WO2023130940A1 - 信号设计方法及装置 - Google Patents

信号设计方法及装置 Download PDF

Info

Publication number
WO2023130940A1
WO2023130940A1 PCT/CN2022/139695 CN2022139695W WO2023130940A1 WO 2023130940 A1 WO2023130940 A1 WO 2023130940A1 CN 2022139695 W CN2022139695 W CN 2022139695W WO 2023130940 A1 WO2023130940 A1 WO 2023130940A1
Authority
WO
WIPO (PCT)
Prior art keywords
sequence
signal
sub
product
gcp
Prior art date
Application number
PCT/CN2022/139695
Other languages
English (en)
French (fr)
Inventor
段瑞洋
李雪茹
李玉珂
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202210220812.1A external-priority patent/CN116449319A/zh
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023130940A1 publication Critical patent/WO2023130940A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/41Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section

Definitions

  • the embodiments of the present application relate to the communication field, and in particular, to a signal design method and device.
  • Golay complementary pair (golay complementary pair, GCP) is a type of sequence with perfect aperiodic autocorrelation properties, based on this, GCP is usually used as a sensing sequence to measure the distance of the sensing target.
  • the sensing device can generate a sensing signal according to the GCP, and send the sensing signal to the target.
  • the sensing signal is reflected by the sensing target to generate an echo signal.
  • the echo signal is the same as the sensing signal, but the propagation delay caused by the distance from the sensing device to the sensing target is delayed. Since the sensing signal also has the perfect aperiodic autocorrelation property, after receiving the echo signal, the sensing device can perform aperiodic autocorrelation calculation on the echo signal and the sensing signal, and determine the position of the sensing target according to the result of the aperiodic autocorrelation calculation .
  • the perfect aperiodic autocorrelation property of GCP-based perceptual signals can only be maintained at 0 Doppler.
  • the perfect aperiodic autocorrelation property of the sensing signal is destroyed, and the non-periodic autocorrelation between the sensing signal and the echo signal
  • the periodic autocorrelation function also has a large number of side lobes at other displacements.
  • the ranging accuracy of the sensing device to the sensing target will decrease.
  • the maximum correlation peak of the weak target may be overwhelmed by the side lobes of the strong target, resulting in target loss. Therefore, an anti-Doppler design for the perceived signal is necessary.
  • the present application provides a signal design method and device, which can make a signal used for sensing a target have a larger anti-Doppler interval.
  • a signal design method includes: solving an optimization problem to obtain a product sequence, the product sequence is used to determine the first signal and the second signal, and the first signal and the second signal are used to perceive the target object .
  • the optimization problem is obtained based on the constraints and the maximization of the objective function.
  • the constraint condition is used to limit the sidelobe of the mutual ambiguity function of the first signal and the second signal to be less than or equal to the first threshold in the anti-Doppler frequency shift interval.
  • the objective function consists of the norms of the variables, and the product sequence is the solution of the variables in the optimization problem.
  • the sensing device solves the optimization problem with the goal of maximizing the objective function and the constraint conditions of the anti-Doppler frequency shift interval and sidelobe suppression level, and obtains the product sequence, so that the first signal and the second signal determined according to the product sequence
  • the sidelobe of the CAF of the two signals keeps a low level in the larger anti-Doppler shift interval. That is to say, the signal used for sensing the target can have a larger anti-Doppler interval, thereby improving the ranging performance.
  • the objective function is used to indicate the power ratio of the echo signal and the noise signal of the first signal after cross-correlation calculation of the second signal. That is, the objective function may indicate the signal-to-noise ratio SNR at the receiving end.
  • the SNR gain of the receiving end can also be made higher. That is to say, while the solution of the present application has a larger anti-Doppler frequency shift range, the SNR gain of the receiving end is also higher.
  • the optimization problem is:
  • 1 represents the 1 norm of the variable z
  • 2 represents the 2 norm of the variable z
  • is the first threshold
  • E s is an N ⁇ N-dimensional matrix
  • N is the length of the product sequence
  • the matrix E s is determined by the anti-Doppler frequency shift interval
  • 2 indicates the energy magnitude of the side lobe of the mutual ambiguity function.
  • the elements of the mth row and nth column of the matrix E s are:
  • ⁇ D is used to indicate the anti-Doppler frequency shift interval in radians
  • the anti-Doppler frequency shift interval in radians is determined by the anti-Doppler frequency shift interval in Hertz
  • the anti-Doppler frequency shift interval in Hertz is The anti-Doppler shift interval of the unit is indicated by fD .
  • the product sequence is:
  • e+0x or e-0x is scientific notation, e+01 means ⁇ 10 1 , and e-01 means ⁇ 10 -1 .
  • the product sequence is used to determine the first signal and the second signal, including: the product sequence is used to determine the first sequence and the second sequence, and the product sequence is Hadamard of the first sequence and the second sequence The product; the first sequence and the Golay complementary pair GCP are used to determine the first signal, and the first sequence, the second sequence, and the GCP are used to determine the second signal.
  • the second sequence is a sequence in the second sequence set
  • the first sequence is a sequence corresponding to the second sequence in the first sequence set.
  • the Hadamard product of a sequence in the second sequence set and the corresponding sequence in the first sequence set is a product sequence.
  • the absolute value of the sum of all elements of the second sequence is the maximum value among a plurality of values including the absolute value of the sum of all elements of each sequence in the set of second sequences.
  • the first threshold is 10 -3
  • the size of the anti-Doppler frequency shift interval is ⁇
  • the first sequence is: 1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1;1,1,-1,-1;
  • the second sequence is:
  • e+0x or e-0x is scientific notation, e+01 means ⁇ 10 1 , and e-01 means ⁇ 10 -1 .
  • the positive and negative signs of the real parts of all the elements of the second sequence are the same; or, the positive and negative signs of the imaginary parts of all the elements of the second sequence are the same.
  • the real parts of all elements of the second sequence are positive numbers
  • the lengths of the first sequence and the second sequence are 16
  • the first threshold is 10 -3
  • the anti-Doppler frequency shift interval When the size is ⁇ :
  • the first sequence is: 1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,-1,1,1,-1;
  • the second sequence is:
  • e+0x or e-0x is scientific notation, e+01 means ⁇ 10 1 , and e-01 means ⁇ 10 -1 .
  • the imaginary parts of all elements of the second sequence are positive numbers
  • the lengths of the first sequence and the second sequence are 16
  • the first threshold is 10 -3
  • the anti-Doppler frequency shift interval When the size is ⁇ :
  • the first sequence is: -1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,-1,1,1;
  • the second sequence is:
  • e+0x or e-0x is scientific notation, e+01 means ⁇ 10 1 , and e-01 means ⁇ 10 -1 .
  • the GCP sequence includes an x sequence and a y sequence
  • the first signal, the first sequence, and the GCP satisfy the following formula:
  • s P (t) is the first signal
  • P[n] is the nth element of the first sequence
  • x(t-nT) or y(t-nT) is the nth period of the first signal
  • the x sequence is used to generate x(t-nT)
  • the y sequence is used to generate y(t-nT)
  • T is the period of the sub-signal of the first signal.
  • the first signal includes sub-signals within N periods
  • the second signal includes sub-signals within N periods, where N is the length of the first sequence and the second sequence.
  • the GCP sequence includes the x sequence and the y sequence, and the second signal, the first sequence, the second sequence, and GCP satisfy the following formula :
  • s Q (t) is the second signal
  • Q * [n] is the conjugate of the nth element Q[n] of the second sequence
  • P[n] is the nth element of the first sequence
  • x( t-nT) or y(t-nT) is the sub-signal in the nth cycle of the first signal
  • the x sequence is used to generate x(t-nT)
  • the y sequence is used to generate y(t-nT)
  • T is the period of the sub-signal of the first signal.
  • the anti-Doppler frequency shift interval is [- ⁇ D ,0]
  • the GCP sequence includes the x sequence and the y sequence, and the second signal, the first sequence, the second sequence, and GCP satisfy the following formula:
  • s Q (t) is the second signal
  • Q[n] is the nth element of the second sequence
  • P[n] is the nth element of the first sequence
  • x(t-nT) or y(t -nT) is the sub-signal in the nth period of the first signal
  • the x sequence is used to generate x(t-nT)
  • the y sequence is used to generate y(t-nT)
  • T is the sub-signal of the first signal cycle.
  • the method further includes: sending the first signal, and receiving an echo signal of the first signal.
  • An aperiodic cross-correlation operation is performed according to the echo signal and the second signal, and the distance of the target object is determined according to the result of the aperiodic cross-correlation operation.
  • the first signal is a single carrier signal or a multi-carrier signal. Based on this possible design, the first signal being a single-carrier signal or a multi-carrier signal can adapt to various communication scenarios, so that the solution of the present application can be widely applied.
  • the solutions in the above first aspect and any possible designs thereof may be executed by the sensing device, or by components of the sensing device, such as processors, chips, or chip systems, etc., or may be implemented by A logical module or software implementation of all or part of the sensing device's functionality. Alternatively, it may be executed by any electronic device, or by a component of the electronic device, such as a processor, a chip, or a chip system, or by a logic module or software that can realize all or part of the functions of the electronic device. This application does not specifically limit it.
  • a communication device for implementing the above various methods.
  • the communication device may be a sensing device, or a device included in the sensing device, such as a chip.
  • the communication device includes a corresponding module, unit, or means (means) for implementing the above method, and the module, unit, or means can be implemented by hardware, software, or by executing corresponding software on hardware.
  • the hardware or software includes one or more modules or units corresponding to the above functions.
  • the communication device may include a processing module. Further, the communication device may also include a transceiver module.
  • the transceiver module which may also be referred to as a transceiver unit, is configured to implement the sending and/or receiving functions in any of the above aspects and any possible implementation manners thereof.
  • the transceiver module may be composed of a transceiver circuit, a transceiver, a transceiver or a communication interface.
  • the processing module may be used to implement the processing functions in any of the above aspects and any possible implementation manners thereof.
  • the transceiver module includes a sending module and a receiving module, respectively configured to implement the sending and receiving functions in any of the above aspects and any possible implementations thereof.
  • a communication device including: a processor and a memory; the memory is used to store computer instructions, and when the processor executes the instructions, the communication device executes the method described in any one of the above aspects.
  • the communication device may be a sensing device, or a device contained in the sensing device, such as a chip.
  • a communication device including: a processor and a communication interface; the communication interface is used to communicate with modules other than the communication device; the processor is used to execute computer programs or instructions, so that the communication device Perform the method described in any one of the above aspects.
  • the communication device may be a sensing device, or a device included in the sensing device, such as a chip.
  • a communication device including: an interface circuit and a processor, the interface circuit is a code/data read and write interface circuit, and the interface circuit is used to receive computer-executed instructions (computer-executed instructions are stored in a memory, possibly read directly from the memory, or possibly through other devices) and transmit to the processor; the processor is used to execute computer-executed instructions to enable the communication device to perform the method described in any aspect above.
  • the communication device may be a sensing device, or a device contained in the sensing device, such as a chip.
  • a communication device including: at least one processor; the processor is configured to execute computer programs or instructions, so that the communication device executes the method described in any one of the above aspects.
  • the communication device may be a sensing device, or a device contained in the sensing device, such as a chip.
  • the communication device includes a memory for storing necessary program instructions and data.
  • the memory can be coupled to the processor, or it can be independent of the processor.
  • the communication device may be a chip or system-on-a-chip.
  • the device When the device is a system-on-a-chip, it may consist of chips, or may include chips and other discrete devices.
  • a computer-readable storage medium is provided, and instructions are stored in the computer-readable storage medium.
  • the communication device can execute the method described in any aspect above.
  • a computer program product containing instructions, which, when run on a communication device, enables the communication device to execute the method described in any one of the above aspects.
  • the above-mentioned sending action/function can be understood as output information
  • the above-mentioned receiving action/function can be understood as input information
  • the technical effects brought about by any one of the design methods in the second aspect to the eighth aspect can refer to the technical effects brought about by the different design methods in the above-mentioned first aspect, which will not be repeated here.
  • Fig. 1 is the simulation schematic diagram of the self-ambiguity function of a kind of pulse train signal based on GCP that the embodiment of the present application provides;
  • FIG. 2 is a schematic diagram of a radar sensing scene provided by an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a simulation of weak target loss in a radar perception scenario provided by an embodiment of the present application
  • FIG. 4 is a schematic diagram of a communication scenario provided by an embodiment of the present application.
  • Fig. 5a is a schematic diagram of perception in a smart home scenario provided by an embodiment of the present application.
  • FIG. 5b is a schematic diagram of perception in a car networking scenario provided by an embodiment of the present application.
  • FIG. 6a is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • Fig. 6b is a schematic structural diagram of another communication device provided by the embodiment of the present application.
  • FIG. 6c is a schematic structural diagram of another communication device provided by the embodiment of the present application.
  • FIG. 7 is a schematic flowchart of a signal design method provided in an embodiment of the present application.
  • FIG. 8 is a schematic flowchart of a sensing method provided in an embodiment of the present application.
  • FIG. 9 is a schematic diagram of a waveform of a single carrier provided by an embodiment of the present application.
  • FIG. 10a is a schematic simulation diagram of a CAF corresponding to the PTM solution provided by the embodiment of the present application.
  • FIG. 10b is a schematic simulation diagram of CAF corresponding to the BD solution provided by the embodiment of the present application.
  • FIG. 10c is a schematic diagram of a simulation of the mutual ambiguity function CAF corresponding to the NS scheme provided by the embodiment of the present application;
  • FIG. 11 is a schematic diagram of a generation process of a multi-carrier waveform provided by an embodiment of the present application.
  • FIG. 12 is a schematic diagram of resource allocation provided by an embodiment of the present application.
  • Figure 13a is a schematic diagram of the simulation of the CAF corresponding to the PTM scheme when the sequence length provided by the embodiment of the present application is 32;
  • FIG. 13b is a schematic simulation diagram of CAF corresponding to the BD scheme when the sequence length provided by the embodiment of the present application is 32;
  • Figure 13c is a schematic diagram of the simulation of CAF corresponding to the NS scheme when the sequence length provided by the embodiment of the present application is 32;
  • FIG. 14 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • plural means two or more than two.
  • At least one of the following or similar expressions refer to any combination of these items, including any combination of single or plural items.
  • at least one item (piece) of a, b, or c can represent: a, b, c, a-b, a-c, b-c, or a-b-c, where a, b, c can be single or multiple .
  • words such as “first” and “second” are used to distinguish the same or similar items with basically the same function and effect. Those skilled in the art can understand that words such as “first” and “second” do not limit the quantity and execution order, and words such as “first” and “second” do not necessarily limit the difference.
  • words such as “exemplary” or “for example” are used as examples, illustrations or illustrations. Any embodiment or design scheme described as “exemplary” or “for example” in the embodiments of the present application shall not be interpreted as being more preferred or more advantageous than other embodiments or design schemes. To be precise, the use of words such as “exemplary” or “such as” is intended to present related concepts in a concrete manner for easy understanding.
  • references to "an embodiment” throughout the specification mean that a particular feature, structure, or characteristic related to the embodiment is included in at least one embodiment of the present application. Therefore, various embodiments are not necessarily referring to the same embodiment throughout the specification. Furthermore, the particular features, structures or characteristics may be combined in any suitable manner in one or more embodiments. It can be understood that in various embodiments of the present application, the serial numbers of the processes do not mean the order of execution, and the execution order of the processes should be determined by their functions and internal logic, and should not be used in the embodiments of the present application. The implementation process constitutes no limitation.
  • the 1-norm of a sequence is the sum of the absolute values of the elements of the sequence.
  • the 2-norm of a sequence is the square root of the sum of the elements of the sequence.
  • the 1-norm can be expressed as:
  • the 2 norm can be expressed as:
  • Aperiodic autocorrelation When calculating sequence autocorrelation, the correlation value of coincident elements of two sequences is calculated through the relative displacement between sequences. If the sequence length is L, then the relative displacement between the sequences may have -L+1, -L+2,...,-1,0,1,...,L-2,L-1 a total of 2L-1 situations, so There are 2L-1 kinds of results in the non-periodic autocorrelation operation.
  • the relative displacements between the sequences are -2, -1, 0, 1, and 2
  • the aperiodic autocorrelation results of the sequences are 3, 8, 14, 8, and 3 in turn.
  • Non-periodic cross-correlation when calculating sequence cross-correlation, the correlation value of coincident elements of two sequences is calculated through the relative displacement between the sequences.
  • k represents the displacement, and when k is equal to 0, it represents 0 displacement.
  • the AACF of the sequence y (denoted as C y [k]) is similar to the AACF of the sequence x, and reference may be made to the description of C x [k], which will not be repeated here.
  • GCP Since GCP has perfect aperiodic autocorrelation, it is often used as a sensing sequence.
  • x(t) and y(t-T) represent the pulse train signals generated based on GCP's x-sequence and y-sequence respectively, and T represents the pulse repetition interval (PRI) of s(t).
  • the general form of x(t) and y(t) can be expressed as:
  • g(t) represents the pulse signal
  • TC represents the duration of the pulse signal.
  • s(t) also has the property of perfect aperiodic autocorrelation, so it can be used to measure the distance of the perception target.
  • the sensing device sends a signal s(t) to the sensing target, and the signal is emitted by the sensing target to generate an echo signal s(t- ⁇ ).
  • the echo signal is the same as the sensing signal, except that the propagation delay ⁇ caused by the distance from the sensing device to the sensing target is delayed relative to the sensing signal. Therefore, if the aperiodic autocorrelation operation is performed on the echo signal and the sensing signal, the maximum correlation peak will be obtained at the time node corresponding to the transmission delay ⁇ , so that the sensing device can determine the echo time by searching the time delay corresponding to the maximum correlation peak Delay, and then determine the location of the perceived target.
  • the perfect aperiodic autocorrelation property of GCP-based perceptual signals can only be maintained at 0 Doppler.
  • the perfect aperiodic autocorrelation property of the perceptual signal is broken when ranging a moving perceptual target.
  • the aperiodic autocorrelation function of the sensing signal and the echo signal has a large number of side lobes at other displacements except for the maximum correlation peak at the 0 displacement.
  • the auto ambiguity function can be used to study the effect of Doppler on the aperiodic autocorrelation function of the perceived signal.
  • AAF auto ambiguity function
  • represents the time delay
  • f represents the Doppler frequency shift
  • s*(t) represents the conjugate of the signal s(t).
  • the AAF results of s(t) under different Doppler frequency shifts are shown in FIG. 1 .
  • the x-axis coordinate represents the Doppler frequency shift
  • the y-axis coordinate represents the time delay
  • the z-axis coordinate represents the AAF result.
  • the AAF of s(t) can still achieve the maximum value, but due to the existence of Doppler frequency shift, a large number of side lobes appear at other time delays, and with As the Doppler shift increases, the sidelobes also increase.
  • target 1 has a larger RCS area and is closer to the radar, so it can be called a strong target.
  • Target 2 has a small RCS area and is far from the radar, so it can be called a weak target. Since the energy of the echo signal reflected by the strong target is much greater than the energy of the echo signal reflected by the weak target, the aperiodic autocorrelation function between the sensing signal and the echo signal will appear as shown in Figure 3. At this time, the maximum correlation peak of the weak target is completely submerged by the side lobe of the strong target, resulting in the loss of the weak target.
  • an anti-Doppler design is required for the sensing signal to ensure that the AAF sidelobe of the sensing signal can still be kept at a very low level within a sufficiently large Doppler interval.
  • the anti-Doppler design is mainly realized through the joint design of the transmitted signal and the local signal.
  • the sending end of the sensing device sends the burst signal x(t) or y(t) generated by the sequence x and y of the GCP in each of the N PRIs.
  • the anti-Doppler interval is a positive interval
  • the general form of the local signal is:
  • the local signal is obtained by multiplying the conjugate of Q[n] on the basis of the transmitted signal.
  • the cross ambiguity function can be used to study the influence of the Doppler frequency shift on the aperiodic cross-correlation function of the local signal and the echo signal.
  • the mutual ambiguity function is actually an aperiodic cross-correlation function that considers different Doppler frequency shifts.
  • the specific form is similar to the representation of AAF. The difference is that the two signals for CAF operation are different signals. You can refer to the relevant description of AAF. I won't repeat them here.
  • the first term in the above expression represents the maximum correlation peak at time delay 0, and the second term represents side lobes at other time delays. Based on this, the side lobe (that is, the second term in the above expression) can be reduced to a very low level by designing the P sequence and the Q sequence.
  • the Q sequence When using the P sequence and Q sequence to design the transmitted signal and the local signal, the Q sequence will also affect the signal to noise ratio (SNR) of the receiving end of the sensing device.
