WO2023130422A1 - Power allocation determination in multiple trp simultaneous ul transmission - Google Patents

Power allocation determination in multiple trp simultaneous ul transmission Download PDF

Info

Publication number
WO2023130422A1
WO2023130422A1 PCT/CN2022/070917 CN2022070917W WO2023130422A1 WO 2023130422 A1 WO2023130422 A1 WO 2023130422A1 CN 2022070917 W CN2022070917 W CN 2022070917W WO 2023130422 A1 WO2023130422 A1 WO 2023130422A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission
power allocation
tci state
power
layers
Prior art date
Application number
PCT/CN2022/070917
Other languages
French (fr)
Inventor
Wei Ling
Yi Zhang
Chenxi Zhu
Bingchao LIU
Lingling Xiao
Original Assignee
Lenovo (Beijing) Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lenovo (Beijing) Limited filed Critical Lenovo (Beijing) Limited
Priority to PCT/CN2022/070917 priority Critical patent/WO2023130422A1/en
Publication of WO2023130422A1 publication Critical patent/WO2023130422A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • H04W52/367Power values between minimum and maximum limits, e.g. dynamic range
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/146Uplink power control

Definitions

  • the subject matter disclosed herein generally relates to wireless communications, and more particularly relates to methods and apparatuses for determining power allocation in multiple TRP simultaneous UL transmission.
  • New Radio NR
  • VLSI Very Large Scale Integration
  • RAM Random Access Memory
  • ROM Read-Only Memory
  • EPROM or Flash Memory Erasable Programmable Read-Only Memory
  • CD-ROM Compact Disc Read-Only Memory
  • LAN Local Area Network
  • WAN Wide Area Network
  • UE User Equipment
  • eNB Evolved Node B
  • gNB Next Generation Node B
  • Uplink UL
  • Downlink DL
  • CPU Central Processing Unit
  • GPU Graphics Processing Unit
  • FPGA Field Programmable Gate Array
  • OFDM Orthogonal Frequency Division Multiplexing
  • RRC Radio Resource Control
  • TX Receiver
  • RX Medium Access Control
  • MAC Medium Access Control
  • MAC Medium Access Control
  • a total UE transmit power in a symbol of a slot for PUSCH or PUCCH or PRACH or SRS transmissions on serving cells in a frequency range in a respective transmission occasion i.e. the sum of the linear values of UE transmit powers for PUSCH, PUCCH, PRACH, and SRS in the symbol of the slot
  • the UE allocates power to PUSCH, PUCCH, PRACH and SRS transmissions according to the following priority order (in descending order) so that the total UE transmit power for transmissions on serving cells in the frequency range is smaller than or equal to the maximum value for that frequency range in every symbol of transmission occasion.
  • the UE prioritizes power allocation to transmissions on the primary cell of the MCG or the SCG over transmissions on a secondary cell. In case of same priority order and for operation with two UL carriers, the UE prioritizes power allocation to transmissions on the carrier where the UE is configured to transmit PUCCH. If PUCCH is not configured for any of the two UL carriers, the UE prioritizes power allocation to transmissions on the non-supplementary UL carrier.
  • the power allocation priority is further determined.
  • This disclosure targets determining the power allocation of simultaneous UL transmission to multiple TRPs with multiple panels.
  • a UE comprises a transceiver; and a processor coupled to the transceiver, wherein, the processor is configured to determine a first power of a first UL transmission associated with a first TCI state and a second power of a second UL transmission associated with a second TCI state, wherein the first UL transmission and the second UL transmission are overlapped in at least one symbol, and determine power allocation for the first UL transmission and the second UL transmission if the sum of the first power and the second power exceeds the maximum power of the UE in the at least one symbol.
  • the first UL transmission and the second UL transmission are associated with two different CORESETPoolIndex values
  • the first UL transmission and the second UL transmission have different priority orders
  • the power allocation is prioritized to one of the first UL transmission and the second UL transmission that has a higher priority order.
  • the power allocation is prioritized to the first UL transmission.
  • the first UL transmission and the second UL transmission are two transmission occasions of one UL transmission configured with FDM scheme, and are transmitted with different starting resource blocks, the power allocation is prioritized to one of the first UL transmission and the second UL transmission that is associated with a lower or higher starting resource block according to a predefined rule.
  • the first UL transmission and the second UL transmission are two transmission occasions of one UL transmission configured with SFN scheme or FDM scheme, and the first TCI state and the second TCI state are two joint or UL common TCI states pointed to by a codepoint indicated by a DCI or activated by a MAC CE, and a power allocation priority indicator associated with the UL transmission indicates which transmission occasion has a higher power allocation priority, the power allocation is prioritized to the transmission occasion that is indicated to have the higher power allocation priority.
  • the power allocation priority indicator is indicated by a DCI or a MAC CE or configured by an RRC signaling.
  • the power allocation is prioritized to the transmission occasion associated with the TCI state associated with a higher or lower power allocation priority index according to a predefined rule.
  • the first TCI state and the second TCI state are associated with different power allocation priority indices by RRC signaling.
  • the power allocation is prioritized to one of the first set of layers and the second set of layers that is associated with the first TCI state.
  • the first UL transmission and the second UL transmission are a first set of layers and a second set of layers of one PUSCH transmission
  • the first TCI state and the second TCI state are two joint or UL common TCI states pointed to by a codepoint indicated by a DCI or activated by a MAC CE
  • a power allocation priority indicator associated with the PUSCH transmission indicates which set of layers has a higher power allocation priority
  • the power allocation is prioritized to the set of layers that is indicated to have the higher power allocation priority.
  • the power allocation priority indicator is indicated by a DCI or configured by an RRC signaling.
  • the power allocation is prioritized to the set of layers associated with the TCI state associated with a higher or lower power allocation priority index according to a predefined rule.
  • the first TCI state and the second TCI state are associated with different power allocation priority indices by RRC signaling.
  • a method of a UE comprises determining a first power of a first UL transmission associated with a first TCI state and a second power of a second UL transmission associated with a second TCI state, wherein the first UL transmission and the second UL transmission are overlapped in at least one symbol; and determining power allocation for the first UL transmission and the second UL transmission if the sum of the first power and the second power exceeds the maximum power of the UE in the at least one symbol.
  • FIG 1 illustrates an embodiment of of the present disclosure
  • Figure 2 is a schematic flow chart diagram illustrating an embodiment of a method
  • Figure 3 is a schematic block diagram illustrating apparatuses according to one embodiment.
  • embodiments may be embodied as a system, apparatus, method, or program product. Accordingly, embodiments may take the form of an entirely hardware embodiment, an entirely software embodiment (including firmware, resident software, micro-code, etc. ) or an embodiment combining software and hardware aspects that may generally all be referred to herein as a “circuit” , “module” or “system” . Furthermore, embodiments may take the form of a program product embodied in one or more computer readable storage devices storing machine-readable code, computer readable code, and/or program code, referred to hereafter as “code” .
  • code computer readable storage devices storing machine-readable code, computer readable code, and/or program code, referred to hereafter as “code” .
  • the storage devices may be tangible, non-transitory, and/or non-transmission.
  • the storage devices may not embody signals. In a certain embodiment, the storage devices only employ signals for accessing code.
  • modules may be implemented as a hardware circuit comprising custom very-large-scale integration (VLSI) circuits or gate arrays, off-the-shelf semiconductors such as logic chips, transistors, or other discrete components.
  • VLSI very-large-scale integration
  • a module may also be implemented in programmable hardware devices such as field programmable gate arrays, programmable array logic, programmable logic devices or the like.
  • Modules may also be implemented in code and/or software for execution by various types of processors.
  • An identified module of code may, for instance, include one or more physical or logical blocks of executable code which may, for instance, be organized as an object, procedure, or function. Nevertheless, the executables of an identified module need not be physically located together, but, may include disparate instructions stored in different locations which, when joined logically together, include the module and achieve the stated purpose for the module.
  • a module of code may contain a single instruction, or many instructions, and may even be distributed over several different code segments, among different programs, and across several memory devices.
  • operational data may be identified and illustrated herein within modules and may be embodied in any suitable form and organized within any suitable type of data structure. This operational data may be collected as a single data set, or may be distributed over different locations including over different computer readable storage devices.
  • the software portions are stored on one or more computer readable storage devices.
  • the computer readable medium may be a computer readable storage medium.
  • the computer readable storage medium may be a storage device storing code.
  • the storage device may be, for example, but need not necessarily be, an electronic, magnetic, optical, electromagnetic, infrared, holographic, micromechanical, or semiconductor system, apparatus, or device, or any suitable combination of the foregoing.
  • a storage device would include the following: an electrical connection having one or more wires, a portable computer diskette, a hard disk, random access memory (RAM) , read-only memory (ROM) , erasable programmable read-only memory (EPROM or Flash Memory) , portable compact disc read-only memory (CD-ROM) , an optical storage device, a magnetic storage device, or any suitable combination of the foregoing.
  • a computer-readable storage medium may be any tangible medium that can contain or store a program for use by or in connection with an instruction execution system, apparatus, or device.
  • Code for carrying out operations for embodiments may include any number of lines and may be written in any combination of one or more programming languages including an object-oriented programming language such as Python, Ruby, Java, Smalltalk, C++, or the like, and conventional procedural programming languages, such as the "C" programming language, or the like, and/or machine languages such as assembly languages.
  • the code may be executed entirely on the user's computer, partly on the user's computer, as a stand-alone software package, partly on the user's computer and partly on a remote computer or entirely on the remote computer or server.
  • the remote computer may be connected to the user's computer through any type of network, including a local area network (LAN) or a wide area network (WAN) , or the connection may be made to an external computer (for example, through the Internet using an Internet Service Provider) .
  • LAN local area network
  • WAN wide area network
  • Internet Service Provider an Internet Service Provider
  • the code may also be stored in a storage device that can direct a computer, other programmable data processing apparatus, or other devices, to function in a particular manner, such that the instructions stored in the storage device produce an article of manufacture including instructions which implement the function specified in the schematic flowchart diagrams and/or schematic block diagrams block or blocks.
