41a, 41b, 41c, 41d and the terminal 42 are arranged on the same side as the scintillator 1, for example, with respect to the semiconductor substrate 11b. That is, the terminals 41a, 41b, 41c, 41d and the scintillator 1 are arranged in front of the same surface of the substrate 40b.
  • the terminal 42 and the scintillator 1 are arranged in front of the same surface of the substrate 40b.
  • Terminals 41a, 41b, 41c and 41d arranged on base 40b are located on portion 52b and are electrically connected through wires 43 to electrodes 17a, 17b, 17c and 17d of semiconductor photodetector 10b.
  • a terminal 42 arranged on the substrate 40b is located on the portion 52b and is electrically connected through a wire 44 to the electrode 18 of the semiconductor photodetector 10b.
  • Wires 43 and 44 are covered and protected by, for example, the resin of reinforcing body 45 .
  • the wiring member 30b is electrically connected via conductive bumps 46 to the electrodes 17a, 17b, 17c, 17d and the electrode 18 of the semiconductor photodetector 10b.
  • the terminal 42 constitutes the fourth terminal.
  • the wire 44 constitutes the fourth wire.
  • the terminals 41a, 41b, 41c, and 41d of the base 40b have the same configuration and function as the terminals 41a, 41b, 41c, and 41d of the base 40a
  • the terminal 42 of the base 40b has the same function as that of the base 40a. It has the same configuration and function as terminal 42 .
  • the radiation detector RD1 may not include either one of the substrates 40a and 40b, or may not include both the substrates 40a and 40b. Wires 43 , 44 may be protected by blocks of reinforcement 45 , for example.
  • the radiation detector RD1 includes resin 55, for example.
  • the resin 55 covers the wires 43 and 44 individually or covers both the wires 43 and 44 .
  • the resins 55 may be separated from each other or may be connected to each other.
  • “the resin 55 covers the wires 43” includes covering the connection points between the terminals 41 and the wires 43 and the connection points between the electrodes 17a, 17b, 17c, and 17d and the wires 43. I'm in.
  • the resin 55 covers the wire 44 includes covering the connecting portion between the terminal 42 and the wire 44 and the connecting portion between the electrode 18 and the wire 44 .
  • the resin of the reinforcing body 45 is arranged between the portion 22a and the portion 22b so as to cover the resin 55, for example.
  • the radiation detector RD1 does not have to include the resin 55 .
  • 9 and 10 show an example in which the radiation detector RD1 is provided with a resin 55.
  • FIG. A block of reinforcing body 45 may be arranged between portion 22 a and portion 22 b so as to cover resin 55 .
  • a configuration in which the radiation detector RD1 includes the base 40a includes, for example, the cover 47a.
  • the covering 47a is arranged on the surface 40d.
  • the scintillator 1, the semiconductor substrate 11a, the base 40a, and the cover 47a are arranged in the order of the scintillator 1, the semiconductor substrate 11a, the base 40a, and the cover 47a. Therefore, the covering 47a is arranged so that the semiconductor substrate 11a and the base 40a are positioned between the covering 47a and the scintillator 1.
  • a configuration in which the radiation detector RD1 includes the base 40b includes, for example, a covering 47b.
  • the cover 47b is arranged on the surface 40f.
  • the scintillator 1, the semiconductor substrate 11b, the base 40b, and the cover 47b are arranged in the order of the scintillator 1, the semiconductor substrate 11b, the base 40b, and the cover 47b. Therefore, the covering 47b is arranged so that the semiconductor substrate 11b and the base 40b are positioned between the covering 47b and the scintillator 1. As shown in FIG.
  • the radiation detector RD1 may not include at least one of the covering 47a and the covering 47b.
  • the radiation detector RD1 includes a light reflector 56, for example.
  • the light reflectors 56 are arranged, for example, on at least one of the end faces 1a, 1b and the side faces 1e, 1f of the scintillator 1 .
  • the light reflectors 56 are arranged on all of the end faces 1a, 1b and the side faces 1e, 1f.
  • the light reflector 56 reflects the scintillation light so that the scintillation light incident on the end faces 1a and 1b and the side faces 1e and 1f does not exit the scintillator 1 to the outside.
  • the material and thickness of light reflector 56 are, for example, the same as the material and thickness of light reflector 48 .
  • Light reflector 56 is formed, for example, in the same manner as light reflector 48 . Radiation detector RD1 may not include light reflector 56 .
  • FIG. 11 is a perspective view showing a radiation detector RD1 according to a modification of the first embodiment.
  • FIG. 12 is a diagram showing paths of a part of scintillation light.
  • FIG. 12 shows the path of part of the scintillation light when the scintillator 1 is viewed from the third direction D3.
  • the radiation detector RD1 according to this modification has the same configuration as the radiation detector RD1 according to the first embodiment, except for the configuration of the scintillator 1.
  • FIG. 11 is a perspective view showing a radiation detector RD1 according to a modification of the first embodiment.
  • FIG. 12 is a diagram showing paths of a part of scintillation light.
  • FIG. 12 shows the path of part of the scintillation light when the scintillator 1 is viewed from the third direction D3.
  • the radiation detector RD1 according to this modification has the same configuration as the radiation detector RD1 according to the first embodiment, except for the configuration of the scintillator 1.
  • the scintillator 1 has a plurality of portions 1p, 1q, 1r, and 1s.
  • Each of the plurality of portions 1p, 1q, 1r, and 1s corresponds to one of the plurality of photodetection regions 23a, 23b, 23c, and 23d arranged on the semiconductor substrate 11a and the semiconductor substrate 11b. 23b, 23c and 23d.
  • the multiple portions 1p, 1q, 1r, and 1s correspond to the multiple photodetection regions 23a, 23b, 23c, and 23d, respectively.
  • the portion 1p corresponds to the photodetection area 23a.
  • Portion 1q corresponds to photodetection region 23b.
  • the portion 1r corresponds to the photodetection area 23c.
  • the portion 1s corresponds to the photodetection area 23d.
  • a plurality of portions 1p, 1q, 1r, and 1s are arranged independently of each other.
  • the portions 1p, 1q, 1r and 1s are composed of a pair of facing surfaces 3a and 3b facing each other, a pair of connecting surfaces 3c and 3d facing each other, and a pair of connecting surfaces 3e and 3f facing each other. and have The facing surfaces 3a, 3b, the connecting surfaces 3c, 3d, and the connecting surfaces 3e, 3f constitute the outer surfaces of the portions 1p, 1q, 1r, 1s.
  • the opposing surfaces 3a and 3b face each other in the first direction D1.
  • the first direction D1 is the longitudinal direction of the scintillator 1 .
  • the connecting surfaces 3c and 3d face each other in the second direction D2.
  • the connecting surface 3d faces the connecting surface 3c in the second direction D2.
  • the second direction D2 coincides with the direction orthogonal to the connecting surface 3c.
  • the connecting surfaces 3e and 3f face each other in the third direction D3.
  • the facing surface 3a of the portion 1p matches the end surface 1a of the scintillator 1.
  • a facing surface 3 b of the portion 1 s matches the end surface 1 b of the scintillator 1 .
  • Each connecting surface 3c of the portions 1p, 1q, 1r, and 1s constitutes the side surface 1c of the scintillator 1.
  • Each connecting surface 3d of the portions 1p, 1q, 1r, and 1s constitutes the side surface 1d of the scintillator 1.
  • Each connecting surface 3e of the portions 1p, 1q, 1r, and 1s constitutes the side surface 1e of the scintillator 1.
  • Each connecting surface 3f of the portions 1p, 1q, 1r, and 1s constitutes the side surface 1f of the scintillator 1.
  • the connecting surface 3d constitutes the second connecting surface.
  • the facing surface 3a and the facing surface 3b extend in the second direction D2 so as to connect the connecting surface 3c and the connecting surface 3d.
  • the facing surface 3a and the facing surface 3b extend in the third direction D3 so as to connect the connecting surface 3e and the connecting surface 3f.
  • the connecting surface 3c and the connecting surface 3d extend in the first direction D1 so as to connect the facing surface 3a and the facing surface 3b.
  • the connecting surface 3c and the connecting surface 3d extend in the third direction D3 so as to connect the connecting surface 3e and the connecting surface 3f.
  • the connecting surface 3e and the connecting surface 3f extend in the first direction D1 so as to connect the facing surface 3a and the facing surface 3b.
  • the connecting surface 3e and the connecting surface 3f extend in the second direction D2 so as to connect the connecting surface 3c and the connecting surface 3d.
  • the connecting surface 3e and the connecting surface 3f are adjacent to the connecting surface 3c.
  • the facing surfaces 3a and 3b have, for example, a rectangular shape when viewed from the direction orthogonal to the facing surfaces 3a and 3b.
  • the connecting surfaces 3c and 3d have, for example, a rectangular shape when viewed from a direction orthogonal to the connecting surfaces 3c and 3d.
  • the connecting surfaces 3e and 3f have, for example, a rectangular shape when viewed from a direction perpendicular to the connecting surfaces 3e and 3f.
  • the portions 1p, 1q, 1r, and 1s are rectangular when viewed from the second direction D2 and the third direction D3.
  • the portions 1p, 1q, 1r, and 1s are rectangular when viewed from the first direction D1.
  • the portions 1p, 1q, 1r, and 1s are arranged in the first direction D1.
  • the lengths of the portions 1p, 1q, 1r, 1s in the first direction D1 are, for example, approximately 0.05-100 mm.
  • the lengths of the portions 1p, 1q, 1r, 1s in the second direction D2 are, for example, approximately 0.05-20 mm.
  • the lengths of the portions 1p, 1q, 1r, and 1s in the third direction D3 are, for example, about 0.05-20 mm.
  • the portions 1p, 1q, 1r, 1s may have different sizes.
  • some portions 1p, 1q, 1r, and 1s have substantially the same size, and the other portion 1s has the same size as the portions 1p, 1q, and 1r. They may have different sizes. Some of the portions 1p and 1q may have substantially the same size, and the other portions 1r and 1s may have substantially the same size while being different from the portions 1p and 1q. The portions 1p, 1q, 1r, 1s may have approximately the same size as each other.
  • the total length of the portions 1p, 1q, 1r, and 1s in the first direction D1 is greater than the length of each of the portions 1p, 1q, 1r, and 1s in the second direction D2. Therefore, the total length of the portions 1p, 1q, 1r, and 1s in the first direction D1 has the maximum length in the second direction D2 among the portions 1p, 1q, 1r, and 1s. is greater than the length of the portions 1p, 1q, 1r, 1s.
  • the total length of the portions 1p, 1q, 1r, and 1s in the first direction D1 has the maximum length in the third direction D3 among the portions 1p, 1q, 1r, and 1s. greater than the length of portions 1p, 1q, 1r, 1s.
  • the parts 1p, 1q, 1r, and 1s contain, for example, the same material as the scintillator 1 according to the first embodiment.
  • the parts 1p, 1q, 1r, 1s contain, for example, the same material as each other.
  • the portions 1p, 1q, 1r, and 1s may contain different materials from among the materials contained in the scintillator 1 according to the first embodiment. Therefore, among the materials of the scintillator 1 according to the first embodiment, for example, the portions 1p and 1r may contain the same material, and the portions 1q and 1s may contain the same material. In this case, the material contained in portions 1p and 1r is different from the material contained in portions 1q and 1s.
  • the parts 1p, 1q, 1r, and 1s are joined together, for example.
  • the facing surface 3b of the portion 1p is, for example, joined to the facing surface 3a of the portion 1q.
  • the facing surface 3b of the portion 1q is, for example, joined to the facing surface 3a of the portion 1r.
  • the facing surface 3b of the portion 1r is, for example, joined to the facing surface 3a of the portion 1s.
  • the bonding between the portion 1p and the portion 1q, the bonding between the portion 1q and the portion 1r, and the bonding between the portion 1r and the portion 1s are, for example, by an adhesive.
  • a radiation detector RD1 according to this modified example includes a light reflecting member 24, for example.
  • the light reflecting member 24 is arranged, for example, between the multiple portions 1p, 1q, 1r, and 1s.
  • the portion 1p, the portion 1q, the portion 1r, and the portion 1s are joined together via the light reflecting member 24, for example.
  • the light reflecting member 24 is arranged, for example, between at least one portion between the portions 1p and 1q, between the portions 1q and 1r, and between the portions 1r and 1s. Bonding between the portion 1p and the portion 1q, bonding between the portion 1q and the portion 1r, and bonding between the portion 1r and the portion 1s through the light reflecting member 24 is performed by an adhesive, for example.
  • the portion 1p, the portion 1q, the portion 1r, and the portion 1s may be separated from each other and arranged in the first direction D1.
  • the portions between the portions 1p and 1q, between the portions 1q and 1r, and between the portions 1r and 1s There is, for example, an atmosphere between the parts of .
  • the light reflecting member 24 is provided on at least one of the facing surfaces 3a and 3b of the portions 1p, 1q, 1r, and 1s. may be placed.
  • a light reflecting member 24 may be arranged on both of the facing surfaces 3a and 3b of each of the portions 1p, 1q, 1r, and 1s.
  • a light reflecting member 24 may be arranged on one of the facing surfaces 3a and 3b of each of the portions 1p, 1q, 1r and 1s.
  • the portion 1p, the portion 1q, the portion 1r, and the portion 1s for example, the portion 1p and the portion 1q are joined to each other, and the portion 1p and the portion 1q joined to each other are separated from each other by the portion 1r and the portion 1s. good too.
  • the light reflecting member 24 includes, for example, metal, multilayer optical film, or Teflon (registered trademark).
  • the metal of the light reflecting member 24 contains Al, Ag, or Au, for example.
  • the light reflecting member 24 is formed by plating, vapor deposition, or sputtering, for example.
  • the thickness of the light reflecting member 24 is, for example, 0.05 to 100 ⁇ m.
  • the light reflecting member 24 can transmit radiation incident on the scintillator 1 .
  • the material and thickness of the light reflecting member 24 are, for example, the same as the material and thickness of the light reflector 48 .
  • Light reflecting member 24 is formed, for example, in the same manner as light reflector 48 .
  • the radiation detector RD ⁇ b>1 according to the modification may not include the light reflecting member 24 . Even when the radiation detector RD1 according to the modification does not include the light reflecting member 24, the portions 1p, 1q, 1r, and 1s are joined together.
  • each of the plurality of photodetection regions 23a, 23b, 23c, and 23d of the semiconductor substrate 11a corresponds to the corresponding portions 1p, 1q, 1r, and 1s among the plurality of portions 1p, 1q, 1r, and 1s.
  • the contour shapes of 1q, 1r, and 1s correspond to those of the connecting surface 3c facing the semiconductor substrate 11a.
  • the plurality of photodetection regions 23a, 23b, 23c, and 23d of the semiconductor substrate 11b correspond to the portions 1p, 1q, 1r, and 1s among the plurality of portions 1p, 1q, 1r, and 1s, respectively.
  • the connecting surfaces 3c and 3d of the portions 1p, 1q, 1r and 1s are rectangular when viewed from the second direction D2.
  • the corresponding photodetection regions 23a, 23b, 23c, and 23d have a rectangular contour shape.
  • the connecting surface 3e constitutes the second connecting surface.
  • FIG. 12 shows the path of scintillation light incident on the connecting surface 3c.
  • the scintillation light incident on the connecting surface 3c is generated within the portion 1p. Scintillation light generated within portion 1p is, for example, confined within portion 1p.
  • a light reflecting member 24 is arranged on the facing surface 3b. Radiation is incident, for example, from the facing surface 3a of the portion 1p.
  • the scintillation light includes, for example, light L1 and light L2 incident on the coupling surface 3c from the scintillation light generation point GP1.
  • the light L1 enters the connecting surface 3c substantially perpendicularly.
  • the substantially perpendicular incident angle of the light L1 is smaller than the critical angle at the connecting surface 3c.
  • the light L1 enters the connecting surface 3c and enters the connecting surface 3c.
  • the light L1 is detected by the photodetection region 23a of the semiconductor photodetector 10a.
  • the light L2 is incident on the connecting surface 3c at an incident angle EA1.
  • EA1 of the light L2 is smaller than the critical angle at the connecting surface 3c
  • the light L2 enters the connecting surface 3c and enters the connecting surface 3c.
  • the light L2 is detected by the photodetection region 23a of the semiconductor photodetector 10a.
  • the incident angle EA1 of the light L2 is greater than or equal to the critical angle at the connecting surface 3c, the light L2 is, for example, totally reflected at the connecting surface 3c.
  • the light reflecting member 24 since the light reflecting member 24 is arranged, the light L2 totally reflected by the connecting surface 3c is less likely to enter another portion of the scintillator 1, for example, the portion 1q.
  • the scintillation light generated in the portion 1p is difficult to detect in the photodetection regions 23b, 23c, and 23d other than the photodetection region 23a.
  • the scintillation light includes, for example, light L3 and light L4 incident on the connecting surface 3d from the scintillation light generation point GP1.
  • the light L1 enters the connecting surface 3d substantially perpendicularly.
  • the substantially perpendicular incident angle of the light L3 is smaller than the critical angle at the connecting surface 3d.
  • the light L3 enters the connecting surface 3d and enters the connecting surface 3d.
  • the light L3 is detected by the photodetection region 23a of the semiconductor photodetector 10b.
  • the light L4 is incident on the connecting surface 3d at an incident angle EA2.
  • the light L4 When the incident angle EA2 of the light L4 is smaller than the critical angle at the connecting surface 3d, the light L4 enters the connecting surface 3d and enters the connecting surface 3d.
  • the light L4 is detected by the photodetection region 23a of the semiconductor photodetector 10b. If the incident angle EA2 of the light L4 is greater than or equal to the critical angle at the connecting surface 3d, the light L4 is, for example, totally reflected at the connecting surface 3d.
  • the light reflecting member 24 since the light reflecting member 24 is arranged, the light L4 totally reflected by the connecting surface 3d is less likely to enter another portion of the scintillator 1, for example, the portion 1q.
  • the scintillation light generated in the portion 1p is difficult to detect in the photodetection regions 23b, 23c, and 23d other than the photodetection region 23a.
  • the light detection area 23 a detects scintillation light generated in the portion 1 p and reflected by the light reflecting member 24 .
  • the semiconductor photodetectors 10a and 10b are adhered to the scintillator 1 with an adhesive having the same refractive index. Therefore, the critical angles at the connecting surfaces 3c and 3d are equal to each other.
  • the scintillator 1 has a refractive index of 1.8, for example.
  • the refractive index of the adhesive is, for example, 1.5.
  • the critical angle of scintillation light at the connecting surfaces 3c and 3d is, for example, about 56.4 degrees.
  • FIG. 12 shows the path of part of the scintillation light when the scintillator 1 is viewed from the third direction D3.
  • the semiconductor photodetector 10a detects the light L2 in the region R1 where the incident angle EA1 of the light L2 on the side surface 1c is smaller than the critical angle on the connecting surface 3c.
  • Region R1 extends, for example, to the entire region of connecting surface 3c.
  • the semiconductor photodetector 10b detects the light L4 in the region R2 where the incident angle EA2 of the light L4 on the connecting surface 3d is smaller than the critical angle on the connecting surface 3d.
  • Region R2 extends, for example, to the entire region of connecting surface 3d.
  • scintillation light generated in portions 1q, 1r, and 1s enters photodetection regions 23b, 23c, and 23d, respectively, and is detected by semiconductor photodetection elements 10a and 10b arranged on connecting surface 3c. be. Scintillation light generated in portions 1q, 1r, and 1s, for example, is confined within portions 1q, 1r, and 1s, respectively.
  • electrical signals output in accordance with the incidence of scintillation light on each of the photodetection regions 23a, 23b, 23c, and 23d are added by a signal processing circuit connected to the wiring members 30a and 30b. .
  • the radiation detector RD1 includes light reflectors 56, for example, in each of the portions 1p, 1q, 1r, and 1s.
  • portion 1p for example, light reflectors 56 are arranged, for example, on at least one of opposing surfaces 3a, 3b and connecting surfaces 3e, 3f.
  • the light reflectors 56 are arranged on the facing surface 3a and the connecting surfaces 3e and 3f.
  • the portions 1q, 1r for example, the light reflector 56 is arranged on at least one of the connecting surfaces 3e, 3f.
  • the light reflectors 56 are arranged on the connecting surfaces 3e and 3f.
  • the light reflector 56 is arranged on at least one of the facing surfaces 3a, 3b and the connecting surfaces 3e, 3f.
  • the light reflectors 56 are arranged on the opposing surface 3b and the connecting surfaces 3e and 3f.
  • the light reflector 56 reflects scintillation light so that the scintillation light incident on the opposing surface 3 a and the connecting surfaces 3 e and 3 f does not exit the scintillator 1 .
  • the material and thickness of the light reflector 56 according to this modification are, for example, the same as the material and thickness of the light reflector 48 .
  • the light reflector 56 according to this modification is formed, for example, by the same method as the light reflector 48 .
  • the light reflector 56 according to this modified example, the light reflecting member 24, the light reflector 56 according to the first embodiment, and the light reflector 48 have, for example, the same material and thickness.
  • the light reflector 56 according to the first embodiment, the light reflector 56, the light reflecting member 24, and the light reflector 48 according to this modification are formed, for example, by the same method.
  • the light reflector 56 according to this modified example, the light reflecting member 24, the light reflector 56 according to the first embodiment, and the light reflector 48 have different materials and thicknesses, for example.
  • the light reflector 56 according to the first embodiment, the light reflector 56, the light reflecting member 24, and the light reflector 48 according to this modified example are formed by different methods, for example.
  • Each light reflector 56 arranged in each of the portions 1p, 1q, 1r, and 1s may be integrally formed with the adjacent light reflectors 56 .
  • the radiation detector RD ⁇ b>1 according to this modification may not include the light reflector 56 .
  • the radiation detector RD1 has a pair of end faces 1a and 1b facing each other in the first direction D1 and a pair of end faces 1a and 1b facing each other in the second direction D2 intersecting the first direction D1.
  • a semiconductor substrate having a side surface 1c and a side surface 1d connecting the end surfaces 1a and 1b and having a rectangular shape when viewed from the first direction D1, and a semiconductor substrate arranged to face the side surface 1c.
  • 11a, a semiconductor photodetector 10b having a semiconductor substrate 11b arranged to face the side surface 1d, and the semiconductor photodetector 10a are electrically connected to each other. and a wiring member 30b electrically connected to the semiconductor photodetector 10b.
  • the length of the scintillator 1 in the first direction D1 is greater than the length of the scintillator 1 in the second direction D2 and the length of the scintillator 1 in the third direction D3 parallel to the side surface 1c.
  • the length of the side surface 1c in the first direction D1 is greater than the width of the side surface 1c in the third direction D3.
  • the length of the side surface 1d in the first direction D1 is greater than the width of the side surface 1d in the third direction D3.
  • the semiconductor substrate 11a has a portion 21a covered with the side surface 1c and a portion 22a aligned with the portion 21a in the first direction D1 and exposed from the side surface 1c.
  • the semiconductor substrate 11b has a portion 21b covered with the side surface 1d and a portion 22b that is aligned with the portion 21b in the first direction D1 and exposed from the side surface 1d.
  • Each of the semiconductor photodetector element 10a and the semiconductor photodetector element 10b includes at least one avalanche photodiode 12 operating in Geiger mode and one of the anode or cathode of the corresponding avalanche photodiode 12 among the at least one avalanche photodiode 12. and at least one quenching resistor 13 electrically connected in series with a plurality of photodetector regions 23a, 23b, 23c, 23d.
  • the semiconductor photodetector 10a includes at least one quencher included in the corresponding photodetection regions 23a, 23b, 23c, and 23d among the plurality of photodetection regions 23a, 23b, 23c, and 23d.
  • the plurality of electrodes 17a, 17b, 17, 17d electrically connected to the switching resistor 13 and the corresponding photodetection regions 23a, 23b, 23c, 23d among the plurality of photodetection regions 23a, 23b, 23c, 23d.
  • an electrode 18 electrically connected to the other of the anode or cathode of the avalanche photodiode 12 included in the semiconductor photodetector 10a.
  • the semiconductor photodetector 10b includes at least one quencher included in the corresponding photodetection regions 23a, 23b, 23c, and 23d among the plurality of photodetection regions 23a, 23b, 23c, and 23d.
  • the plurality of electrodes 17a, 17b, 17, 17d electrically connected to the switching resistor 13 and the corresponding photodetection regions 23a, 23b, 23c, 23d among the plurality of photodetection regions 23a, 23b, 23c, 23d.
  • an electrode 18 electrically connected to the other of the anode and cathode of the avalanche photodiode 12 included in the semiconductor photodetector 10b.
  • a plurality of photodetection regions 23a, 23b, 23c, and 23d of the semiconductor photodetector 10a are arranged in the portion 21a.
  • the plurality of electrodes 17a, 17b, 17, 17d and the electrode 18 of the semiconductor photodetector 10a are arranged in the portion 22a.
  • a plurality of photodetection regions 23a, 23b, 23c, and 23d of semiconductor photodetector 10b are arranged in portion 21b.
  • the plurality of electrodes 17a, 17b, 17, 17d and the electrode 18 of the semiconductor photodetector 10b are arranged in the portion 22b.
  • the wiring member 30a includes a plurality of conductors 31a, 31b, 31c, 31a, 31b, 31c, 31b, 31c, 31b, 31c, 31c, 31b, 31c, 31c, 31b, 31c, 31c, 31b, 31c, 31c, 31c, 31b, 31c, 31c, 31c, 31b, 31c, 31c, 31c, 31c, 31c, 31c, 31c, 31c, 31c, 31c, 31d, 31d, 31d, 31c, 31c, 31c, 31d, 31c, 31d, 31d, 31d, 31d, 31d, 31d, 31d, 31d, 31d, 31d, 31d, 31d, 31d, 31d, 31d, 31d, 31d, 31d, 31d, 31d, 31d, 31d, 31d, 31d, 31d, 31d, 31d from the semiconductor photodetector 10a. 31d, and a conductor 32 connected to the electrode 18 of the semiconductor
  • the wiring member 30b includes a plurality of conductors 31a, 31b, 31c, 31b, 31c, 31b, 31c, 31b, 31c, 31b, 31c, 31b, 31c, 31b, 31c, 31b, 31c, 31b, 31c, 31b, 31c, 31b, 31c, 31b, 31c, 31b, 31c, 31b, 31d, 31d, 31d, 31c, 31c, and 31d and a conductor 32 connected to the electrode 18 of the semiconductor photodetector 10b.
  • the radiation detector RD1 includes a scintillator 1 elongated in the first direction D1 and a semiconductor photodetector element 10a arranged on the side surface 1c of the scintillator 1.
  • the scintillator 1 is provided with a semiconductor photodetector 10b arranged on the side surface 1d.
  • the semiconductor photodetector 10a detects scintillation light incident on the side surface 1c on which the semiconductor photodetector 10a is arranged.
  • the semiconductor photodetector 10b detects scintillation light incident on the side surface 1d on which the semiconductor photodetector 10b is arranged.
  • the length of the scintillator 1 in the second direction D2 is smaller than the length of the scintillator 1 in the first direction D1. Therefore, the distances from the scintillation light generation point GP1 to each of the side surfaces 1c and 1d are short. The time for the scintillation light to reach each of the semiconductor photodetectors 10a and 10b is short, and the radiation detector RD1 achieves high time resolution.
  • the radiation detector RD1 includes a semiconductor photodetector element 10a and a semiconductor photodetector element 10b. Therefore, the radiation detector RD1 achieves higher detection sensitivity than a radiation detector having a single semiconductor photodetector arranged on one side of the scintillator.
  • the radiation detector RD1 includes semiconductor photodetection elements 10a, 10b in which a plurality of photodetection regions 23a, 23b, 23c, 23d are arranged in the first direction D1. From the positions of the photodetection regions 23a, 23b, 23c, and 23d that detect the most scintillation light among the plurality of photodetection regions 23a, 23b, 23c, and 23d, for example, the scintillation light generation point GP1 and the end surface of the scintillator 1 are detected. A distance in the first direction D1 to 1a is obtained. As a result, the magnitude of the energy of the radiation incident from the end surface 1a of the scintillator 1 can be accurately measured. Therefore, the radiation detector RD1 achieves high energy resolution.
  • one region formed by the contours of the plurality of photodetection regions 23a, 23b, 23c, and 23d of the semiconductor substrate 11a corresponds to the contour shape of the side surface 1c. It has a contoured shape.
  • one region formed by the contours of the plurality of photodetection regions 23a, 23b, 23c, and 23d of the semiconductor substrate 11b has a contour shape corresponding to the contour shape of the side surface 1d. .
  • the plurality of photodetection regions 23a, 23b, 23c, and 23d may 23b, 23c, and 23d are difficult to be arranged on the semiconductor substrate 11a where they cannot receive the scintillation light. Therefore, increases in dark count and capacitance in the photodetection regions 23a, 23b, 23c, and 23d of the semiconductor substrate 11a are suppressed.
  • the plurality of photodetection regions 23a, 23b, 23c, and 23d may 23b, 23c, and 23d are difficult to be arranged on the semiconductor substrate 11b where they cannot receive the scintillation light. Therefore, increases in dark count and capacitance in the photodetection regions 23a, 23b, 23c, and 23d of the semiconductor substrate 11b are suppressed. These configurations reduce the detection error of scintillation light. As a result, the radiation detector RD1 reliably improves the time resolution and detection sensitivity of the semiconductor photodetector elements 10a and 10b.
  • scintillator 1 has a plurality of portions 1p, 1q, 1r, and 1s that are independently aligned in first direction D1.
  • Each of the plurality of portions 1p, 1q, 1r, and 1s corresponds to one of the plurality of photodetection regions 23a, 23b, 23c, and 23d arranged on the semiconductor substrate 11a and the semiconductor substrate 11b, respectively. 23b, 23c and 23d.
  • Each of the plurality of portions 1p, 1q, 1r, and 1s is connected to a pair of facing surfaces 3a and 3b facing each other in the first direction D1 and a connecting surface 3c connecting the pair of facing surfaces 3a and 3b. and a surface 3d.
  • the connecting surface 3c faces the semiconductor substrate 11a.
  • the connecting surface 3d faces the semiconductor substrate 11b and also faces the connecting surface 3c in the second direction D2.
  • scintillation light generated in each portion 1p, 1q, 1r, 1s is confined within the portion 1p, 1q, 1r, 1s.
  • the photodetection regions 23a, 23b, 23c, and 23d corresponding to the portions 1p, 1q, 1r, and 1s reliably detect the scintillation light generated within the portions 1p, 1q, 1r, and 1s. Therefore, the radiation detector RD1 reliably achieves high energy resolution.
  • radiation detector RD1 In radiation detector RD1, a plurality of portions 1p, 1q, 1r, and 1s are joined together. This configuration improves the physical strength of the scintillator 1 . Therefore, the radiation detector RD1 more reliably achieves high energy resolution.
  • the radiation detector RD1 has a light reflecting member 24 .
  • the light reflecting member 24 is arranged between the plurality of portions 1p, 1q, 1r, and 1s.
  • the scintillation light generated in each of the portions 1p, 1q, 1r, and 1s is reliably confined within the portions 1p, 1q, 1r, and 1s.
  • the photodetection regions 23a, 23b, 23c, and 23d corresponding to the portions 1p, 1q, 1r, and 1s more reliably detect the scintillation light generated within the portions 1p, 1q, 1r, and 1s.
  • the signal processing circuit connected to the wiring members 30a, 30b processes the electrical signals output with the incidence of the scintillation light for each of the photodetection regions 23a, 23b, 23c, 23d. Even if the portions 1p, 1q, 1r, and 1s are separated from each other and arranged in the first direction D1, the scintillation light generated in the portion 1p does not enter, for example, the portion 1q. In this case, the scintillation light generated in the portion 1p corresponding to the photodetection area 23a is individually detected by the photodetection area 23a.
  • the scintillation light generated in the portions 1q, 1r, and 1s are confined in the portions 1q, 1r, and 1s, respectively, the scintillation light generated in the portions 1q, 1r, and 1s are detected by the respective photodetection regions 23b, 23c, and 23d is detected separately. As a result, the radiation detector RD1 more reliably achieves high energy resolution.
  • the plurality of photodetection regions 23a, 23b, 23c, and 23d of the semiconductor substrate 11a correspond to the portions 1p, 1q, 1r, and 1s among the plurality of portions 1p, 1q, 1r, and 1s.
  • the contour shapes of 1p, 1q, 1r, and 1s correspond to the contour shape of the connecting surface 3c facing the semiconductor substrate 11a.
  • each of the plurality of photodetection regions 23a, 23b, 23c, and 23d of the semiconductor substrate 11b corresponds to the corresponding portion 1p, 1q, 1r, 1s has a contour shape corresponding to the contour shape of the connecting surface 3d facing the semiconductor substrate 11b.
  • Each of the plurality of photodetection regions 23a, 23b, 23c, and 23d of the semiconductor substrate 11a faces the semiconductor substrate 11a of the corresponding portions 1p, 1q, 1r, and 1s among the plurality of portions 1p, 1q, 1r, and 1s.
  • the plurality of photodetection regions 23a, 23b, 23c, and 23d are arranged in locations on the semiconductor substrate 11a where scintillation light cannot be received. sea bream.
  • Each of the plurality of photodetection regions 23a, 23b, 23c, and 23d of the semiconductor substrate 11b faces the semiconductor substrate 11b of the corresponding portions 1p, 1q, 1r, and 1s among the plurality of portions 1p, 1q, 1r, and 1s.
  • the plurality of photodetection regions 23a, 23b, 23c, and 23d are arranged in locations on the semiconductor substrate 11b where scintillation light cannot be received. sea bream. Therefore, these configurations suppress dark count and capacity build-up in multiple photodetection regions. As a result, this configuration reliably improves the time resolution and energy resolution of the radiation detector RD1.
  • the plurality of photodetection regions 23a, 23b, 23c, 23d includes a photodetection region and a photodetection region 23d closer to the portions 22a, 22d than the photodetection region 23a.
  • the width of the conductive wire 14a electrically connecting the electrode 17a corresponding to the photodetection region 23a and the photodetection region 23a is the width of the electrode 17d corresponding to the photodetection region 23d and the width of the photodetection region 23d. is greater than the width of the conductor 14d electrically connecting the .
  • the electrode 17a corresponding to the photodetection region 23a, the conductor 14a electrically connecting the photodetection region 23a, the electrode 17d corresponding to the photodetection region 23d, the photodetection region 23d is reduced in electric resistance difference with the lead wire 14d electrically connecting with 23d.
  • the length of the conducting wire 14a electrically connecting the electrode 17a corresponding to the photodetection region 23a and the photodetection region 23a is equal to the length of the electrode 17d corresponding to the photodetection region 23d and the length of the photodetection region 23d. is greater than the length of the conductor 14d electrically connecting the .
  • Radiation detector RD1 comprises a reinforcing body 45 arranged between portions 22a and 22b.
  • the reinforcing body 45 covers the portions 22a and 22b and connects the portions 22a and 22b.
  • a reinforcement 45 positioned between portions 22a and 22b increases the mechanical strength of portions 22a and 22b.
  • the wiring members 30a and 30b located in the portions 22a and 22b, respectively, are protected by the reinforcing member 45.
  • the mechanical strength of the portions 22a and 22b is improved and, for example, the surfaces 11d and 11f can be polished.
  • the semiconductor substrate 11a has a surface 11c facing the scintillator 1 in the second direction D2 and a surface 11d facing the surface 11c in the second direction D2.
  • the semiconductor substrate 11b has a surface 11e facing the scintillator 1 in the second direction D2 and a surface 11f facing the surface 11e in the second direction D2.
  • the surfaces 11d and 11f are polished surfaces. In the configuration in which the surface 11d is a polished surface, the semiconductor substrate 11a can be thinned by polishing the surface 11d. In the configuration in which the surface 11f is a polished surface, the semiconductor substrate 11b can be thinned by polishing the surface 11f.
  • the size of the radiation detector RD1 can be reduced in the thickness direction of the semiconductor substrate 11a. The size of the radiation detector RD1 can be reduced in the thickness direction of the semiconductor substrate 11b.
  • the radiation detector RD1 has a surface 40c and a surface 40d facing each other in the second direction D2.
  • a base 40b having a surface 40a and a surface 40e and a surface 40f facing each other in the second direction D2, and arranged such that the semiconductor substrate 11b is positioned between the surface 40e and the scintillator 1;
  • a terminal 42 arranged on the surface 40e a plurality of terminals 41a, 41b, 41c, 41d arranged on the surface 40c, and electrodes 17a, 17b, 17c, 17d arranged on the portion 22a.
  • a wire 44 electrically connecting the terminal 42 arranged on the surface 40c and the electrode 18 arranged on the portion 22a, and the wire 44 arranged on the surface 40e
  • Wires 43 electrically connecting the plurality of terminals 41a, 41b, 41c, 41d and the electrodes 17a, 17b, 17c, 17d arranged on the portion 22b, terminals 42 arranged on the surface 40e, and a wire 44 electrically connecting to the electrode 18 located on the portion 22b.
  • the base 40a has a portion 51a covered with the semiconductor substrate 11a, and a portion 52a aligned with the portion 51a in the first direction D1 and exposed from the semiconductor substrate 11a.
  • the base 40b has a portion 51b covered with the semiconductor substrate 11b, and a portion 52b aligned with the portion 51b in the first direction D1 and exposed from the semiconductor substrate 11b.
  • Each terminal 41a, 41b, 41c, 41d and terminal 42 located on surface 40c are located on portion 52a.
  • Each terminal 41a, 41b, 41c, 41d and terminal 42 located on surface 40e are located on portion 52b.
  • the configuration comprising the substrates 40a, 40b improves the mechanical strength of the radiation detector RD1. Therefore, this configuration reliably realizes the radiation detector RD1 with improved mechanical strength.
  • the radiation detector RD1 has a cover 47a arranged so that the semiconductor substrate 11a is positioned between the scintillator 1 and a cover 47b arranged so that the semiconductor substrate 11b is positioned between the scintillator 1. and have.
  • Each of the coverings 47 a and 47 b includes at least one of a light reflector 48 and an electrical insulator 49 .
  • a configuration in which each of the coatings 47a and 47b includes the light reflector 48 improves the light reflecting properties of the scintillation light.
  • the configuration in which each of the coverings 47a and 47b includes the electrical insulator 49 improves the electrical insulation between the adjacent radiation detectors RD1.
  • the wiring member 30a is arranged on the same side as the scintillator 1 with respect to the semiconductor substrate 11a.
  • the wiring member 30b is arranged on the same side as the scintillator 1 with respect to the semiconductor substrate 11b.
  • the wiring member 30a is arranged on the same side as the scintillator 1 with respect to the semiconductor substrate 11a. No substrate is required for connection by die bonding.
  • the wiring member 30b is arranged on the same side as the scintillator 1 with respect to the semiconductor substrate 11b. No substrate is required for connection by die bonding. Therefore, these configurations more reliably simplify the configuration of the radiation detector RD1.
  • the radiation detector RD1 At least part of the wiring member 30a and the scintillator 1 are arranged in front of the same surface of the semiconductor substrate 11a. At least part of the wiring member 30b and the scintillator 1 are arranged in front of the same surface of the semiconductor substrate 11b. At least part of the wiring member 30a and the scintillator 1 are arranged in front of the same surface of the semiconductor substrate 11a. It improves the space efficiency of the radiation detector RD1 compared to the configuration placed in front of the . At least part of the wiring member 30b and the scintillator 1 are arranged in front of the same surface of the semiconductor substrate 11b. It improves the space efficiency of the radiation detector RD1 compared to the configuration placed in front of the .
  • the wiring member 30a and the scintillator 1 are arranged in front of the same surface of the substrate 40a. At least part of the wiring member 30b and the scintillator 1 are arranged in front of the same surface of the substrate 40b. In the configuration in which at least part of the wiring member 30a and the scintillator 1 are arranged in front of the same surface of the substrate 40a, the wiring member 30a is connected to the electrodes 17a, 17b, 17c of the semiconductor photodetector 10a by die bonding. , 17d and 18.
  • the wiring member 30b is attached to the electrodes 17a, 17b, 17c, 17c, 17b, 17c of the semiconductor photodetector 10b by die bonding. Easy to connect to 17d and 18.
  • the wiring members 30a and 30b and the semiconductor substrates 11a and 11b are flexible.
  • the flexibility of the wiring member 30a is greater than that of the semiconductor substrate 11a.
  • the flexibility of the wiring member 30b is greater than that of the semiconductor substrate 11b.
  • the vibration of the wiring member 30a is less likely to be transmitted to the semiconductor substrate 11a.
  • a force from the wiring member 30a is less likely to be applied to the semiconductor substrate 11a, and the semiconductor substrate 11a is less susceptible to physical damage.
  • the vibration of the wiring member 30b is less likely to be transmitted to the semiconductor substrate 11b.
  • a force from the wiring member 30b is less likely to be applied to the semiconductor substrate 11b, and the semiconductor substrate 11b is less susceptible to physical damage. Therefore, this configuration reliably maintains the mechanical strength of the radiation detector RD1.
  • FIG. 13 is a perspective view showing the radiation detector array RA1 according to the second embodiment.
  • FIG. 14 is a perspective view showing a radiation detector array RA2 according to the second embodiment.
  • the radiation detector array RA1 is configured by, for example, one-dimensionally arranging a plurality of radiation detectors RD1 according to the first embodiment or the modified example.
  • Each of the multiple radiation detectors RD1 is arranged, for example, in the third direction D3.
  • three radiation detectors RD1 are arranged in the third direction D3.
  • Any two adjacent radiation detectors RD1 among the plurality of radiation detectors RD1 are side surfaces 1e and 1f of the scintillator 1 provided by one radiation detector RD1 and side surfaces of the scintillator 1 provided by the other radiation detector RD1. 1e and 1f are arranged so as to face each other.
  • any two radiation detectors RD1 adjacent to each other in the third direction D3 are, for example, a side surface 1e of the scintillator 1 provided by one radiation detector RD1 and a side surface 1f of the scintillator 1 provided by the other radiation detector RD1. are arranged so as to face each other.
  • Any two radiation detectors RD1 adjacent to each other in the third direction D3 are, for example, a side surface 1f of the scintillator 1 included in one radiation detector RD1 and a side surface 1e of the scintillator 1 included in the other radiation detector RD1. They are arranged so as to face each other.
  • the semiconductor photodetector element 10a included in one radiation detector RD1 and the semiconductor photodetector element 10a included in the other radiation detector RD1 are arranged one-dimensionally with each other, for example.
  • the semiconductor photodetector element 10a included in one radiation detector RD1 and the semiconductor photodetector element 10a included in the other radiation detector RD1 are arranged in the third direction D3, for example.
  • the semiconductor photodetector element 10b included in one radiation detector RD1 and the semiconductor photodetector element 10b included in the other radiation detector RD1 are arranged one-dimensionally with each other, for example.
  • the semiconductor photodetector element 10b included in one radiation detector RD1 and the semiconductor photodetector element 10b included in the other radiation detector RD1 are arranged in the third direction D3, for example.
  • the semiconductor photodetector elements 10a provided in one radiation detector RD1 and the semiconductor photodetector elements 10a provided in the other radiation detector RD1 are, for example, arranged one-dimensionally and formed integrally with each other. That is, the semiconductor photodetecting elements 10a included in the plurality of radiation detectors RD1 are integrally formed.
  • Each semiconductor photodetector element 10a is arranged, for example, in the third direction D3.
  • the semiconductor photodetector elements 10b included in one radiation detector RD1 and the semiconductor photodetector elements 10b included in the other radiation detector RD1 are, for example, arranged one-dimensionally and formed integrally with each other. That is, the semiconductor photodetecting elements 10b included in the plurality of radiation detectors RD1 are integrally formed.
  • Each semiconductor photodetector 10b is arranged, for example, in the third direction D3.
  • the semiconductor photodetecting elements 10a included in the plurality of radiation detectors RD1 may not be integrally formed.
  • the semiconductor photodetecting elements 10b included in the plurality of radiation detectors RD1 may not be integrally formed.
  • Each radiation detector RD1 is provided with coverings 47a, 47b and a light reflector 56, for example.
  • the side surface 1e of the scintillator 1 included in one radiation detector RD1 and the side surface 1f of the scintillator 1 included in the other radiation detector RD1 are the light reflectors. They are opposed to each other in the third direction D3 such that 56 is positioned between the side surface 1e and the side surface 1f.
  • a light reflector 56 arranged on the one side surface 1e and a light reflector 56 arranged on the other side surface 1f.
  • one light reflector 56 is arranged between the side surface 1e of the scintillator 1 included in one radiation detector RD1 and the side surface 1f of the scintillator 1 included in the other radiation detector RD1.
  • Each radiation detector RD1 may not include at least one of the coverings 47a and 47b and the light reflector 56.
  • the radiation detector array RA2 is configured by arranging, for example, a plurality of radiation detectors RD1 according to the first embodiment or the modification two-dimensionally in a matrix.
  • a plurality of radiation detectors RD1 arranged in the row direction among the plurality of radiation detectors RD1 constitute, for example, a radiation detector array RA1 shown in FIG.
  • the radiation detector array RA2 for example, the radiation detector array RA1 is arranged in the column direction.
  • the column direction is the second direction D2
  • the row direction is the third direction D3.
  • any two radiation detectors RD1 adjacent to each other in the column direction among the plurality of radiation detectors RD1 are either semiconductor photodetector element 10a or semiconductor photodetector element 10b included in one radiation detector RD1, and the other radiation detector RD1.
  • Either one of the semiconductor photodetector element 10a or the semiconductor photodetector element 10b provided in the radiation detector RD1 is arranged so as to face each other in the column direction. Therefore, any two radiation detectors RD1 adjacent to each other in the column direction are composed of, for example, the semiconductor photodetector element 10a included in one radiation detector RD1 and the semiconductor photodetector element 10a included in the other radiation detector RD1. They are arranged so as to face each other in the column direction.
  • Arbitrary two radiation detectors RD1 adjacent to each other in the column direction for example, the semiconductor photodetector element 10a included in one radiation detector RD1 and the semiconductor photodetector element 10b included in the other radiation detector RD1 are aligned in the column direction. are arranged so as to face each other.
  • Arbitrary two radiation detectors RD1 adjacent to each other for example, the semiconductor photodetector element 10b included in one radiation detector RD1 and the semiconductor photodetector element 10a included in the other radiation detector RD1 are arranged in the column direction. They are arranged so as to face each other.
  • Any two radiation detectors RD1 adjacent to each other in the column direction are, for example, a semiconductor photodetector element 10b included in one radiation detector RD1 and a semiconductor photodetector element 10b included in the other radiation detector RD1. are arranged so as to face each other in directions.
  • any two radiation detectors RD1 adjacent to each other in the column direction for example, the semiconductor photodetector element 10a included in one of the radiation detectors RD1,
  • the semiconductor photodetector elements 10b of the other radiation detector RD1 are opposed to each other in the column direction so that the covers 47a and 47b are positioned between the semiconductor photodetector elements 10a and 10b.
  • the semiconductor photodetector element 10b included in one radiation detector RD1 and the semiconductor photodetector element 10a included in the other radiation detector RD1 are covered
  • the bodies 47b and 47a face each other in the column direction so that they are positioned between the semiconductor photodetectors 10b and 10a.
  • three radiation detectors RD1 are arranged in the third direction D3, and three radiation detectors RD1 are arranged in the second direction D2.
  • the radiation detector array RA2 is composed of a total of nine radiation detectors RD1, for example.
  • the end face 1a of one radiation detector RD1 is, for example, flush with the end face 1a of the other radiation detector RD1 adjacent in the row or column direction.
  • the radiation detector array RA1 includes a plurality of radiation detectors RD1 arranged one-dimensionally.
  • Each of the plurality of radiation detectors RD1 is the radiation detector RD1 according to the first embodiment or modification.
  • the scintillator 1 has a pair of side surfaces 1e and 1f connecting a pair of end surfaces 1a and 1b and connecting a side surface 1c and a side surface 1d. Any two adjacent radiation detectors RD1 among the plurality of radiation detectors RD1 are side surfaces 1e and 1f of the scintillator 1 provided by one radiation detector RD1 and side surfaces of the scintillator 1 provided by the other radiation detector RD1. 1e and 1f are arranged so as to face each other.
  • the radiation detector array RA1 realizes a radiation detector array in which the radiation detectors RD1 having high time resolution and high detection sensitivity are arranged one-dimensionally.
  • the semiconductor photodetectors 10a included in the plurality of radiation detectors RD1 are integrally formed.
  • the semiconductor photodetecting elements 10b included in the plurality of radiation detectors RD1 are integrally formed.
  • the configuration in which the semiconductor photodetecting elements 10a are integrally formed and the semiconductor photodetecting elements 10b are integrally formed is a radiation detector array RA1 in which a plurality of radiation detectors RD1 are arranged in one dimension. Improve mechanical strength.
  • the radiation detector array RA2 includes a plurality of radiation detectors RD1 arranged two-dimensionally in a matrix.
  • Each of the plurality of radiation detectors RD1 arranged in the row direction among the plurality of radiation detectors RD1 is the radiation detector array RA1 according to this embodiment or the modification.
  • Any two radiation detectors RD1 adjacent to each other in the column direction among the plurality of radiation detectors RD1 are either one of the semiconductor photodetector element 10a or the semiconductor photodetector element 10b included in one radiation detector RD1 and the other.
  • Either one of the semiconductor photodetector element 10a or the semiconductor photodetector element 10b provided in the radiation detector RD1 is arranged so as to face each other in the column direction.
  • a configuration in which a plurality of radiation detectors RD1 are arranged two-dimensionally in a matrix is a radiation detector in which radiation detectors RD1 having high time resolution and high detection sensitivity are arranged two-dimensionally in a matrix.
  • the array RA2 when the radiation detector RD1 includes the light reflector 56, the scintillation light incident on the side surface 1e of the scintillator 1 included in one radiation detector RD1 is, for example, reflected by the other radiation detector RD1. It is difficult for the light to enter the side surface 1 f of the scintillator 1 .
  • FIG. 15 is a perspective view showing a radiation detector array RA1 according to the third embodiment.
  • FIG. 16 is a perspective view showing a radiation detector array RA2 according to the third embodiment.
  • the radiation detector array RA1 is configured by, for example, one-dimensionally arranging a plurality of radiation detectors RD1 according to the first embodiment or the modified example.
  • Each of the multiple radiation detectors RD1 is arranged, for example, in the third direction D3.
  • three radiation detectors RD1 of the first embodiment are arranged in the third direction D3.
  • Any two radiation detectors RD1 adjacent to each other among the plurality of radiation detectors RD1 are composed of side surfaces 1e and 1f of the scintillator 1 included in one radiation detector RD1 and a semiconductor photodetector element included in the other radiation detector RD1.
  • Either one of 10a and semiconductor photodetector 10b is arranged so as to face each other.
  • two arbitrary radiation detectors RD1 adjacent to each other in the third direction D3 are, for example, the side surface 1e of the scintillator 1 provided in one radiation detector RD1 and the semiconductor photodetector element 10b provided in the other radiation detector RD1. are arranged so as to face each other in the third direction D3.
  • Any two radiation detectors RD1 adjacent to each other in the third direction D3 are formed by, for example, the side surface 1f of the scintillator 1 included in one radiation detector RD1 and the semiconductor photodetector element 10a included in the other radiation detector RD1. They are arranged so as to face each other in the third direction D3.
  • Each radiation detector RD1 is provided with coverings 47a, 47b and a light reflector 56, for example.
  • the side surface 1e of the scintillator 1 provided in one radiation detector RD1 and the semiconductor photodetector element provided in the other radiation detector RD1 10b face each other in the third direction D3 such that the covering 47b and the light reflector 56 are located between the side surface 1e and the semiconductor photodetector 10b.
  • any two radiation detectors RD1 adjacent to each other in the third direction D3 are separated from the side surface 1f of the scintillator 1 included in one radiation detector RD1 and the semiconductor photodetector element 10a included in the other radiation detector RD1.
  • the cover 47a and the light reflector 56 face each other in the third direction D3 so that they are located between the side surface 1f and the semiconductor photodetector 10a.
  • Each radiation detector RD1 may not include at least one of the coverings 47a and 47b and the light reflector 56.
  • the radiation detector array RA2 is configured by arranging, for example, a plurality of radiation detectors RD1 according to the first embodiment or the modification two-dimensionally in a matrix.
  • Each of the plurality of radiation detectors RD1 arranged in the row direction among the plurality of radiation detectors RD1 is, for example, the radiation detector array RA1 shown in FIG. Therefore, in the radiation detector array RA2, the radiation detector array RA1 is arranged in the column direction.
  • the column direction is the second direction D2
  • the row direction is the third direction D3.
  • Any two radiation detectors RD1 adjacent to each other in the column direction among the plurality of radiation detectors RD1 are composed of the side surfaces 1e and 1f of the scintillator 1 provided in one radiation detector RD1 and the semiconductor provided in the other radiation detector RD1.
  • Either the photodetector element 10a or the semiconductor photodetector element 10b is arranged so as to face each other in the column direction.
  • the facing direction of the side surfaces 1e and 1f of the scintillator 1 provided in one radiation detector RD1 and the facing direction of the side surfaces 1e and 1f of the scintillator 1 provided in the other radiation detector RD1 intersect each other, for example.
  • any two radiation detectors RD1 adjacent to each other in the column direction are formed by, for example, the side surface 1e of the scintillator 1 included in one radiation detector RD1 and the semiconductor photodetector element 10a included in the other radiation detector RD1. They are arranged so as to face each other in the column direction.
  • Any two radiation detectors RD1 adjacent to each other in the column direction are, for example, arranged such that the side surface 1f of the scintillator 1 included in one radiation detector RD1 and the semiconductor photodetector element 10b included in the other radiation detector RD1 are aligned in the column direction. are arranged so as to face each other.
  • the radiation detector array RA2 is composed of a total of nine radiation detectors RD1, for example.
  • the end face 1a of one radiation detector RD1 is flush with the end face 1a of another radiation detector RD1 adjacent in the row or column direction, for example.
  • each radiation detector RD1 includes the coverings 47a and 47b and the light reflector 56
  • the detection elements 10a face each other in the column direction so that the cover 47a and the light reflector 56 are positioned between the side surface 1e and the semiconductor photodetection element 10a.
  • the side surface 1f of the scintillator 1 included in one radiation detector RD1 and the semiconductor photodetector element 10b included in the other radiation detector RD1 are arranged such that the cover 47b and the light reflector 56 are connected to the side surface 1f and the semiconductor photodetector. They face each other in the column direction so as to be positioned between the elements 10b.
  • the radiation detector array RA1 includes a plurality of radiation detectors RD1 arranged one-dimensionally.
  • Each of the plurality of radiation detectors RD1 is the radiation detector RD1 according to the first embodiment or modification.
  • the scintillator 1 has a pair of side surfaces 1e and 1f connecting a pair of end surfaces 1a and 1b and connecting a side surface 1c and a side surface 1d.
  • Any two radiation detectors RD1 adjacent to each other among the plurality of radiation detectors RD1 are composed of side surfaces 1e and 1f of the scintillator 1 included in one radiation detector RD1 and a semiconductor photodetector element included in the other radiation detector RD1.
  • Either one of 10a and semiconductor photodetector 10b is arranged so as to face each other.
  • the radiation detector array RA1 realizes a radiation detector array in which the radiation detectors RD1 having high time resolution and high detection sensitivity are arranged one-dimensionally.
  • the radiation detector array RA2 includes a plurality of radiation detectors RD1 arranged two-dimensionally in a matrix.
  • Each of the plurality of radiation detectors RD1 arranged in the row direction among the plurality of radiation detectors RD1 is the radiation detector array RA1 according to this embodiment.
  • Any two radiation detectors RD1 adjacent to each other in the column direction among the plurality of radiation detectors RD1 are composed of the side surfaces 1e and 1f of the scintillator 1 provided in one radiation detector RD1 and the semiconductor provided in the other radiation detector RD1.
  • Either the photodetector element 10a or the semiconductor photodetector element 10b is arranged so as to face each other in the column direction.
  • a configuration in which a plurality of radiation detectors RD1 are arranged two-dimensionally in a matrix is a radiation detector array in which radiation detectors RD1 having high time resolution and high detection sensitivity are arranged two-dimensionally in a matrix.
  • Implement RA2 In a configuration in which the side surfaces 1e and 1f and either the semiconductor photodetector element 10a or the semiconductor photodetector element 10b provided in the other radiation detector RD1 face each other in the column direction, the semiconductor photodetector element 10a and the semiconductor light detector element 10b A plurality of radiation detectors RD1 are arranged two-dimensionally in a smaller space than in a configuration in which the detection elements 10b face each other.
  • the present embodiment for example, compared to the configuration in which the side surface 1e of the scintillator 1 included in one radiation detector RD1 and the side surface 1f of the scintillator 1 included in the other radiation detector RD1 face each other, The scintillation light incident on the side surface 1e of the scintillator 1 included in the detector RD1 is difficult to enter the scintillator 1 included in the other radiation detector RD1.
  • wiring members 30a and 30b are prepared and connected to the semiconductor photodetectors 10a and 10b (S102).
  • the wiring member 30a is connected to the semiconductor photodetector element 10a
  • the wiring member 30b is connected to the semiconductor photodetector element 10b.
  • the wiring members 30 a and 30 b have conductors 31 and 32 .
  • the conductor 31 of the wiring member 30a is electrically connected to the electrodes 17a, 17b, 17c and 17d of the semiconductor photodetector 10a.
  • the conductor 31 of the wiring member 30b is electrically connected to the electrodes 17a, 17b, 17c, 17d of the semiconductor photodetector 10b.
  • the conductor 32 of the wiring member 30a is electrically connected to the electrode 18 of the semiconductor photodetector 10a.
  • the conductor 32 of the wiring member 30b is electrically connected to the electrode 18 of the semiconductor photodetector 10b.
  • Conductors 31a, 31b, 31c and 31d of wiring member 30a are electrically connected to electrodes 17a, 17b, 17c and 17d of semiconductor photodetector 10a via conductive bumps 33, for example.
  • Conductors 31a, 31b, 31c and 31d of wiring member 30b are electrically connected to electrodes 17a, 17b, 17c and 17d of semiconductor photodetector 10b via conductive bumps 33, for example.
  • the conductor 32 of the wiring member 30a is connected to the electrode 18 of the wiring member 30a via a conductive bump 33, for example.
  • the conductor 32 of the wiring member 30b is connected to the electrode 18 of the wiring member 30b via a conductive bump 33, for example.
  • the scintillator 1 and the semiconductor photodetectors 10a and 10b are integrated (S103). This integration is done, for example, by means of an adhesive.
  • the semiconductor photodetector 10a is arranged on the side surface 1c of the scintillator 1, for example.
  • Semiconductor photodetector element 10b is arranged on side surface 1d of scintillator 1, for example.
  • a reinforcement 45 is then placed between the portions 22a and 22b.
  • the semiconductor photodetector elements 10a and 10b are thinned (S104). Thinning of the element is performed by polishing the surfaces 11d and 11f, for example. The surfaces 11d and 11f are polished by mechanical polishing or chemical polishing, for example. Thinning of the semiconductor photodetector elements 10a and 10b is performed, for example, on a radiation detector array RA1 in which a plurality of radiation detectors RD1 are arranged one-dimensionally. That is, the semiconductor photodetector elements 10a and 10b included in the radiation detector array RA1 are thinned. A plurality of thinned radiation detector arrays RA1 are, for example, singulated to produce individual radiation detectors RD1.
  • Singulation is, for example, by dicing.
  • a plurality of thinned radiation detector arrays RA1 may be arranged so as to line up in the column direction, for example, without being singulated.
  • a radiation detector array RA2 may be fabricated in which a plurality of radiation detector arrays RA1 are two-dimensionally arranged in a matrix.
  • This embodiment includes a method of manufacturing a radiation detector.
  • the manufacturing method of the radiation detector is as follows. (Manufacturing method 1) prepare a scintillator, preparing a semiconductor photodetector; integrating the scintillator and the semiconductor photodetector; and thinning the semiconductor photodetector integrated with the scintillator;
  • the scintillator to be prepared has a pair of end faces facing each other in a first direction, and one side surface connecting the pair of end faces, and a second direction perpendicular to the one side face. has a length in the first direction greater than the length, and the length of the one side in the first direction is the length of the one side in a third direction orthogonal to the first direction and the second direction.
  • the semiconductor photodetector to be prepared has a single semiconductor substrate having a first main surface and a second main surface facing each other, and a photodetection region is arranged on the one semiconductor substrate. having a first portion and a second portion aligned with the first portion in a direction perpendicular to the direction in which the first main surface and the second main surface face each other;
  • the light detection region includes a plurality of avalanche photodiodes operating in a Geiger mode, and a plurality of quenching photodiodes electrically connected in series with one of an anode or a cathode of a corresponding avalanche photodiode among the plurality of avalanche photodiodes.
  • Integrating the scintillator and the semiconductor photodetector means that the scintillator and the semiconductor photodetector are arranged so that the one side surface and the first main surface are opposed to each other, and the first portion is the one surface. Integrating so that the second portion is covered on one side and exposed from the scintillator, and applying a resin so as to contact the scintillator and the second portion; A method of manufacturing a radiation detector, wherein thinning the semiconductor photodetector includes thinning the one semiconductor substrate from the second main surface side.
  • Manufacturing method 2 preparing a wiring member; and further comprising electrically connecting the wiring member to the semiconductor photodetector;
  • the semiconductor photodetector device provided further comprises a first electrode and a second electrode disposed on the second portion, the first electrode being connected in parallel to the plurality of quenching resistors.
  • the prepared wiring member has a first conductor and a second conductor, electrically connecting the wiring member includes connecting the first conductor to the first electrode and connecting the second conductor to the second electrode; Applying the resin includes applying the resin so as to be in contact with a portion located on the second portion, which is included in the wiring member electrically connected to the semiconductor photodetector.
  • the scintillator provided further has another side facing the one side,
  • the prepared semiconductor photodetector includes a first semiconductor photodetector and a second semiconductor photodetector, wherein the first semiconductor photodetector comprises the one semiconductor having the first portion and the second portion.
  • the second semiconductor photodetector has another semiconductor substrate having a first major surface and a second major surface facing each other; and a fourth portion aligned with the third portion in the direction orthogonal to the direction in which the first principal surface and the second principal surface face each other , Integrating the scintillator and the semiconductor photodetector is The scintillator and the first semiconductor photodetector are arranged such that the one side face and the first principal face face each other, the first part is covered with the one side face, and the second part is separated from the scintillator.
  • the scintillator and the second semiconductor photodetector are arranged such that the another side face and the first principal face face each other, the third part is covered with the another side face, and the fourth part is the scintillator. integrating so as to be exposed from, and In contact with the scintillator and the second portion of the one semiconductor substrate of the first semiconductor photodetector, the scintillator and the fourth semiconductor substrate of the another semiconductor substrate of the second semiconductor photodetector are connected. applying the resin so as to contact the part; Thinning the semiconductor photodetector includes thinning the one semiconductor substrate of the first semiconductor photodetector from the second main surface side, and thinning the semiconductor substrate of the second semiconductor photodetector.
  • Manufacturing method 4 preparing a wiring member; and further comprising electrically connecting the wiring member to the semiconductor photodetector;
  • the first semiconductor photodetector further includes a first electrode and a second electrode arranged in the second portion, and the second semiconductor photodetector further comprises a second electrode arranged in the fourth portion.
  • the prepared wiring members include a first wiring member and a second wiring member each having a first conductor and a second conductor, Electrically connecting the wiring member includes connecting the first conductor of the first wiring member to the first electrode, and connecting the second conductor of the first wiring member to the second electrode.
  • the first wiring member electrically connected to the first semiconductor photodetector includes a portion located on the second portion and the second semiconductor photodetector.
  • the photodetection regions 23a, 23b, 23c, and 23d do not have to have contour shapes corresponding to the contour shapes of the side surfaces 1c and 1d when viewed from the second direction D2.
  • the photodetection regions 23a, 23b, 23c, and 23d have contour shapes corresponding to the contour shapes of the side surfaces 1c and 1d, as described above, the photodetection regions 23a, 23b, 23c, and 23d are formed on the semiconductor substrate 11a. , 11b, it is difficult to place them at locations where scintillation light cannot be received.
  • the radiation detector RD1 does not have to include the light reflecting member 24 .
  • the configuration in which the radiation detector RD1 includes the light reflecting member 24 reliably confines the scintillation light generated in each of the portions 1p, 1q, 1r, and 1s within the portions 1p, 1q, 1r, and 1s, as described above. .
  • the photodetection regions 23a, 23b, 23c, and 23d corresponding to the portions 1p, 1q, 1r, and 1s more reliably detect the scintillation light generated within the portions 1p, 1q, 1r, and 1s. Therefore, the radiation detector RD1 more reliably achieves high temporal resolution.
  • the width of the conductive wire 14a electrically connecting the electrode 17a corresponding to the photodetection region 23a and the photodetection region 23a is the width of the electrode 17d corresponding to the photodetection region 23d and the width of the photodetection region 23d. may be larger than the width of the conductor 14d electrically connecting the .
  • the width of the conductive wire 14a electrically connecting the electrode 17a corresponding to the photodetection region 23a and the photodetection region 23a is the width of the electrode 17d corresponding to the photodetection region 23d and the width of the photodetection region 23d.
  • the conductor 14a electrically connecting the electrode 17a corresponding to the photodetection region 23a and the photodetection region 23a has a width larger than that of the conductor 14d electrically connecting the photodetection region 23a. , the difference in electrical resistance between the electrode 17d corresponding to the photodetection region 23d and the lead wire 14d electrically connecting the photodetection region 23d is reduced.
  • the radiation detector RD1 may not have the substrate 40a.
  • the configuration in which the radiation detector RD1 includes the base 40a improves the mechanical strength of the semiconductor substrate 11a, as described above.
  • the radiation detector RD1 may not have the substrate 40b.
  • the configuration in which the radiation detector RD1 includes the base 40b improves the mechanical strength of the semiconductor substrate 11b as described above. Therefore, this configuration reliably realizes the radiation detector RD1 with improved mechanical strength.
  • the radiation detector RD1 does not have to include the reinforcing body 45 .
  • the reinforcing body 45 arranged between the portions 22a and 22b improves the mechanical strength of the portions 22a and 22b, as described above.
  • the reinforcing body 45 protects the wiring member 30a located in the portion 22a and the wiring member 30b located in the portion 22b.
  • the radiation detector RD1 may not have the covers 47a and 47b.
  • the wiring member 30a may not be arranged on the same side as the scintillator 1 with respect to the semiconductor substrate 11a.
  • the configuration in which the wiring member 30a is arranged on the same side as the scintillator 1 with respect to the semiconductor substrate 11a is, for example, a substrate for connecting the wiring member 30a to the electrodes 17 and 18 of the semiconductor photodetector 10a by die bonding. does not require
  • the wiring member 30b may not be arranged on the same side as the scintillator 1 with respect to the semiconductor substrate 11b.
  • the configuration in which the wiring member 30b is arranged on the same side as the scintillator 1 with respect to the semiconductor substrate 11b is, for example, a substrate for connecting the wiring member 30b to the electrodes 17 and 18 of the semiconductor photodetector 10b by die bonding.
  • the flexibility of the wiring member 30a does not have to be greater than that of the semiconductor substrate 11a. In a configuration in which the flexibility of the wiring member 30a is greater than that of the semiconductor substrate 11a, as described above, the vibration of the wiring member 30a is less likely to be transmitted to the semiconductor substrate 11a.
  • the flexibility of the wiring member 30b does not have to be greater than that of the semiconductor substrate 11b. In a configuration in which the flexibility of the wiring member 30b is greater than that of the semiconductor substrate 11b, as described above, the vibration of the wiring member 30b is less likely to be transmitted to the semiconductor substrate 11b. Therefore, this configuration reliably maintains the mechanical strength of the radiation detector RD1.
  • the semiconductor photodetectors are arranged on the two side surfaces 1c and 1d of the scintillator 1 has been described.
  • a sensing element may be arranged.
  • SYMBOLS 1 Scintillator 1a, 1b... End surface 1c, 1d, 1e, 1f... Side surface 1p, 1q, 1r, 1s... Portion 3a, 3b... Opposing surface 3c, 3e... Connecting surface 3a, 3b... Opposing surface , 10a, 10b... Semiconductor photodetector 11a, 11b... Semiconductor substrate 12... Avalanche photodiode 13... Quenching resistor 14a, 14b... Lead wire 17a, 17b, 17c, 17d, 18...
  • Electrode 21a, 21b Portions 22a, 22b Portions 23a, 23b, 23c, 23d Photodetection regions 24 Light reflecting members 30a, 30b Wiring members 31a, 31b, 31c, 31d, 32 Conductors 41a, 41b, 41c, 41d, 42 Terminals 45 Reinforcement 47a, 47b Coating 48 Light reflector 49 Electric insulator 51a, 51b, 52a, 52b Part D1 First direction D2 Second direction, D3... Third direction, RA1, RA2... Radiation detector array, RD1... Radiation detector.

