WO2023131182A1 - 通信方法以及装置 - Google Patents

通信方法以及装置 Download PDF

Info

Publication number
WO2023131182A1
WO2023131182A1 PCT/CN2023/070438 CN2023070438W WO2023131182A1 WO 2023131182 A1 WO2023131182 A1 WO 2023131182A1 CN 2023070438 W CN2023070438 W CN 2023070438W WO 2023131182 A1 WO2023131182 A1 WO 2023131182A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal device
indication information
rnti
access network
target node
Prior art date
Application number
PCT/CN2023/070438
Other languages
English (en)
French (fr)
Inventor
张海森
李秉肇
许斌
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023131182A1 publication Critical patent/WO2023131182A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/10Flow control between communication endpoints
    • H04W28/12Flow control between communication endpoints using signalling between network elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/08Reselecting an access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/06Selective distribution of broadcast services, e.g. multimedia broadcast multicast service [MBMS]; Services to user groups; One-way selective calling services

Definitions

  • the present application relates to the communication field, and more specifically, to a communication method and device.
  • Multicast transmission technology refers to the technology that network devices send the same data to multiple terminal devices at the same time, that is, point-to-multipoint transmission.
  • a network device such as a base station
  • transmission failure may occur, resulting in poor reliability of data transmission, poor business continuity, data disorder, and reduced communication quality and service experience.
  • the application provides a communication method and device, which can improve the adaptability of the multicast service and the reliability of the multicast transmission mode, and improve the communication efficiency.
  • a communication method is provided, the method is applied to a terminal device, the terminal device includes a first multicast radio bearer MRB, and the first MRB includes a first packet data aggregation protocol PDCP entity and a first radio link control
  • the RLC entity, the first RLC entity adopts the confirmation mode AM, and the method includes:
  • the terminal device receives first indication information sent by the source node, where the first indication information indicates to adjust the receiving window of the first PDCP entity when rebuilding the first PDCP entity;
  • the terminal device adjusts the receiving window of the first PDCP entity according to the first indication information.
  • the source node may be considered as a source cell, or as a source access network device.
  • the receiving window of the PDCP entity corresponding to the AM MRB can be adjusted, so that the terminal device can normally receive multicast service data after switching to the target node, Avoid data packet loss, improve the adaptability of multicast services and the reliability of multicast transmission methods, and improve communication efficiency and user experience.
  • the first indication information includes second indication information, and the second indication information indicates that the area session ID of the target node is inconsistent with the area session ID of the source node;
  • the terminal device adjusts the receiving window of the first PDCP entity according to the first indication information, including:
  • the terminal device initializes window parameters of the receiving window of the first PDCP entity.
  • the first indication information includes third indication information, where the third indication information indicates that the PDCP sequence numbers of the target node and the source node are not synchronized;
  • the terminal device adjusts the receiving window of the first PDCP entity according to the first indication information, including:
  • the terminal device initializes window parameters of the receiving window of the first PDCP entity.
  • the method further includes:
  • the terminal device delivers the data packets buffered by the first PDCP entity.
  • the first indication information includes fourth indication information, where the fourth indication information is used to indicate the superframe number of the target node;
  • the terminal device adjusts the receiving window of the first PDCP entity according to the first indication information, including:
  • the terminal device adjusts the window parameter of the receiving window of the first PDCP entity according to the difference between the superframe number of the target node and the superframe number of the source node.
  • the first indication information is included in the first information used to indicate the switching node.
  • a communication method includes: a source node sends first indication information to a terminal device, where the first indication information indicates to adjust the reception of the first PDCP entity when rebuilding the first packet data aggregation protocol PDCP entity window, wherein the terminal device includes a first multicast radio bearer MRB, and the first MRB includes a first PDCP entity and a first RLC entity, and the first RLC entity adopts an acknowledged mode AM, and the first PDCP entity and the first RLC entity association.
  • the method before the source node sends the first indication information to the terminal device, the method further includes: the source node sends handover request information to the target node; the source node receives The handover request acknowledgment information includes indication information for instructing to adjust the receiving window of the first PDCP entity.
  • the first indication information includes second indication information, and the second indication information indicates that the area session ID of the target node is inconsistent with the area session ID of the source node.
  • the first indication information includes third indication information, where the third indication information indicates that the sequence numbers of the target node and the source node are not synchronized.
  • the first indication information includes fourth indication information, where the fourth indication information indicates the superframe number of the target node.
  • the first indication information is included in the first information used to indicate the switching node.
  • a communication method includes: a first access network device receives third information sent by a terminal device, the third information is used to indicate the resources used by the terminal device to receive multicast services or support reception Multicast service capability; the first access network device configures a data radio bearer DRB for the terminal device according to the first indication information, and the DRB is used to bear unicast services, wherein the third information includes that the terminal device receives the multicast service The number of ROHC-Contexts used by the service and/or the number of EHC-Contexts used by the terminal device to receive the multicast service and/or the number of multicast radio bearers MRB or logical channel LCH used by the terminal device to receive the multicast service.
  • the third information includes the maximum number of ROHC-Contexts used by the terminal device to support receiving the multicast service and/or the maximum number of EHC-Contexts used by the terminal device to support receiving the multicast service and/or the maximum number of EHC-Contexts used by the terminal device to support receiving the multicast service Maximum number of MRBs or logical channels LCHs used by multicast services
  • the resources used by the terminal device to receive the multicast service can be understood as the resources used by the terminal device to receive the multicast service; or the resources used by the terminal device to receive the multicast service can be understood as the resources occupied by the terminal device when it wants to receive the multicast service; Or the resources used by a terminal device to receive multicast services can be understood as the resources planned or reserved by the terminal device for receiving multicast services; or the resources used by a terminal device to receive multicast services can be understood as the resources used by the terminal device to receive multicast services the greatest resource.
  • the terminal device reports the resources used for the multicast service to the first access network device, so that the first access network device can configure the DRB for the unicast service for the terminal device according to the resources of the multicast service , to ensure that the maximum capability of the PDCP of the terminal device will not be exceeded.
  • a communication method includes: a terminal device sends third information to a first access network device so that the first access network device configures a data radio for the terminal device according to the first instruction information; Carrying DRB, wherein the third information is used to indicate the resource used by the terminal device to receive the multicast service, and the DRB is used to carry the unicast service, wherein the third information includes the number of ROHC-Context used by the terminal device to receive the multicast service And/or the number of EHC-Contexts used by the terminal device to receive the multicast service and/or the number of multicast radio bearers MRB or logical channel LCH used by the terminal device to receive the multicast service.
  • the third information includes the maximum number of ROHC-Contexts used by the terminal device to support receiving the multicast service and/or the maximum number of EHC-Contexts used by the terminal device to support receiving the multicast service and/or the maximum number of EHC-Contexts used by the terminal device to support receiving the multicast service
  • the multicast service uses the maximum number of multicast radio bearers MRB or logical channel LCH.
  • the resources used by the terminal device to receive the multicast service can be understood as the resources used by the terminal device to receive the multicast service; or the resources used by the terminal device to receive the multicast service can be understood as the resources occupied by the terminal device when it wants to receive the multicast service; Or the resources used by the terminal equipment to receive multicast services can be understood as the resources planned by the terminal equipment to receive multicast services; or the resources used by the terminal equipment to receive multicast services can be understood as the maximum resources used by the terminal equipment to support the reception of multicast services
  • the method before the terminal device sends the third information to the first access network device, the method further includes: the terminal device receives the information sent by the second access network device Multicast service data.
  • a communication method includes: a third access network device sends a first data packet to a terminal device using a first packet radio network temporary identifier G-RNTI, and the first data packet corresponds to the first logical channel; when the first preset condition is met, the third access network device uses the cell wireless network temporary identifier C-RNTI to retransmit the first data packet; when the second preset condition is met, the access network device uses The first G-RNTI retransmits the first data packet.
  • G-RNTI packet radio network temporary identifier
  • the third access network device when the terminal device does not receive the newly transmitted data sent using the G-RNTI, the third access network device will not use the C-RNTI to retransmit, thus Collisions can be effectively avoided, preventing the terminal device from being unable to distinguish which radio bearer RB or service the HARQ retransmitted data packet belongs to only according to the logical channel identifier.
  • the first preset condition is that the third access network device receives NACK feedback of the first data packet, or the first logical channel does not have multiple Multiplexing of multiple RNTIs;
  • the second preset condition is that the access network device does not receive the NACK feedback of the first data packet or the timer expires, and there are multiple multiplexing of RNTIs on the first logical channel.
  • a communication method includes: a terminal device receives seventh indication information sent by a fourth access network device, where the seventh indication information indicates whether the fourth access network device uses C-RNTI scrambling to repeat Use the G-RNTI scrambled data packet when transmitting the initial transmission, or the seventh indication information indicates whether the logical channel of the terminal device corresponds to multiple RNTIs; when the seventh indication information indicates that the fourth access network device uses the C-RNTI scrambled When transmitting a data packet scrambled by G-RNTI during the initial transmission, the logical channel of the terminal device does not correspond to multiple RNTIs; when the seventh indication indicates that the fourth access network device does not use C-RNTI scrambling to retransmit the initial transmission When using G-RNTI scrambled data packets, the logical channel of the terminal device corresponds to multiple RNTIs; when the seventh indication indicates that the logical channel of the terminal device corresponds to multiple RNTIs, the terminal device does not use C-RNTI to
  • the retransmission data packet of the G-RNTI scrambled data packet when the seventh indication indicates that the logical channel of the terminal device does not correspond to multiple RNTIs, the terminal device uses the C-RNTI to receive the data scrambled by the G-RNTI when it is initially transmitted Packets of retransmitted packets.
  • the terminal device can finally determine whether the logical channel corresponds to multiple RNTIs or whether to use the C-RNTI Data packets are transmitted, thus avoiding collisions.
  • the method further includes: the terminal device sends eighth indication information to the fourth access network device, where the eighth indication information is used to indicate whether the terminal device Supports receiving retransmitted data packets descrambled using C-RNTI and receiving scheduled data packets of G-RNTI.
  • a communication method is provided, the method is applied to a terminal device, the terminal device includes a first multicast radio bearer MRB, and the first MRB includes a first packet data aggregation protocol PDCP entity and a first radio link control
  • the RLC entity, the first RLC entity adopts the confirmation mode AM, and the method includes:
  • the terminal device receives first indication information sent by the source node, where the first indication information indicates to adjust the receiving window of the first PDCP entity when rebuilding the first PDCP entity;
  • the terminal device adjusts the receiving window of the first PDCP entity according to the first indication information.
  • the source node may be considered as a source cell, or as a source access network device.
  • the receiving window of the PDCP entity corresponding to the AM MRB can be adjusted, so that the terminal device can normally receive multicast service data after switching to the target node, Avoid data packet loss, improve the adaptability of multicast services and the reliability of multicast transmission methods, and improve communication efficiency and user experience.
  • the first indication information specifically indicates that the area session ID of the target node is inconsistent with the area session ID of the source node
  • the terminal device adjusts the receiving window of the first PDCP entity according to the first indication information, including:
  • the terminal device initializes window parameters of the receiving window of the first PDCP entity.
  • the first indication information specifically indicates that the PDCP sequence numbers of the target node and the source node are not synchronized
  • the terminal device adjusts the receiving window of the first PDCP entity according to the first indication information, including:
  • the terminal device initializes window parameters of the receiving window of the first PDCP entity.
  • the method further includes:
  • the terminal device delivers the data packets buffered by the first PDCP entity.
  • the first indication letter specifically indicates the superframe number of the target node
  • the terminal device adjusts the receiving window of the first PDCP entity according to the first indication information, including:
  • the terminal device adjusts the window parameter of the receiving window of the first PDCP entity according to the difference between the superframe number of the target node and the superframe number of the source node.
  • the first indication information is included in the first information used to indicate the switching node.
  • a communication method which includes: the source node sends first indication information to the terminal device, and the first indication information indicates to adjust the reception of the first PDCP entity when rebuilding the first packet data aggregation protocol PDCP entity. window, wherein the terminal device includes a first multicast radio bearer MRB, and the first MRB includes a first PDCP entity and a first RLC entity, and the first RLC entity adopts an acknowledged mode AM, and the first PDCP entity and the first RLC entity association.
  • the method before the source node sends the first indication information to the terminal device, the method further includes: the source node sends handover request information to the target node; the source node receives The handover request acknowledgment information includes indication information for instructing to adjust the receiving window of the first PDCP entity.
  • the first indication information specifically indicates that the area session ID of the target node is inconsistent with the area session ID of the source node.
  • the first indication information specifically indicates that the sequence numbers of the target node and the source node are not synchronized.
  • the first indication information specifically indicates the superframe number of the target node.
  • the first indication information is included in the first information used to indicate the switching node.
  • a communication method comprising: the target node receives the handover request information sent by the source node, and the source node transmits a data packet of the first service with the first terminal device through the first AM MRB; the target node When it is determined that the transmission progress of the first AM MRB is slower than the progress of the target node sending the data packet of the first service to the second terminal device, the target node configures a second AM MRB to the first terminal device, and the second AM The MRB is used to transmit the data packet of the first service that the target node has transmitted, and the second AM MRB is synchronized with the PDCP SN of the first AM MRB.
  • the target node supports PDCP SN synchronization.
  • the target node when the first terminal device configured with the first AM MRB switches nodes, the target node can configure the second AM MRB for the terminal device when the transmission progress of the first AM MRB is slower than the transmission progress of the target node, to avoid Due to the loss of data packets caused by switching nodes, the user experience is improved and the user experience is improved.
  • the method further includes:
  • the target node instructs the first terminal device to release or reconfigure the first AM MRB.
  • a communication method comprising: handover request information sent by a source node, where the source node transmits a data packet of the first service with a first terminal device through a first AM MRB; the source node receives the handover request Acknowledgment information; when the source node determines that the transmission progress of the first AM MRB is faster than the target node sends the progress of the data packet of the first service to the second terminal device, the source node instructs the first terminal device to reconfigure the First AM MRB.
  • the source node when the first terminal device configured with the first AM MRB switches nodes, the source node can reconfigure the first AM MRB when the transmission progress of the first AM MRB is faster than the transmission progress of the target node, so as to avoid The data packet loss caused by the node improves the user experience and improves the user experience.
  • a communication device is provided, and the device is configured to execute the method in any possible implementation manner of the foregoing first aspect to the sixth aspect.
  • the apparatus may include a unit and/or module, such as a processing unit and/or a communication unit, for executing the method in any possible implementation manner of the first aspect to the sixth aspect.
  • the apparatus is a communication device (such as a terminal device, and also a network device).
  • the communication unit may be a transceiver, or an input/output interface;
  • the processing unit may be at least one processor.
  • the transceiver may be a transceiver circuit.
  • the input/output interface may be an input/output circuit.
  • the apparatus is a chip, a chip system, or a circuit used in a communication device (such as a terminal device, or a network device).
  • a communication device such as a terminal device, or a network device.
  • the communication unit may be an input/output interface, interface circuit, output circuit, input circuit, pin or related circuit on the chip, chip system or circuit, etc.
  • the processing unit may be at least one processor, processing circuit or logic circuit, etc.
  • a communication device which includes: at least one processor, configured to execute a computer program or instruction stored in a memory, so as to implement any of the possible implementation manners of the first aspect to the fourth aspect above method.
  • the apparatus further includes a memory for storing computer programs or instructions.
  • the device further includes a communication interface, through which the processor reads the computer program or instructions stored in the memory.
  • the apparatus is a communication device (such as a terminal device, and also a network device).
  • the apparatus is a chip, a chip system, or a circuit used in a communication device (such as a terminal device, or a network device).
  • the present application provides a processor configured to execute the methods provided in the first aspect to the sixth aspect.
  • a processor configured to execute the methods provided in the first aspect to the sixth aspect.
  • the processor's output and reception, input and other operations can also be understood as the sending and receiving operations performed by the radio frequency circuit and the antenna, which is not limited in this application.
  • a fourteenth aspect there is provided a computer-readable storage medium, the computer-readable medium stores program code for execution by a device, and the program code includes any one of the possible implementation manners for performing the first aspect to the sixth aspect above Methods.
  • a computer program product including instructions is provided, and when the computer program product is run on a computer, the computer is made to execute the method in any possible implementation manner of the first aspect to the sixth aspect above.
  • a communication system including the aforementioned terminal device and access network device.
  • FIG. 1 is a schematic diagram of data transmission at each layer of the protocol stack.
  • Fig. 2 is a schematic structural diagram of a mobile communication system applicable to the embodiment of the present application.
  • Fig. 3 is a schematic flowchart of a communication method provided by an embodiment of the present application.
  • Fig. 4 is a schematic flowchart of another example of a communication method provided by an embodiment of the present application.
  • Fig. 5 is a schematic flowchart of another example of a communication method provided by an embodiment of the present application.
  • Fig. 6 is a schematic flowchart of another example of a communication method provided by an embodiment of the present application.
  • Fig. 7 is a schematic flowchart of another example of a communication method provided by an embodiment of the present application.
  • Fig. 8 is a schematic flowchart of another example of a communication method provided by an embodiment of the present application.
  • Fig. 9 is a schematic flowchart of another example of a communication method provided by an embodiment of the present application.
  • Fig. 10 is a schematic flowchart of another example of a communication method provided by an embodiment of the present application.
  • Fig. 11 is a schematic block diagram of a device provided in this application.
  • Fig. 12 is a schematic block diagram of a device provided by the present application.
  • the technical solution of the embodiment of the present application can be applied to various communication systems, such as: Global System of Mobile communication (Global System of Mobile communication, GSM) system, code division multiple access (Code Division Multiple Access, CDMA) system, broadband code division multiple access (Wideband Code Division Multiple Access, WCDMA) system, General Packet Radio Service (GPRS), Long Term Evolution (LTE) system, LTE Frequency Division Duplex (FDD) system, LTE Time Division Duplex (TDD), Universal Mobile Telecommunication System (UMTS), Worldwide Interoperability for Microwave Access (WiMAX) communication system, 5th Generation (5G) system or new radio (New Radio, NR), and future evolution of communication systems, etc.
  • GSM Global System of Mobile communication
  • CDMA code division multiple access
  • WCDMA broadband code division multiple access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • UMTS Universal Mobile Telecommunication System
  • WiMAX Worldwide Interoperability
  • the terminal equipment in the embodiment of the present application may refer to user equipment, access terminal, subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent, or user device.
  • the terminal equipment can also be a cellular phone, a cordless phone, a Session Initiation Protocol (Session Initiation Protocol, SIP) phone, a wireless local loop (Wireless Local Loop, WLL) station, a personal digital processing (Personal Digital Assistant, PDA), a wireless communication Functional handheld devices, computing devices or other processing devices connected to wireless modems, vehicle-mounted devices, wearable devices, terminal devices in the future 5G network or future evolution of the public land mobile network (Public Land Mobile Network, PLMN)
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • the network device in the embodiment of the present application may be a device for communicating with a terminal device, and the network device may be a Global System of Mobile communication (GSM) system or a code division multiple access (Code Division Multiple Access, CDMA)
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • the base station (Base Transceiver Station, BTS) in the wideband code division multiple access (Wideband Code Division Multiple Access, WCDMA) system (NodeB, NB) can also be the evolved base station (Evolutionary Base Station) in the LTE system NodeB, eNB or eNodeB), it can also be a wireless controller in the cloud radio access network (Cloud Radio Access Network, CRAN) scenario, or the network device can be a relay station, access point, vehicle equipment, wearable device and future
  • CRAN Cloud Radio Access Network
  • the embodiment of the present application does not limit the network equipment in the 5G network or the network equipment in the future evolved PLMN network.
  • various aspects or features of the present application may be implemented as a method, apparatus, or article of manufacture using standard programming and/or engineering techniques.
  • article of manufacture covers a computer program accessible from any computer readable device, carrier or media.
  • computer-readable media may include, but are not limited to: magnetic storage devices (e.g., hard disks, floppy disks, or tapes, etc.), optical disks (e.g., compact discs (compact discs, CDs), digital versatile discs (digital versatile discs, DVDs), etc.), smart cards and flash memory devices (for example, erasable programmable read-only memory (EPROM), card, stick or key drive, etc.).
  • magnetic storage devices e.g., hard disks, floppy disks, or tapes, etc.
  • optical disks e.g., compact discs (compact discs, CDs), digital versatile discs (digital versatile discs, DVDs), etc.
  • smart cards and flash memory devices for example, erasable programmable read-only
  • various storage media described herein can represent one or more devices and/or other machine-readable media for storing information.
  • the term "machine-readable medium” may include, but is not limited to, wireless channels and various other media capable of storing, containing and/or carrying instructions and/or data.
  • Network equipment which has a device capable of providing random access functions for terminal devices or a chip that can be set on the device, including but not limited to: evolved Node B (evolved Node B, eNB), wireless network controller (radio network controller, RNC), node B (Node B, NB), base station controller (base station controller, BSC), base transceiver station (base transceiver station, BTS), home base station (for example, home evolved NodeB, or home Node B, HNB), baseband unit (baseband unit, BBU), access point (access point, AP) in wireless fidelity (wireless fidelity, WIFI) system, wireless relay node, wireless backhaul node, transmission point ( transmission and reception point, TRP or transmission point, TP), etc., can also be 5G, such as NR, gNB in the system, or transmission point (TRP or TP), one or a group of base stations in the 5G system (including Multiple antenna panels) Antenna panels, or, can also be a network no
  • terminal also known as user equipment (user equipment, UE), mobile station (mobile station, MS), mobile terminal (mobile terminal, MT), etc.
  • user equipment user equipment
  • UE user equipment
  • MS mobile station
  • mobile terminal mobile terminal
  • MT mobile terminal
  • the terminal device includes a handheld device with a wireless connection function, a vehicle-mounted device, and the like.
  • the terminal equipment can be: mobile phone (mobile phone), tablet computer, notebook computer, palmtop computer, mobile Internet device (mobile internet device, MID), wearable device, virtual reality (virtual reality, VR) equipment, augmented reality ( Augmented reality (AR) equipment, wireless terminals in industrial control, wireless terminals in self driving, wireless terminals in remote medical surgery, etc.
  • VR virtual reality
  • AR Augmented reality
  • multicast transmission technology or also can be called multimedia broadcast multicast service (multimedia broadcast multicast service, MBMS) technology, or can also be called multicast transmission mode, or can also be called multicast broadcast service (multicastandbroadcastservice, MBS) technology refers to the technology that a certain service sends data to multiple terminal devices at the same time through network devices.
  • a network device such as a base station
  • MBS multicast broadcast service
  • Sending by multicast means that when a certain device sends a transport block (TB) corresponding to a protocol data unit (PDU), it uses a group radio network temporary identifier (group radio) Network temporary identifier, G-RNTI) scrambles the PDU, or scrambles the downlink control information (DCI) corresponding to the PDU, and at the same time, one or more devices scramble the same PDU according to the same G-RNTI Receiving; or using multicast to transmit PDUs can refer to telling multiple devices the location of the same PDU in a semi-static manner, and multiple devices can receive the PDU at the same time; or using multicast to transmit PDUs can mean that the PDU is in the The transmission is carried out in the radio bearer established by multicast transmission or in the channel specially designed for multicast transmission.
  • group radio group radio network temporary identifier
  • DCI downlink control information
  • the standard supports one G-RNTI for multiple multicast services, and supports the same logical channel to carry both unicast and multicast services, or multiple multicast services or unicast services (also called logical channel reuse).
  • the data terminal equipment transmitted using G-RNTI can use the cell radio network temporary identifier (C-RNTI) or G-RNTI to retransmit the data ,
  • the radio bearer established for transmission receives or receives PDUs on the channel used for multicast transmission.
  • multicast is a specific manner of multicast, therefore, multicast may also be called multicast, broadcast, or MBS.
  • Sending by means of unicast transmission refers to: when a certain device sends the TB corresponding to the PDU, it uses the cell network temporary identifier (C-RNTI) to scramble the PDU, or scrambles the PDU
  • C-RNTI cell network temporary identifier
  • the DCI corresponding to the PDU is scrambled, and only one device receives the same PDU according to the C-RNTI at the same time; or the PDU is transmitted in unicast mode, which means that the PDU is transmitted in the radio bearer established for unicast transmission or in a radio bearer dedicated for unicast transmission transmission in the channel designed for broadcasting.
  • Using unicast transmission to receive means that when unicast transmission is used, the receiving device receives the PDU according to the C-RNTI; or the device receives the PDU through the radio bearer established for unicast transmission receive on the same channel as the broadcast transmission.
  • Sending and receiving by means of broadcast transmission means a certain device sends the TB corresponding to the PDU on the broadcast channel, and all receiving devices can receive the PDU on the broadcast channel.
  • the protocol layer structure of the control plane may include functions of the protocol layers such as the RRC layer, the PDCP layer, the RLC layer, the MAC layer, and the physical layer.
  • the user plane protocol layer structure may include functions of protocol layers such as PDCP layer, RLC layer, MAC layer, and physical layer. Among them, the physical layer is located at the lowest layer (layer 1), the MAC layer, RLC and PDCP belong to the second layer (layer 2), and the RRC belongs to the third layer (layer 3).
  • a service data adaptation protocol service data adaptation protocol, SDAP
  • SDAP service data adaptation protocol
  • the radio access network equipment can include a centralized unit (centralized unit, CU) and a distributed unit (distributed unit, DU), multiple DUs can be centrally controlled by one CU.
  • the CU and DU can be divided according to the protocol layer of the wireless network. For example, the functions of the PDCP layer and above protocol layers are set in the CU, the protocol layers below the PDCP, and the functions of the RLC layer and the MAC layer are set in the DU.
  • this protocol layer is only an example, and it can also be divided in other protocol layers, for example, in the RLC layer.
  • the function is set in the DU; or, it is divided in a certain protocol layer, for example, some functions of the RLC layer and the functions of the protocol layer above the RLC layer are set in the CU, and the remaining functions of the RLC layer and the functions of the protocol layer below the RLC layer are set Set in DU.
  • it can also be divided in other ways, for example, according to the time delay, the functions whose processing time needs to meet the time delay requirement are set in the DU, and the functions that do not need to meet the time delay requirement are set in the CU.
  • FIG. 1 is a schematic diagram of data transmission at each layer of a protocol stack.
  • the data first goes to the PDCP layer of the network device, and after being processed by the PDCP layer, it is transmitted to the RLC layer and the MAC layer. After being processed at the MAC layer, it is sent to the network device through the physical layer.
  • the protocol layers it passes through in sequence are the physical layer, the MAC layer, the RLC layer, and the PDCP layer.
  • the data in each radio bearer needs to be processed by various layers. Each layer has corresponding functional entities to perform corresponding functions.
  • the PDCP layer corresponds to the PDCP entity
  • the RLC layer corresponds to the RLC entity
  • the MAC layer corresponds to the MAC entity.
  • each radio bearer includes a PDCP entity and one or more RLC entities
  • each RLC entity corresponds to a logical channel.
  • One MAC entity corresponds to multiple logical channels, and the data in the logical channels can be multiplexed at the MAC layer, for example, multiplexed into the same data block at the MAC layer, and finally sent out through the physical layer.
  • the process of transmitting uplink data is also similar.
  • Fig. 2 is a schematic diagram of a communication system applicable to an embodiment of the present application.
  • the mobile communication system 100 may include at least one radio access network device 110 and at least one terminal device (such as terminal devices 120, 130, 140, 150, 160 shown in FIG. 2).
  • the terminal device is connected to the wireless access network device in a wireless manner, and the wireless access network device may be the above-mentioned network device.
  • At least one terminal device may send uplink data or information to the radio access network device, and the radio access network device 110 may also send downlink data or information to the at least one terminal device.
  • a plurality of terminal devices can also form a communication system, for example, terminal devices 140, 150, and 160 can form a communication system, and terminal device 140 can also send downlink data or information to terminal devices 150 and 160, and terminal device 150 and 160 may also send uplink data or information to terminal device 140 .
  • Uplink and downlink data and information related to URLLC services can be transmitted between the terminal device and the radio access network device.
  • FIG. 2 is only a schematic diagram, and the communication system may also include other network devices and/or terminal devices, which are not shown in FIG. 2 .
  • the embodiments of the present application do not limit the number of radio access network devices and terminals included in the mobile communication system.
  • the radio access network device 110 may be the aforementioned network device.
  • the communication between the network device and the terminal device follows a certain protocol layer structure.
  • the protocol layer architecture shown in FIG. 1 Network devices can include CUs and DUs. CUs and DUs can be set separately or centrally.
  • the embodiments of the present application are not limited here.
  • a terminal device when a terminal device receives a multicast service, there may be problems such as loss of data packets, failure to correctly map the data packets to corresponding MRBs, etc., thereby affecting user experience.
  • MRB multicast radio bearer
  • UM unacknowledged mode
  • AM acknowledged mode
  • the classification of the MRB may depend on the state of the RLC entity, and when the MRB includes an AM RLC entity, the MRB may be an AM MRB.
  • a terminal device configured with AM MRB is switched from the source node to the target node, it may affect the normal reception of data by the terminal device at the target node.
  • the terminal device when the terminal device is switched from the source node to the target node, because there are data packets in the receiving window of the PDCP entity that have not been delivered to the upper layer and the generation methods of the PDCP sequence numbers of the data packets of the target node and the source node are different , it will affect the normal reception of data by the terminal device at the target node. For another example, if the Hyper Frame Number (HFN) of the target node and the source node are different, the window parameter of the receiving window of the PDCP entity of the terminal device is not suitable for the target node, which may result in failure to receive data normally.
  • HFN Hyper Frame Number
  • the data packet of the target node is not within the receiving window of the PDCP entity of the current terminal device, or the data packet of the target node and the data packet of the source node have the same SN number but different content, resulting in data conflict between the two streams.
  • the PDCP resource of the terminal device is certain, and the PDCP resource can also be understood as the PDCP capability.
  • the access network device is configuring a data radio bearer (data radio bearer, DRB) for unicast for the terminal device. ), the PDCP resources occupied by the multicast service are not considered. If the PDCP resources occupied by the unicast service and the PDCP resources occupied by the multicast service exceed the total PDCP resources of the terminal device, some services may be discarded, resulting in failure Receive and reduce business performance.
  • the network device configures the PDCP resource of the DRB for the terminal device, it configures the maximum value that can be used.
  • the sum of the maximum available resources of all DRBs does not exceed the total PDCP capability of the terminal device.
  • the resources of PDCP will be actually used. It is possible that if a terminal device receives data of both multicast and unicast services at the same time, the resources configured by the access network device for the terminal device or reserved for the DRB by the terminal device may not be fully utilized. Perhaps due to limited capabilities, when receiving unicast services and multicast services at the same time, the terminal device may trigger deletion of DRB or no longer receive multicast services. Based on this situation, PDCP resources are not fully utilized, but are not allocated to services that require PDCP resources, resulting in the shutdown of some services or partial data flows.
  • the terminal device may not be able to map data to the correct radio bearer (radio bearer, RB).
  • radio bearer radio bearer
  • the terminal device can obtain the logical channel identifier after descrambling with C-RNTI. If there is a logical channel For multiplexing of multiple multicast services, the terminal needs to correspond to the G-RNTI according to the logical channel identifier to determine which MRB or which multicast service the retransmitted data packet belongs to.
  • the terminal device cannot determine the service corresponding to the retransmission data packet because the G-RNTIs corresponding to multiple services on this logical channel.
  • the first multicast service corresponds to the first G-RNTI
  • the first multicast service corresponds to the first logical channel
  • the first logical channel also corresponds to the second multicast service
  • the second multicast service corresponds to the second G-RNTI.
  • the transmission of the first data packet of the first multicast service fails and the first data packet is retransmitted using C-RNTI scrambling, and the terminal device receiving the first multicast service and the second multicast service at the same time receives the scrambled data packet using C-RNTI After the retransmission of the first data packet, since the initial transmission data and the retransmission data are in the same HARQ process, it can be analyzed that the logical channel corresponding to the first data packet is the first logical channel, but because the G-RNTI cannot be determined , the terminal device cannot determine whether the first data packet corresponds to the first multicast service or the second multicast service.
  • the first logical channel corresponds to the first C-RNTI and the first G-RNTI
  • the first multicast service corresponds to the first G-RNTI
  • the first unicast service corresponds to the C-RNTI.
  • a data packet transmission fails and the first data packet is retransmitted using C-RNTI scrambling.
  • the terminal device obtains the logical channel corresponding to the first data packet through C-RNTI as the first logical channel, but cannot determine the first G-RNTI , the terminal device cannot determine whether the first data packet corresponds to the first multicast service or the first unicast service.
