WO2023130983A1 - 基于光矩阵交换的大规模多入多出信道模拟方法和装置 - Google Patents

基于光矩阵交换的大规模多入多出信道模拟方法和装置 Download PDF

Info

Publication number
WO2023130983A1
WO2023130983A1 PCT/CN2022/141342 CN2022141342W WO2023130983A1 WO 2023130983 A1 WO2023130983 A1 WO 2023130983A1 CN 2022141342 W CN2022141342 W CN 2022141342W WO 2023130983 A1 WO2023130983 A1 WO 2023130983A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel
signal
optical
simulation
subsystem
Prior art date
Application number
PCT/CN2022/141342
Other languages
English (en)
French (fr)
Inventor
李蓬蓬
肖志斌
李柏渝
左勇
吕志成
王飞雪
刘文祥
陈雷
黄新明
谢名赞
刘欢
钟水彬
Original Assignee
中国人民解放军国防科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国人民解放军国防科技大学 filed Critical 中国人民解放军国防科技大学
Publication of WO2023130983A1 publication Critical patent/WO2023130983A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/391Modelling the propagation channel
    • H04B17/3912Simulation models, e.g. distribution of spectral power density or received signal strength indicator [RSSI] for a given geographic region
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/27Arrangements for networking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the invention belongs to the technical field of communication transmission, and in particular relates to a large-scale multiple-input multiple-output channel simulation method and device based on optical matrix switching.
  • Communication, radar, electronic countermeasures and other large-scale radio systems or large-scale signal docking scenarios include a variety of signal transmitting equipment, signal forwarding equipment, signal receiving equipment and other wireless signal receiving and processing equipment, the radio frequency signal will be introduced during the space transmission process
  • the dynamic characteristics and environmental channel including such as ionosphere, troposphere, multipath effect, shadowing effect, etc.
  • characteristics generated by relative motion between platforms cause real-time changes in signal power, frequency, phase, delay and other characteristics.
  • the signal transmitting equipment, signal forwarding equipment, and signal receiving equipment all need to verify their functional performance through docking tests.
  • the traditional static signal direct connection docking test cannot be equivalent to the real working environment of related equipment.
  • the signal transmission channel simulation system can simulate the dynamic transmission and reception of large-scale signal transmitting equipment, signal forwarding equipment, and signal receiving equipment, and superimpose the dynamic transmission characteristics and environmental channel characteristics of each physical link on the radio frequency signal in real time, making the ground connection test It can truly reflect the performance of related equipment in actual dynamic operation in a large system.
  • Ordinary single-level channel simulation equipment can only support wired channels, such as 4 or 8 channels, and because the simulation data drive control is relatively independent, the time-frequency system cannot be synchronized and unified, and does not support multi-channel parallel expansion, and considering some signal transmission equipment, Signal forwarding equipment, signal receiving equipment, etc. are limited by volume, weight, installation status, inability to move easily (such as large ground base stations, assembled satellites, etc.), and physical distance between each other (hundreds of meters or even thousands of kilometers).
  • the signal interconnection of ordinary stand-alone-level channel simulation equipment is basically difficult, so it cannot support the large-scale multiple-input multiple-output channel simulation required for the internal docking test of larger-scale systems.
  • the present invention proposes a large-scale multiple-input multiple-output channel simulation method based on optical matrix switching.
  • the first aspect of the present invention discloses a large-scale multiple-input multiple-output channel simulation method based on optical matrix switching.
  • the method is implemented based on a large-scale MIMO channel simulation system, and the large-scale MIMO channel simulation system includes multiple channel preprocessing subsystems, an optical switching subsystem, multiple channel characteristic simulation subsystems, time Frequency synthesis and distribution subsystem, mathematical simulation and monitoring subsystem, self-inspection and self-calibration subsystem. Described method specifically comprises:
  • Step S1 the plurality of channel preprocessing subsystems receive multiple radio frequency input signals with the same signal source or with different signal sources, so as to perform preprocessing on the multiple radio frequency input signals, and the preprocessed multiple radio frequency input signals
  • the radio frequency input signal is transmitted to the optical switching subsystem through an optical fiber in the form of multiple 10G optical signals, wherein each 10G optical signal contains multiple sets of data;
  • Step S2 based on the identification results of the multiple input ports of the optical switching subsystem for each group of data contained in the multiple 10G optical signals, distribute the data of each group to the optical switching subsystem according to the specified address a plurality of output ports, so as to output the redistributed multiple 10G optical signals to the plurality of channel characteristic simulation subsystems via the plurality of output ports;
  • Step S3 the plurality of channel characteristic simulation subsystems perform multi-channel parallel channel simulation operations on the redistributed multiple 10G optical signals to obtain radio frequency signals with simulated channel characteristics added, the radio frequency The signal is sent to each signal receiving terminal.
  • the channel preprocessing subsystem includes multiple distributed multi-channel channel preprocessing terminals that can be expanded in parallel, and the multi-channel channel preprocessing terminal receives the time-frequency integration and distribution subsystem Driven by input frequency, pulse and time signals, the multi-channel channel pre-processing terminal receives the communication and control instructions of the mathematical simulation and monitoring subsystem, and the multi-channel channel pre-processing terminal is connected to the optical switch sub-system through an optical fiber
  • the system realizes the parallel scale expansion of the number of channel preprocessing links.
  • the multi-channel channel pre-processing terminal is used to pre-process the multi-channel radio frequency input signal, specifically including:
  • the optical switching subsystem receives the control scheduling instruction from the mathematical simulation and monitoring subsystem, and the multiple input ports are connected to the multi-channel 10G optical
  • the indicator flags of each group of data included in the signal are identified, and the optical switching subsystem distributes each group of data to multiple output ports of the optical switching subsystem according to the specified address based on the identification result, thereby realizing multiple Input multiple output scheduling specifically includes: the same output port receives multiple sets of data from different input ports, and multiple sets of data from the same input port are sent to different output ports.
  • the optical switching subsystem has a main engine and a standby engine, the main engine and the standby engine respectively have the function of independently supporting the work of the optical switching subsystem, and when the main engine fails, seamlessly switch to the standby engine to maintain the optical switching subsystem
  • the subsystem is in a working state;
  • the optical switching subsystem has the capability of parallel expansion, and when expanding the input and output links of the large-scale multi-input multi-output channel simulation system, the optical switching subsystem is directly expanded in parallel Scale of optical switching boards.
  • the plurality of channel characteristic simulation subsystems include multiple multi-channel channel characteristic simulation terminals that can be expanded in parallel, and the multi-channel channel characteristic simulation terminals receive the Driven by the frequency, pulse and time signals input by the time-frequency synthesis and distribution subsystem, the multi-channel channel characteristic simulation terminal receives the communication and control instructions of the mathematical simulation and monitoring subsystem, and the multi-channel channel characteristic simulation terminal accesses The optical fiber output by the optical switching subsystem realizes parallel scale expansion of channel characteristic simulation.
  • the multi-channel parallel channel simulation operation is performed on the redistributed multiple 10G optical signals by using the multi-channel channel characteristic simulation terminal to obtain the added Radio frequency signals with simulated channel characteristics, including:
  • the channel due to relative motion, troposphere, ionosphere, multipath, and shadowing is generated.
  • the analog intermediate frequency signal is obtained by digital-to-analog conversion of the digital signal subjected to the analog operation of the multi-channel parallel channel, and the analog intermediate frequency signal is processed by analog up-conversion processing, filtering and power adjustment, and is used as a wireless signal with the simulated channel characteristics added.
  • the radio frequency signal is sent to each signal receiving terminal.
  • the second aspect of the present invention discloses a large-scale multiple-input multiple-output channel simulation device based on optical matrix switching.
  • the device is realized based on a large-scale MIMO channel simulation system, and the large-scale MIMO channel simulation system includes multiple channel preprocessing subsystems, an optical switching subsystem, multiple channel characteristic simulation subsystems, time Frequency synthesis and distribution subsystem, mathematical simulation and monitoring subsystem, self-inspection and self-calibration subsystem. Described device specifically comprises:
  • the first processing unit is configured to call the plurality of channel preprocessing subsystems to receive multiple radio frequency input signals with the same signal source or with different signal sources, so as to perform preprocessing on the multiple radio frequency input signals.
  • the preprocessed multiple radio frequency input signals are transmitted to the optical switching subsystem through optical fibers in the form of multiple 10G optical signals, wherein each 10G optical signal contains multiple sets of data;
  • the second processing unit is configured to call the optical switching subsystem, and based on the identification results of the multiple input ports of the optical switching subsystem for each group of data contained in the multiple 10G optical signals, the The group data is distributed to multiple output ports of the optical switching subsystem according to the specified address, so as to output the redistributed multiple 10G optical signals to the multiple channel characteristic simulation subsystems via the multiple output ports;
  • the third processing unit is configured to call the plurality of channel characteristic simulation subsystems to perform multi-channel parallel channel simulation operations on the redistributed multiple 10G optical signals, so as to obtain wireless signals with simulated channel characteristics added.
  • a radio frequency signal, the wireless radio frequency signal is sent to each signal receiving terminal.
  • the channel preprocessing subsystem includes multiple distributed multi-channel channel preprocessing terminals that can be expanded in parallel, and the multi-channel channel preprocessing terminal receives the time-frequency integration and distribution subsystem Driven by input frequency, pulse and time signals, the multi-channel channel pre-processing terminal receives the communication and control instructions of the mathematical simulation and monitoring subsystem, and the multi-channel channel pre-processing terminal is connected to the optical switch sub-system through an optical fiber
  • the system realizes the parallel scale expansion of the number of channel preprocessing links.
  • the first processing unit is specifically configured to use the multi-channel channel pre-processing terminal to pre-process the multi-channel radio frequency input signal, including:
  • the obtained intermediate frequency signal is sampled after analog-to-digital conversion, to obtain a sampled digital signal
  • the optical switching subsystem receives the control and scheduling instructions from the mathematical simulation and monitoring subsystem, and the multiple input ports are used for each group of data contained in the multiple 10G optical signals. identify the indication flag; the second processing unit is specifically configured to call the optical switching subsystem to distribute the groups of data to multiple outputs of the optical switching subsystem based on the identification result according to the specified address Ports, so as to realize multi-input and multi-output scheduling, including: the same output port receives multiple sets of data from different input ports, and multiple sets of data from the same input port are sent to different output ports.
  • the optical switching subsystem has a main engine and a standby engine, the main engine and the standby engine respectively have the function of independently supporting the work of the optical switching subsystem, and when the main engine fails, seamlessly switch to the standby engine to maintain the optical switching subsystem
  • the subsystem is in a working state;
  • the optical switching subsystem has the capability of parallel expansion, and when expanding the input and output links of the large-scale multi-input multi-output channel simulation system, the optical switching subsystem is directly expanded in parallel Scale of optical switching boards.
  • the multiple channel characteristic simulation subsystems include multiple multi-channel channel characteristic simulation terminals that can be expanded in parallel, and the multi-channel channel characteristic simulation terminals receive the time-frequency integration and distribution subsystem Driven by input frequency, pulse and time signals, the multi-channel channel characteristic simulation terminal receives the communication and control instructions of the mathematical simulation and monitoring subsystem, and the multi-channel channel characteristic simulation terminal is connected to the optical switching subsystem for output fiber to realize parallel scale-up of channel characteristic simulation.
  • the third processing unit is specifically configured to use the multi-channel channel characteristic simulation terminal to perform a multi-channel parallel channel simulation operation on the redistributed multiple 10G optical signals, so as to Obtaining the wireless radio frequency signal added with the simulated channel characteristics, including:
  • the channel due to relative motion, troposphere, ionosphere, multipath, and shadowing is generated.
  • the analog intermediate frequency signal is obtained by digital-to-analog conversion of the digital signal subjected to the analog operation of the multi-channel parallel channel, and the analog intermediate frequency signal is processed by analog up-conversion processing, filtering and power adjustment, and is used as a wireless signal with the simulated channel characteristics added.
  • the radio frequency signal is sent to each signal receiving terminal.
  • the third aspect of the present invention discloses an electronic device.
  • the electronic device includes a memory and a processor, the memory stores a computer program, and when the processor executes the computer program, the large-scale optical matrix switching based on any one of the first aspects of the present disclosure is implemented. Steps in the scale MIMO channel simulation method.
  • a fourth aspect of the present invention discloses a computer readable storage medium.
  • a computer program is stored on the computer-readable storage medium, and when the computer program is executed by a processor, a large-scale multiple-input multiple-output channel based on optical matrix switching according to any one of the first aspects of the present disclosure is realized The steps in the simulation method.
  • the solution includes: a parallel scalable channel preprocessing subsystem, including multiple distributed multi-channel channel preprocessing terminals that can be expanded in parallel, which can be installed at the input terminal of the wireless radio frequency signal, and used to process multiple same or Radio frequency signal acquisition and preprocessing operations from different signal sources, and convert data signals into optical signals for output; matrix optical switching subsystem, used to complete large-scale multi-input multi-output signal conversion optical signal aggregation, replication and distribution ; Parallel expandable channel characteristic simulation subsystem, including multiple multi-channel channel characteristic simulation terminals that can be expanded in parallel, used to receive optical signals and convert them into data signal forms, perform multi-channel channel simulation operations, and output channel characteristics after adding them
  • the wireless radio frequency signal the time-frequency integration and distribution subsystem, which synthesizes the required frequency, pulse and time signals, completes the frequency modulation and phase modulation operations, and distributes the time-frequency signals required by the terminals of each subsystem according to the system scale requirements;
  • the mathematical simulation and monitoring subsystem is used to simulate and calculate the tra
  • the technical solution provided by the present invention has the beneficial effect that: the large-scale multi-input multi-output channel characteristic simulation system based on optical matrix switching designed according to the present invention can meet the requirements of large-scale systems such as communications, radar, and electronic countermeasures or In large-scale scenarios, large-scale signal transmission equipment, signal forwarding equipment, and signal receiving equipment are cross-connected and connected with large-scale wireless signal links.
  • the characteristic analog terminal performs data aggregation, replication and distribution of multiple-input and multiple-output signals in the form of high-density matrix optical switching, and realizes a large-scale channel simulation system with the ability to realize dynamic cross-connection and docking between large-scale wireless signals.