  • the code may also be loaded onto a computer, other programmable data processing apparatus, or other devices, to cause a series of operational steps to be performed on the computer, other programmable apparatus or other devices to produce a computer implemented process such that the code executed on the computer or other programmable apparatus provides processes for implementing the functions specified in the flowchart and/or block diagram block or blocks.
  • each block in the schematic flowchart diagrams and/or schematic block diagrams may represent a module, segment, or portion of code, which includes one or more executable instructions of the code for implementing the specified logical function (s) .
  • the UE has the capability of simultaneous UL transmission by multiple beams (or multiple panels) , which is a UE capability reported to the gNB. That is, the UE can transmit UL transmissions using different panels to different TRPs simultaneously. It can be referred to as multi-TRP UL transmission.
  • UL transmission can be PUSCH transmission or PUCCH transmission.
  • UL transmissions may be transmitted to multiple TRPs (e.g. two TRPs) simultaneously.
  • the total power of UL transmissions towards multiple TRPs (e.g. two TRPs) simultaneously may exceed the maximum power of a UE.
  • This disclosure proposes solutions to determine the power allocation of UL transmissions when UL transmissions are transmitted to multiple TRPs (e.g. two TRPs) simultaneously.
  • Multi-TRP UL transmission can be classified as multi-DCI based multi-TRP UL transmission and single-DCI based multi-TRP UL transmission.
  • two CORESETPoolIndex values are configured to identify two TRPs, and two DCIs associated with two different CORESETPoolIndex values schedule two different UL transmissions independently. For those UL transmissions without corresponding DCIs (e.g. the UL transmissions are not scheduled by DCIs) , each of the UL transmissions is associated with one CORESETPoolIndex value by RRC signaling or MAC CE. Therefore, each UL transmission is associated with a CORESETPoolIndex value.
  • one UL transmission can be scheduled by a single DCI to be transmitted by multiple panels (e.g. two panels) of a UE to multiple TRPs (e.g. two TRPs) simultaneously.
  • the UL transmission is transmitted from two panels of the UE to the two TRPs simultaneously by using two different beams, where the two beams are determined by a TCI codepoint, where, when more than one (i.e.
  • TCI codepoints are activated by a MAC CE
  • the TCI codepoint is indicated by a TCI field of a DCI from the activated two or more TCI codepoints
  • the TCI codepoint is the only one activated TCI codepoint.
  • the TCI codepoint points to two TCI states (e.g. a first TCI state and a second TCI state) that determine the two beams.
  • the first TCI state determines the first beam
  • the second TCI state determines the second beam.
  • the two beams are determined by two TCI states pointed to by one codepoint indicated by a DCI or activated by a MAC CE.
  • Single-DCI based multi-TRP UL transmission may have different schemes: frequency domain multiplexing (FDM) scheme; single frequency network (SFN) scheme; and space division multiplexing (SDM) scheme (also referred to as non-coherent joint transmission (NCJT) scheme) .
  • FDM frequency domain multiplexing
  • SFN single frequency network
  • SDM space division multiplexing
  • NCJT non-coherent joint transmission
  • the same UL transmission is transmitted to two TRPs from two panels using two beams.
  • the UL transmission is transmitted to one TRP from one panel of the UE using a first beam determined by a first TCI state, and at the same time (i.e. simultaneously) , the UL transmission is transmitted to another TRP from another panel of the UE using a second beam determined by a second TCI state.
  • the UL transmission transmitted to two TRPs may be referred to as two transmission occasions (e.g. a first occasion and a second occasion) of the UL transmission.
  • the first occasion and the second occasion of the UL transmission are transmitted with different frequency resources (e.g. with different starting resource blocks) simultaneously (i.e. with the same time resources) .
  • the first occasion and the second occasion of the same UL transmission are transmitted with the same time-frequency resources, and each layer of the UL transmission is transmitted with multiple beams (e.g. two beams) .
  • SDM scheme (also referred to as NCJT scheme) can be supported for PUSCH (but not for PUCCH) , since PUSCH supports multi-ports transmission while PUCCH only supports single port transmission.
  • SDM (or NCJT) scheme different layers of the PUSCH transmission are transmitted to multiple TRP (e.g. two TRPs) by using different beams (e.g. two beams) simultaneously.
  • a half of layers of the PUSCH transmission is transmitted to one TRP from one panel of the UE using a first beam determined by a first TCI state, and at the same time (i.e. simultaneously) , another half of the layers of the PUSCH transmission is transmitted to another TRP from another panel of the UE using a second beam determined by a second TCI state.
  • a first embodiment relates to power allocation of simultaneous UL transmissions in multi-DCI based multi-TRP UL transmission.
  • two CORESETPoolIndex values are configured. Each of the UL transmissions is associated with a CORESETPoolIndex value.
  • two UL transmissions to two TRPs are associated with different CORESETPoolIndex values.
  • Solution 1-1 the UE is not expected to simultaneously transmit the two UL transmissions that have a same priority order as specified in TS38.213. That is, the UE expects that the two UL transmissions (e.g. a first UL transmission that is associated with one CORESETPoolIndex value and a second UL transmission that is associated with another CORESETPoolIndex value) have different priority orders as specified in TS 38.213.
  • the gNB will make sure that the two UL transmissions associated with different CORESETPoolIndex values have different priority orders as specified in TS 38.213 as follows:
  • the UE allocates power to PUSCH or PUCCH or PRACH or SRS transmissions according to the following priority order (in descending order) . That is, the power allocation is prioritized to the UL transmission that has a higher priority order.
  • corresponding DCI means the DCI scheduling or activating the PUCCH or PUSCH transmission
  • the UE prioritizes power allocation to the UL transmission (i.e. one of the first UL transmission and the second UL transmission) having a higher priority order as above (i.e. specified in TS 38.213) .
  • PUSCH transmission #1 and PUSCH transmission #2 are scheduled in some symbol (s) in a slot that are overlapped.
  • the total power of PUSCH transmission #1 and PUSCH transmission #2 i.e. the sum of the power for PUSCH transmission #1 and the power for PUSCH transmission #2
  • the two PUSCH transmissions i.e. PUSCH transmission #1 and PUSCH transmission #2
  • both PUSCH transmissions have the same priority index and both PUSCH transmissions carry HARQ-ACK information.
  • a second embodiment relates to power allocation of UL transmissions in FDM scheme or SFN scheme in single-DCI based multi-TRP UL transmission.
  • the two transmission occasions (e.g. a first occasion and a second occasion) of one UL transmission with FDM scheme or SFN scheme to different TRPs always have the same priority order specified in TS 38.213, if the total UL transmission power (i.e. the sum of the power for the first UL transmission and the power for the second UL transmission) exceeds the maximum power of the UE, a power allocation priority should be determined for the two transmission occasions of the UL transmission. In other words, the UE determines to which one of the first UL transmission (i.e. the first occasion) and the second UL transmission (i.e. the second occasion) the power allocation shall be prioritized.
  • Solution 2-1 (which applies to FDM scheme and SFN scheme) : The UE always prioritizes the power allocation to the UL transmission (i.e. occasion) associated with the first indicated beam.
  • PUSCH transmission #1 is configured with the SFN scheme.
  • a DCI contains a TCI field that indicates a codepoint that points to two common TCI states (e.g. two joint or UL TCI states) including a first TCI state and a second TCI state which are applicable for PUSCH transmission #1.
  • the first occasion of PUSCH transmission #1 is transmitted by using a first beam that is determined by the first TCI state
  • the second occasion of PUSCH transmission #1 is transmitted by using a second beam that is determined by the second TCI state. If the total power of the two transmission occasions of PUSCH transmission #1 (i.e.
  • the UE prioritizes power allocation to the first occasion of PUSCH transmission #1 according to solution 2-1 since the first occasion of PUSCH transmission #1 is associated with the first beam (that is determined by the first TCI state of the two TCI states pointed to by the codepoint indicated by the TCI field of the DCI) .
  • Solution 2-2 (which only applies to FDM scheme) : The UE always prioritizes the power allocation to the UL transmission (i.e. occasion) with a lower starting resource block (RB) or a higher starting RB according to a predefined rule.
  • RB resource block
  • PUSCH transmission #1 is configured with FDM scheme.
  • a DCI contains a TCI field that indicates a codepoint that points to two common TCI states (e.g. two joint or UL TCI states) including a first TCI state and a second TCI state which are applicable for PUSCH transmission #1.
  • the first occasion of PUSCH transmission #1 is transmitted by using a first beam that is determined by the first TCI state, and the second occasion of PUSCH transmission #1 is transmitted by using a second beam that is determined by the second TCI state.
  • solution 2-2 refers to that the UE always prioritizes the power allocation to the UL transmission occasion with the lower starting RB, if the total power of the two transmission occasions of PUSCH transmission #1 (i.e. the sum of the power for the first occasion of PUSCH transmission #1 and the power for the second occasion of PUSCH transmission #1) exceeds the maximum power of the UE, the UE prioritizes power allocation to the first occasion of PUSCH transmission #1 according to solution 2-2 since the first occasion of PUSCH transmission #1 has the lower starting RB.
  • a power allocation priority indicator is indicated or configured for the UL transmission to indicate which transmission occasion of the UL transmission has higher power allocation priority.
  • the power allocation priority indicator is associated with the UL transmission.
  • the power allocation priority indicator can be (1) indicated by the DCI scheduling or activating the UL transmission if the UL transmission is a dynamic grant (DG) PUSCH or a Type 2 configured grant (CG) PUSCH or (2) indicated by a MAC CE for the UL transmission if the UL transmission is a PUCCH or (3) configured for the UL transmission by RRC signaling if the UL transmission is a Type 1 CG PUSCH or a PUCCH.
  • the power allocation priority indicator associated with the UL transmission can be indicated by a DCI or a MAC CE or configured by an RRC signaling.