  • SNR signal to noise ratio
  • the received signal received by the sensing device may include an echo signal and a noise signal, or the echo signal is accompanied by a noise signal. At this time, the echo signal is a useful signal.
  • SNR may also be referred to as SNR gain, and the two may be replaced with each other.
  • the noise power is completely determined by the Q sequence, and the power of the useful signal is determined by s P (t) and s
  • the power of the noise signal before processing is N 0
  • the power of the noise signal is where L represents the length of the GCP sequence, Represents the square of the 2-norm
  • the power of the useful signal is in Indicates the power of the useful signal before processing, which is determined by the transmit power of the sensing device and the RCS area of the sensing target. Represents the square of the 1-norm
  • the SNR gain at the receiving end is exist Given, the SNR gain is determined only by the Decide. In the existing research, there are mainly the following three design schemes of P sequence and Q sequence:
  • the P sequence is a PTM sequence with a length of N
  • the Q sequence is an all-1 sequence with a length of N. It should be noted that the PTM sequence with a length of N is uniquely determined.
  • the P sequence is an alternating ⁇ 1 sequence of length N
  • the Q sequence is a binomial sequence of length N, namely
  • e+0x or e-0x is scientific notation, for example, e+01 represents ⁇ 10 1 , e-01 represents ⁇ 10 ⁇ 1 , and e+02 represents ⁇ 10 2 . It is described in a unified manner here, and the following embodiments will not be repeated here.
  • the anti-Doppler interval is too small to meet the ranging requirements for high-speed moving targets.
  • the P sequence and Q sequence corresponding to the BD scheme and the NS scheme are used to design the transmit signal and the local signal, the SNR gain at the receiving end is low.
  • the present application provides a signal design method, by designing the P sequence and the Q sequence, so that the transmitted signal and the local signal have a larger anti-Doppler interval. Further, the SNR gain of the receiving end is higher.
  • the communication system can be a third generation partnership project (3rd generation partnership project, 3GPP) communication system, for example, a 5G or 6G mobile communication system, a vehicle to everything, V2X) system, or device-to-device (device-to-device, D2D) communication system, machine-to-machine (machine to machine, M2M) communication system, Internet of things (IoT), and other next-generation communication system.
  • 3GPP third generation partnership project
  • the communication system may also be a non-3GPP communication system, such as a wireless local area network (wireless local area network, WLAN) system such as Wi-Fi, without limitation.
  • WLAN wireless local area network
  • the technical solutions of the embodiments of the present application may be applied to various communication scenarios, for example, may be applied to one or more of the following communication scenarios: communication scenarios such as smart home, D2D, V2X, and IoT.
  • communication scenarios such as smart home, D2D, V2X, and IoT.
  • the sensing device sends a sensing signal, and after the sensing signal is reflected by at least one stationary or moving target object (also called a sensing target), the sensing device can receive the echo signal of the sensing signal, thus, sensing The device can sense the target object.
  • the scene in FIG. 1 is only an example, and is actually not limited to one sensing device interacting with one or more target objects. For example, multiple sensing devices may interact with the same target object.
  • the sensing device in this application may be a terminal device or a network device with a radar function.
  • the terminal device may be a device with a wireless transceiver function.
  • a network device is a device that connects a terminal device to a wireless network.
  • the network device can be a next generation node B (next generation node B, gNodeB or gNB) in the fifth generation (5th generation, 5G) system or the sixth generation (6th generation, 6G) system; or it can be a transmission receiving point (transmission reception point, TRP); or may be a base station in a future evolving public land mobile network (public land mobile network, PLMN), which is not specifically limited in this embodiment of the present application.
  • next generation node B next generation node B, gNodeB or gNB
  • 5th generation, 5G fifth generation
  • 6th generation, 6G sixth generation
  • TRP transmission receiving point
  • PLMN public land mobile network
  • Terminal equipment may also be called user equipment (user equipment, UE), terminal, access terminal, subscriber unit, subscriber station, mobile station (mobile station, MS), remote station, remote terminal, mobile terminal (mobile terminal, MT) , user terminal, wireless communication device, user agent or user device, etc.
  • the terminal device may be, for example, IoT, V2X, D2D, M2M, 5G network, 6G network, or a wireless terminal in a future evolved PLMN.
  • Terminal equipment can be deployed on land, including indoor or outdoor, handheld or vehicle-mounted; it can also be deployed on water (such as ships, etc.); it can also be deployed in the air (such as on aircraft, balloons, and satellites, etc.).
  • the terminal device may be a drone, an IoT device (for example, a sensor, an electric meter, a water meter, etc.), a V2X device, a station (station, ST) in a wireless local area network (wireless local area networks, WLAN), a cell phone, Cordless phones, session initiation protocol (SIP) phones, wireless local loop (WLL) stations, personal digital assistant (PDA) devices, handheld devices with wireless communication capabilities, computing devices or other processing devices connected to wireless modems, vehicle-mounted devices, wearable devices (also called wearable smart devices), tablet computers or computers with wireless transceiver functions, virtual reality (virtual reality, VR) terminals, industrial control ( Terminals in industrial control, terminals in self-driving, terminals in remote medical, terminals in smart grid, terminals in transportation safety, intelligence Terminals in smart cities, terminals in smart homes, vehicle-mounted terminals, vehicles with vehicle-to-vehicle (V2V) communication capabilities, intelligent networked vehicles, UAV-to-UAV (V2
  • the sensing devices may be various smart appliances at home, such as smart TVs, smart speakers, and the like.
  • each terminal in the home can send a sensing signal to sense the person, so as to enhance the accuracy of trajectory tracking.
  • the sensing device can be a vehicle-mounted terminal, which can send a sensing signal and receive the echo signal of the sensing signal reflected by the target object to perceive the surrounding road conditions.
  • sensing device involved in this application can be realized by one device, or by multiple devices, or by one or more functional modules in one device, or by one or more chips, or by It may be a system on chip (system on chip, SOC) or a chip system, and the chip system may be composed of chips, or may include chips and other discrete devices, which is not specifically limited in this embodiment of the present application.
  • SOC system on chip
  • chip system may be composed of chips, or may include chips and other discrete devices, which is not specifically limited in this embodiment of the present application.
  • the above functions can be network elements in hardware devices, software functions running on dedicated hardware, or a combination of hardware and software, or instantiated on a platform (for example, a cloud platform) virtualization capabilities.
  • FIG. 6a is a schematic structural diagram of a communication device 600 provided by an embodiment of the present application.
  • the communication device 600 includes one or more processors 601, and at least one communication interface (in FIG. It includes a communication line 602 and a memory 603 .
  • the processor 601 can be a general-purpose central processing unit (central processing unit, CPU), a microprocessor, a specific application integrated circuit (application-specific integrated circuit, ASIC), or one or more for controlling the execution of the application program program integrated circuit.
  • CPU central processing unit
  • ASIC application-specific integrated circuit
  • the processor 601 may include one or more CPUs, for example, CPU0 and CPU1 in FIG. 6a.
  • the communication device 600 may include multiple processors. Each of these processors may be a single-core processor or a multi-core processor.
  • the processor here may include but not limited to at least one of the following: central processing unit (central processing unit, CPU), microprocessor, digital signal processor (DSP), microcontroller (microcontroller unit, MCU), or artificial intelligence
  • central processing unit central processing unit, CPU
  • microprocessor central processing unit
  • DSP digital signal processor
  • microcontroller microcontroller unit, MCU
  • artificial intelligence Various types of computing devices that run software such as processors, each computing device may include one or more cores for executing software instructions to perform calculations or processing.
  • the communication line 602 may be used for communication between different components included in the communication device 600 .
  • the communication interface 604 can be used to communicate with other devices or communication networks, such as Ethernet, wireless access networks (wireless access networks, RAN), wireless local area networks (wireless local area networks, WLAN), etc.
  • the communication interface 604 may be a transceiver, a device such as a transceiver, or may be an input-output interface.
  • the communication interface 604 may also be a transceiver circuit located in the processor 601 to realize signal input and signal output of the processor.
  • the storage 603 may be a device having a storage function.
  • it can be a read-only memory (ROM) or other type of static storage device that can store static information and instructions, a random access memory (random access memory, RAM) or other types of memory that can store information and instructions
  • a dynamic storage device can also be an electrically erasable programmable read-only memory (EEPROM), a compact disc read-only memory (CD-ROM) or other optical disc storage, optical disc storage (including compact discs, laser discs, optical discs, digital versatile discs, blu-ray discs, etc.), magnetic disk storage media or other magnetic storage devices, or can be used to carry or store desired program code in the form of instructions or data structures and can be stored by a computer Any other medium, but not limited to.
  • the memory may exist independently and be connected to the processor through the communication line 602 . Memory can also be integrated with the processor.
  • the memory 603 is used to store computer-executed instructions for implementing the solutions of the present application, and the execution is controlled by the processor 601 .
  • the processor 601 is configured to execute computer-executed instructions stored in the memory 603, so as to implement the methods provided in the embodiments of the present application.
  • the processor 601 may also perform processing-related functions in the methods provided in the following embodiments of the present application, and the communication interface 604 is responsible for communicating with other devices or communication networks.
  • the communication interface 604 is responsible for communicating with other devices or communication networks. The example does not specifically limit this.
  • the computer-executed instructions in the embodiments of the present application may also be referred to as application program codes, which is not specifically limited in the embodiments of the present application.
  • the communication apparatus 600 may further include an output device 605 and an input device 606 .
  • Output device 605 is in communication with processor 601 and can display information in a variety of ways.
  • the output device 605 may be a liquid crystal display (liquid crystal display, LCD), a light emitting diode (light emitting diode, LED) display device, a cathode ray tube (cathode ray tube, CRT) display device, or a projector (projector), etc.
  • the input device 606 communicates with the processor 601 and can receive user input in various ways.
  • the input device 606 may be a mouse, a keyboard, a touch screen device, or a sensing device, among others.
  • FIG. 6 b it is a schematic structural diagram of another communication device 600 provided in the embodiment of the present application.
  • the communication device 600 includes a processor 601 and a transceiver 604 .
  • the communication device 600 may be a sensing device, or a chip therein.
  • FIG. 6 b shows only the main components of the communication device 600 .
  • the communication device may further include a memory 603 and an input and output device (not shown in the figure).
  • the processor 601 is mainly used to process communication protocols and communication data, control the entire communication device, execute software programs, and process data of the software programs.
  • the memory 603 is mainly used to store software programs and data.
  • the transceiver 604 may include a radio frequency circuit and an antenna, and the radio frequency circuit is mainly used for converting a baseband signal to a radio frequency signal and processing the radio frequency signal. Antennas are mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • the processor 601, the transceiver 604, and the memory 603 may be connected through a communication bus.
  • the processor 601 can read the software program in the memory 603, interpret and execute the instructions of the software program, and process the data of the software program.
  • the processor 601 performs baseband processing on the data to be sent, and then outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor 601, and the processor 601 converts the baseband signal into data and processes the data deal with.
  • the radio frequency circuit and the antenna can be set independently from the processor for baseband processing.
  • the radio frequency circuit and antenna can be arranged remotely from the communication device. .
  • the processor 601 in FIG. 6b may include a digital signal processor, a signal generator, and an analog-to-digital converter.
  • the radio frequency circuit for signal transmission may include an up converter and a power amplifier, and the radio frequency circuit for signal reception may include a down converter and a power amplifier.
  • Antennas may include transmit antennas and receive antennas.
  • a signal generator can be used to generate the signal.
  • the up-converter and down-converter are used to modulate the signal onto the high-frequency carrier and demodulate the signal from the high-frequency carrier, respectively.
  • a power amplifier is used to amplify the power of a signal.
  • Analog-to-digital converters are used to convert digital and analog signals.
  • the digital signal processor is used to generate the perceptual sequence and perform aperiodic autocorrelation and/or aperiodic cross-correlation operations.
  • composition shown in FIG. 6a or FIG. 6b or FIG. 6c does not constitute a limitation to the communication device, and the communication device may include components other than those shown in FIG. 6a or FIG. 6b or FIG. 6c. More or fewer components are shown, or some components are combined, or different component arrangements are shown.
  • the illustrated components can be realized in hardware, software or a combination of software and hardware.
  • the executive body may perform some or all of the steps in the embodiments of the present application. These steps or operations are only examples, and the embodiments of the present application may also perform other operations or variations of various operations. In addition, each step may be performed in a different order presented in the embodiment of the present application, and it may not be necessary to perform all operations in the embodiment of the present application.
  • FIG. 7 it is a signal design method provided by this application. This method can be executed by a sensing device or any electronic device, and this application does not specifically limit it. Referring to FIG. 7, taking the method performed by a sensing device as an example, the method includes the following steps:
  • the optimization problem is obtained based on constraint conditions and maximization of an objective function.
  • the objective function consists of the norms of the variables, and the product sequence is the solution of the variables in this optimization problem.
  • the product sequence is used to determine the first signal and the second signal, and the first signal and the second signal are used to perceive the target object.
  • the first signal may be a perception signal
  • the second signal may be a local signal.
  • the local signal is used to perform aperiodic cross-correlation operation with the echo signal of the sensing signal to sense the target object.
  • the constraint condition is used to limit the side lobe of the mutual ambiguity function of the first signal and the second signal to be less than or equal to the first threshold in the anti-Doppler frequency shift interval.
  • the objective function is used to indicate the power ratio of the echo signal and the noise signal of the first signal after cross-correlation calculation of the second signal. That is, the objective function may indicate the signal-to-noise ratio SNR at the receiving end.
  • the optimization problem can be expressed as:
  • 1 represents the 1 norm of the variable z, Indicates the square of the 1-norm of the variable z.
  • 2 represents the 2 norm of the variable z, Indicates the square of the 2-norm of the variable z.
  • is the first threshold.
  • E s is an N ⁇ N-dimensional matrix, and N is the length of the product sequence.
  • the matrix E s can be determined by the anti-Doppler frequency shift interval.
  • 2 indicates the energy magnitude of the side lobe of the mutual ambiguity function of the first signal and the second signal.
  • the elements of the mth row and the nth column of the matrix E s can be:
  • ⁇ D is used to indicate the anti-Doppler shift interval in radians.
  • the anti-Doppler interval in radians is [- ⁇ D , ⁇ D ].
  • n 0, 1, . . . N-1.
  • m 0,1,...K, where K is a positive integer less than or equal to N-1.
  • the anti-Doppler frequency shift interval in radian may be determined by the anti-Doppler frequency shift interval in Hertz, and the anti-Doppler frequency shift interval in Hertz may be indicated by fD .
  • the anti-Doppler interval in Hertz is [-f D ,f D ].
  • T is a period of a sub-signal included in the first signal.
  • T may be the PRI of the burst signal. Sub-signals included in the first signal will be described in subsequent embodiments, and will not be repeated here.
  • the elements in the mth row and the nth column of the matrix E s may also have other forms, which are not specifically limited in this application.
  • the first threshold and the anti-Doppler interval can be flexibly adjusted according to actual needs, thereby improving the applicability of the solution of this application.
  • the product sequence used to determine the first signal and the second signal may include: the product sequence used to determine the first sequence and the second sequence.
  • the product sequence is the Hadamard product of the first sequence and the second sequence.
  • the first sequence and the Golay complementary pair GCP are used to determine the first signal, and the first sequence, the second sequence, and GCP are used to determine the second signal.
  • the sensing device may continue to execute the following steps S702 and S703 to determine the first signal and the second signal.
  • the electronic device may send the product sequence to the sensing device after obtaining the product sequence. After the sensing device receives the product sequence from the electronic device, it can continue to perform the following steps S702 and S703; or, after the electronic device obtains the product sequence, it can further determine the first sequence and the second sequence, and send the first sequence to the sensing device. sequence and the second sequence. After the sensing device receives the first sequence and the second sequence from the electronic device, it may continue to execute the following step S703.
  • S702. Determine a first sequence and a second sequence according to the product sequence.
  • the first sequence can be a P sequence
  • the product sequence is the Hadamard product of the first sequence and the second sequence
  • the product sequence, the first sequence, and the second sequence have the same length.
  • N is used to represent the length.
  • S703. Determine a first signal according to the first sequence and the GCP, and determine a second signal according to the first sequence, the second sequence, and the GCP sequence.
  • the first signal may include sub-signals within N periods, or in other words, the first signal includes N sub-signals, and the N sub-signals are periodic signals.
  • the sub-signal of the first signal may be a pulse signal.
  • the GCP includes the x-sequence and the y-sequence as an example for illustration.
  • the sub-signal in the nth period of the first signal is generated by a sequence in the GCP, and whether the sequence is the x-sequence or the y-sequence in the GCP is determined by the nth element of the first sequence.
  • the sub-signal in the nth cycle of the first signal can be generated by the x sequence in GCP; when the nth element of the first sequence is equal to -1, The sub-signals in the nth cycle of the first signal can be generated by the y-sequence in the GCP.
  • the first signal, the first sequence, and the GCP can satisfy the following formula:
  • s P (t) is the first signal.
  • P[n] is the nth element of the first sequence.
  • x(t-nT) or y(t-nT) is a sub-signal in the nth period of the first signal.
  • the x sequence is used to generate x(t-nT)
  • the y sequence is used to generate y(t-nT).
  • T is a period of a sub-signal of the first signal, for example, when the first signal is a burst signal and the sub-signal is a pulse signal, T may be PRI.
  • the second signal may include sub-signals within N periods, or in other words, the second signal includes N sub-signals, and the N sub-signals are periodic signals.
  • the period of the sub-signal included in the second signal may be the same as the period of the sub-signal included in the first signal.
  • the anti-Doppler frequency shift interval is a positive interval, such as [0, ⁇ D ]
  • the sub-signal in the nth period of the second signal can be the conjugate of the nth element of the second sequence The product with the subsignal in the nth period of the first signal.
  • the anti-Doppler interval is a negative interval, such as [- ⁇ D ,0]
  • the second signal, the first sequence, the second sequence, and the GCP may satisfy the following formula:
  • the second signal, the first sequence, the second sequence, and the GCP may satisfy the following formula:
  • s Q (t) is the second signal.
  • Q[n] is the nth element of the second sequence.
  • Q * [n] is the conjugate of Q[n], the nth element of the second sequence.
  • P[n] is the nth element of the first sequence.
  • x(t-nT) or y(t-nT) is a sub-signal of the first signal.
  • the x sequence is used to generate x(t-nT), and the y sequence is used to generate y(t-nT).
  • T is the period of the sub-signal of the first signal.
  • the sub-signal in the nth cycle of the second signal can be represented when the anti-Doppler frequency shift interval is a positive interval.
  • the sub-signal in the nth cycle of the second signal can be represented when the anti-Doppler frequency shift interval is a negative interval.
  • the sensing device is constructed with the goal of maximizing the SNR of the receiving end
  • the optimization problem is constructed with the constraints of the anti-Doppler frequency shift interval and the sidelobe suppression level
  • the product sequence is obtained by solving the optimization problem, and then according to the product
  • the sequence determines the first sequence and the second sequence, so that the energy of the CAF sidelobe of the transmitted signal and the local signal generated according to the first sequence and the second sequence maintains a low level within a large anti-Doppler frequency shift interval.
  • the optimization problem aims at maximizing the SNR of the receiving end, according to the design of the present application, the SNR gain of the receiving end can also be made higher. That is to say, while the solution of the present application has a larger anti-Doppler frequency shift range, the SNR gain of the receiving end is also higher.
  • the present application may further restrict the first sequence and the second sequence.
  • the second sequence may be a sequence in the second sequence set
  • the first sequence is a sequence corresponding to the second sequence in the first sequence set.
  • the second sequence set and the first sequence set may include all sequence combinations satisfying all product sequences shown in Table 3.
  • the second sequence set is in one-to-one correspondence with the sequences in the first sequence set, and the Hadamard product of a sequence in the second sequence set and the corresponding sequence in the first sequence set is a product sequence.
  • the absolute value of the sum of all elements of the second sequence is the maximum value among multiple numerical values, and the multiple numerical values include the absolute value of the sum of all elements of each sequence in the second sequence set.
  • the first sequence set includes sequence A, sequence B, and sequence C