  • FIG. 1 is a schematic diagram of a large-scale MIMO channel simulation system according to an embodiment of the present invention
  • Fig. 2 is a flow chart of a large-scale multiple-input multiple-output channel simulation method based on optical matrix switching according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of a multi-channel channel preprocessing terminal that can be extended in parallel according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram of an optical switching subsystem according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a parallel scalable multi-channel channel characteristic simulation terminal according to an embodiment of the present invention.
  • FIG. 6 is a structural diagram of a large-scale MIMO channel simulation device based on optical matrix switching according to an embodiment of the present invention
  • Fig. 7 is a structural diagram of an electronic device according to an embodiment of the present invention.
  • the first aspect of the present invention discloses a large-scale MIMO channel simulation method based on optical matrix switching, and the method is realized based on a large-scale MIMO channel simulation system.
  • Fig. 1 is the schematic diagram of the large-scale MIMO channel simulation system according to the embodiment of the present invention; As shown in Fig. 1, described large-scale MIMO channel simulation system comprises a plurality of channel preprocessing subsystems (channel preprocessing ), optical switching subsystem (switchboard), multiple channel characteristic simulation subsystems (channel characteristic simulation), self-inspection and self-calibration subsystem, mathematical simulation and monitoring subsystem, time-frequency integration and distribution subsystem.
  • Fig. 2 is the flow chart of a kind of large-scale multi-input multi-out channel simulation method based on optical matrix switching according to the embodiment of the present invention; As shown in Fig. 2, described method specifically comprises:
  • Step S1 the plurality of channel preprocessing subsystems receive multiple radio frequency input signals with the same signal source or with different signal sources, so as to perform preprocessing on the multiple radio frequency input signals, and the preprocessed multiple radio frequency input signals
  • the radio frequency input signal is transmitted to the optical switching subsystem through an optical fiber in the form of multiple 10G optical signals, wherein each 10G optical signal contains multiple sets of data;
  • Step S2 based on the identification results of the multiple input ports of the optical switching subsystem for each group of data contained in the multiple 10G optical signals, distribute the data of each group to the optical switching subsystem according to the specified address a plurality of output ports, so as to output the redistributed multiple 10G optical signals to the plurality of channel characteristic simulation subsystems via the plurality of output ports;
  • Step S3 the plurality of channel characteristic simulation subsystems perform multi-channel parallel channel simulation operations on the redistributed multiple 10G optical signals to obtain radio frequency signals with simulated channel characteristics added, the radio frequency The signal is sent to each signal receiving terminal.
  • the channel preprocessing subsystem includes multiple distributed multi-channel channel preprocessing terminals that can be expanded in parallel, and the multi-channel channel preprocessing terminal receives the frequency input by the time-frequency integration and distribution subsystem , pulse and time signal drive, the multi-channel channel preprocessing terminal receives the communication and control instructions of the mathematical simulation and monitoring subsystem, and the multi-channel channel preprocessing terminal is connected to the optical switching subsystem through an optical fiber to realize Parallel scaling of the number of channel preprocessing links.
  • using the multi-channel channel preprocessing terminal to perform preprocessing on the multiple radio frequency input signals specifically includes: adjusting the signal power of the multiple radio frequency input signals, after Analog down-conversion and out-of-band filtering processing, the obtained intermediate frequency signal is sampled after analog-to-digital conversion to obtain the sampled digital signal; digital down-conversion and decimation filtering processing are performed on the digital signal, through packaging processing and electro-optical conversion The multiple 10G optical signals are obtained.
  • Fig. 3 is a schematic diagram of a multi-channel channel preprocessing terminal that can be extended in parallel according to an embodiment of the present invention; as shown in Fig. 3 , the parallel scalable channel preprocessing subsystem includes multiple distributed multi-channel channel
  • the preprocessing terminal can be installed at the input terminal of the radio frequency signal, and is used for collecting and preprocessing the radio frequency signals from multiple same or different signal sources.
  • Multiple multi-channel channel preprocessing terminals are uniformly driven by the frequency, pulse and time signals input by the time-frequency synthesis and distribution subsystem, and accept communication and control instructions from the mathematical simulation and monitoring subsystem, and can directly increase the number of devices for channel preprocessing.
  • the number of processing links is scaled in parallel.
  • the terminal performs radio frequency preprocessing on the received multi-channel radio frequency signals, after reasonably adjusting the signal power, after analog down-conversion and out-of-band filtering, the obtained intermediate frequency signals are filtered and sent to different ADC converters to complete ADC sampling.
  • the obtained digital signal is processed by digital down-conversion, decimation and filtering, etc., and according to the instructions of the mathematical simulation and monitoring subsystem, the relevant protocol packaging processing required for data packaging is carried out.
  • Various types of signals, data, and information transmission forms between various subsystems and equipment in the system can use gigabit, 10,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000.
  • the optical switching subsystem receives the control scheduling instruction from the mathematical simulation and monitoring subsystem, and the multiple input ports contain the multiple 10G optical signals
  • the indicator marks of each group of data are identified, and the optical switching subsystem distributes each group of data to multiple output ports of the optical switching subsystem according to the specified address based on the identification result, thereby realizing multiple input and multiple output Scheduling specifically includes: the same output port receives multiple sets of data from different input ports, and multiple sets of data from the same input port are sent to different output ports.
  • the optical switching subsystem when the addition or deletion of the multi-channel channel pre-processing terminal is terminated, other multi-channel channel pre-processing terminals maintain the original state;
  • the optical switching subsystem has a main engine and a backup engine , the main engine and the standby engine have the function of independently supporting the work of the optical switching subsystem, and when the main engine fails, seamlessly switch to the standby engine to maintain the optical switching subsystem in the Working state:
  • the optical switching subsystem has the capability of scale parallel expansion, when expanding the scale of the input and output links of the large-scale multi-input multi-output channel simulation system, directly expand the optical switching board of the optical switching subsystem in parallel Card scale.
  • Fig. 4 is the schematic diagram according to the optical switching subsystem of the embodiment of the present invention.
  • the processing device collects the transmitted signal, converts it into an optical signal output after preprocessing, and the channel simulation device receives the optical signal, and adds channel characteristic simulation parameters to each transmitted signal.
  • the high-density 10-Gigabit switch completes the functions of multi-input and multi-output management, replication, and scheduling of 10G optical signals, and directly expands the data exchange capacity of the 10-Gigabit switch to support the scale expansion requirements of channel analog links.
  • the 10 Gigabit switch needs to receive the control scheduling instructions from the mathematical simulation and monitoring subsystem, identify and process the relevant indicators in the optical data of the input port, and distribute them to different output ports according to the specified address, so as to complete the multi-input and multi-output scheduling, unified
  • the output port receives the signal grouping scheduling of different input ports, the same input port signal is sent to different output port data copy distribution scheduling, switching the data flow relationship between different input and output ports, etc., to achieve large-scale multi-input multi-output optical matrix switching high-speed processing process.
  • each channel preprocessing terminal sends data to multiple channel analog terminals, and the 10 Gigabit switch separates multiple groups of information flows input from a single port, and distributes them to different output ports according to requirements.
  • the data is sent to different channel analog terminals, and the dynamic change is realized by controlling the 10 Gigabit switch through a dedicated external interface.
  • each channel simulation terminal receives data from multiple channel preprocessing terminals, and the channel preprocessing terminals received in different time periods will change dynamically.
  • the terminal stops receiving data it cannot affect other data streams being received by the channel simulation terminal, and this dynamic change is realized by controlling the 10 Gigabit switch through a dedicated external interface.
  • 10 Gigabit switches need to have active and standby engines, and each engine has independent support capabilities to prevent data exchange from being unable to complete data exchange when the data engine is damaged; it has virtual all-in-one capabilities to support two 10 Gigabit switches.
  • the switches are active and standby for each other to realize seamless switching.
  • the optical switching subsystem has the ability to expand in parallel. When expanding the scale of the input and output links of the large-scale multi-input multi-output channel simulation system, it is sufficient to directly expand the scale of the optical switching boards of the optical switching subsystem in parallel.
  • the multiple channel characteristic simulation subsystems include multiple multi-channel channel characteristic simulation terminals that can be expanded in parallel, and the multi-channel channel characteristic simulation terminals receive the time-frequency synthesis Driven by the frequency, pulse and time signals input by the distribution subsystem, the multi-channel channel characteristic simulation terminal receives the communication and control instructions of the mathematical simulation and monitoring subsystem, and the multi-channel channel characteristic simulation terminal accesses the optical Swapping the output fibers of the subsystems enables parallel scale expansion of channel characteristic simulation.
  • step S3 using the multi-channel channel characteristic simulation terminal to perform a multi-channel parallel channel simulation operation on the redistributed multiple 10G optical signals, so as to obtain the
  • the wireless radio frequency signal of the channel characteristic specifically includes:
  • the channel due to relative motion, troposphere, ionosphere, multipath, and shadowing is generated.
  • the analog intermediate frequency signal is obtained by digital-to-analog conversion of the digital signal subjected to the analog operation of the multi-channel parallel channel, and the analog intermediate frequency signal is processed by analog up-conversion processing, filtering and power adjustment, and is used as a wireless signal with the simulated channel characteristics added.
  • the radio frequency signal is sent to each signal receiving terminal.
  • Figure 5 is a schematic diagram of a multi-channel channel characteristic simulation terminal that can be extended in parallel according to an embodiment of the present invention.
  • the functional composition of the terminal is shown in Figure 4.
  • Multiple multi-channel channel characteristic simulation terminals are driven by the frequency, pulse and time signals input by the time-frequency synthesis and distribution subsystem, and receive communication and control instructions from the mathematical simulation and monitoring subsystem. , the channel characteristic simulation can be directly expanded in parallel by increasing the number of devices.
  • the terminal receives the optical signal from the matrix optical switching subsystem through the optical fiber, converts it into a data signal form through the photoelectric conversion module, analyzes and processes the data package according to the relevant protocol, and transmits the large-scale signal transmission equipment according to the mathematical simulation and monitoring subsystem , time delay between signal forwarding equipment and signal receiving equipment, Doppler, power, phase, visibility and other simulation data and control data, and process the digital signals of each channel to generate due to relative motion, troposphere, ionosphere, The signal after the signal characteristic changes caused by multipath, shadowing, etc.
  • the wireless radio frequency signal with added channel characteristics is subjected to multi-channel parallel channel analog operation, and the obtained digital signal is converted into an analog intermediate frequency signal through a DAC converter, and then analog up-conversion is performed, and after power adjustment is completed, finally Output the wireless radio frequency signal with added channel characteristics to different signal receiving terminals, so as to complete the channel characteristic simulation function of the system.
  • the mathematical simulation and monitoring subsystem is the application layer support software of the large-scale channel simulation system. Its functional components mainly include mathematical simulation calculation and simulation command processing functions, system workflow control and status monitoring functions, which are divided into mathematical simulation calculation, simulation command processing, workflow control, and status monitoring.
  • Several locations and monitoring subsystems simulate relative motion trajectories according to relevant mathematical models, calculate signal observations obtained by the signal receiving end, and generate control parameters required for channel simulation channels based on various channel observation data, including time delay, Doppler, Power, phase shift, multipath and other parameters, and send relevant instructions to each acquisition preprocessing terminal and channel simulation terminal, and control the channel equipment to complete the channel simulation process.
  • the communication and interconnection methods between the internal equipment of the mathematical simulation and monitoring subsystem and with other subsystems can adopt but are not limited to communication and interaction forms such as network cables or optical fibers.
  • the time-frequency synthesis and distribution subsystem is responsible for the comprehensive generation of frequency, pulse and time signals required by the system, and provides time-frequency support for other subsystems. It is composed of front-level generation and distribution equipment and rear-level terminal equipment. Structure and modular design.
  • the pre-stage generation and distribution equipment is a time-frequency signal generation and distribution terminal, and comprehensively generates the required specific frequency point signals, completes the frequency modulation and phase modulation requirements required by the system, and realizes the distribution of standard time-frequency signals. reference benchmark.
  • the post-stage terminal equipment is composed of several time-frequency distribution terminals. It performs two-level distribution of various standard time-frequency signals distributed by the previous stage, and outputs all time-frequency signals required by other subsystems.
  • the internal equipment of the time-frequency synthesis and distribution subsystem The time-frequency signal transmission between the subsystems and other subsystems may be in the form of signal transmission such as cables or optical fibers, but not limited to.
  • the self-inspection and self-calibration subsystem mainly completes the system's status self-inspection and link self-calibration functions.
  • the self-test and self-calibration signal output by the self-test and self-calibration signal generation device is coupled to the channel pre-processing device through the splitter, and the self-test is coupled from the signal output by the channel processing device after passing through the switch and the channel processing device.
  • the self-calibration signal is returned to the self-test and self-calibration signal receiving equipment, and the signal is demodulated to complete the self-test and self-calibration processing of the entire channel simulation subsystem.
  • the signal transmission between the internal equipment of the self-checking and self-calibration subsystem and between other subsystems can be, but not limited to, signal transmission forms such as cables or optical fibers.
  • the various subsystems are connected by various optical fibers to realize interconnection and intercommunication.
  • each subsystem within the system and each stand-alone device in the subsystem can be presented Centralized-distributed remote deployment, realizing remote connection of external signal docking devices or systems, the distance between devices is only limited by the optical fiber transmission capacity (on the order of hundreds of meters to thousands of kilometers), meeting various site layouts and application scenarios need. details as follows:
  • Gigabit, 10 Gigabit and other optical fibers can be used for the transmission of various signals, data and information between various subsystems and devices in the system.
  • the transmission distance is not limited, and can support hundreds of meters to thousands of kilometers. Therefore, for all kinds of multiple signal transmitting equipment, signal transponder equipment, signal receiving equipment, etc.