Abstract

This radiation detector comprises: a scintillator; first and second semiconductor light detecting elements; a first wiring member electrically connected to the first semiconductor light detecting element; and a second wiring member electrically connected to the second semiconductor light detecting element. The scintillator has a pair of end surfaces that face one another in a first direction, and first and second side surfaces that face one another in a second direction intersecting the first direction, and has a rectangular shape when viewed from the first direction. The first and second side surfaces link the pair of end surfaces. The first semiconductor light detecting element includes a first semiconductor substrate disposed so as to face the first side surface. The second semiconductor light detecting element includes a second semiconductor substrate disposed so as to face the second side surface.

Description

放射線検出器及び放射線検出器アレイRadiation detector and radiation detector array
 本発明は、放射線検出器及び放射線検出器アレイに関する。 The present invention relates to radiation detectors and radiation detector arrays.
 知られている放射線検出器は、六面体形状を呈しているシンチレータと、シンチレータに配置されている半導体基板を有している半導体光検出素子と、を備えている(たとえば、特許文献1参照)。シンチレータは、放射線の入射を受けてシンチレーション光を発生する。半導体光検出素子が、発生したシンチレーション光を検出する。 A known radiation detector includes a hexahedral scintillator and a semiconductor photodetector having a semiconductor substrate disposed on the scintillator (see, for example, Patent Document 1). The scintillator generates scintillation light upon receiving radiation. A semiconductor photodetector detects the generated scintillation light.
特開2015-83956号公報JP 2015-83956 A
 本発明の第一の態様は、高い時間分解能と高い検出感度とを有している放射線検出器を提供することを目的とする。本発明の第二及び第三の態様は、高い時間分解能と高い検出感度とを有している放射線検出器を備える放射線検出器アレイを提供することを目的とする。 A first aspect of the present invention aims to provide a radiation detector with high time resolution and high detection sensitivity. An object of the second and third aspects of the present invention is to provide a radiation detector array comprising radiation detectors having high temporal resolution and high detection sensitivity.
 本発明者らは、高い時間分解能と高い検出感度とを有している放射線検出器について鋭意研究を行った。その結果、本発明者らは、以下の知見を新たに得て、本発明を想到するに至った。特許文献1は、高い時間分解能と高い検出感度とを有している放射線検出器を開示していない。
 第一方向で互いに対向する一対の端面を有し、かつ、第一方向に長いシンチレータに、一対の端面のうち一の端面から、放射線が入射する場合、このシンチレータは、高エネルギー範囲の放射線を確実に吸収してシンチレーション光を発生する。一対の端面のうち、他の端面に半導体光検出素子が配置されている構成では、シンチレータが高エネルギー範囲の放射線を確実に吸収しやすい。
 半導体光検出素子は、他の端面から出射されるシンチレーション光を検出する。シンチレータの第一方向での長さが、第一方向に交差する方向での長さよりも大きい構成では、高い時間分解能が得られがたい。一対の端面を連結すると共に第一方向に延在している側面は、他の端面に比べて、シンチレーション光の発生点からの距離が短い。したがって、第一方向に延在している上記側面に配置された半導体光検出素子は、高い時間分解能でシンチレーション光を検出しやすい。放射線検出器では、同じ位置で同時に発生した各シンチレーション光を短い距離で検出し得る位置に半導体光検出素子を配置することが望ましい。この半導体光検出素子の配置は、入射した放射線を高い時間分解能で検出する。
 シンチレータが複数の側面を有する構成は、複数の側面にそれぞれ半導体光検出素子を配置し得る。複数の側面にそれぞれ半導体光検出素子を配置した放射線検出器は、一つの端面にのみ一つの半導体光検出素子が配置された放射線検出器に比べて高い検出感度を実現する。
The present inventors have conducted extensive research on radiation detectors having high temporal resolution and high detection sensitivity. As a result, the inventors of the present invention newly obtained the following knowledge, and arrived at the present invention. Patent Document 1 does not disclose a radiation detector with high temporal resolution and high detection sensitivity.
When radiation enters a scintillator having a pair of end faces facing each other in a first direction and elongated in the first direction from one of the pair of end faces, the scintillator emits radiation in a high energy range. It reliably absorbs and emits scintillation light. In a configuration in which the semiconductor photodetector is arranged on the other of the pair of end faces, the scintillator tends to reliably absorb radiation in the high energy range.
The semiconductor photodetector detects scintillation light emitted from the other end face. It is difficult to obtain high temporal resolution in a configuration in which the length of the scintillator in the first direction is longer than the length in the direction intersecting the first direction. The side surface connecting the pair of end faces and extending in the first direction is shorter in distance from the scintillation light generation point than the other end faces. Therefore, the semiconductor photodetector arranged on the side surface extending in the first direction can easily detect scintillation light with high time resolution. In the radiation detector, it is desirable to arrange the semiconductor photodetector at a position where each scintillation light generated at the same position at the same time can be detected at a short distance. This arrangement of semiconductor photodetectors detects incident radiation with high temporal resolution.
A configuration in which the scintillator has a plurality of side surfaces can have semiconductor photodetectors arranged on each of the plurality of side surfaces. A radiation detector in which semiconductor photodetectors are arranged on each of a plurality of side surfaces achieves higher detection sensitivity than a radiation detector in which one semiconductor photodetector is arranged only on one end face.
 第一の態様に係る放射線検出器は、第一方向で互いに対向している一対の端面と、第一方向に交差する第二方向で互いに対向していると共に一対の端面を連結している第一側面及び第二側面と、を有し、第一方向から見て矩形状を呈しているシンチレータと、第一側面と対向するように配置されている第一半導体基板を有している第一半導体光検出素子と、第二側面と対向するように配置されている第二半導体基板を有している第二半導体光検出素子と、第一半導体光検出素子と電気的に接続されている第一配線部材と、第二半導体光検出素子と電気的に接続されている第二配線部材と、を備えている。第一方向でのシンチレータの長さは、第二方向でのシンチレータの長さ及び第一側面に平行な第三方向でのシンチレータの長さより大きい。第一方向での第一側面の長さは、第三方向での第一側面の幅より大きい。第一方向での第二側面の長さは、第三方向での第二側面の幅より大きい。第一半導体基板は、第一側面で覆われている第一部分と、第一部分と第一方向に並んでいると共に第一側面から露出している第二部分と、を有している。第二半導体基板は、第二側面で覆われている第三部分と、第三部分と第一方向に並んでいると共に第二側面から露出している第四部分と、を有している。第一半導体光検出素子及び第二半導体光検出素子のそれぞれは、ガイガーモードで動作する少なくとも一つのアバランシェフォトダイオードと、少なくとも一つのアバランシェフォトダイオードのうち対応するアバランシェフォトダイオードのアノード又はカソードの一方と電気的に直列接続されている少なくとも一つのクエンチング抵抗と、を有している複数の光検出領域と、を有している。第一半導体光検出素子は、複数の光検出領域のうち対応する光検出領域に含まれている、第一半導体光検出素子が有する少なくとも一つのクエンチング抵抗と電気的に接続されている複数の第一電極と、複数の光検出領域のうち対応する光検出領域に含まれている、第一半導体光検出素子が有するアバランシェフォトダイオードのアノード又はカソードの他方と電気的に接続されている第二電極と、を有している。第二半導体光検出素子は、複数の光検出領域のうち対応する光検出領域に含まれている、第二半導体光検出素子が有する少なくとも一つのクエンチング抵抗と電気的に接続されている複数の第三電極と、複数の光検出領域のうち対応する光検出領域に含まれている、第二半導体光検出素子が有するアバランシェフォトダイオードのアノード又はカソードの他方と電気的に接続されている第四電極と、を有している。第一半導体光検出素子が有する複数の光検出領域は、第一部分に配置されている。複数の第一電極及び第二電極は、第二部分に配置されている。第二半導体光検出素子が有する複数の光検出領域は、第三部分に配置されている。複数の第三電極及び第四電極は、第四部分に配置されている。第一配線部材は、複数の第一電極のうち対応する第一電極と電気的に接続される複数の導体と、第二電極と接続される導体と、を有している。第二配線部材は、複数の第三電極のうち対応する第三電極と電気的に接続される複数の導体と、第四電極と接続される導体と、を有している。 A radiation detector according to a first aspect includes a pair of end faces facing each other in a first direction, and a second end face connecting the pair of end faces facing each other in a second direction intersecting the first direction. The first has a scintillator which has one side and a second side and has a rectangular shape when viewed from the first direction, and a first semiconductor substrate arranged to face the first side. A semiconductor photodetector, a second semiconductor photodetector having a second semiconductor substrate arranged to face the second side surface, and a second semiconductor photodetector electrically connected to the first semiconductor photodetector. A first wiring member and a second wiring member electrically connected to the second semiconductor photodetector are provided. The length of the scintillator in the first direction is greater than the length of the scintillator in the second direction and the length of the scintillator in the third direction parallel to the first side. The length of the first side in the first direction is greater than the width of the first side in the third direction. The length of the second side in the first direction is greater than the width of the second side in the third direction. The first semiconductor substrate has a first portion covered by the first side surface and a second portion aligned in the first direction with the first portion and exposed from the first side surface. The second semiconductor substrate has a third portion covered with the second side surface and a fourth portion aligned with the third portion in the first direction and exposed from the second side surface. Each of the first semiconductor photodetector and the second semiconductor photodetector includes at least one avalanche photodiode operating in Geiger mode and one of the anode or cathode of the corresponding avalanche photodiode of the at least one avalanche photodiode. and at least one quenching resistor electrically connected in series. The first semiconductor photodetector includes a plurality of quenching resistors electrically connected to at least one quenching resistor of the first semiconductor photodetector included in a corresponding photodetection region among the plurality of photodetection regions. The first electrode is electrically connected to the other of the anode or the cathode of the avalanche photodiode of the first semiconductor photodetector included in the corresponding photodetection region among the plurality of photodetection regions. and an electrode. The second semiconductor photodetector is included in a corresponding photodetection region among the plurality of photodetection regions and is electrically connected to at least one quenching resistor of the second semiconductor photodetector. The third electrode is electrically connected to the other of the anode or the cathode of the avalanche photodiode of the second semiconductor photodetector included in the corresponding photodetection region among the plurality of photodetection regions. and an electrode. A plurality of photodetection regions of the first semiconductor photodetector are arranged in the first portion. A plurality of first and second electrodes are disposed on the second portion. A plurality of photodetection regions of the second semiconductor photodetector are arranged in the third portion. A plurality of third and fourth electrodes are disposed on the fourth portion. The first wiring member has a plurality of conductors electrically connected to corresponding first electrodes among the plurality of first electrodes, and a conductor connected to the second electrode. The second wiring member has a plurality of conductors electrically connected to corresponding third electrodes among the plurality of third electrodes, and a conductor connected to the fourth electrode.
 上記第一の態様は、第一方向で長いシンチレータを備えていると共に、シンチレータの第一側面に配置された第一半導体基板と、シンチレータの第二側面に配置された第二半導体基板とを備えている。第一半導体光検出素子は、第一側面に入射するシンチレーション光を検出する。第二半導体光検出素子は、第二側面に入射するシンチレーション光を検出する。第二方向でのシンチレータの長さは、第一方向でのシンチレータの長さより小さい。したがって、シンチレーション光の発生点から、第一側面及び第二側面のそれぞれまでの距離が短い。シンチレーション光の、第一及び第二半導体光検出素子のそれぞれへの到達時間が短く、上記第一の態様は、高い時間分解能を実現する。上記第一の態様は、第一半導体光検出素子及び第二半導体光検出素子を備えている。したがって、上記第一の態様は、シンチレータの一つの側面に配置された単一の半導体光検出素子を備えている放射線検出器に比べて、高い検出感度を実現する。
 上記第一の態様は、第一方向に並んでいる複数の光検出領域がそれぞれ配置された第一半導体光検出素子及び第二半導体光検出素子を備えている。複数の光検出領域のうち、たとえば、シンチレーション光を最も多く検出した光検出領域の位置から、シンチレーション光の発生点と、シンチレータの一の端面との第一方向での距離が求められる。したがって、シンチレータの一の端面から入射した放射線のエネルギーの大きさが正確に計測される。この結果、上記第一の態様は、高いエネルギー分解能を実現する。
The first aspect includes a scintillator long in a first direction, a first semiconductor substrate arranged on the first side surface of the scintillator, and a second semiconductor substrate arranged on the second side surface of the scintillator. ing. The first semiconductor photodetector detects scintillation light incident on the first side surface. The second semiconductor photodetector detects scintillation light incident on the second side surface. The length of the scintillator in the second direction is less than the length of the scintillator in the first direction. Therefore, the distances from the scintillation light generation point to each of the first side surface and the second side surface are short. The arrival time of scintillation light to each of the first and second semiconductor photodetectors is short, and the first aspect achieves high time resolution. The first aspect includes a first semiconductor photodetector and a second semiconductor photodetector. Therefore, the first aspect achieves higher detection sensitivity than a radiation detector having a single semiconductor photodetector arranged on one side of the scintillator.
The first aspect includes a first semiconductor photodetector and a second semiconductor photodetector in which a plurality of photodetection regions arranged in the first direction are respectively arranged. For example, from the position of the photodetection region that detects the most scintillation light among the plurality of photodetection regions, the distance in the first direction between the point where the scintillation light is generated and one end surface of the scintillator is obtained. Therefore, the magnitude of the energy of radiation incident from one end surface of the scintillator can be accurately measured. As a result, the first aspect achieves high energy resolution.
 上記第一の態様では、第二方向から見て、第一半導体基板が有する複数の光検出領域の輪郭により構成される一つの領域は、第一側面の輪郭形状に対応する輪郭形状を呈していてもよい。第二方向から見て、第二半導体基板が有する複数の光検出領域の輪郭により構成される一つの領域は、第二側面の輪郭形状に対応する輪郭形状を呈していてもよい。
 第一半導体基板が有する複数の光検出領域の輪郭により構成される一つの領域が第一側面の輪郭形状に対応する輪郭形状を呈している構成では、複数の光検出領域は、第一半導体基板のうち、シンチレーション光を受光し得ない箇所に配置されがたい。したがって、第一半導体基板が有する光検出領域でのダークカウント及び容量の増加が抑制される。第二半導体基板が有する複数の光検出領域の輪郭により構成される一つの領域が第二側面の輪郭形状に対応する形状を呈している構成では、複数の光検出領域は、第二半導体基板のうち、シンチレーション光を受光し得ない箇所に配置されがたい。したがって、第二半導体基板が有する光検出領域でのダークカウント及び容量の増加が抑制される。これらの構成は、シンチレーション光の検出誤差を低減する。この結果、本構成は、第一半導体光検出素子及び第二半導体光検出素子の時間分解能と検出感度とを確実に向上する。
In the first aspect, when viewed from the second direction, one region configured by the contours of the plurality of photodetection regions of the first semiconductor substrate has a contour shape corresponding to the contour shape of the first side surface. may When viewed from the second direction, one region formed by the contours of the plurality of photodetection regions of the second semiconductor substrate may have a contour shape corresponding to the contour shape of the second side surface.
In a configuration in which one region configured by the contours of a plurality of photodetection regions of the first semiconductor substrate has a contour shape corresponding to the contour shape of the first side surface, the plurality of photodetection regions are formed by the first semiconductor substrate. Among them, it is difficult to place it in a place where scintillation light cannot be received. Therefore, increase in dark count and capacitance in the photodetection region of the first semiconductor substrate is suppressed. In a configuration in which one region configured by the contours of a plurality of photodetection regions of the second semiconductor substrate has a shape corresponding to the contour shape of the second side surface, the plurality of photodetection regions are formed on the second semiconductor substrate. Among them, it is difficult to place it in a place where scintillation light cannot be received. Therefore, increases in dark count and capacitance in the photodetection region of the second semiconductor substrate are suppressed. These configurations reduce the detection error of scintillation light. As a result, this configuration reliably improves the time resolution and detection sensitivity of the first semiconductor photodetector and the second semiconductor photodetector.
 上記第一の態様では、シンチレータは、互いに独立して第一方向に並んでいる複数の部分を有していてもよい。複数の部分のそれぞれは、第一半導体基板及び第二半導体基板のそれぞれに配置されている、複数の光検出領域のうち対応する光検出領域に対応して位置していてもよい。複数の部分のそれぞれは、第一方向で互いに対向している一対の対向面と、一対の対向面を連結している第一連結面と第二連結面と、を有していてもよい。第一連結面は、第一半導体基板と対向していてもよい。第二連結面は、第二半導体基板と対向し、かつ、第二方向で第一連結面と対向していてもよい。
 シンチレータが互いに独立して第一方向に並んでいる複数の部分を有している構成では、各部分で発生したシンチレーション光が当該部分内に閉じ込められる。当該部分に対応する光検出領域が、当該部分内で発生したシンチレーション光を確実に検出する。したがって、本構成は、高いエネルギー分解能を確実に実現する。
In the above first aspect, the scintillator may have a plurality of portions arranged independently of each other in the first direction. Each of the plurality of portions may be positioned corresponding to a corresponding photodetection region among the plurality of photodetection regions arranged on each of the first semiconductor substrate and the second semiconductor substrate. Each of the plurality of portions may have a pair of facing surfaces facing each other in the first direction, and a first connecting surface and a second connecting surface connecting the pair of facing surfaces. The first connecting surface may face the first semiconductor substrate. The second connecting surface may face the second semiconductor substrate and face the first connecting surface in the second direction.
In a configuration in which the scintillator has a plurality of portions arranged independently of each other in the first direction, scintillation light generated in each portion is confined within the portion. A photodetection area corresponding to the portion reliably detects scintillation light generated within the portion. Therefore, this configuration reliably achieves high energy resolution.
 上記第一の態様では、複数の部分は、互いに接合されていてもよい。
 複数の部分が互いに接合されている構成は、シンチレータの物理的強度を向上する。したがって、本構成は、高いエネルギー分解能をより確実に実現する。
In the first aspect described above, the plurality of portions may be joined together.
A configuration in which multiple sections are bonded together enhances the physical strength of the scintillator. Therefore, this configuration more reliably achieves high energy resolution.
 上記第一の態様は、光反射部材を備えていてもよい。光反射部材は、複数の部分間に配置されていてもよい。
 光反射部材が複数の部分間に配置されている構成では、各部分で発生したシンチレーション光が確実に当該部分内に閉じ込められる。当該部分に対応する光検出領域が、当該部分内で発生したシンチレーション光をより確実に検出する。したがって、本構成は、高いエネルギー分解能を更により確実に実現する。
The first aspect may include a light reflecting member. A light reflecting member may be arranged between the plurality of portions.
In a configuration in which light reflecting members are arranged between a plurality of portions, scintillation light generated in each portion is reliably confined within the portion. A photodetection region corresponding to the portion more reliably detects scintillation light generated within the portion. Therefore, this configuration achieves a high energy resolution even more reliably.
 上記第一の態様では、第二方向から見て、第一半導体基板が有する複数の光検出領域のそれぞれは、複数の部分のうち対応する部分の、第一半導体基板と対向する第一連結面の輪郭形状に対応する輪郭形状を呈していてもよい。第二方向から見て、第二半導体基板が有する複数の光検出領域のそれぞれは、複数の部分のうち対応する部分の、第二半導体基板と対向する第二連結面の輪郭形状に対応する輪郭形状を呈していてもよい。
 第一半導体基板が有する複数の光検出領域のそれぞれが複数の部分のうち対応する部分の、第一半導体基板と対向する第一連結面の輪郭形状に対応する輪郭形状を呈している構成では、複数の光検出領域は、第一半導体基板のうち、シンチレーション光を受光し得ない箇所に配置されがたい。第二半導体基板が有する複数の光検出領域のそれぞれが複数の部分のうち対応する部分の、第二半導体基板と対向する第二連結面の輪郭形状に対応する輪郭形状を呈している構成では、複数の光検出領域は、第二半導体基板のうち、シンチレーション光を受光し得ない箇所に配置されがたい。したがって、これらの構成は、複数の光検出領域でのダークカウント及び容量の増加を抑制する。この結果、本構成は、放射線検出器の時間分解能及びエネルギー分解能を確実に向上する。
In the first aspect, when viewed from the second direction, each of the plurality of photodetection regions of the first semiconductor substrate is the first connecting surface of the corresponding portion of the plurality of portions facing the first semiconductor substrate. may exhibit a contour shape corresponding to the contour shape of When viewed from the second direction, each of the plurality of photodetection regions of the second semiconductor substrate has a contour corresponding to the contour of the second connecting surface facing the second semiconductor substrate of the corresponding portion among the plurality of portions. It may have a shape.
In a configuration in which each of the plurality of photodetection regions of the first semiconductor substrate has a contour shape corresponding to the contour shape of the first connecting surface facing the first semiconductor substrate of the corresponding portion among the plurality of portions, It is difficult for the plurality of photodetection regions to be arranged in locations on the first semiconductor substrate where scintillation light cannot be received. In a configuration in which each of the plurality of photodetection regions of the second semiconductor substrate has a contour shape corresponding to the contour shape of the second connecting surface facing the second semiconductor substrate in the corresponding portion among the plurality of portions, It is difficult for the plurality of photodetection regions to be arranged in locations on the second semiconductor substrate where scintillation light cannot be received. Therefore, these configurations suppress dark count and capacity build-up in multiple photodetection regions. As a result, this arrangement reliably improves the time resolution and energy resolution of the radiation detector.
 上記第一の態様では、複数の光検出領域は、第一光検出領域と、第一光検出領域よりも第二部分に近い第二光検出領域と、を含んでいてもよい。第一光検出領域に対応している第一電極と、第一光検出領域とを電気的に接続している導線の幅は、第二光検出領域に対応している第一電極と、第二光検出領域とを電気的に接続している導線の幅より大きくてもよい。
 第一光検出領域に対応している第一電極と、第一光検出領域とを電気的に接続している導線の幅が、第二光検出領域に対応している第一電極と、第二光検出領域とを電気的に接続している導線の幅より大きい構成では、電気抵抗差が低減される。第一光検出領域に対応している第一電極と、第一光検出領域とを電気的に接続している導線の長さは、第二光検出領域に対応している第一電極と、第二光検出領域とを電気的に接続している導線の長さより大きい。導線の長さが大きくなるに従って、当該導線の電気抵抗が増大する。導線の幅が大きくなるに従って、当該導線の電気抵抗が低減する。したがって、長い導線の幅が短い導線の幅より大きい構成では、長い導線の電気抵抗と短い導線の電気抵抗との間の電気抵抗差が低減する。したがって、本構成は、放射線検出器の時間分解能及びエネルギー分解能をより確実に向上する。
In the first aspect, the plurality of photodetection regions may include a first photodetection region and a second photodetection region closer to the second portion than the first photodetection region. The width of the conductive wire electrically connecting the first electrode corresponding to the first photodetection region and the first photodetection region is equal to the width of the first electrode corresponding to the second photodetection region It may be larger than the width of the conductive wire electrically connecting the two photodetection regions.
A first electrode corresponding to the first photodetection region and a conductive wire electrically connecting the first photodetection region have a width corresponding to the second photodetection region A configuration greater than the width of the conductive line electrically connecting the two photodetecting regions reduces the electrical resistance difference. The length of the conductive wire electrically connecting the first electrode corresponding to the first photodetection region and the first photodetection region is the first electrode corresponding to the second photodetection region, greater than the length of the conductor electrically connecting the second photodetection region. As the length of the conductor increases, the electrical resistance of the conductor increases. As the width of the conductor increases, the electrical resistance of the conductor decreases. Therefore, in configurations where the width of the long conductor is greater than the width of the short conductor, the electrical resistance difference between the electrical resistance of the long and short conductors is reduced. Therefore, this configuration more reliably improves the time resolution and energy resolution of the radiation detector.
 上記第一の態様は、第二部分と第四部分との間に配置されている補強体を備えていてもよい。補強体は、第二部分と第四部分とを覆っていると共に、第二部分と第四部分とを連結していてもよい。
 第二部分と第四部分との間に配置されている補強体を備えている構成では、第二部分と第四部分との間に配置された補強体が、第二部分及び第四部分の機械的強度を向上する。
The first aspect may comprise a reinforcement located between the second portion and the fourth portion. The reinforcing body may cover the second portion and the fourth portion and may connect the second portion and the fourth portion.
In a configuration comprising a reinforcement located between the second and fourth parts, the reinforcement located between the second and fourth parts may be positioned between the second and fourth parts. Improve mechanical strength.
 上記第一の態様では、第一半導体基板は、第二方向でシンチレータと対向している第一面と、第二方向で第一面と対向している第二面と、を有していてもよい。第二半導体基板は、第二方向でシンチレータと対向している第三面と、第二方向で第三面と対向している第四面と、を有していてもよい。第二面及び第四面は、研磨面であってもよい。
 第二面が研磨面である構成では、第二面が研磨されることによって、第一半導体基板の薄化が可能である。第四面が研磨面である構成では、第四面が研磨されることによって、第二半導体基板の薄化が可能である。第一半導体基板の厚み方向で、放射線検出器が小サイズ化され得る。第二半導体基板の厚み方向で、放射線検出器が小サイズ化され得る。
In the first aspect, the first semiconductor substrate has a first surface facing the scintillator in the second direction and a second surface facing the first surface in the second direction. good too. The second semiconductor substrate may have a third surface facing the scintillator in the second direction and a fourth surface facing the third surface in the second direction. The second and fourth surfaces may be polished surfaces.
In the configuration in which the second surface is a polished surface, the thickness of the first semiconductor substrate can be reduced by polishing the second surface. In the configuration in which the fourth surface is a polished surface, the thickness of the second semiconductor substrate can be reduced by polishing the fourth surface. The size of the radiation detector can be reduced in the thickness direction of the first semiconductor substrate. The size of the radiation detector can be reduced in the thickness direction of the second semiconductor substrate.
 上記第一の態様は、第二方向で互いに対向している第五面及び第六面を有している共に、第五面とシンチレータとの間に第一半導体基板が位置するように配置されている第一基体と、第二方向で互いに対向している第七面及び第八面を有している共に、第七面とシンチレータとの間に第二半導体基板が位置するように配置されている第二基体と、第五面上に配置されている複数の第一端子と、第五面上に配置されている第二端子と、第七面上に配置されている複数の第三端子と、第七面上に配置されている第四端子と、複数の第一端子と第一電極とを電気的に接続する第一ワイヤと、第二端子と第二電極とを電気的に接続する第二ワイヤと、複数の第三端子と第三電極とを電気的に接続する第三ワイヤと、第四端子と第四電極とを電気的に接続する第四ワイヤと、を備えていてもよい。第一基体は、第一半導体基板で覆われている第五部分と、第五部分と第一方向に並んでいると共に第一半導体基板から露出している第六部分と、を有していてもよい。第二基体は、第二半導体基板で覆われている第七部分と、第七部分と第一方向に並んでいると共に第二半導体基板から露出している第八部分と、を有していてもよい。各第一端子及び第二端子は、第六部分上に位置していてもよい。各第三端子及び第四端子は、第八部分上に位置していてもよい。
 第一基体及び第二基体を備えている構成は、放射線検出器の機械的強度を向上する。したがって、本構成は、機械的強度が向上した放射線検出器を確実に実現する。
The first aspect has a fifth surface and a sixth surface facing each other in the second direction, and is arranged such that the first semiconductor substrate is positioned between the fifth surface and the scintillator. and a seventh surface and an eighth surface facing each other in a second direction, and arranged such that the second semiconductor substrate is positioned between the seventh surface and the scintillator. a second base, a plurality of first terminals arranged on the fifth surface, a second terminal arranged on the fifth surface, and a plurality of third terminals arranged on the seventh surface; a terminal, a fourth terminal arranged on the seventh surface, a first wire electrically connecting the plurality of first terminals and the first electrode, and electrically connecting the second terminal and the second electrode a connecting second wire; a third wire electrically connecting the plurality of third terminals and the third electrode; and a fourth wire electrically connecting the fourth terminal and the fourth electrode. may The first base has a fifth portion covered with the first semiconductor substrate, and a sixth portion aligned with the fifth portion in the first direction and exposed from the first semiconductor substrate. good too. The second base has a seventh portion covered with the second semiconductor substrate and an eighth portion aligned with the seventh portion in the first direction and exposed from the second semiconductor substrate. good too. Each first terminal and second terminal may be located on the sixth portion. Each third terminal and fourth terminal may be located on the eighth portion.
A configuration comprising a first substrate and a second substrate improves the mechanical strength of the radiation detector. Therefore, this configuration reliably realizes a radiation detector with improved mechanical strength.
 上記第一の態様は、シンチレータとの間に第一半導体基板が位置するように配置されている第一被覆体と、シンチレータとの間に第二半導体基板が位置するように配置されている第二被覆体と、を備えていてもよい。第一被覆体及び第二被覆体のそれぞれは、光反射体及び電気絶縁体の少なくともいずれか一つを含んでいてもよい。 In the first aspect, the first cover is arranged so that the first semiconductor substrate is positioned between the scintillator, and the second cover is arranged so that the second semiconductor substrate is positioned between the scintillator. and a second covering. Each of the first covering and the second covering may include at least one of a light reflector and an electrical insulator.
 たとえば、第一被覆体及び第二被覆体のそれぞれが光反射体を含む構成は、シンチレーション光の光反射特性を向上する。たとえば、第一被覆体及び第二被覆体のそれぞれが電気絶縁体を含む構成は、互いに隣接する放射線検出器間の電気絶縁性を向上する。 For example, a configuration in which each of the first cover and the second cover includes a light reflector improves the light reflection properties of scintillation light. For example, a configuration in which each of the first covering and the second covering includes an electrical insulator improves electrical insulation between adjacent radiation detectors.
 上記第一の態様では、第一配線部材は、第一半導体基板に対して、シンチレータと同じ側に配置されていてもよい。第二配線部材は、第二半導体基板に対して、シンチレータと同じ側に配置されていてもよい。
 第一配線部材が、第一半導体基板に対してシンチレータと同じ側に配置されている構成は、たとえば、第一配線部材を、第一電極及び第二電極とダイボンディングによって接続するための基板を必要としない。第二配線部材が、第二半導体基板に対してシンチレータと同じ側に配置されている構成は、たとえば、第二配線部材を、第一電極及び第二電極とダイボンディングによって接続するための基板を必要としない。したがって、これらの構成は、放射線検出器の構成をより確実に簡略化する。
In the first aspect, the first wiring member may be arranged on the same side as the scintillator with respect to the first semiconductor substrate. The second wiring member may be arranged on the same side as the scintillator with respect to the second semiconductor substrate.
The configuration in which the first wiring member is arranged on the same side as the scintillator with respect to the first semiconductor substrate is, for example, a substrate for connecting the first wiring member to the first electrode and the second electrode by die bonding. do not need. The configuration in which the second wiring member is arranged on the same side as the scintillator with respect to the second semiconductor substrate is, for example, a substrate for connecting the second wiring member to the first electrode and the second electrode by die bonding. do not need. Therefore, these configurations more reliably simplify the configuration of the radiation detector.
 上記第一の態様では、第一配線部材及び第二配線部材と、第一半導体基板及び第二半導体基板とは、可撓性を有していてもよい。第一配線部材の可撓性は、第一半導体基板の可撓性より大きくてもよい。第二配線部材の可撓性は、第二半導体基板の可撓性より大きくてもよい。
 第一配線部材の可撓性が第一半導体基板の可撓性より大きい構成では、第一配線部材の振動が、第一半導体基板に伝わりにくい。第一半導体基板に、第一配線部材からの力が加わりにくく、第一半導体基板は、物理的なダメージを受けがたい。第二配線部材の可撓性が第二半導体基板の可撓性より大きい構成では、第二配線部材の振動が、第二半導体基板に伝わりにくい。第二半導体基板に、第二配線部材からの力が加わりにくく、第二半導体基板は、物理的なダメージを受けがたい。したがって、本構成は、放射線検出器の機械的強度を確実に維持する。
In the first aspect described above, the first wiring member and the second wiring member, and the first semiconductor substrate and the second semiconductor substrate may have flexibility. The flexibility of the first wiring member may be greater than the flexibility of the first semiconductor substrate. The flexibility of the second wiring member may be greater than the flexibility of the second semiconductor substrate.
In a configuration in which the flexibility of the first wiring member is greater than that of the first semiconductor substrate, the vibration of the first wiring member is less likely to be transmitted to the first semiconductor substrate. The force from the first wiring member is less likely to be applied to the first semiconductor substrate, and the first semiconductor substrate is less susceptible to physical damage. In a configuration in which the flexibility of the second wiring member is greater than that of the second semiconductor substrate, the vibration of the second wiring member is less likely to be transmitted to the second semiconductor substrate. The force from the second wiring member is less likely to be applied to the second semiconductor substrate, and the second semiconductor substrate is less susceptible to physical damage. This arrangement therefore ensures that the mechanical strength of the radiation detector is maintained.
 第二の態様に係る放射線検出器アレイは、一次元に配列された複数の放射線検出器を備えている。複数の放射線検出器のそれぞれは、上記放射線検出器である。シンチレータは、一対の端面を連結していると共に第一側面と第二側面とを連結している一対の第三側面を有している。複数の放射線検出器のうち互いに隣り合う任意の二つの放射線検出器は、一方の放射線検出器が備えるシンチレータの第三側面と、他方の放射線検出器が備えるシンチレータの第三側面とが互いに対向するように、配置されている。 A radiation detector array according to the second aspect includes a plurality of radiation detectors arranged one-dimensionally. Each of the plurality of radiation detectors is the radiation detector described above. The scintillator has a pair of third side surfaces connecting the pair of end surfaces and connecting the first side surface and the second side surface. Any two radiation detectors adjacent to each other among the plurality of radiation detectors have the third side surface of the scintillator of one radiation detector and the third side surface of the scintillator of the other radiation detector facing each other. are arranged so that
 上記第二の態様は、高い時間分解能と高い検出感度とを有している複数の放射線検出器が一次元に配列された放射線検出器アレイを実現する。 The second aspect realizes a radiation detector array in which a plurality of radiation detectors having high time resolution and high detection sensitivity are arranged in one dimension.
 上記第二の態様では、複数の放射線検出器が備える第一半導体光検出素子同士は、一体に形成されていてもよい。複数の放射線検出器が備える第二半導体光検出素子同士は、一体に形成されていてもよい。
 上述した第一半導体光検出素子同士が一体に形成されていると共に、上述した第二半導体光検出素子同士が一体に形成されている構成は、複数の放射線検出器が一次元に配列された放射線検出器アレイの機械的強度を向上する。
In the above second aspect, the first semiconductor photodetecting elements included in the plurality of radiation detectors may be integrally formed. The second semiconductor photodetecting elements included in the plurality of radiation detectors may be integrally formed.
The configuration in which the above-described first semiconductor photodetection elements are integrally formed and the above-described second semiconductor photodetection elements are integrally formed is a radiation detector in which a plurality of radiation detectors are arranged in one dimension. Improve the mechanical strength of the detector array.
 上記第二の態様は、行列状に二次元に配列された複数の放射線検出器を備えていてもよい。複数の放射線検出器のうち行方向に配置された複数の放射線検出器のそれぞれは、上記放射線検出器アレイであってもよい。複数の放射線検出器のうち列方向で互いに隣り合う任意の二つの放射線検出器は、一方の放射線検出器が備える第一半導体光検出素子又は第二半導体光検出素子のいずれか一方と、他方の放射線検出器が備える第一半導体光検出素子又は第二半導体光検出素子のいずれか一方とが列方向で互いに対向するように、配置されていてもよい。
 複数の放射線検出器が行列状に二次元に配列された構成は、高い時間分解能と高い検出感度とを有している放射線検出器が行列状に二次元に配列された放射線検出器アレイを実現する。
The second aspect may include a plurality of radiation detectors arranged two-dimensionally in a matrix. Each of the plurality of radiation detectors arranged in the row direction among the plurality of radiation detectors may be the radiation detector array. Of the plurality of radiation detectors, any two radiation detectors adjacent to each other in the column direction are either a first semiconductor photodetector or a second semiconductor photodetector provided in one radiation detector, and the other Either the first semiconductor photodetector element or the second semiconductor photodetector element of the radiation detector may be arranged so as to face each other in the column direction.
A configuration in which multiple radiation detectors are arranged two-dimensionally in a matrix provides a radiation detector array in which radiation detectors with high time resolution and high detection sensitivity are arranged two-dimensionally in a matrix. do.
 第三の態様に係る放射線検出器アレイは、一次元に配列された複数の放射線検出器を備えている。複数の放射線検出器のそれぞれは、上記放射線検出器である。シンチレータは、一対の端面を連結していると共に、第一側面と第二側面とを連結している一対の第三側面を有している。複数の放射線検出器のうち互いに隣り合う任意の二つの放射線検出器は、一方の放射線検出器が備えるシンチレータの第三側面と、他方の放射線検出器が備える第一半導体光検出素子又は第二半導体光検出素子のいずれか一方とが互いに対向するように、配置されている。 A radiation detector array according to the third aspect includes a plurality of radiation detectors arranged one-dimensionally. Each of the plurality of radiation detectors is the radiation detector described above. The scintillator has a pair of third side surfaces connecting the pair of end surfaces and connecting the first side surface and the second side surface. Any two radiation detectors adjacent to each other among a plurality of radiation detectors are composed of the third side surface of the scintillator provided by one radiation detector and the first semiconductor photodetector element or second semiconductor provided by the other radiation detector. Either one of the photodetecting elements is arranged so as to face each other.
 上記第三の態様は、高い時間分解能と高い検出感度とを有している放射線検出器が一次元に配列された放射線検出器アレイを実現する。 The above third aspect realizes a radiation detector array in which radiation detectors having high time resolution and high detection sensitivity are arranged one-dimensionally.
 上記第三の態様は、行列状に二次元に配列された複数の放射線検出器を備えていてもよい。複数の放射線検出器のうち行方向に配置された複数の放射線検出器のそれぞれは、上記放射線検出器アレイであってもよい。複数の放射線検出器のうち列方向で互いに隣り合う任意の二つの放射線検出器は、一方の放射線検出器が備えるシンチレータの第三側面と、他方の放射線検出器が備える第一半導体光検出素子又は第二半導体光検出素子のいずれか一方とが列方向で互いに対向するように、配置されていてもよい。
 複数の放射線検出器が行列状に二次元に配列された構成は、高い時間分解能と高い検出感度とを有している放射線検出器が行列状に二次元に配列された放射線検出器アレイを実現する。第三側面と、他方の放射線検出器が備える第一半導体光検出素子又は第二半導体光検出素子のいずれか一方とが列方向で互いに対向している構成では、第一半導体光検出素子及び第二半導体光検出素子が互いに対向している構成に比べて、複数の放射線検出器が、より少ないスペースで二次元に配列される。
The third aspect may include a plurality of radiation detectors arranged two-dimensionally in a matrix. Each of the plurality of radiation detectors arranged in the row direction among the plurality of radiation detectors may be the radiation detector array. Any two radiation detectors adjacent to each other in the column direction among the plurality of radiation detectors are composed of the third side surface of the scintillator provided by one radiation detector and the first semiconductor photodetector element provided by the other radiation detector, or Either one of the second semiconductor photodetectors may be arranged so as to face each other in the column direction.
A configuration in which multiple radiation detectors are arranged two-dimensionally in a matrix provides a radiation detector array in which radiation detectors with high time resolution and high detection sensitivity are arranged two-dimensionally in a matrix. do. In a configuration in which the third side surface and either the first semiconductor photodetector element or the second semiconductor photodetector element provided in the other radiation detector face each other in the column direction, the first semiconductor photodetector element and the second A plurality of radiation detectors are arranged two-dimensionally in a smaller space than in a configuration in which two semiconductor photodetectors face each other.
 本発明の第一の態様は、高い時間分解能と高い検出感度とを有している放射線検出器を提供する。本発明の第二及び第三の態様は、高い時間分解能と高い検出感度とを有している放射線検出器を備える放射線検出器アレイを提供する。 A first aspect of the present invention provides a radiation detector with high temporal resolution and high detection sensitivity. Second and third aspects of the present invention provide radiation detector arrays comprising radiation detectors having high temporal resolution and high detection sensitivity.
図1は、第一実施形態に係る放射線検出器を示す斜視図である。FIG. 1 is a perspective view showing a radiation detector according to the first embodiment. FIG. 図2は、第一実施形態に係る放射線検出器を示す斜視図である。FIG. 2 is a perspective view showing the radiation detector according to the first embodiment. 図3は、第一半導体光検出素子を示す平面図である。FIG. 3 is a plan view showing the first semiconductor photodetector. 図4は、第二半導体光検出素子を示す平面図である。FIG. 4 is a plan view showing the second semiconductor photodetector. 図5は、光検出領域の等価回路を示す図である。FIG. 5 is a diagram showing an equivalent circuit of the photodetection region. 図6は、第一実施形態に係る放射線検出器を示す側面図である。FIG. 6 is a side view showing the radiation detector according to the first embodiment. 図7は、第一実施形態に係る放射線検出器を示す側面図である。FIG. 7 is a side view showing the radiation detector according to the first embodiment; 図8は、第一実施形態に係る放射線検出器を示す側面図である。FIG. 8 is a side view showing the radiation detector according to the first embodiment; 図9は、第一実施形態に係る放射線検出器を示す斜視図である。FIG. 9 is a perspective view showing the radiation detector according to the first embodiment. 図10は、第一実施形態に係る放射線検出器を示す斜視図である。FIG. 10 is a perspective view showing a radiation detector according to the first embodiment; 図11は、第一実施形態の変形例に係る放射線検出器を示す斜視図である。FIG. 11 is a perspective view showing a radiation detector according to a modification of the first embodiment; 図12は、シンチレーション光の一部の経路を示す図である。FIG. 12 is a diagram showing paths of a part of scintillation light. 図13は、第二実施形態に係る放射線検出器アレイを示す斜視図である。FIG. 13 is a perspective view showing a radiation detector array according to the second embodiment. 図14は、第二実施形態に係る放射線検出器アレイを示す斜視図である。FIG. 14 is a perspective view showing a radiation detector array according to the second embodiment. 図15は、第三実施形態に係る放射線検出器アレイを示す斜視図である。FIG. 15 is a perspective view showing a radiation detector array according to the third embodiment. 図16は、第三実施形態に係る放射線検出器アレイを示す斜視図である。FIG. 16 is a perspective view showing a radiation detector array according to the third embodiment. 図17は、放射線検出器の製造方法を示す流れ図である。FIG. 17 is a flow chart showing a method of manufacturing a radiation detector.
 添付図面を参照して、本発明の実施形態について詳細に説明する。なお、説明において、同一要素又は同一機能を有する要素には、同一符号を用いることとし、重複する説明は省略する。 An embodiment of the present invention will be described in detail with reference to the accompanying drawings. In the description, the same reference numerals are used for the same elements or elements having the same functions, and overlapping descriptions are omitted.
 (第一実施形態)
 図1~図10を参照しながら、第一実施形態に係る放射線検出器RD1の構成を説明する。図1及び図2は、第一実施形態に係る放射線検出器を示す斜視図である。図3は、第一半導体光検出素子を示す平面図である。図4は、第二半導体光検出素子を示す平面図である。図5は、光検出領域の等価回路を示す図である。図6~図8は、第一実施形態に係る放射線検出器を示す側面図である。図9及び図10は、第一実施形態に係る放射線検出器を示す斜視図である。図1及び図9は、説明のため、第二半導体光検出素子の一部の図示を省略している。図2及び図10は、説明のため、第一半導体光検出素子の一部の図示を省略している。図9及び図10は、補強体を二点鎖線によって示している。
(First embodiment)
The configuration of the radiation detector RD1 according to the first embodiment will be described with reference to FIGS. 1 to 10. FIG. 1 and 2 are perspective views showing the radiation detector according to the first embodiment. FIG. 3 is a plan view showing the first semiconductor photodetector. FIG. 4 is a plan view showing the second semiconductor photodetector. FIG. 5 is a diagram showing an equivalent circuit of the photodetection region. 6 to 8 are side views showing the radiation detector according to the first embodiment. 9 and 10 are perspective views showing the radiation detector according to the first embodiment. 1 and 9 omit illustration of part of the second semiconductor photodetector for the sake of explanation. 2 and 10 omit illustration of part of the first semiconductor photodetector for the sake of explanation. Figures 9 and 10 show the reinforcing bodies by a two-dot chain line.
 図1及び図2に示されるように、放射線検出器RD1は、シンチレータ1と、半導体光検出素子10aと、半導体光検出素子10bと、配線部材30aと、配線部材30bとを備えている。シンチレータ1は、シンチレータ1への放射線の入射に応じてシンチレーション光を発生する。シンチレーション光は、たとえば、蛍光を含んでいる。半導体光検出素子10a,10bは、シンチレータ1で発生したシンチレーション光を検出する。半導体光検出素子10aは、半導体基板11aを有しており、配線部材30aと電気的に接続されている。半導体光検出素子10bは、半導体基板11bを有しており、配線部材30bと電気的に接続されている。たとえば、半導体光検出素子10aが第一半導体光検出素子を構成する場合、半導体光検出素子10bは、第二半導体光検出素子を構成する。たとえば、配線部材30aが第一配線部材を構成する場合、配線部材30bは、第二配線部材を構成する。たとえば、半導体基板11aが第一半導体基板を構成する場合、半導体基板11bは、第二半導体基板を構成する。 As shown in FIGS. 1 and 2, the radiation detector RD1 includes a scintillator 1, a semiconductor photodetector 10a, a semiconductor photodetector 10b, a wiring member 30a, and a wiring member 30b. The scintillator 1 generates scintillation light in response to radiation incident on the scintillator 1 . Scintillation light includes, for example, fluorescence. The semiconductor photodetectors 10 a and 10 b detect scintillation light generated by the scintillator 1 . The semiconductor photodetector 10a has a semiconductor substrate 11a and is electrically connected to the wiring member 30a. The semiconductor photodetector 10b has a semiconductor substrate 11b and is electrically connected to the wiring member 30b. For example, when the semiconductor photodetector 10a constitutes the first semiconductor photodetector, the semiconductor photodetector 10b constitutes the second semiconductor photodetector. For example, when the wiring member 30a constitutes the first wiring member, the wiring member 30b constitutes the second wiring member. For example, when the semiconductor substrate 11a constitutes the first semiconductor substrate, the semiconductor substrate 11b constitutes the second semiconductor substrate.