  • PUSCH transmission is configured with FDM scheme.
  • a DCI contains a TCI field that indicates a codepoint that points to two common TCI states (e.g. two joint or UL TCI states) including a first TCI state and a second TCI state which are applicable for PUSCH transmission #1. It is assumed that PUSCH transmission #1 is scheduled by a DCI that includes a power allocation priority indicator indicating that the second occasion of PUSCH transmission #1 has higher power allocation priority. If the total power of the two transmission occasions of PUSCH transmission #1 (i.e.
  • the UE prioritizes power allocation to the second occasion according to solution 2-3 since the power allocation priority indicator indicates that the second occasion of PUSCH transmission #1 has the higher power allocation priority.
  • Each beam indicated for UL transmission is configured to be associated with a power allocation priority index.
  • each beam is determined by a TCI state associated with a power allocation priority index.
  • Two beams (e.g. two TCI states determining the two beams) for a UL transmission are associated with different power allocation priority indices (e.g. a higher power allocation priority index or a lower power allocation priority index) , e.g. configured by an RRC signaling.
  • the UE prioritizes the power allocation to the transmission occasion associated with the beam (e.g. the TCI state determining the beam) that is associated with a higher or a lower power allocation priority index according to a predefined rule.
  • PUSCH transmission #1 is configured with SFN scheme.
  • a DCI contains a TCI field that indicates a codepoint that points to two common TCI states (e.g. two joint or UL TCI states) including a first TCI state and a second TCI state which are applicable for PUSCH transmission #1.
  • the first occasion of PUSCH transmission #1 is transmitted by using a first beam that is determined by the first TCI state
  • the second occasion of PUSCH transmission #1 is transmitted by using a second beam that is determined by the second TCI state.
  • the first TCI state is associated with a higher power allocation priority index
  • the second TCI state is associated with a lower power allocation priority, e.g. by RRC signaling.
  • solution 2-4 refers to that the UE prioritizes the power allocation to the transmission occasion associated with the beam (e.g. the TCI state determining the beam) that is associated with the higher power allocation priority index, if the total power of the two transmission occasions of PUSCH transmission #1 (i.e. the sum of the power for the first occasion of PUSCH transmission #1 and the power for the second occasion of PUSCH transmission #1) exceeds the maximum power of the UE, the UE prioritizes power allocation to the first occasion of PUSCH transmission #1 according to solution 2-4, since the first occasion is associated with the first TCI state associated with the higher power allocation priority index.
  • the transmission occasion associated with the beam e.g. the TCI state determining the beam
  • a third embodiment relates to power allocation of UL transmissions in SDM scheme (i.e. NCJT scheme) in single-DCI based multi-TRP UL transmission.
  • SDM scheme i.e. NCJT scheme
  • a power allocation priority should be determined for different layers (e.g. two sets of layers) of the PUSCH transmission.
  • the UE determines to which one of the first UL transmission (i.e. a first set of layers) and the second UL transmission (i.e. a second set of layers) the power allocation shall be prioritized.
  • Solution 3-1 UE always prioritizes the power allocation of the set of layers associated with the first beam.
  • PUSCH transmission #1 is indicated to be transmitted by NCJT scheme with 4 layers. Two beams are used for PUSCH transmission #1.
  • a DCI contains a TCI field that indicates a codepoint that points to two common TCI states (e.g. two joint or UL TCI states) including a first TCI state and a second TCI state which are applicable for PUSCH transmission #1.It is assumed that, among the four layers of PUSCH transmission #1, the first 2 layers of PUSCH transmission #1 are transmitted by using a first beam that is determined by the first TCI state, and the last 2 layers of PUSCH transmission #1 are transmitted by using a second beam that is determined by the second TCI state. If the total power of the first 2 layers and the last 2 layers of PUSCH transmission #1 (i.e.
  • the UE prioritizes power allocation to the first 2 layers of PUSCH transmission #1 according to solution 3-1, since the first two layers are associated with the first beam (i.e. the first TCI state determining the first beam) .
  • a power allocation priority indicator is indicated or configured for the PUSCH transmission to indicate which set of layers has a higher power allocation priority.
  • the UE prioritizes the power allocation to the set of layers that has the higher power allocation priority.
  • the power allocation priority indicator is associated with the PUSCH transmission.
  • the power allocation priority indicator can be (1) indicated by DCI scheduling or activating the PUSCH transmission if the PUSCH transmission is a DG PUSCH or a Type 2 CG PUSCH, or (2) configured for the PUSCH transmission by RRC signaling if the PUSCH is a Type 1 CG PUSCH.
  • the power allocation priority indicator associated with the PUSCH transmission can be indicated by a DCI or configured by an RRC signaling.
  • PUSCH transmission #1 is indicated to be transmitted by NCJT scheme with 4 layers.
  • Two beams are used for PUSCH transmission #1.
  • a DCI contains a TCI field that indicates a codepoint that points to two common TCI states (e.g. two joint or UL TCI states) including a first TCI state and a second TCI state which are applicable for PUSCH transmission #1.
  • the DCI that schedules PUSCH transmission #1 includes a power allocation priority indicator indicating that the layers of PUSCH transmission #1 associated with the second beam has a higher power allocation priority. It is assumed that, among the four layers of PUSCH transmission #1, the first 2 layers are associated with a first beam (i.e.
  • the UE prioritizes power to the last 2 layers of PUSCH transmission #1 according to solution 3-2, since the power allocation priority indicator indicates that the layers of PUSCH transmission #1 associated with the second beam (i.e. the last 2 layers of PUSCH transmission #1) has the higher power allocation priority.
  • Each beam configured for UL transmission is configured to be associated with a power allocation priority index.
  • each beam is determined by a TCI state associated with a power allocation priority index.
  • Two beams (e.g. two TCI states determining the two beams) for a UL transmission are associated with different power allocation priority indices (e.g. a higher power allocation priority index or a lower power allocation priority index) , e.g. configured by an RRC signaling.
  • the UE prioritizes the power allocation to the set of layers associated with the beam (e.g. the TCI state determining the beam) that is associated with a higher or a lower power allocation priority index according to a predefined rule.
  • a DCI contains a TCI field that indicates a codepoint that points to two common TCI states (e.g. two joint or UL TCI states) including a first TCI state and a second TCI state.
  • the first TCI state is associated with a higher power allocation priority index
  • the second TCI state is associated with a lower power allocation priority index, e.g. by RRC signaling.
  • PUSCH transmission #1 is scheduled with a DCI with 4 layers.
  • the first 2 layers of PUSCH transmission #1 are associated with the first beam (i.e. the first TCI state determining the first beam)
  • the last 2 layers of PUSCH transmission #1 are associated with the second beam (i.e.
  • solution 3-3 refers to that the UE prioritizes the power allocation to the set of layers associated with the beam (e.g. the TCI state determining the beam) that is associated with the higher power allocation priority index, if the total power of the first 2 layers of PUSCH transmission #1 and the last 2 layers of PUSCH transmission #1 exceeds the maximum power of the UE, the UE prioritizes power allocation for the first 2 layers of PUSCH transmission #1 according to solution 3-3 since the first 2 layers of PUSCH transmission #1 is associated with the first beam (i.e. the first TCI state determining the first beam) associated with the higher power allocation priority index.
  • FIG. 1 illustrates an embodiment of the present disclosure.
  • UE is scheduled by a base station (e.g. gNB) (not shown in Figure 1) to simultaneously transmit two UL transmissions to two TRPs (e.g. a first UL transmission transmitted to TRP#1 and a second UL transmission transmitted to TRP#2) .
  • the first UL transmission and the second UL transmission are overlapped in at least one symbol.
  • the UE e.g. the processor of the UE
  • the power allocation is prioritized to one of the first UL transmission and the second UL transmission. It means that the UE (e.g. the transceiver of the UE) only transmits one of the first UL transmission and the second UL transmission to which the power allocation is prioritized, so that the power does not exceeds the maximum power of the UE in the at least one symbol.
  • the UE e.g. the transceiver of the UE
  • the base station monitors, on the at least one symbol, the first UL transmission from TRP#1 and the second UL transmission from TRP#2 no matter whether only one of the first UL transmission and the second UL transmission is actually transmitted (due to for example the power allocation is prioritized to only one of the first UL transmission and the second UL transmission) or both the first UL transmission and the second UL transmission are actually transmitted (e.g. the sum of the first power and the second power does not exceed the maximum power of the UE in the at least one symbol) .
  • Figure 2 is a schematic flow chart diagram illustrating an embodiment of a method 200 according to the present application.
  • the method 200 is performed by an apparatus, such as a base unit.
  • the method 200 may be performed by a processor executing program code, for example, a microcontroller, a microprocessor, a CPU, a GPU, an auxiliary processing unit, a FPGA, or the like.
  • the method 200 may comprise 202 determining a first power of a first UL transmission associated with a first TCI state and a second power of a second UL transmission associated with a second TCI state, wherein the first UL transmission and the second UL transmission are overlapped in at least one symbol; and 204 determining power allocation for the first UL transmission and the second UL transmission if the sum of the first power and the second power exceeds the maximum power of the UE in the at least one symbol.
  • the first UL transmission and the second UL transmission are associated with two different CORESETPoolIndex values
  • the first UL transmission and the second UL transmission have different priority orders
  • the power allocation is prioritized to one of the first UL transmission and the second UL transmission that has a higher priority order.
  • the power allocation is prioritized to the first UL transmission.
  • the power allocation is prioritized to one of the first UL transmission and the second UL transmission that is associated with a lower or higher starting resource block according to a predefined rule.
  • the first UL transmission and the second UL transmission are two transmission occasions of one UL transmission configured with SFN scheme or FDM scheme, and the first TCI state and the second TCI state are two joint or UL common TCI states pointed to by a codepoint indicated by a DCI or activated by a MAC CE, and a power allocation priority indicator associated with the UL transmission indicates which transmission occasion has a higher power allocation priority, the power allocation is prioritized to the transmission occasion that is indicated to have the higher power allocation priority.