  • the multi-channel channel preprocessing terminal (docking signal transmitting equipment) that is docked with it can be , signal forwarding equipment), multi-channel channel characteristic simulation terminal (docking signal receiving equipment, signal forwarding equipment), arranged to the position where the signal sending and receiving/transmitting equipment is located, directly connected with it, and then the output signal of the multi-channel channel preprocessing terminal , Multi-channel channel characteristics
  • the input signal of the analog terminal, as well as the internal time frequency and communication of the system are all interconnected and intercommunicated in the form of optical fiber to form a unified system as a whole.
  • the large-scale multiple-input multiple-output channel simulation system has the capability of parallel expansion of input and output channel scales.
  • the signal scale at the channel input terminal expands, increase the number of multi-channel channel preprocessing terminals in the channel preprocessing subsystem in parallel to access the newly added input signal, and connect its output fiber to the corresponding expansion part of the optical switching subsystem;
  • the signal scale of the channel output terminal is expanded, the number of multi-channel channel characteristic simulation terminals of the characteristic simulation subsystem is increased in parallel for outputting new output signals, and connected to the output optical fiber of the corresponding expansion part of the optical switching subsystem;
  • the channel input and output When the terminal signal scale is expanded, the number of optical switching boards is expanded in parallel, and the data transmission mapping relationship between the input and output ports of the newly added expanded optical switching boards is adjusted through command control to ensure that the new multi-channel channel preprocessing terminal and multi-channel channel
  • the feature simulates the correct mapping relationship of terminals accessing optical fibers, and does not affect various types of terminals originally connected.
  • the above-mentioned large-scale MIMO system architecture based on optical matrix switching has a wide range of applications.
  • This architecture has the advantages of supporting parallel expansion of system scale, supporting distributed remote access, and supporting large-scale MIMO signal transmission and reception. It can be applied It is not limited to large-scale signal transmission and reception processing requirements of large-scale communication systems (such as ground operation control systems supporting large-scale aerospace systems, large-scale multi-channel ground long-range radar systems), long-distance distributed signal transmission and reception systems (such as wide-area ground-based signal reception monitoring, The centralized management and distributed deployment requirements of wide-area radar systems, etc.), and the parallel scale expansion requirements of large-scale multiple-input multiple-output access systems (such as MIMO, etc.).
  • large-scale communication systems such as ground operation control systems supporting large-scale aerospace systems, large-scale multi-channel ground long-range radar systems
  • long-distance distributed signal transmission and reception systems such as wide-area ground-based signal reception monitoring, The centralized management and distributed deployment requirements of wide-area radar systems,
  • the second aspect of the present invention discloses a large-scale multiple-input multiple-output channel simulation device based on optical matrix switching.
  • the device is realized based on a large-scale MIMO channel simulation system, as shown in Figure 1, the large-scale MIMO channel simulation system includes a plurality of channel preprocessing subsystems, an optical switching subsystem, a plurality of channel Feature simulation subsystem, time-frequency synthesis and distribution subsystem, mathematical simulation and monitoring subsystem, self-inspection and self-calibration subsystem.
  • Fig. 6 is a structural diagram of a large-scale MIMO channel simulation device based on optical matrix switching according to an embodiment of the present invention; as shown in Fig. 6, the device specifically includes:
  • the first processing unit 601 is configured to call the multiple channel preprocessing subsystems to receive multiple radio frequency input signals having the same signal source or different signal sources, so as to perform preprocessing on the multiple radio frequency input signals,
  • the preprocessed multiple radio frequency input signals are transmitted to the optical switching subsystem through optical fibers in the form of multiple 10G optical signals, wherein each 10G optical signal contains multiple sets of data;
  • the second processing unit 602 is configured to call the optical switching subsystem, and based on the identification results of the multiple input ports of the optical switching subsystem for each group of data contained in the multiple 10G optical signals, the Each group of data is distributed to multiple output ports of the optical switching subsystem according to the specified address, so as to output the redistributed multiple 10G optical signals to the multiple channel characteristic simulation subsystems via the multiple output ports ;
  • the third processing unit 603 is configured to call the multiple channel characteristic simulation subsystems to perform multi-channel parallel channel simulation operations on the redistributed multiple 10G optical signals, so as to obtain the a wireless radio frequency signal, and the wireless radio frequency signal is sent to each signal receiving terminal.
  • the channel preprocessing subsystem includes multiple distributed multi-channel channel preprocessing terminals that can be expanded in parallel, and the multi-channel channel preprocessing terminal receives the time-frequency integration and distribution subsystem Driven by input frequency, pulse and time signals, the multi-channel channel pre-processing terminal receives the communication and control instructions of the mathematical simulation and monitoring subsystem, and the multi-channel channel pre-processing terminal is connected to the optical switch sub-system through an optical fiber
  • the system realizes the parallel scale expansion of the number of channel preprocessing links.
  • the first processing unit 601 is specifically configured to use the multi-channel channel pre-processing terminal to pre-process the multi-channel radio frequency input signal, including:
  • the optical switching subsystem receives the control and scheduling instructions from the mathematical simulation and monitoring subsystem, and the multiple input ports are used for each group of data contained in the multiple 10G optical signals. Identifying the indication flag; the second processing unit 602 is specifically configured to call the optical switching subsystem to distribute the groups of data to a plurality of optical switching subsystems in the optical switching subsystem based on the identification result according to the specified address.
  • the optical switching subsystem has a main engine and a standby engine, the main engine and the standby engine respectively have the function of independently supporting the work of the optical switching subsystem, and when the main engine fails, seamlessly switch to the standby engine to maintain the optical switching subsystem
  • the subsystem is in a working state;
  • the optical switching subsystem has the capability of parallel expansion, and when expanding the input and output links of the large-scale multi-input multi-output channel simulation system, the optical switching subsystem is directly expanded in parallel Scale of optical switching boards.
  • the multiple channel characteristic simulation subsystems include multiple multi-channel channel characteristic simulation terminals that can be expanded in parallel, and the multi-channel channel characteristic simulation terminals receive the time-frequency integration and distribution subsystem Driven by input frequency, pulse and time signals, the multi-channel channel characteristic simulation terminal receives the communication and control instructions of the mathematical simulation and monitoring subsystem, and the multi-channel channel characteristic simulation terminal is connected to the optical switching subsystem for output fiber to realize parallel scale-up of channel characteristic simulation.
  • the third processing unit 603 is specifically configured to use the multi-channel channel characteristic simulation terminal to perform a multi-channel parallel channel simulation operation on the redistributed multiple 10G optical signals, To obtain the wireless radio frequency signal added with the simulated channel characteristics, including:
  • the channel due to relative motion, troposphere, ionosphere, multipath, and shadowing is generated.
  • the analog intermediate frequency signal is obtained by digital-to-analog conversion of the digital signal subjected to the analog operation of the multi-channel parallel channel, and the analog intermediate frequency signal is processed by analog up-conversion processing, filtering and power adjustment, and is used as a wireless signal with the simulated channel characteristics added.
  • the radio frequency signal is sent to each signal receiving terminal.
  • the device may optionally/additionally include:
  • the fourth processing unit 604 is configured to call the time-frequency integration and distribution subsystem, synthesize and generate the required frequency, pulse and time signals according to the external or internal frequency source signal, complete the frequency modulation and phase modulation operations, and Scale requirements are redistributed, and optical fiber transmission is used to provide time-frequency reference signals for all subsystem equipment;
  • the fifth processing unit 605 is configured to call the mathematical simulation and monitoring subsystem to simulate and calculate the trajectory and various dynamic parameters between large-scale signal transmission channels, and send control instructions and simulation parameters to each subsystem Configure instructions to complete the operation drive and monitoring control of the system, in which various data transmissions are completed based on gigabit optical fiber interconnection;
  • the sixth processing unit 606 is configured to call the self-test and self-calibration subsystem, generate and output a self-test and self-calibration signal, couple it into the channel pre-processing device, couple it out from the signal output by the channel processing device, and process the signal Perform demodulation processing to complete self-inspection and self-calibration, and signal transmission is completed in the form of optical fiber interconnection.
  • the fourth processing unit 604 is specifically configured to comprehensively generate the required frequency, pulse and time signals, complete the frequency modulation and phase modulation operations, and distribute them to each subsystem according to the system scale requirements Time-frequency signals required by the terminal, including:
  • the pre-stage generation and distribution equipment is a time-frequency signal generation and distribution terminal. According to external or internal frequency source signals, it can comprehensively generate the required specific frequency point signals, complete the frequency modulation and phase modulation requirements required by the system, and realize the distribution of standard time-frequency signals. , as the reference benchmark of the subsequent terminal equipment;
  • the post-stage terminal equipment is composed of several time-frequency distribution terminals. It performs two-level distribution of various standard time-frequency signals distributed by the previous stage, and outputs all time-frequency signals required by other subsystems.
  • the internal equipment of the time-frequency synthesis and distribution subsystem The time-frequency signal transmission between the subsystems and other subsystems may be in the form of signal transmission such as cables or optical fibers, but not limited to.
  • the fifth processing unit 605 is specifically configured to simulate and calculate trajectories and various dynamic parameters between large-scale signal transmission channels, and send control instructions and simulation to each subsystem Parameter configuration instructions to complete the operation drive and monitoring control of the system, including:
  • composition mainly includes mathematical simulation calculation and simulation instruction processing functions, system workflow control and status monitoring functions, and is divided into modules such as mathematical simulation calculation, simulation instruction processing, workflow control and status monitoring;
  • Simulate the relative motion trajectory according to the relevant mathematical model calculate the signal observations obtained by the signal receiving end, and generate the control parameters required for the channel simulation channel according to various channel observation data, including delay, Doppler, power, phase shift, multi-channel Path and other parameters, and send relevant instructions to each terminal.
  • it monitors all kinds of equipment, communication lines, and system working status in the system in real time, and uses graphics, images, tables and other methods to clearly and intuitively display the current working status of the system.
  • the communication and interconnection methods with other subsystems can adopt but are not limited to communication interaction forms such as network cables or optical fibers.
  • the sixth processing unit 606 is specifically configured to, be configured to generate and output a self-test and self-calibration signal, couple it into the channel pre-processing device, and output the signal from the channel processing device Coupling out, demodulating and processing the signal to complete self-test and self-calibration, including:
  • the self-test and self-calibration signal output by the self-test and self-calibration signal generation equipment is coupled to the channel pre-processing equipment through the splitter, and after passing through the switch and channel processing equipment
  • the self-test and self-calibration signal is coupled from the signal output by the channel processing device, and returned to the self-test and self-calibration signal receiving device to demodulate the signal, thereby completing the self-test and self-calibration processing of the entire channel simulation subsystem.
  • the signal transmission between the internal equipment of the self-checking and self-calibration subsystem and between other subsystems can be, but not limited to, signal transmission forms such as cables or optical fibers.
  • the third aspect of the present invention discloses an electronic device.
  • the electronic device includes a memory and a processor, the memory stores a computer program, and when the processor executes the computer program, the large-scale optical matrix switching based on any one of the first aspects of the present disclosure is implemented. Steps in the scale MIMO channel simulation method.
  • FIG. 7 is a structural diagram of an electronic device according to an embodiment of the present invention.
  • the electronic device includes a processor, a memory, a communication interface, a display screen, and an input device connected through a system bus.
  • the processor of the electronic device is used to provide calculation and control capabilities.
  • the memory of the electronic device includes a non-volatile storage medium and an internal memory.
  • the non-volatile storage medium stores an operating system and computer programs.
  • the internal memory provides an environment for the operation of the operating system and computer programs in the non-volatile storage medium.
  • the communication interface of the electronic device is used to communicate with an external terminal in a wired or wireless manner, and the wireless manner can be realized through WIFI, an operator network, near field communication (NFC) or other technologies.
  • the display screen of the electronic device may be a liquid crystal display screen or an electronic ink display screen, and the input device of the electronic device may be a touch layer covered on the display screen, or a button, a trackball or a touch pad provided on the housing of the electronic device , and can also be an external keyboard, touchpad, or mouse.
  • Figure 7 is only a structural diagram of the part related to the technical solution of the present disclosure, and does not constitute a limitation on the electronic equipment to which the solution of the present application is applied.
  • Devices may include more or fewer components than shown in the figures, or combine certain components, or have a different arrangement of components.
  • a fourth aspect of the present invention discloses a computer readable storage medium.
  • a computer program is stored on the computer-readable storage medium, and when the computer program is executed by a processor, a large-scale multiple-input multiple-output channel based on optical matrix switching according to any one of the first aspects of the present disclosure is realized The steps in the simulation method.
  • each channel of a traditional channel simulation device is independent of each other, and each channel simulation hardware link supports one signal link channel simulation in which one signal input corresponds to one signal output function, that is, it cannot support the one-input-multiple-output mode in which one signal input corresponds to multiple signal outputs, nor does it support the multi-input and one-output mode in which multiple signal inputs correspond to one signal output, and it cannot support multiple signal inputs corresponding to multiple signal outputs
  • the multi-input multi-output mode and the corresponding relationship can be flexibly switched.
  • the multi-input and multi-output signals are aggregated, replicated and distributed in the form of high-density matrix optical switching, realizing a large-scale
  • Figure 5 The comparison between the channel docking performance of a large-scale channel simulation system that realizes dynamic cross-connection and docking capabilities between wireless signals and traditional channel simulation equipment is shown in Figure 5.
  • the scale of 9 inputs and 9 outputs can support 81 channels Simulation, on this basis, by adding the hardware link required by one channel, you can obtain a total of 100 channel simulation capabilities with 10 inputs and 10 outputs.
  • optical fiber transmission capacity hundreds of meters to thousands of kilometers
  • this large-scale MIMO system architecture based on optical matrix switching is not limited to the realization of channel simulation systems, but can also be used in various Design and implementation of large-scale communication, radar, and electronic countermeasure systems that support signal transmission and reception.