  • the second sequence set includes sequence D, sequence E, and sequence F. If the absolute value of the sum of all elements of the sequence D is the value 1, the absolute value of the sum of all elements of the sequence E is the value 2, the absolute value of the sum of all elements of the sequence F is the value 3, and the value 2 is the maximum value among value 1, value 2, and value 3, then the second sequence is sequence E.
  • sequences in the first sequence set and the sequences in the second sequence set are in one-to-one correspondence in sequence, then when the second sequence is sequence E, the first sequence is sequence A.
  • values of the first sequence and the second sequence may be as shown in Table 4 and Table 5.
  • the P sequence represents the first sequence
  • the Q sequence represents the second sequence.
  • the signs of the real parts of all elements of the second sequence are the same.
  • the signs of the imaginary parts of all elements of the second sequence are the same.
  • real parts of all elements of the second sequence may be positive numbers.
  • the values of the first sequence and the second sequence may be as shown in Table 6 and Table 7.
  • imaginary parts of all elements of the second sequence may be positive numbers.
  • the values of the first sequence and the second sequence may be as shown in Table 8 and Table 9.
  • first sequence and the second sequence shown in Table 4 to Table 9 above are only exemplary descriptions of the first sequence and the second sequence of the present application, and do not limit the first sequence and the second sequence of the present application.
  • the sequence must be as shown in Table 4 to Table 9.
  • the application provides a variety of combinations of the first sequence and the second sequence, it does not limit the specific technical solution to support all the combinations of the first sequence and the second sequence defined in the application, and supports at least one of the combinations defined in the application. At least one combination of the first sequence and the second sequence of various lengths is sufficient.
  • a sensing method provided by the present application will be described below by taking the first signal and the second signal obtained based on the method shown in FIG. 7 as examples. As shown in Figure 8, the method includes:
  • the sensing device sends a first signal.
  • the first signal may be a single carrier signal or a multi-carrier signal.
  • the first signal may be a single-carrier waveform or a multi-carrier waveform.
  • the single-carrier waveform may be a single-carrier pulse waveform, such as a rectangular window pulse, a Gaussian pulse, a root-raised cosine pulse, etc., and the pulse form is not specifically limited in this application.
  • the multi-carrier waveform can be a cyclic prefixed orthogonal frequency division multiplexing (CP-OFDM) waveform or a discrete fourier transform spread orthogonal frequency division multiplexing based on Fourier transform extension, DFT-s-OFDM) waveform.
  • CP-OFDM orthogonal frequency division multiplexing
  • DFT-s-OFDM discrete fourier transform spread orthogonal frequency division multiplexing based on Fourier transform extension
  • the second signal when the first signal is a single carrier signal, the second signal is correspondingly a single carrier signal.
  • the second signal is a multi-carrier signal, the second signal is correspondingly a multi-carrier signal.
  • the sensing device receives an echo signal of the first signal.
  • the first signal may be reflected by the multiple target objects to form multiple echo signals.
  • the sensing device may receive a total echo signal (denoted as a first echo signal) formed by superposition of multiple echo signals reflected by multiple target objects.
  • the sensing device performs an aperiodic cross-correlation calculation according to the echo signal and the second signal, and determines a distance of the target object according to a result of the aperiodic cross-correlation calculation.
  • the sensing device may sample the echo signal and the second signal, and perform an aperiodic cross-correlation operation on the two sampling results.
  • the echo signal is the first echo signal.
  • the sensing device may determine the signal propagation delay between the sensing device and the target object according to the displacement corresponding to the maximum correlation peak of the aperiodic cross-correlation calculation result. Afterwards, the distance between the target object and the sensing device is determined according to the signal propagation delay. Assuming that the displacement corresponding to the maximum correlation peak is l, the time delay is lT C , and the distance between the target object and the sensing device is clT C /2. where c is the speed of light.
  • T C represents the duration of the narrow pulse
  • T C represents the duration corresponding to the sampling point of the multi-carrier signal after sampling in the time domain.
  • the sensing device can determine the position of the target object corresponding to each peak according to the multiple peaks, and reference can be made to the relevant description of determining the distance according to the largest correlation peak, which will not be repeated here.
  • the echo signal may be accompanied by a noise signal. That is to say, the signal received by the sensing device in step S802 may include a noise signal and an echo signal of the first signal. At this time, the sensing device may perform the above step S803 on the signal received in step S802 as a whole.
  • the length N of the first sequence and the second sequence is equal to 16, and the first signal is a single-carrier signal as an example, and the generation method of the first signal and the second signal, as well as the CAF results of the first signal and the second signal are explained. .
  • the sensing device can send narrow pulse signals g(t) of different phases in a phase modulation manner based on GCP, where each narrow pulse signal corresponds to a sequence (x sequence or y sequence, determined by the first sequence) contains an element. For example, when the element in the sequence is 1, the sensing device sends a forward narrow pulse, and when the element in the sequence is -1, the sensing device sends a reverse narrow pulse.
  • the sensing device may repeatedly use the x-sequence and y-sequence included in the GCP to generate wide pulses, thereby constituting the first signal of the single-carrier pulse waveform.
  • the number of repetitions of the wide pulse is the length N of the first sequence (Fig. 9 only shows 3 wide pulses as an example, and the rest are not shown).
  • each wide pulse sequentially transmit [x(t), y(t), x(t), y(t), x(t), y(t), x(t) based on the first sequence ), y(t), x(t), y(t), x(t), y(t), y(t), x(t), y(t), y(t)].
  • x(t) or y(t) is generated by 64 narrow pulse signals g(t) with a width of 2.5ns.
  • the structure of the second signal is similar to that of the first signal, except that: when the anti-Doppler frequency interval is [0, ⁇ D ], the nth wide pulse of the second signal can be within the range of the first signal Based on the nth wide pulse, it is obtained by multiplying the conjugate Q*[n] of the nth element of the second sequence.
  • the anti-Doppler interval is [- ⁇ D ,0]
  • the nth wide pulse of the second signal can be multiplied by the nth element Q of the second sequence on the basis of the nth wide pulse of the first signal[ n] get.
  • CAFs of the first signal and the second signal may be calculated.
  • SNR gains of the receiving end corresponding to various combinations may be calculated.
  • FIGs 10a to 10c they are the CAF results of the first signal and the second signal generated by using the P sequence and Q sequence provided by the PTM scheme, BD scheme, and NS scheme shown in Table 1, respectively.
  • the first signal and the first signal generated by using the P sequence and Q sequence when N is equal to 16 and ⁇ D is ⁇ /3, 2 ⁇ /3, and ⁇ shown in Table 4 and Table 5 CAF results for two signals.
  • the x-axis coordinate is the Doppler frequency shift in Hz
  • the y-axis coordinate is the time delay in seconds (s)
  • the z-axis coordinate is the CAF result in dB .
  • the black area represents the frequency range where the sidelobe energy of the CAF is less than or equal to -60dB.
  • the anti-Doppler frequency shift range corresponding to the PTM scheme is relatively small, about [-5, 5] kilohertz (KHz).
  • Fig. 10b and Fig. 10c the anti-Doppler frequency shift intervals corresponding to the BD scheme and the NS scheme are relatively large.
  • the anti-Doppler frequency shift interval corresponding to the BD scheme is about [-46,46]KHz
  • the anti-Doppler frequency shift interval corresponding to the NS scheme is about [-74,74]KHz.
  • the solution of the present invention can also maintain a larger anti-Doppler frequency shift interval.
  • the anti-Doppler frequency shift interval of the solution of the present invention is the largest.
  • the anti-Doppler frequency shift intervals corresponding to the PTM scheme, the BD scheme, the NS scheme and the scheme of the present invention can be shown in Table 10.
  • Table 10 also shows the SNR gain of the receiving end under various schemes.
  • the solution of the present application has a larger anti-Doppler frequency shift interval than the PTM solution. Compared with the BD scheme and the NS scheme, it has a larger anti-Doppler frequency shift interval and a larger SNR gain at the receiving end.
  • the first signal is a single carrier signal as an example.
  • the length N of the first sequence and the second sequence is equal to 32
  • the first signal is a multi-carrier signal
  • the multi-carrier signal is a DFT-s-OFDM signal as an example
  • the generation method of the first signal and the second signal, and the second CAF results for the first signal and the second signal are described.
  • the sensing device performs discrete Fourier transform (discrete fourier transform, DFT) on the x sequence or y sequence to be transmitted, and then performs subcarrier mapping according to the resource element (resource element, RE) mapping rule , and then fast inverse Fourier transform (inverse fast fourier transform, IFFT) is performed on the RE after subcarrier mapping, and finally a fixed-length cyclic prefix (cyclic prefixed, CP) is inserted to obtain a sub-signal of the first signal.
  • DFT discrete Fourier transform
  • RE resource element
  • IFFT inverse fast fourier transform
  • the bandwidth B 144MHz
  • the subcarrier spacing is 240KHz
  • the x-sequence or the y-sequence is transmitted on 512 sub-carriers numbered 0-511, and all-0 sequences are transmitted on the remaining 88 sub-carriers numbered 512-599.
  • the present application does not specifically limit the length, carrier frequency, and subcarrier spacing of the GCP, and other values may be used in actual implementation.
  • the communication system may also use the DFT-s-OFDM waveform. Therefore, in order to reduce the interference between the sensing system and the communication system, it is usually time-division or frequency division for resource multiplexing.
  • resource multiplexing can be performed in a time-division manner, that is, at the same time-domain position, only the sensing signal in the sensing system or the communication signal in the communication system is sent, and the signal sent at the time-domain position occupies the space configured in the frequency domain. full bandwidth.
  • the first signal can occupy the entire configured bandwidth, that is, compared with frequency division multiplexing, the bandwidth occupied by the first signal can be increased, thereby improving the ranging resolution of the sensing system.
  • a time slot includes 14 DFT-s-OFDM symbols (time-domain resources), and the first DFT-s-OFDM symbol in the time slot can be used for the cognitive system, then it can be Use the first DFT-s-OFDM symbol in the slot to transmit an x-sequence or y-sequence.
  • the other 13 symbols in the time slot except the first DFT-s-OFDM symbol can be used to transmit communication data or not transmit data, which is not specifically limited in this application.
  • the sensing device occupies the first DFT-s-OFDM symbol of each of the 32 time slots to transmit the x sequence or y sequence, a certain The first DFT-s-OFDM symbol in the time slot finally transmits the x-sequence or y-sequence, which is determined by the first sequence.
  • the duration of one time slot is the repetition interval of the sub-signals of the first signal, or the PRI of the first signal.
  • the duration of a time slot is 0.0625ms, so the repetition interval of the sub-signals of the first signal is 0.0625ms.
  • the specific multiplexing mode or resource allocation mode may be implemented by a transport layer or network layer protocol.
  • multiple consecutive DFT-s-OFDM symbols can be used for the cognitive system, and other symbols can be used for the communication system; or, multiple DFT-s-OFDM symbols allocated to the cognitive system in one time slot can be discontinuous. This application does not specifically limit the multiplexing mode.
  • the structure of the second signal is similar to that of the first signal, with the difference that: when the anti-Doppler interval is [0, ⁇ D ], the nth sub-signal of the second signal can be within the nth sub-signal of the first signal
  • the signal is obtained on the basis of multiplying the nth element of the second sequence by the conjugate Q * [n].
  • the anti-Doppler interval is [- ⁇ D ,0]
  • the nth subsignal of the second signal can be multiplied by the nth element Q[n] of the second sequence on the basis of the nth subsignal of the first signal get.
  • CAFs of the first signal and the second signal, and SNR gains of the receiving end corresponding to various combinations may be calculated.
  • FIGS 13a to 13c they are the CAF results of the first signal and the second signal generated by using the P sequence and Q sequence provided by the PTM scheme, BD scheme, and NS scheme shown in Table 1, respectively.
  • the first signal and the first signal generated by using the P sequence and Q sequence when N is equal to 32 and ⁇ D is ⁇ /3, 2 ⁇ /3, and ⁇ shown in Table 4 and Table 5 CAF results for two signals.
  • the x-axis coordinate is the Doppler frequency shift in Hz
  • the y-axis coordinate is the time delay in seconds (s)
  • the z-axis coordinate is the CAF result in dB .
  • the black area represents the frequency range where the sidelobe energy of the CAF is less than or equal to -60dB.
  • the anti-Doppler frequency shift interval corresponding to the PTM scheme is relatively small, about [-1,1] KHz.
  • Fig. 13b and Fig. 13c the anti-Doppler frequency shift intervals corresponding to the BD scheme and the NS scheme are relatively large.
  • the anti-Doppler frequency shift interval corresponding to the BD scheme is about [-5.5,5.5]KHz
  • the anti-Doppler frequency shift interval corresponding to the NS scheme is about [-6.5,6.5]KHz.
  • the anti-Doppler frequency shift intervals corresponding to the PTM scheme, the BD scheme, the NS scheme and the scheme of the present invention can be shown in Table 11.
  • Table 11 also shows the SNR gain of the receiving end under various schemes.
  • the solution of the present application has a larger anti-Doppler frequency shift interval than the PTM solution.
  • the receiving end can have a higher SNR gain.
  • the methods and/or steps implemented by the sensing device may also be implemented by components (such as processors, chips, chip systems, circuits, logic modules, or software such as chips or circuits).
  • the present application also provides a communication device, which is used to implement the above various methods.
  • the communication device may be the sensing device in the foregoing method embodiments, or an apparatus including the foregoing sensing device, or a component that may be used in the sensing device.
  • the communication device includes hardware structures and/or software modules corresponding to each function.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software in combination with the units and algorithm steps of each example described in the embodiments disclosed herein. Whether a certain function is executed by hardware or computer software drives hardware depends on the specific application and design constraints of the technical solution. Skilled artisans may use different methods to implement the described functions for each specific application, but such implementation should not be regarded as exceeding the scope of the present application.
  • the embodiments of the present application may divide the communication device into functional modules according to the above method embodiments.
  • each functional module may be divided corresponding to each function, or two or more functions may be integrated into one processing module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or in the form of software function modules. It should be noted that the division of modules in the embodiment of the present application is schematic, and is only a logical function division, and there may be other division methods in actual implementation.
  • FIG. 14 shows a schematic structural diagram of a communication device 140 .
  • the communication device 140 includes a processing module 1401 and a transceiver module 1402 .
  • the communication device 140 may further include a storage module (not shown in FIG. 14 ) for storing program instructions and data.
  • the transceiver module 1402 also referred to as a transceiver unit, is used to implement sending and/or receiving functions.
  • the transceiver module 1402 may be composed of a transceiver circuit, a transceiver, a transceiver or a communication interface.
  • the transceiver module 1402 may include a receiving module and a sending module, which are respectively used to perform the receiving and sending steps performed by the sensing device in the above method embodiments, and/or used to support the technologies described herein other processes; the processing module 1401 can be used to execute steps of the processing category (such as determination, acquisition, generation, etc.) performed by the sensing device in the above method embodiments, and/or other processes used to support the technology described herein .
  • the processing category such as determination, acquisition, generation, etc.
  • the processing module 1401 is used to solve an optimization problem to obtain a product sequence.
  • the optimization problem is obtained based on constraint conditions and maximizing an objective function.
  • the objective function is composed of a norm of a variable, and the product sequence is the solution of the variable in the optimization problem.
  • the product sequence is used to determine the first signal and the second signal, and the first signal and the second information are used to perceive the target object.
  • the constraint condition is used to limit the sidelobe of the mutual ambiguity function of the first signal and the second signal to be less than or equal to the first threshold in the anti-Doppler frequency shift interval,
  • the processing module 1401 is also used to determine the first sequence and the second sequence according to the product sequence, and the product sequence is the Hadamard product of the first sequence and the second sequence; the processing module 1401 is also used to determine the first sequence and the second sequence according to the first sequence
  • a first signal is determined from the Golay complementary pair GCP, and a second signal is determined from the first sequence, the second sequence, and the GCP.
  • the transceiver module 1402 is configured to send the first signal; the transceiver module 1402 is also configured to receive the echo signal of the first signal; the processing module 1401 is also configured to perform aperiodic interaction according to the echo signal and the second signal Correlation operation; the processing module 1401 is further configured to determine the distance of the target object according to the result of the aperiodic cross-correlation operation.
  • the communication device 140 is presented in the form of dividing various functional modules in an integrated manner.
  • Module here may refer to a specific application-specific integrated circuit (ASIC), circuit, processor and memory that execute one or more software or firmware programs, integrated logic circuits, and/or other functions that can provide the above functions device.
  • ASIC application-specific integrated circuit
  • the communication device 140 may take the form of the communication device 600 shown in FIG. 6a.
  • the function/implementation process of the processing module 1401 in FIG. 14 can be implemented by the processor 601 in the communication device 600 shown in FIG.
  • the function/implementation process of 1402 may be implemented through the communication interface 604 in the communication device 600 shown in FIG. 6a.
  • the communication device described in the embodiment of the present application can also be realized by using the following: one or more field programmable gate arrays (field programmable gate array, FPGA), programmable logic device (programmable logic device (PLD), controller, state machine, gate logic, discrete hardware components, any other suitable circuit, or any combination of circuits capable of performing the various functions described throughout this application.
  • field programmable gate array field programmable gate array, FPGA
  • PLD programmable logic device
  • controller state machine
  • gate logic discrete hardware components
  • discrete hardware components any other suitable circuit, or any combination of circuits capable of performing the various functions described throughout this application.
  • the function/implementation process of the transceiver module 1402 can be realized through the input and output interface (or communication interface) of the chip or the chip system, and the processing module 1401
  • the function/implementation process may be implemented by a chip or a processor (or processing circuit) of a chip system.
  • the communication device 140 provided in this embodiment can execute the above-mentioned method, the technical effect it can obtain can refer to the above-mentioned method embodiment, and details are not repeated here.
  • the embodiments of the present application further provide a communication device, where the communication device includes a processor, configured to implement the method in any one of the foregoing method embodiments.
  • the communication device further includes a memory.
  • the memory is used to store necessary program instructions and data, and the processor can call the program code stored in the memory to instruct the communication device to execute the method in any one of the above method embodiments.
  • the memory may not be in the communication device.
  • the communication device further includes an interface circuit, the interface circuit is a code/data read and write interface circuit, and the interface circuit is used to receive computer-executed instructions (computer-executed instructions are stored in the memory, and may be directly read from memory read, or possibly through other devices) and transferred to the processor.
  • the interface circuit is a code/data read and write interface circuit, and the interface circuit is used to receive computer-executed instructions (computer-executed instructions are stored in the memory, and may be directly read from memory read, or possibly through other devices) and transferred to the processor.
  • the communication device further includes a communication interface, where the communication interface is used to communicate with modules other than the communication device.
  • the communication device may be a chip or a system-on-a-chip.
  • the communication device may consist of a chip, or may include a chip and other discrete devices, which is not specifically limited in this embodiment of the present application.
  • the present application also provides a computer-readable storage medium, on which a computer program or instruction is stored, and when the computer program or instruction is executed by a computer, the functions of any one of the above method embodiments are realized.
  • the present application also provides a computer program product, which implements the functions of any one of the above method embodiments when executed by a computer.
  • the systems, devices and methods described in this application can also be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, that is, they may be located in one place, or may be distributed to multiple network units. Components shown as units may or may not be physical units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • all or part of them may be implemented by software, hardware, firmware or any combination thereof.
  • a software program it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions.
  • the computer program instructions When the computer program instructions are loaded and executed on the computer, the processes or functions according to the embodiments of the present application will be generated in whole or in part.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be transmitted from a website, computer, server, or data center Transmission to another website site, computer, server or data center by wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or may be a data storage device including one or more servers, data centers, etc. that can be integrated with the medium.
  • the available medium may be a magnetic medium (such as a floppy disk, a hard disk, or a magnetic tape), an optical medium (such as a DVD), or a semiconductor medium (such as a solid state disk (solid state disk, SSD)), etc.
  • the computer may include the aforementioned apparatus.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种信号设计方法及装置,使得用于对目标进行感知的信号具有较大的抗多普勒区间,方法包括:求解优化问题得到积序列,优化问题是基于约束条件和最大化目标函数得到的,约束条件用于限制第一信号和第二信号的互模糊函数的旁瓣在抗多普勒频移区间内小于或等于第一阈值,目标函数由变量的范数构成,积序列为变量在优化问题中的解:积序列用于确定第一信号和第二信号,第一信号和第二信号用于对目标对象进行感知。