  • the power allocation priority indicator is indicated by a DCI or a MAC CE or configured by an RRC signaling.
  • the power allocation is prioritized to the transmission occasion associated with the TCI state associated with a higher or lower power allocation priority index according to a predefined rule.
  • the first TCI state and the second TCI state are associated with different power allocation priority indices by RRC signaling.
  • the power allocation is prioritized to one of the first set of layers and the second set of layers that is associated with the first TCI state.
  • the first UL transmission and the second UL transmission are a first set of layers and a second set of layers of one PUSCH transmission
  • the first TCI state and the second TCI state are two joint or UL common TCI states pointed to by a codepoint indicated by a DCI or activated by a MAC CE
  • a power allocation priority indicator associated with the PUSCH transmission indicates which set of layers has a higher power allocation priority
  • the power allocation is prioritized to the set of layers that is indicated to have the higher power allocation priority.
  • the power allocation priority indicator is indicated by a DCI or configured by an RRC signaling.
  • the power allocation is prioritized to the set of layers associated with the TCI state associated with a higher or lower power allocation priority index according to a predefined rule.
  • the first TCI state and the second TCI state are associated with different power allocation priority indices by RRC signaling.
  • Figure 3 is a schematic block diagram illustrating apparatuses according to one embodiment.
  • the UE i.e. the remote unit
  • the UE includes a processor, a memory, and a transceiver.
  • the processor implements a function, a process, and/or a method which are proposed in Figure 2.
  • the UE comprises a transceiver; and a processor coupled to the transceiver, wherein, the processor is configured to determine a first power of a first UL transmission associated with a first TCI state and a second power of a second UL transmission associated with a second TCI state, wherein the first UL transmission and the second UL transmission are overlapped in at least one symbol, and determine power allocation for the first UL transmission and the second UL transmission if the sum of the first power and the second power exceeds the maximum power of the UE in the at least one symbol.
  • the first UL transmission and the second UL transmission are associated with two different CORESETPoolIndex values
  • the first UL transmission and the second UL transmission have different priority orders
  • the power allocation is prioritized to one of the first UL transmission and the second UL transmission that has a higher priority order.
  • the power allocation is prioritized to the first UL transmission.
  • the power allocation is prioritized to one of the first UL transmission and the second UL transmission that is associated with a lower or higher starting resource block according to a predefined rule.
  • the first UL transmission and the second UL transmission are two transmission occasions of one UL transmission configured with SFN scheme or FDM scheme, and the first TCI state and the second TCI state are two joint or UL common TCI states pointed to by a codepoint indicated by a DCI or activated by a MAC CE, and a power allocation priority indicator associated with the UL transmission indicates which transmission occasion has a higher power allocation priority, the power allocation is prioritized to the transmission occasion that is indicated to have the higher power allocation priority.
  • the power allocation priority indicator is indicated by a DCI or a MAC CE or configured by an RRC signaling.
  • the power allocation is prioritized to the transmission occasion associated with the TCI state associated with a higher or lower power allocation priority index according to a predefined rule.
  • the first TCI state and the second TCI state are associated with different power allocation priority indices by RRC signaling.
  • the power allocation is prioritized to one of the first set of layers and the second set of layers that is associated with the first TCI state.
  • the first UL transmission and the second UL transmission are a first set of layers and a second set of layers of one PUSCH transmission
  • the first TCI state and the second TCI state are two joint or UL common TCI states pointed to by a codepoint indicated by a DCI or activated by a MAC CE
  • a power allocation priority indicator associated with the PUSCH transmission indicates which set of layers has a higher power allocation priority
  • the power allocation is prioritized to the set of layers that is indicated to have the higher power allocation priority.
  • the power allocation priority indicator is indicated by a DCI or configured by an RRC signaling.
  • the power allocation is prioritized to the set of layers associated with the TCI state associated with a higher or lower power allocation priority index according to a predefined rule.
  • the first TCI state and the second TCI state are associated with different power allocation priority indices by RRC signaling.
  • Layers of a radio interface protocol may be implemented by the processors.
  • the memories are connected with the processors to store various pieces of information for driving the processors.
  • the transceivers are connected with the processors to transmit and/or receive a radio signal. Needless to say, the transceiver may be implemented as a transmitter to transmit the radio signal and a receiver to receive the radio signal.
  • the memories may be positioned inside or outside the processors and connected with the processors by various well-known means.
  • each component or feature should be considered as an option unless otherwise expressly stated.
  • Each component or feature may be implemented not to be associated with other components or features.
  • the embodiment may be configured by associating some components and/or features. The order of the operations described in the embodiments may be changed. Some components or features of any embodiment may be included in another embodiment or replaced with the component and the feature corresponding to another embodiment. It is apparent that the claims that are not expressly cited in the claims are combined to form an embodiment or be included in a new claim.
  • the embodiments may be implemented by hardware, firmware, software, or combinations thereof.
  • the exemplary embodiment described herein may be implemented by using one or more application-specific integrated circuits (ASICs) , digital signal processors (DSPs) , digital signal processing devices (DSPDs) , programmable logic devices (PLDs) , field programmable gate arrays (FPGAs) , processors, controllers, micro-controllers, microprocessors, and the like.
  • ASICs application-specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGAs field programmable gate arrays

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Method and apparatus for determining power allocation in multiple TRP simultaneous UL transmission are disclosed. In one embodiment, a UE comprises a transceiver; and a processor coupled to the transceiver, wherein, the processor is configured to determine a first power of a first UL transmission associated with a first TCI state and a second power of a second UL transmission associated with a second TCI state, wherein the first UL transmission and the second UL transmission are overlapped in at least one symbol, and determine power allocation for the first UL transmission and the second UL transmission if the sum of the first power and the second power exceeds the maximum power of the UE in the at least one symbol.

Description

POWER ALLOCATION DETERMINATION IN MULTIPLE TRP SIMULTANEOUS UL TRANSMISSION FIELD
The subject matter disclosed herein generally relates to wireless communications, and more particularly relates to methods and apparatuses for determining power allocation in multiple TRP simultaneous UL transmission.
BACKGROUND
The following abbreviations are herewith defined, at least some of which are referred to within the following description: New Radio (NR) , Very Large Scale Integration (VLSI) , Random Access Memory (RAM) , Read-Only Memory (ROM) , Erasable Programmable Read-Only Memory (EPROM or Flash Memory) , Compact Disc Read-Only Memory (CD-ROM) , Local Area Network (LAN) , Wide Area Network (WAN) , User Equipment (UE) , Evolved Node B (eNB) , Next Generation Node B (gNB) , Uplink (UL) , Downlink (DL) , Central Processing Unit (CPU) , Graphics Processing Unit (GPU) , Field Programmable Gate Array (FPGA) , Orthogonal Frequency Division Multiplexing (OFDM) , Radio Resource Control (RRC) , User Entity/Equipment (Mobile Terminal) , Transmitter (TX) , Receiver (RX) , Medium Access Control (MAC) , MAC control element (MAC CE) , Physical Uplink Shared Channel (PUSCH) , dynamic grant (DG) , configured grant (CG) , Physical Uplink Control Channel (PUCCH) , Physical random access channel (PRACH) , Sounding Reference Signal (SRS) , Hybrid Automatic Repeat request (HARQ) , Acknowledge (ACK) , Scheduling Request (SR) , link recovery request (LRR) , channel state information (CSI) , channel state information reference signal (CSI-RS) , Master Cell Group (MCG) , Secondary Cell Group (SCG) , transmission reception point (TRP) , Downlink Control Information (DCI) , multiple DCI (multi-DCI or M-DCI) , multiple TRP (multi-TRP or M-TRP) , TS (Technical Specification) (TS refers to 3GPP Technical Specification in this disclosure) , Transmission Configuration Indication (TCI) , frequency domain multiplexing (FDM) , single frequency network (SFN) , Space Division Multiplexing (SDM) , non-coherent joint transmission (NCJT) , resource block (RB) .
For single cell operation with two uplink carriers or for operation with carrier aggregation, if a total UE transmit power in a symbol of a slot for PUSCH or PUCCH or PRACH or SRS transmissions on serving cells in a frequency range in a respective transmission occasion (i.e. the sum of the linear values of UE transmit powers for PUSCH, PUCCH, PRACH, and SRS in the symbol of the slot) exceeds a maximum value, the UE allocates power to PUSCH,  PUCCH, PRACH and SRS transmissions according to the following priority order (in descending order) so that the total UE transmit power for transmissions on serving cells in the frequency range is smaller than or equal to the maximum value for that frequency range in every symbol of transmission occasion.
- PRACH transmission on the PCell;
- PUCCH or PUSCH transmissions with higher priority index contained in the corresponding DCIs or in the RRC configurations without corresponding DCIs;
- For PUCCH or PUSCH transmissions with same priority index,
- PUCCH transmission with HARQ-ACK information, and/or SR, and/or LRR, or PUSCH transmission with HARQ-ACK information;
- PUCCH transmission with CSI or PUSCH transmission with CSI;
- PUSCH transmission without HARQ-ACK information or CSI and, for Type-2 random access procedure, PUSCH transmission on the PCell;
- SRS transmission, with aperiodic SRS having higher priority than semi-persistent and/or periodic SRS, or PRACH transmission on a serving cell other than the PCell.
In case of same priority order and for operation with carrier aggregation, the UE prioritizes power allocation to transmissions on the primary cell of the MCG or the SCG over transmissions on a secondary cell. In case of same priority order and for operation with two UL carriers, the UE prioritizes power allocation to transmissions on the carrier where the UE is configured to transmit PUCCH. If PUCCH is not configured for any of the two UL carriers, the UE prioritizes power allocation to transmissions on the non-supplementary UL carrier.
It can be seen that if two UL transmissions have the same priority order in carrier aggregation case or single cell with two UL carriers, the power allocation priority is further determined.
In NR Release 18, simultaneous UL transmission with multiple panels is supported. The priority of power allocation of UL transmissions with same priority order towards different TRPs is necessary to be determined.