Abstract

本发明提出一种基于光矩阵交换的大规模多入多出信道模拟方法和装置。所述方法基于大规模多入多出信道模拟系统来实现,所述大规模多入多出信道模拟系统包括多个信道预处理子系统、光交换子系统、多个信道特征模拟子系统、自检自校子系统、数学仿真与监控子系统、时频综合与分配子系统;所述各个子系统之间均以各类光纤连接实现互联互通,用以传输高速数据信号、通信信息、控制指令、频率、脉冲及时间信号等,具备基于光纤信号远距离传输的系统内各类设备集中-分布式布设能力,具备系统信号输入和输出链路数量的大规模并行扩展能力。

Description

基于光矩阵交换的大规模多入多出信道模拟方法和装置 技术领域
本发明属于通信传输技术领域,尤其涉及基于光矩阵交换的大规模多入多出信道模拟方法和装置。
背景技术
通信、雷达、电子对抗等大型无线电系统或大规模信号对接场景中,包含多种信号发射设备、信号转发设备、信号接收设备等无线信号收发处理设备,其射频信号在空间传输过程中会引入收发平台之间相对运动产生的动态特性和环境信道(包含诸如电离层、对流层,多径效应、遮蔽效应等)特性,使得信号功率、频率、相位、时延等特性产生实时变化。那么在上述系统实际运行前,信号发射设备、信号转发设备、信号接收设备都需要通过对接测试来验证其功能性能,传统的静态信号直连对接测试无法等效相关设备真实的工作环境。信号传输信道模拟系统能够模拟大规模信号发射设备、信号转发设备、信号接收设备之间的动态收发信号,实时在射频信号上叠加各物理链路的动态传输特性和环境信道特性,使得地面对接测试能够真实反映相关设备在大系统中实际动态运行中的性能。
普通单机级信道模拟设备仅能支持有线数量信道,比如4或者8信道,且由于仿真数据驱动控制较为独立,时频体系无法同步统一,不支持多通道并行扩展,且考虑到部分信号发射设备、信号转发设备、信号接收设备等受到体积、重量、安装状态、无法轻易移动(比如大型地面基站、装配好的卫星等)、相互之间物理距离(数百米乃至数千公里)等限制,对接普通单机级信道模拟设备信号互联基本很难进行,从而无法支持较大规模系 统内部对接测试所需的大规模多入多出信道模拟。
发明内容
为解决上述技术问题,本发明提出了一种基于光矩阵交换的大规模多入多出信道模拟方法。
本发明第一方面公开了一种基于光矩阵交换的大规模多入多出信道模拟方法。所述方法基于大规模多入多出信道模拟系统来实现,所述大规模多入多出信道模拟系统包括多个信道预处理子系统、光交换子系统、多个信道特征模拟子系统、时频综合与分配子系统、数学仿真与监控子系统、自检自校子系统。所述方法具体包括:
步骤S1、所述多个信道预处理子系统接收具有相同信号来源或具有不同信号来源的多路射频输入信号,以对所述多路射频输入信号进行预处理,经所述预处理的多路射频输入信号以多路10G光信号的形式通过光纤传输至所述光交换子系统,其中每路10G光信号包含多组数据;
步骤S2、基于所述光交换子系统的多个输入端口对所述多路10G光信号包含的各组数据的识别结果,将所述各组数据根据指定的地址分发到所述光交换子系统的多个输出端口,以经由所述多个输出端口将经重新分发的多路10G光信号输出至所述多个信道特征模拟子系统;
步骤S3、所述多个信道特征模拟子系统对所述经重新分发的多路10G光信号执行多通道并行信道模拟操作,以获取添加有经模拟的信道特性的无线射频信号,所述无线射频信号被发送至各个信号接收终端。
根据本发明第一方面的方法,所述信道预处理子系统包含多台分布式可并行扩展的多通道信道预处理终端,所述多通道信道预处理终端接收所述时频综合与分配子系统输入的频率、脉冲及时间信号驱动,所述多 通道信道预处理终端接收所述数学仿真与监控子系统的通讯和控制指令,所述多通道信道预处理终端通过光纤接入所述光交换子系统,实现信道预处理链路数量的并行规模扩展。
根据本发明第一方面的方法,在所述步骤S1中,利用所述多通道信道预处理终端对所述多路射频输入信号进行预处理,具体包括:
调整所述多路射频输入信号的信号功率,经过模拟下变频和带外滤波处理,将得到的中频信号通过模数转换后进行采样,以获取经采样的数字信号;
对所述数字信号进行数字下变频和抽取滤波处理,通过打包处理和电光转换获得所述多路10G光信号。
根据本发明第一方面的方法,在所述步骤S2中,所述光交换子系统接收来自所述数学仿真与监控子系统的控制调度指令,所述多个输入端口对所述多路10G光信号包含的各组数据的指示标志进行识别,所述光交换子系统基于所述识别结果将所述各组数据根据指定的地址分发到所述光交换子系统的多个输出端口,从而实现多入多出调度,具体包括:同一输出端口接收来自不同输入端口的多组数据,同一输入端口的多组数据被发送至不同输出端口。
根据本发明第一方面的方法,当终止对所述多通道信道预处理终端的新增处理或删除处理时,其他多通道信道预处理终端维持原有状态;所述光交换子系统具有主引擎和备引擎,所述主引擎和所述备引擎分别具备独立支撑所述光交换子系统工作的功能,当所述主引擎发生故障时,无缝切换至所述备引擎以维持所述光交换子系统处于工作状态;所述光交换子系统具备规模并行扩展能力,对所述大规模多入多出信道模拟系统的输入输出链路进行规模扩张时,直接并行扩展所述光交换子系统的 光交换板卡规模。
根据本发明第一方面的方法,在所述步骤S3中,所述多个信道特征模拟子系统包含多台可并行扩展的多通道信道特性模拟终端,所述多通道信道特性模拟终端接收所述时频综合与分配子系统输入的频率、脉冲及时间信号驱动,所述多通道信道特性模拟终端接收所述数学仿真与监控子系统的通讯和控制指令,所述多通道信道特性模拟终端接入所述光交换子系统输出的光纤,实现信道特性模拟的并行规模扩展。
根据本发明第一方面的方法,在所述步骤S3中,利用所述多通道信道特性模拟终端对所述经重新分发的多路10G光信号执行多通道并行信道模拟操作,以获取添加有所述经模拟的信道特性的无线射频信号,具体包括:
根据所述数学仿真与监控子系统发送的各个信号发射设备、信号转发设备、信号接收设备之间的仿真数据和控制数据,生成由于相对运动、对流层、电离层、多径、遮蔽造成的经信道特性变化后的信号,以实现所述多通道并行信道模拟操作;
经所述多通道并行信道模拟操作的数字信号通过数模转换得到模拟中频信号,所述模拟中频信号经模拟上变频处理、滤波和功率调整后,作为添加有所述经模拟的信道特性的无线射频信号,被发送至所述各个信号接收终端。
本发明第二方面公开了一种基于光矩阵交换的大规模多入多出信道模拟装置。所述装置基于大规模多入多出信道模拟系统来实现,所述大规模多入多出信道模拟系统包括多个信道预处理子系统、光交换子系统、多个信道特征模拟子系统、时频综合与分配子系统、数学仿真与监控子系统、自检自校子系统。所述装置具体包括:
第一处理单元,被配置为,调用所述多个信道预处理子系统接收具有相同信号来源或具有不同信号来源的多路射频输入信号,以对所述多路射频输入信号进行预处理,经所述预处理的多路射频输入信号以多路10G光信号的形式通过光纤传输至所述光交换子系统,其中每路10G光信号包含多组数据;
第二处理单元,被配置为,调用所述光交换子系统,基于所述光交换子系统的多个输入端口对所述多路10G光信号包含的各组数据的识别结果,将所述各组数据根据指定的地址分发到所述光交换子系统的多个输出端口,以经由所述多个输出端口将经重新分发的多路10G光信号输出至所述多个信道特征模拟子系统;
第三处理单元,被配置为,调用所述多个信道特征模拟子系统对所述经重新分发的多路10G光信号执行多通道并行信道模拟操作,以获取添加有经模拟的信道特性的无线射频信号,所述无线射频信号被发送至各个信号接收终端。
根据本发明第二方面的装置,所述信道预处理子系统包含多台分布式可并行扩展的多通道信道预处理终端,所述多通道信道预处理终端接收所述时频综合与分配子系统输入的频率、脉冲及时间信号驱动,所述多通道信道预处理终端接收所述数学仿真与监控子系统的通讯和控制指令,所述多通道信道预处理终端通过光纤接入所述光交换子系统,实现信道预处理链路数量的并行规模扩展。
根据本发明第二方面的装置,所述第一处理单元具体被配置为,利用所述多通道信道预处理终端对所述多路射频输入信号进行预处理,包括:
调整所述多路射频输入信号的信号功率,经过模拟下变频和带外滤 波处理,将得到的中频信号通过模数转换后进行采样,以获取经采样的数字信号;
对所述数字信号进行数字下变频和抽取滤波处理,通过打包处理和电光转换获得所述多路10G光信号。
根据本发明第二方面的装置,所述光交换子系统接收来自所述数学仿真与监控子系统的控制调度指令,所述多个输入端口对所述多路10G光信号包含的各组数据的指示标志进行识别;所述第二处理单元具体被配置为,调用所述光交换子系统基于所述识别结果将所述各组数据根据指定的地址分发到所述光交换子系统的多个输出端口,从而实现多入多出调度,包括:同一输出端口接收来自不同输入端口的多组数据,同一输入端口的多组数据被发送至不同输出端口。
根据本发明第二方面的装置,当终止对所述多通道信道预处理终端的新增处理或删除处理时,其他多通道信道预处理终端维持原有状态;所述光交换子系统具有主引擎和备引擎,所述主引擎和所述备引擎分别具备独立支撑所述光交换子系统工作的功能,当所述主引擎发生故障时,无缝切换至所述备引擎以维持所述光交换子系统处于工作状态;所述光交换子系统具备规模并行扩展能力,对所述大规模多入多出信道模拟系统的输入输出链路进行规模扩张时,直接并行扩展所述光交换子系统的光交换板卡规模。
根据本发明第二方面的装置,所述多个信道特征模拟子系统包含多台可并行扩展的多通道信道特性模拟终端,所述多通道信道特性模拟终端接收所述时频综合与分配子系统输入的频率、脉冲及时间信号驱动,所述多通道信道特性模拟终端接收所述数学仿真与监控子系统的通讯和控制指令,所述多通道信道特性模拟终端接入所述光交换子系统输出的光 纤,实现信道特性模拟的并行规模扩展。
根据本发明第二方面的装置,所述第三处理单元具体被配置为,利用所述多通道信道特性模拟终端对所述经重新分发的多路10G光信号执行多通道并行信道模拟操作,以获取添加有所述经模拟的信道特性的无线射频信号,包括:
根据所述数学仿真与监控子系统发送的各个信号发射设备、信号转发设备、信号接收设备之间的仿真数据和控制数据,生成由于相对运动、对流层、电离层、多径、遮蔽造成的经信道特性变化后的信号,以实现所述多通道并行信道模拟操作;
经所述多通道并行信道模拟操作的数字信号通过数模转换得到模拟中频信号,所述模拟中频信号经模拟上变频处理、滤波和功率调整后,作为添加有所述经模拟的信道特性的无线射频信号,被发送至所述各个信号接收终端。
本发明第三方面公开了一种电子设备。所述电子设备包括存储器和处理器,所述存储器存储有计算机程序,所述处理器执行所述计算机程序时,实现本公开第一方面中任一项所述的一种基于光矩阵交换的大规模多入多出信道模拟方法中的步骤。
本发明第四方面公开了一种计算机可读存储介质。所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时,实现本公开第一方面中任一项所述的一种基于光矩阵交换的大规模多入多出信道模拟方法中的步骤。
综上,该方案包括:并行可扩展式信道预处理子系统,包含多台分布式可并行扩展的多通道信道预处理终端,可安装于无线射频信号输入端点处,用于对多个相同或不同信号来源的无线射频信号采集与预处理操作, 并将数据信号转换成光信号形式输出;矩阵式光交换子系统,用于完成大规模多入多出信号转换的光信号汇聚、复制与分发;并行可扩展式信道特性模拟子系统,包含多台可并行扩展的多通道信道特性模拟终端,用于接收光信号并将转换为数据信号形式,进行多通道信道模拟操作,输出添加完信道特性的无线射频信号;时频综合与分配子系统,综合产生所需的频率、脉冲及时间信号,完成调频、调相操作,并根据系统规模需求分配给各个子系统终端所需的时频信号;数学仿真与监控子系统,用于仿真并计算系统内部大规模信号发射设备、信号转发设备、信号接收设备之间的轨迹和各类动态参数,将之分发并控制信道模拟终端进行信道特性模拟,同时对各子系统发送控制指令和参数配置指令,完成对系统的监视控制;自检自校子系统主要完成系统自身的工作状态的开机自检和系统各信道链路的自校功能。系统中各个子系统之间和各设备之间的各类信号、数据、信息的传输形式均可以使用千兆、万兆等光纤,其传输距离不受限制,场地布设不受限制。
本发明提供的技术方案与现有技术相比,有益效果在于:根据本发明所设计基于光矩阵交换的大规模多入多出信道特性模拟系统,可以满足通信、雷达、电子对抗等大型系统或大规模场景中大规模信号发射设备、信号转发设备、信号接收设备之间,较大规模无线信号链路交叉互联对接,通过设计具备电光/光电转换接口的并行可扩展式信道预处终端和信道特性模拟终端,将多入多出信号以高密度矩阵式光交换形式进行数据汇聚、复制与分发,实现了具备大规模无线信号之间实现动态交叉互连对接能力的大型信道模拟系统。可以通过设备套量和光交换矩阵数据容量的增加,既不影响多链路间一致性,也不影响多链路间协同仿真,以N条硬件信道链路,实现NxN条矩阵式信道模拟规模能力,获得直接呈倍数关系扩展并 行信道模拟链路规模的效益,显著降低了大规模信道模拟系统复杂度、并行规模扩展难度和硬件成本;系统内部设备之间所有信号均可通过光纤互联,系统内部各子系统以及子系统内各单机设备可以呈分布式布设,设备间相互距离仅受光纤传输能力(数百米至数千公里量级均可)限制,从而满足各类场地和应用场景需求;这种基于光矩阵交换的大规模系统架构,不仅限于实现信道模拟系统,也可用于各种支持信号收发的大型通信、雷达、电子对抗系统设计实现。