  • this application proposes a communication method and communication equipment, which can ensure that the multicast service of the terminal equipment can receive data normally, avoid the loss of data packets, thereby improving user experience and reducing the waste of network resources .
  • FIG. 3 is a schematic flow chart of a communication method 300 according to an embodiment of this application. This method 300 can be applied in the scenario shown in FIG. 2, for example, using multicast transmission In the scenario of mode transmission.
  • the source node sends first indication information to the terminal device, where the first indication information indicates to adjust a receiving window of the first PDCP entity when rebuilding the first PDCP entity.
  • the terminal device receives the first indication information.
  • the terminal device includes a first MRB, where the first MRB includes a first PDCP entity and a first RLC entity, and the first RLC entity uses an acknowledged mode AM.
  • the terminal device and the source node may transmit the data of the first service through the first MRB.
  • the source node sends the first indication information to the terminal device, where the first indication information is used to instruct the terminal device to adjust the receiving window of the first PDCP entity when re-establishing the first PDCP entity.
  • the first MRB may also include multiple RLC entities.
  • the first MRB further includes a second RLC entity, and the second RLC entity adopts an unacknowledged mode UM.
  • the first indication information may be included in handover indication information (RRC Reconfiguration).
  • the method 300 further includes:
  • the source node sends switching request information to the target node, where the switching request information is used to request switching of the serving node of the terminal device;
  • the source node receives the handover request confirmation information, where the handover request confirmation information includes indication information for instructing to adjust the receiving window of the first PDCP entity.
  • the source node when the terminal device needs to switch the node, the source node will request to switch the base station through the handover request signaling, and the target node can send the handover request ACK signaling after receiving the handover request signaling, and the handover request ACK includes instructions to adjust the first Indication information of a receiving window of a PDCP entity.
  • the node in the embodiment of the present application can be a cell or an access network device, that is, after the terminal device configured with AM MRB is handed over from the source cell to the target cell, the terminal device can adjust the receiving window of the first PDCP entity , or when the terminal equipment configured with AM MRB is handed over from the source base station to the target base station, the terminal equipment can adjust the receiving window of the first PDCP entity.
  • This embodiment of the present application does not limit it.
  • terminal devices in the introduction of method 300 below when referring to terminal devices in the introduction of method 300 below, unless special statements are made, terminal devices can be understood as terminal devices configured with AM MRB.
  • the source node can transparently transmit the indication information of the target node, that is, the indication information is the first indication information, and the source node just forwards the indication information, or the source node can generate the first indication information according to the ACK feedback of the target node,
  • the first indication information is included in the first information (such as RRC Reconfiguration signaling) used to instruct the terminal equipment to switch nodes. This embodiment of the present application does not limit it.
  • the source node may instruct the terminal device to adjust the receiving window of the PDCP entity when re-establishing the PDCP entity
  • the target node may also instruct the terminal device to adjust the receiving window of the PDCP entity when re-establishing the PDCP entity. This application is not limited to this.
  • the source node sends a handover request signaling to the target node to request switching nodes, and the target node may send a handover request ACK after receiving the handover request signaling, and then the source node includes the first
  • the instruction information is used to instruct the terminal device to adjust the receiving window of the PDCP entity when re-establishing the PDCP entity.
  • the source node sends a handover request signaling to the target node to request switching nodes, and the target node may send a handover request ACK after receiving the handover request signaling, and the handover request ACK includes an indication for adjusting the receiving window of the PDCP entity
  • the source node After receiving the handover request ACK, the source node includes the indication information in the RRC Reconfiguration signaling sent to the terminal device (that is, it can be understood as the first indication information), which is used to instruct the terminal device to adjust the PDCP when rebuilding the PDCP entity The entity's receive window.
  • the source node sends a handover request signaling to the target node to request switching nodes, and the target node may send a handover request ACK after receiving the handover request signaling, and the handover request ACK includes an indication for adjusting the receiving window of the PDCP entity information
  • the source node receives the handover request ACK, then generates the first indication information according to the handover request ACK, and then includes the first indication information in the RRC Reconfiguration signaling sent to the terminal device, which is used to indicate that the terminal device is rebuilding the PDCP entity
  • the receiving window of the PDCP entity is adjusted from time to time.
  • the first indication information may directly instruct the terminal device to adjust the receiving window of the first PDCP entity when re-establishing the first PDCP entity.
  • the first indication information may include one or more bits, for example, 00 indicates that the receiving window of the PDCP entity is not adjusted when the PDCP entity is rebuilt, and 01 indicates that the receiving window of the PDCP entity is adjusted when the PDCP entity is rebuilt.
  • the terminal device adjusts the receiving window of the first PDCP entity, including:
  • the terminal device initializes window parameters of the receiving window of the first PDCP entity.
  • the window parameters of the receiving window of the first PDCP entity include at least one of TX_NEXT, RX_NEXT, and RX_DELIV; or
  • the terminal device adjusts the window parameter of the receiving window of the first PDCP entity according to the HFN of the target node and the source node.
  • the first indication information may also indirectly instruct the terminal device to adjust the receiving window of the first PDCP entity when re-establishing the first PDCP entity.
  • the first indication information includes second indication information, where the second indication information is used to indicate that the area session ID of the target node is inconsistent with the area session ID of the source node.
  • a multicast service can be associated with multiple multicast service areas, and each multicast service area includes an area session ID.
  • the terminal device receives When the second indication information is received, based on the content included in the second indication information, it may be learned that the receiving window of the PDCP entity needs to be adjusted when the PDCP entity is rebuilt.
  • the first indication information includes the second indication information, which can be understood as the first indication information is equivalent to the second indication information, and the second indication information is used to indicate the area session ID of the target node and the source
  • the inconsistency of the zone session IDs of the nodes may be understood as that the first indication information specifically indicates that the zone session ID of the target node is inconsistent with the zone session ID of the source node.
  • the fact that the first indication information includes the second indication information may be understood as that the second indication information is included in the first indication information.
  • the second indication information may directly indicate that the area session IDs of the source node and the target node are inconsistent.
  • the second indication information may include one or more bits, for example, 00 indicates that the area session IDs of the source node and the target node are inconsistent, and 01 indicates that the area session IDs of the source node and the target node are consistent.
  • the source node also reports its area session ID when sending the handover request information to the target node, and the target node can determine that the area session ID of the source node is different from the area session ID of the target node after receiving the handover request information , the target node may also send the second indication information when sending the handover request confirmation information to the source node.
  • the source node sends handover information to the target node. After receiving the handover request information, the target node also sends its area session ID when sending the handover request confirmation information to the source node. After receiving the handover request confirmation information, the source node It may be determined that the area session ID of the target node is different from its area session ID, then the source node may generate and send second indication information to the terminal device.
  • the second indication information may also indirectly indicate that the area session IDs of the source node and the target node are inconsistent.
  • the second indication information includes the area session IDs of the source node and/or the target node.
  • the source node sends handover information to the target node.
  • the target node After receiving the handover request information, the target node also sends its area session ID when sending the handover request confirmation information to the source node.
  • the source node After receiving the handover request confirmation information, the source node sends The terminal device sends second indication information, where the second indication information includes the area session ID of the source node and the area session ID of the target node.
  • the first indication information includes third indication information, where the third indication information is used to indicate that PDCP serial numbers (serial number, SN) of the target node and the source node are not synchronized.
  • the terminal device needs to adjust the receiving window of the PDCP entity when rebuilding the PDCP entity.
  • PDCP SN synchronization can be understood as that the source node and the target node have the same number of PDCP SN for the same data packet from the core network.
  • the third indication information may directly indicate that the PDCP SNs of the source node and the target node are not synchronized.
  • the third indication information may include 1 or more bits, for example, 00 indicates that the area session PDCP SNs of the source node and the target node are not synchronized, and 01 indicates that the PDCP SNs of the source node and the target node are synchronized.
  • the source node when the source node sends the handover request information to the target node, it also reports whether it is PDCP SN synchronized. After receiving the handover request information, the target node can determine whether the source node is PDCP SN synchronized. When the source node sends the handover request confirmation information, it also sends third indication information.
  • the source node sends handover information to the target node, after the target node receives the handover request information, it also sends whether the PDCP SN is synchronized when sending the handover request confirmation information to the source node, and the source node receives the handover request confirmation information Finally, it can be determined whether the target node is PDCP SN synchronous, and then the source node can generate and indicate third information to the terminal device.
  • the third indication information may also indirectly indicate that the PDCP SNs of the source node and the target node are not synchronized.
  • the third indication information may indicate the manner in which the source node and the target node synchronize the PDCP SN.
  • the manner in which the source node and the target node synchronize the PDCP SN are different, it may be considered that the PDCP SNs of the source node and the target node are not synchronized. This application does not limit the method of synchronizing the PDCP SN.
  • the method of synchronizing the PDCP SN may include: multiplexing the first synchronization method of the SN of the GPRS Tunneling Protocol for the user plane (GTP-U) header of the user plane; The second synchronization method that adds a new extension header to synchronize PDCP SN; the third synchronization method that reuses the quality of service flow identity (QFI) SN of the GTP-U Container extension header; based on the public next-generation node central unit user Plane (next generation nodeB centralized unit user plane, gNB-CU-UP) realizes the fourth synchronization mode of PDCP SN synchronization.
  • GTP-U GPRS Tunneling Protocol for the user plane
  • QFI quality of service flow identity
  • the source node when the source node sends the handover request information to the target node, it also reports its PDCP SN synchronization synchronization method. After receiving the handover request information, the target node can determine whether the source node is the same as its synchronization method. When the synchronization method If not at the same time, the target node may also send third indication information when sending handover request confirmation information to the source node.
  • the source node sends handover information to the target node, after the target node receives the handover request information, it also sends its PDCP SN synchronization synchronization mode when sending the handover request confirmation information to the source node, and the source node receives the handover request After confirming the information, it can be determined whether the target node is in the same synchronization mode as the target node. If the synchronization mode is different, the source node can generate and indicate third information to the terminal device.
  • the first indication information includes fourth indication information, where the fourth indication information is used to indicate the HFN of the target node.
  • the window parameter of the receiving window of the PDCP entity is based on the count value (count) of the PDU DATA, the count value includes HFN and PDCP SN, and the HFN is maintained by the receiving end and the transmitting end.
  • the fourth indication information indicates the HFN of the target node
  • the terminal device when the terminal device receives the fourth indication information, it can combine the current HFN of the terminal device and the HFN maintained by the source node and based on the content included in the fourth indication information, know whether to Adjust the receiving window of the PDCP entity when rebuilding the PDCP entity. If the HFN is consistent, no adjustment is required. Adjustment is required if the HFN is inconsistent.
  • the source node sends handover request information to the target node, and after the target node receives the handover request information, the target node may also send its HFN (that is, the fourth indication information) when sending the handover request confirmation information to the source node, The source node sends the HFN of the target node to the terminal device after receiving the handover request confirmation information, so that the terminal device can determine whether the HFNs of the source node and the target node are consistent after knowing the HFNs of the source node and the target node.
  • HFN that is, the fourth indication information
  • the terminal device adjusts the receiving window of the first PDCP entity according to the first indication information.
  • the first indication information may directly instruct the terminal device to adjust the receiving window of the first PDCP entity when reestablishing the first PDCP entity.
  • the terminal device may adjust the receiving window of the first PDCP entity when rebuilding the first PDCP entity. For example, the terminal device initializes the window parameter of the receiving window of the first PDCP entity.
  • the terminal device may initialize the values of RX_NEXT and RX_DELIV.
  • the first indication information includes second indication information, where the second indication information is used to indicate that the area session ID of the target node is inconsistent with the area session ID of the source node.
  • the terminal device may determine that the area session IDs of the target node and the source node are inconsistent, and then the terminal device may adjust the receiving window of the first PDCP entity when re-establishing the first PDCP entity. For example, the terminal device initializes the window parameter of the receiving window of the first PDCP entity
  • the first indication information includes third indication information, where the third indication information is used to indicate that the PDCP SN of the target node and the source node are not synchronized.
  • the terminal device can determine that the PDCP SN of the target node and the source node are not synchronized, and then the terminal device can adjust the receiving window of the first PDCP entity when rebuilding the first PDCP entity. For example, the terminal device initializes the window parameter of the receiving window of the first PDCP entity.
  • the terminal device configured with AM MRB when the terminal device configured with AM MRB switches nodes, it can initialize the receiving window of the PDCP entity corresponding to AM MRB, avoiding the data packets of the target node being cached at the source node because the window is not initialized at the target node.
  • the collision of the data packets thus avoiding the problem of terminal equipment discarding data packets, data packets out of sequence and so on.
  • the first indication information includes fourth indication information, where the fourth indication information is used to indicate the HFN of the target node.
  • the terminal device may adjust the window parameter of the receiving window of the first PDCP entity according to the difference between the HFN of the target node and the HFN of the source node. For example, if the HFN maintained by the source node and the terminal device is 5, and the HFN maintained by the target node is 10, then 5*2 [PDCP SN Size] is added to all the window parameters of the receiving window of the first PDCP entity.
  • the terminal device may release or reconfigure the AM MRB.
  • method 300 also includes:
  • the buffered data packets may be delivered in the ascending order of the count value.
  • the receiving window of the PDCP entity corresponding to AM MRB can be adjusted, so that after the terminal device switches to the target node, because the data of the source node and the target node are inconsistent.
  • the impact of the source node data packet on the terminal device receiving the target node data packet and the loss of the data packet received and cached by the terminal device from the source node are avoided, thereby improving user experience.
  • FIG. 4 is a schematic flowchart of another communication method 400 provided by the embodiment of the present application.
  • the method 400 may be applied in the scenario shown in FIG. 2 .
  • the target node supports PDCP SN synchronization, but the target node does not adopt the PDCP SN method when sending data.
  • the first terminal device and the source node transmit a data packet of the first service through the first AM MRB.
  • the source node sends handover request information to the target node.
  • the target node receives the handover request information sent by the source node.
  • the target node sends handover request confirmation information to the source node.
  • the source node receives the handover request confirmation information sent by the target node.
  • the target node determines that the transmission progress of the first AM MRB is slower than the progress of the target node sending the data packet of the first service to the second terminal device.
  • the target node may also send a data packet of the first service to a terminal device other than the first terminal device (for example, a second terminal device), the transmission progress of which may be faster than that of the source node, and the transmission progress of the first service of the source node It is equivalent to the transmission progress of the first AM MRB.
  • a terminal device other than the first terminal device for example, a second terminal device
  • the transmission progress of the first AM MRB is slower than the progress of the target node sending the data packet of the first service to the second terminal device.
  • the target node did not synchronize the PDCP SN when sending the first service data packet to the second terminal device, that is, the source node and the target node did not adopt the same PDCP SN when sending the same first service data packet.
  • Determining the transmission progress of the first AM MRB for the target node can be determined in the following ways:
  • the source node can indicate the transmission progress of the first AM MRB through SN Status Transfer signaling.
  • the source node may report the transmission progress of the first AM MRB in the handover request information.
  • Method 3 The target node can determine the transmission progress of the first AM MRB through the core network element.
  • the target node may determine the transmission progress of the source node when switching nodes through a terminal device other than the first terminal device.
  • the embodiment of the present application does not limit the method for the target node to determine the transmission progress of the first AM MRB.
  • the transmission progress of the first AM MRB is determined in a manner other than the above four methods to implement the method of the present application, it should be Fall into the scope of protection of this application.
  • the target node configures a second AM MRB to the first terminal device, the second AM MRB is used to transmit the data packet of the first service transmitted by the target node, and the second AM MRB is synchronized with the PDCP SN of the first AM MRB .
  • the target node when the target node determines that the transmission progress of the first AM MRB is slower than the progress of the target node sending the data packet of the first service to the second terminal device, it can configure the second AM MRB to the first terminal device for transmission The data packet of the first service that the target node has transmitted.
  • the second AM MRB is used to transmit all data packets of the first service that the target node has transmitted.
  • the first terminal device has received the first 500 data packets of the first service through the first AM MRB, and now the target node has sent the first 600 data packets of the first service to the second terminal device, then the target node's The progress of transmitting the first service is faster than the transmission progress of the first AM MRB, then the target node may newly configure an AM MRB to the first terminal device, and the AM MRB is used to transmit the first 600 data packets of the first service.
  • the second AM MRB is used to transmit all data packets of the first service that the source node has transmitted.
  • the first terminal device has received the first 500 data packets of the first service through the first AM MRB, and now the target node has sent the first 600 data packets of the first service to the second terminal device, then the target node's The progress of transmitting the first service is faster than the transmission progress of the first AM MRB, then the target node may newly configure an AM MRB to the first terminal device, and the AM MRB is used to transmit the first 500 data packets of the first service.
  • the second AM MRB is used to transmit data packets of the first service that have been transmitted by the target node but not transmitted by the source node.
  • the first terminal device has received the first 500 data packets of the first service through the first AM MRB, and now the target node has sent the first 600 data packets of the first service to the second terminal device, then the target node's If the progress of transmitting the first service is faster than the transmission progress of the first AM MRB, the target node may newly configure an AM MRB to the first terminal device, and the AM MRB is used to transmit the 501st to 600th data packets of the first service.
  • the second AM MRB is also used to continue to transmit data packets of the first service.
  • the first terminal device has received the first 500 data packets of the first service through the first AM MRB, and now the target node has sent the first 600 data packets of the first service to the second terminal device, then the target node's The progress of transmitting the first service is faster than the transmission progress of the first AM MRB, then the target node can configure a new AM MRB for the first terminal device, and the AM MRB is used to transmit the 501st to 600th data packets of the first service and Packets after the 600th packet.
  • the synchronization between the second AM MRB and the first AM MRB PDCP SN can be understood as the same PDCP SN of the same data packet carried by the first AM MRB and the second AM MRB.
  • the method 400 also includes:
  • the target node instructs the first terminal device to release or reconfigure the first AM MRB.
  • the transmission progress of the second AM MRB exceeds the transmission progress of the first AM MRB and reaches a second threshold
  • the second threshold is 50
  • the transmission progress of the first AM MRB is 500 data packets
  • the transmission progress of the second AM MRB reaches 550
  • the target node may instruct the first terminal device to release or reconfigure the first AM MRB.
  • the transmission progress of the first AM MRB is the first 500 data packets of the first service, then when the transmission of the second AM MRB reaches the 500th data packet, the target node can instruct the first terminal equipment to release or reconfigure the first One AM MRB.
  • method 400 also includes:
  • the target node caches the data packets of the first service that have been sent by the target node but not sent by the source node.
  • the method 400 also includes:
  • the source node determines that the transmission progress of the first AM MRB is faster than the progress of the target node sending the data packet of the first service to the second terminal device.
  • the transmission progress of the source node to determine the target node can be determined in the following ways:
  • Method 1 The target node reports its transmission progress through the handover request confirmation information.
  • Method 2 The source node determines the transmission progress of the target node through the core network element.
  • the embodiment of this application does not limit the way the source node determines the transmission progress of the target node.
  • the transmission progress of the target node is determined in a way other than the above two methods to implement the method of this application, it shall fall within the scope of this application. scope of protection.
  • the source node instructs the first terminal device to reconfigure the first AM MRB.
  • the source node may instruct the first terminal device to reconfigure the first AM MRB, and the first terminal device completes the reconfiguration of the first AM MRB Then you can perform the operation of switching nodes. For example, the first terminal device has received the first 500 data packets of the first service through the first AM MRB, and now the target node has sent the first 400 data packets of the first service to the second terminal device, then the target node's The transmission progress of the first service is slower than the transmission progress of the first AM MRB, then the source node may instruct the first terminal device to reconfigure the first AM MRB.
  • S407 and S408 may be determined and instructed by the target node.
  • the target node may instruct the first terminal device to reconfigure the first AM MRB.
  • the source node and the target node can select different transmission schemes according to the transmission progress of the first AM MRB and the transmission progress of the target node, so as to avoid reduced packet loss, improving user experience.
  • FIG. 5 is a schematic flowchart of a communication method 500 according to an embodiment of this application. This method 500 can be applied in the scenario shown in FIG. 2. For example, a terminal device simultaneously In the scenario of receiving unicast services and multicast services.
  • the first access network device receives third information sent by the terminal device, where the third information is used to indicate the resource used by the terminal device to receive the multicast service or the capability to support receiving the multicast service.
  • the terminal device sends the third information to the first access network device.
  • the ability to support receiving multicast services can be understood as the ability of a terminal device to receive multicast services alone, and the ability of a terminal device to support receiving multicast services when receiving unicast services and multicast services simultaneously.
  • the first access network device may receive the third information sent by the terminal device, so that the first access network device may configure a data radio bearer for the unicast service for the terminal device according to the third information.
  • the third information includes the number of robust header compression context (ROHC-Context) and/or the number of Ethernet header compression context (Ethernet-Context) and/or MRB or logical channel (logical channel, LCH) used for receiving multicast services quantity.
  • ROHC-Context robust header compression context
  • Ethernet-Context Ethernet header compression context
  • MRB logical channel
  • LCH logical channel
  • the resource used by the terminal device to receive the multicast service can be understood as the resource used by the terminal device to receive the multicast service.
  • the resource used by the terminal device to receive the multicast service can be understood as the resource occupied by the terminal device when it wishes to receive the multicast service;
  • the resource used by the terminal device to receive the multicast service may be understood as the resource planned by the terminal device to support the reception of the multicast service.
  • the terminal device can send the third information in the following ways:
  • the third information may be included in the MBS interest indicator signaling.
  • the terminal device may send the third information independently.
  • the third information may be included in the UE assistance information signaling.
  • the third information may be included in the UECapabilityInformation signaling.
  • the embodiment of the present application does not limit the resource used by the terminal device to send and receive the multicast service or the way to support the ability to receive the multicast service. Fall into the scope of protection of this application.
  • the first access network device configures a data radio bearer (data radio bearer, DRB) for the terminal device according to the third information, where the DRB is used to bear a unicast service.
  • DRB data radio bearer
  • the first access network device after the first access network device receives the third information, it can determine the terminal device's ability to use multicast service resources or support the ability to receive multicast service according to the third information, so that the terminal device can use the multicast service resources according to Or the ability to receive multicast services is combined with the capability of the terminal equipment to configure the DRB for carrying unicast services for the terminal equipment.
  • the network device may configure the maximum number of Rohc-Context and/or EHC-Context and/or LCH available for each DRB for the terminal device.
  • the third information indicates that the LCH used by the terminal device to receive the multicast service is 15. Since the total number of LCHs is 32, the first access network device can determine that the number of LCHs used for the DRB of the unicast service is 17.
  • the third information indicates that the maximum number of ROHC-Contexts when the terminal device supports receiving multicast services is 50, and the maximum number of ROHC-Contexts reported by the terminal device is 100, then the first access network device may determine that the unicast The number of ROHC-Contexts of the service DRB is 50.
  • the method 500 before the terminal device sends the third information, the method 500 further includes:
  • the second access network device sends data of the multicast service to the terminal device.
  • the terminal device receives the data of the multicast service sent by the second access network device to the terminal device, so as to determine the resources currently used for receiving the multicast service.
  • the first access network device may be a unicast access network device; (2) the second access network device may be a multicast access network device or a broadcast access network device network equipment.
  • the following takes the first access network device as a unicast access network device and the second access network device as a multicast access network device as an example , and the third information is sent by means 1 or 2. Referring to the specific example method shown in FIG. 6 , S501-S503 in method 500 will be described in detail.
  • the unicast access network device receives third information sent by the terminal device, where the third information is used to indicate resources used by the terminal device to receive the multicast service.
  • the terminal device sends the third information to the unicast access network device.
  • the unicast access network device may receive the third information sent by the terminal device, so that the unicast access network device may configure the DRB for the unicast service for the terminal device according to the third information.
  • the third information includes the number of ROHC-Context used to receive the multicast service and/or the number of Ethernet packet header compression context (Ethernet-Context) and/or the number of MRB or LCH (logical channel, LCH).
  • Ethernet-Context Ethernet packet header compression context
  • MRB or LCH logical channel, LCH
  • the resource used by the terminal device to receive the multicast service can be understood as the resource used by the terminal device to receive the multicast service;
  • the resource used by the terminal device to receive the multicast service can be understood as the resource occupied by the terminal device when it wishes to receive the multicast service;
  • the resource used by the terminal device to receive the multicast service may be understood as the resource planned by the terminal device to support the reception of the multicast service.
  • the third information includes the number of ROHC-Context used to receive the multicast service, which can be understood as the number of ROHC-Context used by the terminal device to receive the multicast service; or
  • the resource used by the terminal device to receive the multicast service can be understood as the number of ROHC-Context occupied by the terminal device when it wants to receive the multicast service; or
  • the resource used by the terminal device to receive the multicast service can be understood as the number of ROHC-Contexts that the terminal device supports to receive the multicast service plan.
  • the third information includes the number of Ethernet-Contexts used to receive the multicast service and/or the number of MRBs or LCHs, reference may be made to the above, and details are not repeated here for brevity.
  • the unicast access network device configures a DRB for the terminal device according to the third information, where the DRB is used to bear the unicast service.
  • the unicast access network device can determine the resource used by the terminal device for the multicast service according to the third information, so that the unicast access network device can determine the resource used for the unicast service according to the capability of the terminal device.
  • the capability of the terminal device can be understood as the capability of the terminal device to receive multicast services and unicast services. For example, the number of ROHC-Contexts that the terminal device can use to receive unicast services and multicast services is 100.
  • the multicast access network device sends data of the multicast service to the terminal device.
  • the unicast access network device can determine the capability of the terminal device in the following ways.
  • Method 1 The terminal device reports its capability to the unicast access network device.
  • Method 2 The unicast access network device determines the capability of the terminal device through the core network element or other access network devices.
  • the method 600 further includes:
  • the unicast access network device sends capability query information to the terminal device.
  • the terminal device receives the capability query information sent by the unicast access network device.
  • the terminal device sends capability information to the unicast access network device.
  • the unicast access network device receives the capability information sent by the terminal device.
  • the capability information includes the capability of the terminal device to receive multicast services and unicast services.
  • the unicast access network device requests the capability of the terminal device to receive unicast services and multicast services through UECapabilityEnquiry signaling, and the terminal device reports to the unicast access network device that it supports unicast services and multicast services through UECapabilityInformation signaling business capability.
  • the terminal device reports the resource information for the multicast service to the unicast access network device, so that the first access network device can configure the resource information for the terminal device according to the resource of the multicast service and the capability of the terminal device.
  • the DRB used for the unicast service ensures that the PDCP capability of the terminal device will not be exceeded.
  • the above-mentioned method 600 is introduced by sending the third information in the first to the second ways.
  • the following will send the third information in the fourth way and describe S501-S502 in the method 500 in detail with reference to FIG. 7 .
  • the unicast access network device sends capability query information to the terminal device.
  • the terminal device receives the capability query information sent by the unicast access network device.
  • the capability query information is used to request the capability of the terminal device to support multicast services.
  • the terminal device sends capability information to the unicast access network device, where the capability information includes third information.
  • the unicast access network device receives the capability information sent by the terminal device.
  • the unicast access network device configures a DRB for the terminal device according to the third information, where the DRB is used to bear the unicast service.
  • the capability query information sent by the unicast access network device is also used to request the capability of the terminal device to support unicast services, and correspondingly, the capability information sent by the terminal device indicates the capability of the terminal device to support unicast , so that the unicast access network device can configure the DRB for the terminal device to bear the unicast service according to the capability of the terminal device to support the multicast service. For example, if the number of ROHC-Contexts reported by the terminal device to support multicast services is 25, and the number of ROHC-Contexts reported to support unicast services is 75, then the unicast access network device configures The number of ROHC-Contexts used for unicast services cannot exceed 75.
  • the terminal device can report the capability of supporting multicast service and unicast service respectively in the capability information. and the total capacity to receive traffic for the terminal equipment. For example, if the number of ROHC-Contexts supported by a terminal device for multicast services is 25, and the number of ROHC-Contexts used for unicast services is 75, the terminal device is used to receive ROHC-Contexts for unicast and multicast services The quantity is 100.
  • the capability query information sent by the unicast access network device is also used to request the total capability of the terminal device to support unicast services and multicast services.
  • the capability information sent by the terminal device indicates The total capability of the terminal device to support unicast services and multicast services, so that the unicast access network device can configure the terminal device to carry unicast services according to the difference between the total capability of the terminal device and the capability of the terminal device to support multicast services The DRB.
  • the unicast access network device configures the unicast The number of ROHC-Contexts used in business cannot exceed 75.
  • manners 1 to 4 are not limited to implementation alone, and manners 1 to 4 can be combined in any combination.
  • the terminal device may send the third information through the first method and the second method.
  • the terminal device reports the ability to support multicast services to the unicast access network device, so that the first access network device can configure the terminal device for unicast services according to the terminal device's ability to support multicast services
  • the DRB ensures that the PDCP capability of the terminal device will not be exceeded.
  • the foregoing methods 500-700 take the terminal device receiving services from unicast access network devices and multicast access network devices as an example, but this embodiment of the application is not limited thereto, and the terminal device may also receive an access network device For the unicast and multicast services of network access devices, the first access network sends unicast services, and the second access network sends multicast services.
  • the first access network and the second access network belong to the same access network.
  • a network device is taken as an example and a schematic flowchart of another example of a communication method provided by the present application is introduced with reference to FIG. 8 . It may be understood that the first access network and the second access network belong to the same access network device, which means that the first access network and the second access network are served by the same access network device.
  • the access network device receives third information sent by the terminal device, where the third information is used to indicate the resource used by the terminal device to receive the multicast service or the capability to support receiving the multicast service.
  • the access network device configures a DRB for the terminal device according to the third information, where the DRB is used to bear a unicast service.
  • the terminal device reports the ability to support multicast services or the resources used by receiving multicast services to the access network device, so that the access network device can