This disclosure targets determining the power allocation of simultaneous UL transmission to multiple TRPs with multiple panels.
BRIEF SUMMARY
Methods and apparatuses for determining power allocation in multiple TRP simultaneous UL transmission are disclosed.
In one embodiment, a UE comprises a transceiver; and a processor coupled to the transceiver, wherein, the processor is configured to determine a first power of a first UL transmission associated with a first TCI state and a second power of a second UL transmission associated with a second TCI state, wherein the first UL transmission and the second UL transmission are overlapped in at least one symbol, and determine power allocation for the first UL transmission and the second UL transmission if the sum of the first power and the second power exceeds the maximum power of the UE in the at least one symbol.
In one embodiment, if the first UL transmission and the second UL transmission are associated with two different CORESETPoolIndex values, the first UL transmission and the second UL transmission have different priority orders, and the power allocation is prioritized to one of the first UL transmission and the second UL transmission that has a higher priority order. Alternatively, if the first UL transmission and the second UL transmission are associated with two different CORESETPoolIndex values and have the same priority order, the power allocation is prioritized to one of the first UL transmission and the second UL transmission that is associated with CORESETPoolIndex = 0.
In another embodiment, if the first UL transmission and the second UL transmission are two transmission occasions of one UL transmission configured with SFN scheme or FDM scheme, and the first TCI state and the second TCI state are two joint or UL common TCI states pointed to by a codepoint indicated by a DCI or activated by a MAC CE, the power allocation is prioritized to the first UL transmission. Alternatively, if the first UL transmission and the second UL transmission are two transmission occasions of one UL transmission configured with FDM scheme, and are transmitted with different starting resource blocks, the power allocation is prioritized to one of the first UL transmission and the second UL transmission that is associated with a lower or higher starting resource block according to a predefined rule. Further alternatively, if the first UL transmission and the second UL transmission are two transmission occasions of one UL transmission configured with SFN scheme or FDM scheme, and the first TCI state and the second TCI state are two joint or UL common TCI states pointed to by a codepoint indicated by a DCI or activated by a MAC CE, and a power allocation priority indicator associated with the UL transmission indicates which transmission occasion has a higher power allocation priority, the power allocation is prioritized to the transmission occasion that is indicated to have the higher power allocation priority. Preferably, the power allocation priority indicator is indicated by a DCI or a MAC CE or  configured by an RRC signaling. Still alternatively, if the first UL transmission and the second UL transmission are two transmission occasions of one UL transmission configured with SFN scheme or FDM scheme, and the first TCI state and the second TCI state, which are two TCI states pointed to by a codepoint indicated by a DCI or activated by a MAC CE, are associated with different power allocation priority indices, the power allocation is prioritized to the transmission occasion associated with the TCI state associated with a higher or lower power allocation priority index according to a predefined rule. Preferably, the first TCI state and the second TCI state are associated with different power allocation priority indices by RRC signaling.
In still another embodiment, if the first UL transmission and the second UL transmission are a first set of layers and a second set of layers of one PUSCH transmission, and the first TCI state and the second TCI state are two TCI states pointed to by a codepoint indicated by a DCI or activated by a MAC CE, the power allocation is prioritized to one of the first set of layers and the second set of layers that is associated with the first TCI state. Alternatively, if the first UL transmission and the second UL transmission are a first set of layers and a second set of layers of one PUSCH transmission, and the first TCI state and the second TCI state are two joint or UL common TCI states pointed to by a codepoint indicated by a DCI or activated by a MAC CE, and a power allocation priority indicator associated with the PUSCH transmission indicates which set of layers has a higher power allocation priority, the power allocation is prioritized to the set of layers that is indicated to have the higher power allocation priority. Preferably, the power allocation priority indicator is indicated by a DCI or configured by an RRC signaling. Further alternatively, if the first UL transmission and the second UL transmission are a first set of layers and a second set of layers of one PUSCH transmission, and the first TCI state and the second TCI state, which are two TCI states pointed to by a codepoint indicated by a DCI or activated by a MAC CE, are associated with different power allocation priority indices, the power allocation is prioritized to the set of layers associated with the TCI state associated with a higher or lower power allocation priority index according to a predefined rule. Preferably, the first TCI state and the second TCI state are associated with different power allocation priority indices by RRC signaling.
In another embodiment, a method of a UE comprises determining a first power of a first UL transmission associated with a first TCI state and a second power of a second UL transmission associated with a second TCI state, wherein the first UL transmission and the second UL transmission are overlapped in at least one symbol; and determining power allocation  for the first UL transmission and the second UL transmission if the sum of the first power and the second power exceeds the maximum power of the UE in the at least one symbol.
BRIEF DESCRIPTION OF THE DRAWINGS
A more particular description of the embodiments briefly described above will be rendered by reference to specific embodiments that are illustrated in the appended drawings. Understanding that these drawings depict only some embodiments, and are not therefore to be considered to be limiting of scope, the embodiments will be described and explained with additional specificity and detail through the use of the accompanying drawings, in which:
Figure 1 illustrates an embodiment of of the present disclosure;
Figure 2 is a schematic flow chart diagram illustrating an embodiment of a method; and
Figure 3 is a schematic block diagram illustrating apparatuses according to one embodiment.
DETAILED DESCRIPTION
As will be appreciated by one skilled in the art that certain aspects of the embodiments may be embodied as a system, apparatus, method, or program product. Accordingly, embodiments may take the form of an entirely hardware embodiment, an entirely software embodiment (including firmware, resident software, micro-code, etc. ) or an embodiment combining software and hardware aspects that may generally all be referred to herein as a “circuit” , “module” or “system” . Furthermore, embodiments may take the form of a program product embodied in one or more computer readable storage devices storing machine-readable code, computer readable code, and/or program code, referred to hereafter as “code” . The storage devices may be tangible, non-transitory, and/or non-transmission. The storage devices may not embody signals. In a certain embodiment, the storage devices only employ signals for accessing code.
Certain functional units described in this specification may be labeled as “modules” , in order to more particularly emphasize their independent implementation. For example, a module may be implemented as a hardware circuit comprising custom very-large-scale integration (VLSI) circuits or gate arrays, off-the-shelf semiconductors such as logic chips, transistors, or other discrete components. A module may also be implemented in programmable hardware devices such as field programmable gate arrays, programmable array logic, programmable logic devices or the like.
Modules may also be implemented in code and/or software for execution by various types of processors. An identified module of code may, for instance, include one or more physical or logical blocks of executable code which may, for instance, be organized as an object, procedure, or function. Nevertheless, the executables of an identified module need not be physically located together, but, may include disparate instructions stored in different locations which, when joined logically together, include the module and achieve the stated purpose for the module.
Indeed, a module of code may contain a single instruction, or many instructions, and may even be distributed over several different code segments, among different programs, and across several memory devices. Similarly, operational data may be identified and illustrated herein within modules and may be embodied in any suitable form and organized within any suitable type of data structure. This operational data may be collected as a single data set, or may be distributed over different locations including over different computer readable storage devices. Where a module or portions of a module are implemented in software, the software portions are stored on one or more computer readable storage devices.
Any combination of one or more computer readable medium may be utilized. The computer readable medium may be a computer readable storage medium. The computer readable storage medium may be a storage device storing code. The storage device may be, for example, but need not necessarily be, an electronic, magnetic, optical, electromagnetic, infrared, holographic, micromechanical, or semiconductor system, apparatus, or device, or any suitable combination of the foregoing.
A non-exhaustive list of more specific examples of the storage device would include the following: an electrical connection having one or more wires, a portable computer diskette, a hard disk, random access memory (RAM) , read-only memory (ROM) , erasable programmable read-only memory (EPROM or Flash Memory) , portable compact disc read-only memory (CD-ROM) , an optical storage device, a magnetic storage device, or any suitable combination of the foregoing. In the context of this document, a computer-readable storage medium may be any tangible medium that can contain or store a program for use by or in connection with an instruction execution system, apparatus, or device.
Code for carrying out operations for embodiments may include any number of lines and may be written in any combination of one or more programming languages including an object-oriented programming language such as Python, Ruby, Java, Smalltalk, C++, or the  like, and conventional procedural programming languages, such as the "C" programming language, or the like, and/or machine languages such as assembly languages. The code may be executed entirely on the user's computer, partly on the user's computer, as a stand-alone software package, partly on the user's computer and partly on a remote computer or entirely on the remote computer or server. In the very last scenario, the remote computer may be connected to the user's computer through any type of network, including a local area network (LAN) or a wide area network (WAN) , or the connection may be made to an external computer (for example, through the Internet using an Internet Service Provider) .
Reference throughout this specification to “one embodiment” , “an embodiment” , or similar language means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment. Thus, appearances of the phrases “in one embodiment” , “in an embodiment” , and similar language throughout this specification may, but do not necessarily, all refer to the same embodiment, but mean “one or more but not all embodiments” unless expressly specified otherwise. The terms “including” , “comprising” , “having” , and variations thereof mean “including but are not limited to” , unless otherwise expressly specified. An enumerated listing of items does not imply that any or all of the items are mutually exclusive, otherwise unless expressly specified. The terms “a” , “an” , and “the” also refer to “one or more” unless otherwise expressly specified.
Furthermore, described features, structures, or characteristics of various embodiments may be combined in any suitable manner. In the following description, numerous specific details are provided, such as examples of programming, software modules, user selections, network transactions, database queries, database structures, hardware modules, hardware circuits, hardware chips, etc., to provide a thorough understanding of embodiments. One skilled in the relevant art will recognize, however, that embodiments may be practiced without one or more of the specific details, or with other methods, components, materials, and so forth. In other instances, well-known structures, materials, or operations are not shown or described in detail to avoid any obscuring of aspects of an embodiment.