 シンチレータ1は、互いに対向している一対の端面1a,1bと、互いに対向している一対の側面1c,1dと、互いに対向している一対の側面1e,1fと、を有している。端面1a,1b、側面1c,1d、及び側面1e,1fは、シンチレータ1の外表面を構成している。端面1a,1bは、第一方向D1で互いに対向している。端面1a,1bは、シンチレータ1の第一方向D1での両端を規定している。側面1c,1dは、第一方向D1に交差する第二方向D2で互いに対向していると共に、一対の端面1a,1bを連結している。本実施形態では、第二方向D2は、側面1cに直交している方向と一致している。側面1c,1dは、シンチレータ1の第二方向D2での両端を規定している。側面1e,1fは、端面1a,1bを連結していると共に、側面1c及び側面1dとを連結している。側面1e,1fは、第一方向D1及び第二方向D2に交差する第三方向D3で互いに対向している。第三方向D3は、側面1cに平行な方向と一致している。本実施形態では、第一方向D1、第二方向D2、及び第三方向D3は、互いに直交している。側面1e,1fは、シンチレータ1の第三方向D3での両端を規定している。たとえば、側面1cが第一側面を構成する場合、側面1dは、第二側面を構成し、側面1e,1fは、一対の第三側面を構成する。 The scintillator 1 has a pair of end faces 1a and 1b facing each other, a pair of side faces 1c and 1d facing each other, and a pair of side faces 1e and 1f facing each other. The end faces 1a and 1b, the side faces 1c and 1d, and the side faces 1e and 1f constitute the outer surface of the scintillator 1. As shown in FIG. The end surfaces 1a and 1b face each other in the first direction D1. The end surfaces 1a and 1b define both ends of the scintillator 1 in the first direction D1. The side surfaces 1c and 1d are opposed to each other in a second direction D2 intersecting the first direction D1 and connect the pair of end surfaces 1a and 1b. In this embodiment, the second direction D2 coincides with the direction perpendicular to the side surface 1c. The side surfaces 1c and 1d define both ends of the scintillator 1 in the second direction D2. The side surfaces 1e and 1f connect the end surfaces 1a and 1b and also connect the side surfaces 1c and 1d. The side surfaces 1e and 1f face each other in a third direction D3 intersecting the first direction D1 and the second direction D2. The third direction D3 matches the direction parallel to the side surface 1c. In this embodiment, the first direction D1, the second direction D2, and the third direction D3 are orthogonal to each other. The side surfaces 1e and 1f define both ends of the scintillator 1 in the third direction D3. For example, when the side surface 1c constitutes the first side surface, the side surface 1d constitutes the second side surface, and the side surfaces 1e and 1f constitute a pair of third side surfaces.
 端面1a及び端面1bは、側面1cと側面1dとを連結するように、第二方向D2に延在している。端面1a及び端面1bは、側面1eと側面1fとを連結するように、第三方向D3に延在している。側面1c及び側面1dは、端面1aと端面1bとを連結するように、第一方向D1に延在している。側面1c及び側面1dは、側面1eと側面1fとを連結するように、第三方向D3に延在している。側面1e及び側面1fは、端面1aと端面1bとを連結するように、第一方向D1に延在している。側面1e及び側面1fは、側面1cと側面1dとを連結するように、第二方向D2に延在している。側面1e及び側面1fは、側面1cと隣り合っている。 The end face 1a and the end face 1b extend in the second direction D2 so as to connect the side face 1c and the side face 1d. The end face 1a and the end face 1b extend in the third direction D3 so as to connect the side face 1e and the side face 1f. The side surface 1c and the side surface 1d extend in the first direction D1 so as to connect the end surface 1a and the end surface 1b. The side surface 1c and the side surface 1d extend in the third direction D3 so as to connect the side surface 1e and the side surface 1f. The side surface 1e and the side surface 1f extend in the first direction D1 so as to connect the end surface 1a and the end surface 1b. The side surface 1e and the side surface 1f extend in the second direction D2 so as to connect the side surface 1c and the side surface 1d. Side 1e and side 1f are adjacent to side 1c.
 第一方向D1でのシンチレータ1の長さは、第二方向D2でのシンチレータ1の長さより大きい。第一方向D1でのシンチレータ1の長さは、第三方向D3でのシンチレータ1の長さより大きい。第一方向D1は、シンチレータ1の長手方向である。第一方向D1での側面1cの長さは、第三方向D3での側面1cの幅より大きい。第一方向D1での側面1dの長さは、第三方向D3での側面1dの幅より大きい。 The length of the scintillator 1 in the first direction D1 is greater than the length of the scintillator 1 in the second direction D2. The length of the scintillator 1 in the first direction D1 is greater than the length of the scintillator 1 in the third direction D3. The first direction D1 is the longitudinal direction of the scintillator 1 . The length of the side surface 1c in the first direction D1 is greater than the width of the side surface 1c in the third direction D3. The length of the side surface 1d in the first direction D1 is greater than the width of the side surface 1d in the third direction D3.
 端面1a,1bは、それぞれ、端面1a,1bに直交する方向から見て、矩形状を呈している。側面1c,1dは、それぞれ、側面1c,1dに直交する方向から見て、矩形状を呈している。側面1e,1fは、それぞれ、側面1e,1fに直交する方向から見て、矩形状を呈している。本実施形態では、シンチレータ1は、第一方向D1から見て、矩形状を呈しており、第二方向D2及び第三方向D3から見て、矩形状を呈している。シンチレータ1は、たとえば、直方体形状を呈している。第一方向D1でのシンチレータ1の長さは、たとえば、約20mmである。第二方向D2でのシンチレータ1の長さは、たとえば、約4mmである。第三方向D3でのシンチレータ1の長さは、たとえば、約4mmである。本明細書での「矩形状」は、たとえば、各角が面取りされている形状、及び、各角が丸められている形状を含む。本明細書での「直方体形状」は、角部及び稜線部が面取りされている直方体の形状、及び、角部及び稜線部が丸められている直方体の形状を含む。 The end faces 1a and 1b have a rectangular shape when viewed from a direction perpendicular to the end faces 1a and 1b. The side surfaces 1c and 1d have a rectangular shape when viewed from a direction orthogonal to the side surfaces 1c and 1d. The side surfaces 1e and 1f have a rectangular shape when viewed from a direction orthogonal to the side surfaces 1e and 1f. In this embodiment, the scintillator 1 has a rectangular shape when viewed from the first direction D1, and has a rectangular shape when viewed from the second direction D2 and the third direction D3. The scintillator 1 has, for example, a rectangular parallelepiped shape. The length of the scintillator 1 in the first direction D1 is, for example, approximately 20 mm. The length of the scintillator 1 in the second direction D2 is, for example, approximately 4 mm. The length of the scintillator 1 in the third direction D3 is, for example, approximately 4 mm. "Rectangular" in this specification includes, for example, a shape with chamfered corners and a shape with rounded corners. The term "rectangular parallelepiped shape" as used herein includes a rectangular parallelepiped shape with chamfered corners and edges, and a rectangular parallelepiped shape with rounded corners and edges.
 シンチレータ1は、たとえば、結晶性シンチレータ、セラミックシンチレータ、又はプラスチックシンチレータを含んでいる。結晶性シンチレータは、たとえば、CsI、NaI、LaBr、セリウム添加ルテチウムイットリウムオルトシリケート(LYSO(Ce))、ガドリニウムアルミニウムガリウムガーネット(GAGG)、オキシオルトケイ酸ルテチウム(LSO)、ゲルマニウム酸ビスマス(BGO)、又はルテニウムアルミニウムガーネット(LuAG)を含んでいる。セラミックシンチレータは、たとえば、無機蛍光体の焼結体を含んでいる。プラスチックシンチレータは、たとえば、ポリエチレンテレフタレート(PET)を含んでいる。 The scintillator 1 includes, for example, a crystalline scintillator, a ceramic scintillator, or a plastic scintillator. Crystalline scintillators include, for example, CsI, NaI, LaBr3 , cerium-doped lutetium yttrium orthosilicate (LYSO(Ce)), gadolinium aluminum gallium garnet (GAGG), lutetium oxyorthosilicate (LSO), bismuth germanate (BGO), or ruthenium aluminum garnet (LuAG). A ceramic scintillator contains, for example, a sintered body of an inorganic phosphor. Plastic scintillators include, for example, polyethylene terephthalate (PET).
 半導体基板11aは、側面1cと対向するように、配置されている。半導体基板11bは、側面1dと対向するように、配置されている。半導体基板11a,11bは、たとえば、Siを含んでいる。半導体基板11bは、側面1dに配置されることを除いて、たとえば、側面1cに配置される半導体基板11aと同一の形態を有し、同一の機能を示す。半導体基板11aは、たとえば、接着剤によって、側面1cに配置される。半導体基板11bは、たとえば、接着剤によって、側面1dに配置される。 The semiconductor substrate 11a is arranged so as to face the side surface 1c. The semiconductor substrate 11b is arranged so as to face the side surface 1d. The semiconductor substrates 11a and 11b contain Si, for example. Semiconductor substrate 11b has, for example, the same form as semiconductor substrate 11a arranged on side surface 1c, except that semiconductor substrate 11b is arranged on side surface 1d, and exhibits the same function. Semiconductor substrate 11a is arranged on side surface 1c, for example, by means of an adhesive. The semiconductor substrate 11b is arranged on the side surface 1d, for example, by means of an adhesive.
 図3に示されるように、半導体基板11aは、部分21aと部分22aとを有している。本実施形態では、部分21aは、側面1cで覆われている。部分22aは、側面1cから露出している。部分21aと部分22aとは、第一方向D1に並んでいる。図4に示されるように、半導体基板11bは、部分21bと部分22bとを有している。本実施形態では、部分21bは、側面1dで覆われている。部分22bは、側面1dから露出している。部分21bと部分22bとは、第一方向D1に並んでいる。たとえば、部分21aが第一部分を構成する場合、部分22aは、第二部分を構成する。たとえば、部分21bが第三部分を構成する場合、部分22bは、第四部分を構成する。 As shown in FIG. 3, the semiconductor substrate 11a has a portion 21a and a portion 22a. In this embodiment, portion 21a is covered with side surface 1c. The portion 22a is exposed from the side surface 1c. The portion 21a and the portion 22a are arranged in the first direction D1. As shown in FIG. 4, the semiconductor substrate 11b has a portion 21b and a portion 22b. In this embodiment, the portion 21b is covered with the side 1d. The portion 22b is exposed from the side surface 1d. The portion 21b and the portion 22b are arranged in the first direction D1. For example, if the portion 21a constitutes the first portion, the portion 22a constitutes the second portion. For example, if the portion 21b constitutes the third portion, the portion 22b constitutes the fourth portion.
 半導体光検出素子10a及び半導体光検出素子10bのそれぞれは、複数の光検出領域23a,23b,23c,23dを含んでいる。半導体光検出素子10aが有する複数の光検出領域23a,23b,23c,23dは、部分21aに配置されている。半導体光検出素子10bが有する複数の光検出領域23a,23b,23c,23dは、部分21bに配置されている。複数の光検出領域23a,23b,23c,23dは、第一方向D1に並んでいる。本実施形態では、四つの光検出領域23a,23b,23c,23dが配置されている。複数の光検出領域23a,23b,23c,23dは、少なくとも一つのアバランシェフォトダイオード12と、少なくとも一つのクエンチング抵抗13とをそれぞれ有している。図3及び図4に示した例では、複数の光検出領域23a,23b,23c,23dは、複数のアバランシェフォトダイオード12と、複数のクエンチング抵抗13とをそれぞれ有している。アバランシェフォトダイオード12は、シンチレーション光を受光し、光電変換によって、受光したシンチレーション光から光電子を発生する。 Each of the semiconductor photodetector element 10a and the semiconductor photodetector element 10b includes a plurality of photodetection regions 23a, 23b, 23c, and 23d. A plurality of photodetection regions 23a, 23b, 23c, and 23d of the semiconductor photodetector 10a are arranged in the portion 21a. A plurality of photodetection regions 23a, 23b, 23c, and 23d of semiconductor photodetector 10b are arranged in portion 21b. The plurality of photodetection regions 23a, 23b, 23c, and 23d are arranged in the first direction D1. In this embodiment, four photodetection regions 23a, 23b, 23c, and 23d are arranged. The plurality of photodetection regions 23a, 23b, 23c, 23d each have at least one avalanche photodiode 12 and at least one quenching resistor 13. As shown in FIG. In the examples shown in FIGS. 3 and 4, the plurality of photodetection regions 23a, 23b, 23c, and 23d have a plurality of avalanche photodiodes 12 and a plurality of quenching resistors 13, respectively. The avalanche photodiode 12 receives scintillation light and generates photoelectrons from the received scintillation light through photoelectric conversion.
 部分21aには、四つの導線14a,14b,14c,14dと導線14eとが配置される。部分21bには、四つの導線14a,14b,14c,14dと導線14eとが配置される。導線14a,14b,14c,14dは、信号読出用の配線パターンを構成している。導線14a,14b,14c,14dは、第二方向D2から見て、たとえば、格子状にパターニングされている。導線14a,14b,14c,14dの格子状パターンのそれぞれは、一つの光検出部15を囲んでいる。一つの光検出部15は、一つのアバランシェフォトダイオード12と、一つのクエンチング抵抗13とを含んでいる。一つのクエンチング抵抗13は、一つのクエンチング抵抗13に対応するアバランシェフォトダイオード12と電気的に直列接続されている。部分21a及び部分21bのそれぞれには、複数の光検出部15が配置されている。光検出部15は、たとえば、行列状に二次元に配置されている。図3及び図4に示した例では、各光検出領域23a,23b,23c,23dが、互いに接している。実際には、各光検出領域23a,23b,23c,23dは、互いに接していてもよく、互いに離間していてもよい。複数の光検出領域23a,23b,23c,23dには、一つの光検出部15が配置されていてもよい。したがって、複数の光検出領域23a,23b,23c,23dは、一のアバランシェフォトダイオード12と、一のクエンチング抵抗13とをそれぞれ有していてもよい。 Four conducting wires 14a, 14b, 14c, 14d and a conducting wire 14e are arranged in the portion 21a. Four conducting wires 14a, 14b, 14c, 14d and a conducting wire 14e are arranged in the portion 21b. Conductors 14a, 14b, 14c, and 14d form a wiring pattern for signal readout. The conductors 14a, 14b, 14c, and 14d are patterned, for example, in a lattice when viewed from the second direction D2. Each of the grid patterns of the conductors 14a, 14b, 14c, and 14d surrounds one photodetector 15. As shown in FIG. One photodetector 15 includes one avalanche photodiode 12 and one quenching resistor 13 . One quenching resistor 13 is electrically connected in series with the avalanche photodiode 12 corresponding to one quenching resistor 13 . A plurality of photodetectors 15 are arranged in each of the portions 21a and 21b. The photodetectors 15 are arranged two-dimensionally in a matrix, for example. In the examples shown in FIGS. 3 and 4, the photodetection regions 23a, 23b, 23c, and 23d are in contact with each other. In practice, the photodetection regions 23a, 23b, 23c, 23d may be in contact with each other or may be spaced apart from each other. One photodetector 15 may be arranged in each of the plurality of photodetection regions 23a, 23b, 23c, and 23d. Therefore, each of the plurality of photodetection regions 23a, 23b, 23c, and 23d may have one avalanche photodiode 12 and one quenching resistor 13. FIG.
 少なくとも一つのクエンチング抵抗13は、少なくとも一つのアバランシェフォトダイオード12のうち対応するアバランシェフォトダイオード12のアノード又はカソードの一方と電気的に直列接続されている。アバランシェフォトダイオード12は、コンタクト電極16を有している。コンタクト電極16は、アノード又はカソードの一方と電気的に接続されている。クエンチング抵抗13の一端は、コンタクト電極16と電気的に直列接続されている。各クエンチング抵抗13の他端は、それぞれ、配線パターンを構成している導線14a,14b,14c,14dと電気的に直列接続されている。導線14a,14b,14c,14dは、それぞれ、複数のクエンチング抵抗13を電気的に並列接続している。導線14eは、複数のアバランシェフォトダイオード12のアノード又はカソードの他方を電気的に並列接続している。 At least one quenching resistor 13 is electrically connected in series with one of the anode or cathode of the corresponding avalanche photodiode 12 among the at least one avalanche photodiodes 12 . The avalanche photodiode 12 has contact electrodes 16 . The contact electrode 16 is electrically connected to either the anode or the cathode. One end of the quenching resistor 13 is electrically connected in series with the contact electrode 16 . The other end of each quenching resistor 13 is electrically connected in series with conductors 14a, 14b, 14c, 14d forming the wiring pattern. Conductors 14a, 14b, 14c, and 14d electrically connect a plurality of quenching resistors 13 in parallel. A conducting wire 14e electrically connects the other of the anodes and cathodes of the plurality of avalanche photodiodes 12 in parallel.
 部分22a及び部分22bのそれぞれには、複数の電極17a,17b,17c,17dと、電極18とが配置されている。すなわち、半導体光検出素子10a及び10bのそれぞれは、電極17a,17b,17c,17d及び電極18を含んでいる。電極17a,17b,17c,17dは、それぞれ、導線14a,14b,14c,14dを介して、複数の光検出領域23a,23b,23c,23dのうち対応する光検出領域23a,23b,23c,23dに含まれている少なくとも一つのクエンチング抵抗13を電気的に接続している。図3及び図4に示した例では、電極17a,17b,17c,17dは、それぞれ、導線14a,14b,14c,14dを介して、複数の光検出領域23a,23b,23c,23dのうち対応する光検出領域23a,23b,23c,23dに含まれている複数のクエンチング抵抗13を電気的に並列接続している。たとえば、電極17aは、導線14aを介して、光検出領域23aと接続されている。電極17bは、導線14bを介して、光検出領域23bと接続されている。電極17cは、導線14cを介して、光検出領域23cと接続されている。電極17dは、導線14dを介して、光検出領域23dと接続されている。光検出領域23a,23b,23c,23dが、それぞれ、一のクエンチング抵抗13を含んでいる構成では、電極17a,17b,17c,17dは、それぞれ、導線14a,14b,14c,14dを介して、光検出領域23a,23b,23c,23dに含まれている一のクエンチング抵抗13を電気的に直列接続している。 A plurality of electrodes 17a, 17b, 17c, 17d and an electrode 18 are arranged in each of the portions 22a and 22b. That is, each of the semiconductor photodetectors 10a and 10b includes electrodes 17a, 17b, 17c, 17d and an electrode 18. As shown in FIG. The electrodes 17a, 17b, 17c, and 17d are connected to the corresponding photodetection regions 23a, 23b, 23c, and 23d of the plurality of photodetection regions 23a, 23b, 23c, and 23d via the conductors 14a, 14b, 14c, and 14d, respectively. is electrically connected to at least one quenching resistor 13 contained in the . In the examples shown in FIGS. 3 and 4, electrodes 17a, 17b, 17c, and 17d are connected to corresponding electrodes of the plurality of photodetection regions 23a, 23b, 23c, and 23d via conductors 14a, 14b, 14c, and 14d, respectively. A plurality of quenching resistors 13 included in the corresponding photodetection regions 23a, 23b, 23c, 23d are electrically connected in parallel. For example, electrode 17a is connected to photodetection region 23a via conductor 14a. The electrode 17b is connected to the photodetection region 23b via the conductor 14b. The electrode 17c is connected to the photodetection region 23c via the conductor 14c. The electrode 17d is connected to the photodetection region 23d via a lead wire 14d. In a configuration where photodetection regions 23a, 23b, 23c, 23d each include one quenching resistor 13, electrodes 17a, 17b, 17c, 17d are connected via leads 14a, 14b, 14c, 14d, respectively. , the quenching resistors 13 included in the photodetection regions 23a, 23b, 23c and 23d are electrically connected in series.
 電極18は、導線14eを介して、複数の光検出領域23a,23b,23c,23dのうち対応する光検出領域23a,23b,23c,23dに含まれているアバランシェフォトダイオード12のアノード又はカソードの他方と電気的に接続されている。図3及び図4に示した例では、電極18は、導線14eを介して、複数のアバランシェフォトダイオード12のアノード又はカソードの他方を電気的に並列接続している。光検出領域23a,23b,23c,23dが、それぞれ、一のアバランシェフォトダイオード12を含んでいる構成では、電極18は、導線14eを介して、光検出領域23a,23b,23c,23dに含まれている一のアバランシェフォトダイオード12のアノード又はカソードの他方を電気的に並列接続している。 The electrodes 18 are connected to the anodes or cathodes of the avalanche photodiodes 12 included in the corresponding photodetection regions 23a, 23b, 23c, and 23d among the plurality of photodetection regions 23a, 23b, 23c, and 23d via the lead wire 14e. It is electrically connected with the other. In the example shown in FIGS. 3 and 4, the electrode 18 electrically connects the other of the anodes or cathodes of the plurality of avalanche photodiodes 12 in parallel via the lead wire 14e. In a configuration in which the photodetection regions 23a, 23b, 23c, and 23d each include one avalanche photodiode 12, the electrode 18 is included in the photodetection regions 23a, 23b, 23c, and 23d via the lead 14e. The other of the anode and cathode of one avalanche photodiode 12 is electrically connected in parallel.
 電極17a,17b,17c,17d及び電極18は、たとえば、アルミニウム又はアルミ複合体を含んでいる。アルミ複合体は、たとえば、AlSi、AlCu、又はAlSiCuを含んでいる。電極17a,17b,17c,17d及び電極18は、たとえば、めっき法、蒸着法、又はスパッタ法によって形成される。 Electrodes 17a, 17b, 17c, 17d and electrode 18 contain, for example, aluminum or an aluminum composite. Aluminum composites include, for example, AlSi, AlCu, or AlSiCu. Electrodes 17a, 17b, 17c, 17d and electrode 18 are formed by plating, vapor deposition, or sputtering, for example.
 クエンチング抵抗13の電気抵抗率は、電極17a,17b,17c,17d及び電極18の電気抵抗率よりも大きい。クエンチング抵抗13は、たとえば、ポリシリコンを含んでいる。クエンチング抵抗13の材料は、たとえば、SiCr、NiCr、又はFeCrを含んでいてもよい。クエンチング抵抗13は、たとえば、CVD(Chemical Vapor Deposition)法又はスパッタ法によって形成される。たとえば、半導体光検出素子10aにおいて、電極17a,17b,17c,17dが、第一電極を構成する場合、電極18は、第二電極を構成する。たとえば、半導体光検出素子10bにおいて、電極17a,17b,17c,17dが第三電極を構成する場合、電極18は第四電極を構成する。 The electrical resistivity of the quenching resistor 13 is greater than the electrical resistivity of the electrodes 17a, 17b, 17c, 17d and the electrode 18. Quenching resistor 13 contains, for example, polysilicon. The material of the quenching resistor 13 may contain SiCr, NiCr, or FeCr, for example. The quenching resistor 13 is formed by, for example, a CVD (Chemical Vapor Deposition) method or a sputtering method. For example, in the semiconductor photodetector 10a, when the electrodes 17a, 17b, 17c, and 17d constitute the first electrode, the electrode 18 constitutes the second electrode. For example, in the semiconductor photodetector 10b, when the electrodes 17a, 17b, 17c, and 17d constitute the third electrode, the electrode 18 constitutes the fourth electrode.
 本実施形態では、少なくとも一つのクエンチング抵抗13のそれぞれは、たとえば、少なくとも一つのアバランシェフォトダイオード12のうち対応するアバランシェフォトダイオード12のアノードと電気的に接続している。この場合、電極18は、複数のアバランシェフォトダイオード12のカソードと電気的に接続している。少なくとも一つのクエンチング抵抗13は、少なくとも一つのアバランシェフォトダイオード12のうち対応するアバランシェフォトダイオード12のカソードと電気的に接続していてもよい。この場合、電極18は、少なくとも一つのアバランシェフォトダイオード12のアノードと電気的に接続している。 In this embodiment, each of the at least one quenching resistors 13 is electrically connected to the anode of the corresponding avalanche photodiode 12 among the at least one avalanche photodiodes 12, for example. In this case, the electrodes 18 are electrically connected to the cathodes of the multiple avalanche photodiodes 12 . At least one quenching resistor 13 may be electrically connected to the cathode of the corresponding avalanche photodiode 12 among the at least one avalanche photodiodes 12 . In this case, electrode 18 is electrically connected to the anode of at least one avalanche photodiode 12 .
 各アバランシェフォトダイオード12は、ガイガーモードで動作する。ガイガーモードでは、逆バイアス電圧がアバランシェフォトダイオード12に印加される。逆バイアス電圧は、たとえば、アバランシェフォトダイオード12のブレイクダウン電圧よりも大きな逆方向電圧である。たとえば、アバランシェフォトダイオード12のアノードには、電位V1が印加され、アバランシェフォトダイオード12のカソードには、電位V1に対して正の電位V2が印加される。これらの電位の極性は相対的なものであり、たとえば、いずれか一方の電位が接地電位であってもよい。各光検出部15は、並列に電気的に接続されている。 Each avalanche photodiode 12 operates in Geiger mode. In Geiger mode, a reverse bias voltage is applied to the avalanche photodiode 12 . The reverse bias voltage is, for example, a reverse voltage higher than the breakdown voltage of the avalanche photodiode 12 . For example, the anode of the avalanche photodiode 12 is applied with a potential V1, and the cathode of the avalanche photodiode 12 is applied with a positive potential V2 with respect to the potential V1. The polarities of these potentials are relative, and for example, one of the potentials may be the ground potential. Each photodetector 15 is electrically connected in parallel.
 各アバランシェフォトダイオード12は、いわゆるリーチスルー型のアバランシェフォトダイオードであってもよく、いわゆるリバース型のアバランシェフォトダイオードであってもよい。リーチスルー型のアバランシェフォトダイオード12は、たとえば、長波長のシンチレーション光を発生するシンチレータ1を備える放射線検出器RD1に含まれ、たとえば、シンチレーション光が長波長光の場合に用いられる。リバース型のアバランシェフォトダイオード12は、たとえば、シンチレーション光が短波長光の場合に用いられる。リーチスルー型又はリバース型のアバランシェフォトダイオード12は、ガイガーモードで動作する。放射線検出器RD1は、リニアモードで動作するように構成されるアバランシェフォトダイオード12を備えていてもよい。リニアモードで動作するように構成されるアバランシェフォトダイオード12は、いわゆるリーチスルー型のアバランシェフォトダイオードであってもよく、いわゆるリバース型のアバランシェフォトダイオードであってもよい。 Each avalanche photodiode 12 may be a so-called reach-through avalanche photodiode or a so-called reverse avalanche photodiode. A reach-through type avalanche photodiode 12 is included in, for example, a radiation detector RD1 having a scintillator 1 that generates long-wavelength scintillation light, and is used, for example, when the scintillation light is long-wavelength light. The reverse type avalanche photodiode 12 is used, for example, when the scintillation light is short wavelength light. A reach-through or reverse avalanche photodiode 12 operates in Geiger mode. Radiation detector RD1 may comprise an avalanche photodiode 12 configured to operate in linear mode. The avalanche photodiode 12 configured to operate in the linear mode may be a so-called reach-through avalanche photodiode or a so-called reverse avalanche photodiode.
 半導体基板11a,11bのそれぞれには、たとえば、導線14a,14b,14c,14d及び導線14eと、導線14a,14b,14c,14dにそれぞれ接続されている電極17a,17b,17c,17dと、導線14eに接続されている電極18とが配置されている。半導体基板11a,11bには、たとえば、導線14a,14b,14c,14d、及び導線14e上に絶縁層19が配置されている。半導体基板11aでは、絶縁層19は、部分21aと部分22aとを延在している。半導体基板11bでは、絶縁層19は、部分21bと部分22bとを延在している。部分22a,22bでは、電極17a,17b,17c,17d及び導線14a,14b,14c,14dは、絶縁層19によって、電極18及び導線14eと絶縁されている。部分21a及び部分21bでは、絶縁層19は、複数の光検出部15上に形成されている。絶縁層19は、たとえば、SiO又はSiNを含んでいる。絶縁層19は、たとえば、熱酸化法、スパッタ法、又はCVD法によって形成される。 Conductive wires 14a, 14b, 14c, 14d and 14e, electrodes 17a, 17b, 17c, 17d connected to the conductive wires 14a, 14b, 14c, 14d, and conductive wires An electrode 18 connected to 14e is arranged. An insulating layer 19 is arranged on the semiconductor substrates 11a, 11b, for example, on the conductors 14a, 14b, 14c, 14d and the conductor 14e. In semiconductor substrate 11a, insulating layer 19 extends through portion 21a and portion 22a. In semiconductor substrate 11b, insulating layer 19 extends through portion 21b and portion 22b. In the portions 22a, 22b, the electrodes 17a, 17b, 17c, 17d and the conductors 14a, 14b, 14c, 14d are insulated from the electrode 18 and the conductor 14e by the insulating layer 19. FIG. The insulating layer 19 is formed on the plurality of photodetectors 15 in the portions 21a and 21b. Insulating layer 19 contains, for example, SiO 2 or SiN. The insulating layer 19 is formed by thermal oxidation, sputtering, or CVD, for example.
 図1、図2及び図6に示されるように、配線部材30aは、半導体基板11aに対して、たとえば、シンチレータ1と同じ側に配置されている。配線部材30aの少なくとも一部と、シンチレータ1とは、たとえば、半導体基板11aの同じ面の前に配置されている。配線部材30a、半導体基板11a、及びシンチレータ1は、面11c上に配置されている。配線部材30bは、半導体基板11bに対して、たとえば、シンチレータ1と同じ側に配置されている。配線部材30bの少なくとも一部と、シンチレータ1とは、たとえば、半導体基板11bの同じ面の前に配置されている。配線部材30b、半導体基板11b、及びシンチレータ1は、面11e上に配置されている。配線部材30bは、半導体基板11bと電気的に接続されることを除いて、たとえば、半導体基板11aと電気的に接続される配線部材30aと同一の形態を有し、同一の機能を示す。 As shown in FIGS. 1, 2 and 6, the wiring member 30a is arranged, for example, on the same side as the scintillator 1 with respect to the semiconductor substrate 11a. At least part of the wiring member 30a and the scintillator 1 are arranged in front of the same surface of the semiconductor substrate 11a, for example. The wiring member 30a, the semiconductor substrate 11a, and the scintillator 1 are arranged on the surface 11c. The wiring member 30b is arranged, for example, on the same side as the scintillator 1 with respect to the semiconductor substrate 11b. At least part of the wiring member 30b and the scintillator 1 are arranged in front of the same surface of the semiconductor substrate 11b, for example. The wiring member 30b, the semiconductor substrate 11b, and the scintillator 1 are arranged on the surface 11e. Wiring member 30b has the same form and functions as wiring member 30a electrically connected to semiconductor substrate 11a, for example, except that wiring member 30b is electrically connected to semiconductor substrate 11b.
 配線部材30a,30bは、それぞれ、導体31a,31b,31c,31dと導体32とを有している。配線部材30aが有する導体31a,31b,31c,31dは、それぞれ、半導体光検出素子10aが有する電極17a,17b,17c,17dと電気的に接続されている。配線部材30bが有する導体31a,31b,31c,31dは、それぞれ、半導体光検出素子10bが有する電極17a,17b,17c,17dと電気的に接続されている。配線部材30aが有する導体32は、半導体光検出素子10aが有する電極18と電気的に接続されている。配線部材30bが有する導体32は、半導体光検出素子10bが有する電極18と電気的に接続されている。配線部材30aが有する導体31a,31b,31c,31dは、導電性バンプ33を介して、半導体光検出素子10aが有する電極17a,17b,17c,17dと電気的に接続されている。配線部材30bが有する導体31a,31b,31c,31dは、たとえば、導電性バンプ33を介して、半導体光検出素子10bが有する電極17a,17b,17c,17dと電気的に接続されている。配線部材30aが有する導体32は、たとえば、導電性バンプ33を介して、半導体光検出素子10aが有する電極18と接続されている。配線部材30bが有する導体32は、たとえば、導電性バンプ33を介して、半導体光検出素子10bが有する電極18と接続されている。導電性バンプ33は、たとえば、はんだ、ACF(アニソトロピックコンダクティブフィルム)、又はACP(アニソトロピックコンダクティブペースト)を含んでいる。はんだは、たとえば、Sn-Ag-Cuはんだを含んでいる。導電性バンプ33は、たとえば、Auバンプ、Niバンプ、又はCuバンプを含んでいてもよい。 The wiring members 30a, 30b have conductors 31a, 31b, 31c, 31d and a conductor 32, respectively. The conductors 31a, 31b, 31c, 31d of the wiring member 30a are electrically connected to the electrodes 17a, 17b, 17c, 17d of the semiconductor photodetector 10a, respectively. The conductors 31a, 31b, 31c, 31d of the wiring member 30b are electrically connected to the electrodes 17a, 17b, 17c, 17d of the semiconductor photodetector 10b, respectively. The conductor 32 of the wiring member 30a is electrically connected to the electrode 18 of the semiconductor photodetector 10a. The conductor 32 of the wiring member 30b is electrically connected to the electrode 18 of the semiconductor photodetector 10b. Conductors 31a, 31b, 31c, and 31d of the wiring member 30a are electrically connected via conductive bumps 33 to electrodes 17a, 17b, 17c, and 17d of the semiconductor photodetector 10a. Conductors 31a, 31b, 31c and 31d of wiring member 30b are electrically connected to electrodes 17a, 17b, 17c and 17d of semiconductor photodetector 10b via conductive bumps 33, for example. The conductor 32 of the wiring member 30a is connected to the electrode 18 of the semiconductor photodetector 10a via a conductive bump 33, for example. The conductor 32 of the wiring member 30b is connected to the electrode 18 of the semiconductor photodetector 10b via a conductive bump 33, for example. Conductive bumps 33 include, for example, solder, ACF (anisotropic conductive film), or ACP (anisotropic conductive paste). Solders include, for example, Sn--Ag--Cu solders. Conductive bumps 33 may include, for example, Au bumps, Ni bumps, or Cu bumps.
 本実施形態では、放射線検出器RD1が駆動される場合、導体31a,31b,31c,31dを介して、アバランシェフォトダイオード12のアノードに電位V1が印加され、導体32を介して、アバランシェフォトダイオード12のカソードに電位V2が印加される。導体32を介して、アバランシェフォトダイオード12のカソードに電位V1が印加され、導体31a,31b,31c,31dを介して、アバランシェフォトダイオード12のアノードに電位V2が印加されてもよい。図3では、導体31aのみが描かれている。導体31a,31b,31c,31d及び導体32は、たとえば、Al、Cu、Cu/Ni/Au、又はCu/Ni/Pd/Auを含んでいる。導体31a,31b,31c,31d及び導体32は、たとえば、スパッタ法又はメッキ法によって形成される。 In this embodiment, when the radiation detector RD1 is driven, the potential V1 is applied to the anode of the avalanche photodiode 12 via the conductors 31a, 31b, 31c, and 31d, and the avalanche photodiode 12 is applied via the conductor 32. potential V2 is applied to the cathode of . Potential V1 may be applied to the cathode of avalanche photodiode 12 via conductor 32, and potential V2 may be applied to the anode of avalanche photodiode 12 via conductors 31a, 31b, 31c, and 31d. In FIG. 3, only the conductor 31a is drawn. Conductors 31a, 31b, 31c, 31d and conductor 32 contain, for example, Al, Cu, Cu/Ni/Au, or Cu/Ni/Pd/Au. The conductors 31a, 31b, 31c, 31d and the conductor 32 are formed by sputtering or plating, for example.
 配線部材30a及び配線部材30bと、半導体基板11a及び半導体基板11bとは、可撓性を有している。配線部材30aの可撓性は、半導体基板11aの可撓性より大きい。配線部材30bの可撓性は、半導体基板11bの可撓性より大きい。配線部材30aの可撓性と、配線部材30bの可撓性とは、たとえば、互いに同じである。配線部材30aの可撓性と、配線部材30bの可撓性とは、互いに異なっていてもよい。 The wiring members 30a and 30b and the semiconductor substrates 11a and 11b have flexibility. The flexibility of the wiring member 30a is greater than that of the semiconductor substrate 11a. The flexibility of the wiring member 30b is greater than that of the semiconductor substrate 11b. The flexibility of the wiring member 30a and the flexibility of the wiring member 30b are, for example, the same. The flexibility of the wiring member 30a and the flexibility of the wiring member 30b may be different from each other.
 第二方向D2から見て、半導体基板11aが有する複数の光検出領域23a,23b,23c,23dにより構成される一つの領域は、側面1cの輪郭に沿っている。したがって、各光検出領域23a,23b,23c,23dの輪郭を構成する複数の端縁は、第二方向D2から見て、側面1cの輪郭を構成する複数の端縁のうち対応する端縁に沿っている。第二方向D2から見て、複数の光検出領域23a,23b,23c,23dの輪郭により構成される一つの領域は、側面1cの輪郭形状に対応する形状を呈している。半導体基板11aにおいて、各光検出部15は、第二方向D2から見て、光検出領域23a,23b,23c,23dにより構成される一つの領域が側面1cの輪郭形状に対応する輪郭形状を呈するように、配置されている。各光検出領域23a,23b,23c,23dは、側面1cの輪郭形状に対応して、たとえば、矩形状の輪郭形状を呈している。 When viewed from the second direction D2, one area configured by the plurality of photodetection areas 23a, 23b, 23c, and 23d of the semiconductor substrate 11a follows the contour of the side surface 1c. Therefore, the plurality of edges forming the contours of the light detection regions 23a, 23b, 23c, and 23d are aligned with the corresponding edges among the plurality of edges forming the contour of the side surface 1c when viewed from the second direction D2. along. When viewed from the second direction D2, one area configured by the contours of the plurality of photodetection areas 23a, 23b, 23c, and 23d has a shape corresponding to the contour shape of the side surface 1c. In the semiconductor substrate 11a, each photodetector 15 has a contour shape corresponding to the contour shape of the side surface 1c when viewed from the second direction D2. are arranged so that Each of the photodetection regions 23a, 23b, 23c, and 23d has, for example, a rectangular contour shape corresponding to the contour shape of the side surface 1c.
 第二方向D2から見て、半導体基板11bが有する複数の光検出領域23a,23b,23c,23dにより構成される一つの領域は、側面1dの輪郭に沿っている。各光検出領域23a,23b,23c,23dの輪郭を構成する複数の端縁は、第二方向D2から見て、側面1dの輪郭を構成する複数の端縁のうち対応する端縁に沿っている。第二方向D2から見て、複数の光検出領域23a,23b,23c,23dの輪郭により構成される一つの領域は、側面1dの輪郭形状に対応する形状を呈している。半導体基板11bにおいて、各光検出部15は、第二方向D2から見て、光検出領域23a,23b,23c,23dにより構成される一つの領域が側面1dの輪郭形状に対応する輪郭形状を呈するように、配置されている。各光検出領域23a,23b,23c,23dは、側面1dの輪郭形状に対応して、たとえば、矩形状の輪郭形状を呈している。 When viewed from the second direction D2, one area configured by the plurality of photodetection areas 23a, 23b, 23c, and 23d of the semiconductor substrate 11b follows the contour of the side surface 1d. A plurality of edges forming the contours of the light detection regions 23a, 23b, 23c, and 23d are arranged along the corresponding edges among the plurality of edges forming the contour of the side surface 1d when viewed from the second direction D2. there is When viewed from the second direction D2, one area configured by the contours of the plurality of photodetection areas 23a, 23b, 23c, and 23d has a shape corresponding to the contour shape of the side surface 1d. In the semiconductor substrate 11b, each photodetector 15 has a contour shape corresponding to the contour shape of the side face 1d when viewed from the second direction D2. are arranged so that Each of the photodetection regions 23a, 23b, 23c, and 23d has, for example, a rectangular contour shape corresponding to the contour shape of the side surface 1d.
 図3及び図4に示した例では、複数の光検出領域23a,23b,23cにおいて、光検出部15が、第一方向D1に各列3個並んでおり、第三方向D3に各列3個並んでいる。光検出領域23aは、合計9個の光検出部15を含んでいる。光検出領域23dにおいては、光検出部15が、第一方向D1に各列5個並んでおり、第三方向D3に各列3個並んでいる。光検出領域23dは、合計15個の光検出部15を含んでいる。 In the example shown in FIGS. 3 and 4, in the plurality of photodetection regions 23a, 23b, and 23c, the photodetection units 15 are arranged in three rows in the first direction D1, and three rows in the third direction D3. They are lined up. The photodetection region 23a includes a total of nine photodetectors 15. As shown in FIG. In the photodetection region 23d, five photodetection units 15 are arranged in each row in the first direction D1, and three photodetection units 15 are arranged in each row in the third direction D3. The photodetection area 23 d includes a total of 15 photodetectors 15 .
 光検出領域23a,23b,23c,23dは、たとえば、第一方向D1に並んでいる。本実施形態では、光検出領域23a、光検出領域23b、光検出領域23c、及び光検出領域23dの順に並んでいる。光検出領域23dは、光検出領域23a、光検出領域23b、及び光検出領域23cよりも、部分22a,22bに近い。光検出領域23cは、光検出領域23a、及び光検出領域23bよりも、部分22a,22bに近い。光検出領域23bは、光検出領域23aよりも、部分22a,22bに近い。本実施形態では、導線14aの幅は、導線14b,14c,14dの幅より大きい。導線14bの幅は、導線14c,14dの幅より大きい。導線14cの幅は、導線14dの幅より大きい。第二方向D2から見て、半導体基板11a,11bの第三方向D3での両端と、光検出領域23a,23b,23c,23dとの間に、たとえば、導線14aと導線14b,14cとが延在している。第二方向D2から見て、導線14dは、たとえば、導線14aと導線14b,14cとの間に配置されている。導線14a,14b,14c,14dは、第一方向D1に延在している。導線14a,14b,14c,14dの幅は、導線14a,14b,14c,14dの延在方向に垂直な方向での幅である。導線14a,14b,14c,14dの幅は、第三方向D3での幅である。たとえば、光検出領域23aが第一光検出領域を構成する場合、光検出領域23dは、第二光検出領域を構成する。 The photodetection areas 23a, 23b, 23c, and 23d are arranged in the first direction D1, for example. In this embodiment, the photodetection regions 23a, 23b, 23c, and 23d are arranged in this order. Photodetection area 23d is closer to portions 22a and 22b than photodetection area 23a, photodetection area 23b, and photodetection area 23c. The photodetection area 23c is closer to the portions 22a and 22b than the photodetection areas 23a and 23b. Photodetection area 23b is closer to portions 22a and 22b than photodetection area 23a. In this embodiment, the width of the conductor 14a is greater than the width of the conductors 14b, 14c and 14d. The width of the conductor 14b is greater than the widths of the conductors 14c and 14d. The width of the conductor 14c is greater than the width of the conductor 14d. As viewed from the second direction D2, between both ends of the semiconductor substrates 11a and 11b in the third direction D3 and the photodetection regions 23a, 23b, 23c and 23d, for example, the conducting wire 14a and the conducting wires 14b and 14c extend. exist. When viewed from the second direction D2, the conductor 14d is arranged, for example, between the conductor 14a and the conductors 14b and 14c. The conducting wires 14a, 14b, 14c, 14d extend in the first direction D1. The width of the conductors 14a, 14b, 14c, 14d is the width in the direction perpendicular to the extending direction of the conductors 14a, 14b, 14c, 14d. The widths of the conductors 14a, 14b, 14c, 14d are widths in the third direction D3. For example, when the photodetection region 23a constitutes the first photodetection region, the photodetection region 23d constitutes the second photodetection region.
 図1及び図2に示されるように、放射線検出器RD1は、たとえば、補強体45を備えている。補強体45は、たとえば、部分22aと部分22bとの間に配置されている。本実施形態では、補強体45は、部分22aと部分22bとを覆っていると共に、部分22aと部分22bとを連結している。補強体45は、たとえば、部分22a及び部分22bと、シンチレータ1とに接している。補強体45は、たとえば、面45a,45b,45cを有している。面45a,45b,45cは、たとえば、部分22a及び部分22bと、シンチレータ1とから露出している。面45aは、たとえば、第一方向D1で端面1bと対向している。面45b,45cは、たとえば、第三方向D3で互いに対向している。  As shown in Figures 1 and 2, the radiation detector RD1 includes a reinforcing body 45, for example. Reinforcing body 45 is arranged, for example, between portion 22a and portion 22b. In this embodiment, the reinforcing body 45 covers the portions 22a and 22b and connects the portions 22a and 22b. The reinforcing body 45 is in contact with the portions 22a and 22b and the scintillator 1, for example. The reinforcing body 45 has surfaces 45a, 45b, and 45c, for example. The surfaces 45a, 45b, 45c are exposed from the portions 22a and 22b and the scintillator 1, for example. The surface 45a faces the end surface 1b in the first direction D1, for example. The surfaces 45b and 45c face each other, for example, in the third direction D3.
 補強体45は、たとえば、樹脂を含んでいる。補強体45の樹脂は、たとえば、部分22a及び部分22bと、シンチレータ1とで画成される空間に充填される。補強体45の樹脂は、たとえば、熱硬化性樹脂を含んでいる。補強体45の樹脂は、たとえば、エポキシ樹脂、シリコーン樹脂、アクリル樹脂、ポリイミド樹脂、フェノール樹脂、又はパラキシリレン系ポリマーを含んでいる。 The reinforcing body 45 contains resin, for example. The resin of the reinforcing body 45 fills, for example, the space defined by the portions 22 a and 22 b and the scintillator 1 . The resin of the reinforcing body 45 contains, for example, a thermosetting resin. The resin of the reinforcing body 45 contains, for example, epoxy resin, silicone resin, acrylic resin, polyimide resin, phenol resin, or paraxylylene polymer.
 本実施形態では、補強体45は、たとえば、ブロックを含んでいる。補強体45のブロックは、たとえば、部分22a及び部分22bと、シンチレータ1とで画成される空間に合わせた形状を呈している。補強体45のブロックには、たとえば、配線部材30a及び配線部材30bと干渉しないように、窪みが形成されている。補強体45のブロックは、たとえば、部分22aと部分22bとの間に配置される。本実施形態では、補強体45のブロックは、たとえば、接着剤によって、部分22aと部分22bとに固定される。接着剤は、たとえば、エポキシ樹脂、シリコーン樹脂、アクリル樹脂、ポリイミド樹脂、又はフェノール樹脂を含んでいる。
 補強体45のブロックは、たとえば、金属を含んでいる。金属のブロックは、たとえば、Al、チタン合金、ニッケル合金、又はステンレス鋼を含んでいる。補強体45のブロックは、たとえば、ガラスのブロックを含んでいる。ガラスのブロックは、たとえば、石英ガラス、又はホウケイ酸ガラスを含んでいる。補強体45のブロックは、たとえば、セラミックのブロックを含んでいる。セラミックのブロックは、たとえば、アルミナ、窒化ケイ素、炭化ケイ素、サファイア、ジルコニア、コージライト、イットリア、窒化アルミニウム、サーメット、ムライト、ステアタイト、又はフォルステライトを含んでいる。補強体45のブロックは、たとえば、樹脂のブロックを含んでいる。樹脂のブロックは、たとえば、エポキシ樹脂、シリコーン樹脂、アクリル樹脂、ポリイミド樹脂、フェノール樹脂、又はパラキシリレン系ポリマーを含んでいる。
In this embodiment, the reinforcement 45 includes, for example, blocks. The block of the reinforcing body 45 has a shape that matches the space defined by the portions 22a and 22b and the scintillator 1, for example. A recess is formed in the block of the reinforcing body 45 so as not to interfere with the wiring member 30a and the wiring member 30b. A block of reinforcement 45 is arranged, for example, between portion 22a and portion 22b. In this embodiment, the blocks of reinforcement 45 are fixed to the portions 22a and 22b, for example by means of an adhesive. Adhesives include, for example, epoxy resins, silicone resins, acrylic resins, polyimide resins, or phenolic resins.
The blocks of reinforcement 45 contain, for example, metal. Metal blocks include, for example, Al, titanium alloys, nickel alloys, or stainless steel. The blocks of reinforcement 45 include, for example, glass blocks. The glass block contains, for example, quartz glass or borosilicate glass. The blocks of reinforcement 45 include, for example, ceramic blocks. Ceramic blocks include, for example, alumina, silicon nitride, silicon carbide, sapphire, zirconia, cordierite, yttria, aluminum nitride, cermet, mullite, steatite, or forsterite. The blocks of the reinforcing body 45 include, for example, resin blocks. The resin blocks include, for example, epoxy resins, silicone resins, acrylic resins, polyimide resins, phenolic resins, or paraxylylene-based polymers.
 図6に示されるように、半導体基板11aは、第二方向D2で互いに対向している面11cと面11dとを有している。面11cは、第二方向D2でシンチレータ1と対向している。面11dは、第二方向D2で面11cと対向している。本実施形態では、アバランシェフォトダイオード12のアノード又はカソードの一方が、面11cに配置され、アバランシェフォトダイオード12のアノード又はカソードの他方が、面11dに配置されている。たとえば、面11cが第一面を構成する場合、面11dは、第二面を構成する。 As shown in FIG. 6, the semiconductor substrate 11a has a surface 11c and a surface 11d facing each other in the second direction D2. The surface 11c faces the scintillator 1 in the second direction D2. The surface 11d faces the surface 11c in the second direction D2. In this embodiment, one of the anode or cathode of the avalanche photodiode 12 is arranged on the surface 11c, and the other of the anode or cathode of the avalanche photodiode 12 is arranged on the surface 11d. For example, when the surface 11c constitutes the first surface, the surface 11d constitutes the second surface.
 半導体基板11bは、第二方向D2で互いに対向している面11eと面11fとを有している。面11eは、第二方向D2でシンチレータ1と対向している。面11fは、第二方向D2で面11eと対向している。本実施形態では、アバランシェフォトダイオード12のアノード又はカソードの一方が、面11eに配置され、アバランシェフォトダイオード12のアノード又はカソードの他方が、面11fに配置されている。たとえば、面11eが第三面を構成する場合、面11fは、第四面を構成する。 The semiconductor substrate 11b has a surface 11e and a surface 11f facing each other in the second direction D2. The surface 11e faces the scintillator 1 in the second direction D2. The surface 11f faces the surface 11e in the second direction D2. In this embodiment, one of the anode or cathode of the avalanche photodiode 12 is arranged on the surface 11e, and the other of the anode or cathode of the avalanche photodiode 12 is arranged on the surface 11f. For example, when the surface 11e constitutes the third surface, the surface 11f constitutes the fourth surface.
 面11d,11fは、たとえば、研磨面である。たとえば、半導体基板11a,11bが、シンチレータ1に配置され、補強体45が部分22aと部分22bとの間に配置された後に、面11d,11fが研磨される。図7は、面11d,11fが研磨される前の放射線検出器RD1を示す側面図である。図8は、面11d,11fが研磨された後の放射線検出器RD1を示す側面図である。図7及び図8に示されるように、本実施形態では、面11dが研磨されて、半導体基板11aが薄化され、面11fが研磨されて、半導体基板11bが薄化される。 The surfaces 11d and 11f are, for example, polished surfaces. For example, after semiconductor substrates 11a and 11b are placed on scintillator 1 and reinforcement 45 is placed between portions 22a and 22b, surfaces 11d and 11f are polished. FIG. 7 is a side view showing the radiation detector RD1 before surfaces 11d and 11f are polished. FIG. 8 is a side view showing the radiation detector RD1 after the surfaces 11d and 11f have been polished. As shown in FIGS. 7 and 8, in this embodiment, the surface 11d is polished to thin the semiconductor substrate 11a, and the surface 11f is polished to thin the semiconductor substrate 11b.
 面11d,11fは、たとえば、機械的に研磨される。面11d,11fは、たとえば、グラインディング法、ラッピング法、又はポリッシングホイルによるドライポリッシング法によって、機械的に研磨される。面11d,11fは、機械化学的に研磨されてもよい。面11d,11fは、たとえば、CMPスラリーによるウェットポリッシングによって、化学的に研磨される。面11d,11fが研磨面である構成では、半導体基板11a,11bの厚みは、たとえば、10~200μmである。研磨面の表面粗さは、たとえば、0.001~200μmである。本明細書では、面の表面粗さは、最大高さ(Rz)によって表される。最大高さ(Rz)は、JIS B 0601:2001(ISO 4287:1997)に定義されている。面11d,11fが研磨される前では、半導体基板11a,11bの厚みは、たとえば、250~1000μmである。 The surfaces 11d and 11f are mechanically polished, for example. The faces 11d and 11f are mechanically polished, for example by grinding, lapping or dry polishing with a polishing foil. The surfaces 11d and 11f may be mechanically and chemically polished. The surfaces 11d and 11f are chemically polished, for example by wet polishing with CMP slurry. In the configuration in which the surfaces 11d and 11f are polished surfaces, the thickness of the semiconductor substrates 11a and 11b is, for example, 10 to 200 μm. The surface roughness of the polished surface is, for example, 0.001 to 200 μm. Herein, surface roughness of a surface is represented by maximum height (Rz). The maximum height (Rz) is defined in JIS B 0601:2001 (ISO 4287:1997). The thickness of the semiconductor substrates 11a and 11b is, for example, 250 to 1000 μm before the surfaces 11d and 11f are polished.
 図1及び図6に示されるように、放射線検出器RD1は、たとえば、被覆体47aを備えている。被覆体47aは、シンチレータ1との間に半導体基板11aが位置するように、配置されている。本実施形態では、被覆体47aは、面11dに配置されている。被覆体47aは、面11dの少なくとも一部に配置されている。被覆体47aは、面11dの全部に配置されていてもよい。したがって、被覆体47aは、面11dのうち、部分21aに対応する領域のみに配置されていてもよく、面11dのうち、部分21aと部分22aとに対応する領域全体に配置されていてもよい。図1及び図6は、被覆体47aが、面11dのうち、部分21aと部分22aとに対応する領域全体に配置されている例を示している。放射線検出器RD1は、被覆体47aを備えていなくてもよい。 As shown in FIGS. 1 and 6, the radiation detector RD1 has, for example, a covering 47a. The cover 47a is arranged so that the semiconductor substrate 11a is positioned between the scintillator 1 and the cover 47a. In this embodiment, the covering 47a is arranged on the surface 11d. The cover 47a is arranged on at least part of the surface 11d. The cover 47a may be arranged on the entire surface 11d. Therefore, the cover 47a may be arranged only on the area corresponding to the portion 21a of the surface 11d, or may be arranged on the entire area of the surface 11d corresponding to the portions 21a and 22a. . 1 and 6 show an example in which the cover 47a is arranged over the entire region of the surface 11d corresponding to the portions 21a and 22a. The radiation detector RD1 may not have the cover 47a.
 図2及び図6に示されるように、放射線検出器RD1は、たとえば、被覆体47bを備えている。被覆体47bは、シンチレータ1との間に半導体基板11bが位置するように、配置されている。本実施形態では、被覆体47bは、面11fに配置されている。被覆体47bは、面11fの少なくとも一部に配置されている。被覆体47bは、面11fの全部に配置されていてもよい。したがって、被覆体47bは、面11fのうち、部分21bに対応する領域のみに配置されていてもよく、面11fのうち、部分21bと部分22bとに対応する領域全体に配置されていてもよい。図2及び図6は、被覆体47bが、面11fのうち、部分21bと部分22bとに対応する領域全体に配置されている例を示している。放射線検出器RD1は、被覆体47bを備えていなくてもよい。たとえば、被覆体47aが第一被覆体を構成する場合、被覆体47bは、第二被覆体を構成する。 As shown in FIGS. 2 and 6, the radiation detector RD1 has, for example, a covering 47b. The cover 47b is arranged so that the semiconductor substrate 11b is positioned between the scintillator 1 and the cover 47b. In this embodiment, the covering 47b is arranged on the surface 11f. The covering 47b is arranged on at least part of the surface 11f. The covering 47b may be arranged on the entire surface 11f. Therefore, the covering 47b may be arranged only on the region corresponding to the portion 21b on the surface 11f, or may be arranged on the entire region corresponding to the portions 21b and 22b on the surface 11f. . FIGS. 2 and 6 show an example in which the cover 47b is arranged over the entire region of the surface 11f corresponding to the portions 21b and 22b. The radiation detector RD1 may not have the covering 47b. For example, when the covering 47a constitutes the first covering, the covering 47b constitutes the second covering.
 被覆体47a,47bは、たとえば、光反射体48を含んでいる。光反射体48は、たとえば、膜を含んでいる。膜は、たとえば、金属からなる。金属は、たとえば、Al、Ag、Ti、Pt、Ni、又はAuを含んでいる。光反射体48は、たとえば、金属薄膜を含んでいる。光反射体48は、多層光学膜又はテフロン(登録商標)膜を含んでいてもよい。光反射体48は、たとえば、めっき法、蒸着法、又はスパッタ法によって形成される。光反射体48の厚みは、たとえば、0.05~100μmである。 The coverings 47a and 47b include light reflectors 48, for example. Light reflector 48 includes, for example, a film. The membrane is made of metal, for example. Metals include, for example, Al, Ag, Ti, Pt, Ni, or Au. Light reflector 48 includes, for example, a metal thin film. Light reflector 48 may include multilayer optical films or Teflon films. The light reflector 48 is formed by plating, vapor deposition, or sputtering, for example. The thickness of the light reflector 48 is, for example, 0.05 to 100 μm.