Description

信号设计方法及装置
本申请要求于2022年01月06日提交国家知识产权局、申请号为202210010261.6、申请名称为“一种波形传输及接受方法”的中国专利申请的优先权,以及要求于2022年03月08日提交国家知识产权局、申请号为202210220812.1、申请名称为“信号设计方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信领域,尤其涉及信号设计方法及装置。
背景技术
格雷互补序对(golay complementary pair,GCP)是一类具有完美非周期自相关性质的序列,基于此,GCP通常被用作感知序列以对感知目标进行测距。
在测距时,感知设备可以根据GCP生成感知信号,并向目标发送该感知信号。该感知信号经感知目标的反射产生回波信号。本质上,回波信号与感知信号相同,只是延后了从感知设备到感知目标这段距离带来的传播时延。由于感知信号同样具有完美非周期自相关性质,因此,感知设备收到回波信号后,可以将回波信号与感知信号进行非周期自相关运算,根据非周期自相关运算结果确定感知目标的位置。
然而,基于GCP生成的感知信号的完美非周期自相关性质只有在0多普勒(Doppler)时才能保持。对运动的感知目标进行测距时,回波信号中存在由于感知目标的运动速度引起的多普勒频移,因此感知信号的完美非周期自相关性质被破坏,感知信号和回波信号的非周期自相关函数除了在0位移处出现最大相关峰外,在其他位移处还存在大量旁瓣。
由于旁瓣的存在,感知设备对感知目标的测距精度会下降。此外,当感知设备对多个运动的感知目标测距时,弱目标的最大相关峰可能被强目标的旁瓣淹没,造成目标丢失。因此,有必要对感知信号进行抗多普勒设计。
发明内容
本申请提供一种信号设计方法及装置,能够使得用于对目标进行感知的信号具有较大的抗多普勒区间。
第一方面,提供了一种信号设计方法,该方法包括:求解优化问题得到积序列,积序列用于确定第一信号和第二信号,第一信号和第二信号用于对目标对象进行感知。其中,优化问题是基于约束条件和最大化目标函数得到的。约束条件用于限制第一信号和第二信号的互模糊函数的旁瓣在抗多普勒频移区间内小于或等于第一阈值。目标函数由变量的范数构成,积序列为变量在优化问题中的解。
基于该方案,感知设备求解以最大化目标函数为目标,以抗多普勒频移区间和旁瓣抑制水平为约束条件的优化问题,得到积序列,使得根据积序列确定的第一信号和第二信号的CAF的旁瓣在较大的抗多普勒频移区间内保持较低的水平。也就是说,能够使得用于对目标进行感知的信号具有较大的抗多普勒区间,从而提高测距性能。
在一种可能的设计中,目标函数用于指示经第二信号互相关计算后,第一信号的回波信号与噪声信号的功率比。也就是说,目标函数可以指示接收端的信号噪声比SNR。
基于该可能的设计,由于优化问题以最大化接收端的SNR为目标,因此,根据本申请的 设计,也能够使得接收端的SNR增益较高。也就是说,本申请的方案在具有较大的抗多普勒频移区间的同时,接收端的SNR增益也较高。
在一种可能的设计中,优化问题为:
Figure PCTCN2022139695-appb-000001
其中,||z|| 1表示变量z的1范数,
Figure PCTCN2022139695-appb-000002
表示变量z的1范数的平方,||z|| 2表示变量z的2范数,
Figure PCTCN2022139695-appb-000003
表示变量z的2范数的平方,δ为第一阈值,E s为N×N维的矩阵,N为积序列的长度,矩阵E s由抗多普勒频移区间确定,||E sz|| 2指示互模糊函数的旁瓣的能量大小。
在一种可能的设计中,矩阵E s的第m行第n列的元素为:
Figure PCTCN2022139695-appb-000004
其中,θ D用于指示以弧度为单位的抗多普勒频移区间,以弧度为单位的抗多普勒频移区间由以赫兹为单位的抗多普勒频移区间确定,以赫兹为单位的抗多普勒频移区间由f D指示。
在一种可能的设计中,积序列的长度为16、互模糊函数的旁瓣阈值为10 -3,抗多普勒频移区间的大小为π时,积序列为:
2.3374e-04-4.5702e-03j,
2.7275e-02+2.6275e-03j,
-1.2932e-02+8.2504e-02j,
-1.6627e-01-3.9741e-02j,
8.7385e-02-2.4902e-01j,
2.9747e-01+1.4686e-01j,
-1.9503e-01+3.0688e-01j,
-3.0555e-01-2.0732e-01j,
1.7558e-01-3.2128e-01j,
3.4648e-01+1.1512e-01j,
-5.3800e-02+3.4359e-01j,
-2.8593e-01-1.2917e-02j,
-3.6182e-03-1.8776e-01j,
9.1405e-02-5.0281e-03j,
2.1849e-03+2.9660e-02j,
-4.8841e-03+3.9983e-04j;
其中,e+0x或e-0x为科学计数法,e+01表示×10 1,e-01表示×10 -1
在一种可能的设计中,积序列用于确定第一信号和第二信号,包括:积序列用于确定第一序列和第二序列,积序列为第一序列和第二序列的哈达玛Hadamard积;第一序列和格雷互补对GCP用于确定第一信号,第一序列、第二序列、和GCP用于确定第二信号。
在一种可能的设计中,第二序列为第二序列集合中的一个序列,第一序列为第一序列集合中与第二序列对应的序列。第二序列集合中的一个序列和第一序列集合中的对应序列的Hadamard积为积序列。第二序列的所有元素之和的绝对值为多个数值中的最大值,该多个数值包括第二序列集合中的每个序列的所有元素之和的绝对值。
在一种可能的设计中,第一序列和第二序列的长度为16、第一阈值为10 -3,抗多普勒频 移区间的大小为π时,
第一序列为:1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1;
第二序列为:
2.3374e-04-4.5702e-03j,
2.7275e-02+2.6275e-03j,
1.2932e-02-8.2504e-02j,
1.6627e-01+3.9741e-02j,
8.7385e-02-2.4902e-01j,
2.9747e-01+1.4686e-01j,
1.9503e-01-3.0688e-01j,
3.0555e-01+2.0732e-01j,
1.7558e-01-3.2128e-01j,
3.4648e-01+1.1512e-01j,
5.3800e-02-3.4359e-01j,
2.8593e-01+1.2917e-02j,
-3.6182e-03-1.8776e-01j,
9.1405e-02-5.0281e-03j,
-2.1849e-03-2.9660e-02j,
4.8841e-03-3.9983e-04j;
其中,e+0x或e-0x为科学计数法,e+01表示×10 1,e-01表示×10 -1
在一种可能的设计中,第二序列的所有元素的实部的正负符号相同;或者,第二序列的所有元素的虚部的正负符号相同。
在一种可能的设计中,第二序列的所有元素的实部为正数,且第一序列和第二序列的长度为16、第一阈值为10 -3,抗多普勒频移区间的大小为π时:
第一序列为:1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,-1,1,1,-1;
第二序列为:
2.3374e-04-4.5702e-03j,
2.7275e-02+2.6275e-03j,
1.2932e-02-8.2504e-02j,
1.6627e-01+3.9741e-02j,
8.7385e-02-2.4902e-01j,
2.9747e-01+1.4686e-01j,
1.9503e-01-3.0688e-01j,
3.0555e-01+2.0732e-01j,
1.7558e-01-3.2128e-01j,
3.4648e-01+1.1512e-01j,
5.3800e-02-3.4359e-01j,
2.8593e-01+1.2917e-02j,
3.6182e-03+1.8776e-01j,
9.1405e-02-5.0281e-03j,
2.1849e-03+2.9660e-02j,
4.8841e-03-3.9983e-04j;
其中,e+0x或e-0x为科学计数法,e+01表示×10 1,e-01表示×10 -1
在一种可能的设计中,第二序列的所有元素的虚部为正数,且第一序列和第二序列的长度为16、第一阈值为10 -3,抗多普勒频移区间的大小为π时:
第一序列为:-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,-1,1,1;
第二序列为:
-2.3374e-04+4.5702e-03j,
2.7275e-02+2.6275e-03j,
-1.2932e-02+8.2504e-02j,
1.6627e-01+3.9741e-02j,
-8.7385e-02+2.4902e-01j,
2.9747e-01+1.4686e-01j,
-1.9503e-01+3.0688e-01j,
3.0555e-01+2.0732e-01j,
-1.7558e-01+3.2128e-01j,
3.4648e-01+1.1512e-01j,
-5.3800e-02+3.4359e-01j,
2.8593e-01+1.2917e-02j,
3.6182e-03+1.8776e-01j,
-9.1405e-02+5.0281e-03j,
2.1849e-03+2.9660e-02j,
-4.8841e-03+3.9983e-04j;
其中,e+0x或e-0x为科学计数法,e+01表示×10 1,e-01表示×10 -1
在一种可能的设计中,第一信号包括N个周期内的子信号,N为第一序列的长度;第一序列和GCP用于确定第一信号,包括:第一序列的第n个元素确定GCP中的一个序列,GCP中的该一个序列用于生成第一信号的第n个周期内的子信号,其中,n=0,1,...N-1。
在一种可能的设计中,GCP序列包括x序列和y序列,第一信号、第一序列、GCP满足如下公式:
Figure PCTCN2022139695-appb-000005
其中,s P(t)为第一信号,P[n]为第一序列的第n个元素,x(t-nT)或y(t-nT)为第一信号的第n个周期内的子信号,x序列用于生成x(t-nT),y序列用于生成y(t-nT),T为第一信号的子信号的周期。
在一种可能的设计中,第一信号包括N个周期内的子信号,第二信号包括N个周期内的子信号,N为第一序列和第二序列的长度。
在一种可能的设计中,当抗多普勒频移区间为[0,θ D]时,第二信号的第n个周期内的子信号为第二序列的第n个元素的共轭与第一信号的第n个周期内的子信号的乘积,n=0,1,...N-1。
在一种可能的设计中,当抗多普勒频移区间为[0,θ D]时,GCP序列包括x序列和y序列,第二信号、第一序列、第二序列、GCP满足如下公式:
Figure PCTCN2022139695-appb-000006
其中,s Q(t)为第二信号,Q *[n]为第二序列的第n个元素Q[n]的共轭,P[n]为第一序列的第n个元素,x(t-nT)或y(t-nT)为第一信号第n个周期内的的子信号,x序列用于生成x(t-nT),y序列用于生成y(t-nT),T为第一信号的子信号的周期。
在一种可能的设计中,当抗多普勒频移区间为[-θ D,0]时,第二信号的第n个周期内的子信号为第二序列的第n个元素与第一信号的第n个周期内的子信号的乘积,n=0,1,...N-1。
在一种可能的设计中,当抗多普勒频移区间为[-θ D,0]时,GCP序列包括x序列和y序列,第二信号、第一序列、第二序列、GCP满足如下公式:
Figure PCTCN2022139695-appb-000007
其中,s Q(t)为第二信号,Q[n]为第二序列的第n个元素,P[n]为第一序列的第n个元素,x(t-nT)或y(t-nT)为第一信号的第n个周期内的子信号,x序列用于生成x(t-nT),y序列用于生成y(t-nT),T为第一信号的子信号的周期。
在一种可能的设计中,该方法还包括:发送第一信号,并接收第一信号的回波信号。根据回波信号和第二信号进行非周期互相关运算,并根据该非周期互相关运算的结果确定目标对象的距离。
在一种可能的设计中,第一信号为单载波信号或多载波信号。基于该可能的设计,第一信号为单载波信号或多载波信号能够适配多种通信场景,使得本申请的方案能够广泛应用。
需要说明的是,上述第一方面及其任意可能的设计中的方案,可以由感知设备执行,也可以由感知设备的部件,例如处理器、芯片、或芯片系统等执行,还可以由能实现全部或部分感知设备功能的逻辑模块或软件实现。或者,可以由任意电子设备执行,也可以由该电子设备的部件,例如处理器、芯片、或芯片系统等执行,还可以由能实现全部或部分电子设备功能的逻辑模块或软件实现。本申请对此不作具体限定。
第二方面,提供了一种通信装置用于实现上述各种方法。该通信装置可以为感知设备,或者感知设备中包含的装置,比如芯片。所述通信装置包括实现上述方法相应的模块、单元、或手段(means),该模块、单元、或means可以通过硬件实现,软件实现,或者通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块或单元。
在一些可能的设计中,该通信装置可以包括处理模块。进一步的,该通信装置还可以包括收发模块。该收发模块,也可以称为收发单元,用以实现上述任一方面及其任意可能的实现方式中的发送和/或接收功能。该收发模块可以由收发电路,收发机,收发器或者通信接口构成。该处理模块,可以用于实现上述任一方面及其任意可能的实现方式中的处理功能。
在一些可能的设计中,收发模块包括发送模块和接收模块,分别用于实现上述任一方面及其任意可能的实现方式中的发送和接收功能。
第三方面,提供了一种通信装置,包括:处理器和存储器;该存储器用于存储计算机指令,当该处理器执行该指令时,以使该通信装置执行上述任一方面所述的方法。该通信装置可以为感知设备,或者上述感知设备中包含的装置,比如芯片。
第四方面,提供一种通信装置,包括:处理器和通信接口;该通信接口,用于与该通信装置之外的模块通信;所述处理器用于执行计算机程序或指令,以使该通信装置执行上述任一方面所述的方法。该通信装置可以为感知设备,或者上述感知设备中包含的装置,比如芯 片。
第五方面,提供了一种通信装置,包括:接口电路和处理器,该接口电路为代码/数据读写接口电路,该接口电路用于接收计算机执行指令(计算机执行指令存储在存储器中,可能直接从存储器读取,或可能经过其他器件)并传输至该处理器;处理器用于执行计算机执行指令以使该通信装置执行上述任一方面所述的方法。该通信装置可以为感知设备,或者上述感知设备中包含的装置,比如芯片。
第六方面,提供了一种通信装置,包括:至少一个处理器;所述处理器用于执行计算机程序或指令,以使该通信装置执行上述任一方面所述的方法。该通信装置可以为感知设备,或者上述感知设备中包含的装置,比如芯片。
在一些可能的设计中,该通信装置包括存储器,该存储器,用于保存必要的程序指令和数据。该存储器可以与处理器耦合,或者,也可以独立于该处理器。
在一些可能的设计中,该通信装置可以是芯片或芯片系统。该装置是芯片系统时,可以由芯片构成,也可以包含芯片和其他分立器件。
第七方面,提供了一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当其在通信装置上运行时,使得通信装置可以执行上述任一方面所述的方法。
第八方面,提供了一种包含指令的计算机程序产品,当其在通信装置上运行时,使得该通信装置可以执行上述任一方面所述的方法。
可以理解的是,第二方面至第八方面中任一方面提供的通信装置是芯片时,上述的发送动作/功能可以理解为输出信息,上述的接收动作/功能可以理解为输入信息。
其中,第二方面至第八方面中任一种设计方式所带来的技术效果可参见上述第一方面中不同设计方式所带来的技术效果,在此不再赘述。
附图说明
图1为本申请实施例提供的一种基于GCP的脉冲串信号的自模糊函数的仿真示意图;
图2为本申请实施例提供的一种雷达感知场景的示意图;
图3为本申请实施例提供的一种雷达感知场景下弱目标丢失的仿真示意图;
图4为本申请实施例提供的一种通信场景的示意图;
图5a为本申请实施例提供的一种智能家居场景下的感知示意图;
图5b为本申请实施例提供的一种车联网场景下的感知示意图;
图6a为本申请实施例提供的一种通信装置的结构示意图;
图6b为本申请实施例提供的另一种通信装置的结构示意图;
图6c为本申请实施例提供的又一种通信装置的结构示意图;
图7为本申请实施例提供的一种信号设计方法的流程示意图;
图8为本申请实施例提供的一种感知方法的流程示意图;
图9为本申请实施例提供的一种单载波的波形示意图;
图10a为本申请实施例提供的PTM方案对应的CAF的仿真示意图;
图10b为本申请实施例提供的BD方案对应的CAF的仿真示意图;
图10c为本申请实施例提供的NS方案对应的互模糊函数CAF的仿真示意图;
图10d为本申请实施例提供的序列长度为16,θ D=π/3时的CAF仿真示意图;
图10e为本申请实施例提供的序列长度为16,θ D=2π/3时的CAF仿真示意图;
图10f为本申请实施例提供的序列长度为16,θ D=π时的CAF仿真示意图;
图11为本申请实施例提供的一种多载波波形的生成过程示意图;
图12为本申请实施例提供的一种资源分配的示意图;
图13a为本申请实施例提供的序列长度为32时,PTM方案对应的CAF的仿真示意图;
图13b为本申请实施例提供的序列长度为32时,BD方案对应的CAF的仿真示意图;
图13c为本申请实施例提供的序列长度为32时,NS方案对应的CAF的仿真示意图;
图13d为本申请实施例提供的序列长度为32,θ D=π/3时的CAF仿真示意图;
图13e为本申请实施例提供的序列长度为32,θ D=2π/3时的CAF仿真示意图;
图13f为本申请实施例提供的序列长度为32,θ D=π时的CAF仿真示意图;
图14为本申请实施例提供的一种通信装置的结构示意图。
具体实施方式
在本申请的描述中,除非另有说明,“/”表示前后关联的对象是一种“或”的关系,例如,A/B可以表示A或B;本申请中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况,其中A,B可以是单数或者复数。
在本申请的描述中,除非另有说明,“多个”是指两个或多于两个。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。
另外,为了便于清楚描述本申请实施例的技术方案,在本申请的实施例中,采用了“第一”、“第二”等字样对功能和作用基本相同的相同项或相似项进行区分。本领域技术人员可以理解“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。
在本申请实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念,便于理解。
可以理解,说明书通篇中提到的“实施例”意味着与实施例有关的特定特征、结构或特性包括在本申请的至少一个实施例中。因此,在整个说明书各个实施例未必指相同的实施例。此外,这些特定的特征、结构或特性可以任意适合的方式结合在一个或多个实施例中。可以理解,在本申请的各种实施例中,各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
可以理解,本申请实施例中的一些可选的特征,在某些场景下,可以不依赖于其他特征,比如其当前所基于的方案,而独立实施,解决相应的技术问题,达到相应的效果,也可以在某些场景下,依据需求与其他特征进行结合。相应的,本申请实施例中给出的装置也可以相应的实现这些特征或功能,在此不予赘述。
本申请中,除特殊说明外,各个实施例之间相同或相似的部分可以互相参考。在本申请中各个实施例中,如果没有特殊说明以及逻辑冲突,不同的实施例之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例中的技术特征根据其内在的逻辑关系可以组合形成新的实施例。以下所述的本申请实施方式并不构成对本申请保护范围的限定。
为了方便理解本申请实施例的技术方案,首先给出本申请相关技术的简要介绍如下。
1)、1范数、2范数:
序列的1范数为序列元素的绝对值之和。序列的2范数为序列元素的平方和再开方。
例如,对于长度为L的序列a,1范数可以表示为:
Figure PCTCN2022139695-appb-000008
2范数可以表示为:
Figure PCTCN2022139695-appb-000009
2)、相关运算:相关运算是指将两个序列的对应元素相乘再相加。例如,序列a=[a 1,a 2,a 3]和序列b=[b 1,b 2,b 3],二者的相关运算为:a 1×b 1+a 2×b 2+a 3×b 3
3)、自相关:如果两个序列相同,那么它们之间的相关运算称为自相关。
4)、互相关:如果两个序列不同,那么它们之间的相关运算称为互相关。
5)、非周期自相关:在计算序列自相关时,通过序列间相对位移计算两个序列重合元素的相关值。如果序列长度为L,那么序列间相对位移量可能有-L+1,-L+2,…,-1,0,1,…,L-2,L-1共2L-1种情况,因此非周期自相关运算共有2L-1种结果。
示例性的,对于序列[1,2,3]而言,当序列间相对位移量为-2时,对应如下情况:
1,2,3
1,2,3
此时非周期自相关结果为1×3=3。
当序列间相对位移量为-1时,对应如下情况:
1,2,3
1,2,3
此时非周期自相关结果为1×2+2×3=8。以此类推,当序列间相对位移量分别为-2,-1,0,1,2时,序列的非周期自相关结果依次为3,8,14,8,3。
6)、非周期互相关:在计算序列互相关时,通过序列间相对位移计算两个序列重合元素的相关值。
7)、完美非周期自相关:如果序列的非周期自相关结果除了0位移外,其它位移处处为0,则该序列具有完美非周期自相关性质。如果除了0位移外,其他位移处不为0,但是相比于0位移处的峰值,其它位移处的值非常小,则该序列具有较好的非周期自相关性质。
8)完美非周期互相关:如果两个序列的非周期互相关结果在所有位移处均为0,则两个序列具有完美非周期互相关性质,或者称两个序列相互正交。如果两个序列的非周期互相关结果在所有位移处均保持较小的值,则称两个序列具有较好的非周期互相关性质。
9)格雷互补对(golay complementary pair,GCP):
GCP又可以称为格雷互补序列或GCP序列,是一类完美非周期自相关序列。其定义为:码长为L的一对序列x和y,如果它们的非周期自相关函数(aperiodic auto correlation function,AACF)之和除了0位移外,其他位移处处为0,那么这两个序列为一对GCP。其中,对于序列x=[x[0],x[1],...,x[N-1]]而言,其AACF定义为:
Figure PCTCN2022139695-appb-000010
其中,k表示位移,k等于0时表示0位移。序列y的AACF(表示为C y[k])与序列x的AACF类似,可参考C x[k]的描述,在此不再赘述。
示例性的,对于序列x=[1,1,1,-1]和y=[1,1,-1,1],由于序列x的AACF为C x[k]=[-1,0,1,4,1,0,-1],k=-3,-2,...,3,序列y的AACF为C y[k]=[1,0,-1,4,-1,0,1],k= -3,-2,..,3,由于C x[k]+C y[k]=[0,0,0,8,0,0,0],因此序列x和y是一对GCP。
由于GCP具有完美非周期自相关性,因此常被用作感知序列。感知设备(例如雷达)可以基于GCP生成脉冲串信号(作为感知信号),该信号的一般形式为s(t)=x(t)+y(t-T)。其中,x(t)和y(t-T)分别表示基于GCP的x序列和y序列生成的脉冲串信号,T表示s(t)的脉冲重复间隔(pulse repetition interval,PRI)。x(t)和y(t)的一般形式可以表示为:
Figure PCTCN2022139695-appb-000011
Figure PCTCN2022139695-appb-000012
其中,g(t)表示脉冲信号,TC表示脉冲信号的持续时间。可以理解的是,s(t)也具有完美非周期自相关性质,因此,可以用于对感知目标进行测距。
在测距时,感知设备向感知目标发送信号s(t),该信号经感知目标的发射产生回波信号s(t-τ)。本质上,回波信号与感知信号相同,只是相对于感知信号延后了从感知设备到感知目标这段距离带来的传播时延τ。因此,若对回波信号与感知信号进行非周期自相关运算,将在传输时延τ对应的时间节点处获得最大相关峰,从而感知设备可以通过搜索最大相关峰对应的时延确定回波时延,进而确定感知目标的位置。
然而,基于GCP生成的感知信号的完美非周期自相关性质只有在0多普勒(Doppler)时才能保持。对运动的感知目标进行测距时,感知信号的完美非周期自相关性质被破坏。此时,感知信号和回波信号的非周期自相关函数除了在0位移处出现最大相关峰外,在其他位移处还存在大量旁瓣。
作为一种实现,可以采用自模糊函数(auto ambiguity function,AAF)研究感知信号的非周期自相关函数受多普勒的影响情况。对于信号s(t)而言,其AAF定义为:
Figure PCTCN2022139695-appb-000013
其中,τ表示时延,f表示多普勒频移,s*(t)表示信号s(t)的共轭。由上可知,自模糊函数其实就是考虑了不同多普勒频移的非周期自相关函数。