附图说明
为了更清楚地说明本发明具体实施方式或现有技术中的技术方案下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为根据本发明实施例的大规模多入多出信道模拟系统的示意图;
图2为根据本发明实施例的一种基于光矩阵交换的大规模多入多出信道模拟方法的流程图;
图3为根据本发明实施例的可并行扩展的多通道信道预处理终端的示意图;
图4为根据本发明实施例的光交换子系统的示意图;
图5为根据本发明实施例的可并行扩展的多通道信道特性模拟终端的示意图;
图6为根据本发明实施例的一种基于光矩阵交换的大规模多入多出信道模拟装置的结构图;
图7为根据本发明实施例的一种电子设备的结构图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例只是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明第一方面公开了一种基于光矩阵交换的大规模多入多出信道模拟方法,所述方法基于大规模多入多出信道模拟系统来实现。图1为根据本发明实施例的大规模多入多出信道模拟系统的示意图;如图1所示,所述大规模多入多出信道模拟系统包括多个信道预处理子系统(信道预处理)、光交换子系统(交换机)、多个信道特征模拟子系统(信道特性模拟)、自检自校子系统、数学仿真与监控子系统、时频综合与分配子系统。
图2为根据本发明实施例的一种基于光矩阵交换的大规模多入多出信道模拟方法的流程图;如图2所示,所述方法具体包括:
步骤S1、所述多个信道预处理子系统接收具有相同信号来源或具有不同信号来源的多路射频输入信号,以对所述多路射频输入信号进行预处理,经所述预处理的多路射频输入信号以多路10G光信号的形式通过光纤传输至所述光交换子系统,其中每路10G光信号包含多组数据;
步骤S2、基于所述光交换子系统的多个输入端口对所述多路10G光信号包含的各组数据的识别结果,将所述各组数据根据指定的地址分发到所述光交换子系统的多个输出端口,以经由所述多个输出端口将经重 新分发的多路10G光信号输出至所述多个信道特征模拟子系统;
步骤S3、所述多个信道特征模拟子系统对所述经重新分发的多路10G光信号执行多通道并行信道模拟操作,以获取添加有经模拟的信道特性的无线射频信号,所述无线射频信号被发送至各个信号接收终端。
在一些实施例中,所述信道预处理子系统包含多台分布式可并行扩展的多通道信道预处理终端,所述多通道信道预处理终端接收所述时频综合与分配子系统输入的频率、脉冲及时间信号驱动,所述多通道信道预处理终端接收所述数学仿真与监控子系统的通讯和控制指令,所述多通道信道预处理终端通过光纤接入所述光交换子系统,实现信道预处理链路数量的并行规模扩展。
在一些实施例中,在所述步骤S1中,利用所述多通道信道预处理终端对所述多路射频输入信号进行预处理,具体包括:调整所述多路射频输入信号的信号功率,经过模拟下变频和带外滤波处理,将得到的中频信号通过模数转换后进行采样,以获取经采样的数字信号;对所述数字信号进行数字下变频和抽取滤波处理,通过打包处理和电光转换获得所述多路10G光信号。
图3为根据本发明实施例的可并行扩展的多通道信道预处理终端的示意图;如图3所示,并行可扩展式信道预处理子系统,包含多台分布式可并行扩展的多通道信道预处理终端,可安装于无线射频信号输入端点处,用于对多个相同或不同信号来源的无线射频信号采集与预处理操作。多台多通道信道预处理终端统一接受时频综合与分配子系统输入的频率、脉冲及时间信号驱动,接受数学仿真与监控子系统的通讯和控制指令,可以直接通过设备数量的增加对信道预处理链路数量进行并行规模扩展。终端对接收的多路射频信号进行射频预处理,将信号功率合理 调整后,经过模拟下变频和带外滤波处理,将得到的中频信号经过滤波送给不同的ADC转换器完成ADC采样,对采样获得的数字信号进行数字下变频和抽取滤波等处理,并根据数学仿真与监控子系统的指令进行数据封装所需的相关协议打包处理,同时将打包后的10G数据完成电光转换,以光信号形式通过光纤输出给矩阵式光交换子系统。系统中各个子系统之间和各设备之间的各类信号、数据、信息的传输形式均可以使用千兆、万兆等光纤,其传输距离不受限制,场地布设不受限制。
在一些实施例中,在所述步骤S2中,所述光交换子系统接收来自所述数学仿真与监控子系统的控制调度指令,所述多个输入端口对所述多路10G光信号包含的各组数据的指示标志进行识别,所述光交换子系统基于所述识别结果将所述各组数据根据指定的地址分发到所述光交换子系统的多个输出端口,从而实现多入多出调度,具体包括:同一输出端口接收来自不同输入端口的多组数据,同一输入端口的多组数据被发送至不同输出端口。
在一些实施例中,当终止对所述多通道信道预处理终端的新增处理或删除处理时,其他多通道信道预处理终端维持原有状态;所述光交换子系统具有主引擎和备引擎,所述主引擎和所述备引擎分别具备独立支撑所述光交换子系统工作的功能,当所述主引擎发生故障时,无缝切换至所述备引擎以维持所述光交换子系统处于工作状态;所述光交换子系统具备规模并行扩展能力,对所述大规模多入多出信道模拟系统的输入输出链路进行规模扩张时,直接并行扩展所述光交换子系统的光交换板卡规模。
图4为根据本发明实施例的光交换子系统的示意图;如图4所示, 矩阵式光交换子系统所采用的矩阵式光交换系统架构,整个系统基于光传输架构实现信号传输,信道预处理设备对发射信号进行采集,经过预处理后转换为光信号输出,信道模拟设备接收光信号,对各个发射信号进行信道特性模拟参数添加。高密度万兆交换机作为系统的核心交换枢纽完成10G光信号的多入多出管理、复制、调度等功能,直接扩大万兆交换机的数据交换容量即可支持信道模拟链路的规模扩展需求。万兆交换机需要接收来自数学仿真与监控子系统的控制调度指令,对输入端口光数据中的相关指示标志进行识别处理,按规定的地址分发到不同输出端口,从而完成多入多出调度、同一输出端口接收不同输入端口的信号分组调度、同一输入端口信号发往不同输出端口的数据复制分发调度、切换不同输入与输出端口间数据流向关系等功能,实现大规模多入多出光矩阵交换高速处理流程。其中,每个信道预处理终端向多个信道模拟终端发送数据,万兆交换机将单端口输入的多组信息流分离开来,根据需求分发给不同的输出端口,信道预处理终端在不同时间段将数据发送给不同的信道模拟终端,该动态变化通过专用外部接口控制万兆交换机实现。其中,每个信道模拟终端从多个信道预处理终端接收数据,在不同时间段接收的信道预处理终端会动态变化,当从新增加的信道预处理终端接收数据时,或者从其中一个信道预处理终端停止接收数据时,对信道模拟终端正在接收的其他数据流不能产生影响,该动态变化通过专用外部接口控制万兆交换机实现。同时,从系统稳健运行要求出发,万兆交换机需要具备主备引擎,每个引擎具备独立支撑能力,防止数据引擎损坏时无法完成数据交换;具备虚拟多合一能力,用以支持两台万兆交换机互为主备,实现无缝切换。光交换子系统具备规模并行扩展能力,对大规模多入多出信道模拟系统的输入输出链路进行规模扩张时,直接 并行扩展所述光交换子系统的光交换板卡规模即可。
在一些实施例中,在所述步骤S3中,所述多个信道特征模拟子系统包含多台可并行扩展的多通道信道特性模拟终端,所述多通道信道特性模拟终端接收所述时频综合与分配子系统输入的频率、脉冲及时间信号驱动,所述多通道信道特性模拟终端接收所述数学仿真与监控子系统的通讯和控制指令,所述多通道信道特性模拟终端接入所述光交换子系统输出的光纤,实现信道特性模拟的并行规模扩展。
在一些实施例中,在所述步骤S3中,利用所述多通道信道特性模拟终端对所述经重新分发的多路10G光信号执行多通道并行信道模拟操作,以获取添加有所述经模拟的信道特性的无线射频信号,具体包括:
根据所述数学仿真与监控子系统发送的各个信号发射设备、信号转发设备、信号接收设备之间的仿真数据和控制数据,生成由于相对运动、对流层、电离层、多径、遮蔽造成的经信道特性变化后的信号,以实现所述多通道并行信道模拟操作;
经所述多通道并行信道模拟操作的数字信号通过数模转换得到模拟中频信号,所述模拟中频信号经模拟上变频处理、滤波和功率调整后,作为添加有所述经模拟的信道特性的无线射频信号,被发送至所述各个信号接收终端。
图5为根据本发明实施例的可并行扩展的多通道信道特性模拟终端的示意图;如图5所示,并行可扩展式信道特性模拟子系统,包含多台可并行扩展的多通道信道特性模拟终端,其功能组成如图4所示,多台多通道信道特性模拟终端统一接受时频综合与分配子系统输入的频率、脉冲及时间信号驱动,接受数学仿真与监控子系统的通讯和控制指令,可以直接通过设备数量的增加对信道特性模拟进行并行规模扩展。终端 通过光纤接收来自于矩阵式光交换子系统的光信号,通过光电转换模块将之转换为数据信号形式,根据相关协议解析处理数据封装,根据数学仿真与监控子系统发送的大规模信号发射设备、信号转发设备、信号接收设备之间的时延、多普勒、功率、相位、可见性等仿真数据、控制数据,对各个通道的数字信号进行处理,生成由于相对运动、对流层、电离层、多径、遮蔽等原因造成的信号特性变化后的信号,进行多通道并行信道模拟操作,获得的数字信号通过DAC转换器变成模拟中频信号,然后进行模拟上变频,并完成功率调整后,最后输出添加完信道特性的无线射频信号给不同的信号接收终端,从而完成系统的信道特性模拟功能。
另外,数学仿真与监控子系统是大型信道模拟系统的应用层支持软件,其功能组成主要包括数学仿真计算与仿真指令处理功能、系统工作流程控制与状态监视功能,分为数学仿真计算、仿真指令处理、工作流程控制和状态监视等模块。数处与监控子系统根据相关数学模型仿真相对运动轨迹,计算信号接收端所获取的信号观测量,根据各类信道观测数据生成信道模拟通道所需的控制参数,包括时延、多普勒、功率、相移、多径等参数,将相关指令发送给各个采集预处理终端和信道模拟终端,控制信道设备完成信道模拟流程。同时对系统中的各类设备、通信线路、系统工作状态等进行实时监视,利用图形、图像、表格等多种方式,清晰直观的显示当前系统的工作状态,包括设备工作状态(正常、故障、脱机)、设备工作参数,以不同的告警形式给出较详细的故障诊断信息,辅助维护人员尽快定位故障、排除故障。数学仿真与监控子系统内部设备之间以及与其他与各子系统之间的通信互联方式可以采用且不限于网线或光纤等通信交互形式。
时频综合与分配子系统负责综合产生系统所需的频率、脉冲及时间信号,为其他子系统提供时频支撑,由前级生成与分配设备、后级终端设备组成,所有时频终端采用统一结构和模块化设计。前级生成分配设备为时频信号生成与分配终端,并综合生成所需的特定频点信号,完成系统所需的调频、调相需求,实现对标准时频信号的分配,作为后级终端设备的参考基准。后级终端设备由若干时频分配终端组成,对前级分配的各类标准时频信号进行二级分配,输出产生其他子系统所需的所有时频信号,时频综合与分配子系统内部设备之间以及与其他各子系统之间的时频信号传输可以采用且不限于电缆或光纤等信号传输形式。
自检自校子系统主要完成系统的状态自检和链路自校准功能。自检自校信号生成设备输出的自检自校信号,通过分路器将信号输出耦合进入到信道预处理设备,经过交换机、信道处理设备后,从信道处理设备输出的信号中耦合出自检自校信号,回到自检自校信号接收设备,对信号进行解调处理,从而完成整个信道模拟子系统的自检自校处理。自检自校子系统内部设备之间以及与其他各子系统之间的信号传输可以采用且不限于电缆或光纤等信号传输形式。
所述各个子系统之间均以各类光纤连接实现互联互通,当外部信号对接设备或者系统受到地域、场地等限制无法集中布设时,系统内部各子系统以及子系统内各单机设备均可以呈集中-分布式远程布设,实现外部信号对接设备或者系统的远程对接,设备间相互距离仅受光纤传输能力(数百米至数千公里量级均可)限制,满足各类场地布设和应用场景需求。具体如下:
基于光矩阵交换的大规模多入多出信道模拟信道模拟系统分布式系统布设模式。考虑到有部分信号发射设备、信号转发设备、信号接收设 备(如大型通信站、组装好的卫星等)等受到体积、重量、安装状态、无法轻易移动、相互之间物理距离(数百米乃至数千公里)等限制,对接信号互联基本很难进行的情况;有场地条件较好,适合设备集中布设的情况;有大部分设备可集中布设,小部分对接设备由于各种原因距离较远不便移动的情况等等。针对上述不同情况,本发明所设计的基于光矩阵交换的大规模多入多出信道模拟信道模拟系统均可适应性分布式布设接入各类参试设备。系统中各个子系统之间和各设备之间的各类信号、数据、信息的传输形式均可以使用千兆、万兆等光纤,其传输距离不受限制,可支持数百米到数千公里的范围,因此,对于所有需要远距离接入本系统的各类多个信号发射设备、信号转发设备、信号接收设备等,均可以将与之对接的多通道信道预处理终端(对接信号发射设备、信号转发设备)、多通道信道特性模拟终端(对接信号接收设备、信号转发设备),布设至信号收发/转发设备所处的位置,与之直接对接,然后多通道信道预处理终端的输出信号、多通道信道特性模拟终端的输入信号,以及系统内部时频、通信等均以光纤形式互连互通,形成一个统一的系统整体。