  • the resource used is to configure the DRB for the unicast service for the terminal equipment, which ensures that the PDCP capability of the terminal equipment will not be exceeded.
  • the method 800 before the terminal device sends the third information, the method 800 further includes:
  • the access network device sends data of the multicast service to the terminal device.
  • the foregoing methods 500-800 take the terminal device reporting the resources used to receive multicast services or the ability to support the use of multicast services as an example, and another communication method provided by this application will be introduced below.
  • the access network device receives multicast service indication information sent by the terminal device, where the multicast service indication information is used to instruct the terminal device to receive the multicast service.
  • the terminal device sends multicast service indication information to the access network device.
  • the multicast service indication information is included in the MBS interest indicator signaling.
  • the terminal device may send multicast service indication information independently.
  • the access network device configures a PDCP resource threshold for the terminal device.
  • the access network device may configure a threshold of PDCP resources of the terminal device for the terminal device.
  • the terminal device sends indication information, where the indication information is used to indicate reconfiguration of PDCP resources.
  • the terminal device may send indication information to the access network device to instruct reconfiguration of PDCP resources. For example, taking the PDCP resource of the terminal device as the number of ROHC-Contexts as an example, the total number of ROHC-Contexts of the terminal device is 100, and the threshold is 90 or 90%.
  • indication information may be sent to the access network device.
  • indication information may be sent to the access network device.
  • the access network device sends reconfiguration information to the terminal device, where the reconfiguration information instructs the terminal device to reconfigure PDCP resources.
  • the access network device determines that the PDCP resources used by the terminal device reach a threshold, and then may instruct the terminal device to reconfigure PDCP resources. For example, taking the PDCP resource of the terminal device as the number of ROHC-Contexts as an example, the total number of ROHC-Contexts of the terminal device is 100, and the threshold is 70.
  • the terminal device includes a first DRB and a second DRB. The number of ROHC-Contexts that can be used by the first DRB is 50, and the number of ROHC-Contexts that can be used by the second DRB is 50.
  • the first DRB is used to carry the first service.
  • the ROHC used - The number of Contexts is 50
  • the second DRB is used to bear the second service
  • the number of ROHC-Contexts used is 20. Since the ROHC-Context used by the first DRB and the second DRB reaches the threshold, the terminal device sends indication information indicating the resource usage of the first DRB and the second DRB (for example, the ROHC-Context used by the first DRB is 50, the ROHC-Context used by the second DRB is 20), after the access network device receives the indication information, it can instruct the terminal device to reconfigure the PDCP resources, so that the resource of the second DRB capable of ROHC-Context becomes 20, and the remaining ROHC-Context can be used to receive multicast and/or unicast services.
  • the access network device may be a unicast access network device.
  • the access network device can dynamically adjust the PDCP resource when the PDCP resource used by the terminal device exceeds the threshold by setting the threshold of the PDCP resource, thereby avoiding conflicts among multiple services.
  • methods 500 to 800 take the terminal device sending to the access network device the resources used by the terminal device to receive multicast services or the ability to support receiving multicast services as an example, but this application is not limited thereto.
  • a communication method is also provided, and the terminal device can also send the resources used by the terminal device to receive unicast services or the ability to support receiving unicast services to the access network device, so that the access network device configures MRB to bear multicast to the terminal device business.
  • the communication method can be applied to the scenario shown in Figure 2, and the method includes:
  • the first access network device receives fourth information sent by the terminal device, where the fourth information is used to indicate resources used by the terminal device to receive unicast services or capabilities to support receiving unicast services.
  • the terminal device sends fourth information to the first access network device.
  • the ability to support receiving unicast services can be understood as the ability of a terminal device to receive unicast services alone, and the ability of a terminal device to support receiving unicast services when receiving unicast services and multicast services simultaneously.
  • the first access network device may receive the fourth information sent by the terminal device, so that the first access network device may configure the MRB for the multicast service for the terminal device according to the fourth information.
  • the manner in which the first access network device receives the fourth information is similar to the manner in which the third information is received, and for the sake of brevity, details are not repeated here.
  • the first access network device configures an MRB for the terminal device according to the fourth information, where the MRB is used to bear a multicast service.
  • configuring the MRB for the terminal device by the first access network according to the fourth information is similar to configuring the DRB for the terminal device by the first access network according to the third information. For the sake of brevity, details are not repeated here.
  • the fourth information indicates that the maximum number of ROHC-Contexts when the terminal device supports receiving unicast services is 50, and the maximum number of ROHC-Contexts reported by the terminal device is 100, then the first access network device can determine the multicast service The number of ROHC-Context of the MRB is 50.
  • the terminal device reports resource information for unicast services to the access network device, so that the first access network device can configure the terminal device for the The MRB of the multicast service ensures that the PDCP capability of the terminal device will not be exceeded.
  • the above-mentioned terminal device reports the resources used by the terminal device to receive unicast services or the ability to support receiving unicast services, so that the technical solution for the access network device to configure MRB to carry multicast services to the terminal device is similar to the method 500-800, detailed technical details can refer to method 500-800.
  • the terminal device may not be able to map data to the correct RB. For example, when a terminal device receives a data packet scrambled with G-RNTI during initial transmission using C-RNTI scrambled and retransmitted, the terminal device can obtain the LCH identifier after descrambling with C-RNTI. If the multicast service is multiplexed, the terminal needs to correspond to the G-RNTI according to the LCH identifier to determine which MRB or which multicast service the retransmitted data packet belongs to.
  • the G-RNTI corresponding to multiple services on the LCH cannot determine the service corresponding to the retransmission data packet.
  • the terminal device can obtain the LCH identifier after descrambling with C-RNTI. If the LCH has a C-RNTI RNTI and G-RNTI are multiplexed, and the terminal needs to correspond to the G-RNTI according to the LCH identifier to determine which MRB or DRB the retransmitted data packet belongs to.
  • the terminal device cannot The RB corresponding to the data packet is determined by means of the LCH identifier, but the service corresponding to the data packet cannot be determined.
  • the first multicast service corresponds to the first G-RNTI
  • the first multicast service corresponds to the first LCH
  • the first LCH also corresponds to the second multicast service
  • the second multicast service corresponds to the second G-RNTI.
  • the transmission of the first data packet of the multicast service fails and the first data packet is retransmitted using C-RNTI scrambling.
  • the terminal device After receiving the first data packet retransmitted using C-RNTI scrambling, the terminal device can parse out the first data packet
  • the LCH corresponding to the packet is the first LCH, but since the G-RNTI cannot be determined, the terminal device cannot determine whether the first data packet corresponds to the first multicast service or the second multicast service.
  • the first LCH corresponds to the first C-RNTI and the first G-RNTI
  • the first multicast service corresponds to the first G-RNTI
  • the first unicast service corresponds to the C-RNTI.
  • the data packet transmission fails and the first data packet is retransmitted using C-RNTI scrambling.
  • the terminal device obtains through the C-RNTI that the LCH corresponding to the first data packet is the first LCH, but because the first G-RNTI cannot be determined, the terminal device The device cannot determine whether the first data packet corresponds to the first multicast service or the first unicast service.
  • FIG. 9 is a schematic flowchart of a communication method 900 according to an embodiment of the present application.
  • the method 900 can be applied in the scenario shown in FIG. 2 .
  • the third access network device uses the first G-RNTI to send a first data packet to the terminal device, where the first data packet corresponds to the first LCH.
  • the terminal device receives the first data packet sent by the third access network device by using the first G-RNTI.
  • Sending the first data packet by the third access network device using the first G-RNTI may be understood as sending the first data packet after the third access network device scrambles the first data packet using the first G-RNTI.
  • the third access network device retransmits the first data packet by using the C-RNTI.
  • the terminal device receives the first data packet retransmitted by the third access network device using the C-RNTI.
  • the retransmission of the first data packet by the third access network device using the C-RNTI may be understood as that the third access network device uses the C-RNTI to scramble and retransmit the first data packet.
  • the third access network device retransmits the first data packet by using the first G-RNTI.
  • the first preset condition is that the third access network device receives NACK feedback of the first data packet, or the first LCH does not multiplex multiple RNTIs.
  • the lack of multiplexing of multiple RNTIs in the first LCH includes: the multiplexing of multiple G-RNTIs does not exist in the first LCH, or the multiplexing of one C-RNTI and at least one G-RNTI does not exist in the first LCH.
  • the first preset condition is that the first LCH does not multiplex multiple G-RNTIs.
  • the first preset condition may be that the third access network device receives NACK feedback of the first data packet.
  • the third access network device receives the NACK feedback of the first data packet, it indicates that the terminal device has received the first data packet sent using the first G-RNTI in a HARQ process but has not successfully decoded it, then the terminal device has determined
  • the G-RNTI corresponding to the first data packet is the first G-RNTI or the specific service corresponding to the first data packet, and the third access network device may use the C-RNTI to retransmit the first data packet.
  • the first multicast service corresponds to the first G-RNTI
  • the first multicast service corresponds to the first LCH
  • the first LCH also corresponds to the second multicast service
  • the second multicast service corresponds to the second G-RNTI.
  • -RNTI when the terminal device receives the first data packet of the first multicast service sent by the third access network device using the first G-RNTI but fails to decode successfully, it sends NACK to the third access network device, but the terminal The device has determined that the first data packet corresponds to the first G-RNTI. After receiving the NACK, the third access network device may use the C-RNTI to retransmit the first data packet.
  • the terminal device When the terminal device receives the first data packet retransmitted using the C-RNTI, it decodes the retransmitted first data packet to obtain the LCH identifier, and then determines that the service corresponding to the first data packet is the first G-RNTI according to the LCH identifier and the first G-RNTI. 1. Multicast service.
  • the first preset condition may also be that there is no multiplexing of one C-RNTI and at least one G-RNTI on the first LCH.
  • the third access network The device may use the C-RNTI to retransmit the first data packet to the terminal device.
  • the terminal device After receiving the first data packet retransmitted using C-RNTI, the terminal device uses C-RNTI to descramble and obtain the LCH identifier of the first LCH, and then submits the first data packet to the corresponding higher layer, such as RLC layer or PDCP layer.
  • the first multicast service corresponds to the first G-RNTI
  • the first multicast service corresponds to the first LCH.
  • the terminal device does not receive the For the first data packet of the first multicast service, and there is no multiplexing of G-RNTI and C-RNTI on the first LCH.
  • the third access network device can use the C-RNTI to retransmit the first data packet to the terminal device, and when the terminal device receives the first data packet retransmitted using the C-RNTI, it decodes the retransmitted first data packet to obtain the LCH identification, and then determine according to the LCH identification that the service corresponding to the first data packet is the first multicast service.
  • the first preset condition may also be that there is no multiplexing of multiple G-RNTIs on the first LCH.
  • the third access network device can use the C-RNTI to repeat the Pass the first data packet.
  • the terminal device uses C-RNTI to descramble and obtain the LCH identifier of the first LCH, and then submits the first data packet to the corresponding higher layer, such as RLC layer or PDCP layer.
  • the first multicast service corresponds to the first G-RNTI
  • the first multicast service corresponds to the first LCH.
  • the terminal device does not receive the For the first data packet of the first multicast service, and there is no G-RNTI multiplexing on the first LCH.
  • the third access network device can use the C-RNTI to retransmit the first data packet to the terminal device, and when the terminal device receives the first data packet retransmitted using the C-RNTI, it decodes the retransmitted first data packet to obtain the LCH identification, and then determine according to the LCH identification that the service corresponding to the first data packet is the first multicast service.
  • the third access network device when the third access network device receives a NACK sent by the terminal device for the data packet sent by the third access network device using G-RNTI, or the third access network device determines that the terminal device does not exist
  • the third access network device will use the C-RNTI scramble to retransmit the data packet scrambled with the R-RNTI during the initial transmission, which prevents the terminal device from being unable to distinguish the HARQ retransmitted data only based on the LCH identifier Which RB the packet belongs to, or which service it belongs to, effectively avoids conflicts between the two and ensures communication quality.
  • the second preset condition is that the third access network device does not receive NACK feedback of the first data packet or the timer expires, and multiple RNTIs are multiplexed on the first LCH.
  • the second preset condition is that the third access network device does not receive NACK feedback of the first data packet or the timer expires.
  • the second preset condition is that the third access network device does not receive NACK feedback of the first data packet or the timer expires.
  • the third access network device does not receive the NACK feedback of the first data packet or the timer expires, it indicates that the terminal device has not received the first data packet sent using the first G-RNTI within one HARQ process, if the third When the access network device uses C-RNTI to retransmit the first data packet, if the terminal device has LCH multiplexing RNTI, the terminal device may not be able to distinguish which service the data packet belongs to, so the third access network device still uses the first G-RNTI - RNTI retransmits the first data packet.
  • the first multicast service corresponds to the first G-RNTI
  • the first multicast service corresponds to the first LCH
  • the first LCH also corresponds to the second multicast service
  • the second multicast service corresponds to the second G-RNTI.
  • - RNTI when the terminal device does not receive the first data packet of the first multicast service sent by the third access network device using the first G-RNTI, the third access network device cannot use the C-RNTI to retransmit the first data packet, still using the first G-RNTI to retransmit the first data packet.
  • the second preset condition is that the third access network device does not receive the NACK feedback of the first data packet or the timer expires, and multiple G-RNTIs are multiplexed on the first LCH.
  • the third access network device does not receive the NACK feedback of the first data packet or the timer expires, and it is determined that multiple G-RNTIs are multiplexed on the first LCH, if the third access network device uses C-RNTI multiplexing When transmitting the first data packet, the terminal device will not be able to distinguish which service the data packet belongs to, so the third access network device still uses the first G-RNTI to retransmit the first data packet.
  • the first multicast service corresponds to the first G-RNTI
  • the first multicast service corresponds to the first LCH.
  • the terminal device does not receive the For the first data packet of the first multicast service, and the first LCH has G-RNTI multiplexing. Then the third access network device cannot use the C-RNTI to retransmit the first data packet, but still uses the first G-RNTI to retransmit the first data packet.
  • the second preset condition is that the third access network device does not receive NACK feedback of the first data packet or the timer expires, and there is C-RNTI and at least one G-RNTI multiplexed on the first LCH.
  • the third access network device does not receive the NACK feedback of the first data packet or the timer expires, and it is determined that there is C-RNTI and at least one G-RNTI multiplexed in the first LCH, if the third access network device uses When the C-RNTI retransmits the first data packet, the terminal device will not be able to distinguish which RB the data packet belongs to, so the third access network device still uses the first G-RNTI to retransmit the first data packet.
  • the first multicast service corresponds to the first G-RNTI
  • the first multicast service corresponds to the first LCH.
  • the terminal device does not receive the For the first data packet of the first multicast service
  • the first LCH has the multiplexing of the G-RNTI and the C-RNTI.
  • the third access network cannot use the C-RNTI to retransmit the first data packet, but still uses the first G-RNTI to retransmit the first data packet.
  • the third access The network equipment will not use C-RNTI retransmission, which prevents the terminal equipment from being unable to distinguish which RB or service the HARQ retransmitted data packet belongs to based on the LCH identifier, effectively avoiding the conflict between the two, and ensuring communication quality.
  • FIG. 10 is a schematic flowchart of a communication method 1000 according to an embodiment of the present application.
  • the method 1000 can be applied in the scenario shown in FIG. 2 .
  • the terminal device receives seventh indication information sent by the fourth access network device, where the seventh indication information indicates whether the fourth access network device uses C-RNTI scrambling to retransmit the data packet scrambled by G-RNTI during initial transmission , or the seventh indication information indicates whether the LCH of the terminal device corresponds to multiple RNTIs.
  • the fourth access network device sends seventh indication information to the terminal device.
  • the seventh indication information instructs the fourth access network device to use the C-RNTI scramble to retransmit the data packet scrambled with the G-RNTI during initial transmission
  • the LCH of the terminal device does not correspond to multiple RNTIs.
  • the fourth access network device uses C-RNTI scrambling to retransmit the data packet scrambled with G-RNTI during initial transmission
  • the LCH of the terminal device does not correspond to multiple RNTIs, that is, the terminal device does not have LCH reuse.
  • the fourth access network device is used to transmit the first multicast service
  • the first multicast service corresponds to the first LCH and the first G-RNTI
  • the first LCH also corresponds to the second multicast service
  • the second multicast The service corresponds to the second G-RNTI.
  • the fourth access network device may pass the seventh indication information before retransmitting the first data packet using the C-RNTI Instructing the terminal device to disable the multiplexing of the first LCH or indicating the manner of retransmitting the first data packet, so as to ensure that the terminal device can map the first data packet to the correct MRB.
  • the fourth access network device directly instructs the terminal device to disable the multiplexing of the first LCH.
  • the fourth access network device indicates that the data packet will be retransmitted using the C-RNTI, thereby indirectly instructing the terminal device to disable the multiplexing of the first LCH.
  • the LCH of the terminal device corresponds to multiple RNTIs.
  • the LCH of the terminal device may correspond to multiple RNTIs, that is, the terminal device may have LCH reuse.
  • the fourth access network device is used to transmit the first multicast service
  • the first multicast service corresponds to the first LCH and the first G-RNTI
  • the first LCH also corresponds to the second multicast service
  • the second multicast The service corresponds to the second G-RNTI.
  • the fourth access network device may also instruct the terminal when retransmitting the first data packet by using the first G-RNTI The device maintains the multiplexing of the first LCH.
  • the fourth access network device directly instructs the terminal device to keep the multiplexing of the first LCH.
  • the fourth access network device indicates that the data packet will be retransmitted using the first G-RNTI, thereby indirectly instructing the terminal device to keep the multiplexing of the first LCH.
  • the terminal device does not use the C-RNTI to receive the retransmitted data packet of the data packet scrambled with the G-RNTI during the initial transmission.
  • the terminal device when the fourth access network device indicates that the LCH of the terminal device can correspond to multiple G-RNTIs, that is, the fourth access network device indicates that the LCH of the terminal device is multiplexed, the terminal device does not use the C-RNTI to receive the initial transmission When using the G-RNTI scrambled data packet to retransmit the data packet.
  • the fourth access network device is used to transmit the first multicast service
  • the first multicast service corresponds to the first LCH and the first G-RNTI
  • the first LCH also corresponds to the second multicast service
  • the second multicast The service corresponds to the second G-RNTI.
  • the fourth access network device instructs the terminal device to multiplex the LCH, that is, to maintain the multiplexing of the first LCH, in order to avoid conflicts
  • the terminal device does not use the C-RNTI to receive the data packet scrambled with the first G-RNTI when it is initially transmitted retransmission packets.
  • the fourth access network device directly instructs the terminal device to keep the multiplexing of the first LCH.
  • the fourth access network device indicates that the data packet will be retransmitted using the first G-RNTI, thereby indirectly instructing the terminal device to keep the multiplexing of the first LCH.
  • the terminal device uses the C-RNTI to receive the retransmitted data packet of the data packet scrambled with the G-RNTI during the initial transmission.
  • the terminal device uses the C-RNTI to receive the initial transmission When using the G-RNTI scrambled data packet to retransmit the data packet.
  • the fourth access network device is used to transmit the first multicast service
  • the first multicast service corresponds to the first LCH and the first G-RNTI
  • the first LCH also corresponds to the second multicast service
  • the second multicast The service corresponds to the second G-RNTI.
  • the fourth access network device instructs the terminal device that the LCH does not correspond to multiple G-RNTIs
  • the multiplexing of the first LCH is disabled. Since the terminal device has disabled the multiplexing of the LCHs, the terminal device can use the C-RNTI to receive the first G-RNTI.
  • the fourth access network device directly instructs the terminal device to disable the multiplexing of the first LCH.
  • the fourth access network device indicates that the data packet will be retransmitted using the C-RNTI, thereby indirectly instructing the terminal device to disable the multiplexing of the first LCH.
  • method 1000 also includes:
  • the terminal device sends eighth indication information to the fourth access network device, where the eighth indication information is used to indicate whether the terminal device supports receiving the retransmission data packet of the data packet scrambled by using the G-RNTI when receiving the initial transmission by using the C-RNTI.
  • the terminal device can finally determine whether the LCH corresponds to multiple RNTIs or whether the C-RNTI is used to receive the retransmission of the data packet scrambled by the G-RNTI during the initial transmission
  • the data packet prevents the terminal equipment from being unable to distinguish which RB or which service the HARQ retransmitted data packet belongs to only based on the LCH identifier, effectively avoiding the conflict between the two, and ensuring the communication quality.
  • FIG. 11 and FIG. 12 are schematic block diagrams of a communication device provided by an embodiment of the present application. These apparatuses can realize the functions of the terminal device or any access network device in the above method embodiments, and therefore can also realize the beneficial effects of the above method embodiments.
  • the apparatus may be a terminal device or an access network device.
  • FIG. 11 is a schematic block diagram of a communication device provided by an embodiment of the present application.
  • the device 1100 includes a transceiver unit 1101 , and optionally, may also include a processing unit 1102 .
  • the transceiver unit 1101 is used to receive first instruction information
  • the first instruction information indicates to adjust the The receiving window of the first PDCP entity is described above.
  • the processing unit 1102 is configured to adjust the receiving window of the first PDCP entity according to the first indication information.
  • the processing unit 1102 is further configured to deliver the data packets buffered by the first PDCP entity when the reordering timer is turned on.
  • the transceiver unit 1101 is used to send the first indication information to the terminal equipment, and the first indication information indicates to rebuild the first packet data aggregation protocol PDCP entity adjust the receiving window of the first PDCP entity from time to time.
  • the transceiver unit 1101 is also configured to send handover request information to the target node.
  • the transceiving unit 1101 is also configured to receive handover request confirmation information sent by the target node.
  • the transceiver unit 1101 is used to receive handover request information.
  • the transceiver unit 1101 is further configured to send handover request confirmation information to the source node.
  • the transceiver unit 1101 is used to send handover request information to the target node, and is also used to receive handover request confirmation information from the target node.
  • the processing unit 1102 is configured to instruct the first terminal device to reconfigure the first AM MRB when it is determined that the progress of transmitting the first service of the target node is slower than the first AM MRB.
  • the transceiver unit 1101 is used to receive handover request information sent by the source node, and is also used to send handover request confirmation information to the source node.
  • the processing unit 1102 is configured to instruct the first terminal device to configure the second AM MRB to transmit the data packet of the first service transmitted by the target node when it is determined that the progress of transmitting the first service of the target node is faster than that of the first AM MRB.
  • the apparatus 1100 When the apparatus 1100 is used to realize the functions of the terminal device in the method embodiment shown in FIG. resources used by broadcast services or the ability to support multicast services.
  • the transceiver unit 1101 is used to receive the third information sent by the terminal device, and the third information is used to instruct the terminal device to receive Resources used by multicast services or capabilities to support multicast services.
  • the processing unit 1102 is configured to configure a DRB for the terminal device according to the third information, where the DRB is used to bear a unicast service.
  • the transceiving unit 1101 is used to send the first data packet sent using the first G-RNTI to the terminal device.
  • the processing unit 1102 is configured to use the C-RNTI to retransmit the first data packet when the first preset condition is met; and use the first G-RNTI to retransmit the first data packet when the second preset condition is met.
  • the transceiver unit 1101 is used to receive the first data packet sent by the third access network device and sent by using the first G-RNTI.
  • the apparatus 1100 When the apparatus 1100 is used to realize the function of the fourth access network device in the method embodiment shown in FIG. Whether the device uses the C-RNTI to schedule the retransmission data packets of the data packets scheduled by the G-RNTI, or the seventh indication information indicates whether the logical channel of the terminal device corresponds to multiple G-RNTIs.
  • the transceiver unit 1101 is used to receive the seventh indication information sent by the fourth access network device, the seventh indication information indicating Whether the network device uses the C-RNTI to schedule the retransmission data packet of the data packet scheduled by the G-RNTI, or the seventh indication information indicates whether the logical channel of the terminal device corresponds to multiple G-RNTIs.
  • the processing unit 1102 is configured to: when the seventh indication information indicates that the fourth access network device uses the C-RNTI to schedule the retransmission data packet of the data packet scheduled by the G-RNTI, the logical channel of the terminal device does not correspond to multiple G-RNTIs, or When the seventh indication indicates that the fourth access network device does not use the C-RNTI to schedule the retransmission data packets of the data packets scheduled by the G-RNTI, the logical channel of the terminal device corresponds to multiple G-RNTIs, or when the seventh indication information When indicating that the logical channel of the terminal device corresponds to multiple G-RNTIs, the terminal device does not use the C-RNTI to receive the retransmission data packet of the data packet scheduled by the G-RNTI, or when the seventh indication information indicates that the logical channel of the terminal device does not correspond to multiple G-RNTIs. When there are two G-RNTIs, the terminal device uses the C-RNTI to receive the retransmission data packets of the data packets scheduled by the G-
  • transceiver unit 1101 and the processing unit 1102 For a more detailed description of the transceiver unit 1101 and the processing unit 1102, reference may be made to the relevant descriptions in the method embodiment 300 to the method 900 above, and no further description is given here.
  • Fig. 12 shows a schematic block diagram of an apparatus 1200 applying the embodiment of the present application. Any of the access network devices and terminal devices involved in any of the foregoing methods 300 to 900 may be implemented by the apparatus shown in FIG. 12 .
  • the apparatus 1200 may be a physical device, or a component of the physical device (for example, an integrated circuit, a chip, etc.), or a functional module in the physical device.
  • the apparatus 1200 includes: one or more processors 1201 .
  • the processor 1201 may store execution instructions for executing the method of the embodiment of the present application.
  • the processor 1201 may call an interface to implement receiving and sending functions.
  • the interface may be a logical interface or a physical interface, which is not limited.
  • the interface may be a transceiver circuit, or an interface circuit.
  • the transceiver circuits or interface circuits for realizing the functions of receiving and sending can be separated or integrated together.
  • the above-mentioned transceiver circuit or interface circuit can be used for reading and writing code/data, or the above-mentioned transceiver circuit or interface circuit can be used for signal transmission or transfer.
  • the interface can be implemented through a transceiver.
  • the apparatus 121200 may further include a transceiver 1203 .
  • the transceiver 1203 may be called a transceiver unit, a transceiver, a transceiver circuit, or a transceiver, etc., and is used to implement a transceiver function.
  • the apparatus 1200 may further include a memory 1202 .
  • the embodiment of the present application does not specifically limit the specific deployment location of the memory 1202, and the memory may be integrated in the processor or independent of the processor.
  • the device 1200 does not include a memory, it is sufficient that the device 1200 has a processing function, and the memory can be deployed in other locations (eg, a cloud system).
  • the processor 1201, the memory 1202 and the transceiver 1203 communicate with each other through internal connection paths, and transmit control and/or data signals.
  • the device 1200 may also include other devices, such as an input device, an output device, a battery, and the like.
  • the memory 1202 may store execution instructions for executing the method in the embodiment of the present application.
  • the processor 1201 can execute the instructions stored in the memory 1202 in conjunction with other hardware (such as the transceiver 703 ) to complete the steps of the method shown below.
  • other hardware such as the transceiver 703
  • the method disclosed in the embodiment of the present application may be applied to the processor 1201 or implemented by the processor 1201 .
  • the processor 1201 may be an integrated circuit chip with signal processing capabilities.
  • each step of the method can be completed by an integrated logic circuit of hardware in a processor or an instruction in the form of software.
  • the above-mentioned processor can be a general-purpose processor, a digital signal processor (digital signal processor, DSP), an application specific integrated circuit (application specific integrated circuit, ASIC), an off-the-shelf programmable gate array (field programmable gate array, FPGA) or other available Program logic devices, discrete gate or transistor logic devices, discrete hardware components.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • a general-purpose processor may be a microprocessor, or the processor may be any conventional processor, or the like.
  • the steps of the method disclosed in connection with the embodiments of the present application may be directly implemented by a hardware decoding processor, or implemented by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in random access memory (random access memory, RAM), flash memory, read-only memory (read-only memory, ROM), programmable read-only memory or electrically erasable programmable memory, registers, etc. in the storage medium.
  • the storage medium is located in the memory, and the processor reads the instructions in the memory, and completes the steps of the above method in combination with its hardware.
  • memory 1202 can be either volatile memory or nonvolatile memory, or can include both volatile and nonvolatile memory.
  • the non-volatile memory can be read-only memory ROM, programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), electrically erasable programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • Volatile memory can be random access memory RAM, which acts as external cache memory.
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM double data rate synchronous dynamic random access memory
  • ESDRAM enhanced synchronous dynamic random access memory
  • SLDRAM direct memory bus random access memory
  • direct rambus RAM direct rambus RAM
  • the apparatus 1100 is presented in the form of functional modules.
  • the “module” here may refer to an application-specific integrated circuit ASIC, a circuit, a processor and memory executing one or more software or firmware programs, an integrated logic circuit, and/or other devices that can provide the above-mentioned functions.
  • the apparatus 1100 may take the form shown in FIG. 11 .
  • the processing unit 1102 may be implemented by the processor 1201 shown in FIG. 12 .
  • the computer device shown in FIG. 12 includes a memory 1202
  • the processing unit 1102 may be implemented by the processor 1201 and the memory 1202 .
  • the transceiver unit 1101 can be realized by the transceiver 1203 shown in FIG.
  • the transceiver 1203 includes a receiving function and a sending function.
  • the processor is implemented by executing computer programs stored in the memory.
  • the function and/or implementation process of the transceiver unit 1203 may also be implemented through pins or circuits.
  • the memory may be a storage unit in the chip, such as a register, a cache, etc., and the storage unit may also be a storage unit located outside the chip in the computer device, as shown in FIG. 12
  • the memory 1202 alternatively, may also be a storage unit deployed in other systems or devices, and is not in the computer device.
  • Computer-readable media may include, but are not limited to: magnetic storage devices (e.g., hard disks, floppy disks, or tapes, etc.), optical disks (e.g., compact discs (compact discs, CDs), digital versatile discs (digital versatile discs, DVDs), etc.), smart cards and flash memory devices (for example, erasable programmable read-only memory (EPROM), card, stick or key drive, etc.).
  • magnetic storage devices e.g., hard disks, floppy disks, or tapes, etc.
  • optical disks e.g., compact discs (compact discs, CDs), digital versatile discs (digital versatile discs, DVDs), etc.
  • smart cards and flash memory devices for example, erasable programmable read-only memory (EPROM), card, stick or key drive, etc.
  • various storage media described herein can represent one or more devices and/or other machine-readable media for storing information.
  • the term "machine-readable medium” may include, but is not limited to, wireless channels and various other media capable of storing, containing and/or carrying instructions and/or data.
  • the present application also provides a computer-readable medium on which a computer program is stored, and when the computer program is executed by a computer, the functions of any one of the above method embodiments are realized.
  • the present application also provides a computer program product, which implements the functions of any one of the above method embodiments when executed by a computer.
  • all or part of them may be implemented by software, hardware, firmware or any combination thereof.
  • When implemented using software it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions. When the computer instructions are loaded and executed on the computer, the processes or functions according to the embodiments of the present application will be generated in whole or in part.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be transmitted from a website, computer, server or data center Transmission to another website site, computer, server or data center by wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device such as a server or a data center integrated with one or more available media.
  • the available medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a high-density digital video disc (digital video disc, DVD)), or a semiconductor medium (for example, a solid state disk (solid state disk, SSD)) etc.
  • a magnetic medium for example, a floppy disk, a hard disk, a magnetic tape
  • an optical medium for example, a high-density digital video disc (digital video disc, DVD)
  • a semiconductor medium for example, a solid state disk (solid state disk, SSD)
  • references to "an embodiment” throughout this specification mean that a particular feature, structure, or characteristic related to the embodiment is included in at least one embodiment of the present application. Thus, the various embodiments throughout the specification are not necessarily referring to the same embodiment. Furthermore, the particular features, structures or characteristics may be combined in any suitable manner in one or more embodiments. It should be understood that, in various embodiments of the present application, the sequence numbers of the above-mentioned processes do not mean the order of execution, and the execution order of the processes should be determined by their functions and internal logic, and should not be used in the embodiments of the present application. The implementation process constitutes any limitation.
  • system and “network” are often used herein interchangeably.
  • the term “and/or” in this article is just an association relationship describing associated objects, which means that there can be three relationships, for example, A and/or B can mean: A exists alone, A and B exist simultaneously, and there exists alone B these three situations.
  • the term "at least one of” or “at least one of” means all or any combination of the listed items, for example, “at least one of A, B and C", It can be expressed: A exists alone, B exists alone, C exists alone, A and B exist simultaneously, B and C exist simultaneously, and A, B, and C exist simultaneously.
  • B corresponding to A means that B is associated with A, and B can be determined according to A.
  • determining B according to A does not mean determining B only according to A, and B may also be determined according to A and/or other information.
  • the disclosed systems, devices and methods may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the functions described above are realized in the form of software function units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the prior art or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disc and other media that can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种通信方法以及装置,该方法应用于终端设备,该终端设备包括第一多播无线承载MRB,该第一MRB包括第一分组数据聚合协议PDCP实体和第一RLC实体,该第一RLC实体使用确认模式AM,该方法包括:该终端设备接收源节点发送的第一指示信息,该第一指示信息指示重建第一PDCP实体时调整该第一PDCP实体的接收窗口;该终端设备根据该第一指示信息调整该第一PDCP实体的接收窗口。通过本申请,配置了AM MRB的终端设备在切换节点时可以正常接收多播业务的数据,避免丢失数据包,提高多播业务的连续性以及多播传播方式的可靠性,提高了用户体验。