示例性的,使用长度为64的GCP和矩形窗脉冲生成脉冲串信号进行感知时,在不同多普勒频移下,s(t)的AAF结果如图1所示。参见图1,x轴坐标表示多普勒频移,y轴坐标表示时延,z轴坐标表示AAF结果。根据图1可得,尽管在0时延处,s(t)的AAF仍能取得最大值,但是由于多普勒频移的存在,在其他时延处出现了大量的旁瓣,且随着多普勒频移的增加,旁瓣也在增大。
由于旁瓣的存在,可能导致两方面问题:其一,对高速运动的感知目标进行测距时,测距精度下降。其二,对多个运动的感知目标进行测距时,由于不同感知目标距离感知设备的距离不同、不同感知目标的雷达截面(radar cross section,RCS)面积不同,因此,不同感知目标的回波信号存在很大的能量差异。此时,弱目标的最大相关峰可能被强目标的旁瓣淹没,造成目标丢失(这种现象在雷达中被称为“远近效应”)。
示例性的,如图2所示,假设雷达同时对两个运动的感知目标进行测距。其中,目标1的RCS面积较大且距离雷达较近,可以称为强目标。目标2的RCS面积较小且距离雷达较远,可以称为弱目标。由于强目标反射的回波信号的能量远大于弱目标反射的回波信号的能量,因此感知信号与回波信号的非周期自相关函数会呈现如图3所示的情况。此时,弱目标的最大相关峰完全被强目标的旁瓣淹没,导致弱目标丢失。
为了解决上述问题,需要对感知信号进行抗Doppler设计,保证在足够大的Doppler区间 内,感知信号的AAF旁瓣仍能保持在非常低的水平。
目前,主要通过发射信号和本地信号的联合设计实现抗Doppler设计。在该联合设计方式中,感知设备的发送端在N个PRI中的每个PRI内发送由GCP的序列x和y生成的脉冲串信号x(t)或y(t)。
具体的,某个PRI内发送x(t)还是y(t),由序列P=[P[0],P[1],...,P[N-1]]控制。其中,序列P的每个元素取值为1或-1,此时发射信号的一般形式为:
Figure PCTCN2022139695-appb-000014
也就是说,在第n个PRI内,若P[n]=1,则发送x(t),若P[n]=-1,则发送y(t)。
在感知设备的接收端,不再使用s P(t)和回波信号进行非周期自相关运算,而是使用根据序列Q=[Q[0],Q[1],...,Q[N-1]]生成的本地信号s Q(t)与回波信号进行非周期互相关运算。其中,当抗多普勒区间为正区间时,本地信号的一般形式为:
Figure PCTCN2022139695-appb-000015
也就是说,在第n个PRI内,本地信号在发射信号的基础上乘以Q[n]的共轭得到。
进一步的,可以采用互模糊函数(cross ambiguity function,CAF)研究本地信号和回波信号的非周期互相关函数受多普勒频移的影响情况。互模糊函数其实就是考虑了不同多普勒频移的非周期互相关函数,具体形式类似于AAF的表示形式,区别在于进行CAF运算的两个信号为不同的信号,可参考AAF的相关描述,在此不再赘述。
在计算s P(t)和s Q(t)的CAF时,由于脉冲信号不影响s P(t)和s Q(t)的CAF,因此,可以将其忽略并计算s P(t)和s Q(t)的CAF。此时,经过简化后的s P(t)和s Q(t)的CAF可以表示为如下形式:
Figure PCTCN2022139695-appb-000016
其中,上述表达式中的第一项表示0时延处的最大相关峰,第二项表示其他时延处的旁瓣。基于此,可以通过设计P序列和Q序列使得旁瓣(即上述表达式中的第二项)降到非常低的水平。
在使用P序列和Q序列对发射信号和本地信号进行设计时,Q序列还会对感知设备的接收端信号噪声比(signal to noise ratio,SNR)产生影响。例如,在非理想信道条件下,感知设备收到的接收信号可能包括回波信号和噪声信号,或者说回波信号伴随有噪声信号。此时,回波信号为有用信号。需要说明的是,本申请中,SNR也可以称为SNR增益,二者可以相互替换。
该场景下,噪声信号的功率一定时,采用s Q(t)对接收信号进行处理(例如进行CAF运算)后,噪声功率完全由Q序列决定,有用信号的功率由s P(t)和s Q(t)的CAF在k=0,f=0处的值决定。示例性的,假设处理前噪声信号的功率为N 0,则经s Q(t)接收处理后,噪声信号的功率为
Figure PCTCN2022139695-appb-000017
其中L表示GCP序列的长度,
Figure PCTCN2022139695-appb-000018
表示Q序列的2范数||Q|| 2的平方。相应地,经s Q(t)接收处理后,有用信号的功率为
Figure PCTCN2022139695-appb-000019
其中
Figure PCTCN2022139695-appb-000020
表示处理前有用信号的功率,由感知设备的发射功率、感知目标的RCS面积决定,
Figure PCTCN2022139695-appb-000021
表示Q序列 的1范数||Q|| 1的平方。综上,经s Q(t)处理后,接收端的SNR增益为
Figure PCTCN2022139695-appb-000022
Figure PCTCN2022139695-appb-000023
给定时,SNR增益仅由
Figure PCTCN2022139695-appb-000024
决定。现有研究中,主要存在以下三种P序列和Q序列的设计方案:
1)、普罗海特-苏-摩尔斯(prouhet-thue-morse,PTM)方案。
在PTM方案中,P序列是长度为N的PTM序列,Q序列是长度为N的全1序列。需要说明的是,长度为N的PTM序列是唯一确定的。
2)、二项式(binomial design,BD)方案。
在BD方案中,P序列是长度为N的交替±1序列,Q序列是长度为N的二项式序列,即
Figure PCTCN2022139695-appb-000025
3)、零空间(null space,NS)方案。
在NS方案中,要求序列[P[0]Q[0],P[1]Q[1],...,P[N-1]Q[N-1]]是矩阵E的零空间基向量。其中:
Figure PCTCN2022139695-appb-000026
在确定矩阵E的零空间基向量[z[0],z[1],...,z[N-1]]后,若z[n]的实部大于0,则P[n]=1,否则P[n]=-1。相应的,若P[n]=1,则Q[n]=z[n],若P[n]=-1,则Q[n]=-z[n]。
示例性的,如下表1和表2所示,分别示出了N等于16和32时,PTM方案、BD方案、和NS方案对应的P序列和Q序列。
表1
Figure PCTCN2022139695-appb-000027
Figure PCTCN2022139695-appb-000028
其中,在本申请实施例中,e+0x或e-0x为科学计数法,例如,e+01表示×10 1,e-01表示×10 -1,e+02表示×10 2。在此统一说明,下述实施例不再赘述。
表2
Figure PCTCN2022139695-appb-000029
Figure PCTCN2022139695-appb-000030
然而,采用PTM方案对应的P序列和Q序列设计发射信号和本地信号时,抗多普勒区间太小,无法满足对高速运动目标的测距需求。采用BD方案和NS方案对应的P序列和Q序列设计发射信号和本地信号时,接收端的SNR增益较低。
基于此,本申请提供一种信号设计方法,通过对P序列和Q序列设计,使得发射信号和本地信号具有较大的抗多普勒区间。进一步的,使得接收端的SNR增益较高。
本申请实施例的技术方案可用于各种通信系统,该通信系统可以为第三代合作伙伴计划(3rd generation partnership project,3GPP)通信系统,例如,5G或者6G移动通信系统、车联网(vehicle to everything,V2X)系统,或者设备到设备(device-to-device,D2D)通信系统、机器到机器(machine to machine,M2M)通信系统、物联网(internet of things,IoT),以及其他下一代通信系统。该通信系统也可以为非3GPP通信系统,例如Wi-Fi等无线局域网(wireless local area network,WLAN)系统,不予限制。
本申请实施例的技术方案可以应用于各种通信场景,例如可以应用于以下通信场景中的一种或多种:智能家居、D2D、V2X、和IoT等通信场景。
其中,上述适用本申请的通信系统和通信场景仅是举例说明,适用本申请的通信系统和通信场景不限于此,在此统一说明,以下不再赘述。
参见图4,为本申请实施例提供的一种通信场景。该场景中,由感知设备发送感知信号,感知信号经过至少一个静止或运动的目标对象(也可以称为感知目标)的反射后,感知设备可以收到该感知信号的回波信号,从而,感知设备可以对目标对象进行感知。图1的场景仅为示例,实际并不限于一个感知设备和一个或多个目标对象交互,例如,多个感知设备可以与同一个目标对象交互。
可选的,本申请中的感知设备可以是具有雷达功能的终端设备或网络设备。终端设备可以是具有无线收发功能的设备。网络设备是一种将终端设备接入到无线网络的设备。
网络设备可以是第五代(5th generation,5G)系统或者第六代(6th generation,6G)系统中的下一代节点B(next generation node B,gNodeB或gNB);或者可以是传输接收点(transmission reception point,TRP);或者可以是未来演进的公共陆地移动网络(public land mobile network,PLMN)中的基站,本申请实施例对此不作具体限定。
终端设备也可以称为用户设备(user equipment,UE)、终端、接入终端、用户单元、用户站、移动站(mobile station,MS)、远方站、远程终端、移动终端(mobile terminal,MT)、用户终端、无线通信设备、用户代理或用户装置等。终端设备例如可以是IoT、V2X、D2D、M2M、5G网络、6G网络、或者未来演进的PLMN中的无线终端。终端设备可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。
示例性的,终端设备可以是无人机、IoT设备(例如,传感器,电表,水表等)、V2X设备、无线局域网(wireless local area networks,WLAN)中的站点(station,ST)、蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字处理(personal digital assistant,PDA)设备、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备(也 可以称为穿戴式智能设备)、平板电脑或带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端、工业控制(industrial control)中的终端、无人驾驶(self-driving)中的终端、远程医疗(remote medical)中的终端、智能电网(smart grid)中的终端、运输安全(transportation safety)中的终端、智慧城市(smart city)中的终端、智能家居中的终端、车载终端、具有车对车(vehicle-to-vehicle,V2V)通信能力的车辆、智能网联车、具有无人机对无人机(UAV to UAV,U2U)通信能力的无人机等等。
示例性的,在智能家居场景中,如图5a所示,感知设备可以是家中的各种智能电器,例如智能电视、智能音响等。当需要对人进行轨迹追踪时,家中的各个终端可以发送感知信号对人进行感知,以增强轨迹追踪的准确性。或者,在V2X场景中,如图5b所示,感知设备可以是车载终端,车载终端可以发送感知信号,接收经过目标对象反射的该感知信号的回波信号来感知周围的路况等。
本申请涉及的感知设备的相关功能可以由一个设备实现,也可以由多个设备共同实现,还可以是由一个设备内的一个或多个功能模块实现,或者可以为一个或多个芯片,也可以为片上系统(system on chip,SOC)或芯片系统,芯片系统可以由芯片构成,也可以包括芯片和其他分立器件,本申请实施例对此不作具体限定。
可以理解的是,上述功能既可以是硬件设备中的网络元件,也可以是在专用硬件上运行的软件功能,或者是硬件与软件的结合,或者是平台(例如,云平台)上实例化的虚拟化功能。
例如,本申请涉及的感知设备的相关功能可以通过图6a中的通信装置600来实现。图6a所示为本申请实施例提供的通信装置600的结构示意图。该通信装置600包括一个或多个处理器601,以及至少一个通信接口(图6a中仅是示例性的以包括通信接口604,以及一个处理器601为例进行说明),可选的,还可以包括通信线路602和存储器603。
处理器601可以是一个通用中央处理器(central processing unit,CPU),微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个用于控制本申请方案程序执行的集成电路。
在具体实现中,作为一种实施例,处理器601可以包括一个或多个CPU,例如图6a中的CPU0和CPU1。
在具体实现中,作为一种实施例,通信装置600可以包括多个处理器。这些处理器中的每一个可以是一个单核(single-core)处理器,也可以是一个多核(multi-core)处理器。这里的处理器可以包括但不限于以下至少一种:中央处理单元(central processing unit,CPU)、微处理器、数字信号处理器(DSP)、微控制器(microcontroller unit,MCU)、或人工智能处理器等各类运行软件的计算设备,每种计算设备可包括一个或多个用于执行软件指令以进行运算或处理的核。
通信线路602可以用于通信装置600包括的不同组件之间的通信。
通信接口604,可以用于与其他设备或通信网络通信,如以太网,无线接入网(wireless access networks,RAN),无线局域网(wireless local area networks,WLAN)等。所述通信接口604可以是收发器、收发机一类的装置,或者可以是输入输出接口。或者,所述通信接口604也可以是位于处理器601内的收发电路,用以实现处理器的信号输入和信号输出。
存储器603可以是具有存储功能的装置。例如可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘 (compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器可以是独立存在,通过通信线路602与处理器相连接。存储器也可以和处理器集成在一起。
其中,存储器603用于存储执行本申请方案的计算机执行指令,并由处理器601来控制执行。处理器601用于执行存储器603中存储的计算机执行指令,从而实现本申请实施例中提供的方法。
或者,可选的,本申请实施例中,也可以是处理器601执行本申请下述实施例提供的方法中的处理相关的功能,通信接口604负责与其他设备或通信网络通信,本申请实施例对此不作具体限定。
可选的,本申请实施例中的计算机执行指令也可以称之为应用程序代码,本申请实施例对此不作具体限定。
在具体实现中,作为一种实施例,通信装置600还可以包括输出设备605和输入设备606。输出设备605和处理器601通信,可以以多种方式来显示信息。例如,输出设备605可以是液晶显示器(liquid crystal display,LCD),发光二极管(light emitting diode,LED)显示设备,阴极射线管(cathode ray tube,CRT)显示设备,或投影仪(projector)等。输入设备606和处理器601通信,可以以多种方式接收用户的输入。例如,输入设备606可以是鼠标、键盘、触摸屏设备或传感设备等。
以通信接口604为收发器为例,如图6b所示,为本申请实施例提供的另一种通信装置600的结构示意图,该通信装置600包括处理器601和收发器604。该通信装置600可以为感知设备,或其中的芯片。图6b仅示出了通信装置600的主要部件。除处理器601和收发器604之外,所述通信装置还可以进一步包括存储器603、以及输入输出装置(图未示意)。
其中,处理器601主要用于对通信协议以及通信数据进行处理,以及对整个通信装置进行控制,执行软件程序,处理软件程序的数据。存储器603主要用于存储软件程序和数据。收发器604可以包括射频电路和天线,射频电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。
其中,处理器601、收发器604、以及存储器603可以通过通信总线连接。
当通信装置开机后,处理器601可以读取存储器603中的软件程序,解释并执行软件程序的指令,处理软件程序的数据。当需要通过无线发送数据时,处理器601对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到通信装置时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器601,处理器601将基带信号转换为数据并对该数据进行处理。
在另一种实现中,所述的射频电路和天线可以独立于进行基带处理的处理器而设置,例如在分布式场景中,射频电路和天线可以与独立于通信装置,呈拉远式的布置。
示例性的,如图6c所示,图6b中的处理器601可以包括数字信号处理器、信号发生器、和模数转换器。用于信号发送的射频电路可以包括上变频器和功率放大器,用于信号接收的射频电路可以包括下变频器和功率放大器。天线可以包括发射天线和接收天线。
作为一种可能的实现,信号发生器可以用于产生信号。上变频器和下变频器分别用于将信号调制到高频载波上,以及从高频载波上解调出信号。功率放大器用于将信号的功率放大。 模数转换器用于转换数字信号和模拟信号。数字信号处理器用于产生感知序列并进行非周期自相关和/或非周期互相关运算。
需要说明的是,图6a或图6b或图6c中示出的组成结构并不构成对该通信装置的限定,除图6a或图6b或图6c所示部件之外,该通信装置可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。图示的部件可以以硬件,软件或软件和硬件的组合实现。
下面将结合附图,对本申请提供的方法进行展开说明。本申请实施例中,执行主体可以执行本申请实施例中的部分或全部步骤,这些步骤或操作仅是示例,本申请实施例还可以执行其它操作或者各种操作的变形。此外,各个步骤可以按照本申请实施例呈现的不同的顺序来执行,并且有可能并非要执行本申请实施例中的全部操作。
如图7所示,为本申请提供的一种信号设计方法,该方法可以由感知设备执行,也可以由任意电子设备执行,本申请对此不做具体限定。参见图7,以该方法由感知设备执行为例,该方法包括如下步骤:
S701、求解优化问题得到积序列。
其中,该优化问题是基于约束条件和最大化目标函数得到的。目标函数由变量的范数构成,积序列为变量在该优化问题中的解。积序列用于确定第一信号和第二信号,第一信号和第二信号用于对标对象进行感知。
示例性的,第一信号可以为感知信号,第二信号可以为本地信号。本地信号用于和感知信号的回波信号进行非周期互相关运算,以对目标对象进行感知。其中,约束条件用于限制第一信号和第二信号的互模糊函数的旁瓣在抗多普勒频移区间内小于或等于第一阈值。
可选的,目标函数用于指示经第二信号互相关计算后,第一信号的回波信号与噪声信号的功率比。也就是说,目标函数可以指示接收端的信号噪声比SNR。
作为一种可能的实现,该优化问题可以表示为:
Figure PCTCN2022139695-appb-000031
其中,||z|| 1表示变量z的1范数,
Figure PCTCN2022139695-appb-000032
表示变量z的1范数的平方。||z|| 2表示变量z的2范数,
Figure PCTCN2022139695-appb-000033
表示变量z的2范数的平方。δ为第一阈值。E s为N×N维的矩阵,N为积序列的长度。
其中,矩阵E s可以由抗多普勒频移区间确定。||E sz|| 2指示第一信号和第二信号的互模糊函数的旁瓣的能量大小。
示例性的,矩阵E s的第m行第n列的元素可以为:
Figure PCTCN2022139695-appb-000034
其中,θ D用于指示以弧度为单位的抗多普勒频移区间。例如,以弧度为单位的抗多普勒区间为[-θ DD]。n=0,1,...N-1。m=0,1,...K,其中,K为小于或等于N-1的正整数。
示例性的,以弧度为单位的抗多普勒频移区间可以由以赫兹为单位的抗多普勒频移区间确定,以赫兹为单位的抗多普勒频移区间可以由f D指示。例如,以赫兹为单位的抗多普勒区间为[-f D,f D]。θ D和f D可以满足:θ D=2πf DT,则以弧度为单位的抗多普勒频移区间可以为[-2πf DT,2πf DT]。其中,T为第一信号包括的子信号的周期。例如,第一信号为脉冲串信号时,T可以为该脉冲串信号的PRI。关于第一信号包括的子信号,将在后续实施例中说明,在 此不予赘述。
可以理解的,矩阵E s的第m行第n列的元素还可以有其他形式,本申请对此不作具体限定的。
可选的,实际应用中,可以根据实际需要灵活调整第一阈值和抗多普勒区间,从而提高本申请方案的适用性。
可选的,积序列用于确定第一信号和第二信号,可以包括:积序列用于确定第一序列和第二序列。其中,积序列为第一序列和第二序列的哈达玛Hadamard积。进一步的,第一序列和格雷互补对GCP用于确定第一信号,第一序列、第二序列、和GCP用于确定第二信号。
可选的,在上述步骤S701由感知设备执行时,感知设备可以继续执行下述步骤S702和S703以确定第一信号和第二信号。在上述步骤S701由其他电子设备执行时,该电子设备在得到积序列后,可以向感知设备发送该积序列。感知设备接收来自电子设备的积序列后,可以继续执行下述步骤S702和S703;或者,电子设备在得到积序列后,可以向进一步确定第一序列和第二序列,并向感知设备发送第一序列和第二序列。感知设备接收来自电子设备的第一序列和第二序列后,可以继续执行下述步骤S703。
S702、根据积序列确定第一序列和第二序列。
示例性的,第一序列可以为P序列,第二序列可以为Q序列,因此,积序列、第一序列、和第二序列的关系可以表示为:z[n]=P[n]Q[n]。
可以理解的,由于积序列为第一序列和第二序列的Hadamard积,因此,积序列、第一序列、和第二序列的长度相同。本申请实施例中用N表示该长度。
S703、根据第一序列和GCP确定第一信号,以及根据第一序列、第二序列、和该GCP序列确定第二信号。
可选的,第一信号可以包括N个周期内的子信号,或者说,第一信号包括N个子信号,该N个子信号为周期信号。示例性的,第一信号为脉冲串信号时,第一信号的子信号可以为脉冲信号。
可选的,第一信号包括N个周期内的子信号的情况下,感知设备根据第一序列和GCP序列确定第一信号,可以包括:感知设备根据第一序列的第n个元素确定GCP中用于生成第一信号的第n个周期内的子信号的一个序列,其中,n=0,1,...N-1。本申请下述实施例中,以GCP包括x序列和y序列为例进行说明。
也就是说,第一信号的第n个周期内的子信号由GCP中的一个序列生成,该序列具体为GCP中的x序列还是y序列,由第一序列的第n个元素确定。
示例性的,第一序列的第n个元素等于1时,第一信号的第n个周期内的子信号可以由GCP中的x序列生成;第一序列的第n个元素等于-1时,第一信号的第n个周期内的子信号可以由GCP中的y序列生成。从而,第一信号、第一序列、以及GCP可以满足如下公式:
Figure PCTCN2022139695-appb-000035
其中,s P(t)为第一信号。P[n]为第一序列的第n个元素。x(t-nT)或y(t-nT)为第一信号的第n个周期内的子信号。x序列用于生成x(t-nT),y序列用于生成y(t-nT)。T为第一信号的子信号的周期,例如,在第一信号为脉冲串信号、子信号为脉冲信号时,T可以为PRI。
可选的,第二信号可以包括N个周期内的子信号,或者说,第二信号包括N个子信号,该N个子信号为周期信号。第二信号包括的子信号的周期和第一信号包括的子信号的周期可 以相同。
示例性的,当抗多普勒频移区间为正区间时,例如[0,θ D],第二信号的第n个周期内的子信号可以为第二序列的第n个元素的共轭与第一信号的第n个周期内的子信号的乘积。当抗多普勒区间为负区间时,例如[-θ D,0],第二信号的第n个周期内的子信号可以为第二序列的第n个元素与第一信号的第n个周期内的子信号的乘积,n=0,1,...N-1。
例如,当抗多普勒频移区间为正区间时,第二信号、第一序列、第二序列、以及GCP可以满足如下公式:
Figure PCTCN2022139695-appb-000036
当抗多普勒频移区间为负区间时,第二信号、第一序列、第二序列、以及GCP可以满足如下公式:
Figure PCTCN2022139695-appb-000037
其中,s Q(t)为第二信号。Q[n]为第二序列的第n个元素。Q *[n]为第二序列的第n个元素Q[n]的共轭。P[n]为第一序列的第n个元素。x(t-nT)或y(t-nT)为第一信号的子信号。x序列用于生成x(t-nT),y序列用于生成y(t-nT)。T为第一信号的子信号的周期。
其中,
Figure PCTCN2022139695-appb-000038
可以表示抗多普勒频移区间为正区间时第二信号的第n个周期内的子信号。
Figure PCTCN2022139695-appb-000039
可以表示抗多普勒频移区间为负区间时第二信号的第n个周期内的子信号。
基于本申请的方案,感知设备构建以最大化接收端的SNR为目标,以抗多普勒频移区间和旁瓣抑制水平为约束条件构建优化问题,并求解该优化问题得到积序列,进而根据积序列确定第一序列和第二序列,使得根据第一序列和第二序列生成的发射信号和本地信号的CAF旁瓣的能量在较大的抗多普勒频移区间内保持较低的水平。此外,由于优化问题以最大化接收端的SNR为目标,因此,根据本申请的设计,也能够使得接收端的SNR增益较高。也就是说,本申请的方案在具有较大的抗多普勒频移区间的同时,接收端的SNR增益也较高。