Aspects of different embodiments are described below with reference to schematic flowchart diagrams and/or schematic block diagrams of methods, apparatuses, systems, and program products according to embodiments. It will be understood that each block of the schematic flowchart diagrams and/or schematic block diagrams, and combinations of blocks in the schematic flowchart diagrams and/or schematic block diagrams, can be implemented by code.  This code may be provided to a processor of a general purpose computer, special purpose computer, or other programmable data processing apparatus to produce a machine, such that the instructions, which are executed via the processor of the computer or other programmable data processing apparatus, create means for implementing the functions specified in the schematic flowchart diagrams and/or schematic block diagrams for the block or blocks.
The code may also be stored in a storage device that can direct a computer, other programmable data processing apparatus, or other devices, to function in a particular manner, such that the instructions stored in the storage device produce an article of manufacture including instructions which implement the function specified in the schematic flowchart diagrams and/or schematic block diagrams block or blocks.
The code may also be loaded onto a computer, other programmable data processing apparatus, or other devices, to cause a series of operational steps to be performed on the computer, other programmable apparatus or other devices to produce a computer implemented process such that the code executed on the computer or other programmable apparatus provides processes for implementing the functions specified in the flowchart and/or block diagram block or blocks.
The schematic flowchart diagrams and/or schematic block diagrams in the Figures illustrate the architecture, functionality, and operation of possible implementations of apparatuses, systems, methods and program products according to various embodiments. In this regard, each block in the schematic flowchart diagrams and/or schematic block diagrams may represent a module, segment, or portion of code, which includes one or more executable instructions of the code for implementing the specified logical function (s) .
It should also be noted that in some alternative implementations, the functions noted in the block may occur out of the order noted in the Figures. For example, two blocks shown in succession may substantially be executed concurrently, or the blocks may sometimes be executed in the reverse order, depending upon the functionality involved. Other steps and methods may be conceived that are equivalent in function, logic, or effect to one or more blocks, or portions thereof, to the illustrated Figures.
Although various arrow types and line types may be employed in the flowchart and/or block diagrams, they are understood not to limit the scope of the corresponding embodiments. Indeed, some arrows or other connectors may be used to indicate only the logical flow of the depicted embodiment. For instance, an arrow may indicate a waiting or monitoring  period of unspecified duration between enumerated steps of the depicted embodiment. It will also be noted that each block of the block diagrams and/or flowchart diagrams, and combinations of blocks in the block diagrams and/or flowchart diagrams, can be implemented by special purpose hardware-based systems that perform the specified functions or acts, or combinations of special purpose hardware and code.
The description of elements in each Figure may refer to elements of proceeding figures. Like numbers refer to like elements in all figures, including alternate embodiments of like elements.
In this disclosure, it is assumed that the UE has the capability of simultaneous UL transmission by multiple beams (or multiple panels) , which is a UE capability reported to the gNB. That is, the UE can transmit UL transmissions using different panels to different TRPs simultaneously. It can be referred to as multi-TRP UL transmission. For example, UL transmission can be PUSCH transmission or PUCCH transmission.
In multi-TRP UL transmission, UL transmissions may be transmitted to multiple TRPs (e.g. two TRPs) simultaneously. However, the total power of UL transmissions towards multiple TRPs (e.g. two TRPs) simultaneously may exceed the maximum power of a UE. This disclosure proposes solutions to determine the power allocation of UL transmissions when UL transmissions are transmitted to multiple TRPs (e.g. two TRPs) simultaneously.
In particular, when two UL transmissions (e.g. a first UL transmission and a second UL transmission) are to be transmitted to two TRPs simultaneously (e.g. the first UL transmission and the second UL transmission are overlapped in at least one symbol) , if the sum of the power for the first UL transmission and the power for the second UL transmission exceeds the maximum power of the UE in the at least one symbol, this disclosure proposes solutions to determine to which one of the first UL transmission and the second UL transmission the power allocation shall be prioritized.
Multi-TRP UL transmission can be classified as multi-DCI based multi-TRP UL transmission and single-DCI based multi-TRP UL transmission.
In multi-DCI based multi-TRP UL transmission, two CORESETPoolIndex values are configured to identify two TRPs, and two DCIs associated with two different CORESETPoolIndex values schedule two different UL transmissions independently. For those UL transmissions without corresponding DCIs (e.g. the UL transmissions are not scheduled by DCIs) , each of the UL transmissions is associated with one CORESETPoolIndex value by RRC  signaling or MAC CE. Therefore, each UL transmission is associated with a CORESETPoolIndex value.
In single-DCI based multi-TRP UL transmission, one UL transmission can be scheduled by a single DCI to be transmitted by multiple panels (e.g. two panels) of a UE to multiple TRPs (e.g. two TRPs) simultaneously. In case of two TRPs, the UL transmission is transmitted from two panels of the UE to the two TRPs simultaneously by using two different beams, where the two beams are determined by a TCI codepoint, where, when more than one (i.e. two or more) TCI codepoints are activated by a MAC CE, the TCI codepoint is indicated by a TCI field of a DCI from the activated two or more TCI codepoints, and when only one TCI codepoint is activated by a MAC CE, the TCI codepoint is the only one activated TCI codepoint. The TCI codepoint points to two TCI states (e.g. a first TCI state and a second TCI state) that determine the two beams. For example, the first TCI state determines the first beam, and the second TCI state determines the second beam. In short, the two beams are determined by two TCI states pointed to by one codepoint indicated by a DCI or activated by a MAC CE.
Single-DCI based multi-TRP UL transmission may have different schemes: frequency domain multiplexing (FDM) scheme; single frequency network (SFN) scheme; and space division multiplexing (SDM) scheme (also referred to as non-coherent joint transmission (NCJT) scheme) .
In FDM scheme or SFN scheme, the same UL transmission is transmitted to two TRPs from two panels using two beams. For example, the UL transmission is transmitted to one TRP from one panel of the UE using a first beam determined by a first TCI state, and at the same time (i.e. simultaneously) , the UL transmission is transmitted to another TRP from another panel of the UE using a second beam determined by a second TCI state. The UL transmission transmitted to two TRPs may be referred to as two transmission occasions (e.g. a first occasion and a second occasion) of the UL transmission.
In FDM scheme, the first occasion and the second occasion of the UL transmission are transmitted with different frequency resources (e.g. with different starting resource blocks) simultaneously (i.e. with the same time resources) .
In SFN scheme, the first occasion and the second occasion of the same UL transmission are transmitted with the same time-frequency resources, and each layer of the UL transmission is transmitted with multiple beams (e.g. two beams) .
SDM scheme (also referred to as NCJT scheme) can be supported for PUSCH (but not for PUCCH) , since PUSCH supports multi-ports transmission while PUCCH only supports single port transmission. In SDM (or NCJT) scheme, different layers of the PUSCH transmission are transmitted to multiple TRP (e.g. two TRPs) by using different beams (e.g. two beams) simultaneously. For example, a half of layers of the PUSCH transmission is transmitted to one TRP from one panel of the UE using a first beam determined by a first TCI state, and at the same time (i.e. simultaneously) , another half of the layers of the PUSCH transmission is transmitted to another TRP from another panel of the UE using a second beam determined by a second TCI state.
A first embodiment relates to power allocation of simultaneous UL transmissions in multi-DCI based multi-TRP UL transmission.
In multi-DCI based multi-TRP UL transmission, two CORESETPoolIndex values are configured. Each of the UL transmissions is associated with a CORESETPoolIndex value. In particular, two UL transmissions to two TRPs are associated with different CORESETPoolIndex values. When two UL transmissions associated with different CORESETPoolIndex values are overlapped in at least one symbol and the total power of the two UL transmissions in the overlapped symbol (s) exceeds the maximum power of the UE in the at least one symbol, two different (alternative) solutions are proposed to determine the power allocation of the two UL transmissions.
Solution 1-1: the UE is not expected to simultaneously transmit the two UL transmissions that have a same priority order as specified in TS38.213. That is, the UE expects that the two UL transmissions (e.g. a first UL transmission that is associated with one CORESETPoolIndex value and a second UL transmission that is associated with another CORESETPoolIndex value) have different priority orders as specified in TS 38.213. According to solution 1-1, the gNB will make sure that the two UL transmissions associated with different CORESETPoolIndex values have different priority orders as specified in TS 38.213 as follows:
The UE allocates power to PUSCH or PUCCH or PRACH or SRS transmissions according to the following priority order (in descending order) . That is, the power allocation is prioritized to the UL transmission that has a higher priority order.
-PRACH transmission on the PCell;
-PUCCH or PUSCH transmissions with higher priority index contained in the corresponding DCIs or in the RRC configurations without corresponding DCIs (note that the  corresponding DCI means the DCI scheduling or activating the PUCCH or PUSCH transmission) ;
- For PUCCH or PUSCH transmissions with same priority index,
- PUCCH transmission with HARQ-ACK information, and/or SR, and/or LRR, or PUSCH transmission with HARQ-ACK information;
- PUCCH transmission with CSI or PUSCH transmission with CSI;
- PUSCH transmission without HARQ-ACK information or CSI and, for Type-2 random access procedure, PUSCH transmission on the PCell;
- SRS transmission, with aperiodic SRS having higher priority than semi-persistent and/or periodic SRS, or PRACH transmission on a serving cell other than the PCell.
The UE prioritizes power allocation to the UL transmission (i.e. one of the first UL transmission and the second UL transmission) having a higher priority order as above (i.e. specified in TS 38.213) .
Solution 1-2: If the two UL transmissions (e.g. a first UL transmission and a second UL transmission) have the same priority order as specified in TS 38.213, and are associated with different CORESETPoolIndex values, the UE prioritizes power allocation to the UL transmission (i.e. one of the first UL transmission and the second UL transmission) associated with the lower CORESETPoolIndex value (i.e. CORESETPoolIndex = 0) .