Description

通信方法以及装置
本申请要求于2022年1月10日提交中国专利局、申请号为202210036022.8、申请名称为“通信方法以及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,并且更具体地,涉及一种通信方法以及装置。
背景技术
多播传输技术,是指网络设备同时向多个终端设备发送相同数据的技术,即点对多点传输。在采用多播技术传输时,针对同一数据,网络设备(例如基站)发送的过程中有多个终端设备同时进行接收。目前,网络设备和终端设备之间利用多播传输方式传输数据时,由于可能会发生传输失败,从而导致数据传输的可靠性、业务连续性差,数据错乱,降低了通信质量,业务体验。
发明内容
本申请提供了通信方法以及装置,可以提高多播业务的适应性以及多播传播方式的可靠性,提高通信效率。
第一方面,提供了一种通信方法,该方法应用于终端设备,该终端设备包括第一多播无线承载MRB,该第一MRB包括第一分组数据聚合协议PDCP实体和第一无线链路控制RLC实体,该第一RLC实体采用确认模式AM,该方法包括:
该终端设备接收源节点发送的第一指示信息,该第一指示信息指示重建第一PDCP实体时调整该第一PDCP实体的接收窗口;
该终端设备根据该第一指示信息调整该第一PDCP实体的接收窗口。
示例性的,源节点可以认为是源小区,也可以认为是源接入网设备。
本申请实施例中,当配置了AM MRB的终端设备切换节点时,可以调整AM MRB对应的PDCP实体的接收窗口,从而使得终端设备当切换至目标节点后,可以正常接收多播业务的数据,避免丢失数据包,提高多播业务的适应性以及多播传播方式的可靠性,提高通信效率和用户体验。
结合第一方面,在第一方面的某些实现方式中,该第一指示信息包括第二指示信息,该第二指示信息指示目标节点的区域会话ID与该源节点的区域会话ID不一致;
该终端设备根据该第一指示信息调整该第一PDCP实体的接收窗口,包括:
该终端设备初始化该第一PDCP实体的接收窗口的窗口参数。
结合第一方面,在第一方面的某些实现方式中,该第一指示信息包括第三指示信息,该第三指示信息指示目标节点与该源节点的PDCP序列号不同步;
该终端设备根据该第一指示信息调整该第一PDCP实体的接收窗口,包括:
该终端设备初始化该第一PDCP实体的接收窗口的窗口参数。
结合第一方面,在第一方面的某些实现方式中,该方法还包括:
当重排序定时器开启时,该终端设备递交该第一PDCP实体缓存的数据包。
结合第一方面,在第一方面的某些实现方式中,该第一指示信息包括第四指示信息,该第四指示信息用于指示目标节点的超帧号;
该终端设备根据该第一指示信息调整该第一PDCP实体的接收窗口,包括:
该终端设备根据该目标节点的超帧号与源节点的超帧号的差值调整该第一PDCP实体的接收窗口的窗口参数。
结合第一方面,在第一方面的某些实现方式中,其特征在于,该第一指示信息包含在用于指示切换节点的第一信息中。
第二方面,提供了一种通信方法,该方法包括:源节点向终端设备发送第一指示信息,该第一指示信息指示重建第一分组数据聚合协议PDCP实体时调整该第一PDCP实体的接收窗口,其中,该终端设备包括第一多播无线承载MRB,该第一MRB包括第一PDCP实体和第一RLC实体,该第一RLC实体采用确认模式AM,该第一PDCP实体与该第一RLC实体关联。
结合第二方面,在第二方面的某些实现方式中,该源节点向该终端设备发送第一指示信息之前,该方法还包括:该源节点向目标节点发送切换请求信息;该源节点接收该切换请求确认信息,该切换请求确认信息包括用于指示调整该第一PDCP实体的接收窗口的指示信息。
结合第二方面,在第二方面的某些实现方式中,该第一指示信息包括第二指示信息,该第二指示信息指示目标节点的区域会话ID与该源节点的区域会话ID不一致。
结合第二方面,在第二方面的某些实现方式中,该第一指示信息包括第三指示信息,该第三指示信息指示目标节点与该源节点的序列号不同步。
结合第二方面,在第二方面的某些实现方式中,该第一指示信息包括第四指示信息,该第四指示信息指示目标节点的超帧号。
结合第二方面,在第二方面的某些实现方式中,其特征在于,该第一指示信息包含在用于指示切换节点的第一信息中。
第三方面,提供了一种通信方法,该方法包括:第一接入网设备接收终端设备发送的第三信息,该第三信息用于指示该终端设备接收多播业务使用的资源或支持接收多播业务的能力;该第一接入网设备根据该第一指示信息向该终端设备配置数据无线承载DRB,该DRB用于承载单播业务,其中第三信息包括该终端设备接收该多播业务使用的ROHC-Context数量和/或该终端设备接收该多播业务使用的EHC-Context数量和/或该终端设备接收该多播业务使用多播无线承载MRB或逻辑信道LCH的数量。
替代性的,第三信息包括该终端设备支持接收该多播业务使用的ROHC-Context最大数量和/或该终端设备支持接收多播业务使用的EHC-Context最大数量和/或该终端设备支持接收多播业务使用多播无线承载MRB或逻辑信道LCH的最大数量
终端设备接收多播业务使用的资源可以理解为该终端设备正在接收多播业务使用的资源;或终端设备接收多播业务使用的资源可以理解为该终端设备希望接收多播业务时占用的资源;或终端设备接收多播业务使用的资源可以理解为该终端设备为接收多播业务规 划或预留的资源;或终端设备接收多播业务使用的资源可以理解为该终端设备支持接收多播业务使用的最大资源。
本申请实施例中,终端设备通过向第一接入网设备上报用于多播业务的资源,从而第一接入网设备可以根据多播业务的资源为终端设备配置用于单播业务的DRB,保证了不会超过终端设备PDCP的最大能力。
第四方面,提供了一种通信方法,该方法包括:终端设备向第一接入网设备发送第三信息以使该第一接入网设备根据该第一指示信息向该终端设备配置数据无线承载DRB,其中该第三信息用于指示该终端设备接收多播业务使用的资源,该DRB用于承载单播业务,其中第三信息包括该终端设备接收该多播业务使用的ROHC-Context数量和/或该终端设备接收该多播业务使用的EHC-Context数量和/或该终端设备接收该多播业务使用多播无线承载MRB或逻辑信道LCH的数量。
替代性的,第三信息包括该终端设备支持接收该多播业务使用的ROHC-Context最大数量和/或该终端设备支持接收多播业务使用的EHC-Context最大数量和/或该终端设备支持接收多播业务使用多播无线承载MRB或逻辑信道LCH的最大数量。
终端设备接收多播业务使用的资源可以理解为该终端设备正在接收多播业务使用的资源;或终端设备接收多播业务使用的资源可以理解为该终端设备希望接收多播业务时占用的资源;或终端设备接收多播业务使用的资源可以理解为该终端设备支持接收多播业务规划的资源;或终端设备接收多播业务使用的资源可以理解为该终端设备支持接收多播业务使用的最大资源
结合第四方面,在第四方面的某些实现方式中,该终端设备向该第一接入网设备发送第三信息之前,该方法还包括:该终端设备接收第二接入网设备发送的多播业务的数据。
第五方面,提供了一种通信方法,该方法包括:第三接入网设备使用第一分组无线网络临时标识G-RNTI向终端设备发送第一数据包,该第一数据包对应第一逻辑信道;当满足第一预设条件时,该第三接入网设备使用小区无线网络临时标识C-RNTI重传该第一数据包;当满足第二预设条件时,该接入网设备使用该第一G-RNTI重传该第一数据包。
本申请实施例中,逻辑信道对RNTI复用的前提下,当终端设备没有收到使用G-RNTI发送的新传数据时,则第三接入网设备不会使用C-RNTI重传,从而可以有效避免冲突,避免了终端设备仅根据逻辑信道标识不能区分出HARQ重传的数据包属于哪个无线承载RB上,或者属于哪个业务。
结合第五方面,在第五方面的某些实现方式中,该第一预设条件为该第三接入网设备接收到该第一数据包的NACK反馈,或该第一逻辑信道不存在多个RNTI复用;该第二预设条件为该接入网设备未接收到该第一数据包的NACK反馈或定时器超时,且该第一逻辑信道存在多个RNTI复用。
第六方面,提供了一种通信方法,该方法包括:终端设备接收第四接入网设备发送的第七指示信息,第七指示信息指示第四接入网设备是否使用C-RNTI加扰重传初传时使用G-RNTI加扰的数据包,或第七指示信息指示终端设备的逻辑信道是否对应多个RNTI;当第七指示信息指示第四接入网设备使用C-RNTI加扰重传初传时使用G-RNTI加扰的数据包时,终端设备的逻辑信道不对应多个RNTI;当第七指示信息指示第四接入网设备不使用C-RNTI加扰重传初传时使用G-RNTI加扰的数据包时,终端设备的逻辑信道对应多个 RNTI;当第七指示信息指示终端设备的逻辑信道对应多个RNTI时,终端设备不使用C-RNTI接收初传时使用G-RNTI加扰的数据包的重传数据包;当第七指示信息指示终端设备的逻辑信道不对应多个RNTI时,终端设备使用C-RNTI接收初传时使用G-RNTI加扰的数据包的重传数据包。
本申请实施例中,通过第四接入网设备的指示,终端设备可以根据最终确定逻辑信道是否对应多个RNTI或是否使用C-RNTI接收初传时使用G-RNTI加扰的数据包的重传数据包,从而避免了冲突。
结合第六方面,在第六方面的某些实现方式中,该方法还包括:该终端设备向该第四接入网设备发送第八指示信息,该第八指示信息用于指示该终端设备是否支持接收使用C-RNTI解扰并接收G-RNTI的调度的数据包的重传数据包。
第七方面,提供了一种通信方法,该方法应用于终端设备,该终端设备包括第一多播无线承载MRB,该第一MRB包括第一分组数据聚合协议PDCP实体和第一无线链路控制RLC实体,该第一RLC实体采用确认模式AM,该方法包括:
该终端设备接收源节点发送的第一指示信息,该第一指示信息指示重建第一PDCP实体时调整该第一PDCP实体的接收窗口;
该终端设备根据该第一指示信息调整该第一PDCP实体的接收窗口。
示例性的,源节点可以认为是源小区,也可以认为是源接入网设备。
本申请实施例中,当配置了AM MRB的终端设备切换节点时,可以调整AM MRB对应的PDCP实体的接收窗口,从而使得终端设备当切换至目标节点后,可以正常接收多播业务的数据,避免丢失数据包,提高多播业务的适应性以及多播传播方式的可靠性,提高通信效率和用户体验。
结合第七方面,在第七方面的某些实现方式中,该第一指示信息具体指示目标节点的区域会话ID与该源节点的区域会话ID不一致;
该终端设备根据该第一指示信息调整该第一PDCP实体的接收窗口,包括:
该终端设备初始化该第一PDCP实体的接收窗口的窗口参数。
结合第七方面,在第七方面的某些实现方式中,该第一指示信息具体指示目标节点与该源节点的PDCP序列号不同步;
该终端设备根据该第一指示信息调整该第一PDCP实体的接收窗口,包括:
该终端设备初始化该第一PDCP实体的接收窗口的窗口参数。
结合第七方面,在第七方面的某些实现方式中,该方法还包括:
当重排序定时器开启时,该终端设备递交该第一PDCP实体缓存的数据包。
结合第七方面,在第七方面的某些实现方式中,该第一指示信具体指示目标节点的超帧号;
该终端设备根据该第一指示信息调整该第一PDCP实体的接收窗口,包括:
该终端设备根据该目标节点的超帧号与源节点的超帧号的差值调整该第一PDCP实体的接收窗口的窗口参数。
结合第七方面,在第七方面的某些实现方式中,其特征在于,该第一指示信息包含在用于指示切换节点的第一信息中。
第八方面,提供了一种通信方法,该方法包括:源节点向终端设备发送第一指示信息, 该第一指示信息指示重建第一分组数据聚合协议PDCP实体时调整该第一PDCP实体的接收窗口,其中,该终端设备包括第一多播无线承载MRB,该第一MRB包括第一PDCP实体和第一RLC实体,该第一RLC实体采用确认模式AM,该第一PDCP实体与该第一RLC实体关联。
结合第八方面,在第八方面的某些实现方式中,该源节点向该终端设备发送第一指示信息之前,该方法还包括:该源节点向目标节点发送切换请求信息;该源节点接收该切换请求确认信息,该切换请求确认信息包括用于指示调整该第一PDCP实体的接收窗口的指示信息。
结合第八方面,在第八方面的某些实现方式中,该第一指示信息具体指示目标节点的区域会话ID与该源节点的区域会话ID不一致。
结合第八方面,在第八方面的某些实现方式中,该第一指示信息具体指示目标节点与该源节点的序列号不同步。
结合第八方面,在第八方面的某些实现方式中,该第一指示信息具体指示目标节点的超帧号。
结合第八方面,在第八方面的某些实现方式中,其特征在于,该第一指示信息包含在用于指示切换节点的第一信息中。
第九方面,提供了一种通信方法,该方法包括:目标节点接收源节点发送的切换请求信息,该源节点通过第一AM MRB与第一终端设备传输第一业务的数据包;该目标节点确定该第一AM MRB的传输进度慢于该目标节点给第二终端设备发送该第一业务的数据包的进度时,该目标节点向该第一终端设备配置第二AM MRB,该第二AM MRB用于传输该目标节点已传输的该第一业务的数据包,该第二AM MRB与该第一AM MRB的PDCP SN同步。
应理解,该目标节点支持PDCP SN同步。
本申请实施例中,配置了第一AM MRB的第一终端设备切换节点时,目标节点可以在第一AM MRB的传输进度慢于目标节点的传输进度时为终端设备配置第二AM MRB,避免由于切换节点造成的数据包丢失,提高了用户体验,提高了用户体验。
结合第九方面,在第九方面的某些实现方式中,该方法还包括:
当该第二AM MRB的传输进度与该第一AM MRB相同时,该目标节点指示该第一终端设备释放或重配该第一AM MRB。
第十方面,提供了一种通信方法,该方法包括:源节点发送的切换请求信息,该源节点通过第一AM MRB与第一终端设备传输第一业务的数据包;该源节点接收切换请求确认信息;当该源节点确定该第一AM MRB的传输进度快于该目标节点给第二终端设备发送该第一业务的数据包的进度时,该源节点指示该第一终端设备重配该第一AM MRB。
本申请实施例中,配置了第一AM MRB的第一终端设备切换节点时,源节点可以在第一AM MRB的传输进度快于目标节点的传输进度时重配第一AM MRB,避免由于切换节点造成的数据包丢失,提高了用户体验,提高了用户体验。
第十一方面,提供一种通信的装置,该装置用于执行上述第一方面至第六方面任一种可能实现方式中的方法。具体地,该装置可以包括用于执行第一方面至第六方面任一种可能实现方式中的方法的单元和/或模块,如处理单元和/或通信单元。在一种实现方式中, 该装置为通信设备(如终端设备,又如网络设备)。当该装置为通信设备时,通信单元可以是收发器,或,输入/输出接口;处理单元可以是至少一个处理器。可选地,收发器可以为收发电路。可选地,输入/输出接口可以为输入/输出电路。在另一种实现方式中,该装置为用于通信设备(如终端设备,又如网络设备)的芯片、芯片系统或电路。当该装置为用于通信设备的芯片、芯片系统或电路时,通信单元可以是该芯片、芯片系统或电路上的输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等;处理单元可以是至少一个处理器、处理电路或逻辑电路等。
第十二方面,提供一种通信的装置,该装置包括:至少一个处理器,用于执行存储器存储的计算机程序或指令,以执行上述第一方面至第四方面任一种可能实现方式中的方法。
可选地,该装置还包括存储器,用于存储的计算机程序或指令。可选地,该装置还包括通信接口,处理器通过通信接口读取存储器存储的计算机程序或指令。
在一种实现方式中,该装置为通信设备(如终端设备,又如网络设备)。
在另一种实现方式中,该装置为用于通信设备(如终端设备,又如网络设备)的芯片、芯片系统或电路。
第十三方面,本申请提供一种处理器,用于执行上述第一方面至第六方面提供的方法。对于处理器所涉及的发送和获取/接收等操作,如果没有特殊说明,或者,如果未与其在相关描述中的实际作用或者内在逻辑相抵触,则可以理解为处理器输出和接收、输入等操作,也可以理解为由射频电路和天线所进行的发送和接收操作,本申请对此不做限定。
第十四方面,提供一种计算机可读存储介质,该计算机可读介质存储用于设备执行的程序代码,该程序代码包括用于执行上述第一方面至第六方面任一种可能实现方式中的方法。
第十五方面,提供一种包含指令的计算机程序产品,当该计算机程序产品在计算机上运行时,使得计算机执行上述第一方面至第六方面任一种可能实现方式中的方法。
第十六方面,提供一种通信系统,包括前述的终端设备和接入网设备。
其中,第十一方面至第十六方面的有益效果,请参见第一方面至第十方面的有益效果,不重复赘述。
附图说明
图1是数据传输在协议栈的各层传输的示意图。
图2是适用于本申请实施例的移动通信系统的架构示意图。
图3是本申请实施例提供的通信方法的示意性流程图。
图4是本申请实施例提供的另一例通信方法的示意性流程图。
图5是本申请实施例提供的另一例通信方法的示意性流程图。
图6是本申请实施例提供的另一例通信方法的示意性流程图。
图7是本申请实施例提供的另一例通信方法的示意性流程图。
图8是本申请实施例提供的另一例通信方法的示意性流程图。
图9是本申请实施例提供的另一例通信方法的示意性流程图。
图10是本申请实施例提供的另一例通信方法的示意性流程图。
图11本申请提供的一种装置的示意性框图。
图12本申请提供的一种装置的示意性框图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、LTE频分双工(Frequency Division Duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、全球互联微波接入(Worldwide Interoperability for Microwave Access,WiMAX)通信系统、第五代(5th Generation,5G)系统或新无线(New Radio,NR),以及未来演进的通信系统等。
本申请实施例中的终端设备可以指用户设备、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。终端设备还可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,未来5G网络中的终端设备或者未来演进的公用陆地移动通信网络(Public Land Mobile Network,PLMN)中的终端设备等,本申请实施例对此并不限定。
本申请实施例中的网络设备可以是用于与终端设备通信的设备,该网络设备可以是全球移动通讯(Global System of Mobile communication,GSM)系统或码分多址(Code Division Multiple Access,CDMA)中的基站(Base Transceiver Station,BTS),也可以是宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统中的基站(NodeB,NB),还可以是LTE系统中的演进型基站(Evolutional NodeB,eNB或eNodeB),还可以是云无线接入网络(Cloud Radio Access Network,CRAN)场景下的无线控制器,或者该网络设备可以为中继站、接入点、车载设备、可穿戴设备以及未来5G网络中的网络设备或者未来演进的PLMN网络中的网络设备等,本申请实施例并不限定。
另外,本申请的各个方面或特征可以实现成方法、装置或使用标准编程和/或工程技术的制品。本申请中使用的术语“制品”涵盖可从任何计算机可读器件、载体或介质访问的计算机程序。例如,计算机可读介质可以包括,但不限于:磁存储器件(例如,硬盘、软盘或磁带等),光盘(例如,压缩盘(compact disc,CD)、数字通用盘(digital versatile disc,DVD)等),智能卡和闪存器件(例如,可擦写可编程只读存储器(erasable programmable read-only memory,EPROM)、卡、棒或钥匙驱动器等)。另外,本文描述的各种存储介质可代表用于存储信息的一个或多个设备和/或其它机器可读介质。术语“机器可读介质”可包括但不限于,无线信道和能够存储、包含和/或承载指令和/或数据的各种其它介质。
为便于理解本申请实施例,以下对本申请实施例的部分用语进行解释说明,以便于本领域技术人员理解。
1)、网络设备,具有能够为终端设备提供随机接入功能的设备或可设置于该设备的芯片,该设备包括但不限于:演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(baseband unit,BBU),无线保真(wireless fidelity,WIFI)系统中的接入点(access point,AP)、无线中继节点、无线回传节点、传输点(transmission and reception point,TRP或者transmission point,TP)等,还可以为5G,如,NR,系统中的gNB,或,传输点(TRP或TP),5G系统中的基站的一个或一组(包括多个天线面板)天线面板,或者,还可以为构成gNB或传输点的网络节点,如基带单元(BBU),或,分布式单元(DU,distributed unit)等。
2)、终端,又称之为用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端(mobile terminal,MT)等,是一种向用户提供语音和/或数据连通性的设备。例如,终端设备包括具有无线连接功能的手持式设备、车载设备等。目前,终端设备可以是:手机(mobile phone)、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备,虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端等。
3)、多播传输技术,或者也可以称为多媒体广播多播业务(multimedia broadcast multicast service,MBMS)技术,或者也可以称为多播传输方式,或者也可以称为多播广播业务(multicastandbroadcastservice,MBS)技术,是指某种业务通过网络设备同时向多个终端设备发送数据的技术。在采用多播技术传输时,针对同一数据,网络设备(例如基站)发送的过程中有多个终端设备同时进行接收。
4)、采用多播(multicast)传输方式发送是指:某一装置发送协议数据单元(protocol data unit,PDU)对应的传输块(transport block,TB)时,采用分组无线网络临时标识(group radio network temporary identifier,G-RNTI)对PDU进行加扰,或对PDU对应的下行控制信息(downlink control information,DCI)进行加扰,同时有一个或者多个装置根据相同的G-RNTI对同一PDU进行接收;或者采用多播的方式传输PDU可以指通过半静态方式告诉多个装置同一PDU的位置,多个装置可以同时对该PDU进行接收;或者采用多播的方式传输PDU可以指该PDU在为多播传输建立的无线承载中传输或者在专门为多播设计的信道中进行传输。
目前,标准中支持一个G-RNTI用于多个多播业务,以及支持同一个逻辑信道既承载单播业务也承载多播业务,或者多个多播业务或单播业务(也可以称为逻辑信道复用)。
此外,如果在同一个HARQ进程内,如果使用G-RNTI传输的数据终端设备没有收到,可以使用小区无线网络临时标识(cell radio network temporary identifier,C-RNTI)或者G-RNTI重传该数据,
采用多播传输方式接收是指采用多播方式发送的时候,所述多个接收装置中的一个装置根据G-RNTI对PDU进行接收;或者所述多个接收装置中的一个装置通过为多播传输建立的无线承载接收或者在用于多播传输的信道上进行接收PDU。
在本申请中,组播为多播的一种具体方式,因此,多播也可以称为组播、广播、MBS。
5)、采用单播(unicast)传输的方式发送是指:某一装置发送PDU对应的TB时,采用小区无线网络临时标识(cell network temporary identifier,C-RNTI)对PDU进行加扰,或对PDU对应的DCI进行加扰,同时只有一个装置根据C-RNTI对同一PDU进行接收;或者采用单播的方式传输PDU可以指该PDU在为单播传输建立的无线承载中传输或者在专门为单播设计的信道中进行传输。
采用单播传输方式接收是指采用单播方式发送的时候,所述一个接收装置根据C-RNTI对PDU进行接收;或者所述一个装置通过为单播传输建立的无线承载接收或者在用于单播传输的信道上进行接收。
6)、采用广播(broadcast)传输的方式发送和接收是指:某一装置在广播信道上发送PDU对应的TB,所有接收装置都可以在广播信道上对PDU进行接收。
相互通信的网络设备和终端设备具有一定的协议层结构。例如控制面协议层结构可以包括RRC层、PDCP层、RLC层、MAC层和物理层等协议层的功能。用户面协议层结构可以包括PDCP层、RLC层、MAC层和物理层等协议层的功能。其中,物理层位于最低层(层一),MAC层、RLC以及PDCP属于第二层(层二),RRC属于第三层(层三)。在一种实现中,PDCP层之上还可以包括业务数据适配(service data adaptation protocol,SDAP)层。
这些协议层的功能可以由一个节点实现,或者可以由多个节点实现;例如,在一种演进结构中,无线接入网设备可以包括集中单元(centralized unit,CU)和分布单元(distributed unit,DU),多个DU可以由一个CU集中控制。CU和DU可以根据无线网络的协议层划分,例如,PDCP层及以上协议层的功能设置在CU,PDCP以下的协议层,RLC层和MAC层等的功能设置在DU等。
应该理解的是,这种协议层的划分仅仅是一种举例,还可以在其它协议层划分,例如在RLC层划分,将RLC层及以上协议层的功能设置在CU,RLC层以下协议层的功能设置在DU;或者,在某个协议层中划分,例如将RLC层的部分功能和RLC层以上的协议层的功能设置在CU,将RLC层的剩余功能和RLC层以下的协议层的功能设置在DU。此外,也可以按其它方式划分,例如按时延划分,将处理时间需要满足时延要求的功能设置在DU,不需要满足该时延要求的功能设置在CU。
在网络设备和终端设备进行数据传输时,以下行数据传输为例,如图1所示的,图1为数据传输在协议栈的各层传输的示意图。数据首先到网络设备的PDCP层,经过PDCP层的处理以后传输到RLC层和MAC层,在MAC层经过处理之后,通过物理层发送给网络设备。终端设备接收数据时,依次经过的协议层为物理层、MAC层、RLC层和PDCP层。对于每个无线承载中的数据,都需要经过各个层的处理。每个层都有相应的功能实体来执行相应的功能,例如,PDCP层对应PDCP实体,RLC层对应RLC实体,MAC层对应MAC实体等。其中,每个无线承载包含一个PDCP实体以及一个或者多个RLC实体,每个RLC实体对应一个逻辑信道。一个MAC实体对应多个逻辑信道,逻辑信道中的数据在MAC层可以进行复用,例如在MAC层复用到同一个数据块中,最后通过物理层发送出去。对于上行数据的传输过程也是类似的。
图2是适用于本申请实施例的通信系统的示意图。如图2所示,该移动通信系统100可以包括至少一个无线接入网设备110和至少一个终端设备(如图2中所示的终端设备 120、130、140、150,160)。终端设备通过无线的方式与无线接入网设备相连,无线接入网设备可以是上述的网络设备。至少一个终端设备可以发送上行数据或者信息给无线接入网设备,无线接入网设备110也可以将下行数据或者信息发送给至少一个终端设备。并且,多个终端设备也可以组成一个通信系统,例如,终端设备140、150,160可以组成一个通信系统,终端设备140也可以将下行数据或者信息发送给终端设备150和160,终端设备150和160也可以将上行数据或者信息发送给终端设备140。终端设备和无线接入网设备之间可以传输于URLLC业务相关的上行和下行数据以及信息等。
应理解。图2只是示意图,该通信系统中还可以包括其它网络设备和/或终端设备,在图2中未画出。本申请的实施例对该移动通信系统中包括的无线接入网设备和终端的数量不做限定。在移动通信系统100中,无线接入网设备110可以是上述的网络设备。并且,网络设备和终端设备之间的通信遵循一定的协议层结构。例如,如图1所示的协议层架构。网络设备可以包括CU和DU,CU和DU可以分离设置,也可以集中设置。本申请实施例在此不作限制。
目前终端设备在接收多播业务时,可能存在着丢失数据包、无法将数据包正确映射到相应的MRB等问题,从而影响了用户体验。
在一些场景中,对于多播业务,用户面数据由多播无线承载(multi radio bearer,MRB)承载。MRB可以分为非确认模式(unacknowledged mode,UM)和确认模式(acknowledged,AM)。对于MRB的分类可以取决于RLC实体的状态,当MRB中包括一个AM RLC实体时,该MRB可以为AM MRB。目前,当配置了AM MRB的终端设备由源节点切换至目标节点后可能会影响该终端设备在目标节点正常接收数据。例如,当该终端设备由源节点切换至目标节点后,由于PDCP实体的接收窗口的中还有未递交到上层的数据包且目标节点与源节点的数据包的PDCP序列号的生成方式不同时,则会导致影响该终端设备在目标节点正常接收数据。再例如,目标节点和源节点的超帧号(Hyper Frrame Number,HFN)不同,则该终端设备的PDCP实体的接收窗口的窗口参数不适用于目标节点,从而可能造成无法正常接收数据。再例如,目标节点的数据包不在当前终端设备的PDCP实体的接收窗口内,或者目标节点的数据包和源节点的数据包存在部分数据包SN号相同但内容不同导致两流数据冲突。
在一些场景中,终端设备的PDCP的资源是一定的,PDCP的资源也可以理解为PDCP的能力,目前接入网设备在为终端设备配置用于单播的数据无线承载(data radio bearer,DRB)时,没有考虑多播业务占用的PDCP的资源,如果单播业务占用的PDCP的资源和多播业务占用的PDCP的资源超过终端设备的PDCP的总资源后,可能会舍弃部分业务,导致无法接收,降低业务体现。在一些场景中,网络设备在为终端设备配置DRB的PDCP资源的时候是配置的可以使用的最大值,所有DRB的最大可使用资源的和不超过终端设备的PDCP总的能力,当业务流到达时,PDCP的资源才会被真正使用。这就可能如果终端设备同时接收多播业务和单播业务的数据,接入网设备为终端设备配置的或者称让终端设备预留给DRB的资源有可能是没有被完全利用的,基于终端设备可能因为能力受限,当同时接收单播业务和多播业务时,终端设备可能会触发删除DRB或者不再接收多播业务。基于这种情况,PDCP的资源没有被完全利用,但是没有分配给需要PDCP资源的业务,导致一部分业务关闭或部分数据流关闭。
在一些场景中,由于存在逻辑信道的复用以及使用C-RNTI重传R-RNTI的数据,使得终端设备可能无法将数据映射到正确的无线承载(radio bearer,RB)上。例如,终端设备接收到使用C-RNTI加扰发送的初传时使用G-RNTI加扰的数据包的重传时,终端设备使用C-RNTI解扰后可以得到逻辑信道标识,如果存在逻辑信道对多个多播业务复用,则终端需要再根据逻辑信道标识对应到G-RNTI才能确定此重传数据包属于哪个MRB或者哪个多播业务,如果不能根据逻辑信道标识找到对应的G-RNTI,则终端设备因为此逻辑信道上对应了多个业务的G-RNTI就无法确定该重传数据包对应的业务。例如,第一多播业务对应第一G-RNTI,第一多播业务对应第一逻辑信道,第一逻辑信道还对应第二多播业务,第二多播业务对应第二G-RNTI,当第一多播业务的第一数据包传输失败并使用C-RNTI加扰重传第一数据包,同时接收第一多播业务和第二多播业务的终端设备接收到使用C-RNTI加扰的重传第一数据包后,由于初传数据和重传数据在同一个HARQ进程内则可以解析出得到该第一数据包对应的逻辑信道为第一逻辑信道,但是由于无法确定G-RNTI,则终端设备无法确定该第一数据包对应的是第一多播业务还是第二多播业务。再例如,第一逻辑信道对应第一C-RNTI和第一G-RNTI,第一多播业务对应第一G-RNTI,第一单播业务对应C-RNTI,当第一多播业务的第一数据包传输失败并使用C-RNTI加扰重传第一数据包,终端设备通过C-RNTI得到该第一数据包对应的逻辑信道为第一逻辑信道,但是由于无法确定第一G-RNTI,则终端设备无法确定该第一数据包对应的是第一多播业务还是第一单播业务。