下面,对不同的第一阈值、抗多普勒频移区间、以及序列长度下,上述优化问题的解(即积序列)进行说明。如表3所示,示出了序列长度N等于8、12、16、20、24、28、32时,第一阈值和抗多普勒区间的三种组合下的积序列。
表3
Figure PCTCN2022139695-appb-000040
Figure PCTCN2022139695-appb-000041
Figure PCTCN2022139695-appb-000042
Figure PCTCN2022139695-appb-000043
Figure PCTCN2022139695-appb-000044
可以理解的,若两个序列的Hadamard积等于表3所示的任一积序列,那么这两个序列均落入本申请的保护范围。
进一步的,在积序列如表3所示的情况下,本申请可以对第一序列和第二序列进行进一步限制。
作为一种可能的实现,第二序列可以为第二序列集合中的一个序列,第一序列为第一序列集合中与第二序列对应的序列。示例性的,第二序列集合和第一序列集合可以包括满足表3所示的所有积序列的所有序列组合。第二序列集合和第一序列集合中的序列一一对应,且第二序列集合中的一个序列和第一序列集合中的对应序列的Hadamard积为积序列。
其中,第二序列的所有元素之和的绝对值为多个数值中的最大值,该多个数值包括第二序列集合中的每个序列的所有元素之和的绝对值。
示例性的,假设第一序列集合包括序列A、序列B、以及序列C,第二序列集合包括序列D、序列E、以及序列F。若序列D的所有元素之和的绝对值
Figure PCTCN2022139695-appb-000045
为数值1,序列E的所有元素之和的绝对值
Figure PCTCN2022139695-appb-000046
为数值2,序列F的所有元素之和的绝对值
Figure PCTCN2022139695-appb-000047
为数值3,且数值2为数值1、数值2、数值3中的最大值,那么第二序列为序列E。
相应的,若第一序列集合中的序列和第二序列集合中的序列按照先后顺序一一对应,那么在第二序列为序列E时,第一序列为序列A。
示例性的,在该可能的实现方式中,第一序列和第二序列的取值可以如表4和表5所示。其中,P序列表示第一序列,Q序列表示第二序列。
表4
Figure PCTCN2022139695-appb-000048
Figure PCTCN2022139695-appb-000049
Figure PCTCN2022139695-appb-000050
Figure PCTCN2022139695-appb-000051
Figure PCTCN2022139695-appb-000052
表5
Figure PCTCN2022139695-appb-000053
Figure PCTCN2022139695-appb-000054
Figure PCTCN2022139695-appb-000055
Figure PCTCN2022139695-appb-000056
作为另一种可能的实现,第二序列的所有元素的实部的正负符号相同。或者,第二序列的所有元素的虚部的正负符号相同。
示例性的,在该可能的实现方式中,第二序列的所有元素的实部可以为正数。此时,第一序列和第二序列的取值可以如表6和表7所示。
表6
Figure PCTCN2022139695-appb-000057
Figure PCTCN2022139695-appb-000058
Figure PCTCN2022139695-appb-000059
Figure PCTCN2022139695-appb-000060
Figure PCTCN2022139695-appb-000061
表7
Figure PCTCN2022139695-appb-000062
Figure PCTCN2022139695-appb-000063
Figure PCTCN2022139695-appb-000064
Figure PCTCN2022139695-appb-000065
Figure PCTCN2022139695-appb-000066
示例性的,在该可能的实现方式中,第二序列的所有元素的虚部可以为正数。此时,第一序列和第二序列的取值可以如表8和表9所示。
表8
Figure PCTCN2022139695-appb-000067
Figure PCTCN2022139695-appb-000068
Figure PCTCN2022139695-appb-000069
Figure PCTCN2022139695-appb-000070
Figure PCTCN2022139695-appb-000071
表9
Figure PCTCN2022139695-appb-000072
Figure PCTCN2022139695-appb-000073
Figure PCTCN2022139695-appb-000074
Figure PCTCN2022139695-appb-000075
需要说明的是,以上表4至表9所示的第一序列和第二序列仅是本申请对第一序列和第二序列的示例性说明,并不限定本申请的第一序列和第二序列一定如表4至表9所示。此外,虽然本申请提供了多种第一序列和第二序列的组合,但并不限定具体技术方案要支持本申请定义的全部第一序列和第二序列的组合,支持本申请定义的至少一种长度的至少一种第一序列和第二序列的组合即可。
下面以基于图7所示方法得到的第一信号和第二信号为例,对本申请提供的一种感知方法进行说明。如图8所示,该方法包括:
S801、感知设备发送第一信号。
可选的,第一信号可以为单载波信号或多载波信号。或者说,第一信号可以为单载波波形或多载波波形。示例性的,单载波波形可以为单载波脉冲波形,例如矩形窗脉冲、高斯脉冲、根升余弦脉冲等,本申请对脉冲形式不作具体限定。多载波波形可以为循环前缀正交频分复用(cyclic prefixed orthogonal frequency division multiplexing,CP-OFDM)波形或基于傅 里叶变换扩展的正交频分复用(discrete fourier transform spread orthogonal frequency division multiplexing,DFT-s-OFDM)波形。当然,还可以为其他形式的单载波波形或多载波,本申请对此不做具体限定。
可选的,在第一信号为单载波信号时,第二信号相应的为单载波信号。在第二信号为多载波信号时,第二信号相应的为多载波信号。
S802、感知设备接收第一信号的回波信号。
可选的,存在多个目标对象时,第一信号可以经过多个目标对象的反射形成多个回波信号。此时,感知设备可以接收多个目标对象反射形成的多个回波信号叠加形成的一个总的回波信号(记为第一回波信号)。
S803、感知设备根据回波信号和第二信号进行非周期互相关运算,并根据非周期互相关运算的结果确定目标对象的距离。
可选的,感知设备可以对回波信号和第二信号进行采样,并对两个采样结果进行非周期互相关运算。第一信号经过多个目标对象反射时,该回波信号为第一回波信号。
可选的,在第一信号经过一个目标对象反射时,感知设备可以根据非周期互相关运算结果的最大相关峰对应的位移确定感知设备和目标对象之间的信号传播时延。之后,根据该信号传播时延确定目标对象与感知设备之间的距离。假设最大相关峰对应的位移为l,那么时延为lT C,目标对象与感知设备之间的距离为clT C/2。其中,c为光速。第一信号为单载波波形时,T C表示窄脉冲时长;第一信号为多载波波形时,T C表示多载波信号在时域采样后采样点对应的时长。
可选的,第一信号经过多个目标对象反射时,回波信号和第二信号的非周期互相关运算结果存在多个峰值,分别对应多个目标对象。感知设备可以根据该多个峰值确定各个峰值对应的目标对象的位置,可参考根据最大相关峰确定距离的相关说明,在此不再赘述。
可选的,在非理想信道条件下,回波信号可能伴随有噪声信号。也就是说,感知设备在步骤S802接收到的信号可能包括噪声信号和第一信号的回波信号,此时,感知设备可以将步骤S802中接收到的信号作为一个整体执行上述步骤S803。
下面以第一序列和第二序列的长度N等于16,第一信号为单载波信号为例,对第一信号和第二信号的生成方式,以及第一信号和第二信号的CAF结果进行说明。
示例性的,如图9所示,感知设备可以基于GCP以相位调制的方式发送不同相位的窄脉冲信号g(t),其中,每个窄脉冲信号对应GCP中的一个序列(x序列或y序列,由第一序列决定)包括的一个元素。例如,序列中的元素为1时,感知设备发送正向窄脉冲,序列中的元素为-1时,感知设备发送逆向窄脉冲。
假设第一信号使用的单载波信号的载波频率f 0=60吉赫兹(GHz),带宽B=400兆赫兹(MHz),那么窄脉冲信号g(t)的宽度(或者时长)为T C=1/B=2.5纳秒(ns)。从而,对于长度为L的GCP,其中的一个序列(x序列或y序列)由L个窄脉冲构成的宽脉冲表示,宽脉冲的时长为LT C。若L等于64,那么根据GCP包括的x序列和y序列生成的宽脉冲信号x(t)和y(t)的宽度为64×2.5=160ns。
进一步的,感知设备可以重复使用GCP包括的x序列和y序列生成宽脉冲,由此构成单载波脉冲波形的第一信号。其中,宽脉冲的重复次数为第一序列的长度N(图9仅是示例性的示出3个宽脉冲,其余未示出)。每个宽脉冲的PRI在图8中表示为T。该场景下,以T=5微秒(μs)为例进行说明。
示例性的,假设第一序列为表4所示的N等于16,θ D等于π/3时的P序列,即[1,-1,1,- 1,1,-1,1,-1,1,-1,1,-1,-1,1,-1,-1],那么第一信号共包括16个宽脉冲(或者周期信号),PRI(或者每个周期的时长)为T=5μs。在每个宽脉冲(或者周期)内基于第一序列依次传输[x(t),y(t),x(t),y(t),x(t),y(t),x(t),y(t),x(t),y(t),x(t),y(t),y(t),x(t),y(t),y(t)]。x(t)或y(t)由64个宽度为2.5ns的窄脉冲信号g(t)生成。
可选的,第二信号的结构与第一信号类似,区别在于:当抗多普勒频移区间为[0,θ D]时,第二信号的第n个宽脉冲可以在第一信号的第n个宽脉冲的基础上乘以第二序列的第n个元素的共轭Q*[n]得到。当抗多普勒区间为[-θ D,0]时,第二信号的第n个宽脉冲可以在第一信号的第n个宽脉冲的基础上乘以第二序列的第n个元素Q[n]得到。可参考第一信号的相关说明,在此不再赘述。
可以理解的,根据表1所示的PTM方案、BD方案、和NS方案提供的P序列和Q序列、以及表4和表5中N等于16时的P序列和Q序列,可以生成不同的第一信号和第二信号。
可选的,在根据各种P序列和Q序列的组合生成第一信号和第二信号后,可以分别计算第一信号和第二信号的CAF,以及各种组合对应的接收端的SNR增益。其中,CAF和SNR的计算公式可参考前述相关说明,在此不再赘述。
如图10a至图10c所示,分别为采用表1所示的PTM方案、BD方案、NS方案提供的P序列和Q序列生成的第一信号和第二信号的CAF结果。如图10d至图10f所示,为采用表4和表5所示的N等于16,θ D分别为π/3,2π/3,π时的P序列和Q序列生成的第一信号和第二信号的CAF结果。
参见图10a至图10f,其中,x轴坐标是以Hz为单位的多普勒频移,y轴坐标是以秒(s)为单位的时延,z轴坐标是以dB为单位的CAF结果。黑色区域表示CAF的旁瓣能量小于或等于-60dB的频率区间。
由图10a可得,PTM方案对应的抗多普勒频移区间较小,大约为[-5,5]千赫兹(KHz)。由图10b和图10c可得,BD方案和NS方案对应的抗多普勒频移区间较大。BD方案对应的抗多普勒频移区间大约为[-46,46]KHz,NS方案对应的抗多普勒频移区间大约为[-74,74]KHz。此外,由图10d至图10f可得,在不同的抗多普勒频移区间的约束下,本发明方案也可以保持较大的抗多普勒频移区间。在最大的抗多普勒频移区间约束下(即θ D=2πf DT=π时),本发明方案的抗多普勒频移区间最大。
根据上述结果,PTM方案、BD方案、NS方案和本发明方案对应的抗多普勒频移区间可以如表10所示。此外,表10还示出了各种方案下的接收端SNR增益。
表10
Figure PCTCN2022139695-appb-000076
Figure PCTCN2022139695-appb-000077
由表10可得,本申请的方案相比于PTM方案具有更大的抗多普勒频移区间。相比于BD方案和NS方案具有更大的抗多普勒频移区间,以及更大的接收端SNR增益。
以上以第一信号为单载波信号为例进行了说明。下面以第一序列和第二序列的长度N等于32,第一信号为多载波信号,多载波信号为DFT-s-OFDM信号为例,对第一信号和第二信号的生成方式,以及第一信号和第二信号的CAF结果进行说明。
示例性的,如图11所示,感知设备对待传输的x序列或y序列进行离散傅里叶变换(discrete fourier transform,DFT),之后按照资源元素(resource element,RE)映射规则进行子载波映射,再对子载波映射后的RE进行快速逆傅里叶变换(inverse fast fourier transform,IFFT),最后插入固定长度的循环前缀(cyclic prefixed,CP),得到第一信号的一个子信号。
可选的,在进行子载波映射时,假设GCP的长度L为512,载波频率为f 0=28GHz,带宽B=144MHz,子载波间隔为240KHz,那么可以占用的子载波个数为144MHz/240KHz=600个,从而可以使用600个子载波传输x序列或y序列。例如在编号为0~511的512个子载波上传输x序列或y序列,在剩余的编号为512~599的88个子载波上传输全0序列。当然,本申请对GCP的长度、载波频率、以及子载波间隔不作具体限定,实际实现时还可以有其他取值。
可选的,在通信感知一体化(Joint communication and sensing,JCS)系统中,通信系统可能同样会使用DFT-s-OFDM波形,因此,为了降低感知系统和通信系统之间的干扰,通常以时分或频分的方式进行资源复用。本申请中,可以采用时分方式进行资源复用,即在同一时域位置,只发送感知系统中的感知信号或通信系统中的通信信号,且该时域位置发送的信号占用频域上配置的全部带宽。基于该方式,第一信号可以占用配置的全部带宽,即相比于频分复用,可以提升第一信号占用的带宽,从而提高感知系统的测距分辨率。
示例性的,如图12所示,假设一个时隙包括14个DFT-s-OFDM符号(即时域资源),时隙中的第一个DFT-s-OFDM符号可以用于感知系统,那么可以使用时隙中的第一个DFT-s-OFDM符号传输一个x序列或y序列。时隙中除第一个DFT-s-OFDM符号外的其余13个符号可以用于传输通信数据,或不传输数据,本申请对此不作具体限定。
基于图12所示的示例,在第一序列的长度N等于32时,感知设备占用32个时隙中每个时隙的第一个DFT-s-OFDM符号传输x序列或y序列,某个时隙内的第一个DFT-s-OFDM符号最终传输的是x序列或y序列,由第一序列决定。此时,一个时隙的时长即为第一信号的子信号的重复间隔,或者说为第一信号的PRI。例如,按照现行5G新无线(new radio,NR)标准,一个时隙的时长为0.0625ms,从而第一信号的子信号的重复间隔为0.0625ms。
可选的,在采用时分方式进行资源复用时,具体的复用方式或者说资源分配方式可以由传输层或网络层协议实现。例如,可以将连续的多个DFT-s-OFDM符号用于感知系统,其他符号用于通信系统;或者,一个时隙中分配给感知系统的多个DFT-s-OFDM符号可以不连续。本申请对复用方式不作具体限定。
可选的,第二信号的结构与第一信号类似,区别在于:当抗多普勒区间为[0,θ D]时,第二信号的第n个子信号可以在第一信号的第n个子信号的基础上乘以第二序列的第n个元素的 共轭Q *[n]得到。当抗多普勒区间为[-θ D,0]时,第二信号的第n个子信号可以在第一信号的第n个子信号的基础上乘以第二序列的第n个元素Q[n]得到。可参考第一信号的相关说明,在此不再赘述。
可以理解的,根据表1所示的PTM方案、BD方案、和NS方案提供的P序列和Q序列、以及表4和表5中N等于32时的P序列和Q序列,可以生成不同的第一信号和第二信号。
可选的,在根据各种P序列和Q序列的组合生成第一信号和第二信号后,可以分别计算第一信号和第二信号的CAF,以及各种组合对应的接收端的SNR增益。
如图13a至图13c所示,分别为采用表1所示的PTM方案、BD方案、NS方案提供的P序列和Q序列生成的第一信号和第二信号的CAF结果。如图13d至图13f所示,为采用表4和表5所示的N等于32,θ D分别为π/3,2π/3,π时的P序列和Q序列生成的第一信号和第二信号的CAF结果。
参见图13a至图13f,其中,x轴坐标是以Hz为单位的多普勒频移,y轴坐标是以秒(s)为单位的时延,z轴坐标是以dB为单位的CAF结果。黑色区域表示CAF的旁瓣能量小于或等于-60dB的频率区间。
由图13a可得,PTM方案对应的抗多普勒频移区间较小,大约为[-1,1]KHz。由图13b和图13c可得,BD方案和NS方案对应的抗多普勒频移区间较大。BD方案对应的抗多普勒频移区间大约为[-5.5,5.5]KHz,NS方案对应的抗多普勒频移区间大约为[-6.5,6.5]KHz。此外,由图13d至图13f可得,在不同的抗多普勒频移区间的约束下,本发明方案也可以保持较大的抗多普勒频移区间。在最大的抗多普勒频移区间约束下(即θ D=2πf DT=π时),本发明方案的抗多普勒频移区间最大。
根据上述结果,PTM方案、BD方案、NS方案和本发明方案对应的抗多普勒频移区间可以如表11所示。此外,表11还示出了各种方案下的接收端SNR增益。
表11
Figure PCTCN2022139695-appb-000078
由表11可得,本申请的方案相比于PTM方案具有更大的抗多普勒频移区间。相比于BD方案和NS方案具有更大的接收端SNR增益,在某些情况下,例如2πf dT=π时,也具有更大 的抗多普勒频移区间。
综上,基于本申请的方案,在实现较大的抗多普勒频移区间的同时,能够使得接收端具有较高的SNR增益。
可以理解的是,以上各个实施例中,由感知设备实现的方法和/或步骤,也可以由可用于该感知设备的部件(例如处理器、芯片、芯片系统、电路、逻辑模块、或软件例如芯片或者电路)实现。
上述主要从设备的角度对本申请提供的方案进行了介绍。相应的,本申请还提供了通信装置,该通信装置用于实现上述各种方法。该通信装置可以为上述方法实施例中的感知设备,或者包含上述感知设备的装置,或者为可用于感知设备的部件。
可以理解的是,该通信装置为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法实施例对通信装置进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
图14示出了一种通信装置140的结构示意图。该通信装置140包括处理模块1401和收发模块1402。
在一些实施例中,该通信装置140还可以包括存储模块(图14中未示出),用于存储程序指令和数据。
在一些实施例中,收发模块1402,也可以称为收发单元用以实现发送和/或接收功能。该收发模块1402可以由收发电路,收发机,收发器或者通信接口构成。
在一些实施例中,收发模块1402,可以包括接收模块和发送模块,分别用于执行上述方法实施例中由感知设备执行的接收和发送类的步骤,和/或用于支持本文所描述的技术的其它过程;处理模块1401,可以用于执行上述方法实施例中由感知设备执行的处理类(例如确定、获取、生成等)的步骤,和/或用于支持本文所描述的技术的其它过程。
其中,处理模块1401,用于求解优化问题得到积序列,优化问题是基于约束条件和最大化目标函数得到的,目标函数由变量的范数构成,积序列为变量在优化问题中的解。积序列用于确定第一信号和第二信号,第一信号和第二信息用于对目标对象进行感知。约束条件用于限制第一信号和第二信号的互模糊函数的旁瓣在抗多普勒频移区间内小于或等于第一阈值,
可选的,处理模块1401,还用于根据积序列确定第一序列和第二序列,积序列为第一序列和第二序列的哈达玛Hadamard积;处理模块1401,还用于根据第一序列和格雷互补对GCP确定第一信号,以及根据第一序列、第二序列、和GCP确定第二信号。
可选的,收发模块1402,用于发送第一信号;收发模块1402,还用于接收第一信号的回波信号;处理模块1401,还用于根据回波信号和第二信号进行非周期互相关运算;处理模块1401,还用于根据非周期互相关运算的结果确定目标对象的距离。
其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能 描述,在此不再赘述。
在本申请中,该通信装置140以采用集成的方式划分各个功能模块的形式来呈现。这里的“模块”可以指特定专用集成电路(application-specific integrated circuit,ASIC),电路,执行一个或多个软件或固件程序的处理器和存储器,集成逻辑电路,和/或其他可以提供上述功能的器件。
作为一种可能的产品形态,本领域的技术人员可以想到该通信装置140可以采用图6a所示的通信装置600的形式。
作为一种示例,图14中的处理模块1401的功能/实现过程可以通过图6a所示的通信装置600中的处理器601调用存储器603中存储的计算机执行指令来实现,图14中的收发模块1402的功能/实现过程可以通过图6a所示的通信装置600中的通信接口604来实现。
作为另一种可能的产品形态,本申请实施例所述的通信装置,还可以使用下述来实现:一个或多个现场可编程门阵列(field programmable gate array,FPGA)、可编程逻辑器件(programmable logic device,PLD)、控制器、状态机、门逻辑、分立硬件部件、任何其它适合的电路、或者能够执行本申请通篇所描述的各种功能的电路的任意组合。
在一些实施例中,当图14中的通信装置140是芯片或芯片系统时,收发模块1402的功能/实现过程可以通过芯片或芯片系统的输入输出接口(或通信接口)实现,处理模块1401的功能/实现过程可以通过芯片或芯片系统的处理器(或者处理电路)实现。
由于本实施例提供的通信装置140可执行上述方法,因此其所能获得的技术效果可参考上述方法实施例,在此不再赘述。
在一些实施例中,本申请实施例还提供一种通信装置,该通信装置包括处理器,用于实现上述任一方法实施例中的方法。
作为一种可能的实现方式,该通信装置还包括存储器。该存储器,用于保存必要的程序指令和数据,处理器可以调用存储器中存储的程序代码以指令该通信装置执行上述任一方法实施例中的方法。当然,存储器也可以不在该通信装置中。
作为另一种可能的实现方式,该通信装置还包括接口电路,该接口电路为代码/数据读写接口电路,该接口电路用于接收计算机执行指令(计算机执行指令存储在存储器中,可能直接从存储器读取,或可能经过其他器件)并传输至该处理器。
作为又一种可能的实现方式,该通信装置还包括通信接口,该通信接口用于与该通信装置之外的模块通信。
可以理解的是,该通信装置可以是芯片或芯片系统,该通信装置是芯片系统时,可以由芯片构成,也可以包含芯片和其他分立器件,本申请实施例对此不作具体限定。
本申请还提供了一种计算机可读存储介质,其上存储有计算机程序或指令,该计算机程序或指令被计算机执行时实现上述任一方法实施例的功能。
本申请还提供了一种计算机程序产品,该计算机程序产品被计算机执行时实现上述任一方法实施例的功能。
本领域普通技术人员可以理解,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
可以理解,本申请中描述的系统、装置和方法也可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合 或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,即可以位于一个地方,或者也可以分布到多个网络单元上。作为单元显示的部件可以是或者也可以不是物理单元。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件程序实现时,可以全部或部分地以计算机程序产品的形式来实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或者数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可以用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带),光介质(例如,DVD)、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。本申请实施例中,计算机可以包括前面所述的装置。
尽管在此结合各实施例对本申请进行了描述,然而,在实施所要求保护的本申请过程中,本领域技术人员通过查看所述附图、公开内容、以及所附权利要求书,可理解并实现所述公开实施例的其他变化。在权利要求中,“包括”(comprising)一词不排除其他组成部分或步骤,“一”或“一个”不排除多个的情况。单个处理器或其他单元可以实现权利要求中列举的若干项功能。相互不同的从属权利要求中记载了某些措施,但这并不表示这些措施不能组合起来产生良好的效果。
尽管结合具体特征及其实施例对本申请进行了描述,显而易见的,在不脱离本申请的精神和范围的情况下,可对其进行各种修改和组合。相应地,本说明书和附图仅仅是所附权利要求所界定的本申请的示例性说明,且视为已覆盖本申请范围内的任意和所有修改、变化、组合或等同物。显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (24)