 被覆体47a,47bは、たとえば、電気絶縁体49を含んでいる。電気絶縁体49は、たとえば、膜を含んでいる。膜は、たとえば、電気絶縁材料を含んでいる。電気絶縁材料は、たとえば、ケイ素化合物、エポキシ樹脂、シリコーン樹脂、アクリル樹脂、ポリイミド樹脂、フェノール樹脂、又はパラキシリレン系ポリマーを含んでいる。電気絶縁体49は、たとえば、電気絶縁薄膜を含んでいる。ケイ素化合物は、たとえば、SiO、又はSiNを含んでいる。ポリマーは、たとえば、パラキシリレン系ポリマーを含んでいる。電気絶縁体49は、たとえば、化学蒸着法(CVD)、熱酸化法、スパッタ法、蒸着法、又はポッティング法によって形成される。被覆体47aに含まれる電気絶縁体49は、シンチレータ1に配置された半導体基板11aに、たとえば、電気絶縁性フィルムが巻かれることによって形成されてもよい。被覆体47bに含まれる電気絶縁体49は、シンチレータ1に配置された半導体基板11bに、たとえば、電気絶縁性フィルムが巻かれることによって形成されてもよい。電気絶縁体49の厚みは、たとえば、0.05~100μmである。 The coverings 47a, 47b include electrical insulators 49, for example. Electrical insulator 49 includes, for example, a membrane. The membrane contains, for example, an electrically insulating material. Electrically insulating materials include, for example, silicon compounds, epoxy resins, silicone resins, acrylic resins, polyimide resins, phenolic resins, or paraxylylene-based polymers. Electrical insulator 49 includes, for example, an electrically insulating thin film. Silicon compounds include, for example, SiO 2 or SiN. Polymers include, for example, para-xylylene-based polymers. Electrical insulator 49 is formed, for example, by chemical vapor deposition (CVD), thermal oxidation, sputtering, vapor deposition, or potting. The electrical insulator 49 included in the cover 47a may be formed by winding an electrical insulating film around the semiconductor substrate 11a arranged on the scintillator 1, for example. The electrical insulator 49 included in the cover 47b may be formed by winding an electrical insulating film around the semiconductor substrate 11b arranged on the scintillator 1, for example. The thickness of the electrical insulator 49 is, for example, 0.05-100 μm.
 被覆体47a,47bは、たとえば、光反射体48と電気絶縁体49とを含んでいる。被覆体47a,47bは、たとえば、光反射体48と電気絶縁体49とを含む二層構造体を有している。被覆体47a,47bが二層構造体を有する構成では、光反射体48が、半導体基板11aと電気絶縁体49との間に配置されていてもよく、電気絶縁体49が、半導体基板11aと光反射体48との間に配置されていてもよい。光反射体48が、半導体基板11bと電気絶縁体49との間に配置されていてもよく、電気絶縁体49が、半導体基板11bと光反射体48との間に配置されていてもよい。本実施形態では、被覆体47a,47bは、光反射体48及び電気絶縁体49の少なくともいずれか一つを含んでいる。被覆体47a,47bは、たとえば、光反射体48又は電気絶縁体49のいずれか一方のみを含む単層構造体を有している。被覆体47a,47bは、たとえば、光反射体の特性と電気絶縁体の特性とを備えていてもよい。図6では、電気絶縁体49が、半導体基板11aと光反射体48との間、及び、半導体基板11bと光反射体48との間に配置された例が示されている。 The coverings 47a, 47b include, for example, a light reflector 48 and an electrical insulator 49. The coverings 47a, 47b have, for example, a two-layer structure including a light reflector 48 and an electrical insulator 49. As shown in FIG. In a configuration in which the coverings 47a, 47b have a two-layer structure, the light reflector 48 may be arranged between the semiconductor substrate 11a and the electrical insulator 49, the electrical insulator 49 being between the semiconductor substrate 11a and the electrical insulator 49. It may be arranged between the light reflector 48 . A light reflector 48 may be positioned between the semiconductor substrate 11 b and an electrical insulator 49 , and the electrical insulator 49 may be positioned between the semiconductor substrate 11 b and the light reflector 48 . In this embodiment, the coverings 47a and 47b include at least one of a light reflector 48 and an electrical insulator 49. As shown in FIG. Covers 47a and 47b have, for example, a single-layer structure including either light reflector 48 or electrical insulator 49 only. The coverings 47a, 47b may, for example, have light reflector properties and electrical insulating properties. FIG. 6 shows an example in which the electrical insulator 49 is arranged between the semiconductor substrate 11a and the light reflector 48 and between the semiconductor substrate 11b and the light reflector 48. As shown in FIG.
 被覆体47aは、たとえば、面11dに配置されている。被覆体47aは、たとえば、面11dの全体の上と、側面11g上とに配置されている。側面11gは、たとえば、第二方向D2で面11cと面11dとを互いに連結している。側面11gは、たとえば、第二方向D2から見て、被覆体47aの外周縁を構成している。光反射体48が、面11dの全部に配置され、電気絶縁体49が、面11dに配置された光反射体48上と、側面11g上とに配置されていてもよい。被覆体47bは、たとえば、面11fに配置されている。被覆体47bは、たとえば、面11fの全体の上と、側面11h上とに配置されている。側面11hは、第二方向D2で面11eと面11fとを互いに連結している。側面11hは、たとえば、第二方向D2から見て、被覆体47bの外周縁を構成している。光反射体48が、面11fの全部に配置され、電気絶縁体49が、面11fに配置された光反射体48上と、側面11h上とに配置されていてもよい。 The cover 47a is arranged, for example, on the surface 11d. The cover 47a is arranged, for example, on the entire surface 11d and on the side surface 11g. The side surface 11g connects, for example, the surface 11c and the surface 11d in the second direction D2. 11 g of side surfaces comprise the outer peripheral edge of the covering 47a, for example, seeing from the second direction D2. A light reflector 48 may be disposed on the entire surface 11d, and an electrical insulator 49 may be disposed on the light reflector 48 disposed on the surface 11d and on the side surface 11g. The cover 47b is arranged, for example, on the surface 11f. The cover 47b is arranged, for example, on the entire surface 11f and on the side surface 11h. The side surface 11h connects the surface 11e and the surface 11f in the second direction D2. The side surface 11h constitutes, for example, the outer peripheral edge of the cover 47b when viewed from the second direction D2. A light reflector 48 may be disposed on the entire surface 11f, and an electrical insulator 49 may be disposed on the light reflector 48 disposed on the surface 11f and on the side surface 11h.
 本実施形態では、面11dでの、アバランシェフォトダイオード12のアノード又はカソードの電位が接地電位である構成では、面11dには、電気絶縁体49が配置されていなくてもよい。面11dでの、アバランシェフォトダイオード12のアノード又はカソードの電位が接地電位でない構成では、面11dには、電気絶縁体49が配置されていてもよい。面11fでの、アバランシェフォトダイオード12のアノード又はカソードの電位が接地電位である構成では、面11fには、電気絶縁体49が配置されていなくてもよい。面11fでの、アバランシェフォトダイオード12のアノード又はカソードの電位が接地電位でない構成では、面11fには、電気絶縁体49が配置されていてもよい。 In this embodiment, in a configuration in which the potential of the anode or cathode of the avalanche photodiode 12 on the surface 11d is the ground potential, the electrical insulator 49 may not be arranged on the surface 11d. In configurations where the potential of the anode or cathode of the avalanche photodiode 12 on the surface 11d is not ground potential, an electrical insulator 49 may be arranged on the surface 11d. In a configuration in which the potential of the anode or cathode of the avalanche photodiode 12 on the surface 11f is ground potential, the electrical insulator 49 may not be arranged on the surface 11f. In configurations where the potential of the anode or cathode of the avalanche photodiode 12 on surface 11f is not ground potential, an electrical insulator 49 may be arranged on surface 11f.
 図9及び図10に示されるように、放射線検出器RD1は、たとえば、基体40a及び基体40bを備えている。基体40aは、第二方向D2で互いに対向している面40c及び面40dを有している。基体40aは、面40cとシンチレータ1との間に半導体基板11aが位置するように、配置されている。したがって、配線部材30aの少なくとも一部と、シンチレータ1とは、たとえば、基体40aの同じ面の前に配置されている。基体40bは、第二方向D2で互いに対向している面40e及び面40fを有している。基体40bは、面40eとシンチレータ1との間に半導体基板11bが位置するように、配置されている。したがって、配線部材30bの少なくとも一部と、シンチレータ1とは、たとえば、基体40bの同じ面の前に配置されている。基体40bは、たとえば、基体40aと同一の形態を有し、同一の機能を示す。たとえば、基体40aが第一基体を構成する場合、基体40bは、第二基体を構成する。たとえば、面40cが第五面を構成する場合、面40dは、第六面を構成する。たとえば、面40eが第七面を構成する場合、面40fは、第八面を構成する。 As shown in FIGS. 9 and 10, the radiation detector RD1 includes, for example, substrates 40a and 40b. The base 40a has a surface 40c and a surface 40d facing each other in the second direction D2. The substrate 40a is arranged such that the semiconductor substrate 11a is positioned between the surface 40c and the scintillator 1. As shown in FIG. Therefore, at least part of the wiring member 30a and the scintillator 1 are arranged in front of the same surface of the substrate 40a, for example. The base 40b has a surface 40e and a surface 40f facing each other in the second direction D2. The substrate 40b is arranged such that the semiconductor substrate 11b is positioned between the surface 40e and the scintillator 1. As shown in FIG. Therefore, at least part of the wiring member 30b and the scintillator 1 are arranged in front of the same surface of the substrate 40b, for example. Substrate 40b has, for example, the same form as substrate 40a and exhibits the same function. For example, when the base 40a constitutes the first base, the base 40b constitutes the second base. For example, when the surface 40c constitutes the fifth surface, the surface 40d constitutes the sixth surface. For example, when the surface 40e constitutes the seventh surface, the surface 40f constitutes the eighth surface.
 基体40aは、部分51aと部分52aとを有している。部分51aは、半導体基板11aで覆われている。部分52aは、半導体基板11aから露出している。部分51aと部分52aとは、第一方向D1に並んでいる。基体40bは、部分51bと部分52bとを有している。部分51bは、半導体基板11bで覆われている。部分52bは、半導体基板11bから露出している。部分51bと部分52bとは、第一方向D1に並んでいる。たとえば、部分51aが第五部分を構成する場合、部分52aは、第六部分を構成する。たとえば、部分51bが第七部分を構成する場合、部分52bは、第八部分を構成する。 The base 40a has a portion 51a and a portion 52a. The portion 51a is covered with the semiconductor substrate 11a. The portion 52a is exposed from the semiconductor substrate 11a. The portion 51a and the portion 52a are arranged in the first direction D1. The base 40b has a portion 51b and a portion 52b. The portion 51b is covered with the semiconductor substrate 11b. The portion 52b is exposed from the semiconductor substrate 11b. The portion 51b and the portion 52b are arranged in the first direction D1. For example, if the portion 51a constitutes the fifth portion, the portion 52a constitutes the sixth portion. For example, if portion 51b constitutes the seventh portion, portion 52b constitutes the eighth portion.
 放射線検出器RD1は、たとえば、端子41a,41b,41c,41d及び端子42と、ワイヤ43及びワイヤ44とを備えている。基体40aでは、端子41a,41b,41c,41d及び端子42は、面40c上に配置されている。端子41a,41b,41c,41d及び端子42は、半導体基板11aに対して、たとえば、シンチレータ1と同じ側に配置されている。すなわち、端子41a,41b,41c,41dとシンチレータ1とは、基体40aの同じ面の前に配置されている。端子42とシンチレータ1とは、基体40aの同じ面の前に配置されている。基体40aに配置された端子41a,41b,41c,41dは、部分52a上に位置すると共に、ワイヤ43を通して、半導体光検出素子10aが有する電極17と電気的に接続されている。基体40aに配置された端子42は、部分52a上に位置すると共に、ワイヤ44を通して、半導体光検出素子10aが有する電極18と電気的に接続されている。
 ワイヤ43,44は、たとえば、補強体45の樹脂によって覆われ、保護される。配線部材30aは、導電性バンプ46を介して、半導体光検出素子10aが有する電極17a,17b,17c,17d及び電極18と電気的に接続されている。基体40aにおいて、たとえば、端子41a,41b,41c,41dが第一端子を構成する場合、端子42は、第二端子を構成する。基体40aにおいて、たとえば、ワイヤ43が第一ワイヤを構成する場合、ワイヤ44は、第二ワイヤを構成する。ワイヤ43,44は、たとえば、補強体45のブロックによって保護されてもよい。
The radiation detector RD1 includes terminals 41a, 41b, 41c, 41d, a terminal 42, and wires 43 and 44, for example. In the substrate 40a, the terminals 41a, 41b, 41c, 41d and the terminal 42 are arranged on the surface 40c. The terminals 41a, 41b, 41c, 41d and the terminal 42 are arranged on the same side as the scintillator 1, for example, with respect to the semiconductor substrate 11a. That is, the terminals 41a, 41b, 41c, 41d and the scintillator 1 are arranged in front of the same surface of the substrate 40a. The terminal 42 and the scintillator 1 are arranged in front of the same surface of the substrate 40a. Terminals 41a, 41b, 41c, and 41d arranged on base 40a are located on portion 52a and are electrically connected through wires 43 to electrodes 17 of semiconductor photodetector 10a. A terminal 42 arranged on the substrate 40a is positioned on the portion 52a and is electrically connected through a wire 44 to the electrode 18 of the semiconductor photodetector 10a.
Wires 43 and 44 are covered and protected by, for example, the resin of reinforcing body 45 . The wiring member 30a is electrically connected via conductive bumps 46 to the electrodes 17a, 17b, 17c, 17d and the electrode 18 of the semiconductor photodetector 10a. In the base 40a, for example, when the terminals 41a, 41b, 41c, and 41d constitute the first terminals, the terminal 42 constitutes the second terminals. In the substrate 40a, for example, when the wire 43 constitutes the first wire, the wire 44 constitutes the second wire. Wires 43 , 44 may be protected by blocks of reinforcement 45 , for example.
 基体40bでは、端子41a,41b,41c,41dと端子42とは、面40e上に配置されている。端子41a,41b,41c,41d及び端子42は、半導体基板11bに対して、たとえば、シンチレータ1と同じ側に配置されている。すなわち、端子41a,41b,41c,41dとシンチレータ1とは、基体40bの同じ面の前に配置されている。端子42とシンチレータ1とは、基体40bの同じ面の前に配置されている。基体40bに配置された端子41a,41b,41c,41dは、部分52b上に位置すると共に、ワイヤ43を通して、半導体光検出素子10bが有する電極17a,17b,17c,17dと電気的に接続されている。基体40bに配置された端子42は部分52b上に位置すると共に、ワイヤ44を通して、半導体光検出素子10bが有する電極18と電気的に接続されている。
 ワイヤ43,44は、たとえば、補強体45の樹脂によって覆われ、保護される。配線部材30bは、導電性バンプ46を介して、半導体光検出素子10bが有する電極17a,17b,17c,17d及び電極18と電気的に接続されている。基体40bにおいて、たとえば、端子41a,41b,41c,41dが第三端子を構成する場合、端子42は、第四端子を構成する。基体40bにおいて、たとえば、ワイヤ43が第三ワイヤを構成する場合、ワイヤ44は、第四ワイヤを構成する。本実施形態では、基体40bの端子41a,41b,41c,41dは、基体40aの端子41a,41b,41c,41dと同一の構成と機能とを有し、基体40bの端子42は、基体40aの端子42と同一の構成と機能とを有する。放射線検出器RD1は、基体40a及び基体40bのいずれか一つを備えていなくてもよく、基体40a及び基体40bの双方を備えていなくてもよい。ワイヤ43,44は、たとえば、補強体45のブロックによって保護されてもよい。
In the base 40b, the terminals 41a, 41b, 41c, 41d and the terminal 42 are arranged on the surface 40e. The terminals 41a, 41b, 41c, 41d and the terminal 42 are arranged on the same side as the scintillator 1, for example, with respect to the semiconductor substrate 11b. That is, the terminals 41a, 41b, 41c, 41d and the scintillator 1 are arranged in front of the same surface of the substrate 40b. The terminal 42 and the scintillator 1 are arranged in front of the same surface of the substrate 40b. Terminals 41a, 41b, 41c and 41d arranged on base 40b are located on portion 52b and are electrically connected through wires 43 to electrodes 17a, 17b, 17c and 17d of semiconductor photodetector 10b. there is A terminal 42 arranged on the substrate 40b is located on the portion 52b and is electrically connected through a wire 44 to the electrode 18 of the semiconductor photodetector 10b.
Wires 43 and 44 are covered and protected by, for example, the resin of reinforcing body 45 . The wiring member 30b is electrically connected via conductive bumps 46 to the electrodes 17a, 17b, 17c, 17d and the electrode 18 of the semiconductor photodetector 10b. In the base 40b, for example, when the terminals 41a, 41b, 41c, and 41d constitute the third terminal, the terminal 42 constitutes the fourth terminal. In the substrate 40b, for example, when the wire 43 constitutes the third wire, the wire 44 constitutes the fourth wire. In this embodiment, the terminals 41a, 41b, 41c, and 41d of the base 40b have the same configuration and function as the terminals 41a, 41b, 41c, and 41d of the base 40a, and the terminal 42 of the base 40b has the same function as that of the base 40a. It has the same configuration and function as terminal 42 . The radiation detector RD1 may not include either one of the substrates 40a and 40b, or may not include both the substrates 40a and 40b. Wires 43 , 44 may be protected by blocks of reinforcement 45 , for example.
 放射線検出器RD1は、たとえば、樹脂55を備えている。樹脂55は、たとえば、ワイヤ43及びワイヤ44を個別に覆い、又は、ワイヤ43及びワイヤ44の双方を覆っている。樹脂55がワイヤ43及びワイヤ44を個別に覆っている構成では、樹脂55は、互いに離間してもよく、互いに繋がっていてもよい。本明細書において、「樹脂55が、ワイヤ43を覆う」とは、端子41とワイヤ43との接続箇所と、電極17a,17b,17c,17dとワイヤ43との接続箇所とを覆うことも含んでいる。また、「樹脂55が、ワイヤ44を覆う」とは、端子42とワイヤ44との接続箇所と、電極18とワイヤ44との接続箇所とを覆うことも含んでいる。本実施形態では、補強体45の樹脂が、たとえば、樹脂55を覆うように、部分22aと部分22bとの間に配置されている。放射線検出器RD1は、樹脂55を備えていなくてもよい。図9及び図10では、放射線検出器RD1が樹脂55を備えている例が示されている。補強体45のブロックが、樹脂55を覆うように、部分22aと部分22bとの間に配置されていてもよい。 The radiation detector RD1 includes resin 55, for example. The resin 55 , for example, covers the wires 43 and 44 individually or covers both the wires 43 and 44 . In a configuration in which the resin 55 individually covers the wires 43 and 44, the resins 55 may be separated from each other or may be connected to each other. In this specification, “the resin 55 covers the wires 43” includes covering the connection points between the terminals 41 and the wires 43 and the connection points between the electrodes 17a, 17b, 17c, and 17d and the wires 43. I'm in. Further, “the resin 55 covers the wire 44 ” includes covering the connecting portion between the terminal 42 and the wire 44 and the connecting portion between the electrode 18 and the wire 44 . In this embodiment, the resin of the reinforcing body 45 is arranged between the portion 22a and the portion 22b so as to cover the resin 55, for example. The radiation detector RD1 does not have to include the resin 55 . 9 and 10 show an example in which the radiation detector RD1 is provided with a resin 55. FIG. A block of reinforcing body 45 may be arranged between portion 22 a and portion 22 b so as to cover resin 55 .
 放射線検出器RD1が基体40aを備えている構成は、たとえば、被覆体47aを含んでいる。被覆体47aは、面40d上に配置されている。この構成では、シンチレータ1、半導体基板11a、基体40a、及び被覆体47aが、シンチレータ1、半導体基板11a、基体40a、及び被覆体47aの順に配置されている。したがって、被覆体47aは、被覆体47aとシンチレータ1との間に半導体基板11a及び基体40aが位置するように配置されている。放射線検出器RD1が基体40bを備えている構成は、たとえば、被覆体47bを含んでいる。被覆体47bは、面40f上に配置されている。この構成では、シンチレータ1、半導体基板11b、基体40b、及び被覆体47bが、シンチレータ1、半導体基板11b、基体40b、及び被覆体47bの順に配置されている。したがって、被覆体47bは、被覆体47bとシンチレータ1との間に半導体基板11b及び基体40bが位置するように配置されている。放射線検出器RD1は、被覆体47a及び被覆体47bの少なくともいずれか一方を備えていなくてもよい。 A configuration in which the radiation detector RD1 includes the base 40a includes, for example, the cover 47a. The covering 47a is arranged on the surface 40d. In this configuration, the scintillator 1, the semiconductor substrate 11a, the base 40a, and the cover 47a are arranged in the order of the scintillator 1, the semiconductor substrate 11a, the base 40a, and the cover 47a. Therefore, the covering 47a is arranged so that the semiconductor substrate 11a and the base 40a are positioned between the covering 47a and the scintillator 1. As shown in FIG. A configuration in which the radiation detector RD1 includes the base 40b includes, for example, a covering 47b. The cover 47b is arranged on the surface 40f. In this configuration, the scintillator 1, the semiconductor substrate 11b, the base 40b, and the cover 47b are arranged in the order of the scintillator 1, the semiconductor substrate 11b, the base 40b, and the cover 47b. Therefore, the covering 47b is arranged so that the semiconductor substrate 11b and the base 40b are positioned between the covering 47b and the scintillator 1. As shown in FIG. The radiation detector RD1 may not include at least one of the covering 47a and the covering 47b.
 図1、図2、及び図6に示されるように、放射線検出器RD1は、たとえば、光反射体56を備えている。光反射体56は、たとえば、シンチレータ1の端面1a,1b及び側面1e、1fの少なくとも一つに配置される。本実施形態では、光反射体56は、端面1a,1b及び側面1e,1fの全てに配置されている。光反射体56は、端面1a,1b及び側面1e,1fに入射するシンチレーション光がシンチレータ1の外部に出射しないように、シンチレーション光を反射する。光反射体56の材料及び厚みは、たとえば、光反射体48の材料と厚みと同じである。光反射体56は、たとえば、光反射体48と同じ方法で形成される。放射線検出器RD1は、光反射体56を備えていなくてもよい。  As shown in Figures 1, 2, and 6, the radiation detector RD1 includes a light reflector 56, for example. The light reflectors 56 are arranged, for example, on at least one of the end faces 1a, 1b and the side faces 1e, 1f of the scintillator 1 . In this embodiment, the light reflectors 56 are arranged on all of the end faces 1a, 1b and the side faces 1e, 1f. The light reflector 56 reflects the scintillation light so that the scintillation light incident on the end faces 1a and 1b and the side faces 1e and 1f does not exit the scintillator 1 to the outside. The material and thickness of light reflector 56 are, for example, the same as the material and thickness of light reflector 48 . Light reflector 56 is formed, for example, in the same manner as light reflector 48 . Radiation detector RD1 may not include light reflector 56 .
 図11及び図12を参照しながら、第一実施形態の変形例に係る放射線検出器RD1について説明する。図11は、第一実施形態の変形例に係る放射線検出器RD1を示す斜視図である。図12は、シンチレーション光の一部の経路を示す図である。図12は、シンチレータ1を第三方向D3から見た状態で、シンチレーション光の一部の経路を示している。本変形例に係る放射線検出器RD1は、シンチレータ1の構成を除いて、第一実施形態に係る放射線検出器RD1と同一の構成を有している。 A radiation detector RD1 according to a modification of the first embodiment will be described with reference to FIGS. 11 and 12. FIG. FIG. 11 is a perspective view showing a radiation detector RD1 according to a modification of the first embodiment. FIG. 12 is a diagram showing paths of a part of scintillation light. FIG. 12 shows the path of part of the scintillation light when the scintillator 1 is viewed from the third direction D3. The radiation detector RD1 according to this modification has the same configuration as the radiation detector RD1 according to the first embodiment, except for the configuration of the scintillator 1. FIG.
 図11に示されるように、変形例に係るシンチレータ1は、複数の部分1p,1q,1r,1sを有している。複数の部分1p,1q,1r,1sのそれぞれは、半導体基板11a及び半導体基板11bのそれぞれに配置されている、複数の光検出領域23a,23b,23c,23dのうち対応する光検出領域23a,23b,23c,23dに対応して位置している。複数の部分1p,1q,1r,1sは、複数の光検出領域23a,23b,23c,23dにそれぞれ対応している。部分1pは、光検出領域23aに対応している。部分1qは、光検出領域23bに対応している。部分1rは、光検出領域23cに対応している。部分1sは、光検出領域23dに対応している。複数の部分1p,1q,1r,1sは、互いに独立して並んでいる。 As shown in FIG. 11, the scintillator 1 according to the modification has a plurality of portions 1p, 1q, 1r, and 1s. Each of the plurality of portions 1p, 1q, 1r, and 1s corresponds to one of the plurality of photodetection regions 23a, 23b, 23c, and 23d arranged on the semiconductor substrate 11a and the semiconductor substrate 11b. 23b, 23c and 23d. The multiple portions 1p, 1q, 1r, and 1s correspond to the multiple photodetection regions 23a, 23b, 23c, and 23d, respectively. The portion 1p corresponds to the photodetection area 23a. Portion 1q corresponds to photodetection region 23b. The portion 1r corresponds to the photodetection area 23c. The portion 1s corresponds to the photodetection area 23d. A plurality of portions 1p, 1q, 1r, and 1s are arranged independently of each other.
 部分1p,1q,1r,1sは、互いに対向している一対の対向面3a,3bと、互いに対向している一対の連結面3c,3dと、互いに対向している一対の連結面3e,3fと、を有している。対向面3a,3b、連結面3c,3d、及び連結面3e,3fは、部分1p,1q,1r,1sの外表面を構成している。対向面3a,3bは、第一方向D1で互いに対向している。第一方向D1は、シンチレータ1の長手方向である。連結面3c,3dは、第二方向D2で互いに対向している。連結面3dは、第二方向D2で連結面3cと対向している。第二方向D2は、連結面3cに直交している方向と一致している。連結面3e,3fは、第三方向D3で互いに対向している。本変形例では、部分1pの対向面3aは、シンチレータ1の端面1aと一致している。部分1sの対向面3bは、シンチレータ1の端面1bと一致している。部分1p,1q,1r,1sの各連結面3cが、シンチレータ1の側面1cを構成している。部分1p,1q,1r,1sの各連結面3dが、シンチレータ1の側面1dを構成している。部分1p,1q,1r,1sの各連結面3eが、シンチレータ1の側面1eを構成している。部分1p,1q,1r,1sの各連結面3fが、シンチレータ1の側面1fを構成している。たとえば、連結面3cが第一連結面を構成する場合、連結面3dは、第二連結面を構成する。 The portions 1p, 1q, 1r and 1s are composed of a pair of facing surfaces 3a and 3b facing each other, a pair of connecting surfaces 3c and 3d facing each other, and a pair of connecting surfaces 3e and 3f facing each other. and have The facing surfaces 3a, 3b, the connecting surfaces 3c, 3d, and the connecting surfaces 3e, 3f constitute the outer surfaces of the portions 1p, 1q, 1r, 1s. The opposing surfaces 3a and 3b face each other in the first direction D1. The first direction D1 is the longitudinal direction of the scintillator 1 . The connecting surfaces 3c and 3d face each other in the second direction D2. The connecting surface 3d faces the connecting surface 3c in the second direction D2. The second direction D2 coincides with the direction orthogonal to the connecting surface 3c. The connecting surfaces 3e and 3f face each other in the third direction D3. In this modification, the facing surface 3a of the portion 1p matches the end surface 1a of the scintillator 1. As shown in FIG. A facing surface 3 b of the portion 1 s matches the end surface 1 b of the scintillator 1 . Each connecting surface 3c of the portions 1p, 1q, 1r, and 1s constitutes the side surface 1c of the scintillator 1. As shown in FIG. Each connecting surface 3d of the portions 1p, 1q, 1r, and 1s constitutes the side surface 1d of the scintillator 1. As shown in FIG. Each connecting surface 3e of the portions 1p, 1q, 1r, and 1s constitutes the side surface 1e of the scintillator 1. As shown in FIG. Each connecting surface 3f of the portions 1p, 1q, 1r, and 1s constitutes the side surface 1f of the scintillator 1. As shown in FIG. For example, when the connecting surface 3c constitutes the first connecting surface, the connecting surface 3d constitutes the second connecting surface.
 対向面3a及び対向面3bは、連結面3cと連結面3dとを連結するように、第二方向D2に延在している。対向面3a及び対向面3bは、連結面3eと連結面3fとを連結するように、第三方向D3に延在している。連結面3c及び連結面3dは、対向面3aと対向面3bとを連結するように、第一方向D1に延在している。連結面3c及び連結面3dは、連結面3eと連結面3fとを連結するように、第三方向D3に延在している。連結面3e及び連結面3fは、対向面3aと対向面3bとを連結するように、第一方向D1に延在している。連結面3e及び連結面3fは、連結面3cと連結面3dとを連結するように、第二方向D2に延在している。連結面3e及び連結面3fは、連結面3cと隣り合っている。 The facing surface 3a and the facing surface 3b extend in the second direction D2 so as to connect the connecting surface 3c and the connecting surface 3d. The facing surface 3a and the facing surface 3b extend in the third direction D3 so as to connect the connecting surface 3e and the connecting surface 3f. The connecting surface 3c and the connecting surface 3d extend in the first direction D1 so as to connect the facing surface 3a and the facing surface 3b. The connecting surface 3c and the connecting surface 3d extend in the third direction D3 so as to connect the connecting surface 3e and the connecting surface 3f. The connecting surface 3e and the connecting surface 3f extend in the first direction D1 so as to connect the facing surface 3a and the facing surface 3b. The connecting surface 3e and the connecting surface 3f extend in the second direction D2 so as to connect the connecting surface 3c and the connecting surface 3d. The connecting surface 3e and the connecting surface 3f are adjacent to the connecting surface 3c.
 本変形例では、対向面3a,3bは、それぞれ、対向面3a,3bに直交する方向から見て、たとえば、矩形状を呈している。連結面3c,3dは、それぞれ、連結面3c,3dに直交する方向から見て、たとえば、矩形状を呈している。連結面3e,3fは、それぞれ、連結面3e,3fに直交する方向から見て、たとえば、矩形状を呈している。部分1p,1q,1r,1sは、第二方向D2及び第三方向D3から見て、矩形状を呈している。部分1p,1q,1r,1sは、第一方向D1から見ても、矩形状を呈している。 In this modified example, the facing surfaces 3a and 3b have, for example, a rectangular shape when viewed from the direction orthogonal to the facing surfaces 3a and 3b. The connecting surfaces 3c and 3d have, for example, a rectangular shape when viewed from a direction orthogonal to the connecting surfaces 3c and 3d. The connecting surfaces 3e and 3f have, for example, a rectangular shape when viewed from a direction perpendicular to the connecting surfaces 3e and 3f. The portions 1p, 1q, 1r, and 1s are rectangular when viewed from the second direction D2 and the third direction D3. The portions 1p, 1q, 1r, and 1s are rectangular when viewed from the first direction D1.
 本変形例では、部分1p,1q,1r,1sは、第一方向D1に並んでいる。第一方向D1での部分1p,1q,1r,1sの長さは、たとえば、約0.05~100mmである。第二方向D2での部分1p,1q,1r,1sの長さは、たとえば、約0.05~20mmである。第三方向D3での部分1p,1q,1r,1sの長さは、たとえば、約0.05~20mmである。部分1p,1q,1r,1sは、互いに異なる大きさを有していてもよい。たとえば、複数の部分1p,1q,1r,1sのうち、一部の部分1p,1q,1rが、互いに略同一の大きさを有し、他部の部分1sが、部分1p,1q,1rと異なる大きさを有していてもよい。一部の部分1p,1qが、互いに略同一の大きさを有し、他部の部分1r、1sが、部分1p,1qと異なると共に、互いに略同一の大きさを有していてもよい。部分1p,1q,1r,1sは、互いに略同一の大きさを有していてもよい。 In this modified example, the portions 1p, 1q, 1r, and 1s are arranged in the first direction D1. The lengths of the portions 1p, 1q, 1r, 1s in the first direction D1 are, for example, approximately 0.05-100 mm. The lengths of the portions 1p, 1q, 1r, 1s in the second direction D2 are, for example, approximately 0.05-20 mm. The lengths of the portions 1p, 1q, 1r, and 1s in the third direction D3 are, for example, about 0.05-20 mm. The portions 1p, 1q, 1r, 1s may have different sizes. For example, among the plurality of portions 1p, 1q, 1r, and 1s, some portions 1p, 1q, and 1r have substantially the same size, and the other portion 1s has the same size as the portions 1p, 1q, and 1r. They may have different sizes. Some of the portions 1p and 1q may have substantially the same size, and the other portions 1r and 1s may have substantially the same size while being different from the portions 1p and 1q. The portions 1p, 1q, 1r, 1s may have approximately the same size as each other.
 第一方向D1での部分1p,1q,1r,1sの長さを合計した長さは、第二方向D2での部分1p,1q,1r,1sそれぞれの長さより大きい。したがって、第一方向D1での各部分1p,1q,1r,1sの長さを合計した長さは、部分1p,1q,1r,1sのうち、第二方向D2で最大の長さを有している部分1p,1q,1r,1sの長さより大きい。第一方向D1での各部分1p,1q,1r,1sの長さを合計した長さは、部分1p,1q,1r,1sのうち、第三方向D3で最大の長さを有している部分1p,1q,1r,1sの長さより大きい。 The total length of the portions 1p, 1q, 1r, and 1s in the first direction D1 is greater than the length of each of the portions 1p, 1q, 1r, and 1s in the second direction D2. Therefore, the total length of the portions 1p, 1q, 1r, and 1s in the first direction D1 has the maximum length in the second direction D2 among the portions 1p, 1q, 1r, and 1s. is greater than the length of the portions 1p, 1q, 1r, 1s. The total length of the portions 1p, 1q, 1r, and 1s in the first direction D1 has the maximum length in the third direction D3 among the portions 1p, 1q, 1r, and 1s. greater than the length of portions 1p, 1q, 1r, 1s.
 部分1p,1q,1r,1sは、たとえば、第一実施形態に係るシンチレータ1と同じ材料を含んでいる。部分1p,1q,1r,1sは、たとえば、互いに同一の材料を含んでいる。部分1p,1q,1r,1sは、第一実施形態に係るシンチレータ1に含まれる材料の中から、互いに異なる材料を含んでいてもよい。したがって、第一実施形態に係るシンチレータ1の材料の中から、たとえば、部分1p,1rが、互いに同じ材料を含み、部分1q,1sが、互いに同じ材料を含んでいてもよい。この場合、部分1p,1rに含まれている材料は、部分1q,1sに含まれている材料と異なる。 The parts 1p, 1q, 1r, and 1s contain, for example, the same material as the scintillator 1 according to the first embodiment. The parts 1p, 1q, 1r, 1s contain, for example, the same material as each other. The portions 1p, 1q, 1r, and 1s may contain different materials from among the materials contained in the scintillator 1 according to the first embodiment. Therefore, among the materials of the scintillator 1 according to the first embodiment, for example, the portions 1p and 1r may contain the same material, and the portions 1q and 1s may contain the same material. In this case, the material contained in portions 1p and 1r is different from the material contained in portions 1q and 1s.
 部分1p,1q,1r,1sは、たとえば、互いに接合されている。部分1pの対向面3bは、たとえば、部分1qの対向面3aと接合している。部分1qの対向面3bは、たとえば、部分1rの対向面3aと接合している。部分1rの対向面3bは、たとえば、部分1sの対向面3aと接合している。部分1pと部分1qとの接合、部分1qと部分1rとの接合、及び部分1rと部分1sとの接合は、たとえば、接着剤による。 The parts 1p, 1q, 1r, and 1s are joined together, for example. The facing surface 3b of the portion 1p is, for example, joined to the facing surface 3a of the portion 1q. The facing surface 3b of the portion 1q is, for example, joined to the facing surface 3a of the portion 1r. The facing surface 3b of the portion 1r is, for example, joined to the facing surface 3a of the portion 1s. The bonding between the portion 1p and the portion 1q, the bonding between the portion 1q and the portion 1r, and the bonding between the portion 1r and the portion 1s are, for example, by an adhesive.
 本変形例に係る放射線検出器RD1は、たとえば、光反射部材24を備えている。光反射部材24は、たとえば、複数の部分1p,1q,1r,1s間に配置されている。部分1p、部分1q、部分1r、及び部分1sは、たとえば、互いに光反射部材24を介して接合されている。光反射部材24は、たとえば、部分1pと部分1qとの部分間、部分1qと部分1rとの部分間,及び部分1rと部分1sとの部分間の少なくとも一つの部分間に配置される。光反射部材24を介した、部分1pと部分1qとの接合、部分1qと部分1rとの接合、及び部分1rと部分1sとの接合は、たとえば、接着剤による。 A radiation detector RD1 according to this modified example includes a light reflecting member 24, for example. The light reflecting member 24 is arranged, for example, between the multiple portions 1p, 1q, 1r, and 1s. The portion 1p, the portion 1q, the portion 1r, and the portion 1s are joined together via the light reflecting member 24, for example. The light reflecting member 24 is arranged, for example, between at least one portion between the portions 1p and 1q, between the portions 1q and 1r, and between the portions 1r and 1s. Bonding between the portion 1p and the portion 1q, bonding between the portion 1q and the portion 1r, and bonding between the portion 1r and the portion 1s through the light reflecting member 24 is performed by an adhesive, for example.
 本変形例では、部分1p、部分1q、部分1r、及び部分1sは、それぞれ、互いに分離して、第一方向D1に並んでいてもよい。部分1p、部分1q、部分1r、及び部分1sが、それぞれ、互いに分離している場合、部分1pと部分1qとの部分間、部分1qと部分1rとの部分間,及び部分1rと部分1sとの部分間には、たとえば、大気が存在する。部分1p、部分1q、部分1r、及び部分1sが、それぞれ、互いに分離している場合、部分1p,1q,1r,1sの対向面3a,3bの少なくともいずれか一つに、光反射部材24が配置されていてもよい。各部分1p,1q,1r,1sにおいて、対向面3a,3bの双方に、光反射部材24が配置されていてもよい。各部分1p,1q,1r,1sの対向面3a,3bのいずれか一方に、光反射部材24が配置されていてもよい。部分1p、部分1q、部分1r、及び部分1sのうち、たとえば、部分1pと部分1qが、互いに接合し、互いに接合した部分1pと部分1qは、部分1r及び部分1sと、互いに分離していてもよい。 In this modification, the portion 1p, the portion 1q, the portion 1r, and the portion 1s may be separated from each other and arranged in the first direction D1. When the portion 1p, the portion 1q, the portion 1r, and the portion 1s are separated from each other, the portions between the portions 1p and 1q, between the portions 1q and 1r, and between the portions 1r and 1s There is, for example, an atmosphere between the parts of . When the portion 1p, the portion 1q, the portion 1r, and the portion 1s are separated from each other, the light reflecting member 24 is provided on at least one of the facing surfaces 3a and 3b of the portions 1p, 1q, 1r, and 1s. may be placed. A light reflecting member 24 may be arranged on both of the facing surfaces 3a and 3b of each of the portions 1p, 1q, 1r, and 1s. A light reflecting member 24 may be arranged on one of the facing surfaces 3a and 3b of each of the portions 1p, 1q, 1r and 1s. Among the portion 1p, the portion 1q, the portion 1r, and the portion 1s, for example, the portion 1p and the portion 1q are joined to each other, and the portion 1p and the portion 1q joined to each other are separated from each other by the portion 1r and the portion 1s. good too.
 光反射部材24は、たとえば、金属、多層光学膜、又はテフロン(登録商標)を含んでいる。光反射部材24の金属は、たとえば、Al、Ag、又はAuを含んでいる。光反射部材24は、たとえば、めっき法、蒸着法、又はスパッタ法によって形成される。光反射部材24の厚みは、たとえば、0.05~100μmである。光反射部材24は、シンチレータ1に入射する放射線を透過させ得る。光反射部材24の材料及び厚みは、たとえば、光反射体48の材料と厚みと同じである。光反射部材24は、たとえば、光反射体48と同じ方法で形成される。変形例に係る放射線検出器RD1は、光反射部材24を備えていなくてもよい。変形例に係る放射線検出器RD1は、光反射部材24を備えていない場合も、複数の部分1p,1q,1r,1sは、互いに接合されている。 The light reflecting member 24 includes, for example, metal, multilayer optical film, or Teflon (registered trademark). The metal of the light reflecting member 24 contains Al, Ag, or Au, for example. The light reflecting member 24 is formed by plating, vapor deposition, or sputtering, for example. The thickness of the light reflecting member 24 is, for example, 0.05 to 100 μm. The light reflecting member 24 can transmit radiation incident on the scintillator 1 . The material and thickness of the light reflecting member 24 are, for example, the same as the material and thickness of the light reflector 48 . Light reflecting member 24 is formed, for example, in the same manner as light reflector 48 . The radiation detector RD<b>1 according to the modification may not include the light reflecting member 24 . Even when the radiation detector RD1 according to the modification does not include the light reflecting member 24, the portions 1p, 1q, 1r, and 1s are joined together.
 本変形例では、第二方向D2から見て、半導体基板11aの複数の光検出領域23a,23b,23c,23dのそれぞれは、複数の部分1p,1q,1r,1sのうち対応する部分1p,1q,1r,1sの、半導体基板11aと対向する連結面3cの輪郭形状に対応する輪郭形状を呈している。第二方向D2から見て、半導体基板11bの複数の光検出領域23a,23b,23c,23dのそれぞれは、複数の部分1p,1q,1r,1sのうち対応する部分1p,1q,1r,1sの、半導体基板11bと対向する連結面3dの輪郭形状に対応する輪郭形状を呈している。本変形例では、第二方向D2から見て、部分1p,1q,1r,1sの連結面3c,3dは、矩形状である。対応する光検出領域23a,23b,23c,23dは、矩形状の輪郭形状を呈している。たとえば、連結面3cが、第一連結面を構成する場合、連結面3eは、第二連結面を構成する。 In this modification, when viewed from the second direction D2, each of the plurality of photodetection regions 23a, 23b, 23c, and 23d of the semiconductor substrate 11a corresponds to the corresponding portions 1p, 1q, 1r, and 1s among the plurality of portions 1p, 1q, 1r, and 1s. The contour shapes of 1q, 1r, and 1s correspond to those of the connecting surface 3c facing the semiconductor substrate 11a. When viewed from the second direction D2, the plurality of photodetection regions 23a, 23b, 23c, and 23d of the semiconductor substrate 11b correspond to the portions 1p, 1q, 1r, and 1s among the plurality of portions 1p, 1q, 1r, and 1s, respectively. 2, has a contour shape corresponding to the contour shape of the connecting surface 3d facing the semiconductor substrate 11b. In this modified example, the connecting surfaces 3c and 3d of the portions 1p, 1q, 1r and 1s are rectangular when viewed from the second direction D2. The corresponding photodetection regions 23a, 23b, 23c, and 23d have a rectangular contour shape. For example, when the connecting surface 3c constitutes the first connecting surface, the connecting surface 3e constitutes the second connecting surface.
 図12は、連結面3cに入射するシンチレーション光の経路を示している。連結面3cに入射するシンチレーション光は、部分1p内で発生する。部分1p内で発生したシンチレーション光は、たとえば、部分1p内に閉じ込められる。本変形例では、たとえば、光反射部材24が、対向面3bに配置されている。放射線は、たとえば、部分1pの対向面3aから入射する。シンチレーション光は、たとえば、シンチレーション光の発生点GP1から連結面3cに入射する光L1と光L2とを含んでいる。光L1は、略垂直に連結面3cに入射する。光L1の略垂直である入射角は、連結面3cでの臨界角より小さい。光L1は、連結面3cに入射し、連結面3cに入射する。光L1は、半導体光検出素子10aの光検出領域23aで検出される。光L2は、入射角EA1で連結面3cに入射する。光L2の入射角EA1が連結面3cでの臨界角より小さい場合、光L2は、連結面3cに入射し、連結面3cに入射する。光L2は、半導体光検出素子10aの光検出領域23aで検出される。光L2の入射角EA1が連結面3cでの臨界角以上である場合、光L2は、連結面3cで、たとえば、全反射される。本変形例では、光反射部材24が配置されているので、連結面3cで全反射された光L2は、シンチレータ1の他部分、たとえば、部分1qには入射しがたい。部分1pで発生したシンチレーション光は、光検出領域23a以外の光検出領域23b,23c,23dでは検出されがたい。 FIG. 12 shows the path of scintillation light incident on the connecting surface 3c. The scintillation light incident on the connecting surface 3c is generated within the portion 1p. Scintillation light generated within portion 1p is, for example, confined within portion 1p. In this modified example, for example, a light reflecting member 24 is arranged on the facing surface 3b. Radiation is incident, for example, from the facing surface 3a of the portion 1p. The scintillation light includes, for example, light L1 and light L2 incident on the coupling surface 3c from the scintillation light generation point GP1. The light L1 enters the connecting surface 3c substantially perpendicularly. The substantially perpendicular incident angle of the light L1 is smaller than the critical angle at the connecting surface 3c. The light L1 enters the connecting surface 3c and enters the connecting surface 3c. The light L1 is detected by the photodetection region 23a of the semiconductor photodetector 10a. The light L2 is incident on the connecting surface 3c at an incident angle EA1. When the incident angle EA1 of the light L2 is smaller than the critical angle at the connecting surface 3c, the light L2 enters the connecting surface 3c and enters the connecting surface 3c. The light L2 is detected by the photodetection region 23a of the semiconductor photodetector 10a. If the incident angle EA1 of the light L2 is greater than or equal to the critical angle at the connecting surface 3c, the light L2 is, for example, totally reflected at the connecting surface 3c. In this modification, since the light reflecting member 24 is arranged, the light L2 totally reflected by the connecting surface 3c is less likely to enter another portion of the scintillator 1, for example, the portion 1q. The scintillation light generated in the portion 1p is difficult to detect in the photodetection regions 23b, 23c, and 23d other than the photodetection region 23a.
 シンチレーション光は、たとえば、シンチレーション光の発生点GP1から連結面3dに入射する光L3と光L4とを含んでいる。光L1は、略垂直に連結面3dに入射する。光L3の略垂直である入射角は、連結面3dでの臨界角より小さい。光L3は、連結面3dに入射し、連結面3dに入射する。光L3は、半導体光検出素子10bの光検出領域23aで検出される。光L4は、入射角EA2で連結面3dに入射する。光L4の入射角EA2が連結面3dでの臨界角より小さい場合、光L4は、連結面3dに入射し、連結面3dに入射する。光L4は、半導体光検出素子10bの光検出領域23aで検出される。光L4の入射角EA2が連結面3dでの臨界角以上である場合、光L4は、連結面3dで、たとえば、全反射される。本変形例では、光反射部材24が配置されているので、連結面3dで全反射された光L4は、シンチレータ1の他部分、たとえば、部分1qには入射しがたい。部分1pで発生したシンチレーション光は、光検出領域23a以外の光検出領域23b,23c,23dでは検出されがたい。光検出領域23aは、部分1pで発生し、光反射部材24によって反射されたシンチレーション光を検出する。 The scintillation light includes, for example, light L3 and light L4 incident on the connecting surface 3d from the scintillation light generation point GP1. The light L1 enters the connecting surface 3d substantially perpendicularly. The substantially perpendicular incident angle of the light L3 is smaller than the critical angle at the connecting surface 3d. The light L3 enters the connecting surface 3d and enters the connecting surface 3d. The light L3 is detected by the photodetection region 23a of the semiconductor photodetector 10b. The light L4 is incident on the connecting surface 3d at an incident angle EA2. When the incident angle EA2 of the light L4 is smaller than the critical angle at the connecting surface 3d, the light L4 enters the connecting surface 3d and enters the connecting surface 3d. The light L4 is detected by the photodetection region 23a of the semiconductor photodetector 10b. If the incident angle EA2 of the light L4 is greater than or equal to the critical angle at the connecting surface 3d, the light L4 is, for example, totally reflected at the connecting surface 3d. In this modification, since the light reflecting member 24 is arranged, the light L4 totally reflected by the connecting surface 3d is less likely to enter another portion of the scintillator 1, for example, the portion 1q. The scintillation light generated in the portion 1p is difficult to detect in the photodetection regions 23b, 23c, and 23d other than the photodetection region 23a. The light detection area 23 a detects scintillation light generated in the portion 1 p and reflected by the light reflecting member 24 .
 本変形例では、半導体光検出素子10a,10bは、互いに同一の屈折率を有する接着剤によってシンチレータ1に接着されている。したがって、連結面3c,3dでの臨界角は、互いに等しい。シンチレータ1の屈折率は、たとえば、1.8である。接着剤の屈折率は、たとえば、1.5である。シンチレーション光の連結面3c,3dでの臨界角は、たとえば、約56.4度である。図12は、シンチレータ1を第三方向D3から見た状態で、シンチレーション光の一部の経路を示している。半導体光検出素子10aは、光L2の側面1cでの入射角EA1が、連結面3cでの臨界角より小さい領域R1において、光L2を検出する。領域R1は、たとえば、連結面3cの全ての領域にまで拡がる。半導体光検出素子10bは、光L4の連結面3dでの入射角EA2が、連結面3dでの臨界角より小さい領域R2において、光L4を検出する。領域R2は、たとえば、連結面3dの全ての領域にまで拡がる。 In this modified example, the semiconductor photodetectors 10a and 10b are adhered to the scintillator 1 with an adhesive having the same refractive index. Therefore, the critical angles at the connecting surfaces 3c and 3d are equal to each other. The scintillator 1 has a refractive index of 1.8, for example. The refractive index of the adhesive is, for example, 1.5. The critical angle of scintillation light at the connecting surfaces 3c and 3d is, for example, about 56.4 degrees. FIG. 12 shows the path of part of the scintillation light when the scintillator 1 is viewed from the third direction D3. The semiconductor photodetector 10a detects the light L2 in the region R1 where the incident angle EA1 of the light L2 on the side surface 1c is smaller than the critical angle on the connecting surface 3c. Region R1 extends, for example, to the entire region of connecting surface 3c. The semiconductor photodetector 10b detects the light L4 in the region R2 where the incident angle EA2 of the light L4 on the connecting surface 3d is smaller than the critical angle on the connecting surface 3d. Region R2 extends, for example, to the entire region of connecting surface 3d.
 本変形例では、部分1q,1r,1s内で発生したシンチレーション光は、それぞれ、光検出領域23b,23c,23dに入射し、連結面3cに配置された半導体光検出素子10a,10bによって検出される。部分1q,1r,1s内で発生したシンチレーション光は、たとえば、それぞれ、部分1q,1r,1s内に閉じ込められる。本変形例では、たとえば、配線部材30a,30bに接続される信号処理回路によって、各光検出領域23a,23b,23c,23dへのシンチレーション光の入射に伴って出力された電気信号が加算される。 In this modification, scintillation light generated in portions 1q, 1r, and 1s enters photodetection regions 23b, 23c, and 23d, respectively, and is detected by semiconductor photodetection elements 10a and 10b arranged on connecting surface 3c. be. Scintillation light generated in portions 1q, 1r, and 1s, for example, is confined within portions 1q, 1r, and 1s, respectively. In this modification, for example, electrical signals output in accordance with the incidence of scintillation light on each of the photodetection regions 23a, 23b, 23c, and 23d are added by a signal processing circuit connected to the wiring members 30a and 30b. .
 図11及び図12に示されるように、放射線検出器RD1は、たとえば、部分1p,1q,1r,1sのそれぞれに、光反射体56を備えている。部分1pでは、たとえば、光反射体56は、たとえば、対向面3a,3b及び連結面3e,3fの少なくとも一つに配置される。本変形例では、光反射体56は、対向面3a及び連結面3e,3fに配置されている。部分1q,1rでは、たとえば、光反射体56は、連結面3e,3fの少なくとも一つに配置される。本変形例では、光反射体56は、連結面3e,3fに配置されている。部分1sでは、たとえば、光反射体56は、対向面3a,3b及び連結面3e,3fの少なくとも一つに配置される。本変形例では、光反射体56は、対向面3b及び連結面3e,3fに配置されている。光反射体56は、対向面3a及び連結面3e,3fに入射するシンチレーション光がシンチレータ1の外部に出射しないように、シンチレーション光を反射する。 As shown in FIGS. 11 and 12, the radiation detector RD1 includes light reflectors 56, for example, in each of the portions 1p, 1q, 1r, and 1s. In portion 1p, for example, light reflectors 56 are arranged, for example, on at least one of opposing surfaces 3a, 3b and connecting surfaces 3e, 3f. In this modification, the light reflectors 56 are arranged on the facing surface 3a and the connecting surfaces 3e and 3f. In the portions 1q, 1r, for example, the light reflector 56 is arranged on at least one of the connecting surfaces 3e, 3f. In this modification, the light reflectors 56 are arranged on the connecting surfaces 3e and 3f. In the portion 1s, for example, the light reflector 56 is arranged on at least one of the facing surfaces 3a, 3b and the connecting surfaces 3e, 3f. In this modification, the light reflectors 56 are arranged on the opposing surface 3b and the connecting surfaces 3e and 3f. The light reflector 56 reflects scintillation light so that the scintillation light incident on the opposing surface 3 a and the connecting surfaces 3 e and 3 f does not exit the scintillator 1 .