综上所述,本申请提出了一种通信方法以及通信设备,可以保证终端设备的多播业务能够正常的接收数据,避免了数据包的丢失,从而提高了用户体验,减少了网络资源的浪费。
下面结合图3详细说明本申请提供通信方法,图3是本申请一个实施例的通信方法300的示意性流程图,该方法300可以应用在图2所示的场景中,例如,利用多播传输方式传输的场景中。
S301,源节点向终端设备发送第一指示信息,该第一指示信息指示重建第一分组数据聚合协议PDCP实体时调整所述第一PDCP实体的接收窗口。
对应的,终端设备接收第一指示信息。
具体的,该终端设备包括第一MRB,该第一MRB包括第一PDCP实体和第一RLC实体,该第一RLC实体使用确认模式AM。终端设备与源节点可以通过第一MRB传输第一业务的数据。源节点向终端设备发送第一指示信息,该第一指示信息用于指示该终端设备重建第一PDCP实体时调整第一PDCP实体的接收窗口。
需要说明的是,第一MRB还可以包括多个RLC实体。例如,第一MRB还包括第二RLC实体,第二RLC实体采用非确认模式UM。
示例性的,第一指示信息可以包含在切换指示信息(RRC Reconfiguration)中。
源节点向终端设备发送第一指示信息之前,方法300还包括:
S304,源节点向目标节点发送切换请求信息,该切换请求信息用于请求切换终端设备的服务节点;
S305,源节点接收该切换请求信息确认信息,该切换请求确认信息包括用于指示调整第一PDCP实体的接收窗口的指示信息。
示例性的,当终端设备需要切换节点时,源节点会通过handover request信令请求切换基站,目标节点在接收到handover request信令后可以发送handover request ACK信令,该handover request ACK包括指示调整第一PDCP实体的接收窗口的指示信息。
应理解,本申请实施例中的节点可以是小区也可以是接入网设备,即当配置了AM MRB的终端设备由源小区切换至目标小区后,终端设备可以调整第一PDCP实体的接收窗口,或当配置了AM MRB的终端设备由源基站切换至目标基站后,终端设备可以调整第一PDCP实体的接收窗口。本申请实施例对此不作限定。为了简洁,下文关于方法300的介绍中涉及终端设备时除作特殊声明之外,终端设备可以理解为配置了AM MRB的终端设备。
需要说明的是,源节点可以透传目标节点的指示信息,即该指示信息为第一指示信息,源节点只是转发该指示信息,或源节点可以根据目标节点的ACK反馈生成第一指示信息,该第一指示信息包括在用于指示终端设备切换节点的第一信息(例如RRC Reconfiguration信令)中。本申请实施例对此不做限定。
本申请中,源节点可以指示终端设备在重建PDCP实体时调整PDCP实体的接收窗口,目标节点也可以指示终端设备在重建PDCP实体时调整PDCP实体的接收窗口。本申请对此不作限定。
示例性的,源节点向目标节点发送handover request信令请求切换节点,目标节点在接收到handover request信令后可以发送handover request ACK,然后源节点在向终端设备的RRC Reconfiguration信令中包括第一指示信息,用于指示终端设备在重建PDCP实体时调整PDCP实体的接收窗口。
示例性的,源节点向目标节点发送handover request信令请求切换节点,目标节点在接收到handover request信令后可以发送handover request ACK,该handover request ACK包括用于指示调整PDCP实体的接收窗口的指示信息,源节点接收该handover request ACK后,然后在向终端设备发送的RRC Reconfiguration信令中包括该指示信息(即可以理解为第一指示信息),用于指示终端设备在重建PDCP实体时调整PDCP实体的接收窗口。
示例性的,源节点向目标节点发送handover request信令请求切换节点,目标节点在接收到handover request信令后可以发送handover request ACK,该handover request ACK包括用于指示调整PDCP实体的接收窗口的指示信息,源节点接收该handover request ACK后,然后根据该handover request ACK生成第一指示信息,然后在向终端设备发送的RRC Reconfiguration信令中包括第一指示信息,用于指示终端设备在重建PDCP实体时调整PDCP实体的接收窗口。
可选的,在一些实施例中,第一指示信息可以直接指示终端设备在重建第一PDCP实体时调整第一PDCP实体的接收窗口。
示例性的,第一指示信息可以包括1个或多个比特位,例如00表示重建PDCP实体时不调整PDCP实体的接收窗口,01表示重建PDCP实体时调整PDCP实体的接收窗口。
终端设备调整第一PDCP实体的接收窗口,包括:
终端设备初始化第一PDCP实体的接收窗口的窗口参数。第一PDCP实体的接收窗口的窗口参数至少包括TX_NEXT、RX_NEXT、RX_DELIV中的一个;或
终端设备根据目标节点和源节点的HFN调整第一PDCP实体的接收窗口的窗口参数。
可选的,在一些实施例中,第一指示信息还可以间接指示终端设备在重建第一PDCP实体时调整第一PDCP实体的接收窗口。
在一些实施例中,第一指示信息包括第二指示信息,该第二指示信息用于指示目标节点的区域会话ID与源节点的区域会话ID不一致。
具体的,一个多播业务可以关联多个多播服务区域,每一个多播服务区域包括一个区域会话ID,当第二指示信息指示源节点和目标节点的区域会话ID不一致时,则终端设备接收到该第二指示信息时,可以基于该第二指示信息包括的内容得知需要在重建PDCP实体时调整PDCP实体的接收窗口。
需要说明的是,在一些情况下,第一指示信息包括第二指示信息可以理解为第一指示信息等价于第二指示信息,则第二指示信息用于指示目标节点的区域会话ID与源节点的区域会话ID不一致可以理解为第一指示信息具体指示目标节点的区域会话ID与源节点的区域会话ID不一致。
在另一些情况下,第一指示信息包括第二指示信息可以理解为第二指示信息包含于第一指示信息。
第二指示信息可以直接指示源节点和目标节点的区域会话ID不一致。例如,第二指示信息可以包括1个或多个比特位,例如00表示源节点和目标节点的区域会话ID不一致,01表示源节点和目标节点的区域会话ID一致。
一种可能的实现形式,源节点向目标节点发送切换请求信息时还上报了其区域会话ID,目标节点接收切换请求信息后,可以确定该源节点的区域会话ID与目标节点的区域会话ID不同,则目标节点可以在向源节点发送切换请求确认信息时还发送第二指示信息。
另一种可能的实现形式,源节点向目标节点发送切换信息,目标节点接收切换请求信息后,在向源节点发送切换请求确认信息时还发送其区域会话ID,源节点接收切换请求确认信息后可以确定该目标节点的区域会话ID与其区域会话ID不同,则源节点可以生成并向终端设备第二指示信息。
第二指示信息还可以间接指示源节点和目标节点的区域会话ID不一致。例如,第二指示信息包括源节点和/或目标节点的区域会话ID,当终端设备接收到第二指示信息后,可以根据第二指示信息的内容最终确定源节点和目标节点的区域会话ID是否一致。
一种可能的实现方式,源节点向目标节点发送切换信息,目标节点接收切换请求信息后,在向源节点发送切换请求确认信息时还发送其区域会话ID,源节点接收切换请求确认信息后向终端设备发送第二指示信息,该第二指示信息中包括源节点的区域会话ID和目标节点的区域会话ID。
在另一些实施例中,第一指示信息包括第三指示信息,该第三指示信息用于指示目标节点和源节点的PDCP序列号(serial number,SN)不同步。
具体的,为了保证终端设备在切换节点时多播业务能够正常运行,需要保证目标节点和源节点的PDCP SN同步。当第三指示信息指示目标节点和源节点的PDCP SN不同步时,则终端设备需要在重建PDCP实体时调整PDCP实体的接收窗口。PDCP SN同步可以理解为源节点和目标节点对于来自核心网的同一个数据包的PDCP SN的编号是一致的。
针对第一指示信息与第三指示信息的关系的描述可以参见针对第一指示信息和第二指示信息的描述,为了简洁,在此不再赘述。
第三指示信息可以直接指示源节点和目标节点的PDCP SN不同步。例如,第三指示信息可以包括1个或多个比特位,例如00表示源节点和目标节点的区域会话PDCP SN不同步,01表示源节点和目标节点的PDCP SN同步。
一种可能的实现形式,源节点向目标节点发送切换请求信息时还上报了其是否PDCP SN同步,目标节点接收切换请求信息后,可以确定该源节点是否PDCP SN同步,则目标节点可以在向源节点发送切换请求确认信息时还发送第三指示信息。
另一种可能的实现形式,源节点向目标节点发送切换信息,目标节点接收切换请求信息后,在向源节点发送切换请求确认信息时还发送其是否PDCP SN同步,源节点接收切换请求确认信息后可以确定该目标节点是否PDCP SN同步,则源节点可以生成并向终端设备第三指示信息。
第三指示信息还可以间接指示源节点和目标节点的PDCP SN不同步。例如,第三指示信息可以指示源节点和目标节点同步PDCP SN的方式,当源节点和目标节点同步PDCP SN的方式不相同时,则可以认为源节点和目标节点的PDCP SN不同步。本申请对同步PDCP SN的方式不作限定,例如同步PDCP SN的方式可以包括:复用用户面的GPRS隧道协议(GPRS Tunnelling Protocol for the user plane,GTP-U)包头的SN的第一同步方式;增加新的扩展头用于同步PDCP SN的第二同步方式;复用GTP-U Container扩展头的服务质量流标识(qualityofserviceflowidentity,QFI)SN的第三同步方式;基于公共的下一代节点中央单元用户面(next generation nodeB centralizedunituserplane,gNB-CU-UP)实现PDCP SN同步的第四同步方式。
应理解,上述同步方式仅为示例,本申请实施例中源节点和目标节点还可以采用其他同步方式以实现本申请实施例的方法也应落在本申请的保护范围之内。
一种可能的实现形式,源节点向目标节点发送切换请求信息时还上报了其PDCP SN同步的同步方式,目标节点接收切换请求信息后,可以确定该源节点是否与其同步方式相同,当同步方式不同时,则目标节点可以在向源节点发送切换请求确认信息时还发送第三指示信息。
另一种可能的实现形式,源节点向目标节点发送切换信息,目标节点接收切换请求信息后,在向源节点发送切换请求确认信息时还发送其PDCP SN同步的同步方式,源节点接收切换请求确认信息后可以确定该目标节点是否与其同步方式相同,当同步方式不同时,则源节点可以生成并向终端设备第三指示信息。
可选的,在另一些实施例中,第一指示信息包括第四指示信息,该第四指示信息用于指示目标节点的HFN。
具体的,PDCP实体的接收窗口的窗口参数是基于PDU DATA的计数值(count),计数值包括HFN和PDCP SN,HFN由接收端和发射端维护。当第四指示信息指示目标节点的HFN时,则终端设备接收到该第四指示信息时,可以结合终端设备当前和源节点维护的HFN并基于该第四指示信息包括的内容得知是否需要在重建PDCP实体时调整PDCP实体的接收窗口。如果HFN一致,则不需要调整。如果HFN不一致则需要调整。
一种可能的实现方式:源节点向目标节点发送切换请求信息,目标节点接收切换请求信息后,目标节点可以在向源节点发送切换请求确认信息时还发送其HFN(即第四指示信息),源节点接收切换请求确认信息后向目标节点的HFN发送给终端设备,从而终端 设备可以在得知源节点和目标节点的HFN的情况下,可以判断源节点和目标节点的HFN是否一致。
S302,终端设备根据第一指示信息调整第一PDCP实体的接收窗口。
可选的,在一些实施例中,可选的,在一些实施例中,第一指示信息可以直接指示终端设备在重建第一PDCP实体时调整第一PDCP实体的接收窗口。
具体的,终端设备接收到第一指示信息后,可以在重建第一PDCP实体时,调整第一PDCP实体的接收窗口。例如,终端设备初始化第一PDCP实体的接收窗口的窗口参数。
例如,终端设备接收到第一指示信息后,可以将RX_NEXT和RX_DELIV的值初始化。
可选的,在一些实施例中,第一指示信息包括第二指示信息,该第二指示信息用于指示目标节点的区域会话ID与源节点的区域会话ID不一致。
终端设备接收第二指示信息后,可以确定目标节点与源节点的区域会话ID不一致,则终端设备可以在重建第一PDCP实体时,调整第一PDCP实体的接收窗口。例如,终端设备初始化第一PDCP实体的接收窗口的窗口参数
可选的,在一些实施例中,第一指示信息包括第三指示信息,该第三指示信息用于指示目标节点与源节点的PDCP SN不同步。
终端设备接收第三指示信息后,可以确定目标节点与源节点的PDCP SN不同步,则终端设备可以在重建第一PDCP实体时,调整第一PDCP实体的接收窗口。例如,终端设备初始化第一PDCP实体的接收窗口的窗口参数。
本申请实施例中,配置了AM MRB的终端设备切换节点时,可以初始化AM MRB对应的PDCP实体的接收窗口,避免了在目标节点因为窗口没有初始化导致的目标节点的数据包与在源节点缓存的数据包的冲突,从而避免了终端设备丢弃数据包,数据包乱序等问题。
可选的,在一些实施例中,第一指示信息包括第四指示信息,该第四指示信息用于指示目标节点的HFN。
终端设备接收第四指示信息后,当确定目标节点和源节点的HFN不一致时,终端设备可以根据目标节点HFN与源节点HFN的差值调整第一PDCP实体的接收窗口的窗口参数。例如,源节点和终端设备维护的HFN为5,目标节点的维护的HFN为10,则第一PDCP实体的接收窗口的窗口参数全部加上5*2 [PDCP SN Size]
进一步的,当调整后的窗口参数的取值范围超出[0,2 32-1]时,终端设备可以释放或者重新配置AM MRB。
可选的,在一些实施例中,方法300还包括:
S304,当重排序定时器开启时,递交第一PDCP实体缓存的数据包。
具体的,终端设备的重排序定时器开启时,当需要调整第一PDCP实体的接收窗口时,可以按照计数值升序的顺序递交缓存的数据包。
本申请实施例中,当配置了AM MRB的终端设备切换节点时,可以调整AM MRB对应的PDCP实体的接收窗口,从而使得终端设备当切换至目标节点后,因为源节点和目标节点的数据不一致,避免了源节点数据包对于终端设备接收目标节点数据包的影响以及避免了终端设备从源节点接收并缓存的数据包丢失,提高了用户体验。
图4所示为本申请实施例提供的另一例通信方法400的示意性流程图,该方法400可以应用在图2所示的场景中。该方法400中的目标节点支持PDCP SN同步,但该目标节点发送数据时未采取PDCP SN的方式。
S401,第一终端设备与源节点通过第一AM MRB传输第一业务的数据包。
S402,源节点向目标节点发送切换请求信息。
相应的,目标节点接收源节点发送的切换请求信息。
S403,目标节点向源节点发送切换请求确认信息。
相应的,源节点接收目标节点发送的切换请求确认信息。
S404,目标节点确定第一AM MRB的传输进度慢于该目标节点给第二终端设备发送第一业务的数据包的进度。
具体的,目标节点也可以向除第一终端设备以外的终端设备(例如第二终端设备)发送第一业务的数据包,其传输进度可能快于源节点,源节点的第一业务的传输进度相当于第一AM MRB的传输进度,当目标节点确定第一AM MRB的传输进度慢于该目标节点给第二终端设备发送第一业务的数据包的进度时,则可以进行S405。
需要说明的是,目标节点向第二终端设备发送第一业务数据包时没有同步PDCP SN,即源节点和目标节点发送同一个第一业务的数据包时,没有采取相同的PDCP SN。
针对目标节点确定第一AM MRB的传输进度可以通过以下几种方式确定:
方式一:源节点可以通过SN Status Transfer信令指示第一AM MRB的传输进度。
方式二:源节点可以通过在切换请求信息中上报第一AM MRB的传输进度。
方式三:目标节点可以通过核心网元确定第一AM MRB的传输进度。
方式四:目标节点可以通过除第一终端设备以外的终端设备切换节点时确定源节点的传输进度。
应理解,本申请实施例对于目标节点确定第一AM MRB的传输进度的方式并不限定,当通过除上述4种方式以外的方式确定第一AM MRB的传输进度以实施本申请的方法均应落入本申请的保护范围。
S405,目标节点向第一终端设备配置第二AM MRB,该第二AM MRB用于传输该目标节点已传输的第一业务的数据包,该第二AM MRB与第一AM MRB的PDCP SN同步。
具体的,当目标节点确定第一AM MRB的传输进度慢于该目标节点给第二终端设备发送第一业务的数据包的进度时,可以向第一终端设备配置第二AM MRB,用于传输该目标节点已传输的第一业务的数据包。
一种可能的实现方式,第二AM MRB用于传输该目标节点已传输的所有第一业务的数据包。例如,第一终端设备已经通过第一AM MRB接收了第一业务的前500个数据包,此时目标节点已经向第二终端设备发送了第一业务的前600个数据包,则目标节点的传输第一业务的进度快于第一AM MRB的传输进度,则目标节点可以向第一终端设备新配置一个AM MRB,该AM MRB用于传输第一业务的前600个数据包。
一种可能的实现方式,第二AM MRB用于传输源节点已传输的所有第一业务的数据包。例如,第一终端设备已经通过第一AM MRB接收了第一业务的前500个数据包,此时目标节点已经向第二终端设备发送了第一业务的前600个数据包,则目标节点的传输第一业务的进度快于第一AM MRB的传输进度,则目标节点可以向第一终端设备新配置一 个AM MRB,该AM MRB用于传输第一业务的前500个数据包。
一种可能的实现方式,第二AM MRB用于传输目标节点已传输但源节点未传输的第一业务的数据包。例如,第一终端设备已经通过第一AM MRB接收了第一业务的前500个数据包,此时目标节点已经向第二终端设备发送了第一业务的前600个数据包,则目标节点的传输第一业务的进度快于第一AM MRB的传输进度,则目标节点可以向第一终端设备新配置一个AM MRB,该AM MRB用于传输第一业务的第501至第600个数据包。
进一步的,一种可能的实现方式,第二AM MRB还用于继续传输第一业务的数据包。
例如,第一终端设备已经通过第一AM MRB接收了第一业务的前500个数据包,此时目标节点已经向第二终端设备发送了第一业务的前600个数据包,则目标节点的传输第一业务的进度快于第一AM MRB的传输进度,则目标节点可以向第一终端设备新配置一个AM MRB,该AM MRB用于传输第一业务的第501至第600个数据包以及第600个数据包以后的数据包。
该第二AM MRB与第一AM MRB PDCP SN同步可以理解为该第一AM MRB和该第二AM MRB承载的同一个数据包的PDCP SN一致。
进一步的,当第二AM MRB的传输进度与第一AM MRB的传输进度相同时,方法400还包括:
S406,目标节点指示第一终端设备释放或重配第一AM MRB。
替代性的,当第二AM MRB的传输进度与第一AM MRB的传输进度相同且持续时间达到第一阈值时,进行S406。
替代性的,当第二AM MRB的传输进度超出第一AM MRB的传输进度达到第二阈值时,进行S406。例如,第二阈值为50,第一AM MRB的传输进度为500个数据包,当第二AM MRB的传输进度达到550时,则进行S406。
替代性的,当第二AM MRB的传输进度与第一AM MRB的传输进度相差的数据包数量小于第三阈值时,进行S406。
替代性的,当目标节点缓存的数据包超过第三阈值或该目标节点无法缓存新的数据包时,进行S406。
例如,当第二AM MRB的传输进度与第一AM MRB的传输进度相同时,目标节点可以指示第一终端设备释放或重配第一AM MRB。例如,第一AM MRB的传输进度是第一业务的前500个数据包,则当第二AM MRB的传输到第500个数据包时,则目标节点可以指示第一终端设备释放或重配第一AM MRB。
进一步的,方法400还包括:
该目标节点缓存该目标节点已发送但该源节点未发送的第一业务的数据包。
可选的,方法400还包括:
S407,源节点确定第一AM MRB的传输进度快于该目标节点给第二终端设备发送第一业务的数据包的进度。
源节点确定目标节点的传输进度可以通过以下几种方式确定:
方式一:目标节点通过切换请求确认信息上报其传输进度。
方式二:源节点通过核心网元确定目标节点的传输进度。
应理解,本申请实施例对于源节点确定目标节点的传输进度的方式并不限定,当通过 除上述2种方式以外的方式确定目标节点的传输进度以实施本申请的方法均应落入本申请的保护范围。
S408,源节点指示第一终端设备重配第一AM MRB。
具体的,当源节点确定目标节点的传输进度慢于第一AM MRB的传输进度时,源节点可以指示第一终端设备重配第一AM MRB,第一终端设备完成第一AM MRB的重配后可以执行切换节点的操作。例如,第一终端设备已经通过第一AM MRB接收了第一业务的前500个数据包,此时目标节点已经向第二终端设备发送了第一业务的前400个数据包,则目标节点的传输第一业务的进度慢于第一AM MRB的传输进度,则源节点可以指示第一终端设备重配第一AM MRB。
替代性的,S407和S408可以由目标节点确定并指示。例如,目标节点确定第一AM MRB的传输进度快于该目标节点给第二终端发送的第一业务的数据包的进度时,目标节点可以指示第一终端设备重配第一AM MRB。本申请实施例中,配置了第一AM MRB的终端设备切换节点时,源节点和目标节点可以根据第一AM MRB的传输进度与目标节点的传输进度选择不同的传输方案,避免由于切换节点造成的数据包丢失,提高了用户体验。
下面结合图5详细说明本申请提供的通信方法,图5是本申请一个实施例的通信方法500的示意性流程图,该方法500可以应用在图2所示的场景中,例如,终端设备同时接收单播业务和多播业务的场景中。
S501,第一接入网设备接收终端设备发送的第三信息,该第三信息用于指示该终端设备接收多播业务使用的资源或支持接收多播业务的能力。
相应的,终端设备向第一接入网设备发送第三信息。
需要说明的是,支持接收多播业务的能力可以理解为终端设备单独接收多播业务的能力,以及终端设备同时接收单播业务和多播业务时支持接收多播业务的能力。
具体的,第一接入网设备可以接收终端设备发送的第三信息,以使第一接入网设备可以根据第三信息为终端设备配置用于单播业务的数据无线承载。
第三信息包括接收多播业务使用的健壮性包头压缩上下文(ROHC-Context)的数量和/或以太网包头压缩上下文(Ethernet-Context)的数量和/或MRB或逻辑信道(logical channel,LCH)的数量。
需要说明的是,终端设备接收多播业务使用的资源可以理解为该终端设备正在接收多播业务使用的资源;或
终端设备接收多播业务使用的资源可以理解为该终端设备希望接收多播业务时占用的资源;或
终端设备接收多播业务使用的资源可以理解为该终端设备支持接收多播业务规划的资源。
终端设备可以通过以下几种方式发送第三信息:
方式一,第三信息可以包括在MBS interest indicator信令中。
方式二,终端设备可以单独发送第三信息。
方式三,第三信息可以包括在UE assistanceinformation信令中。
方式四,第三信息可以包括在UECapabilityInformation信令中。
应理解,本申请实施例对于终端设备发送接收多播业务使用的资源或支持接收多播业 务的能力的方式并不限定,当通过除上述4种方式以外的方式以实施本申请的方法均应落入本申请的保护范围。
S502,第一接入网设备根据第三信息向终端设备配置数据无线承载(data radio bearer,DRB),该DRB用于承载单播业务。
具体的,第一接入网设备接收到第三信息后,可以根据第三信息确定终端设备使用多播业务的资源或支持接收多播业务的能力,从而可以根据终端设备使用多播业务的资源或接收多播业务的能力结合终端设备的能力为终端设备配置用于承载单播业务的DRB。
具体的,可以是网络设备为终端设备配置每个DRB可用的最大的Rohc-Context和/或EHC-Context和/或LCH数量。
例如,第三信息指示终端设备正在接收多播业务使用的LCH为15,由于LCH的总数为32个,则第一接入网设备可以确定用于单播业务的DRB的LCH数量为17个。
再例如,第三信息指示终端设备支持接收多播业务时的最大ROHC-Context数量为50,该终端设备上报的支持最大的ROHC-Context数量为100,则第一接入网设备可以确定单播业务的DRB的ROHC-Context数量为50。
可选的,在一些实施例中,终端设备发送第三信息之前,方法500还包括:
S503,第二接入网设备向终端设备发送多播业务的数据。
具体的,终端设备接收第二接入网设备向终端设备发送的多播业务的数据,从而可以确定目前正在接收多播业务使用的资源。
应理解,在上述步骤S501-S503中,(1)第一接入网设备可以是单播接入网设备;(2)第二接入网设备可以是多播接入网设备或广播接入网设备。为了便于理解本申请提供的一种通信方法,以下,作为示例而非限定,以第一接入网设备是单播接入网设备,第二接入网设备是多播接入网设备为例,且第三信息通过方式一或方式二发送,参考如图6所示的具体示例方法,分别对方法500中的S501-S503进行详细说明。
需要说明的是,下面提到的某些步骤与上述方法500相同,此处对于相关细节不再赘述,具体过程可参考方法500相关步骤。
S601,单播接入网设备接收终端设备发送的第三信息,该第三信息用于指示该终端设备接收多播业务使用的资源。
相应的,终端设备向单播接入网设备发送第三信息。
具体的,单播接入网设备可以接收终端设备发送的第三信息,以使单播接入网设备可以根据第三信息为终端设备配置用于单播业务的DRB。
第三信息包括接收多播业务使用的ROHC-Context的数量和/或以太网包头压缩上下文(Ethernet-Context)的数量和/或MRB或LCH(logical channel,LCH)的数量。
终端设备接收多播业务使用的资源可以理解为该终端设备正在接收多播业务使用的资源;或
终端设备接收多播业务使用的资源可以理解为该终端设备希望接收多播业务时占用的资源;或
终端设备接收多播业务使用的资源可以理解为该终端设备支持接收多播业务规划的资源。
可以理解的是,第三信息包括接收多播业务使用的ROHC-Context数量可以理解为该 终端设备正在接收多播业务使用的ROHC-Context数量;或
终端设备接收多播业务使用的资源可以理解为该终端设备希望接收多播业务时占用的ROHC-Context数量;或
终端设备接收多播业务使用的资源可以理解为该终端设备支持接收多播业务规划的ROHC-Context数量。
针对第三信息包括接收多播业务使用的Ethernet-Context的数量和/或MRB或LCH的数量的描述,可以参见上文,为了简洁在此不再赘述。
S602,单播接入网设备根据第三信息向终端设备配置DRB,该DRB用于承载单播业务。
具体的,单播接入网设备根据第三信息可以确定终端设备使用的用于多播业务的资源,从而单播接入网设备可以根据终端设备的能力确定用于单播业务的资源。终端设备的能力可以理解为终端设备接收多播业务和单播业务的能力,例如,终端设备可以用于接收单播业务和多播业务的ROHC-Context的数量为100。
S603,多播接入网设备向终端设备发送多播业务的数据。
针对S603的描述,可以参见针对S503的描述,为了简洁,在此不再赘述。
单播接入网设备可以通过以下几种方式确定终端设备的能力。
方式一:终端设备向单播接入网设备上报其能力。
方式二:单播接入网设备通过核心网元或其他接入网设备确定终端设备的能力。
针对方式1,终端设备在发送第三信息之前,方法600还包括:
S604,单播接入网设备向终端设备发送能力查询信息。
相应的,终端设备接收单播接入网设备发送的能力查询信息。
S605,终端设备向单播接入网设备发送能力信息。
相应的,单播接入网设备接收终端设备发送的能力信息。
具体的,该能力信息包括终端设备接收多播业务和单播业务的能力。
示例性的,单播接入网设备通过UECapalibityEnquiry信令请求终端设备接收单播业务和多播业务的能力,终端设备通过UECapabilityInformation信令向单播接入网设备上报其支持单播业务和多播业务的能力。
本申请实施例中,终端设备通过向单播接入网设备上报用于多播业务的资源信息,从而第一接入网设备可以根据多播业务的资源并结合终端设备的能力为终端设备配置用于单播业务的DRB,保证了不会超出终端设备的PDCP能力。
上述方法600以第三信息通过方式一至方式二发送进行介绍,下面将以第三信息以方式四的方式发送并结合图7对方法500中的S501-S502进行详细说明。
需要说明的是,下面提到的某些步骤与上述方法500、600相同,此处对于相关细节不再赘述,具体过程可参考方法500、600相关步骤。
S701,单播接入网设备向终端设备发送能力查询信息。
相应的,终端设备接收单播接入网设备发送的能力查询信息。
具体的,该能力查询信息用于请求终端设备支持多播业务的能力。
S702,终端设备向单播接入网设备发送能力信息,该能力信息包括第三信息。
相应度,单播接入网设备接收终端设备发送的能力信息。
S703,单播接入网设备根据第三信息向终端设备配置DRB,该DRB用于承载单播业务。
在一种可能的实现方式中,单播接入网设备发送的能力查询信息还用于请求终端设备支持单播业务的能力,相应的,终端设备发送的能力信息指示终端设备支持单播的能力,从而单播接入网设备可以根据终端设备支持多播业务的能力为终端设备配置DRB承载单播业务。例如,终端设备上报用于支持用于多播业务的ROHC-Context数量为25,上报用于支持用于单播业务的ROHC-Context数量为75,则单播接入网设备在向终端设备配置单播业务时使用的ROHC-Context的数量不能超过75。
在该种可能的实现方式中,终端设备在能力信息中可以分别上报支持多播业务和单播业务的能力,可以理解的是,终端设备支持多播业务的能力和支持单播业务的能力之和为终端设备接收业务的总能力。例如,终端设备支持用于多播业务的ROHC-Context数量为25,用于支持用于单播业务的ROHC-Context数量为75,则终端设备用于接收单播和多播业务的ROHC-Context数量为100。
在另一种可能的实现方式中,单播接入网设备发送的能力查询信息还用于请求终端设备支持单播业务和支持多播业务的总能力,相应的,终端设备发送的能力信息指示终端设备支持单播业务和支持多播业务的总能力,从而单播接入网设备可以根据终端设备的总能力与终端设备支持多播业务的能力之差为终端设备配置用于承载单播业务的DRB。例如,终端设备上报其支持最大的ROHC-Context数量为100,且终端设备上报用于支持用于多播业务的ROHC-Context数量为25,则单播接入网设备在向终端设备配置单播业务时使用的ROHC-Context的数量不能超过75。
需要说明的是,本申请实施例中对于方式一至方式四并不限定为单独实施,方式一至方式四可以任意组合。例如,终端设备可以通过方式一和方式二发送第三信息。
本申请实施例中,终端设备通过向单播接入网设备上报支持多播业务的能力,从而第一接入网设备可以根据终端设备支持多播业务的能力为终端设备配置用于单播业务的DRB,保证了不会超出终端设备的PDCP能力。
需要说明的是,上述方法500-700以终端设备接收单播接入网设备和多播接入网设备的业务为例,但是本申请实施例并不限定于此,终端设备还可以接收一个接入网设备的单播业务和多播业务,下面以第一接入网发送单播业务,第二接入网发送多播业务,第一接入网和第二接入网属于同一个接入网设备为例并结合图8介绍本申请提供的另一例通信方法的示意性流程图。第一接入网和第二接入网属于同一个接入网设备可以理解为第一接入网和第二接入网由同一个接入网设备提供服务。
下面提到的某些步骤与上述方法500-700相同,此处对于相关细节不再赘述,具体过程可参考方法500-700相关步骤。
S801,接入网设备接收终端设备发送的第三信息,该第三信息用于指示该终端设备接收多播业务使用的资源或支持接收多播业务的能力。