  1. 一种信号设计方法,其特征在于,所述方法包括:
    求解优化问题得到积序列,所述优化问题是基于约束条件和最大化目标函数得到的,所述约束条件用于限制第一信号和第二信号的互模糊函数的旁瓣在抗多普勒频移区间内小于或等于第一阈值,所述目标函数由变量的范数构成,所述积序列为所述变量在所述优化问题中的解;所述积序列用于确定第一信号和第二信号,所述第一信号和所述第二信号用于对目标对象进行感知。
  2. 根据权利要求1所述的方法,其特征在于,所述目标函数用于指示经所述第二信号互相关计算后,所述第一信号的回波信号与噪声信号的功率比。
  3. 根据权利要求1或2所述的方法,其特征在于,所述优化问题为:
    Figure PCTCN2022139695-appb-100001
    其中,||z|| 1表示所述变量z的1范数,
    Figure PCTCN2022139695-appb-100002
    表示所述变量z的1范数的平方,||z|| 2表示所述变量z的2范数,
    Figure PCTCN2022139695-appb-100003
    表示所述变量z的2范数的平方,δ为所述第一阈值,E s为N×N维的矩阵,N为所述积序列的长度,所述矩阵E s由所述抗多普勒频移区间确定,||E sz|| 2指示所述互模糊函数的旁瓣的能量大小。
  4. 根据权利要求3所述的方法,其特征在于,所述矩阵E s的第m行第n列的元素为:
    Figure PCTCN2022139695-appb-100004
    其中,θ D用于指示以弧度为单位的所述抗多普勒频移区间,所述以弧度为单位的所述抗多普勒频移区间由以赫兹为单位的抗多普勒频移区间确定,所述以赫兹为单位的抗多普勒频移区间由f D指示。
  5. 根据权利要求1-4任一项所述的方法,其特征在于,所述积序列的长度为16、所述互模糊函数的旁瓣阈值为10 -3,所述抗多普勒频移区间的大小为π时,所述积序列为:
    2.3374e-04-4.5702e-03j,
    2.7275e-02+2.6275e-03j,
    -1.2932e-02+8.2504e-02j,
    -1.6627e-01-3.9741e-02j,
    8.7385e-02-2.4902e-01j,
    2.9747e-01+1.4686e-01j,
    -1.9503e-01+3.0688e-01j,
    -3.0555e-01-2.0732e-01j,
    1.7558e-01-3.2128e-01j,
    3.4648e-01+1.1512e-01j,
    -5.3800e-02+3.4359e-01j,
    -2.8593e-01-1.2917e-02j,
    -3.6182e-03-1.8776e-01j,
    9.1405e-02-5.0281e-03j,
    2.1849e-03+2.9660e-02j,
    -4.8841e-03+3.9983e-04j;
    其中,e+0x或e-0x为科学计数法,e+01表示×10 1,e-01表示×10 -1
  6. 根据权利要求1-5任一项所述的方法,其特征在于,所述积序列用于确定第一信号和第二信号,包括:
    所述积序列用于确定第一序列和第二序列,所述积序列为所述第一序列和所述第二序列的哈达玛Hadamard积;
    所述第一序列和格雷互补对GCP用于确定所述第一信号,所述第一序列、所述第二序列、和所述GCP用于确定所述第二信号。
  7. 根据权利要求6所述的方法,其特征在于,所述第二序列为第二序列集合中的一个序列,所述第一序列为第一序列集合中与所述第二序列对应的序列,所述第二序列集合中的一个序列和所述第一序列集合中的对应序列的Hadamard积为所述积序列;所述第二序列的所有元素之和的绝对值为多个数值中的最大值,所述多个数值包括所述第二序列集合中的每个序列的所有元素之和的绝对值。
  8. 根据权利要求7所述的方法,其特征在于,所述第一序列和所述第二序列的长度为16、所述第一阈值为10 -3,所述抗多普勒频移区间的大小为π时,
    所述第一序列为:1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1;
    所述第二序列为:
    2.3374e-04-4.5702e-03j,
    2.7275e-02+2.6275e-03j,
    1.2932e-02-8.2504e-02j,
    1.6627e-01+3.9741e-02j,
    8.7385e-02-2.4902e-01j,
    2.9747e-01+1.4686e-01j,
    1.9503e-01-3.0688e-01j,
    3.0555e-01+2.0732e-01j,
    1.7558e-01-3.2128e-01j,
    3.4648e-01+1.1512e-01j,
    5.3800e-02-3.4359e-01j,
    2.8593e-01+1.2917e-02j,
    -3.6182e-03-1.8776e-01j,
    9.1405e-02-5.0281e-03j,
    -2.1849e-03-2.9660e-02j,
    4.8841e-03-3.9983e-04j;
    其中,e+0x或e-0x为科学计数法,e+01表示×10 1,e-01表示×10 -1
  9. 根据权利要求6所述的方法,其特征在于,所述第二序列的所有元素的实部的正负符号相同;或者,所述第二序列的所有元素的虚部的正负符号相同。
  10. 根据权利要求9所述的方法,其特征在于,所述第二序列的所有元素的实部为正数,且所述第一序列和所述第二序列的长度为16、所述第一阈值为10 -3,所述抗多普勒频移区间的大小为π时:
    所述第一序列为:1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,-1,1,1,-1;
    所述第二序列为:
    2.3374e-04-4.5702e-03j,
    2.7275e-02+2.6275e-03j,
    1.2932e-02-8.2504e-02j,
    1.6627e-01+3.9741e-02j,
    8.7385e-02-2.4902e-01j,
    2.9747e-01+1.4686e-01j,
    1.9503e-01-3.0688e-01j,
    3.0555e-01+2.0732e-01j,
    1.7558e-01-3.2128e-01j,
    3.4648e-01+1.1512e-01j,
    5.3800e-02-3.4359e-01j,
    2.8593e-01+1.2917e-02j,
    3.6182e-03+1.8776e-01j,
    9.1405e-02-5.0281e-03j,
    2.1849e-03+2.9660e-02j,
    4.8841e-03-3.9983e-04j;
    其中,e+0x或e-0x为科学计数法,e+01表示×10 1,e-01表示×10 -1
  11. 根据权利要求9所述的方法,其特征在于,所述第二序列的所有元素的虚部为正数,且所述第一序列和所述第二序列的长度为16、所述第一阈值为10 -3,所述抗多普勒频移区间的大小为π时:
    所述第一序列为:-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,-1,1,1;
    所述第二序列为:
    -2.3374e-04+4.5702e-03j,
    2.7275e-02+2.6275e-03j,
    -1.2932e-02+8.2504e-02j,
    1.6627e-01+3.9741e-02j,
    -8.7385e-02+2.4902e-01j,
    2.9747e-01+1.4686e-01j,
    -1.9503e-01+3.0688e-01j,
    3.0555e-01+2.0732e-01j,
    -1.7558e-01+3.2128e-01j,
    3.4648e-01+1.1512e-01j,
    -5.3800e-02+3.4359e-01j,
    2.8593e-01+1.2917e-02j,
    3.6182e-03+1.8776e-01j,
    -9.1405e-02+5.0281e-03j,
    2.1849e-03+2.9660e-02j,
    -4.8841e-03+3.9983e-04j;
    其中,e+0x或e-0x为科学计数法,e+01表示×10 1,e-01表示×10 -1
  12. 根据权利要求6-11任一项所述的方法,其特征在于,所述第一信号包括N个周期内的子信号,N为所述第一序列的长度;所述第一序列和所述GCP用于确定所述第一信号,包括:
    所述第一序列的第n个元素用于确定所述GCP中的一个序列,所述GCP中的一个序列用于生成所述第一信号的第n个周期内的子信号,其中,n=0,1,...N-1。
  13. 根据权利要求12所述的方法,其特征在于,所述GCP序列包括x序列和y序列,所述第一信号、所述第一序列、所述GCP满足如下公式:
    Figure PCTCN2022139695-appb-100005
    其中,s P(t)为所述第一信号,P[n]为所述第一序列的第n个元素,x(t-nT)或y(t-nT)为所述第一信号的第n个周期内的子信号,所述x序列用于生成x(t-nT),所述y序列用于生成y(t-nT),T为所述第一信号的子信号的周期。
  14. 根据权利要求6-13任一项所述的方法,其特征在于,所述第一信号包括N个周期的子信号,所述第二信号包括N个周期的子信号,N为所述第一序列和所述第二序列的长度。
  15. 根据权利要求14所述的方法,其特征在于,当所述抗多普勒频移区间为[0,θ D]时,所述第二信号的第n个周期内的子信号为所述第二序列的第n个元素的共轭与所述第一信号的第n个周期内的子信号的乘积,n=0,1,...N-1。
  16. 根据权利要求15所述的方法,其特征在于,所述GCP序列包括x序列和y序列,所述第二信号、所述第一序列、所述第二序列、所述GCP满足如下公式:
    Figure PCTCN2022139695-appb-100006
    其中,s Q(t)为所述第二信号,Q *[n]为所述第二序列的第n个元素Q[n]的共轭,P[n]为所述第一序列的第n个元素,x(t-nT)或y(t-nT)为所述第一信号的第n个周期内的子信号,所述x序列用于生成x(t-nT),所述y序列用于生成y(t-nT),T为所述第一信号的子信号的周期。
  17. 根据权利要求14所述的方法,其特征在于,当所述抗多普勒频移区间为[-θ D,0]时,所述第二信号的第n个周期内的子信号为所述第二序列的第n个元素与所述第一信号的第n个周期内的子信号的乘积,n=0,1,...N-1。
  18. 根据权利要求17所述的方法,其特征在于,所述GCP序列包括x序列和y序列,所述第二信号、所述第一序列、所述第二序列、所述GCP满足如下公式:
    Figure PCTCN2022139695-appb-100007
    其中,s Q(t)为所述第二信号,Q[n]为所述第二序列的第n个元素,P[n]为所述第一序列的第n个元素,x(t-nT)或y(t-nT)为所述第一信号的第n个周期内的子信号,所述x序列用于生成x(t-nT),所述y序列用于生成y(t-nT),T为所述第一信号的子信号的周期。
  19. 根据权利要求1-18任一项所述的方法,其特征在于,所述方法还包括:
    发送所述第一信号;
    接收所述第一信号的回波信号;
    根据所述回波信号和所述第二信号进行非周期互相关运算;
    根据所述非周期互相关运算的结果确定所述目标对象的距离。
  20. 根据权利要求1-19任一项所述的方法,其特征在于,所述第一信号为单载波信号或多载波信号。
  21. 一种通信装置,其特征在于,所述通信装置包括用于执行如权利要求1至20中任一 项所述方法的模块。
  22. 一种通信装置,其特征在于,所述通信装置包括:处理器;
    所述处理器,用于执行计算机程序或指令,以实现如权利要求1至20中任一项所述的方法。
  23. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机程序或指令,当所述计算机程序或指令被通信装置执行时,实现如权利要求1至20中任一项所述的方法。
  24. 一种计算机程序产品,其特征在于,当所述计算机程序产品在通信装置上运行时,如权利要求1至20中任一项所述的方法被执行。
PCT/CN2022/139695 2022-01-06 2022-12-16 信号设计方法及装置 WO2023130940A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202210010261 2022-01-06
CN202210010261.6 2022-01-06
CN202210220812.1 2022-03-08
CN202210220812.1A CN116449319A (zh) 2022-01-06 2022-03-08 信号设计方法及装置