 本変形例に係る光反射体56の材料及び厚みは、たとえば、光反射体48の材料と厚みと同じである。本変形例に係る光反射体56は、たとえば、光反射体48と同じ方法で形成される。本変形例に係る光反射体56、光反射部材24、第一実施形態に係る光反射体56、及び光反射体48は、たとえば、互いに同一の材料及び厚みを有している。第一実施形態に係る光反射体56、本変形例に係る光反射体56、光反射部材24、及び光反射体48は、たとえば、同じ方法で形成される。本変形例に係る光反射体56、光反射部材24、第一実施形態に係る光反射体56、及び光反射体48は、たとえば、互いに異なる材料及び厚みを有している。第一実施形態に係る光反射体56、本変形例に係る光反射体56、光反射部材24、及び光反射体48は、たとえば、異なる方法で形成される。各部分1p,1q,1r,1sに配置されている各光反射体56は、隣り合う光反射体56と一体的に形成されていてもよい。本変形例に係る放射線検出器RD1は、光反射体56を備えていなくてもよい。 The material and thickness of the light reflector 56 according to this modification are, for example, the same as the material and thickness of the light reflector 48 . The light reflector 56 according to this modification is formed, for example, by the same method as the light reflector 48 . The light reflector 56 according to this modified example, the light reflecting member 24, the light reflector 56 according to the first embodiment, and the light reflector 48 have, for example, the same material and thickness. The light reflector 56 according to the first embodiment, the light reflector 56, the light reflecting member 24, and the light reflector 48 according to this modification are formed, for example, by the same method. The light reflector 56 according to this modified example, the light reflecting member 24, the light reflector 56 according to the first embodiment, and the light reflector 48 have different materials and thicknesses, for example. The light reflector 56 according to the first embodiment, the light reflector 56, the light reflecting member 24, and the light reflector 48 according to this modified example are formed by different methods, for example. Each light reflector 56 arranged in each of the portions 1p, 1q, 1r, and 1s may be integrally formed with the adjacent light reflectors 56 . The radiation detector RD<b>1 according to this modification may not include the light reflector 56 .
 以上説明したように、放射線検出器RD1は、第一方向D1で互いに対向している一対の端面1a,1bと、第一方向D1に交差する第二方向D2で互いに対向していると共に一対の端面1a,1bを連結している側面1c及び側面1dと、を有し、第一方向D1から見て矩形状を呈しているシンチレータ1と、側面1cと対向するように配置されている半導体基板11aを有している半導体光検出素子10aと、側面1dと対向するように配置されている半導体基板11bを有している半導体光検出素子10bと、半導体光検出素子10aと電気的に接続されている配線部材30aと、半導体光検出素子10bと電気的に接続されている配線部材30bと、を備えている。第一方向D1でのシンチレータ1の長さは、第二方向D2でのシンチレータ1の長さ及び側面1cに平行な第三方向D3でのシンチレータ1の長さより大きい。第一方向D1での側面1cの長さは、第三方向D3での側面1cの幅より大きい。第一方向D1での側面1dの長さは、第三方向D3での側面1dの幅より大きい。半導体基板11aは、側面1cで覆われている部分21aと、部分21aと第一方向D1に並んでいると共に側面1cから露出している部分22aと、を有している。半導体基板11bは、側面1dで覆われている部分21bと、部分21bと第一方向D1に並んでいると共に側面1dから露出している部分22bと、を有している。半導体光検出素子10a及び半導体光検出素子10bのそれぞれは、ガイガーモードで動作する少なくとも一つのアバランシェフォトダイオード12と、少なくとも一つのアバランシェフォトダイオード12のうち対応するアバランシェフォトダイオード12のアノード又はカソードの一方と電気的に直列接続されている少なくとも一つのクエンチング抵抗13と、を有している複数の光検出領域23a,23b,23c,23dと、を有している。半導体光検出素子10aは、複数の光検出領域23a,23b,23c,23dのうち対応する光検出領域23a,23b,23c,23dに含まれている、半導体光検出素子10aが有する少なくとも一つのクエンチング抵抗13と電気的に接続されている複数の電極17a,17b,17,17dと、複数の光検出領域23a,23b,23c,23dのうち対応する光検出領域23a,23b,23c,23dに含まれている、半導体光検出素子10aが有するアバランシェフォトダイオード12のアノード又はカソードの他方と電気的に接続されている電極18と、を有している。半導体光検出素子10bは、複数の光検出領域23a,23b,23c,23dのうち対応する光検出領域23a,23b,23c,23dに含まれている、半導体光検出素子10bが有する少なくとも一つのクエンチング抵抗13と電気的に接続されている複数の電極17a,17b,17,17dと、複数の光検出領域23a,23b,23c,23dのうち対応する光検出領域23a,23b,23c,23dに含まれている、半導体光検出素子10bが有するアバランシェフォトダイオード12のアノード又はカソードの他方と電気的に接続されている電極18と、を有している。半導体光検出素子10aが有する複数の光検出領域23a,23b,23c,23dは、部分21aに配置されている。半導体光検出素子10aが有する複数の電極17a,17b,17,17d及び電極18は、部分22aに配置されている。半導体光検出素子10bが有する複数の光検出領域23a,23b,23c,23dは、部分21bに配置されている。半導体光検出素子10bが有する複数の電極17a,17b,17,17d及び電極18は、部分22bに配置されている。配線部材30aは、半導体光検出素子10aが有する複数の電極17a,17b,17,17dのうち対応する電極17a,17b,17,17dと電気的に接続される複数の導体31a,31b,31c,31dと、半導体光検出素子10aが有する電極18と接続される導体32と、を有している。配線部材30bは、半導体光検出素子10bが有する複数の電極17a,17b,17,17dのうち対応する電極17a,17b,17,17dと電気的に接続される複数の導体31a,31b,31c,31dと、半導体光検出素子10bが有する電極18と接続される導体32と、を有している。 As described above, the radiation detector RD1 has a pair of end faces 1a and 1b facing each other in the first direction D1 and a pair of end faces 1a and 1b facing each other in the second direction D2 intersecting the first direction D1. A semiconductor substrate having a side surface 1c and a side surface 1d connecting the end surfaces 1a and 1b and having a rectangular shape when viewed from the first direction D1, and a semiconductor substrate arranged to face the side surface 1c. 11a, a semiconductor photodetector 10b having a semiconductor substrate 11b arranged to face the side surface 1d, and the semiconductor photodetector 10a are electrically connected to each other. and a wiring member 30b electrically connected to the semiconductor photodetector 10b. The length of the scintillator 1 in the first direction D1 is greater than the length of the scintillator 1 in the second direction D2 and the length of the scintillator 1 in the third direction D3 parallel to the side surface 1c. The length of the side surface 1c in the first direction D1 is greater than the width of the side surface 1c in the third direction D3. The length of the side surface 1d in the first direction D1 is greater than the width of the side surface 1d in the third direction D3. The semiconductor substrate 11a has a portion 21a covered with the side surface 1c and a portion 22a aligned with the portion 21a in the first direction D1 and exposed from the side surface 1c. The semiconductor substrate 11b has a portion 21b covered with the side surface 1d and a portion 22b that is aligned with the portion 21b in the first direction D1 and exposed from the side surface 1d. Each of the semiconductor photodetector element 10a and the semiconductor photodetector element 10b includes at least one avalanche photodiode 12 operating in Geiger mode and one of the anode or cathode of the corresponding avalanche photodiode 12 among the at least one avalanche photodiode 12. and at least one quenching resistor 13 electrically connected in series with a plurality of photodetector regions 23a, 23b, 23c, 23d. The semiconductor photodetector 10a includes at least one quencher included in the corresponding photodetection regions 23a, 23b, 23c, and 23d among the plurality of photodetection regions 23a, 23b, 23c, and 23d. In the plurality of electrodes 17a, 17b, 17, 17d electrically connected to the switching resistor 13 and the corresponding photodetection regions 23a, 23b, 23c, 23d among the plurality of photodetection regions 23a, 23b, 23c, 23d. and an electrode 18 electrically connected to the other of the anode or cathode of the avalanche photodiode 12 included in the semiconductor photodetector 10a. The semiconductor photodetector 10b includes at least one quencher included in the corresponding photodetection regions 23a, 23b, 23c, and 23d among the plurality of photodetection regions 23a, 23b, 23c, and 23d. In the plurality of electrodes 17a, 17b, 17, 17d electrically connected to the switching resistor 13 and the corresponding photodetection regions 23a, 23b, 23c, 23d among the plurality of photodetection regions 23a, 23b, 23c, 23d. and an electrode 18 electrically connected to the other of the anode and cathode of the avalanche photodiode 12 included in the semiconductor photodetector 10b. A plurality of photodetection regions 23a, 23b, 23c, and 23d of the semiconductor photodetector 10a are arranged in the portion 21a. The plurality of electrodes 17a, 17b, 17, 17d and the electrode 18 of the semiconductor photodetector 10a are arranged in the portion 22a. A plurality of photodetection regions 23a, 23b, 23c, and 23d of semiconductor photodetector 10b are arranged in portion 21b. The plurality of electrodes 17a, 17b, 17, 17d and the electrode 18 of the semiconductor photodetector 10b are arranged in the portion 22b. The wiring member 30a includes a plurality of conductors 31a, 31b, 31c, 31a, 31b, 31c, 31b, 31c, 31b, 31c, 31c, 31b, 31c, 31c, 31c, 31b, 31c, 31c, 31c, 31c, 31c, 31c, 31c, 31c, 31d, 31d, 31d, 31c, 31c, 31c, 31d, 31c, 31c, 31d, 31c, 31d, 31d from the semiconductor photodetector 10a. 31d, and a conductor 32 connected to the electrode 18 of the semiconductor photodetector 10a. The wiring member 30b includes a plurality of conductors 31a, 31b, 31c, 31b, 31c, 31b, 31c, 31b, 31c, 31b, 31c, 31b, 31c, 31b, 31c, 31b, 31c, 31b, 31c, 31c, 31b, 31d, 31d, 31d, 31c, 31c, 31d, and 31d and a conductor 32 connected to the electrode 18 of the semiconductor photodetector 10b.
 放射線検出器RD1は、第一方向D1で長いシンチレータ1を備えていると共に、シンチレータ1の側面1cに配置された半導体光検出素子10aを備えている。シンチレータ1の側面1dに配置された半導体光検出素子10bを備えている。半導体光検出素子10aは、半導体光検出素子10aが配置された側面1cに入射するシンチレーション光を検出する。半導体光検出素子10bは、半導体光検出素子10bが配置された側面1dに入射するシンチレーション光を検出する。第二方向D2でのシンチレータ1の長さは、第一方向D1でのシンチレータ1の長さより小さい。したがって、シンチレーション光の発生点GP1から、側面1c及び側面1dのそれぞれまでの距離が短い。シンチレーション光の、半導体光検出素子10a,10bのそれぞれへの到達時間が短く、放射線検出器RD1は、高い時間分解能を実現する。放射線検出器RD1は、半導体光検出素子10a及び半導体光検出素子10bを備えている。したがって、放射線検出器RD1は、シンチレータの一つの側面に配置された単一の半導体光検出素子を備えている放射線検出器に比べて、高い検出感度を実現する。 The radiation detector RD1 includes a scintillator 1 elongated in the first direction D1 and a semiconductor photodetector element 10a arranged on the side surface 1c of the scintillator 1. The scintillator 1 is provided with a semiconductor photodetector 10b arranged on the side surface 1d. The semiconductor photodetector 10a detects scintillation light incident on the side surface 1c on which the semiconductor photodetector 10a is arranged. The semiconductor photodetector 10b detects scintillation light incident on the side surface 1d on which the semiconductor photodetector 10b is arranged. The length of the scintillator 1 in the second direction D2 is smaller than the length of the scintillator 1 in the first direction D1. Therefore, the distances from the scintillation light generation point GP1 to each of the side surfaces 1c and 1d are short. The time for the scintillation light to reach each of the semiconductor photodetectors 10a and 10b is short, and the radiation detector RD1 achieves high time resolution. The radiation detector RD1 includes a semiconductor photodetector element 10a and a semiconductor photodetector element 10b. Therefore, the radiation detector RD1 achieves higher detection sensitivity than a radiation detector having a single semiconductor photodetector arranged on one side of the scintillator.
 放射線検出器RD1は、第一方向D1に並んでいる複数の光検出領域23a,23b,23c,23dが配置された半導体光検出素子10a,10bを備えている。複数の光検出領域23a,23b,23c,23dのうち、たとえば、シンチレーション光を最も多く検出した光検出領域23a,23b,23c,23dの位置から、シンチレーション光の発生点GP1と、シンチレータ1の端面1aとの第一方向D1での距離が求められる。
 この結果、シンチレータ1の端面1aから入射した放射線のエネルギーの大きさが正確に計測される。したがって、放射線検出器RD1は、高いエネルギー分解能を実現する。
The radiation detector RD1 includes semiconductor photodetection elements 10a, 10b in which a plurality of photodetection regions 23a, 23b, 23c, 23d are arranged in the first direction D1. From the positions of the photodetection regions 23a, 23b, 23c, and 23d that detect the most scintillation light among the plurality of photodetection regions 23a, 23b, 23c, and 23d, for example, the scintillation light generation point GP1 and the end surface of the scintillator 1 are detected. A distance in the first direction D1 to 1a is obtained.
As a result, the magnitude of the energy of the radiation incident from the end surface 1a of the scintillator 1 can be accurately measured. Therefore, the radiation detector RD1 achieves high energy resolution.
 放射線検出器RD1では、第二方向D2から見て、半導体基板11aが有する複数の光検出領域23a,23b,23c,23dの輪郭により構成される一つの領域は、側面1cの輪郭形状に対応する輪郭形状を呈している。第二方向D2から見て、半導体基板11bが有する複数の光検出領域23a,23b,23c,23dの輪郭により構成される一つの領域は、側面1dの輪郭形状に対応する輪郭形状を呈している。
 半導体基板11aが有する複数の光検出領域23a,23b,23c,23dの輪郭により構成される一つの領域が側面1cの輪郭形状に対応する形状を呈している構成では、複数の光検出領域23a,23b,23c,23dは、半導体基板11aのうち、シンチレーション光を受光し得ない箇所に配置されがたい。したがって、半導体基板11aの光検出領域23a,23b,23c,23dでのダークカウント及び容量の増加が抑制される。半導体基板11bが有する複数の光検出領域23a,23b,23c,23dの輪郭により構成される一つの領域が側面1dの輪郭形状に対応する形状を呈している構成では、複数の光検出領域23a,23b,23c,23dは、半導体基板11bのうち、シンチレーション光を受光し得ない箇所に配置されがたい。したがって、半導体基板11bの光検出領域23a,23b,23c,23dでのダークカウント及び容量の増加が抑制される。これらの構成は、シンチレーション光の検出誤差を低減する。この結果、放射線検出器RD1は、半導体光検出素子10a及び半導体光検出素子10bの時間分解能と検出感度とを確実に向上する。
In the radiation detector RD1, when viewed from the second direction D2, one region formed by the contours of the plurality of photodetection regions 23a, 23b, 23c, and 23d of the semiconductor substrate 11a corresponds to the contour shape of the side surface 1c. It has a contoured shape. When viewed from the second direction D2, one region formed by the contours of the plurality of photodetection regions 23a, 23b, 23c, and 23d of the semiconductor substrate 11b has a contour shape corresponding to the contour shape of the side surface 1d. .
In a configuration in which one region constituted by the contours of the plurality of photodetection regions 23a, 23b, 23c, and 23d of the semiconductor substrate 11a has a shape corresponding to the contour shape of the side surface 1c, the plurality of photodetection regions 23a, 23b, 23c, and 23d may 23b, 23c, and 23d are difficult to be arranged on the semiconductor substrate 11a where they cannot receive the scintillation light. Therefore, increases in dark count and capacitance in the photodetection regions 23a, 23b, 23c, and 23d of the semiconductor substrate 11a are suppressed. In a configuration in which one region constituted by the contours of the plurality of photodetection regions 23a, 23b, 23c, and 23d of the semiconductor substrate 11b has a shape corresponding to the contour shape of the side surface 1d, the plurality of photodetection regions 23a, 23b, 23c, and 23d may 23b, 23c, and 23d are difficult to be arranged on the semiconductor substrate 11b where they cannot receive the scintillation light. Therefore, increases in dark count and capacitance in the photodetection regions 23a, 23b, 23c, and 23d of the semiconductor substrate 11b are suppressed. These configurations reduce the detection error of scintillation light. As a result, the radiation detector RD1 reliably improves the time resolution and detection sensitivity of the semiconductor photodetector elements 10a and 10b.
 放射線検出器RD1では、シンチレータ1は、互いに独立して第一方向D1に並んでいる複数の部分1p,1q,1r,1sを有している。複数の部分1p,1q,1r,1sのそれぞれは、半導体基板11a及び半導体基板11bのそれぞれに配置されている、複数の光検出領域23a,23b,23c,23dのうち対応する光検出領域23a,23b,23c,23dに対応して位置している。複数の部分1p,1q,1r,1sのそれぞれは、第一方向D1で互いに対向している一対の対向面3a,3bと、一対の対向面3a,3bを連結している連結面3cと連結面3dと、を有している。連結面3cは、半導体基板11aと対向している。連結面3dは、半導体基板11bと対向し、かつ、第二方向D2で連結面3cと対向している。
 この構成では、各部分1p,1q,1r,1sで発生したシンチレーション光が当該部分1p,1q,1r,1s内に閉じ込められる。当該部分1p,1q,1r,1sに対応する光検出領域23a,23b,23c,23dが、当該部分1p,1q,1r,1s内で発生したシンチレーション光を確実に検出する。したがって、放射線検出器RD1は、高いエネルギー分解能を確実に実現する。
In radiation detector RD1, scintillator 1 has a plurality of portions 1p, 1q, 1r, and 1s that are independently aligned in first direction D1. Each of the plurality of portions 1p, 1q, 1r, and 1s corresponds to one of the plurality of photodetection regions 23a, 23b, 23c, and 23d arranged on the semiconductor substrate 11a and the semiconductor substrate 11b, respectively. 23b, 23c and 23d. Each of the plurality of portions 1p, 1q, 1r, and 1s is connected to a pair of facing surfaces 3a and 3b facing each other in the first direction D1 and a connecting surface 3c connecting the pair of facing surfaces 3a and 3b. and a surface 3d. The connecting surface 3c faces the semiconductor substrate 11a. The connecting surface 3d faces the semiconductor substrate 11b and also faces the connecting surface 3c in the second direction D2.
In this configuration, scintillation light generated in each portion 1p, 1q, 1r, 1s is confined within the portion 1p, 1q, 1r, 1s. The photodetection regions 23a, 23b, 23c, and 23d corresponding to the portions 1p, 1q, 1r, and 1s reliably detect the scintillation light generated within the portions 1p, 1q, 1r, and 1s. Therefore, the radiation detector RD1 reliably achieves high energy resolution.
 放射線検出器RD1では、複数の部分1p,1q,1r,1sは、互いに接合されている。
 この構成は、シンチレータ1の物理的強度を向上する。したがって、放射線検出器RD1は、高いエネルギー分解能をより確実に実現する。
In radiation detector RD1, a plurality of portions 1p, 1q, 1r, and 1s are joined together.
This configuration improves the physical strength of the scintillator 1 . Therefore, the radiation detector RD1 more reliably achieves high energy resolution.
 放射線検出器RD1は、光反射部材24を備えている。光反射部材24は、複数の部分1p,1q,1r,1s間に配置されている。
 この構成では、各部分1p,1q,1r,1sで発生したシンチレーション光が確実に当該部分1p,1q,1r,1s内に閉じ込められる。当該部分1p,1q,1r,1sに対応する光検出領域23a,23b,23c,23dが、当該部分1p,1q,1r,1s内で発生したシンチレーション光をより確実に検出する。
 したがって、配線部材30a,30bに接続される信号処理回路によって、各光検出領域23a,23b,23c,23d毎にシンチレーション光入射に伴って出力された電気信号が処理される。部分1p,1q,1r,1sが互いに分離して第一方向D1に並んでいる場合であっても、部分1p内で発生したシンチレーション光は、たとえば、部分1qに入射しない。この場合には、光検出領域23aに対応する部分1p内で発生したシンチレーション光は、光検出領域23aで個別に検出される。部分1q,1r,1s内で発生したシンチレーション光が、それぞれ、部分1q,1r,1sに閉じ込められる場合は、部分1q,1r,1s内で発生したシンチレーション光は、各光検出領域23b,23c,23dに個別に検出される。この結果、放射線検出器RD1は、高いエネルギー分解能を更により確実に実現する。
The radiation detector RD1 has a light reflecting member 24 . The light reflecting member 24 is arranged between the plurality of portions 1p, 1q, 1r, and 1s.
In this configuration, the scintillation light generated in each of the portions 1p, 1q, 1r, and 1s is reliably confined within the portions 1p, 1q, 1r, and 1s. The photodetection regions 23a, 23b, 23c, and 23d corresponding to the portions 1p, 1q, 1r, and 1s more reliably detect the scintillation light generated within the portions 1p, 1q, 1r, and 1s.
Therefore, the signal processing circuit connected to the wiring members 30a, 30b processes the electrical signals output with the incidence of the scintillation light for each of the photodetection regions 23a, 23b, 23c, 23d. Even if the portions 1p, 1q, 1r, and 1s are separated from each other and arranged in the first direction D1, the scintillation light generated in the portion 1p does not enter, for example, the portion 1q. In this case, the scintillation light generated in the portion 1p corresponding to the photodetection area 23a is individually detected by the photodetection area 23a. When the scintillation light generated in the portions 1q, 1r, and 1s are confined in the portions 1q, 1r, and 1s, respectively, the scintillation light generated in the portions 1q, 1r, and 1s are detected by the respective photodetection regions 23b, 23c, and 23d is detected separately. As a result, the radiation detector RD1 more reliably achieves high energy resolution.
 放射線検出器RD1では、第二方向D2から見て、半導体基板11aが有する複数の光検出領域23a,23b,23c,23dのそれぞれは、複数の部分1p,1q,1r,1sのうち対応する部分1p,1q,1r,1sの、半導体基板11aと対向する連結面3cの輪郭形状に対応する輪郭形状を呈している。第二方向D2から見て、半導体基板11bが有する複数の光検出領域23a,23b,23c,23dのそれぞれは、複数の部分1p,1q,1r,1sのうち対応する部分1p,1q,1r,1sの、半導体基板11bと対向する連結面3dの輪郭形状に対応する輪郭形状を呈している。
 半導体基板11aが有する複数の光検出領域23a,23b,23c,23dのそれぞれが複数の部分1p,1q,1r,1sのうち対応する部分1p,1q,1r,1sの、半導体基板11aと対向する連結面3cの輪郭形状に対応する輪郭形状を呈している構成では、複数の光検出領域23a,23b,23c,23dは、半導体基板11aのうち、シンチレーション光を受光し得ない箇所に配置されがたい。半導体基板11bが有する複数の光検出領域23a,23b,23c,23dのそれぞれが複数の部分1p,1q,1r,1sのうち対応する部分1p,1q,1r,1sの、半導体基板11bと対向する連結面3dの輪郭形状に対応する輪郭形状を呈している構成では、複数の光検出領域23a,23b,23c,23dは、半導体基板11bのうち、シンチレーション光を受光し得ない箇所に配置されがたい。したがって、これらの構成は、複数の光検出領域でのダークカウント及び容量の増加を抑制する。この結果、本構成は、放射線検出器RD1の時間分解能及びエネルギー分解能を確実に向上する。
In the radiation detector RD1, when viewed from the second direction D2, the plurality of photodetection regions 23a, 23b, 23c, and 23d of the semiconductor substrate 11a correspond to the portions 1p, 1q, 1r, and 1s among the plurality of portions 1p, 1q, 1r, and 1s. The contour shapes of 1p, 1q, 1r, and 1s correspond to the contour shape of the connecting surface 3c facing the semiconductor substrate 11a. When viewed from the second direction D2, each of the plurality of photodetection regions 23a, 23b, 23c, and 23d of the semiconductor substrate 11b corresponds to the corresponding portion 1p, 1q, 1r, 1s has a contour shape corresponding to the contour shape of the connecting surface 3d facing the semiconductor substrate 11b.
Each of the plurality of photodetection regions 23a, 23b, 23c, and 23d of the semiconductor substrate 11a faces the semiconductor substrate 11a of the corresponding portions 1p, 1q, 1r, and 1s among the plurality of portions 1p, 1q, 1r, and 1s. In the configuration having the contour shape corresponding to the contour shape of the connecting surface 3c, the plurality of photodetection regions 23a, 23b, 23c, and 23d are arranged in locations on the semiconductor substrate 11a where scintillation light cannot be received. sea bream. Each of the plurality of photodetection regions 23a, 23b, 23c, and 23d of the semiconductor substrate 11b faces the semiconductor substrate 11b of the corresponding portions 1p, 1q, 1r, and 1s among the plurality of portions 1p, 1q, 1r, and 1s. In the configuration having the contour shape corresponding to the contour shape of the connecting surface 3d, the plurality of photodetection regions 23a, 23b, 23c, and 23d are arranged in locations on the semiconductor substrate 11b where scintillation light cannot be received. sea bream. Therefore, these configurations suppress dark count and capacity build-up in multiple photodetection regions. As a result, this configuration reliably improves the time resolution and energy resolution of the radiation detector RD1.
 放射線検出器RD1では、複数の光検出領域23a,23b,23c,23dは、光検出領域と、光検出領域23aよりも部分22a,22dに近い光検出領域23dと、を含んでいる。光検出領域23aに対応している電極17aと、光検出領域23aとを電気的に接続している導線14aの幅は、光検出領域23dに対応している電極17dと、光検出領域23dとを電気的に接続している導線14dの幅より大きい。
 この構成では、光検出領域23aに対応している電極17aと、光検出領域23aとを電気的に接続している導線14aと、光検出領域23dに対応している電極17dと、光検出領域23dとを電気的に接続している導線14dとの電気抵抗差が低減される。光検出領域23aに対応している電極17aと、光検出領域23aとを電気的に接続している導線14aの長さは、光検出領域23dに対応している電極17dと、光検出領域23dとを電気的に接続している導線14dの長さより大きい。導線14a,14dの長さが大きくなるに従って、当該導線14a,14dの電気抵抗が増大する。導線14a,14dの幅が大きくなるに従って、当該導線14a,14dの電気抵抗が低減する。したがって、長い導線14aの幅が短い導線14dの幅より大きい構成では、長い導線14aの電気抵抗と短い導線14dの電気抵抗との間の電気抵抗差が低減する。したがって、本構成は、放射線検出器RD1の時間分解能をより確実に向上する。
In the radiation detector RD1, the plurality of photodetection regions 23a, 23b, 23c, 23d includes a photodetection region and a photodetection region 23d closer to the portions 22a, 22d than the photodetection region 23a. The width of the conductive wire 14a electrically connecting the electrode 17a corresponding to the photodetection region 23a and the photodetection region 23a is the width of the electrode 17d corresponding to the photodetection region 23d and the width of the photodetection region 23d. is greater than the width of the conductor 14d electrically connecting the .
In this configuration, the electrode 17a corresponding to the photodetection region 23a, the conductor 14a electrically connecting the photodetection region 23a, the electrode 17d corresponding to the photodetection region 23d, the photodetection region 23d is reduced in electric resistance difference with the lead wire 14d electrically connecting with 23d. The length of the conducting wire 14a electrically connecting the electrode 17a corresponding to the photodetection region 23a and the photodetection region 23a is equal to the length of the electrode 17d corresponding to the photodetection region 23d and the length of the photodetection region 23d. is greater than the length of the conductor 14d electrically connecting the . As the length of the conductors 14a and 14d increases, the electrical resistance of the conductors 14a and 14d increases. As the width of the conductors 14a and 14d increases, the electrical resistance of the conductors 14a and 14d decreases. Thus, in configurations where the width of the long conductor 14a is greater than the width of the short conductor 14d, the electrical resistance difference between the electrical resistance of the long conductor 14a and the electrical resistance of the short conductor 14d is reduced. Therefore, this configuration more reliably improves the time resolution of the radiation detector RD1.
 放射線検出器RD1は、部分22aと部分22bとの間に配置されている補強体45を備えている。補強体45は、部分22aと部分22bとを覆っていると共に、部分22aと部分22bとを連結している。
 この構成では、部分22aと部分22bとの間に配置された補強体45が、部分22a及び部分22bの機械的強度を向上する。部分22aと部分22bのそれぞれに位置する配線部材30a,30bは、補強体45によって保護される。部分22a及び部分22bの機械的強度が向上し、たとえば、面11d,11fが研磨され得る。
Radiation detector RD1 comprises a reinforcing body 45 arranged between portions 22a and 22b. The reinforcing body 45 covers the portions 22a and 22b and connects the portions 22a and 22b.
In this configuration, a reinforcement 45 positioned between portions 22a and 22b increases the mechanical strength of portions 22a and 22b. The wiring members 30a and 30b located in the portions 22a and 22b, respectively, are protected by the reinforcing member 45. As shown in FIG. The mechanical strength of the portions 22a and 22b is improved and, for example, the surfaces 11d and 11f can be polished.
 放射線検出器RD1では、半導体基板11aは、第二方向D2でシンチレータ1と対向している面11cと、第二方向D2で面11cと対向している面11dと、を有している。半導体基板11bは、第二方向D2でシンチレータ1と対向している面11eと、第二方向D2で面11eと対向している面11fと、を有している。面11d及び面11fは、研磨面である。
 面11dが研磨面である構成では、面11dが研磨されることによって、半導体基板11aの薄化が可能である。面11fが研磨面である構成では、面11fが研磨されることによって、半導体基板11bの薄化が可能である。半導体基板11aの厚み方向で、放射線検出器RD1が小サイズ化され得る。半導体基板11bの厚み方向で、放射線検出器RD1が小サイズ化され得る。
In the radiation detector RD1, the semiconductor substrate 11a has a surface 11c facing the scintillator 1 in the second direction D2 and a surface 11d facing the surface 11c in the second direction D2. The semiconductor substrate 11b has a surface 11e facing the scintillator 1 in the second direction D2 and a surface 11f facing the surface 11e in the second direction D2. The surfaces 11d and 11f are polished surfaces.
In the configuration in which the surface 11d is a polished surface, the semiconductor substrate 11a can be thinned by polishing the surface 11d. In the configuration in which the surface 11f is a polished surface, the semiconductor substrate 11b can be thinned by polishing the surface 11f. The size of the radiation detector RD1 can be reduced in the thickness direction of the semiconductor substrate 11a. The size of the radiation detector RD1 can be reduced in the thickness direction of the semiconductor substrate 11b.
 放射線検出器RD1は、第二方向D2で互いに対向している面40c及び面40dを有している共に、面40dとシンチレータ1との間に半導体基板11aが位置するように配置されている基体40aと、第二方向D2で互いに対向している面40e及び面40fを有している共に、面40eとシンチレータ1との間に半導体基板11bが位置するように配置されている基体40bと、面40c上に配置されている複数の端子41a,41b,41c,41dと、面40c上に配置されている端子42と、面40e上に配置されている複数の端子41a,41b,41c,41dと、面40e上に配置されている端子42と、面40c上に配置されている複数の端子41a,41b,41c,41dと、部分22aに配置されている電極17a,17b,17c,17dとを電気的に接続するワイヤ43と、面40c上に配置されている端子42と、部分22aに配置されている電極18とを電気的に接続するワイヤ44と、面40e上に配置されている複数の端子41a,41b,41c,41dと、部分22bに配置されている電極17a,17b,17c,17dとを電気的に接続するワイヤ43と、面40e上に配置されている端子42と、部分22bに配置されている電極18とを電気的に接続するワイヤ44と、を備えている。基体40aは、半導体基板11aで覆われている部分51aと、部分51aと第一方向D1に並んでいると共に半導体基板11aから露出している部分52aと、を有している。基体40bは、半導体基板11bで覆われている部分51bと、部分51bと第一方向D1に並んでいると共に半導体基板11bから露出している部分52bと、を有している。面40c上に配置されている各端子41a,41b,41c,41d及び端子42は、部分52a上に位置している。面40e上に配置されている各端子41a,41b,41c,41d及び端子42は、部分52b上に位置している。
 基体40a,40bを備えている構成は、放射線検出器RD1の機械的強度を向上する。したがって、本構成は、機械的強度を向上した放射線検出器RD1を確実に実現する。
The radiation detector RD1 has a surface 40c and a surface 40d facing each other in the second direction D2. a base 40b having a surface 40a and a surface 40e and a surface 40f facing each other in the second direction D2, and arranged such that the semiconductor substrate 11b is positioned between the surface 40e and the scintillator 1; A plurality of terminals 41a, 41b, 41c, 41d arranged on the surface 40c, a terminal 42 arranged on the surface 40c, and a plurality of terminals 41a, 41b, 41c, 41d arranged on the surface 40e. , a terminal 42 arranged on the surface 40e, a plurality of terminals 41a, 41b, 41c, 41d arranged on the surface 40c, and electrodes 17a, 17b, 17c, 17d arranged on the portion 22a. , a wire 44 electrically connecting the terminal 42 arranged on the surface 40c and the electrode 18 arranged on the portion 22a, and the wire 44 arranged on the surface 40e Wires 43 electrically connecting the plurality of terminals 41a, 41b, 41c, 41d and the electrodes 17a, 17b, 17c, 17d arranged on the portion 22b, terminals 42 arranged on the surface 40e, and a wire 44 electrically connecting to the electrode 18 located on the portion 22b. The base 40a has a portion 51a covered with the semiconductor substrate 11a, and a portion 52a aligned with the portion 51a in the first direction D1 and exposed from the semiconductor substrate 11a. The base 40b has a portion 51b covered with the semiconductor substrate 11b, and a portion 52b aligned with the portion 51b in the first direction D1 and exposed from the semiconductor substrate 11b. Each terminal 41a, 41b, 41c, 41d and terminal 42 located on surface 40c are located on portion 52a. Each terminal 41a, 41b, 41c, 41d and terminal 42 located on surface 40e are located on portion 52b.
The configuration comprising the substrates 40a, 40b improves the mechanical strength of the radiation detector RD1. Therefore, this configuration reliably realizes the radiation detector RD1 with improved mechanical strength.
 放射線検出器RD1は、シンチレータ1との間に半導体基板11aが位置するように配置されている被覆体47aと、シンチレータ1との間に半導体基板11bが位置するように配置されている被覆体47bと、を備えている。被覆体47a及び被覆体47bのそれぞれは、光反射体48及び電気絶縁体49の少なくともいずれか一つを含んでいる。
 たとえば、被覆体47a及び被覆体47bのそれぞれが光反射体48を含む構成は、シンチレーション光の光反射特性を向上する。たとえば、被覆体47a及び被覆体47bのそれぞれが電気絶縁体49を含む構成は、互いに隣接する放射線検出器RD1間の電気絶縁性を向上する。
The radiation detector RD1 has a cover 47a arranged so that the semiconductor substrate 11a is positioned between the scintillator 1 and a cover 47b arranged so that the semiconductor substrate 11b is positioned between the scintillator 1. and have. Each of the coverings 47 a and 47 b includes at least one of a light reflector 48 and an electrical insulator 49 .
For example, a configuration in which each of the coatings 47a and 47b includes the light reflector 48 improves the light reflecting properties of the scintillation light. For example, the configuration in which each of the coverings 47a and 47b includes the electrical insulator 49 improves the electrical insulation between the adjacent radiation detectors RD1.
 放射線検出器RD1では、配線部材30aは、半導体基板11aに対して、シンチレータ1と同じ側に配置されている。配線部材30bは、半導体基板11bに対して、シンチレータ1と同じ側に配置されている。
 配線部材30aが、半導体基板11aに対してシンチレータ1と同じ側に配置されている構成は、たとえば、配線部材30aを、半導体光検出素子10aが有する電極17a,17b,17c,17d及び電極18とダイボンディングによって接続するための基板を必要としない。配線部材30bが、半導体基板11bに対してシンチレータ1と同じ側に配置されている構成は、たとえば、配線部材30bを、半導体光検出素子10bが有する電極17a,17b,17c,17d及び電極18とダイボンディングによって接続するための基板を必要としない。したがって、これらの構成は、放射線検出器RD1の構成をより確実に簡略化する。
 放射線検出器RD1では、配線部材30aの少なくとも一部と、シンチレータ1とは、半導体基板11aの同じ面の前に配置されている。配線部材30bの少なくとも一部と、シンチレータ1とは、半導体基板11bの同じ面の前に配置されている。
 配線部材30aの少なくとも一部とシンチレータ1とが、半導体基板11aの同じ面の前に配置されている構成は、配線部材30aの少なくとも一部と、シンチレータ1とが、互いに半導体基板11aの異なる面の前に配置されている構成に比べて、放射線検出器RD1のスペース効率を向上する。配線部材30bの少なくとも一部とシンチレータ1とが、半導体基板11bの同じ面の前に配置されている構成は、配線部材30bの少なくとも一部と、シンチレータ1とが、互いに半導体基板11bの異なる面の前に配置されている構成に比べて、放射線検出器RD1のスペース効率を向上する。
 放射線検出器RD1では、配線部材30aの少なくとも一部と、シンチレータ1とは、基体40aの同じ面の前に配置されている。配線部材30bの少なくとも一部と、シンチレータ1とは、基体40bの同じ面の前に配置されている。
 配線部材30aの少なくとも一部とシンチレータ1とが、基体40aの同じ面の前に配置されている構成は、ダイボンディングによって、配線部材30aを、半導体光検出素子10aが有する電極17a,17b,17c,17d,18に接続しやすい。配線部材30bの少なくとも一部とシンチレータ1とが、基体40bの同じ面の前に配置されている構成は、ダイボンディングによって配線部材30bを、半導体光検出素子10bが有する電極17a,17b,17c,17d,18に接続しやすい。
In the radiation detector RD1, the wiring member 30a is arranged on the same side as the scintillator 1 with respect to the semiconductor substrate 11a. The wiring member 30b is arranged on the same side as the scintillator 1 with respect to the semiconductor substrate 11b.
The wiring member 30a is arranged on the same side as the scintillator 1 with respect to the semiconductor substrate 11a. No substrate is required for connection by die bonding. The wiring member 30b is arranged on the same side as the scintillator 1 with respect to the semiconductor substrate 11b. No substrate is required for connection by die bonding. Therefore, these configurations more reliably simplify the configuration of the radiation detector RD1.
In the radiation detector RD1, at least part of the wiring member 30a and the scintillator 1 are arranged in front of the same surface of the semiconductor substrate 11a. At least part of the wiring member 30b and the scintillator 1 are arranged in front of the same surface of the semiconductor substrate 11b.
At least part of the wiring member 30a and the scintillator 1 are arranged in front of the same surface of the semiconductor substrate 11a. It improves the space efficiency of the radiation detector RD1 compared to the configuration placed in front of the . At least part of the wiring member 30b and the scintillator 1 are arranged in front of the same surface of the semiconductor substrate 11b. It improves the space efficiency of the radiation detector RD1 compared to the configuration placed in front of the .
In the radiation detector RD1, at least part of the wiring member 30a and the scintillator 1 are arranged in front of the same surface of the substrate 40a. At least part of the wiring member 30b and the scintillator 1 are arranged in front of the same surface of the substrate 40b.
In the configuration in which at least part of the wiring member 30a and the scintillator 1 are arranged in front of the same surface of the substrate 40a, the wiring member 30a is connected to the electrodes 17a, 17b, 17c of the semiconductor photodetector 10a by die bonding. , 17d and 18. In the configuration in which at least part of the wiring member 30b and the scintillator 1 are arranged in front of the same surface of the substrate 40b, the wiring member 30b is attached to the electrodes 17a, 17b, 17c, 17c, 17b, 17c of the semiconductor photodetector 10b by die bonding. Easy to connect to 17d and 18.
 放射線検出器RD1では、配線部材30a及び配線部材30bと、半導体基板11a及び半導体基板11bとは、可撓性を有している。配線部材30aの可撓性は、半導体基板11aの可撓性より大きい。配線部材30bの可撓性は、半導体基板11bの可撓性より大きい。
 配線部材30aの可撓性が半導体基板11aの可撓性より大きい構成では、配線部材30aの振動が、半導体基板11aに伝わりにくい。半導体基板11aに、配線部材30aからの力が加わりにくく、半導体基板11aは、物理的なダメージを受けがたい。配線部材30bの可撓性が半導体基板11bの可撓性より大きい構成では、配線部材30bの振動が、半導体基板11bに伝わりにくい。半導体基板11bに、配線部材30bからの力が加わりにくく、半導体基板11bは、物理的なダメージを受けがたい。したがって、本構成は、放射線検出器RD1の機械的強度を確実に維持する。
In the radiation detector RD1, the wiring members 30a and 30b and the semiconductor substrates 11a and 11b are flexible. The flexibility of the wiring member 30a is greater than that of the semiconductor substrate 11a. The flexibility of the wiring member 30b is greater than that of the semiconductor substrate 11b.
In a configuration in which the flexibility of the wiring member 30a is greater than that of the semiconductor substrate 11a, the vibration of the wiring member 30a is less likely to be transmitted to the semiconductor substrate 11a. A force from the wiring member 30a is less likely to be applied to the semiconductor substrate 11a, and the semiconductor substrate 11a is less susceptible to physical damage. In a configuration in which the flexibility of the wiring member 30b is greater than that of the semiconductor substrate 11b, the vibration of the wiring member 30b is less likely to be transmitted to the semiconductor substrate 11b. A force from the wiring member 30b is less likely to be applied to the semiconductor substrate 11b, and the semiconductor substrate 11b is less susceptible to physical damage. Therefore, this configuration reliably maintains the mechanical strength of the radiation detector RD1.
 (第二実施形態)
 図13及び図14を参照しながら、第二実施形態に係る放射線検出器アレイRA1,RA2の構成を説明する。図13は、第二実施形態に係る放射線検出器アレイRA1を示す斜視図である。図14は、第二実施形態に係る放射線検出器アレイRA2を示す斜視図である。
(Second embodiment)
The configuration of the radiation detector arrays RA1 and RA2 according to the second embodiment will be described with reference to FIGS. 13 and 14. FIG. FIG. 13 is a perspective view showing the radiation detector array RA1 according to the second embodiment. FIG. 14 is a perspective view showing a radiation detector array RA2 according to the second embodiment.
 図13に示されるように、放射線検出器アレイRA1は、たとえば、第一実施形態又は変形例に係る複数の放射線検出器RD1が一次元に配列して構成されている。複数の放射線検出器RD1の各々は、たとえば、第三方向D3に配置されている。図13に示した例では、三つの放射線検出器RD1が、第三方向D3に配置されている。複数の放射線検出器RD1のうち互いに隣り合う任意の二つの放射線検出器RD1は、一方の放射線検出器RD1が備えるシンチレータ1の側面1e,1fと、他方の放射線検出器RD1が備えるシンチレータ1の側面1e,1fとが互いに対向するように、配置されている。したがって、第三方向D3で互いに隣り合う任意の二つの放射線検出器RD1は、たとえば、一方の放射線検出器RD1が備えるシンチレータ1の側面1eと、他方の放射線検出器RD1が備えるシンチレータ1の側面1fとが互いに対向するように、配置されている。第三方向D3で互いに隣り合う任意の二つの放射線検出器RD1は、たとえば、一方の放射線検出器RD1が備えるシンチレータ1の側面1fと、他方の放射線検出器RD1が備えるシンチレータ1の側面1eとが互いに対向するように、配置されている。 As shown in FIG. 13, the radiation detector array RA1 is configured by, for example, one-dimensionally arranging a plurality of radiation detectors RD1 according to the first embodiment or the modified example. Each of the multiple radiation detectors RD1 is arranged, for example, in the third direction D3. In the example shown in FIG. 13, three radiation detectors RD1 are arranged in the third direction D3. Any two adjacent radiation detectors RD1 among the plurality of radiation detectors RD1 are side surfaces 1e and 1f of the scintillator 1 provided by one radiation detector RD1 and side surfaces of the scintillator 1 provided by the other radiation detector RD1. 1e and 1f are arranged so as to face each other. Therefore, any two radiation detectors RD1 adjacent to each other in the third direction D3 are, for example, a side surface 1e of the scintillator 1 provided by one radiation detector RD1 and a side surface 1f of the scintillator 1 provided by the other radiation detector RD1. are arranged so as to face each other. Any two radiation detectors RD1 adjacent to each other in the third direction D3 are, for example, a side surface 1f of the scintillator 1 included in one radiation detector RD1 and a side surface 1e of the scintillator 1 included in the other radiation detector RD1. They are arranged so as to face each other.
 一方の放射線検出器RD1が備える半導体光検出素子10aと、他方の放射線検出器RD1が備える半導体光検出素子10aとは、たとえば、互いに一次元に配置されている。本実施形態では、一方の放射線検出器RD1が備える半導体光検出素子10aと、他方の放射線検出器RD1が備える半導体光検出素子10aとは、たとえば、互いに第三方向D3に配置されている。一方の放射線検出器RD1が備える半導体光検出素子10bと、他方の放射線検出器RD1が備える半導体光検出素子10bとは、たとえば、互いに一次元に配置されている。本実施形態では、一方の放射線検出器RD1が備える半導体光検出素子10bと、他方の放射線検出器RD1が備える半導体光検出素子10bとは、たとえば、互いに第三方向D3に配置されている。 The semiconductor photodetector element 10a included in one radiation detector RD1 and the semiconductor photodetector element 10a included in the other radiation detector RD1 are arranged one-dimensionally with each other, for example. In this embodiment, the semiconductor photodetector element 10a included in one radiation detector RD1 and the semiconductor photodetector element 10a included in the other radiation detector RD1 are arranged in the third direction D3, for example. The semiconductor photodetector element 10b included in one radiation detector RD1 and the semiconductor photodetector element 10b included in the other radiation detector RD1 are arranged one-dimensionally with each other, for example. In this embodiment, the semiconductor photodetector element 10b included in one radiation detector RD1 and the semiconductor photodetector element 10b included in the other radiation detector RD1 are arranged in the third direction D3, for example.
 一方の放射線検出器RD1が備える半導体光検出素子10aと、他方の放射線検出器RD1が備える半導体光検出素子10aとは、たとえば、一次元に配列していると共に、互いに一体に形成されている。すなわち、複数の放射線検出器RD1が備える半導体光検出素子10a同士は、一体に形成されている。各半導体光検出素子10aは、たとえば、第三方向D3に配置されている。一方の放射線検出器RD1が備える半導体光検出素子10bと、他方の放射線検出器RD1が備える半導体光検出素子10bとは、たとえば、一次元に配列していると共に、互いに一体に形成されている。すなわち、複数の放射線検出器RD1が備える半導体光検出素子10b同士は、一体に形成されている。各半導体光検出素子10bは、たとえば、第三方向D3に配置されている。複数の放射線検出器RD1が備える半導体光検出素子10a同士は、一体に形成されていなくてもよい。複数の放射線検出器RD1が備える半導体光検出素子10b同士は、一体に形成されていなくてもよい。 The semiconductor photodetector elements 10a provided in one radiation detector RD1 and the semiconductor photodetector elements 10a provided in the other radiation detector RD1 are, for example, arranged one-dimensionally and formed integrally with each other. That is, the semiconductor photodetecting elements 10a included in the plurality of radiation detectors RD1 are integrally formed. Each semiconductor photodetector element 10a is arranged, for example, in the third direction D3. The semiconductor photodetector elements 10b included in one radiation detector RD1 and the semiconductor photodetector elements 10b included in the other radiation detector RD1 are, for example, arranged one-dimensionally and formed integrally with each other. That is, the semiconductor photodetecting elements 10b included in the plurality of radiation detectors RD1 are integrally formed. Each semiconductor photodetector 10b is arranged, for example, in the third direction D3. The semiconductor photodetecting elements 10a included in the plurality of radiation detectors RD1 may not be integrally formed. The semiconductor photodetecting elements 10b included in the plurality of radiation detectors RD1 may not be integrally formed.
 各放射線検出器RD1は、たとえば、被覆体47a,47b及び光反射体56を備えている。各放射線検出器RD1が光反射体56を備えている場合、一方の放射線検出器RD1が備えるシンチレータ1の側面1eと、他方の放射線検出器RD1が備えるシンチレータ1の側面1fとは、光反射体56が当該側面1eと当該側面1fとの間に位置するように、第三方向D3で互いに対向している。したがって、一方の放射線検出器RD1が備えるシンチレータ1の側面1eと、他方の放射線検出器RD1が備えるシンチレータ1の側面1fとの間には、たとえば、一方の側面1eに配置された光反射体56と、他方の側面1fに配置された光反射体56とが配置されている。本実施形態では、一方の放射線検出器RD1が備えるシンチレータ1の側面1eと、他方の放射線検出器RD1が備えるシンチレータ1の側面1fとに間には、たとえば、一つの光反射体56が配置されていてもよい。一つの光反射体56が配置される構成では、たとえば、一方の側面1eに光反射体56が配置され、他方の側面1fには光反射体56が配置されない。各放射線検出器RD1は、被覆体47a,47b及び光反射体56の少なくとも一つを備えていなくてもよい。 Each radiation detector RD1 is provided with coverings 47a, 47b and a light reflector 56, for example. When each radiation detector RD1 has a light reflector 56, the side surface 1e of the scintillator 1 included in one radiation detector RD1 and the side surface 1f of the scintillator 1 included in the other radiation detector RD1 are the light reflectors. They are opposed to each other in the third direction D3 such that 56 is positioned between the side surface 1e and the side surface 1f. Therefore, between the side surface 1e of the scintillator 1 provided in one radiation detector RD1 and the side surface 1f of the scintillator 1 provided in the other radiation detector RD1, for example, a light reflector 56 arranged on the one side surface 1e and a light reflector 56 arranged on the other side surface 1f. In this embodiment, for example, one light reflector 56 is arranged between the side surface 1e of the scintillator 1 included in one radiation detector RD1 and the side surface 1f of the scintillator 1 included in the other radiation detector RD1. may be In a configuration in which one light reflector 56 is arranged, for example, the light reflector 56 is arranged on one side surface 1e and no light reflector 56 is arranged on the other side surface 1f. Each radiation detector RD1 may not include at least one of the coverings 47a and 47b and the light reflector 56. FIG.
 図14に示されるように、放射線検出器アレイRA2は、たとえば、第一実施形態又は変形例に係る複数の放射線検出器RD1が行列状に二次元に配列して構成されている。複数の放射線検出器RD1のうち行方向に配置された複数の放射線検出器RD1は、たとえば、図13に示される放射線検出器アレイRA1を構成する。放射線検出器アレイRA2では、たとえば、放射線検出器アレイRA1が、列方向に配置されている。本実施形態では、列方向は、第二方向D2であり、行方向は、第三方向D3である。複数の放射線検出器RD1のうち列方向で互いに隣り合う任意の二つの放射線検出器RD1は、一方の放射線検出器RD1が備える半導体光検出素子10a又は半導体光検出素子10bのいずれか一方と、他方の放射線検出器RD1が備える半導体光検出素子10a又は半導体光検出素子10bのいずれか一方とが列方向で互いに対向するように、配置されている。したがって、列方向で互いに隣り合う任意の二つの放射線検出器RD1は、たとえば、一方の放射線検出器RD1が備える半導体光検出素子10aと、他方の放射線検出器RD1が備える半導体光検出素子10aとが列方向で互いに対向するように、配置されている。列方向で互いに隣り合う任意の二つの放射線検出器RD1は、たとえば、一方の放射線検出器RD1が備える半導体光検出素子10aと、他方の放射線検出器RD1が備える半導体光検出素子10bとが列方向で互いに対向するように、配置されている。互いに隣り合う任意の二つの放射線検出器RD1は、たとえば、一方の放射線検出器RD1が備える半導体光検出素子10bと、他方の放射線検出器RD1が備える半導体光検出素子10aとが、列方向で互いに対向するように、配置されている。列方向で互いに隣り合う任意の二つの放射線検出器RD1は、たとえば、一方の放射線検出器RD1が備える半導体光検出素子10bと、他方の放射線検出器RD1が備える半導体光検出素子10bとが、列方向で互いに対向するように、配置されている。 As shown in FIG. 14, the radiation detector array RA2 is configured by arranging, for example, a plurality of radiation detectors RD1 according to the first embodiment or the modification two-dimensionally in a matrix. A plurality of radiation detectors RD1 arranged in the row direction among the plurality of radiation detectors RD1 constitute, for example, a radiation detector array RA1 shown in FIG. In the radiation detector array RA2, for example, the radiation detector array RA1 is arranged in the column direction. In this embodiment, the column direction is the second direction D2, and the row direction is the third direction D3. Any two radiation detectors RD1 adjacent to each other in the column direction among the plurality of radiation detectors RD1 are either semiconductor photodetector element 10a or semiconductor photodetector element 10b included in one radiation detector RD1, and the other radiation detector RD1. Either one of the semiconductor photodetector element 10a or the semiconductor photodetector element 10b provided in the radiation detector RD1 is arranged so as to face each other in the column direction. Therefore, any two radiation detectors RD1 adjacent to each other in the column direction are composed of, for example, the semiconductor photodetector element 10a included in one radiation detector RD1 and the semiconductor photodetector element 10a included in the other radiation detector RD1. They are arranged so as to face each other in the column direction. Arbitrary two radiation detectors RD1 adjacent to each other in the column direction, for example, the semiconductor photodetector element 10a included in one radiation detector RD1 and the semiconductor photodetector element 10b included in the other radiation detector RD1 are aligned in the column direction. are arranged so as to face each other. Arbitrary two radiation detectors RD1 adjacent to each other, for example, the semiconductor photodetector element 10b included in one radiation detector RD1 and the semiconductor photodetector element 10a included in the other radiation detector RD1 are arranged in the column direction. They are arranged so as to face each other. Any two radiation detectors RD1 adjacent to each other in the column direction are, for example, a semiconductor photodetector element 10b included in one radiation detector RD1 and a semiconductor photodetector element 10b included in the other radiation detector RD1. are arranged so as to face each other in directions.