针对第三信息的描述可以参见上文,为了简洁,在此不再赘述。
S802,接入网设备根据第三信息向终端设备配置DRB,该DRB用于承载单播业务。
本申请实施例中,终端设备通过向接入网设备上报支持多播业务的能力或接收多播业务使用的资源,从而接入网设备可以根据终端设备支持多播业务的能力或接收多播业务使 用的资源为终端设备配置用于单播业务的DRB,保证了不会超出终端设备的PDCP能力。
可选的,在一些实施例中,终端设备发送第三信息之前,方法800还包括:
S803,接入网设备向终端设备发送多播业务的数据。
上述方法500-800以终端设备上报接收多播业务使用的资源或支持使用多播业务的能力为例,下面将介绍本申请提供的另一种通信方法。
S1,接入网设备接收终端设备发送的多播业务指示信息,该多播业务指示信息用于指示该终端设备接收多播业务。
相应的,终端设备向接入网设备发送多播业务指示信息。
一种可能的实现方式,多播业务指示信息包括在MBS interest indicator信令中。
一种可能的实现方式,终端设备可以单独发送多播业务指示信息。
S2,接入网设备为终端设备配置PDCP资源阈值。
具体的,接入网设备接收到多播业务指示信息时,接入网设备可以为终端设备配置终端设备PDCP资源的阈值。
S3,当终端设备接收多播业务和/或单播业务使用的PDCP资源到达阈值时,终端设备发送指示信息,该指示信息用于指示重配PDCP资源。
具体的,当终端设备接收到的单播业务和/或多播业务使用的PDCP资源到达阈值时,终端设备可以向接入网设备发送指示信息,以指示重配PDCP资源。例如,以该终端设备的PDCP资源为ROHC-Context数量为例,该终端设备ROHC-Context总数量为100,阈值为90或90%,当终端设备接收到的单播业务和/或多播业务使用的ROHC-Context达到90时,则可以向接入网设备发送指示信息。
替代性的,在一些实施例中,当终端设备接收多播业务和/或单播业务使用的PDCP资源≥N%阈值时,终端设备发送指示信息,其中0≤N≤100。例如,以该终端设备的PDCP资源为ROHC-Context数量为例,该终端设备ROHC-Context总数量为100,阈值为90,N=90,当终端设备接收到的单播业务和/或多播业务使用的ROHC-Context达到81时,则可以向接入网设备发送指示信息。
S4,接入网设备向终端设备发送重配信息,该重配信息指示该终端设备重配PDCP资源。
具体的,接入网设备在接收到终端设备发送的指示信息后,确定该终端设备的使用PDCP资源达到阈值,则可以指示终端设备重配PDCP资源。例如,以该终端设备的PDCP资源为ROHC-Context数量为例,该终端设备ROHC-Context总数量为100,阈值为70。终端设备包括第一DRB和第二DRB,第一DRB能够使用的ROHC-Context数量为50,第二DRB能够使用的ROHC-Context数量为50,第一DRB用于承载第一业务,使用的ROHC-Context数量为50,第二DRB用于承载第二业务,使用的ROHC-Context数量为20。由于第一DRB和第二DRB使用的ROHC-Context达到阈值,则终端设备发送指示信息,该指示信息指示第一DRB和第二DRB的资源使用情况(例如,第一DRB使用的ROHC-Context为50,第二DRB使用的ROHC-Context为20),接入网设备接收到该指示信息后,可以指示终端设备重配PDCP资源,使得第二DRB能够ROHC-Context的资源变为20,剩余的ROHC-Context可以用于接收多播和/或单播业务。
在一些实施例中,该接入网设备可以是单播接入网设备。
本申请实施例中,接入网设备通过设置PDCP资源的阈值,当终端设备使用的PDCP资源超出阈值时,接入网设备可以动态的调整PDCP资源,避免了多个业务之间的冲突。
需要说明的是,方法500至800以终端设备向接入网设备发送该终端设备接收多播业务使用的资源或支持接收多播业务的能力为例,但本申请并不限定于此,本申请还提供了一种通信方法,终端设备还可以向接入网设备发送该终端设备接收单播业务使用的资源或支持接收单播业务的能力以使接入网设备向终端设备配置MRB承载多播业务。该通信方法可以应用于图2所示的场景中,该方法包括:
S1,第一接入网设备接收终端设备发送的第四信息,该第四信息用于指示该终端设备接收单播业务使用的资源或支持接收单播业务的能力。
相应的,终端设备向第一接入网设备发送第四信息。
需要说明的是,支持接收单播业务的能力可以理解为终端设备单独接收单播业务的能力,以及终端设备同时接收单播业务和多播业务时支持接收单播业务的能力。
具体的,第一接入网设备可以接收终端设备发送的第四信息,以使第一接入网设备可以根据第四信息为终端设备配置用于多播业务的MRB。
第一接入网设备接收第四信息的方式与接收第三信息的方式类似,为了简洁,在此不再赘述。
S2,第一接入网设备根据第四信息向终端设备配置MRB,该MRB用于承载多播业务。
应理解,第一接入网根据第四信息向终端设备配置MRB类似于第一接入网根据第三信息向终端设备配置DRB,为了简洁,在此不再赘述。
例如,第四信息指示终端设备支持接收单播业务时的最大ROHC-Context数量为50,该终端设备上报的支持最大的ROHC-Context数量为100,则第一接入网设备可以确定多播业务的MRB的ROHC-Context数量为50。
本申请实施例中,终端设备通过向接入网设备上报用于单播业务的资源信息,从而第一接入网设备可以根据单播业务的资源并结合终端设备的能力为终端设备配置用于多播业务的MRB,保证了不会超出终端设备的PDCP能力。
可以理解的是,上述终端设备上报该终端设备接收单播业务使用的资源或支持接收单播业务的能力,以使接入网设备向该终端设备配置MRB承载多播业务的技术方案类似于方法500-800,详细的技术细节可以参见方法500-800。
由于存在LCH的复用以及使用C-RNTI加扰重传初传时使用G-RNTI加扰的数据包,使得终端设备可能无法将数据映射到正确的,RB上。例如,终端设备接收到使用C-RNTI加扰重传的初传时使用G-RNTI加扰的数据包时,终端设备使用C-RNTI解扰后可以得到LCH标识,如果存在LCH对多个多播业务复用,则终端需要再根据LCH标识对应到G-RNTI才能确定此重传数据包属于哪个MRB或者哪个多播业务,如果不能根据LCH标识找到对应的G-RNTI,则终端设备因为此LCH上对应了多个业务的G-RNTI就无法确定该重传数据包对应的业务。再例如,终端设备接收到使用C-RNTI加扰重传的初传时使用G-RNTI加扰的数据包时,终端设备使用C-RNTI解扰后可以得到LCH标识,如果该LCH存在C-RNTI和G-RNTI复用,则终端需要再根据LCH标识对应到G-RNTI才能确定此重传数据包属于哪个MRB还是属于DRB,如果不能根据LCH标识找到对应的G-RNTI,则 终端设备无法凭借LCH标识确定数据包对应的RB,无法确定数据包对应的业务。例如,第一多播业务对应第一G-RNTI,第一多播业务对应第一LCH,第一LCH还对应第二多播业务,第二多播业务对应第二G-RNTI,当第一多播业务的第一数据包传输失败并使用C-RNTI加扰重传第一数据包,终端设备接收到使用C-RNTI加扰重传第一数据包后,可以解析出得到该第一数据包对应的LCH为第一LCH,但是由于无法确定G-RNTI,则终端设备无法确定该第一数据包对应的是第一多播业务还是第二多播业务。再例如,第一LCH对应第一C-RNTI和第一G-RNTI,第一多播业务对应第一G-RNTI,第一单播业务对应C-RNTI,当第一多播业务的第一数据包传输失败并使用C-RNTI加扰重传第一数据包,终端设备通过C-RNTI得到该第一数据包对应的LCH为第一LCH,但是由于无法确定第一G-RNTI,则终端设备无法确定该第一数据包对应的是第一多播业务还是第一单播业务。
基于此,下面结合图9详细说明本申请提供的通信方法,图9是本申请一个实施例的通信方法900的示意性流程图,该方法900可以应用在图2所示的场景中。
S901,第三接入网设备使用第一G-RNTI向终端设备发送第一数据包,该第一数据包对应第一LCH。
相应的,终端设备接收第三接入网设备使用第一G-RNTI发送的第一数据包。
第三接入网设备使用第一G-RNTI发送第一数据包可以理解为第三接入网设备使用第一G-RNTI加扰第一数据包后并发送。
S902,当满足第一预设条件时,该第三接入网设备使用C-RNTI重传第一数据包。
相应的,终端设备接收第三接入网设备使用C-RNTI重传的第一数据包。
第三接入网设备使用C-RNTI重传第一数据包可以理解为第三接入网设备使用C-RNTI加扰并重传第一数据包。
S903,当满足第二预设条件时,该第三接入网设备使用第一G-RNTI重传第一数据包。
可选的,在一些实施例中,第一预设条件为第三接入网设备接收到第一数据包的NACK反馈,或第一LCH不存在对多个RNTI复用。
应理解,第一LCH不存在多个RNTI复用包括:第一LCH不存在多个G-RNTI复用,或第一LCH不存在一个C-RNTI和至少一个G-RNTI复用。
进一步的,在一些实施例中,第一预设条件为第一LCH不存在对多个G-RNTI复用。
具体的,第一预设条件可以为第三接入网设备接收到第一数据包的NACK反馈。当第三接入网设备接收到第一数据包的NACK反馈时,表明终端设备在一个HARQ进程已收到了使用第一G-RNTI发送的第一数据包但未解码成功,则终端设备已经确定第一数据包对应的G-RNTI为第一G-RNTI或第一数据包对应的具体业务,则第三接入网设备可以使用C-RNTI重传该第一数据包。
例如,第一多播业务对应第一多播业务对应第一G-RNTI,第一多播业务对应第一LCH,第一LCH还对应第二多播业务,第二多播业务对应第二G-RNTI,当终端设备接收到第三接入网设备使用第一G-RNTI发送的第一多播业务的第一数据包但未解码成功,则向第三接入网设备发送NACK,但终端设备已确定第一数据包对应第一G-RNTI。第三接入网设备接收到NACK后,可以使用C-RNTI重传该第一数据包。终端设备接收到使用C-RNTI重传的第一数据包时,解码该重传的第一数据包得到LCH标识,进而根据LCH标识和第 一G-RNTI确定第一数据包对应的业务为第一多播业务。
具体的,第一预设条件还可以第一LCH不存在一个C-RNTI和至少一个G-RNTI复用。当承载第一多播业务的第一LCH不存在一个C-RNTI和至少一个G-RNTI复用时,即第一LCH不对应一个C-RNTI和至少一个G-RNTI,则第三接入网设备可以使用C-RNTI向终端设备重传第一数据包。终端设备接收到使用C-RNTI重传的第一数据包后,使用C-RNTI解扰后得到第一LCH的LCH标识,然后将第一数据包递交到相应的更高层,比如RLC层或PDCP层。
例如,第一多播业务对应第一多播业务对应第一G-RNTI,第一多播业务对应第一LCH,当终端设备未接收到第三接入网设备使用第一G-RNTI发送的第一多播业务的第一数据包时,且第一LCH不存在G-RNTI和C-RNTI的复用。则第三接入网设备可以使用C-RNTI向终端设备重传第一数据包,终端设备接收到使用C-RNTI重传的第一数据包时,解码该重传的第一数据包得到LCH标识,进而根据LCH标识确定第一数据包对应的业务为第一多播业务。
具体的,第一预设条件还可以第一LCH不存在多个G-RNTI复用。当承载第一多播业务的第一LCH不存在多个G-RNTI复用时,即第一LCH不对应多个G-RNTI,则第三接入网设备可以使用C-RNTI向终端设备重传第一数据包。终端设备接收到使用C-RNTI重传的第一数据包后,使用C-RNTI解扰后得到第一LCH的LCH标识,然后将第一数据包递交到相应的更高层,比如RLC层或PDCP层。
例如,第一多播业务对应第一多播业务对应第一G-RNTI,第一多播业务对应第一LCH,当终端设备未接收到第三接入网设备使用第一G-RNTI发送的第一多播业务的第一数据包时,且第一LCH不存在G-RNTI复用。则第三接入网设备可以使用C-RNTI向终端设备重传第一数据包,终端设备接收到使用C-RNTI重传的第一数据包时,解码该重传的第一数据包得到LCH标识,进而根据LCH标识确定第一数据包对应的业务为第一多播业务。
本申请实施例中,当第三接入网设备接收到终端设备发送的针对该第三接入网设备使用G-RNTI发送的数据包的NACK,或第三接入网设备确定终端设备不存在LCH复用时,第三接入网设备才会使用C-RNTI加扰重传初传时使用R-RNTI加扰的数据包,避免了终端设备仅根据LCH标识不能区分出HARQ重传的数据包属于哪个RB,或者属于哪个业务,有效的避免了两者之间的冲突,保证了通信质量。
可选的,在一些实施例中,第二预设条件为第三接入网设备未接收到第一数据包的NACK反馈或定时器超时,且第一LCH存在多个RNTI复用。
可选的,在一些实施例中,第二预设条件为第三接入网设备未接收到第一数据包的NACK反馈或定时器超时。
具体的,第二预设条件为第三接入网设备未接收到第一数据包的NACK反馈或定时器超时。当第三接入网设备未接收到第一数据包的NACK反馈或定时器超时时,表明终端设备未在一个HARQ进程内收到使用第一G-RNTI发送的第一数据包,若第三接入网设备使用C-RNTI重传第一数据包时,如果终端设备存在LCH对RNTI复用时,终端设备可能无法区分数据包属于哪个业务,因此第三接入网设备仍使用第一G-RNTI重传第一数据包。
例如,第一多播业务对应第一多播业务对应第一G-RNTI,第一多播业务对应第一LCH, 第一LCH还对应第二多播业务,第二多播业务对应第二G-RNTI,当终端设备未接收到第三接入网设备使用第一G-RNTI发送的第一多播业务的第一数据包时,第三接入网设备不能使用C-RNTI重传第一数据包,仍使用第一G-RNTI重传第一数据包。
具体的,第二预设条件为第三接入网设备未接收到第一数据包的NACK反馈或定时器超时,且第一LCH存在多个G-RNTI复用。当第三接入网设备未接收到第一数据包的NACK反馈或定时器超时时,且确定第一LCH存在多个G-RNTI复用时,若第三接入网设备使用C-RNTI重传第一数据包时,终端设备将会无法区分数据包属于哪个业务,因此第三接入网设备仍使用第一G-RNTI重传第一数据包。
例如,第一多播业务对应第一多播业务对应第一G-RNTI,第一多播业务对应第一LCH,当终端设备未接收到第三接入网设备使用第一G-RNTI发送的第一多播业务的第一数据包时,且第一LCH存在G-RNTI复用。则第三接入网设备不能使用C-RNTI重传第一数据包,仍使用第一G-RNTI重传第一数据包。
具体的,第二预设条件为第三接入网设备未接收到第一数据包的NACK反馈或定时器超时,且第一LCH存在C-RNTI和至少一个G-RNTI复用。当第三接入网设备未接收到第一数据包的NACK反馈或定时器超时时,且确定第一LCH存在C-RNTI和至少一个G-RNTI复用时,若第三接入网设备使用C-RNTI重传第一数据包时,终端设备将会无法区分数据包属于哪个RB,因此第三接入网设备仍使用第一G-RNTI重传第一数据包。
例如,第一多播业务对应第一多播业务对应第一G-RNTI,第一多播业务对应第一LCH,当终端设备未接收到第三接入网设备使用第一G-RNTI发送的第一多播业务的第一数据包时,且第一LCH存在G-RNTI和C-RNTI的复用。则第三接入网不能使用C-RNTI重传第一数据包,仍使用第一G-RNTI重传第一数据包。
本申请实施例中,当终端设备没有收到使用G-RNTI发送的新传数据时,或终端设备没有收到使用G-RNTI发送的新传数据且存在LCH复用时,则第三接入网设备不会使用C-RNTI重传,避免了终端设备仅根据LCH标识不能区分出HARQ重传的数据包属于哪个RB,或者属于哪个业务,有效的避免了两者之间的冲突,保证了通信质量。
下面结合图10详细说明本申请提供的通信方法,图10是本申请一个实施例的通信方法1000的示意性流程图,该方法1000可以应用在图2所示的场景中。
S1001,终端设备接收第四接入网设备发送的第七指示信息,第七指示信息指示第四接入网设备是否使用C-RNTI加扰重传初传时使用G-RNTI加扰的数据包,或第七指示信息指示终端设备的LCH是否对应多个RNTI。
对应的,第四接入网设备向终端设备发送第七指示信息。
S1002,当第七指示信息指示第四接入网设备使用C-RNTI加扰重传初传时使用G-RNTI加扰的数据包时,终端设备的LCH不对应多个RNTI。
具体的,当第四接入网设备使用C-RNTI加扰重传初传时使用G-RNTI加扰的数据包时,终端设备的LCH不对应多个RNTI,即终端设备不会存在LCH的复用。
例如,第四接入网设备用于传输第一多播业务,第一多播业务对应于第一LCH和第一G-RNTI,该第一LCH还对应第二多播业务,第二多播业务对应第二G-RNTI。当第四接入网设备使用第一G-RNTI发送第一多播业务的第一数据包失败时,第四接入网设备使用C-RNTI重传第一数据包前可以通过第七指示信息指示终端设备关闭对第一LCH的复 用或指示重传第一数据包的方式,从而保证终端设备可以将第一数据包映射到正确的MRB上。
一种可能的实现方式:第四接入网设备直接指示终端设备关闭第一LCH的复用。
另一种可能的实现方式:第四接入网设备指示将使用C-RNTI重传数据包,从而间接指示终端设备关闭第一LCH的复用。
S1003,当第七指示信息指示第四接入网设备不使用C-RNTI加扰重传初传时使用G-RNTI加扰的数据包时,终端设备的LCH对应多个RNTI。
具体的,当第四接入网设备不使用C-RNTI加扰重传初传时使用G-RNTI加扰的数据包时,终端设备的LCH可以对应多个RNTI,即终端设备可以存在LCH的复用。
例如,第四接入网设备用于传输第一多播业务,第一多播业务对应于第一LCH和第一G-RNTI,该第一LCH还对应第二多播业务,第二多播业务对应第二G-RNTI。当第四接入网设备使用第一G-RNTI发送第一多播业务的第一数据包失败时,第四接入网设备使用第一G-RNTI重传第一数据包时还可以指示终端设备保持第一LCH的复用。
一种可能的实现方式:第四接入网设备直接指示终端设备保持第一LCH的复用。
另一种可能的实现方式:第四接入网设备指示将使用第一G-RNTI重传数据包,从而间接指示终端设备保持第一LCH的复用。
S1004,当第七指示信息指示终端设备的LCH对应多个RNTI时,终端设备不使用C-RNTI接收初传时使用G-RNTI加扰的数据包的重传数据包。
具体的,当第四接入网设备指示终端设备的LCH可以对应多个G-RNTI时,即第四接入网设备指示终端设备的LCH复用,则终端设备不使用C-RNTI接收初传时使用G-RNTI加扰的数据包的重传数据包。
例如,第四接入网设备用于传输第一多播业务,第一多播业务对应于第一LCH和第一G-RNTI,该第一LCH还对应第二多播业务,第二多播业务对应第二G-RNTI。当第四接入网设备指示终端设备LCH复用时,即保持第一LCH的复用,为了避免冲突,终端设备不使用C-RNTI接收初传时使用第一G-RNTI加扰的数据包的重传数据包。
一种可能的实现方式:第四接入网设备直接指示终端设备保持第一LCH的复用。
另一种可能的实现方式:第四接入网设备指示将使用第一G-RNTI重传数据包,从而间接指示终端设备保持第一LCH的复用。
S1005,当第七指示信息指示终端设备的LCH不对应多个RNTI时,终端设备使用C-RNTI接收初传时使用G-RNTI加扰的数据包的重传数据包。
具体的,当第四接入网设备指示终端设备的LCH不对应多个G-RNTI时,即第四接入网设备指示终端设备的LCH不复用,则终端设备使用C-RNTI接收初传时使用G-RNTI加扰的数据包的重传数据包。
例如,第四接入网设备用于传输第一多播业务,第一多播业务对应于第一LCH和第一G-RNTI,该第一LCH还对应第二多播业务,第二多播业务对应第二G-RNTI。当第四接入网设备指示终端设备LCH不对应多个G-RNTI时,即关闭第一LCH的复用,由于终端设备关闭了LCH的复用,则终端设备可以使用C-RNTI接收第一G-RNTI调度的数据包的重传数据包。
一种可能的实现方式:第四接入网设备直接指示终端设备关闭第一LCH的复用。
另一种可能的实现方式:第四接入网设备指示将使用C-RNTI重传数据包,从而间接指示终端设备关闭第一LCH的复用。
应理解,S1002-S1005之间并没有先后的顺序。
可选的,方法1000还包括:
终端设备向第四接入网设备发送第八指示信息,第八指示信息用于指示终端设备是否支持接收使用C-RNTI接收初传时使用G-RNTI加扰的数据包的重传数据包。
本申请实施例中,通过第四接入网设备的指示,终端设备可以根据最终确定LCH是否对应多个RNTI或是否使用C-RNTI接收初传时使用G-RNTI加扰的数据包的重传数据包,避免了终端设备仅根据LCH标识不能区分出HARQ重传的数据包属于哪个RB,或者属于哪个业务,有效的避免了两者之间的冲突,保证了通信质量。
图11和图12为本申请的实施例提供的通信装置的示意性框图。这些装置可以实现上述方法实施例中终端设备或任一接入网设备的功能,因此也能实现上述方法实施例所具备的有益效果。在本申请实施例中,该装置可以是终端设备,也可以是接入网设备。
图11是本申请实施例提供的一种通信装置的示意性框图,该装置1100包括收发单元1101,可选的,还可以包括处理单元1102。
当装置1100用于实现图3所述方法实施例中终端设备的功能时,该收发单元1101用于接收第一指示信息,该第一指示信息指示重建第一分组数据聚合协议PDCP实体时调整所述第一PDCP实体的接收窗口。处理单元1102用于根据该第一指示信息调整第一PDCP实体的接收窗口。可选的,处理单元1102还用于当重排序定时器开启时,递交第一PDCP实体缓存的数据包。
当装置1100用于实现图3所述方法实施例中源节点的功能时,该收发单元1101用于向终端设备发送第一指示信息,该第一指示信息指示重建第一分组数据聚合协议PDCP实体时调整所述第一PDCP实体的接收窗口。收发单元1101还用于向目标节点发送切换请求信息。收发单元1101还用于接收目标节点发送的切换请求确认信息。
当装置1100用于实现图3所述方法实施例中目标节点的功能时,该收发单元1101用于接收切换请求信息。收发单元1101还用于向源节点发送切换请求确认信息。
当装置1100用于实现图4所述方法实施例中源节点的功能时,该收发单元1101用于向目标节点发送切换请求信息,还用于接收目标节点的切换请求确认信息。该处理单元1102用于在确定目标节点的传输第一业务的进度慢于第一AM MRB时,指示第一终端设备重配第一AM MRB。
当装置1100用于实现图4所述方法实施例中目标节点的功能时,该收发单元1101用于接收源节点发送的切换请求信息,还用于向源节点发送切换请求确认信息。该处理单元1102用于在该在确定目标节点的传输第一业务的进度快于第一AM MRB时,指示第一终端设备配置第二AM MRB传输目标节点已传输的第一业务的数据包。
当装置1100用于实现图5所述方法实施例中终端设备的功能时,该收发单元1101用于向第一接入网设备发送第三信息,该第三信息用于指示该终端设备接收多播业务使用的资源或支持多播业务的能力。
当装置1100用于实现图5所述方法实施例中第一接入网设备的功能时,该收发单元1101用于接收终端设备发送的第三信息,该第三信息用于指示该终端设备接收多播业务 使用的资源或支持多播业务的能力。处理单元1102用于根据第三信息向终端设备配置DRB,该DRB用于承载单播业务。
当装置1100用于实现图8所述方法实施例中第三接入网设备的功能时,该收发单元1101用于向终端设备发送使用第一G-RNTI发送的第一数据包。处理单元1102用于当满足第一预设条件时,使用C-RNTI重传该第一数据包;当满足第二预设条件时,使用第一G-RNTI重传该第一数据包。
当装置1100用于实现图8所述方法实施例中终端设备的功能时,该收发单元1101用于接收第三接入网设备发送的使用第一G-RNTI发送的第一数据包。
当装置1100用于实现图9所述方法实施例中第四接入网设备的功能时,该收发单元1101用于向终端设备发送第七指示信息,该第七指示信息指示第四接入网设备是否使用C-RNTI调度G-RNTI调度的数据包的重传数据包,或第七指示信息指示终端设备的逻辑信道是否对应多个G-RNTI。
当装置1100用于实现图9所述方法实施例中终端设备的功能时,该收发单元1101用于接收第四接入网设备发送的第七指示信息,该第七指示信息指示第四接入网设备是否使用C-RNTI调度G-RNTI调度的数据包的重传数据包,或第七指示信息指示终端设备的逻辑信道是否对应多个G-RNTI。处理单元1102用于当第七指示信息指示第四接入网设备使用C-RNTI调度G-RNTI调度的数据包的重传数据包时,终端设备的逻辑信道不对应多个G-RNTI,或当第七指示信息指示第四接入网设备不使用C-RNTI调度G-RNTI调度的数据包的重传数据包时,终端设备的逻辑信道对应多个G-RNTI,或当第七指示信息指示终端设备的逻辑信道对应多个G-RNTI时,终端设备不使用C-RNTI接收G-RNTI调度的数据包的重传数据包,或当第七指示信息指示终端设备的逻辑信道不对应多个G-RNTI时,终端设备使用C-RNTI接收G-RNTI调度的数据包的重传数据包。
关于上述收发单元1101和处理单元1102更详细的描述,可参考上述方法实施例300至方法900中的相关描述,在此不再说明。
图12示出了应用本申请实施例的装置1200的示意性框图。上述方法300至方法900中任一方法所涉及的任一接入网设备和终端设备,都可以由图12所示的装置来实现。
应理解,装置1200可以是实体设备,也可以是实体设备的部件(例如,集成电路,芯片等等),还可以是实体设备中的功能模块。
如图12所示,该装置1200包括:一个或多个处理器1201。处理器1201可以存储用于执行本申请实施例的方法的执行指令。可选地,处理器1201中可以调用接口实现接收和发送功能。所述接口可以是逻辑接口或物理接口,对此不作限定。例如,接口可以是收发电路,或是接口电路。用于实现接收和发送功能的收发电路、或接口电路可以是分开的,也可以集成在一起。上述收发电路或接口电路可以用于代码/数据的读写,或者,上述收发电路或接口电路可以用于信号的传输或传递。
可选地,接口可以通过收发器实现。可选地,该装置121200还可以包括收发器1203。所述收发器1203可以称为收发单元、收发机、收发电路或者收发器等,用于实现收发功能。
可选地,该装置1200还可以包括存储器1202。本申请实施例对存储器1202的具体部署位置不作具体限定,该存储器可以集成于处理器中,也可以是独立于处理器之外。对 于该装置1200不包括存储器的情形,该装置1200具备处理功能即可,存储器可以部署在其他位置(如,云系统)。
处理器1201、存储器1202和收发器1203之间通过内部连接通路互相通信,传递控制和/或数据信号。
可以理解的是,尽管并未示出,装置1200还可以包括其他装置,例如输入装置、输出装置、电池等。
可选的,在一些实施例中,存储器1202可以存储用于执行本申请实施例的方法的执行指令。处理器1201可以执行存储器1202中存储的指令结合其他硬件(例如收发器703)完成下文所示方法执行的步骤,具体工作过程和有益效果可以参见下文方法实施例中的描述。
本申请实施例揭示的方法可以应用于处理器1201中,或者由处理器1201实现。处理器1201可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,方法的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存取存储器(random access memory,RAM)、闪存、只读存储器(read-only memory,ROM)、可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的指令,结合其硬件完成上述方法的步骤。
可以理解,存储器1202可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器ROM、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器RAM,其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
另外,在本申请中,装置1100是以功能模块的形式来呈现。这里的“模块”可以指特定应用集成电路ASIC、电路、执行一个或多个软件或固件程序的处理器和存储器、集成逻辑电路,和/或其他可以提供上述功能的器件。在一个简单的实施例中,本领域的技术人员可以想到装置1100可以采用图11所示的形式。处理单元1102可以通过图12所示的 处理器1201来实现。可选地,如果图12所示的计算机设备包括存储器1202,处理单元1102可以通过处理器1201和存储器1202来实现。收发单元1101可以通过图12所示的收发器1203来实现。所述收发器1203包括接收功能和发送功能。具体的,处理器通过执行存储器中存储的计算机程序来实现。可选地,当所述装置1100是芯片时,那么收发单元1203的功能和/或实现过程还可以通过管脚或电路等来实现。可选地,所述存储器可以为所述芯片内的存储单元,比如寄存器、缓存等,所述存储单元还可以是所述计算机设备内的位于所述芯片外部的存储单元,如图12所的存储器1202,或者,也可以是部署在其他系统或设备中的存储单元,不在所述计算机设备内。本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请的各个方面或特征可以实现成方法、装置或使用标准编程和/或工程技术的制品。本申请中使用的术语“制品”涵盖可从任何计算机可读器件、载体或介质访问的计算机程序。例如,计算机可读介质可以包括,但不限于:磁存储器件(例如,硬盘、软盘或磁带等),光盘(例如,压缩盘(compact disc,CD)、数字通用盘(digital versatile disc,DVD)等),智能卡和闪存器件(例如,可擦写可编程只读存储器(erasable programmable read-only memory,EPROM)、卡、棒或钥匙驱动器等)。另外,本文描述的各种存储介质可代表用于存储信息的一个或多个设备和/或其它机器可读介质。术语“机器可读介质”可包括但不限于,无线信道和能够存储、包含和/或承载指令和/或数据的各种其它介质。
本申请还提供了一种计算机可读介质,其上存储有计算机程序,该计算机程序被计算机执行时实现上述任一方法实施例的功能。
本申请还提供了一种计算机程序产品,该计算机程序产品被计算机执行时实现上述任一方法实施例的功能。在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
应理解,说明书通篇中提到的“实施例”意味着与实施例有关的特定特征、结构或特性包括在本申请的至少一个实施例中。因此,在整个说明书各个实施例未必一定指相同的实施例。此外,这些特定的特征、结构或特性可以任意适合的方式结合在一个或多个实施例 中。应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
还应理解,在本申请中,“当…时”、“若”以及“如果”均指在某种客观情况下UE或者基站会做出相应的处理,并非是限定时间,且也不要求UE或基站实现时一定要有判断的动作,也不意味着存在其它限定。
另外,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。
本文中术语“……中的至少一个”或“……中的至少一种”,表示所列出的各项的全部或任意组合,例如,“A、B和C中的至少一种”,可以表示:单独存在A,单独存在B,单独存在C,同时存在A和B,同时存在B和C,同时存在A、B和C这六种情况。
本申请中,若无特殊说明,“至少一个”指一个或多个,“多个”指两个或大于两个。
应理解,在本申请各实施例中,“与A相应的B”表示B与A相关联,根据A可以确定B。但还应理解,根据A确定B并不意味着仅仅根据A确定B,还可以根据A和/或其它信息确定B。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而 前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (17)