所述大规模多入多出信道模拟系统,具备输入和输出信道规模并行扩展能力。当信道输入端信号规模扩展时,并行增加信道预处理子系统的多通道信道预处理终端数量,用于接入新增输入信号,并将其输出光纤接入光交换子系统对应扩展部分;当信道输出端信号规模扩展时,并行增加特征模拟子系统的多通道信道特性模拟终端数量,用于输出新增输出信号,并接入光交换子系统对应扩展部分的输出光纤;当信道输入和输出端信号规模扩展时,并行扩展光交换板卡数量,并通过指令控制,调整新增扩展光交换板卡输入和输出端口的数据传输映射关系,保证新 增多通道信道预处理终端和多通道信道特性模拟终端接入光纤的正确映射关系,且不影响原有接入的各类终端。
上述基于光矩阵交换的大规模多入多出系统架构应用适用范围较为广阔,该架构具有支持并行扩展系统规模、支持分布式远程接入、支持大规模多入多出信号收发的优势,可以应用且不限于大型通信系统(如大型航天系统配套的地面运行控制系统、大型多通道地面远程雷达系统)的大规模信号收发处理需求、远距离分布式信号收发系统(如广域地基信号接收监测、广域布设的雷达系统等)的集中管理与分布布设需求、大规模多入多出接入系统(如MIMO等)的并行规模扩展需求。
本发明第二方面公开了一种基于光矩阵交换的大规模多入多出信道模拟装置。所述装置基于大规模多入多出信道模拟系统来实现,如图1所示,所述大规模多入多出信道模拟系统包括多个信道预处理子系统、光交换子系统、多个信道特征模拟子系统、时频综合与分配子系统、数学仿真与监控子系统、自检自校子系统。
图6为根据本发明实施例的一种基于光矩阵交换的大规模多入多出信道模拟装置的结构图;如图6所示,所述装置具体包括:
第一处理单元601,被配置为,调用所述多个信道预处理子系统接收具有相同信号来源或具有不同信号来源的多路射频输入信号,以对所述多路射频输入信号进行预处理,经所述预处理的多路射频输入信号以多路10G光信号的形式通过光纤传输至所述光交换子系统,其中每路10G光信号包含多组数据;
第二处理单元602,被配置为,调用所述光交换子系统,基于所述光交换子系统的多个输入端口对所述多路10G光信号包含的各组数据的识别结果,将所述各组数据根据指定的地址分发到所述光交换子系统的多 个输出端口,以经由所述多个输出端口将经重新分发的多路10G光信号输出至所述多个信道特征模拟子系统;
第三处理单元603,被配置为,调用所述多个信道特征模拟子系统对所述经重新分发的多路10G光信号执行多通道并行信道模拟操作,以获取添加有经模拟的信道特性的无线射频信号,所述无线射频信号被发送至各个信号接收终端。
根据本发明第二方面的装置,所述信道预处理子系统包含多台分布式可并行扩展的多通道信道预处理终端,所述多通道信道预处理终端接收所述时频综合与分配子系统输入的频率、脉冲及时间信号驱动,所述多通道信道预处理终端接收所述数学仿真与监控子系统的通讯和控制指令,所述多通道信道预处理终端通过光纤接入所述光交换子系统,实现信道预处理链路数量的并行规模扩展。
根据本发明第二方面的装置,所述第一处理单元601具体被配置为,利用所述多通道信道预处理终端对所述多路射频输入信号进行预处理,包括:
调整所述多路射频输入信号的信号功率,经过模拟下变频和带外滤波处理,将得到的中频信号通过模数转换后进行采样,以获取经采样的数字信号;
对所述数字信号进行数字下变频和抽取滤波处理,通过打包处理和电光转换获得所述多路10G光信号。
根据本发明第二方面的装置,所述光交换子系统接收来自所述数学仿真与监控子系统的控制调度指令,所述多个输入端口对所述多路10G光信号包含的各组数据的指示标志进行识别;所述第二处理单元602具体被配置为,调用所述光交换子系统基于所述识别结果将所述各组数据根 据指定的地址分发到所述光交换子系统的多个输出端口,从而实现多入多出调度,包括:同一输出端口接收来自不同输入端口的多组数据,同一输入端口的多组数据被发送至不同输出端口。
根据本发明第二方面的装置,当终止对所述多通道信道预处理终端的新增处理或删除处理时,其他多通道信道预处理终端维持原有状态;所述光交换子系统具有主引擎和备引擎,所述主引擎和所述备引擎分别具备独立支撑所述光交换子系统工作的功能,当所述主引擎发生故障时,无缝切换至所述备引擎以维持所述光交换子系统处于工作状态;所述光交换子系统具备规模并行扩展能力,对所述大规模多入多出信道模拟系统的输入输出链路进行规模扩张时,直接并行扩展所述光交换子系统的光交换板卡规模。
根据本发明第二方面的装置,所述多个信道特征模拟子系统包含多台可并行扩展的多通道信道特性模拟终端,所述多通道信道特性模拟终端接收所述时频综合与分配子系统输入的频率、脉冲及时间信号驱动,所述多通道信道特性模拟终端接收所述数学仿真与监控子系统的通讯和控制指令,所述多通道信道特性模拟终端接入所述光交换子系统输出的光纤,实现信道特性模拟的并行规模扩展。
根据本发明第二方面的装置,所述第三处理单元603具体被配置为,利用所述多通道信道特性模拟终端对所述经重新分发的多路10G光信号执行多通道并行信道模拟操作,以获取添加有所述经模拟的信道特性的无线射频信号,包括:
根据所述数学仿真与监控子系统发送的各个信号发射设备、信号转发设备、信号接收设备之间的仿真数据和控制数据,生成由于相对运动、对流层、电离层、多径、遮蔽造成的经信道特性变化后的信号,以实现 所述多通道并行信道模拟操作;
经所述多通道并行信道模拟操作的数字信号通过数模转换得到模拟中频信号,所述模拟中频信号经模拟上变频处理、滤波和功率调整后,作为添加有所述经模拟的信道特性的无线射频信号,被发送至所述各个信号接收终端。
根据本发明第二方面的装置,所述装置还可选地/额外地包括:
第四处理单元604,被配置为,调用所述时频综合与分配子系统,根据外部或者内部频率源信号,综合产生所需的频率、脉冲及时间信号,完成调频、调相操作,并根据规模需求进行二次分配,采用光纤传输为所有子系统设备提供时频参考基准信号;
第五处理单元605,被配置为,调用所述数学仿真与监控子系统,用于仿真并计算大规模信号传输信道之间的轨迹和各类动态参数,对各子系统发送控制指令和仿真参数配置指令,完成对系统的运行驱动与监视控制,其中各类数据传输基于千兆光纤互联形式完成;
第六处理单元606,被配置为,调用所述自检自校子系统,生成并输出自检自校信号,耦合进入到信道预处理设备,从信道处理设备输出的信号中耦合出,对信号进行解调处理完成自检自校,其中信号传输采用光纤互联形式完成。
根据本发明第二方面的装置,所述第四处理单元604具体被配置为,综合产生所需的频率、脉冲及时间信号,完成调频、调相操作,并根据系统规模需求分配给各个子系统终端所需的时频信号,包括:
由前级生成与分配设备、后级终端设备组成,所有时频终端采用统一结构和模块化设计。前级生成分配设备为时频信号生成与分配终端,根据外部或者内部频率源信号,综合生成所需的特定频点信号,完成系 统所需的调频、调相需求,实现对标准时频信号的分配,作为后级终端设备的参考基准;
后级终端设备由若干时频分配终端组成,对前级分配的各类标准时频信号进行二级分配,输出产生其他子系统所需的所有时频信号,时频综合与分配子系统内部设备之间以及与其他各子系统之间的时频信号传输可以采用且不限于电缆或光纤等信号传输形式。
根据本发明第二方面的装置,所述第五处理单元605具体被配置为,用于仿真并计算大规模信号传输信道之间的轨迹和各类动态参数,对各子系统发送控制指令和仿真参数配置指令,完成对系统的运行驱动与监视控制,包括:
其功能组成主要包括数学仿真计算与仿真指令处理功能、系统工作流程控制与状态监视功能,分为数学仿真计算、仿真指令处理、工作流程控制和状态监视等模块;
根据相关数学模型仿真相对运动轨迹,计算信号接收端所获取的信号观测量,根据各类信道观测数据生成信道模拟通道所需的控制参数,包括时延、多普勒、功率、相移、多径等参数,将相关指令发送给各个终端。同时对系统中的各类设备、通信线路、系统工作状态等进行实时监视,利用图形、图像、表格等多种方式,清晰直观的显示当前系统的工作状态。与其他与各子系统之间的通信互联方式可以采用且不限于网线或光纤等通信交互形式。
根据本发明第二方面的装置,所述第六处理单元606具体被配置为,被配置为,生成并输出自检自校信号,耦合进入到信道预处理设备,从信道处理设备输出的信号中耦合出,对信号进行解调处理完成自检自校,包括:
完成系统的状态自检和链路自校准功能,自检自校信号生成设备输出的自检自校信号,通过分路器将信号输出耦合进入到信道预处理设备,经过交换机、信道处理设备后,从信道处理设备输出的信号中耦合出自检自校信号,回到自检自校信号接收设备,对信号进行解调处理,从而完成整个信道模拟子系统的自检自校处理。自检自校子系统内部设备之间以及与其他各子系统之间的信号传输可以采用且不限于电缆或光纤等信号传输形式。
本发明第三方面公开了一种电子设备。所述电子设备包括存储器和处理器,所述存储器存储有计算机程序,所述处理器执行所述计算机程序时,实现本公开第一方面中任一项所述的一种基于光矩阵交换的大规模多入多出信道模拟方法中的步骤。
图7为根据本发明实施例的一种电子设备的结构图,如图7所示,电子设备包括通过系统总线连接的处理器、存储器、通信接口、显示屏和输入装置。其中,该电子设备的处理器用于提供计算和控制能力。该电子设备的存储器包括非易失性存储介质、内存储器。该非易失性存储介质存储有操作系统和计算机程序。该内存储器为非易失性存储介质中的操作系统和计算机程序的运行提供环境。该电子设备的通信接口用于与外部的终端进行有线或无线方式的通信,无线方式可通过WIFI、运营商网络、近场通信(NFC)或其他技术实现。该电子设备的显示屏可以是液晶显示屏或者电子墨水显示屏,该电子设备的输入装置可以是显示屏上覆盖的触摸层,也可以是电子设备外壳上设置的按键、轨迹球或触控板,还可以是外接的键盘、触控板或鼠标等。
本领域技术人员可以理解,图7中示出的结构,仅仅是与本公开的技术方案相关的部分的结构图,并不构成对本申请方案所应用于其上的电子 设备的限定,具体的电子设备可以包括比图中所示更多或更少的部件,或者组合某些部件,或者具有不同的部件布置。
本发明第四方面公开了一种计算机可读存储介质。所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时,实现本公开第一方面中任一项所述的一种基于光矩阵交换的大规模多入多出信道模拟方法中的步骤。
本发明提供的技术方案与现有技术相比,有益效果在于:传统信道模拟设备各个通道之间相互独立,每一条信道模拟硬件链路支持一路信号输入对应一条信号输出的一条信号链路信道模拟功能,即无法支持一路信号输入对应多条信号输出的一入多出模式,也无法支持多路信号输入对应一路信号输出的多入一出模式,更无法支持多路信号输入对应多路信号输出的多入多出模式和对应关系灵活切换需求。通过设计具备电光/光电转换接口的并行可扩展式信道预处终端和信道特性模拟终端,将多入多出信号以高密度矩阵式光交换形式进行数据汇聚、复制与分发,实现了具备大规模无线信号之间实现动态交叉互连对接能力的大型信道模拟系统,其信道对接效能与传统信道模拟设备之间对比如图5所示。可以通过设备套量和光交换矩阵数据容量的增加,既不影响多链路间一致性,也不影响多链路间协同仿真,以N条信道所需的硬件链路,实现NxN条矩阵式信道模拟规模能力,获得直接呈倍数关系扩展并行信道模拟链路规模的效益,系统规模越大,每增加一条信道所需的硬件链路获得效益越大,比如9入9出规模可以支持81条信道模拟,在此基础上增加一条信道所需的硬件链路,就可以获得10入10出共计100条信道模拟能力,以增加一条信道所需的硬件链路为代价,获得在原有基础上增加19条信道模拟的能力,显著降低了大规模信道模拟系统的实现复杂度和并行规模扩展难度;用N条信道的硬件 设备,实现了NxN条信道的模拟能力,相比传统模式极大的降低了大规模信道系统的硬件成本;系统内部设备之间所有信号均通过光纤互联,系统内部各子系统以及子系统内各单机设备可以呈分布式布设,设备间相互距离仅受光纤传输能力(数百米至数千公里量级均可)限制,从而满足各类场地和应用场景需求;这种基于光矩阵交换的大规模多入多出系统架构,不仅限于实现信道模拟系统,也可用于各种支持信号收发的大型通信、雷达、电子对抗系统设计实现。
请注意,以上实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (10)