An example of solution 1-2 is as follows. PUSCH transmission #1 is associated with CORESETPoolIndex=0, PUSCH transmission #2 is associated with CORESETPoolIndex=1. PUSCH transmission #1 and PUSCH transmission #2 are scheduled in some symbol (s) in a slot that are overlapped. The total power of PUSCH transmission #1 and PUSCH transmission #2 (i.e. the sum of the power for PUSCH transmission #1 and the power for PUSCH transmission #2) in the overlapped symbol (s) exceeds the maximum power of the UE in the overlapped symbol (s) , and the two PUSCH transmissions (i.e. PUSCH transmission #1 and PUSCH transmission #2) have the same priority order according to TS 38.213 as described above. For example, both PUSCH transmissions have the same priority index and both PUSCH transmissions carry HARQ-ACK information. According to solution 1-2, the UE prioritizes power allocation to PUSCH transmission #1 since PUSCH transmission #1 is associated with CORESETPoolIndex=0 (i.e. the lower CORESETPoolIndex value) .
A second embodiment relates to power allocation of UL transmissions in FDM scheme or SFN scheme in single-DCI based multi-TRP UL transmission.
Since the two transmission occasions (e.g. a first occasion and a second occasion) of one UL transmission with FDM scheme or SFN scheme to different TRPs (e.g. two TRPs) always have the same priority order specified in TS 38.213, if the total UL transmission power (i.e. the sum of the power for the first UL transmission and the power for the second UL transmission) exceeds the maximum power of the UE, a power allocation priority should be determined for the two transmission occasions of the UL transmission. In other words, the UE determines to which one of the first UL transmission (i.e. the first occasion) and the second UL transmission (i.e. the second occasion) the power allocation shall be prioritized.
Solution 2-1 (which applies to FDM scheme and SFN scheme) : The UE always prioritizes the power allocation to the UL transmission (i.e. occasion) associated with the first indicated beam.
An example of the solution 2-1 is as follows. PUSCH transmission #1 is configured with the SFN scheme. A DCI contains a TCI field that indicates a codepoint that points to two common TCI states (e.g. two joint or UL TCI states) including a first TCI state and a second TCI state which are applicable for PUSCH transmission #1. The first occasion of PUSCH transmission #1 is transmitted by using a first beam that is determined by the first TCI state, and the second occasion of PUSCH transmission #1 is transmitted by using a second beam that is determined by the second TCI state. If the total power of the two transmission occasions of PUSCH transmission #1 (i.e. the sum of the power for the first occasion of PUSCH transmission #1 and the power for the second occasion of PUSCH transmission #1) exceeds the maximum power of the UE, the UE prioritizes power allocation to the first occasion of PUSCH transmission #1 according to solution 2-1 since the first occasion of PUSCH transmission #1 is associated with the first beam (that is determined by the first TCI state of the two TCI states pointed to by the codepoint indicated by the TCI field of the DCI) .
Solution 2-2 (which only applies to FDM scheme) : The UE always prioritizes the power allocation to the UL transmission (i.e. occasion) with a lower starting resource block (RB) or a higher starting RB according to a predefined rule.
An example of the solution 2-2 is as follows. PUSCH transmission #1 is configured with FDM scheme. A DCI contains a TCI field that indicates a codepoint that points to two common TCI states (e.g. two joint or UL TCI states) including a first TCI state and a second TCI state which are applicable for PUSCH transmission #1. The first occasion of PUSCH transmission #1 is transmitted by using a first beam that is determined by the first TCI state, and  the second occasion of PUSCH transmission #1 is transmitted by using a second beam that is determined by the second TCI state. It is assumed the first occasion of PUSCH transmission #1 has a lower starting RB and the second occasion of PUSCH transmission #1 has a higher starting RB.Suppose solution 2-2 refers to that the UE always prioritizes the power allocation to the UL transmission occasion with the lower starting RB, if the total power of the two transmission occasions of PUSCH transmission #1 (i.e. the sum of the power for the first occasion of PUSCH transmission #1 and the power for the second occasion of PUSCH transmission #1) exceeds the maximum power of the UE, the UE prioritizes power allocation to the first occasion of PUSCH transmission #1 according to solution 2-2 since the first occasion of PUSCH transmission #1 has the lower starting RB.
Solution 2-3 (which applies to FDM scheme and SFN scheme) : A power allocation priority indicator is indicated or configured for the UL transmission to indicate which transmission occasion of the UL transmission has higher power allocation priority. The power allocation priority indicator is associated with the UL transmission. For example, the power allocation priority indicator can be (1) indicated by the DCI scheduling or activating the UL transmission if the UL transmission is a dynamic grant (DG) PUSCH or a Type 2 configured grant (CG) PUSCH or (2) indicated by a MAC CE for the UL transmission if the UL transmission is a PUCCH or (3) configured for the UL transmission by RRC signaling if the UL transmission is a Type 1 CG PUSCH or a PUCCH. In short, the power allocation priority indicator associated with the UL transmission can be indicated by a DCI or a MAC CE or configured by an RRC signaling.
An example of the solution 2-3 is as follows. PUSCH transmission is configured with FDM scheme. A DCI contains a TCI field that indicates a codepoint that points to two common TCI states (e.g. two joint or UL TCI states) including a first TCI state and a second TCI state which are applicable for PUSCH transmission #1. It is assumed that PUSCH transmission #1 is scheduled by a DCI that includes a power allocation priority indicator indicating that the second occasion of PUSCH transmission #1 has higher power allocation priority. If the total power of the two transmission occasions of PUSCH transmission #1 (i.e. the sum of the power for the first occasion of PUSCH transmission #1 and the power for the second occasion of PUSCH transmission #1) exceeds the maximum power of the UE, the UE prioritizes power allocation to the second occasion according to solution 2-3 since the power allocation priority  indicator indicates that the second occasion of PUSCH transmission #1 has the higher power allocation priority.
Solution 2-4 (which applies to FDM scheme and SFN scheme) : Each beam indicated for UL transmission is configured to be associated with a power allocation priority index. For example, each beam is determined by a TCI state associated with a power allocation priority index. Two beams (e.g. two TCI states determining the two beams) for a UL transmission are associated with different power allocation priority indices (e.g. a higher power allocation priority index or a lower power allocation priority index) , e.g. configured by an RRC signaling. The UE prioritizes the power allocation to the transmission occasion associated with the beam (e.g. the TCI state determining the beam) that is associated with a higher or a lower power allocation priority index according to a predefined rule.
An example of the solution 2-4 is as follows. PUSCH transmission #1 is configured with SFN scheme. A DCI contains a TCI field that indicates a codepoint that points to two common TCI states (e.g. two joint or UL TCI states) including a first TCI state and a second TCI state which are applicable for PUSCH transmission #1. The first occasion of PUSCH transmission #1 is transmitted by using a first beam that is determined by the first TCI state, and the second occasion of PUSCH transmission #1 is transmitted by using a second beam that is determined by the second TCI state. The first TCI state is associated with a higher power allocation priority index, and the second TCI state is associated with a lower power allocation priority, e.g. by RRC signaling. Suppose solution 2-4 refers to that the UE prioritizes the power allocation to the transmission occasion associated with the beam (e.g. the TCI state determining the beam) that is associated with the higher power allocation priority index, if the total power of the two transmission occasions of PUSCH transmission #1 (i.e. the sum of the power for the first occasion of PUSCH transmission #1 and the power for the second occasion of PUSCH transmission #1) exceeds the maximum power of the UE, the UE prioritizes power allocation to the first occasion of PUSCH transmission #1 according to solution 2-4, since the first occasion is associated with the first TCI state associated with the higher power allocation priority index.
A third embodiment relates to power allocation of UL transmissions in SDM scheme (i.e. NCJT scheme) in single-DCI based multi-TRP UL transmission.
Since different layers (e.g. two sets of layers) of the PUSCH transmission with SDM scheme to different TRPs (e.g. two TRPs) always have the same priority order specified in TS 38.213, if the total UL transmission power (i.e. the sum of the power for the first UL  transmission (e.g. a first set of layers) and the power for the second UL transmission (e.g. a second set of layers) ) exceeds the maximum power of the UE, a power allocation priority should be determined for different layers (e.g. two sets of layers) of the PUSCH transmission. In other words, the UE determines to which one of the first UL transmission (i.e. a first set of layers) and the second UL transmission (i.e. a second set of layers) the power allocation shall be prioritized.
Solution 3-1: UE always prioritizes the power allocation of the set of layers associated with the first beam.
An example of the solution 3-1 is as follows.
PUSCH transmission #1 is indicated to be transmitted by NCJT scheme with 4 layers. Two beams are used for PUSCH transmission #1. A DCI contains a TCI field that indicates a codepoint that points to two common TCI states (e.g. two joint or UL TCI states) including a first TCI state and a second TCI state which are applicable for PUSCH transmission #1.It is assumed that, among the four layers of PUSCH transmission #1, the first 2 layers of PUSCH transmission #1 are transmitted by using a first beam that is determined by the first TCI state, and the last 2 layers of PUSCH transmission #1 are transmitted by using a second beam that is determined by the second TCI state. If the total power of the first 2 layers and the last 2 layers of PUSCH transmission #1 (i.e. the sum of the power for the first 2 layers of PUSCH transmission #1 and the power for the second last 2 layers of PUSCH transmission #1) exceeds the maximum power of the UE, the UE prioritizes power allocation to the first 2 layers of PUSCH transmission #1 according to solution 3-1, since the first two layers are associated with the first beam (i.e. the first TCI state determining the first beam) .
Solution 3-2: A power allocation priority indicator is indicated or configured for the PUSCH transmission to indicate which set of layers has a higher power allocation priority. The UE prioritizes the power allocation to the set of layers that has the higher power allocation priority. The power allocation priority indicator is associated with the PUSCH transmission. For example, the power allocation priority indicator can be (1) indicated by DCI scheduling or activating the PUSCH transmission if the PUSCH transmission is a DG PUSCH or a Type 2 CG PUSCH, or (2) configured for the PUSCH transmission by RRC signaling if the PUSCH is a Type 1 CG PUSCH. In short, the power allocation priority indicator associated with the PUSCH transmission can be indicated by a DCI or configured by an RRC signaling.