 各放射線検出器RD1が被覆体47a,47bを備えている場合、列方向で互いに隣り合う任意の二つの放射線検出器RD1では、たとえば、一方の放射線検出器RD1が備える半導体光検出素子10aと、他方の放射線検出器RD1が備える半導体光検出素子10bとは、被覆体47a,47bが当該半導体光検出素子10a,10bの間に位置するように、列方向で互いに対向している。列方向で互いに隣り合う任意の二つの放射線検出器RD1では、たとえば、一方の放射線検出器RD1が備える半導体光検出素子10bと、他方の放射線検出器RD1が備える半導体光検出素子10aとは、被覆体47b,47aが当該半導体光検出素子10b,10aの間に位置するように、列方向で互いに対向している。図14に示した例では、三つの放射線検出器RD1が、第三方向D3に配置されており、三つの放射線検出器RD1が、第二方向D2で配置されている。放射線検出器アレイRA2は、たとえば、合計9個の放射線検出器RD1で構成されている。一方の放射線検出器RD1の端面1aは、たとえば、行方向又は列方向で隣り合っている他方の放射線検出器RD1の端面1aと面一である。 When each radiation detector RD1 is provided with the coverings 47a and 47b, any two radiation detectors RD1 adjacent to each other in the column direction, for example, the semiconductor photodetector element 10a included in one of the radiation detectors RD1, The semiconductor photodetector elements 10b of the other radiation detector RD1 are opposed to each other in the column direction so that the covers 47a and 47b are positioned between the semiconductor photodetector elements 10a and 10b. In arbitrary two radiation detectors RD1 adjacent to each other in the column direction, for example, the semiconductor photodetector element 10b included in one radiation detector RD1 and the semiconductor photodetector element 10a included in the other radiation detector RD1 are covered The bodies 47b and 47a face each other in the column direction so that they are positioned between the semiconductor photodetectors 10b and 10a. In the example shown in FIG. 14, three radiation detectors RD1 are arranged in the third direction D3, and three radiation detectors RD1 are arranged in the second direction D2. The radiation detector array RA2 is composed of a total of nine radiation detectors RD1, for example. The end face 1a of one radiation detector RD1 is, for example, flush with the end face 1a of the other radiation detector RD1 adjacent in the row or column direction.
 以上説明したように、本実施形態に係る放射線検出器アレイRA1は、一次元に配列された複数の放射線検出器RD1を備えている。複数の放射線検出器RD1のそれぞれは、第一実施形態又は変形例に係る放射線検出器RD1である。シンチレータ1は、一対の端面1a,1bを連結していると共に、側面1cと側面1dとを連結している一対の側面1e,1fを有している。複数の放射線検出器RD1のうち互いに隣り合う任意の二つの放射線検出器RD1は、一方の放射線検出器RD1が備えるシンチレータ1の側面1e,1fと、他方の放射線検出器RD1が備えるシンチレータ1の側面1e,1fとが互いに対向するように、配置されている。 As described above, the radiation detector array RA1 according to this embodiment includes a plurality of radiation detectors RD1 arranged one-dimensionally. Each of the plurality of radiation detectors RD1 is the radiation detector RD1 according to the first embodiment or modification. The scintillator 1 has a pair of side surfaces 1e and 1f connecting a pair of end surfaces 1a and 1b and connecting a side surface 1c and a side surface 1d. Any two adjacent radiation detectors RD1 among the plurality of radiation detectors RD1 are side surfaces 1e and 1f of the scintillator 1 provided by one radiation detector RD1 and side surfaces of the scintillator 1 provided by the other radiation detector RD1. 1e and 1f are arranged so as to face each other.
 本実施形態に係る放射線検出器アレイRA1は、高い時間分解能と高い検出感度とを有している放射線検出器RD1が一次元に配列された放射線検出器アレイを実現する。 The radiation detector array RA1 according to this embodiment realizes a radiation detector array in which the radiation detectors RD1 having high time resolution and high detection sensitivity are arranged one-dimensionally.
 放射線検出器アレイRA1では、複数の放射線検出器RD1が備える半導体光検出素子10a同士は、一体に形成されている。複数の放射線検出器RD1が備える半導体光検出素子10b同士は、一体に形成されている。
 半導体光検出素子10a同士が一体に形成されていると共に、半導体光検出素子10b同士が一体に形成されている構成は、複数の放射線検出器RD1が一次元に配列された放射線検出器アレイRA1の機械的強度を向上する。
In the radiation detector array RA1, the semiconductor photodetectors 10a included in the plurality of radiation detectors RD1 are integrally formed. The semiconductor photodetecting elements 10b included in the plurality of radiation detectors RD1 are integrally formed.
The configuration in which the semiconductor photodetecting elements 10a are integrally formed and the semiconductor photodetecting elements 10b are integrally formed is a radiation detector array RA1 in which a plurality of radiation detectors RD1 are arranged in one dimension. Improve mechanical strength.
 本実施形態に係る放射線検出器アレイRA2は、行列状に二次元に配列された複数の放射線検出器RD1を備えている。複数の放射線検出器RD1のうち行方向に配置された複数の放射線検出器RD1のそれぞれは、本実施形態又は変形例に係る放射線検出器アレイRA1である。複数の放射線検出器RD1のうち列方向で互いに隣り合う任意の二つの放射線検出器RD1は、一方の放射線検出器RD1が備える半導体光検出素子10a又は半導体光検出素子10bのいずれか一方と、他方の放射線検出器RD1が備える半導体光検出素子10a又は半導体光検出素子10bのいずれか一方とが列方向で互いに対向するように、配置されている。
 複数の放射線検出器RD1が行列状に二次元に配列されている構成は、高い時間分解能と高い検出感度とを有している放射線検出器RD1が行列状に二次元に配列された放射線検出器アレイRA2を実現する。本実施形態において、放射線検出器RD1が光反射体56を備えている場合、一方の放射線検出器RD1が備えるシンチレータ1の側面1eに入射したシンチレーション光は、たとえば、他方の放射線検出器RD1が備えるシンチレータ1の側面1fに入射しがたい。
The radiation detector array RA2 according to this embodiment includes a plurality of radiation detectors RD1 arranged two-dimensionally in a matrix. Each of the plurality of radiation detectors RD1 arranged in the row direction among the plurality of radiation detectors RD1 is the radiation detector array RA1 according to this embodiment or the modification. Any two radiation detectors RD1 adjacent to each other in the column direction among the plurality of radiation detectors RD1 are either one of the semiconductor photodetector element 10a or the semiconductor photodetector element 10b included in one radiation detector RD1 and the other. Either one of the semiconductor photodetector element 10a or the semiconductor photodetector element 10b provided in the radiation detector RD1 is arranged so as to face each other in the column direction.
A configuration in which a plurality of radiation detectors RD1 are arranged two-dimensionally in a matrix is a radiation detector in which radiation detectors RD1 having high time resolution and high detection sensitivity are arranged two-dimensionally in a matrix. Implement the array RA2. In this embodiment, when the radiation detector RD1 includes the light reflector 56, the scintillation light incident on the side surface 1e of the scintillator 1 included in one radiation detector RD1 is, for example, reflected by the other radiation detector RD1. It is difficult for the light to enter the side surface 1 f of the scintillator 1 .
 (第三実施形態)
 図15及び図16を参照しながら、第三実施形態に係る放射線検出器アレイRA1,RA2の構成を説明する。図15は、第三実施形態に係る放射線検出器アレイRA1を示す斜視図である。図16は、第三実施形態に係る放射線検出器アレイRA2を示す斜視図である。
(Third embodiment)
The configuration of the radiation detector arrays RA1 and RA2 according to the third embodiment will be described with reference to FIGS. 15 and 16. FIG. FIG. 15 is a perspective view showing a radiation detector array RA1 according to the third embodiment. FIG. 16 is a perspective view showing a radiation detector array RA2 according to the third embodiment.
 図15に示されるように、放射線検出器アレイRA1は、たとえば、第一実施形態又は変形例に係る複数の放射線検出器RD1が一次元に配列して構成されている。複数の放射線検出器RD1のそれぞれは、たとえば、第三方向D3に配置されている。図15に示した例では、三つの、第一実施形態の放射線検出器RD1が、第三方向D3に配置されている。複数の放射線検出器RD1のうち互いに隣り合う任意の二つの放射線検出器RD1は、一方の放射線検出器RD1が備えるシンチレータ1の側面1e,1fと、他方の放射線検出器RD1が備える半導体光検出素子10a又は半導体光検出素子10bのいずれか一方とが互いに対向するように、配置されている。したがって、第三方向D3で互いに隣り合う任意の二つの放射線検出器RD1は、たとえば、一方の放射線検出器RD1が備えるシンチレータ1の側面1eと、他方の放射線検出器RD1が備える半導体光検出素子10bとが第三方向D3で互いに対向するように、配置されている。第三方向D3で互いに隣り合う任意の二つの放射線検出器RD1は、たとえば、一方の放射線検出器RD1が備えるシンチレータ1の側面1fと、他方の放射線検出器RD1が備える半導体光検出素子10aとが第三方向D3で互いに対向に対向するように、配置されている。 As shown in FIG. 15, the radiation detector array RA1 is configured by, for example, one-dimensionally arranging a plurality of radiation detectors RD1 according to the first embodiment or the modified example. Each of the multiple radiation detectors RD1 is arranged, for example, in the third direction D3. In the example shown in FIG. 15, three radiation detectors RD1 of the first embodiment are arranged in the third direction D3. Any two radiation detectors RD1 adjacent to each other among the plurality of radiation detectors RD1 are composed of side surfaces 1e and 1f of the scintillator 1 included in one radiation detector RD1 and a semiconductor photodetector element included in the other radiation detector RD1. Either one of 10a and semiconductor photodetector 10b is arranged so as to face each other. Therefore, two arbitrary radiation detectors RD1 adjacent to each other in the third direction D3 are, for example, the side surface 1e of the scintillator 1 provided in one radiation detector RD1 and the semiconductor photodetector element 10b provided in the other radiation detector RD1. are arranged so as to face each other in the third direction D3. Any two radiation detectors RD1 adjacent to each other in the third direction D3 are formed by, for example, the side surface 1f of the scintillator 1 included in one radiation detector RD1 and the semiconductor photodetector element 10a included in the other radiation detector RD1. They are arranged so as to face each other in the third direction D3.
 各放射線検出器RD1は、たとえば、被覆体47a,47b及び光反射体56を備えている。この場合、たとえば、第三方向D3で互いに隣り合う任意の二つの放射線検出器RD1では、一方の放射線検出器RD1が備えるシンチレータ1の側面1eと、他方の放射線検出器RD1が備える半導体光検出素子10bとは、被覆体47b及び光反射体56が当該側面1eと当該半導体光検出素子10bの間に位置するように、第三方向D3で互いに対向している。たとえば、第三方向D3で互いに隣り合う任意の二つの放射線検出器RD1は、一方の放射線検出器RD1が備えるシンチレータ1の側面1fと、他方の放射線検出器RD1が備える半導体光検出素子10aとは、被覆体47a及び光反射体56が当該側面1fと当該半導体光検出素子10aの間に位置するように、第三方向D3で互いに対向している。各放射線検出器RD1は、被覆体47a,47b及び光反射体56の少なくともいずれか一つを備えていなくてもよい。 Each radiation detector RD1 is provided with coverings 47a, 47b and a light reflector 56, for example. In this case, for example, in any two radiation detectors RD1 adjacent to each other in the third direction D3, the side surface 1e of the scintillator 1 provided in one radiation detector RD1 and the semiconductor photodetector element provided in the other radiation detector RD1 10b face each other in the third direction D3 such that the covering 47b and the light reflector 56 are located between the side surface 1e and the semiconductor photodetector 10b. For example, any two radiation detectors RD1 adjacent to each other in the third direction D3 are separated from the side surface 1f of the scintillator 1 included in one radiation detector RD1 and the semiconductor photodetector element 10a included in the other radiation detector RD1. , the cover 47a and the light reflector 56 face each other in the third direction D3 so that they are located between the side surface 1f and the semiconductor photodetector 10a. Each radiation detector RD1 may not include at least one of the coverings 47a and 47b and the light reflector 56. FIG.
 図16に示されるように、放射線検出器アレイRA2は、たとえば、第一実施形態又は変形例に係る複数の放射線検出器RD1が行列状に二次元に配列して構成されている。複数の放射線検出器RD1のうち行方向に配置された複数の放射線検出器RD1のそれぞれは、たとえば、図15に示した放射線検出器アレイRA1である。したがって、放射線検出器アレイRA2は、放射線検出器アレイRA1が、列方向に配置されている。本実施形態では、列方向は、第二方向D2であり、行方向は、第三方向D3である。複数の放射線検出器RD1のうち列方向で互いに隣り合う任意の二つの放射線検出器RD1は、一方の放射線検出器RD1が備えるシンチレータ1の側面1e,1fと、他方の放射線検出器RD1が備える半導体光検出素子10a又は半導体光検出素子10bのいずれか一方とが列方向で互いに対向するように、配置されている。一方の放射線検出器RD1が備えるシンチレータ1の側面1e,1fの対向方向と、他方の放射線検出器RD1が備えるシンチレータ1の側面1e,1fの対向方向とは、たとえば、互いに交差している。したがって、列方向で互いに隣り合う任意の二つの放射線検出器RD1は、たとえば、一方の放射線検出器RD1が備えるシンチレータ1の側面1eと、他方の放射線検出器RD1が備える半導体光検出素子10aとが列方向で互いに対向するように、配置されている。列方向で互いに隣り合う任意の二つの放射線検出器RD1は、たとえば、一方の放射線検出器RD1が備えるシンチレータ1の側面1fと、他方の放射線検出器RD1が備える半導体光検出素子10bとが列方向で互いに対向するように、配置されている。 As shown in FIG. 16, the radiation detector array RA2 is configured by arranging, for example, a plurality of radiation detectors RD1 according to the first embodiment or the modification two-dimensionally in a matrix. Each of the plurality of radiation detectors RD1 arranged in the row direction among the plurality of radiation detectors RD1 is, for example, the radiation detector array RA1 shown in FIG. Therefore, in the radiation detector array RA2, the radiation detector array RA1 is arranged in the column direction. In this embodiment, the column direction is the second direction D2, and the row direction is the third direction D3. Any two radiation detectors RD1 adjacent to each other in the column direction among the plurality of radiation detectors RD1 are composed of the side surfaces 1e and 1f of the scintillator 1 provided in one radiation detector RD1 and the semiconductor provided in the other radiation detector RD1. Either the photodetector element 10a or the semiconductor photodetector element 10b is arranged so as to face each other in the column direction. The facing direction of the side surfaces 1e and 1f of the scintillator 1 provided in one radiation detector RD1 and the facing direction of the side surfaces 1e and 1f of the scintillator 1 provided in the other radiation detector RD1 intersect each other, for example. Therefore, any two radiation detectors RD1 adjacent to each other in the column direction are formed by, for example, the side surface 1e of the scintillator 1 included in one radiation detector RD1 and the semiconductor photodetector element 10a included in the other radiation detector RD1. They are arranged so as to face each other in the column direction. Any two radiation detectors RD1 adjacent to each other in the column direction are, for example, arranged such that the side surface 1f of the scintillator 1 included in one radiation detector RD1 and the semiconductor photodetector element 10b included in the other radiation detector RD1 are aligned in the column direction. are arranged so as to face each other.
 図16に示した例では、三つの放射線検出器RD1が、第三方向D3に配置されており、三つの放射線検出器RD1が、第二方向D2で配置されている。放射線検出器アレイRA2は、たとえば、合計9個の放射線検出器RD1で構成されている。一つの放射線検出器RD1の端面1aは、たとえば、行方向又は列方向で隣り合っている別の放射線検出器RD1の端面1aと面一である。 In the example shown in FIG. 16, three radiation detectors RD1 are arranged in the third direction D3, and three radiation detectors RD1 are arranged in the second direction D2. The radiation detector array RA2 is composed of a total of nine radiation detectors RD1, for example. The end face 1a of one radiation detector RD1 is flush with the end face 1a of another radiation detector RD1 adjacent in the row or column direction, for example.
 各放射線検出器RD1が被覆体47a,47b及び光反射体56を備えている構成では、たとえば、一方の放射線検出器RD1が備えるシンチレータ1の側面1eと、他方の放射線検出器RD1が備える半導体光検出素子10aとは、被覆体47a及び光反射体56が当該側面1eと当該半導体光検出素子10aの間に位置するように、列方向で互いに対向している。たとえば、一方の放射線検出器RD1が備えるシンチレータ1の側面1fと、他方の放射線検出器RD1が備える半導体光検出素子10bとは、被覆体47b及び光反射体56が当該側面1fと当該半導体光検出素子10bの間に位置するように、列方向で互いに対向している。 In the configuration in which each radiation detector RD1 includes the coverings 47a and 47b and the light reflector 56, for example, the side surface 1e of the scintillator 1 provided in one radiation detector RD1 and the semiconductor light provided in the other radiation detector RD1 The detection elements 10a face each other in the column direction so that the cover 47a and the light reflector 56 are positioned between the side surface 1e and the semiconductor photodetection element 10a. For example, the side surface 1f of the scintillator 1 included in one radiation detector RD1 and the semiconductor photodetector element 10b included in the other radiation detector RD1 are arranged such that the cover 47b and the light reflector 56 are connected to the side surface 1f and the semiconductor photodetector. They face each other in the column direction so as to be positioned between the elements 10b.
 以上説明したように、本実施形態に係る放射線検出器アレイRA1は、一次元に配列された複数の放射線検出器RD1を備えている。複数の放射線検出器RD1のそれぞれは、第一実施形態又は変形例に係る放射線検出器RD1である。シンチレータ1は、一対の端面1a,1bを連結していると共に、側面1cと側面1dとを連結している一対の側面1e,1fを有している。複数の放射線検出器RD1のうち互いに隣り合う任意の二つの放射線検出器RD1は、一方の放射線検出器RD1が備えるシンチレータ1の側面1e,1fと、他方の放射線検出器RD1が備える半導体光検出素子10a又は半導体光検出素子10bのいずれか一方とが互いに対向するように、配置されている。 As described above, the radiation detector array RA1 according to this embodiment includes a plurality of radiation detectors RD1 arranged one-dimensionally. Each of the plurality of radiation detectors RD1 is the radiation detector RD1 according to the first embodiment or modification. The scintillator 1 has a pair of side surfaces 1e and 1f connecting a pair of end surfaces 1a and 1b and connecting a side surface 1c and a side surface 1d. Any two radiation detectors RD1 adjacent to each other among the plurality of radiation detectors RD1 are composed of side surfaces 1e and 1f of the scintillator 1 included in one radiation detector RD1 and a semiconductor photodetector element included in the other radiation detector RD1. Either one of 10a and semiconductor photodetector 10b is arranged so as to face each other.
 本実施形態に係る放射線検出器アレイRA1は、高い時間分解能と高い検出感度とを有している放射線検出器RD1が一次元に配列された放射線検出器アレイを実現する。 The radiation detector array RA1 according to this embodiment realizes a radiation detector array in which the radiation detectors RD1 having high time resolution and high detection sensitivity are arranged one-dimensionally.
 本実施形態に係る放射線検出器アレイRA2は、行列状に二次元に配列された複数の放射線検出器RD1を備えている。複数の放射線検出器RD1のうち行方向に配置された複数の放射線検出器RD1のそれぞれは、本実施形態に係る放射線検出器アレイRA1である。複数の放射線検出器RD1のうち列方向で互いに隣り合う任意の二つの放射線検出器RD1は、一方の放射線検出器RD1が備えるシンチレータ1の側面1e,1fと、他方の放射線検出器RD1が備える半導体光検出素子10a又は半導体光検出素子10bのいずれか一方とが列方向で互いに対向するように、配置されている。
 複数の放射線検出器RD1が行列状に二次元に配列された構成は、高い時間分解能と高い検出感度とを有している放射線検出器RD1が行列状に二次元に配列された放射線検出器アレイRA2を実現する。側面1e,1fと、他方の放射線検出器RD1が備える半導体光検出素子10a又は半導体光検出素子10bのいずれか一方とが列方向で互いに対向している構成では、半導体光検出素子10a及び半導体光検出素子10bが互いに対向している構成に比べて、複数の放射線検出器RD1が、より少ないスペースで二次元に配列される。
 本実施形態では、たとえば、一方の放射線検出器RD1が備えるシンチレータ1の側面1eと、他方の放射線検出器RD1が備えるシンチレータ1の側面1fとが互いに対向している構成に比べて、一方の放射線検出器RD1が備えるシンチレータ1の側面1eに入射したシンチレーション光は、他方の放射線検出器RD1が備えるシンチレータ1に入射しがたい。本実施形態では、たとえば、一方の放射線検出器RD1が備えるシンチレータ1の側面1fと、他方の放射線検出器RD1が備えるシンチレータ1の側面1eとが互いに対向している構成に比べて、一方の放射線検出器RD1が備えるシンチレータ1の側面1fに入射したシンチレーション光は、他方の放射線検出器RD1が備えるシンチレータ1に入射しがたい。
The radiation detector array RA2 according to this embodiment includes a plurality of radiation detectors RD1 arranged two-dimensionally in a matrix. Each of the plurality of radiation detectors RD1 arranged in the row direction among the plurality of radiation detectors RD1 is the radiation detector array RA1 according to this embodiment. Any two radiation detectors RD1 adjacent to each other in the column direction among the plurality of radiation detectors RD1 are composed of the side surfaces 1e and 1f of the scintillator 1 provided in one radiation detector RD1 and the semiconductor provided in the other radiation detector RD1. Either the photodetector element 10a or the semiconductor photodetector element 10b is arranged so as to face each other in the column direction.
A configuration in which a plurality of radiation detectors RD1 are arranged two-dimensionally in a matrix is a radiation detector array in which radiation detectors RD1 having high time resolution and high detection sensitivity are arranged two-dimensionally in a matrix. Implement RA2. In a configuration in which the side surfaces 1e and 1f and either the semiconductor photodetector element 10a or the semiconductor photodetector element 10b provided in the other radiation detector RD1 face each other in the column direction, the semiconductor photodetector element 10a and the semiconductor light detector element 10b A plurality of radiation detectors RD1 are arranged two-dimensionally in a smaller space than in a configuration in which the detection elements 10b face each other.
In the present embodiment, for example, compared to the configuration in which the side surface 1e of the scintillator 1 included in one radiation detector RD1 and the side surface 1f of the scintillator 1 included in the other radiation detector RD1 face each other, The scintillation light incident on the side surface 1e of the scintillator 1 included in the detector RD1 is difficult to enter the scintillator 1 included in the other radiation detector RD1. In this embodiment, for example, compared to the configuration in which the side surface 1f of the scintillator 1 included in one radiation detector RD1 and the side surface 1e of the scintillator 1 included in the other radiation detector RD1 face each other, The scintillation light incident on the side face 1f of the scintillator 1 provided in the detector RD1 is difficult to enter the scintillator 1 provided in the other radiation detector RD1.
 図17を参照しながら、放射線検出器RD1の製造方法の一例について説明する。製造方法の各工程の順番は、互いに入れ替わってもよい。製造方法の一例では、初めに、シンチレータ1及び半導体光検出素子10a,10bを用意する(S101)。 An example of a method for manufacturing the radiation detector RD1 will be described with reference to FIG. The order of each step of the manufacturing method may be interchanged. In one example of the manufacturing method, first, the scintillator 1 and the semiconductor photodetectors 10a and 10b are prepared (S101).
 続いて、配線部材30a,30bを用意し、半導体光検出素子10a,10bに接続する(S102)。たとえば、配線部材30aを、半導体光検出素子10aに接続し、配線部材30bを、半導体光検出素子10bに接続する。配線部材30a,30bは、導体31と導体32とを有している。配線部材30aが有する導体31は、半導体光検出素子10aが有する電極17a,17b,17c,17dと電気的に接続される。配線部材30bが有する導体31は、半導体光検出素子10bが有する電極17a,17b,17c,17dと電気的に接続される。配線部材30aが有する導体32は、半導体光検出素子10aが有する電極18と電気的に接続される。配線部材30bが有する導体32は、半導体光検出素子10bが有する電極18と電気的に接続される。配線部材30aが有する導体31a,31b,31c,31dは、たとえば、導電性バンプ33を介して、半導体光検出素子10aが有する電極17a,17b,17c,17dと電気的に接続される。配線部材30bが有する導体31a,31b,31c,31dは、たとえば、導電性バンプ33を介して、半導体光検出素子10bが有する電極17a,17b,17c,17dと電気的に接続される。配線部材30aが有する導体32は、たとえば、導電性バンプ33を介して、配線部材30aが有する電極18と接続される。配線部材30bが有する導体32は、たとえば、導電性バンプ33を介して、配線部材30bが有する電極18と接続される。 Next, wiring members 30a and 30b are prepared and connected to the semiconductor photodetectors 10a and 10b (S102). For example, the wiring member 30a is connected to the semiconductor photodetector element 10a, and the wiring member 30b is connected to the semiconductor photodetector element 10b. The wiring members 30 a and 30 b have conductors 31 and 32 . The conductor 31 of the wiring member 30a is electrically connected to the electrodes 17a, 17b, 17c and 17d of the semiconductor photodetector 10a. The conductor 31 of the wiring member 30b is electrically connected to the electrodes 17a, 17b, 17c, 17d of the semiconductor photodetector 10b. The conductor 32 of the wiring member 30a is electrically connected to the electrode 18 of the semiconductor photodetector 10a. The conductor 32 of the wiring member 30b is electrically connected to the electrode 18 of the semiconductor photodetector 10b. Conductors 31a, 31b, 31c and 31d of wiring member 30a are electrically connected to electrodes 17a, 17b, 17c and 17d of semiconductor photodetector 10a via conductive bumps 33, for example. Conductors 31a, 31b, 31c and 31d of wiring member 30b are electrically connected to electrodes 17a, 17b, 17c and 17d of semiconductor photodetector 10b via conductive bumps 33, for example. The conductor 32 of the wiring member 30a is connected to the electrode 18 of the wiring member 30a via a conductive bump 33, for example. The conductor 32 of the wiring member 30b is connected to the electrode 18 of the wiring member 30b via a conductive bump 33, for example.
 続いて、シンチレータ1と半導体光検出素子10a,10bとを一体化する(S103)。この一体化は、たとえば、接着剤によって行われる。半導体光検出素子10aは、たとえば、シンチレータ1の側面1cに配置される。半導体光検出素子10bは、たとえば、シンチレータ1の側面1dに配置される。続いて、補強体45を、部分22aと部分22bとの間に配置する。 Subsequently, the scintillator 1 and the semiconductor photodetectors 10a and 10b are integrated (S103). This integration is done, for example, by means of an adhesive. The semiconductor photodetector 10a is arranged on the side surface 1c of the scintillator 1, for example. Semiconductor photodetector element 10b is arranged on side surface 1d of scintillator 1, for example. A reinforcement 45 is then placed between the portions 22a and 22b.
 続いて、半導体光検出素子10a,10bを薄化する(S104)。素子の薄化は、面11d,11fを、たとえば、研磨することによって行われる。面11d,11fの研磨は、たとえば、機械的な研磨又は化学的な研磨による。半導体光検出素子10a,10bの薄化は、たとえば、複数の放射線検出器RD1が一次元に配列するように構成された放射線検出器アレイRA1に対して行われる。すなわち、放射線検出器アレイRA1が備える半導体光検出素子10a,10bが薄化される。薄化された複数の放射線検出器アレイRA1は、たとえば、個片化されて個々の放射線検出器RD1が作製される。個片化は、たとえば、ダイシングによる。薄化された複数の放射線検出器アレイRA1は、個片化されないで、たとえば、列方向に並ぶように、配置されてもよい。複数の放射線検出器アレイRA1が行列状に二次元に配列された放射線検出器アレイRA2が作製されてもよい。 Subsequently, the semiconductor photodetector elements 10a and 10b are thinned (S104). Thinning of the element is performed by polishing the surfaces 11d and 11f, for example. The surfaces 11d and 11f are polished by mechanical polishing or chemical polishing, for example. Thinning of the semiconductor photodetector elements 10a and 10b is performed, for example, on a radiation detector array RA1 in which a plurality of radiation detectors RD1 are arranged one-dimensionally. That is, the semiconductor photodetector elements 10a and 10b included in the radiation detector array RA1 are thinned. A plurality of thinned radiation detector arrays RA1 are, for example, singulated to produce individual radiation detectors RD1. Singulation is, for example, by dicing. A plurality of thinned radiation detector arrays RA1 may be arranged so as to line up in the column direction, for example, without being singulated. A radiation detector array RA2 may be fabricated in which a plurality of radiation detector arrays RA1 are two-dimensionally arranged in a matrix.
 本実施形態は、放射線検出器の製造方法を含む。放射線検出器の製造方法は、以下の通りである。
(製法1)
 シンチレータを用意すること、
 半導体光検出素子を用意すること、
 前記シンチレータと前記半導体光検出素子とを一体化すること、及び、
 前記シンチレータと一体化された前記半導体光検出素子を薄化すること、を含み、
 用意される前記シンチレータは、第一方向で互いに対向している一対の端面と、前記一対の端面を連結している一つの側面とを有すると共に、前記一つの側面と直交する第二方向での長さより大きい前記第一方向での長さを有し、前記第一方向での前記一つの側面の長さは、前記第一方向及び前記第二方向と直交する第三方向での前記一つの側面の幅より大きく、
 用意される前記半導体光検出素子は、互いに対向している第一主面と第二主面とを有する一つの半導体基板を有し、前記一つの半導体基板は、光検出領域が配置されている第一部分と、前記第一主面と前記第二主面とが互いに対向している方向に直交する方向で前記第一部分と並んでいる第二部分と、を有し、
 前記光検出領域は、ガイガーモードで動作する複数のアバランシェフォトダイオードと、前記複数のアバランシェフォトダイオードのうち対応するアバランシェフォトダイオードのアノード又はカソードの一方と電気的に直列接続されている複数のクエンチング抵抗とを有し、
 前記シンチレータと前記半導体光検出素子とを一体化することは、前記シンチレータと前記半導体光検出素子とを、前記一つの側面と前記第一主面とが対向し、かつ、前記第一部分が前記一つの側面で覆われると共に前記第二部分が前記シンチレータから露出するように、一体化すること、及び、前記シンチレータと前記第二部分とに接するように、樹脂を付与すること、を含み、
 前記半導体光検出素子を薄化することは、前記一つの半導体基板を前記第二主面側から薄化することを含む、放射線検出器の製造方法。
(製法2)
 配線部材を用意すること、及び、
 前記半導体光検出素子に前記配線部材を電気的に接続すること、を更に含み、
 用意される前記半導体光検出素子は、前記第二部分に配置されている第一電極と第二電極とを更に有し、前記第一電極は、前記複数のクエンチング抵抗に並列接続されていると共に、前記第二電極は、前記複数のアバランシェフォトダイオードのアノード又はカソードの他方に並列接続されており、
 用意される前記配線部材は、第一導体と第二導体とを有し、
 前記配線部材を電気的に接続することは、前記第一電極に前記第一導体を接続すること、及び、前記第二電極に前記第二導体を接続すること、を含み、
 前記樹脂を付与することは、前記半導体光検出素子に電気的に接続された前記配線部材が含む、前記第二部分上に位置する部分に接するように、前記樹脂を付与することを含む、製法1に記載の放射線検出器の製造方法。
(製法3)
 用意される前記シンチレータは、前記一つの側面と対向している別の側面を更に有し、
 用意される前記半導体光検出素子は、第一半導体光検出素子と第二半導体光検出素子とを含み、前記第一半導体光検出素子は、前記第一部分及び前記第二部分を有する前記一つの半導体基板を有し、前記第二半導体光検出素子は、互いに対向している第一主面と第二主面とを有する別の半導体基板を有し、前記別の半導体基板は、前記光検出領域が配置されている第三部分と、前記第一主面と前記第二主面とが互いに対向している方向に直交する前記方向で前記第三部分と並んでいる第四部分とを有し、
 前記シンチレータと前記半導体光検出素子とを一体化することは、
  前記シンチレータと前記第一半導体光検出素子とを、前記一つの側面と前記第一主面とが対向し、かつ、前記第一部分が前記一つの側面で覆われると共に前記第二部分が前記シンチレータから露出するように、一体化すること、
  前記シンチレータと前記第二半導体光検出素子とを、前記別の側面と前記第一主面とが対向し、かつ、前記第三部分が前記別の側面で覆われると共に前記第四部分が前記シンチレータから露出するように、一体化すること、及び、
  前記シンチレータと、前記第一半導体光検出素子が有する前記一つの半導体基板の前記第二部分とに接すると共に、前記シンチレータと、前記第二半導体光検出素子が有する前記別の半導体基板の前記第四部分とに接するように、樹脂を付与すること、を含み、
 前記半導体光検出素子を薄化することは、前記第一半導体光検出素子が有する前記一つの半導体基板を前記第二主面側から薄化すること、及び、前記第二半導体光検出素子が有する前記別の半導体基板を前記第二主面側から薄化することを含む、製法1に記載の放射線検出器の製造方法。
(製法4)
 配線部材を用意すること、及び、
 前記半導体光検出素子に前記配線部材を電気的に接続すること、を更に含み、
 前記第一半導体光検出素子は、前記第二部分に配置されている第一電極と第二電極とを更に有すると共に、前記第二半導体光検出素子は、前記第四部分に配置されている第三電極と第四電極とを更に有し、
 前記第一電極は、前記複数のクエンチング抵抗に並列接続されていると共に、前記第二電極は、前記複数のアバランシェフォトダイオードのアノード又はカソードの他方に並列接続されており、
 前記第三電極は、前記複数のクエンチング抵抗に並列接続されていると共に、前記第四電極は、前記複数のアバランシェフォトダイオードのアノード又はカソードの他方に並列接続されており、
 用意される前記配線部材は、第一導体と第二導体とをそれぞれ有する第一配線部材及び第二配線部材を含み、
 前記配線部材を電気的に接続することは、前記第一電極に前記第一配線部材の前記第一導体を接続すること、前記第二電極に前記第一配線部材の前記第二導体を接続すること、前記第三電極に前記第二配線部材の前記第一導体を接続すること、及び、前記第四電極に前記第二配線部材の前記第二導体を接続すること、を含み、
 前記樹脂を付与することは、前記第一半導体光検出素子に電気的に接続された前記第一配線部材が含む、前記第二部分上に位置する部分と、前記第二半導体光検出素子に電気的に接続された前記第二配線部材が含む、前記第四部分上に位置する部分とに接するように、前記樹脂を付与することを含む、製法3に記載の放射線検出器の製造方法。
This embodiment includes a method of manufacturing a radiation detector. The manufacturing method of the radiation detector is as follows.
(Manufacturing method 1)
prepare a scintillator,
preparing a semiconductor photodetector;
integrating the scintillator and the semiconductor photodetector; and
thinning the semiconductor photodetector integrated with the scintillator;
The scintillator to be prepared has a pair of end faces facing each other in a first direction, and one side surface connecting the pair of end faces, and a second direction perpendicular to the one side face. has a length in the first direction greater than the length, and the length of the one side in the first direction is the length of the one side in a third direction orthogonal to the first direction and the second direction. larger than the width of the sides,
The semiconductor photodetector to be prepared has a single semiconductor substrate having a first main surface and a second main surface facing each other, and a photodetection region is arranged on the one semiconductor substrate. having a first portion and a second portion aligned with the first portion in a direction perpendicular to the direction in which the first main surface and the second main surface face each other;
The light detection region includes a plurality of avalanche photodiodes operating in a Geiger mode, and a plurality of quenching photodiodes electrically connected in series with one of an anode or a cathode of a corresponding avalanche photodiode among the plurality of avalanche photodiodes. having a resistance and
Integrating the scintillator and the semiconductor photodetector means that the scintillator and the semiconductor photodetector are arranged so that the one side surface and the first main surface are opposed to each other, and the first portion is the one surface. Integrating so that the second portion is covered on one side and exposed from the scintillator, and applying a resin so as to contact the scintillator and the second portion;
A method of manufacturing a radiation detector, wherein thinning the semiconductor photodetector includes thinning the one semiconductor substrate from the second main surface side.
(Manufacturing method 2)
preparing a wiring member; and
further comprising electrically connecting the wiring member to the semiconductor photodetector;
The semiconductor photodetector device provided further comprises a first electrode and a second electrode disposed on the second portion, the first electrode being connected in parallel to the plurality of quenching resistors. and the second electrode is connected in parallel to the other of the anodes or cathodes of the plurality of avalanche photodiodes,
The prepared wiring member has a first conductor and a second conductor,
electrically connecting the wiring member includes connecting the first conductor to the first electrode and connecting the second conductor to the second electrode;
Applying the resin includes applying the resin so as to be in contact with a portion located on the second portion, which is included in the wiring member electrically connected to the semiconductor photodetector. 2. The method for manufacturing the radiation detector according to 1.
(Manufacturing method 3)
The scintillator provided further has another side facing the one side,
The prepared semiconductor photodetector includes a first semiconductor photodetector and a second semiconductor photodetector, wherein the first semiconductor photodetector comprises the one semiconductor having the first portion and the second portion. a substrate, wherein the second semiconductor photodetector has another semiconductor substrate having a first major surface and a second major surface facing each other; and a fourth portion aligned with the third portion in the direction orthogonal to the direction in which the first principal surface and the second principal surface face each other ,
Integrating the scintillator and the semiconductor photodetector is
The scintillator and the first semiconductor photodetector are arranged such that the one side face and the first principal face face each other, the first part is covered with the one side face, and the second part is separated from the scintillator. To expose, to integrate,
The scintillator and the second semiconductor photodetector are arranged such that the another side face and the first principal face face each other, the third part is covered with the another side face, and the fourth part is the scintillator. integrating so as to be exposed from, and
In contact with the scintillator and the second portion of the one semiconductor substrate of the first semiconductor photodetector, the scintillator and the fourth semiconductor substrate of the another semiconductor substrate of the second semiconductor photodetector are connected. applying the resin so as to contact the part;
Thinning the semiconductor photodetector includes thinning the one semiconductor substrate of the first semiconductor photodetector from the second main surface side, and thinning the semiconductor substrate of the second semiconductor photodetector. The manufacturing method of the radiation detector according to manufacturing method 1, including thinning the another semiconductor substrate from the second main surface side.
(Manufacturing method 4)
preparing a wiring member; and
further comprising electrically connecting the wiring member to the semiconductor photodetector;
The first semiconductor photodetector further includes a first electrode and a second electrode arranged in the second portion, and the second semiconductor photodetector further comprises a second electrode arranged in the fourth portion. further comprising three electrodes and a fourth electrode;
the first electrode is connected in parallel to the plurality of quenching resistors, and the second electrode is connected in parallel to the other of the anodes or cathodes of the plurality of avalanche photodiodes;
the third electrode is connected in parallel to the plurality of quenching resistors, and the fourth electrode is connected in parallel to the other of the anodes or cathodes of the plurality of avalanche photodiodes;
The prepared wiring members include a first wiring member and a second wiring member each having a first conductor and a second conductor,
Electrically connecting the wiring member includes connecting the first conductor of the first wiring member to the first electrode, and connecting the second conductor of the first wiring member to the second electrode. connecting the first conductor of the second wiring member to the third electrode; and connecting the second conductor of the second wiring member to the fourth electrode,
By applying the resin, the first wiring member electrically connected to the first semiconductor photodetector includes a portion located on the second portion and the second semiconductor photodetector. The method of manufacturing a radiation detector according to manufacturing method 3, including applying the resin so as to contact a portion located on the fourth portion, which is included in the second wiring member that is physically connected.
 以上、本発明の実施形態及び変形例について説明してきたが、本発明は必ずしも上述した実施形態に限定されるものではなく、その要旨を逸脱しない範囲で様々な変更が可能である。 Although the embodiments and modifications of the present invention have been described above, the present invention is not necessarily limited to the above-described embodiments, and various modifications are possible without departing from the gist of the present invention.
 放射線検出器RD1では、第二方向D2から見て、光検出領域23a,23b,23c,23dは、側面1c,1dの輪郭形状に対応する輪郭形状を呈していなくてもよい。光検出領域23a,23b,23c,23dが側面1c,1dの輪郭形状に対応する輪郭形状を呈している構成では、上述したように、光検出領域23a,23b,23c,23dは、半導体基板11a,11bのうち、シンチレーション光を受光し得ない箇所に配置されがたい。したがって、半導体基板11a,11bが有する光検出領域23a,23b,23c,23dでのダークカウント及び容量の増加が抑制される。したがって、本構成は、放射線検出器RD1の時間分解能を確実に向上する。
 放射線検出器RD1は、光反射部材24を備えていなくてもよい。放射線検出器RD1が光反射部材24を備えている構成は、上述したように、各部分1p,1q,1r,1sで発生したシンチレーション光を確実に当該部分1p,1q,1r,1s内に閉じ込める。当該部分1p,1q,1r,1sに対応する光検出領域23a,23b,23c,23dが、当該部分1p,1q,1r,1s内で発生したシンチレーション光をより確実に検出する。したがって、放射線検出器RD1は、高い時間分解能を更により確実に実現する。
 光検出領域23aに対応している電極17aと、光検出領域23aとを電気的に接続している導線14aの幅は、光検出領域23dに対応している電極17dと、光検出領域23dとを電気的に接続している導線14dの幅より大きくてもよい。光検出領域23aに対応している電極17aと、光検出領域23aとを電気的に接続している導線14aの幅は、光検出領域23dに対応している電極17dと、光検出領域23dとを電気的に接続している導線14dの幅より大きい構成は、上述したように、光検出領域23aに対応している電極17aと、光検出領域23aとを電気的に接続している導線14aと、光検出領域23dに対応している電極17dと、光検出領域23dとを電気的に接続している導線14dとの電気抵抗差を低減する。
 放射線検出器RD1は、基体40aを備えていなくてもよい。放射線検出器RD1が基体40aを備えている構成は、上述したように、半導体基板11aの機械的強度を向上する。放射線検出器RD1は、基体40bを備えていなくてもよい。放射線検出器RD1が基体40bを備えている構成は、上述したように、半導体基板11bの機械的強度を向上する。したがって、本構成は、機械的強度を向上した放射線検出器RD1を確実に実現する。
 放射線検出器RD1は、補強体45を備えていなくてもよい。放射線検出器RD1が補強体45を備えている構成では、上述したように、部分22aと部分22bとの間に配置された補強体45が、部分22a及び部分22bの機械的強度を向上する。補強体45は、部分22aに位置する配線部材30aと、部分22bに位置する配線部材30bとを保護する。
 放射線検出器RD1は、被覆体47a,47bを備えていなくてもよい。放射線検出器RD1が被覆体47a,47bを備えている場合、たとえば、被覆体47a及び被覆体47bが光反射体48を含む構成が、シンチレーション光の光反射特性を向上する。たとえば、被覆体47a及び被覆体47bが電気絶縁体49を含む構成が、放射線検出器RD1の電気絶縁性を向上する。
 配線部材30aは、半導体基板11aに対して、シンチレータ1と同じ側に配置されていなくてもよい。配線部材30aが半導体基板11aに対してシンチレータ1と同じ側に配置されている構成は、たとえば、配線部材30aを、半導体光検出素子10aが有する電極17,18とダイボンディングによって接続するための基板を必要としない。配線部材30bは、半導体基板11bに対して、シンチレータ1と同じ側に配置されていなくてもよい。配線部材30bが半導体基板11bに対してシンチレータ1と同じ側に配置されている構成は、たとえば、配線部材30bを、半導体光検出素子10bが有する電極17,18とダイボンディングによって接続するための基板を必要としない。したがって、本構成は、放射線検出器RD1の構成をより確実に簡略化する。
 配線部材30aの可撓性は、半導体基板11aの可撓性より大きくなくてもよい。配線部材30aの可撓性が半導体基板11aの可撓性より大きい構成では、上述したように、配線部材30aの振動が半導体基板11aに伝わりにくい。配線部材30bの可撓性は、半導体基板11bの可撓性より大きくなくてもよい。配線部材30bの可撓性が半導体基板11bの可撓性より大きい構成では、上述したように、配線部材30bの振動が半導体基板11bに伝わりにくい。したがって、本構成は、放射線検出器RD1の機械的強度を確実に維持する。
 実施形態及び変形例では、シンチレータ1の2つの側面1c,1dに、それぞれ半導体光検出素子を配置した例を説明したが、シンチレータ1の4つの側面1c,1d,1e,1fに、それぞれ半導体光検出素子を配置してもよい。
In the radiation detector RD1, the photodetection regions 23a, 23b, 23c, and 23d do not have to have contour shapes corresponding to the contour shapes of the side surfaces 1c and 1d when viewed from the second direction D2. In the configuration in which the photodetection regions 23a, 23b, 23c, and 23d have contour shapes corresponding to the contour shapes of the side surfaces 1c and 1d, as described above, the photodetection regions 23a, 23b, 23c, and 23d are formed on the semiconductor substrate 11a. , 11b, it is difficult to place them at locations where scintillation light cannot be received. Therefore, increases in dark count and capacitance in the photodetection regions 23a, 23b, 23c, and 23d of the semiconductor substrates 11a and 11b are suppressed. Therefore, this configuration reliably improves the time resolution of the radiation detector RD1.
The radiation detector RD1 does not have to include the light reflecting member 24 . The configuration in which the radiation detector RD1 includes the light reflecting member 24 reliably confines the scintillation light generated in each of the portions 1p, 1q, 1r, and 1s within the portions 1p, 1q, 1r, and 1s, as described above. . The photodetection regions 23a, 23b, 23c, and 23d corresponding to the portions 1p, 1q, 1r, and 1s more reliably detect the scintillation light generated within the portions 1p, 1q, 1r, and 1s. Therefore, the radiation detector RD1 more reliably achieves high temporal resolution.
The width of the conductive wire 14a electrically connecting the electrode 17a corresponding to the photodetection region 23a and the photodetection region 23a is the width of the electrode 17d corresponding to the photodetection region 23d and the width of the photodetection region 23d. may be larger than the width of the conductor 14d electrically connecting the . The width of the conductive wire 14a electrically connecting the electrode 17a corresponding to the photodetection region 23a and the photodetection region 23a is the width of the electrode 17d corresponding to the photodetection region 23d and the width of the photodetection region 23d. As described above, the conductor 14a electrically connecting the electrode 17a corresponding to the photodetection region 23a and the photodetection region 23a has a width larger than that of the conductor 14d electrically connecting the photodetection region 23a. , the difference in electrical resistance between the electrode 17d corresponding to the photodetection region 23d and the lead wire 14d electrically connecting the photodetection region 23d is reduced.
The radiation detector RD1 may not have the substrate 40a. The configuration in which the radiation detector RD1 includes the base 40a improves the mechanical strength of the semiconductor substrate 11a, as described above. The radiation detector RD1 may not have the substrate 40b. The configuration in which the radiation detector RD1 includes the base 40b improves the mechanical strength of the semiconductor substrate 11b as described above. Therefore, this configuration reliably realizes the radiation detector RD1 with improved mechanical strength.
The radiation detector RD1 does not have to include the reinforcing body 45 . In the configuration in which the radiation detector RD1 includes the reinforcing body 45, the reinforcing body 45 arranged between the portions 22a and 22b improves the mechanical strength of the portions 22a and 22b, as described above. The reinforcing body 45 protects the wiring member 30a located in the portion 22a and the wiring member 30b located in the portion 22b.
The radiation detector RD1 may not have the covers 47a and 47b. In the case where the radiation detector RD1 includes the coatings 47a and 47b, for example, a configuration in which the coatings 47a and 47b include the light reflector 48 improves the light reflection properties of the scintillation light. For example, a configuration in which the coverings 47a and 47b include the electrical insulator 49 improves the electrical insulation of the radiation detector RD1.
The wiring member 30a may not be arranged on the same side as the scintillator 1 with respect to the semiconductor substrate 11a. The configuration in which the wiring member 30a is arranged on the same side as the scintillator 1 with respect to the semiconductor substrate 11a is, for example, a substrate for connecting the wiring member 30a to the electrodes 17 and 18 of the semiconductor photodetector 10a by die bonding. does not require The wiring member 30b may not be arranged on the same side as the scintillator 1 with respect to the semiconductor substrate 11b. The configuration in which the wiring member 30b is arranged on the same side as the scintillator 1 with respect to the semiconductor substrate 11b is, for example, a substrate for connecting the wiring member 30b to the electrodes 17 and 18 of the semiconductor photodetector 10b by die bonding. does not require Therefore, this configuration more reliably simplifies the configuration of the radiation detector RD1.
The flexibility of the wiring member 30a does not have to be greater than that of the semiconductor substrate 11a. In a configuration in which the flexibility of the wiring member 30a is greater than that of the semiconductor substrate 11a, as described above, the vibration of the wiring member 30a is less likely to be transmitted to the semiconductor substrate 11a. The flexibility of the wiring member 30b does not have to be greater than that of the semiconductor substrate 11b. In a configuration in which the flexibility of the wiring member 30b is greater than that of the semiconductor substrate 11b, as described above, the vibration of the wiring member 30b is less likely to be transmitted to the semiconductor substrate 11b. Therefore, this configuration reliably maintains the mechanical strength of the radiation detector RD1.
In the embodiment and modification, the example in which the semiconductor photodetectors are arranged on the two side surfaces 1c and 1d of the scintillator 1 has been described. A sensing element may be arranged.
 1…シンチレータ、1a,1b…端面、1c,1d,1e,1f…側面、1p,1q,1r,1s…部分、3a,3b…対向面、3c,3e…連結面、3a,3b…対向面、10a,10b…半導体光検出素子、11a,11b…半導体基板、12…アバランシェフォトダイオード、13…クエンチング抵抗、14a,14b…導線、17a,17b,17c,17d,18…電極、21a,21b…部分、22a,22b…部分、23a,23b,23c,23d…光検出領域、24…光反射部材、30a,30b…配線部材、31a,31b,31c,31d,32…導体、41a,41b,41c,41d,42…端子、45…補強体、47a,47b…被覆体、48…光反射体、49…電気絶縁体、51a,51b,52a,52b…部分、D1…第一方向、D2…第二方向、D3…第三方向、RA1,RA2…放射線検出器アレイ、RD1…放射線検出器。 DESCRIPTION OF SYMBOLS 1... Scintillator 1a, 1b... End surface 1c, 1d, 1e, 1f... Side surface 1p, 1q, 1r, 1s... Portion 3a, 3b... Opposing surface 3c, 3e... Connecting surface 3a, 3b... Opposing surface , 10a, 10b... Semiconductor photodetector 11a, 11b... Semiconductor substrate 12... Avalanche photodiode 13... Quenching resistor 14a, 14b... Lead wire 17a, 17b, 17c, 17d, 18... Electrode 21a, 21b Portions 22a, 22b Portions 23a, 23b, 23c, 23d Photodetection regions 24 Light reflecting members 30a, 30b Wiring members 31a, 31b, 31c, 31d, 32 Conductors 41a, 41b, 41c, 41d, 42 Terminals 45 Reinforcement 47a, 47b Coating 48 Light reflector 49 Electric insulator 51a, 51b, 52a, 52b Part D1 First direction D2 Second direction, D3... Third direction, RA1, RA2... Radiation detector array, RD1... Radiation detector.