Publications (1)

Publication Number Publication Date
WO2023130940A1 true WO2023130940A1 (zh) 2023-07-13

Family

ID=87073067

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/139695 WO2023130940A1 (zh) 2022-01-06 2022-12-16 信号设计方法及装置

Country Status (1)

Country Link
WO (1) WO2023130940A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105306399A (zh) * 2015-07-24 2016-02-03 西安电子科技大学 一种雷达通信一体化信号的优化方法
WO2016176642A1 (en) * 2015-04-30 2016-11-03 Cohere Technologies, Inc. Orthogonal time frequency space modulation system for the internet of things
CN107991655A (zh) * 2017-12-12 2018-05-04 南京航空航天大学 一种lfm-pc信号及其模糊函数优化方法
CN113050048A (zh) * 2021-03-31 2021-06-29 南京航空航天大学 Lfm-pc复合调制信号的正交波形优化设计方法
CN113238220A (zh) * 2021-04-12 2021-08-10 西安电子科技大学 基于scan算法的mimo雷达正交相位编码设计方法
CN113447918A (zh) * 2020-03-24 2021-09-28 华为技术有限公司 感知信号处理方法及相关装置
CN113835076A (zh) * 2021-09-22 2021-12-24 中国人民解放军国防科技大学 相位编码波形组优化设计方法、装置、设备和介质

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016176642A1 (en) * 2015-04-30 2016-11-03 Cohere Technologies, Inc. Orthogonal time frequency space modulation system for the internet of things
CN105306399A (zh) * 2015-07-24 2016-02-03 西安电子科技大学 一种雷达通信一体化信号的优化方法
CN107991655A (zh) * 2017-12-12 2018-05-04 南京航空航天大学 一种lfm-pc信号及其模糊函数优化方法
CN113447918A (zh) * 2020-03-24 2021-09-28 华为技术有限公司 感知信号处理方法及相关装置
CN113050048A (zh) * 2021-03-31 2021-06-29 南京航空航天大学 Lfm-pc复合调制信号的正交波形优化设计方法
CN113238220A (zh) * 2021-04-12 2021-08-10 西安电子科技大学 基于scan算法的mimo雷达正交相位编码设计方法
CN113835076A (zh) * 2021-09-22 2021-12-24 中国人民解放军国防科技大学 相位编码波形组优化设计方法、装置、设备和介质

Similar Documents

Publication Publication Date Title
US10615929B2 (en) Apparatus, system and method of multi user (MU) range measurement
JP2023510583A (ja) 高分解能デジタルレーダ用の時間-周波数拡散波形
WO2018108007A1 (zh) 一种数据生成方法及装置、设备、计算机存储介质
WO2023130940A1 (zh) 信号设计方法及装置
WO2023197986A1 (zh) Uwb信号的传输方法及相关装置
WO2022242335A1 (zh) 信号发送、接收方法及装置
WO2023024940A1 (zh) Uwb通信方法、通信装置及系统
CN116449319A (zh) 信号设计方法及装置
WO2023134396A1 (zh) 设备感知方法及装置
WO2023169284A1 (zh) 信号发送方法及装置
Kong et al. Sparse representation based range‐Doppler processing for integrated OFDM radar‐communication networks
WO2024032562A1 (zh) 一种通信方法及装置
WO2024104264A1 (zh) 一种信号发送方法及装置
WO2019141244A1 (zh) 随机接入方法、装置、设备、芯片、存储介质及程序产品
CN116774151A (zh) 信号发送方法及装置
CN117595958A (zh) 一种通信方法及装置
WO2023000196A1 (zh) 信号处理方法、装置、设备及存储介质
WO2024124412A1 (zh) 一种序列传输方法及装置
WO2023241425A1 (zh) 感知方法、通信装置及通信系统
EP4340285A1 (en) Reference signal sending method and device
WO2024092669A1 (zh) 信息传输方法、信号传输方法及通信装置、系统
WO2024109638A1 (zh) 信号传输方法、装置、信号发送节点及信号接收节点
WO2024109637A1 (zh) 信息发送方法、信息接收方法、装置及相关设备
WO2022257572A1 (zh) 参考信号的发送、接收方法及装置
WO2022199183A1 (zh) 一种感知方法及通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22918385

Country of ref document: EP

Kind code of ref document: A1