  1. 一种通信方法,其特征在于,所述方法应用于终端设备,所述终端设备包括第一多播无线承载MRB,所述第一MRB包括第一分组数据聚合协议PDCP实体和第一RLC实体,所述第一RLC实体采用确认模式AM,所述方法包括:
    所述终端设备接收源节点发送的第一指示信息,所述第一指示信息指示重建第一PDCP实体时调整所述第一PDCP实体的接收窗口;
    所述终端设备根据所述第一指示信息调整所述第一PDCP实体的接收窗口。
  2. 根据权利要求1所述的方法,其特征在于,所述第一指示信息包括第二指示信息,所述第二指示信息指示目标节点的区域会话ID与所述源节点的区域会话ID不一致;
    所述终端设备根据所述第一指示信息调整所述第一PDCP实体的接收窗口,包括:
    所述终端设备初始化所述第一PDCP实体的接收窗口的窗口参数。
  3. 根据权利要求1所述的方法,其特征在于,所述第一指示信息包括第三指示信息,所述第三指示信息指示目标节点与所述源节点的PDCP序列号不同步;
    所述终端设备根据所述第一指示信息调整所述第一PDCP实体的接收窗口,包括:
    所述终端设备初始化所述第一PDCP实体的接收窗口的窗口参数。
  4. 根据权利要求2或3所述的方法,其特征在于,所述方法还包括:
    当重排序定时器开启时,所述终端设备递交所述第一PDCP实体缓存的数据包。
  5. 根据权利要求1所述的方法,其特征在于,所述第一指示信息包括第四指示信息,所述第四指示信息用于指示目标节点的超帧号HFN;
    所述终端设备根据所述第一指示信息调整所述第一PDCP实体的接收窗口,包括:
    所述终端设备根据所述目标节点的HFN与源节点的HFN的差值调整所述第一PDCP实体的接收窗口的窗口参数。
  6. 根据权利要求1至5中任一项所述的方法,其特征在于,所述第一指示信息包含在用于指示切换节点的第一信息中。
  7. 一种通信方法,其特征在于,所述方法包括:
    源节点向终端设备发送第一指示信息,所述第一指示信息指示重建第一分组数据聚合协议PDCP实体时调整所述第一PDCP实体的接收窗口,其中,所述终端设备包括第一多播无线承载MRB,所述第一MRB包括第一PDCP实体和第一RLC实体,所述第一RLC实体采用确认模式AM,所述第一PDCP实体与所述第一RLC实体关联。
  8. 根据权利要求7所述的方法,其特征在于,所述源节点向所述终端设备发送第一指示信息之前,所述方法还包括:
    所述源节点向目标节点发送切换请求信息;
    所述源节点接收所述切换请求确认信息,所述切换请求确认信息包括用于指示调整所述第一PDCP实体的接收窗口的指示信息。
  9. 根据权利要求7或8所述的方法,其特征在于,所述第一指示信息包括第二指示信息,所述第二指示信息指示目标节点的区域会话ID与所述源节点的区域会话ID不一致。
  10. 根据权利要求7或8所述的方法,其特征在于,所述第一指示信息包括第三指示 信息,所述第三指示信息指示目标节点与所述源节点的序列号不同步。
  11. 根据权利要求7或8所述的方法,其特征在于,所述第一指示信息包括第四指示信息,所述第四指示信息指示目标节点的HFN。
  12. 根据权利要求7至11中任一项所述的方法,其特征在于,所述第一指示信息包含在用于指示切换节点的第一信息中。
  13. 一种装置,其特征在于,包括用于执行权利要求1至12中任一项所述的方法的模块或单元。
  14. 一种装置,其特征在于,包括处理器,所述处理器,用于执行存储器中存储的计算机程序或指令,以使得所述装置执行权利要求1至12中任一项所述的方法。
  15. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质上存储有计算机程序或指令,当所述计算机程序或指令在计算机上运行时,使得所述计算机执行如权利要求1至12中任一项所述的方法。
  16. 一种计算机程序产品,其特征在于,所述计算机程序产品包括用于执行如权利要求1至12中任一项所述的方法的计算机程序或指令。
  17. 一种芯片,其特征在于,所述芯片与存储器耦合,用于读取并执行所述存储器中存储的程序指令,以实现如权利要求1至12中中任一项所述的方法。
PCT/CN2023/070438 2022-01-10 2023-01-04 通信方法以及装置 WO2023131182A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210036022.8 2022-01-10
CN202210036022.8A CN116456283A (zh) 2022-01-10 2022-01-10 通信方法以及装置