  1. 一种基于光矩阵交换的大规模多入多出信道模拟方法,其特征在于:
    所述方法基于大规模多入多出信道模拟系统来实现,所述大规模多入多出信道模拟系统包括多个信道预处理子系统、光交换子系统、多个信道特征模拟子系统、时频综合与分配子系统、数学仿真与监控子系统、自检自校子系统;
    所述方法具体包括:
    步骤S1、所述多个信道预处理子系统接收具有相同信号来源或具有不同信号来源的多路射频输入信号,以对所述多路射频输入信号进行预处理,经所述预处理的多路射频输入信号以多路10G光信号的形式通过光纤传输至所述光交换子系统,其中每路10G光信号包含多组数据;
    步骤S2、基于所述光交换子系统的多个输入端口对所述多路10G光信号包含的各组数据的识别结果,将所述各组数据根据指定的地址分发到所述光交换子系统的多个输出端口,以经由所述多个输出端口将经重新分发的多路10G光信号输出至所述多个信道特征模拟子系统;
    步骤S3、所述多个信道特征模拟子系统对所述经重新分发的多路10G光信号执行多通道并行信道模拟操作,以获取添加有经模拟的信道特性的无线射频信号,所述无线射频信号被发送至各个信号接收终端。
  2. 根据权利要求1所述的一种基于光矩阵交换的大规模多入多出信道模拟方法,其特征在于,所述信道预处理子系统包含多台分布式可并行扩展的多通道信道预处理终端,所述多通道信道预处理终端接收所述时频综合与分配子系统输入的频率、脉冲及时间信号驱动,所述多通道信道预处理终端接收所述数学仿真与监控子系统的通讯和控制指令,所述多通道信道预处理终端通过光纤接入所述光交换子系统,实现信道预 处理链路数量的并行规模扩展。
  3. 根据权利要求2所述的一种基于光矩阵交换的大规模多入多出信道模拟方法,其特征在于,在所述步骤S1中,利用所述多通道信道预处理终端对所述多路射频输入信号进行预处理,具体包括:
    调整所述多路射频输入信号的信号功率,经过模拟下变频和带外滤波处理,将得到的中频信号通过模数转换后进行采样,以获取经采样的数字信号;
    对所述数字信号进行数字下变频和抽取滤波处理,通过打包处理和电光转换获得所述多路10G光信号。
  4. 根据权利要求3所述的一种基于光矩阵交换的大规模多入多出信道模拟方法,其特征在于,在所述步骤S2中,所述光交换子系统接收来自所述数学仿真与监控子系统的控制调度指令,所述多个输入端口对所述多路10G光信号包含的各组数据的指示标志进行识别,所述光交换子系统基于所述识别结果将所述各组数据根据指定的地址分发到所述光交换子系统的多个输出端口,从而实现多入多出调度,具体包括:同一输出端口接收来自不同输入端口的多组数据,同一输入端口的多组数据被发送至不同输出端口。
  5. 根据权利要求4所述的一种基于光矩阵交换的大规模多入多出信道模拟方法,其特征在于:
    当终止对所述多通道信道预处理终端的新增处理或删除处理时,其他多通道信道预处理终端维持原有状态;
    所述光交换子系统具有主引擎和备引擎,所述主引擎和所述备引擎分别具备独立支撑所述光交换子系统工作的功能,当所述主引擎发生故障时,无缝切换至所述备引擎以维持所述光交换子系统处于工作状态;
    所述光交换子系统具备规模并行扩展能力,对所述大规模多入多出信道模拟系统的输入输出链路进行规模扩张时,直接并行扩展所述光交换子系统的光交换板卡规模。
  6. 根据权利要求5所述的一种基于光矩阵交换的大规模多入多出信道模拟方法,其特征在于,在所述步骤S3中,所述多个信道特征模拟子系统包含多台可并行扩展的多通道信道特性模拟终端,所述多通道信道特性模拟终端接收所述时频综合与分配子系统输入的频率、脉冲及时间信号驱动,所述多通道信道特性模拟终端接收所述数学仿真与监控子系统的通讯和控制指令,所述多通道信道特性模拟终端接入所述光交换子系统输出的光纤,实现信道特性模拟的并行规模扩展。
  7. 根据权利要求6所述的一种基于光矩阵交换的大规模多入多出信道模拟方法,其特征在于,在所述步骤S3中,利用所述多通道信道特性模拟终端对所述经重新分发的多路10G光信号执行多通道并行信道模拟操作,以获取添加有所述经模拟的信道特性的无线射频信号,具体包括:
    根据所述数学仿真与监控子系统发送的各个信号发射设备、信号转发设备、信号接收设备之间的仿真数据和控制数据,生成由于相对运动、对流层、电离层、多径、遮蔽造成的经信道特性变化后的信号,以实现所述多通道并行信道模拟操作;
    经所述多通道并行信道模拟操作的数字信号通过数模转换得到模拟中频信号,所述模拟中频信号经模拟上变频处理、滤波和功率调整后,作为添加有所述经模拟的信道特性的无线射频信号,被发送至所述各个信号接收终端。
  8. 一种基于光矩阵交换的大规模多入多出信道模拟装置,其特征在 于:
    所述装置基于大规模多入多出信道模拟系统来实现,所述大规模多入多出信道模拟系统包括多个信道预处理子系统、光交换子系统、多个信道特征模拟子系统、时频综合与分配子系统、数学仿真与监控子系统、自检自校子系统;
    所述装置具体包括:
    第一处理单元,被配置为,调用所述多个信道预处理子系统接收具有相同信号来源或具有不同信号来源的多路射频输入信号,以对所述多路射频输入信号进行预处理,经所述预处理的多路射频输入信号以多路10G光信号的形式通过光纤传输至所述光交换子系统,其中每路10G光信号包含多组数据;
    第二处理单元,被配置为,调用所述光交换子系统,基于所述光交换子系统的多个输入端口对所述多路10G光信号包含的各组数据的识别结果,将所述各组数据根据指定的地址分发到所述光交换子系统的多个输出端口,以经由所述多个输出端口将经重新分发的多路10G光信号输出至所述多个信道特征模拟子系统;
    第三处理单元,被配置为,调用所述多个信道特征模拟子系统对所述经重新分发的多路10G光信号执行多通道并行信道模拟操作,以获取添加有经模拟的信道特性的无线射频信号,所述无线射频信号被发送至各个信号接收终端。
  9. 一种电子设备,其特征在于,所述电子设备包括存储器和处理器,所述存储器存储有计算机程序,所述处理器执行所述计算机程序时,实现权利要求1至7中任一项所述的一种基于光矩阵交换的大规模多入多出信道模拟方法中的步骤。
  10. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时,实现权利要求1至7中任一项所述的一种基于光矩阵交换的大规模多入多出信道模拟方法中的步骤。
PCT/CN2022/141342 2022-01-10 2022-12-23 基于光矩阵交换的大规模多入多出信道模拟方法和装置 WO2023130983A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210021735.7 2022-01-10
CN202210021735.7A CN114374451B (zh) 2022-01-10 2022-01-10 基于光矩阵交换的大规模多入多出信道模拟方法和装置