Claims (20)

  1.  放射線検出器であって、
     第一方向で互いに対向している一対の端面と、前記第一方向に交差する第二方向で互いに対向していると共に前記一対の端面を連結している第一側面及び第二側面と、を有し、前記第一方向から見て矩形状を呈しているシンチレータと、
     前記第一側面と対向するように配置されている第一半導体基板を有している第一半導体光検出素子と、
     前記第二側面と対向するように配置されている第二半導体基板を有している第二半導体光検出素子と、
     前記第一半導体光検出素子と電気的に接続されている第一配線部材と、
     前記第二半導体光検出素子と電気的に接続されている第二配線部材と、
    を備え、
     前記第一方向での前記シンチレータの長さは、前記第二方向での前記シンチレータの長さ及び前記第一側面に平行な第三方向での前記シンチレータの長さより大きく、
     前記第一方向での前記第一側面の長さは、前記第三方向での前記第一側面の幅より大きく、
     前記第一方向での前記第二側面の長さは、前記第三方向での前記第二側面の幅より大きく、
     前記第一半導体基板は、
      前記第一側面で覆われている第一部分と、
      前記第一部分と前記第一方向に並んでいると共に前記第一側面から露出している第二部分と、を有し、
     前記第二半導体基板は、
      前記第二側面で覆われている第三部分と、
      前記第三部分と前記第一方向に並んでいると共に前記第二側面から露出している第四部分と、を有し、
     前記第一半導体光検出素子及び前記第二半導体光検出素子のそれぞれは、
      ガイガーモードで動作する少なくとも一つのアバランシェフォトダイオードと、前記少なくとも一つのアバランシェフォトダイオードのうち対応するアバランシェフォトダイオードのアノード又はカソードの一方と電気的に直列接続されている少なくとも一つのクエンチング抵抗と、を有している複数の光検出領域と、を有し、
     前記第一半導体光検出素子は、
      前記複数の光検出領域のうち対応する前記光検出領域に含まれている、前記第一半導体光検出素子が有する前記少なくとも一つのクエンチング抵抗と電気的に接続されている複数の第一電極と、
      前記複数の光検出領域のうち対応する前記光検出領域に含まれている、前記第一半導体光検出素子が有する前記アバランシェフォトダイオードのアノード又はカソードの他方と電気的に接続されている第二電極と、を有し、
     前記第二半導体光検出素子は、
      前記複数の光検出領域のうち対応する前記光検出領域に含まれている、前記第二半導体光検出素子が有する前記少なくとも一つのクエンチング抵抗と電気的に接続されている複数の第三電極と、
      前記複数の光検出領域のうち対応する前記光検出領域に含まれている、前記第二半導体光検出素子が有する前記アバランシェフォトダイオードのアノード又はカソードの他方と電気的に接続されている第四電極と、を有し、
     前記第一半導体光検出素子が有する前記複数の光検出領域は、前記第一部分に配置され、
     前記複数の第一電極及び前記第二電極は、前記第二部分に配置され、
     前記第二半導体光検出素子が有する前記複数の光検出領域は、前記第三部分に配置され、
     前記複数の第三電極及び前記第四電極は、前記第四部分に配置され、
     前記第一配線部材は、前記複数の第一電極のうち対応する第一電極と電気的に接続される複数の導体と、前記第二電極と接続される導体と、を有し、
     前記第二配線部材は、前記複数の第三電極のうち対応する第三電極と電気的に接続される複数の導体と、前記第四電極と接続される導体と、を有している。
    A radiation detector,
    A pair of end faces facing each other in a first direction, and a first side face and a second side face facing each other in a second direction intersecting the first direction and connecting the pair of end faces a scintillator having a rectangular shape when viewed from the first direction;
    a first semiconductor photodetector having a first semiconductor substrate arranged to face the first side surface;
    a second semiconductor photodetector having a second semiconductor substrate arranged to face the second side surface;
    a first wiring member electrically connected to the first semiconductor photodetector;
    a second wiring member electrically connected to the second semiconductor photodetector;
    with
    the length of the scintillator in the first direction is greater than the length of the scintillator in the second direction and the length of the scintillator in a third direction parallel to the first side surface;
    the length of the first side in the first direction is greater than the width of the first side in the third direction;
    the length of the second side in the first direction is greater than the width of the second side in the third direction;
    The first semiconductor substrate is
    a first portion covered by the first side;
    having the first portion and a second portion aligned in the first direction and exposed from the first side surface;
    The second semiconductor substrate is
    a third portion covered by the second side;
    having the third portion and a fourth portion aligned in the first direction and exposed from the second side;
    Each of the first semiconductor photodetector and the second semiconductor photodetector,
    at least one avalanche photodiode operating in Geiger mode; at least one quenching resistor electrically connected in series with one of the anode or cathode of the corresponding avalanche photodiode among the at least one avalanche photodiode; a plurality of photodetection regions having
    The first semiconductor photodetector,
    a plurality of first electrodes electrically connected to the at least one quenching resistor of the first semiconductor photodetector included in the corresponding photodetection regions among the plurality of photodetection regions; and ,
    a second electrode electrically connected to the other of the anode or the cathode of the avalanche photodiode of the first semiconductor photodetector included in the corresponding photodetection region among the plurality of photodetection regions; and
    The second semiconductor photodetector is
    and a plurality of third electrodes electrically connected to the at least one quenching resistor of the second semiconductor photodetector included in the corresponding photodetection regions among the plurality of photodetection regions; ,
    a fourth electrode electrically connected to the other of the anode or the cathode of the avalanche photodiode of the second semiconductor photodetector included in the corresponding photodetection region among the plurality of photodetection regions; and
    The plurality of photodetection regions of the first semiconductor photodetection element are arranged in the first portion,
    the plurality of first electrodes and the second electrodes are disposed on the second portion;
    The plurality of photodetection regions of the second semiconductor photodetection element are arranged in the third portion,
    the plurality of third electrodes and the fourth electrode are disposed on the fourth portion;
    the first wiring member has a plurality of conductors electrically connected to corresponding first electrodes among the plurality of first electrodes, and a conductor connected to the second electrode;
    The second wiring member has a plurality of conductors electrically connected to corresponding third electrodes among the plurality of third electrodes, and a conductor connected to the fourth electrode.
  2.  請求項1に記載の放射線検出器であって、
     前記第二方向から見て、前記第一半導体基板が有する前記複数の光検出領域の輪郭により構成される一つの領域は、前記第一側面の輪郭形状に対応する輪郭形状を呈し、
     前記第二方向から見て、前記第二半導体基板が有する前記複数の光検出領域の輪郭により構成される一つの領域は、前記第二側面の輪郭形状に対応する輪郭形状を呈している。
    A radiation detector according to claim 1,
    When viewed from the second direction, one region configured by the contours of the plurality of photodetection regions of the first semiconductor substrate exhibits a contour shape corresponding to the contour shape of the first side surface,
    When viewed from the second direction, one region configured by the contours of the plurality of photodetection regions of the second semiconductor substrate has a contour shape corresponding to the contour shape of the second side surface.
  3.  請求項1又は2に記載の放射線検出器であって、
     前記シンチレータは、互いに独立して前記第一方向に並んでいる複数の部分を有し、
     複数の部分のそれぞれは、前記第一半導体基板及び前記第二半導体基板のそれぞれに配置されている、前記複数の光検出領域のうち対応する光検出領域に対応して位置しており、
     前記複数の部分のそれぞれは、前記第一方向で互いに対向している一対の対向面と、前記一対の対向面を連結している第一連結面と第二連結面と、を有し、
     前記第一連結面は、前記第一半導体基板と対向し、
     前記第二連結面は、前記第二半導体基板と対向し、かつ、前記第二方向で前記第一連結面と対向している。
    A radiation detector according to claim 1 or 2,
    The scintillator has a plurality of portions independently arranged in the first direction,
    each of the plurality of portions is positioned corresponding to a corresponding photodetection region among the plurality of photodetection regions disposed on each of the first semiconductor substrate and the second semiconductor substrate;
    each of the plurality of portions has a pair of facing surfaces facing each other in the first direction, and a first connecting surface and a second connecting surface connecting the pair of facing surfaces,
    The first connecting surface faces the first semiconductor substrate,
    The second connecting surface faces the second semiconductor substrate and faces the first connecting surface in the second direction.
  4.  請求項3に記載の放射線検出器であって、
     前記複数の部分は、互いに接合されている。
    A radiation detector according to claim 3,
    The plurality of portions are joined together.
  5.  請求項4に記載の放射線検出器であって、
     光反射部材を更に備え、
     前記光反射部材は、前記複数の部分間に配置されている。
    A radiation detector according to claim 4,
    further comprising a light reflecting member,
    The light reflecting member is arranged between the plurality of portions.
  6.  請求項3~5のいずれか一項に記載の放射線検出器であって、
     前記第二方向から見て、前記第一半導体基板が有する前記複数の光検出領域のそれぞれは、前記複数の部分のうち対応する部分の、前記第一半導体基板と対向する前記第一連結面の輪郭形状に対応する輪郭形状を呈し、
     前記第二方向から見て、前記第二半導体基板が有する前記複数の光検出領域のそれぞれは、前記複数の部分のうち対応する部分の、前記第二半導体基板と対向する前記第二連結面の輪郭形状に対応する輪郭形状を呈している。
    The radiation detector according to any one of claims 3 to 5,
    When viewed from the second direction, each of the plurality of photodetection regions of the first semiconductor substrate is located on the first connecting surface of the corresponding portion of the plurality of portions, which faces the first semiconductor substrate. Exhibiting a contour shape corresponding to the contour shape,
    When viewed from the second direction, each of the plurality of photodetection regions of the second semiconductor substrate is located on the second connecting surface of the corresponding portion of the plurality of portions, which faces the second semiconductor substrate. It presents a contour shape corresponding to the contour shape.
  7.  請求項1~6のいずれか一項に記載の放射線検出器であって、
     前記複数の光検出領域は、第一光検出領域と、前記第一光検出領域よりも前記第二部分に近い第二光検出領域と、を含み、
     前記第一光検出領域に対応している前記第一電極と、前記第一光検出領域とを電気的に接続している導線の幅は、前記第二光検出領域に対応している前記第一電極と、前記第二光検出領域とを電気的に接続している導線の幅より大きく、
     前記第一光検出領域に対応している前記第三電極と、前記第一光検出領域とを電気的に接続している導線の幅は、前記第二光検出領域に対応している前記第三電極と、前記第二光検出領域とを電気的に接続している導線の幅より大きい。
    A radiation detector according to any one of claims 1 to 6,
    the plurality of photodetection regions includes a first photodetection region and a second photodetection region closer to the second portion than the first photodetection region;
    The width of the conductive wire electrically connecting the first electrode corresponding to the first photodetection region and the first photodetection region is the width of the conductor corresponding to the second photodetection region. larger than the width of the conductive wire electrically connecting the one electrode and the second photodetection region,
    The width of the conductive wire electrically connecting the third electrode corresponding to the first photodetection region and the first photodetection region corresponds to the second photodetection region. It is larger than the width of the conductive wire electrically connecting the three electrodes and the second photodetection region.
  8.  請求項1~7のいずれか一項に記載の放射線検出器であって、
     前記第二部分と前記第四部分との間に配置されている補強体を更に備え、
     前記補強体は、前記第二部分と前記第四部分とを覆っていると共に、前記第二部分と前記第四部分とを連結している。
    A radiation detector according to any one of claims 1 to 7,
    further comprising a reinforcing body positioned between the second portion and the fourth portion;
    The reinforcing body covers the second portion and the fourth portion and connects the second portion and the fourth portion.
  9.  請求項1~8のいずれか一項に記載の放射線検出器であって、
     前記第一半導体基板は、前記第二方向で前記シンチレータと対向している第一面と、前記第二方向で前記第一面と対向している第二面と、を有し、
     前記第二半導体基板は、前記第二方向で前記シンチレータと対向している第三面と、前記第二方向で前記第三面と対向している第四面と、を有し、
     前記第二面及び前記第四面は、研磨面である。
    A radiation detector according to any one of claims 1 to 8,
    The first semiconductor substrate has a first surface facing the scintillator in the second direction and a second surface facing the first surface in the second direction,
    The second semiconductor substrate has a third surface facing the scintillator in the second direction and a fourth surface facing the third surface in the second direction,
    The second surface and the fourth surface are polished surfaces.
  10.  請求項1~9のいずれか一項に記載の放射線検出器であって、
     前記第二方向で互いに対向している第五面及び第六面を有している共に、前記第五面と前記シンチレータとの間に前記第一半導体基板が位置するように配置されている第一基体と、
     前記第二方向で互いに対向している第七面及び第八面を有している共に、前記第七面と前記シンチレータとの間に前記第二半導体基板が位置するように配置されている第二基体と、
     前記第五面上に配置されている複数の第一端子と、
     前記第五面上に配置されている第二端子と、
     前記第七面上に配置されている複数の第三端子と、
     前記第七面上に配置されている第四端子と、
     前記複数の第一端子と前記第一電極とを電気的に接続する第一ワイヤと、
     前記第二端子と前記第二電極とを電気的に接続する第二ワイヤと、
     前記複数の第三端子と前記第三電極とを電気的に接続する第三ワイヤと、
     前記第四端子と前記第四電極とを電気的に接続する第四ワイヤと、
    を更に備え、
     前記第一基体は、前記第一半導体基板で覆われている第五部分と、前記第五部分と前記第一方向に並んでいると共に前記第一半導体基板から露出している第六部分と、を有し、
     前記第二基体は、前記第二半導体基板で覆われている第七部分と、前記第七部分と前記第一方向に並んでいると共に前記第二半導体基板から露出している第八部分と、を有し、
     各前記第一端子及び前記第二端子は、前記第六部分上に位置し、
     各前記第三端子及び前記第四端子は、前記第八部分上に位置する。
    A radiation detector according to any one of claims 1 to 9,
    The second semiconductor substrate has a fifth surface and a sixth surface facing each other in the second direction, and is arranged such that the first semiconductor substrate is positioned between the fifth surface and the scintillator. a substrate;
    The second semiconductor substrate has a seventh surface and an eighth surface facing each other in the second direction, and is arranged such that the second semiconductor substrate is positioned between the seventh surface and the scintillator. two substrates and
    a plurality of first terminals arranged on the fifth surface;
    a second terminal disposed on the fifth surface;
    a plurality of third terminals arranged on the seventh surface;
    a fourth terminal disposed on the seventh surface;
    a first wire electrically connecting the plurality of first terminals and the first electrode;
    a second wire electrically connecting the second terminal and the second electrode;
    a third wire electrically connecting the plurality of third terminals and the third electrode;
    a fourth wire electrically connecting the fourth terminal and the fourth electrode;
    further comprising
    The first base has a fifth portion covered with the first semiconductor substrate, a sixth portion aligned with the fifth portion in the first direction and exposed from the first semiconductor substrate, has
    The second base has a seventh portion covered with the second semiconductor substrate, an eighth portion aligned with the seventh portion in the first direction and exposed from the second semiconductor substrate, has
    each said first terminal and said second terminal located on said sixth portion;
    Each said third terminal and said fourth terminal is located on said eighth portion.
  11.  請求項1~10のいずれか一項に記載の放射線検出器であって、
     前記シンチレータとの間に前記第一半導体基板が位置するように配置されている第一被覆体と、
     前記シンチレータとの間に前記第二半導体基板が位置するように配置されている第二被覆体と、を更に備え、
     前記第一被覆体及び前記第二被覆体のそれぞれは、光反射体及び電気絶縁体の少なくともいずれか一つを含んでいる。
    A radiation detector according to any one of claims 1 to 10,
    a first covering arranged such that the first semiconductor substrate is positioned between the scintillator;
    a second covering arranged such that the second semiconductor substrate is positioned between the scintillator;
    Each of the first covering and the second covering includes at least one of a light reflector and an electrical insulator.
  12.  請求項1~11のいずれか一項に記載の放射線検出器であって、
     前記第一配線部材は、前記第一半導体基板に対して、前記シンチレータと同じ側に配置され、
     前記第二配線部材は、前記第二半導体基板に対して、前記シンチレータと同じ側に配置されている。
    A radiation detector according to any one of claims 1 to 11,
    The first wiring member is arranged on the same side as the scintillator with respect to the first semiconductor substrate,
    The second wiring member is arranged on the same side as the scintillator with respect to the second semiconductor substrate.
  13.  請求項1~9、又は11のいずれか一項に記載の放射線検出器であって、
     前記第一配線部材の少なくとも一部と、前記シンチレータとは、前記第一半導体基板の同じ面の前に配置され、
     前記第二配線部材の少なくとも一部と、前記シンチレータとは、前記第二半導体基板の同じ面の前に配置されている。
    The radiation detector according to any one of claims 1 to 9 or 11,
    At least part of the first wiring member and the scintillator are arranged in front of the same surface of the first semiconductor substrate,
    At least part of the second wiring member and the scintillator are arranged in front of the same surface of the second semiconductor substrate.
  14.  請求項10に記載の放射線検出器であって、
     前記第一配線部材の少なくとも一部と、前記シンチレータとは、前記第一基体の同じ面の前に配置され、
     前記第二配線部材の少なくとも一部と、前記シンチレータとは、前記第二基体の同じ面の前に配置されている。
    A radiation detector according to claim 10,
    At least part of the first wiring member and the scintillator are arranged in front of the same surface of the first substrate,
    At least part of the second wiring member and the scintillator are arranged in front of the same surface of the second substrate.
  15.  請求項1~14のいずれか一項に記載の放射線検出器であって、
     前記第一配線部材及び前記第二配線部材と、前記第一半導体基板及び前記第二半導体基板とは、可撓性を有し、
     前記第一配線部材の可撓性は、前記第一半導体基板の可撓性より大きく、
     前記第二配線部材の可撓性は、前記第二半導体基板の可撓性より大きい。
    A radiation detector according to any one of claims 1 to 14,
    The first wiring member and the second wiring member, and the first semiconductor substrate and the second semiconductor substrate have flexibility,
    the flexibility of the first wiring member is greater than the flexibility of the first semiconductor substrate;
    The flexibility of the second wiring member is greater than the flexibility of the second semiconductor substrate.
  16.  放射線検出器アレイであって、
     一次元に配列された複数の放射線検出器を備え、
     前記複数の放射線検出器のそれぞれは、請求項1~15のいずれか一項に記載の前記放射線検出器であり、
     前記シンチレータは、前記一対の端面を連結していると共に前記第一側面と前記第二側面とを連結している一対の第三側面を更に有し、
     前記複数の放射線検出器のうち互いに隣り合う任意の二つの放射線検出器は、一方の前記放射線検出器が備える前記シンチレータの前記第三側面と、他方の前記放射線検出器が備える前記シンチレータの前記第三側面とが互いに対向するように、配置されている。
    A radiation detector array,
    Equipped with a plurality of radiation detectors arranged in one dimension,
    Each of the plurality of radiation detectors is the radiation detector according to any one of claims 1 to 15,
    The scintillator further has a pair of third side surfaces connecting the pair of end surfaces and connecting the first side surface and the second side surface,
    Any two adjacent radiation detectors among the plurality of radiation detectors are arranged such that the third side of the scintillator provided by one of the radiation detectors and the third side of the scintillator provided by the other radiation detector are arranged. It is arranged such that the three side faces are opposed to each other.
  17.  請求項16に記載の放射線検出器アレイであって、
     前記複数の放射線検出器が備える前記第一半導体光検出素子同士は、一体に形成され、
     前記複数の放射線検出器が備える前記第二半導体光検出素子同士は、一体に形成されている。
    17. A radiation detector array according to claim 16, comprising:
    the first semiconductor photodetecting elements included in the plurality of radiation detectors are integrally formed,
    The second semiconductor photodetecting elements included in the plurality of radiation detectors are integrally formed.
  18.  放射線検出器アレイであって、
     行列状に二次元に配列された複数の放射線検出器を備え、
     前記複数の放射線検出器のうち行方向に配置された複数の放射線検出器のそれぞれは、請求項16又は17に記載の前記放射線検出器アレイであり、
     前記複数の放射線検出器のうち列方向で互いに隣り合う任意の二つの放射線検出器は、一方の前記放射線検出器が備える前記第一半導体光検出素子又は前記第二半導体光検出素子のいずれか一方と、他方の前記放射線検出器が備える前記第一半導体光検出素子又は前記第二半導体光検出素子のいずれか一方とが前記列方向で互いに対向するように、配置されている。
    A radiation detector array,
    Equipped with a plurality of radiation detectors arranged two-dimensionally in a matrix,
    Each of the plurality of radiation detectors arranged in the row direction among the plurality of radiation detectors is the radiation detector array according to claim 16 or 17,
    Any two radiation detectors adjacent to each other in the column direction among the plurality of radiation detectors are either the first semiconductor photodetector or the second semiconductor photodetector included in one of the radiation detectors. and either the first semiconductor photodetector element or the second semiconductor photodetector element of the other radiation detector are arranged so as to face each other in the column direction.
  19.  放射線検出器アレイであって、
     一次元に配列された複数の放射線検出器を備え、
     前記複数の放射線検出器のそれぞれは、請求項1~15のいずれか一項に記載の前記放射線検出器であり、
     前記シンチレータは、前記一対の端面を連結していると共に前記第一側面と前記第二側面とを連結している一対の第三側面を更に有し、
     前記複数の放射線検出器のうち互いに隣り合う任意の二つの放射線検出器は、一方の前記放射線検出器が備える前記シンチレータの前記第三側面と、他方の前記放射線検出器が備える前記第一半導体光検出素子又は前記第二半導体光検出素子のいずれか一方とが互いに対向するように、配置されている。
    A radiation detector array,
    Equipped with a plurality of radiation detectors arranged in one dimension,
    Each of the plurality of radiation detectors is the radiation detector according to any one of claims 1 to 15,
    The scintillator further has a pair of third side surfaces connecting the pair of end surfaces and connecting the first side surface and the second side surface,
    Any two adjacent radiation detectors among the plurality of radiation detectors are arranged such that the third side surface of the scintillator provided by one of the radiation detectors and the first semiconductor light provided by the other radiation detector are provided. Either the detection element or the second semiconductor photodetection element is arranged so as to face each other.
  20.  放射線検出器アレイであって、
     行列状に二次元に配列された複数の放射線検出器を備え、
     前記複数の放射線検出器のうち行方向に配置された複数の放射線検出器のそれぞれは、請求項19に記載の前記放射線検出器アレイであり、
     前記複数の放射線検出器のうち列方向で互いに隣り合う任意の二つの放射線検出器は、一方の前記放射線検出器が備える前記シンチレータの前記第三側面と、他方の前記放射線検出器が備える前記第一半導体光検出素子又は前記第二半導体光検出素子のいずれか一方とが前記列方向で互いに対向するように、配置されている。
    A radiation detector array,
    Equipped with a plurality of radiation detectors arranged two-dimensionally in a matrix,
    Each of the plurality of radiation detectors arranged in the row direction among the plurality of radiation detectors is the radiation detector array according to claim 19,
    Any two radiation detectors adjacent to each other in the column direction among the plurality of radiation detectors are arranged such that the third side surface of the scintillator provided by one of the radiation detectors and the third side surface of the scintillator provided by the other radiation detector are provided. Either one of the first semiconductor photodetector and the second semiconductor photodetector is arranged so as to face each other in the column direction.
PCT/JP2022/042126 2022-01-05 2022-11-11 Radiation detector, and radiation detector array WO2023132128A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-000431 2022-01-05
JP2022000431A JP2023100063A (en) 2022-01-05 2022-01-05 Radiation detector and radiation detector array