Publications (1)

Publication Number Publication Date
WO2023131182A1 true WO2023131182A1 (zh) 2023-07-13

Family

ID=87073132

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/070438 WO2023131182A1 (zh) 2022-01-10 2023-01-04 通信方法以及装置

Country Status (2)

Country Link
CN (1) CN116456283A (zh)
WO (1) WO2023131182A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140105096A1 (en) * 2011-06-09 2014-04-17 Haifeng Wang Method and Apparatus for Facilitating Multicast Service
WO2021080826A1 (en) * 2019-10-24 2021-04-29 Qualcomm Incorporated Operating in a radio link control acknowledged mode using a multicast or broadcast radio bearer
CN113840241A (zh) * 2020-06-24 2021-12-24 华为技术有限公司 一种通信方法及通信装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140105096A1 (en) * 2011-06-09 2014-04-17 Haifeng Wang Method and Apparatus for Facilitating Multicast Service
WO2021080826A1 (en) * 2019-10-24 2021-04-29 Qualcomm Incorporated Operating in a radio link control acknowledged mode using a multicast or broadcast radio bearer
CN113840241A (zh) * 2020-06-24 2021-12-24 华为技术有限公司 一种通信方法及通信装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "Initialization of RLC and PDCP window", 3GPP DRAFT; R2-2108082, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. eMeeting; 20210816 - 20210827, 5 August 2021 (2021-08-05), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP052032444 *

Also Published As

Publication number Publication date
CN116456283A (zh) 2023-07-18

Similar Documents

Publication Publication Date Title
US11825347B2 (en) Switching between packet duplication operating modes
US10784949B2 (en) Method and apparatus for managing user plane operation in wireless communication system
CN109417723B (zh) 用于发送数据单元的方法和设备
CN107113291B (zh) 演进的数据压缩方案信令
CN108632934B (zh) 切换的方法和设备
KR102216510B1 (ko) 이동 통신 시스템에서 복수의 캐리어를 이용하여 데이터를 송수신하는 방법 및 장치
JP4991939B2 (ja) 基地局内ハンドオーバ最適化のための方法
US11665775B2 (en) Communications device, infrastructure equipment, communications system and methods
CN113424620A (zh) 跨LF和mmWave的服务连续性的方法和装置
US11184798B2 (en) Device and method for data transmission between base stations in wireless communication system
US20230189300A1 (en) Communication control method
WO2023131182A1 (zh) 通信方法以及装置
WO2022082666A1 (en) Methods, apparatuses, and media for operating point-to-multipoint radio bearer
WO2022141196A1 (en) Methods and apparatus to deliver reliable multicast services via pdcp retransmission
KR20190085447A (ko) 무선 통신 시스템에서 제어 시그널링을 수행하기 위한 장치 및 방법
WO2023245566A1 (en) Methods and apparatus to support harq feedback by random access for multicast reception in rrc inactive
WO2022151297A1 (zh) 数据传输方法及装置
US20240163673A1 (en) Method and device for applying integrity protection or verification procedure to enhance security in wireless communication system
WO2023028972A1 (zh) 数据处理的方法及其装置
CN115988427A (zh) 为多播设置初始pdcp状态变量的方法和用户设备
KR20190062164A (ko) 다중 연결 기반 이동 통신 시스템에서 통신 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23737045

Country of ref document: EP

Kind code of ref document: A1