Publications (1)

Publication Number Publication Date
WO2023130983A1 true WO2023130983A1 (zh) 2023-07-13

Family

ID=81143496

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/141342 WO2023130983A1 (zh) 2022-01-10 2022-12-23 基于光矩阵交换的大规模多入多出信道模拟方法和装置

Country Status (2)

Country Link
CN (1) CN114374451B (zh)
WO (1) WO2023130983A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114374451B (zh) * 2022-01-10 2023-08-22 中国人民解放军国防科技大学 基于光矩阵交换的大规模多入多出信道模拟方法和装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020044315A1 (en) * 2000-10-18 2002-04-18 Mitsuru Sugawara Optical switching apparatus and optical transmission apparatus
US20040208555A1 (en) * 2002-06-03 2004-10-21 Stanley Pau Methods and apparatus for optical switching
US7136587B1 (en) * 2001-11-15 2006-11-14 Meshnetworks, Inc. System and method for providing simulated hardware-in-the-loop testing of wireless communications networks
CN114374451A (zh) * 2022-01-10 2022-04-19 中国人民解放军国防科技大学 基于光矩阵交换的大规模多入多出信道模拟方法和装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4783850A (en) * 1984-03-07 1988-11-08 Canadian Patents And Development Limited-Societe Canadienne Des Brevets Et D'exploitation Limitee Optoelectronic compound switching matrix
CN102122994A (zh) * 2010-01-08 2011-07-13 中兴通讯股份有限公司 一种测试多入多出设备的多通道辐射特性的装置及方法
CN103138855B (zh) * 2011-11-29 2016-08-03 中兴通讯股份有限公司 一种基于外场实测数据的无线网络信道模拟装置与方法
US10050740B2 (en) * 2015-06-02 2018-08-14 Massachusetts Institute Of Technology Scheduled light path switching in optical networks and automatic assessment of traffic impairments that would result from adding or deleting a channel in a wavelength-division multiplexed optical communication network
CN105208298B (zh) * 2015-10-28 2018-06-19 大连科迪视频技术有限公司 一种用于多格式视频信号切换的矩阵切换系统及矩阵切换方法
CN108449126B (zh) * 2018-02-08 2020-10-23 中国航天时代电子有限公司 一种多星地面组网远程对接测试系统
CN110401824B (zh) * 2019-07-24 2020-12-15 北京小鸟科技股份有限公司 多路复用的kvm光传输系统、级联式光端机、光接口卡
CN110601769B (zh) * 2019-08-01 2020-11-24 中国电子科技集团公司第二十九研究所 基于微波光子的星载阵列微波变频交换系统及实现方法
CN111208746B (zh) * 2020-04-16 2020-07-28 中国人民解放军国防科技大学 一种北斗全球系统软硬协同仿真试验验证系统
CN113938231B (zh) * 2020-06-29 2024-01-30 北京邮电大学 基于开源架构的信道模拟仪、信道模拟方法、电子设备和非瞬时性计算机存储介质
CN112468220B (zh) * 2020-11-25 2021-07-13 中国科学院微小卫星创新研究院 适应多场景的分布式宽带通信星座地面试验验证系统
CN112468222B (zh) * 2020-11-25 2021-09-24 中国科学院微小卫星创新研究院 一种环境信道模拟系统及方法
CN113472464B (zh) * 2021-09-06 2021-11-12 中国人民解放军国防科技大学 用于实时模拟高动态卫星信道多普勒特性的方法和系统
CN113904744A (zh) * 2021-09-24 2022-01-07 上海微波技术研究所(中国电子科技集团公司第五十研究所) 具备卫星通信信道仿真功能的ka波段信道模拟系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020044315A1 (en) * 2000-10-18 2002-04-18 Mitsuru Sugawara Optical switching apparatus and optical transmission apparatus
US7136587B1 (en) * 2001-11-15 2006-11-14 Meshnetworks, Inc. System and method for providing simulated hardware-in-the-loop testing of wireless communications networks
US20040208555A1 (en) * 2002-06-03 2004-10-21 Stanley Pau Methods and apparatus for optical switching
CN114374451A (zh) * 2022-01-10 2022-04-19 中国人民解放军国防科技大学 基于光矩阵交换的大规模多入多出信道模拟方法和装置

Also Published As

Publication number Publication date
CN114374451A (zh) 2022-04-19
CN114374451B (zh) 2023-08-22

Similar Documents

Publication Publication Date Title
CN105279133B (zh) 基于SoC在线重构的VPX并行DSP信号处理板卡
WO2023130983A1 (zh) 基于光矩阵交换的大规模多入多出信道模拟方法和装置
CN105786620A (zh) 一体化可重构综合信息处理载荷系统
CN202632091U (zh) 一种三星星座分布式并行测试系统
CN112287456B (zh) 一种模块化可配置式工程用飞行模拟器
CN205301911U (zh) 一种嵌入式故障注入控制系统
CN110824508B (zh) 一种可重构的导航卫星模拟器
CN112468220B (zh) 适应多场景的分布式宽带通信星座地面试验验证系统
CN206848819U (zh) 一种无人机通用化地面站席位布局
CN208608998U (zh) 一种基于fc网络的设备测试验证系统
CN111221265B (zh) 一种舵系统在回路的总线信息提取装置及半实物仿真方法
CN104977884A (zh) 一种动车组网络控制系统仿真测试台
CN109714281A (zh) 铁鸟台数据交互系统
CN203882182U (zh) 一种基于pcm和以太网混合结构的实时数据配置加载系统
CN114697321B (zh) 分布式综合可重构电子系统平台架构
CN108011766B (zh) 一种系统架构及配线关系自动切换装置
CN112564764B (zh) 面向宽带卫星通信系统的用户接入模拟系统及方法
CN115793551A (zh) 航天电子载荷超大规模多功能综合化处理平台
CN111123258B (zh) 一种高重频有源相控阵雷达的波束调度装置及方法
CN217385683U (zh) 通用型航电产品测试系统
CN207853898U (zh) 公共核心资源机柜及综合模块化航电系统
CN113485288B (zh) 一种机载系统分布式原位测试设备及测试方法
CN114567899B (zh) 基于vpx架构的终端检测装置及信号处理方法
CN111060929A (zh) 基于pxi可扩展的连续运行参考站以及gnss地基增强系统
CN113534680B (zh) 一种基于ed-247标准的适配器及混合测试系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22918426

Country of ref document: EP

Kind code of ref document: A1