Publications (1)

Publication Number Publication Date
WO2023132128A1 true WO2023132128A1 (en) 2023-07-13

Family

ID=87073616

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/042126 WO2023132128A1 (en) 2022-01-05 2022-11-11 Radiation detector, and radiation detector array

Country Status (3)

Country Link
JP (1) JP2023100063A (en)
TW (1) TW202343029A (en)
WO (1) WO2023132128A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103592671A (en) * 2012-08-15 2014-02-19 上海联影医疗科技有限公司 Scintillation crystal array detector and PET-MR system using the detector
US20210003721A1 (en) * 2019-07-02 2021-01-07 Stmicroelectronics S.R.L. Scintillator radiation detector and corresponding dosimeter
JP2021019241A (en) * 2019-07-18 2021-02-15 浜松ホトニクス株式会社 Signal readout circuit, signal readout device, and signal readout method for photodetection element

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103592671A (en) * 2012-08-15 2014-02-19 上海联影医疗科技有限公司 Scintillation crystal array detector and PET-MR system using the detector
US20210003721A1 (en) * 2019-07-02 2021-01-07 Stmicroelectronics S.R.L. Scintillator radiation detector and corresponding dosimeter
JP2021019241A (en) * 2019-07-18 2021-02-15 浜松ホトニクス株式会社 Signal readout circuit, signal readout device, and signal readout method for photodetection element

Also Published As

Publication number Publication date
JP2023100063A (en) 2023-07-18
TW202343029A (en) 2023-11-01

Similar Documents

Publication Publication Date Title
US6844570B2 (en) Component of a radiation detector comprising a substrate with positioning structure for a photoelectric element array
US8373132B2 (en) Radiation detector with a stack of scintillator elements and photodiode arrays
US8044440B2 (en) Semiconductor device and method of manufacturing the same
US9163984B2 (en) Spectroscopic sensor and angle limiting filter
EP1300692B1 (en) Radiation detector and method of manufacture thereof
US5041729A (en) Radiation detector and manufacturing process thereof
TWI704686B (en) Light detection device
US20030116715A1 (en) Radiation detector and method of producing the same
WO2023132128A1 (en) Radiation detector, and radiation detector array
WO2023132127A1 (en) Radiation detector and radiation detector array
US10461115B2 (en) Photodiode array
KR20090046968A (en) Scintillator panel and radiation image sensor
US10418496B2 (en) Photodiode array
WO2023047900A1 (en) Radiation detector and radiation detector array
WO2023047899A1 (en) Radiation detector and radiation detector array
US10825730B2 (en) Manufacturing method for solid-state imaging device and solid-state imaging device
WO2021246146A1 (en) Semiconductor light detection element
CN118056283A (en) Radiation detector and radiation detector array
JP4799746B2 (en) Radiation detector module
KR102191820B1 (en) Optical sensor
TW201941447A (en) Semiconductor device
KR20140050301A (en) Directly-deposited scintillator panel and manufacturing method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22918717

Country of ref document: EP

Kind code of ref document: A1