An example of the solution 3-2 is as follows. It is assumed that PUSCH transmission #1 is indicated to be transmitted by NCJT scheme with 4 layers. Two beams are  used for PUSCH transmission #1. A DCI contains a TCI field that indicates a codepoint that points to two common TCI states (e.g. two joint or UL TCI states) including a first TCI state and a second TCI state which are applicable for PUSCH transmission #1. The DCI that schedules PUSCH transmission #1 includes a power allocation priority indicator indicating that the layers of PUSCH transmission #1 associated with the second beam has a higher power allocation priority. It is assumed that, among the four layers of PUSCH transmission #1, the first 2 layers are associated with a first beam (i.e. the first TCI state determining the first beam) , and the last 2 layers are associated with a second beam (i.e. the second TCI state determining the second beam) . If the total power of the first 2 layers and the last 2 layers of PUSCH transmission #1 (i.e. the sum of the power for the first 2 layers of PUSCH transmission #1 and the power for the second last 2 layers of PUSCH transmission #1) exceeds the maximum power of the UE, the UE prioritizes power to the last 2 layers of PUSCH transmission #1 according to solution 3-2, since the power allocation priority indicator indicates that the layers of PUSCH transmission #1 associated with the second beam (i.e. the last 2 layers of PUSCH transmission #1) has the higher power allocation priority.
Solution 3-3: Each beam configured for UL transmission is configured to be associated with a power allocation priority index. For example, each beam is determined by a TCI state associated with a power allocation priority index. Two beams (e.g. two TCI states determining the two beams) for a UL transmission are associated with different power allocation priority indices (e.g. a higher power allocation priority index or a lower power allocation priority index) , e.g. configured by an RRC signaling. The UE prioritizes the power allocation to the set of layers associated with the beam (e.g. the TCI state determining the beam) that is associated with a higher or a lower power allocation priority index according to a predefined rule.
An example of the solution 3-3 is as follows. A DCI contains a TCI field that indicates a codepoint that points to two common TCI states (e.g. two joint or UL TCI states) including a first TCI state and a second TCI state. The first TCI state is associated with a higher power allocation priority index, and the second TCI state is associated with a lower power allocation priority index, e.g. by RRC signaling. It is assumed that PUSCH transmission #1 is scheduled with a DCI with 4 layers. The first 2 layers of PUSCH transmission #1 are associated with the first beam (i.e. the first TCI state determining the first beam) , and the last 2 layers of PUSCH transmission #1 are associated with the second beam (i.e. the second TCI state determining the second beam) . Suppose solution 3-3 refers to that the UE prioritizes the power  allocation to the set of layers associated with the beam (e.g. the TCI state determining the beam) that is associated with the higher power allocation priority index, if the total power of the first 2 layers of PUSCH transmission #1 and the last 2 layers of PUSCH transmission #1 exceeds the maximum power of the UE, the UE prioritizes power allocation for the first 2 layers of PUSCH transmission #1 according to solution 3-3 since the first 2 layers of PUSCH transmission #1 is associated with the first beam (i.e. the first TCI state determining the first beam) associated with the higher power allocation priority index.
Figure 1 illustrates an embodiment of the present disclosure. As shown in Figure 1, UE is scheduled by a base station (e.g. gNB) (not shown in Figure 1) to simultaneously transmit two UL transmissions to two TRPs (e.g. a first UL transmission transmitted to TRP#1 and a second UL transmission transmitted to TRP#2) . The first UL transmission and the second UL transmission are overlapped in at least one symbol. The UE (e.g. the processor of the UE) determines a first power for transmitting the first UL transmission and a second power for transmitting the second UL transmission on the at least one symbol. If the sum of the first power and the second power exceeds the maximum power of the UE in the at least one symbol, the UE (e.g. the processor of the UE) determines power allocation for the first UL transmission and the second UL transmission.
According to any of the first embodiment (solution 1-1, and solution 1-2) , the second embodiment (solution 2-1, solution 2-2, solution 2-3, and solution 2-4) , and the third embodiment (solution 3-1, solution 3-2, and solution 3-3) , the power allocation is prioritized to one of the first UL transmission and the second UL transmission. It means that the UE (e.g. the transceiver of the UE) only transmits one of the first UL transmission and the second UL transmission to which the power allocation is prioritized, so that the power does not exceeds the maximum power of the UE in the at least one symbol.
The base station monitors, on the at least one symbol, the first UL transmission from TRP#1 and the second UL transmission from TRP#2 no matter whether only one of the first UL transmission and the second UL transmission is actually transmitted (due to for example the power allocation is prioritized to only one of the first UL transmission and the second UL transmission) or both the first UL transmission and the second UL transmission are actually transmitted (e.g. the sum of the first power and the second power does not exceed the maximum power of the UE in the at least one symbol) .
Figure 2 is a schematic flow chart diagram illustrating an embodiment of a method 200 according to the present application. In some embodiments, the method 200 is performed by an apparatus, such as a base unit. In certain embodiments, the method 200 may be performed by a processor executing program code, for example, a microcontroller, a microprocessor, a CPU, a GPU, an auxiliary processing unit, a FPGA, or the like.
The method 200 may comprise 202 determining a first power of a first UL transmission associated with a first TCI state and a second power of a second UL transmission associated with a second TCI state, wherein the first UL transmission and the second UL transmission are overlapped in at least one symbol; and 204 determining power allocation for the first UL transmission and the second UL transmission if the sum of the first power and the second power exceeds the maximum power of the UE in the at least one symbol.
In a first embodiment, if the first UL transmission and the second UL transmission are associated with two different CORESETPoolIndex values, the first UL transmission and the second UL transmission have different priority orders, and the power allocation is prioritized to one of the first UL transmission and the second UL transmission that has a higher priority order. Alternatively, if the first UL transmission and the second UL transmission are associated with two different CORESETPoolIndex values and have the same priority order, the power allocation is prioritized to one of the first UL transmission and the second UL transmission that is associated with CORESETPoolIndex = 0.
In a second embodiment, if the first UL transmission and the second UL transmission are two transmission occasions of one UL transmission configured with SFN scheme or FDM scheme, and the first TCI state and the second TCI state are two joint or UL common TCI states pointed to by a codepoint indicated by a DCI or activated by a MAC CE, the power allocation is prioritized to the first UL transmission.
Alternatively, if the first UL transmission and the second UL transmission are two transmission occasions of one UL transmission configured with FDM scheme, and are transmitted with different starting resource blocks, the power allocation is prioritized to one of the first UL transmission and the second UL transmission that is associated with a lower or higher starting resource block according to a predefined rule.
Further alternatively, if the first UL transmission and the second UL transmission are two transmission occasions of one UL transmission configured with SFN scheme or FDM scheme, and the first TCI state and the second TCI state are two joint or UL common TCI states  pointed to by a codepoint indicated by a DCI or activated by a MAC CE, and a power allocation priority indicator associated with the UL transmission indicates which transmission occasion has a higher power allocation priority, the power allocation is prioritized to the transmission occasion that is indicated to have the higher power allocation priority. Preferably, the power allocation priority indicator is indicated by a DCI or a MAC CE or configured by an RRC signaling.
Still alternatively, if the first UL transmission and the second UL transmission are two transmission occasions of one UL transmission configured with SFN scheme or FDM scheme, and the first TCI state and the second TCI state, which are two TCI states pointed to by a codepoint indicated by a DCI or activated by a MAC CE, are associated with different power allocation priority indices, the power allocation is prioritized to the transmission occasion associated with the TCI state associated with a higher or lower power allocation priority index according to a predefined rule. Preferably, the first TCI state and the second TCI state are associated with different power allocation priority indices by RRC signaling.
In a third embodiment, if the first UL transmission and the second UL transmission are a first set of layers and a second set of layers of one PUSCH transmission, and the first TCI state and the second TCI state are two TCI states pointed to by a codepoint indicated by a DCI or activated by a MAC CE, the power allocation is prioritized to one of the first set of layers and the second set of layers that is associated with the first TCI state.
Alternatively, if the first UL transmission and the second UL transmission are a first set of layers and a second set of layers of one PUSCH transmission, and the first TCI state and the second TCI state are two joint or UL common TCI states pointed to by a codepoint indicated by a DCI or activated by a MAC CE, and a power allocation priority indicator associated with the PUSCH transmission indicates which set of layers has a higher power allocation priority, the power allocation is prioritized to the set of layers that is indicated to have the higher power allocation priority. Preferably, the power allocation priority indicator is indicated by a DCI or configured by an RRC signaling.
Further alternatively, if the first UL transmission and the second UL transmission are a first set of layers and a second set of layers of one PUSCH transmission, and the first TCI state and the second TCI state, which are two TCI states pointed to by a codepoint indicated by a DCI or activated by a MAC CE, are associated with different power allocation priority indices, the power allocation is prioritized to the set of layers associated with the TCI state associated with a higher or lower power allocation priority index according to a predefined rule. Preferably,  the first TCI state and the second TCI state are associated with different power allocation priority indices by RRC signaling.
Figure 3 is a schematic block diagram illustrating apparatuses according to one embodiment.
Referring to Figure 3, the UE (i.e. the remote unit) includes a processor, a memory, and a transceiver. The processor implements a function, a process, and/or a method which are proposed in Figure 2.
The UE comprises a transceiver; and a processor coupled to the transceiver, wherein, the processor is configured to determine a first power of a first UL transmission associated with a first TCI state and a second power of a second UL transmission associated with a second TCI state, wherein the first UL transmission and the second UL transmission are overlapped in at least one symbol, and determine power allocation for the first UL transmission and the second UL transmission if the sum of the first power and the second power exceeds the maximum power of the UE in the at least one symbol.
In a first embodiment, if the first UL transmission and the second UL transmission are associated with two different CORESETPoolIndex values, the first UL transmission and the second UL transmission have different priority orders, and the power allocation is prioritized to one of the first UL transmission and the second UL transmission that has a higher priority order. Alternatively, if the first UL transmission and the second UL transmission are associated with two different CORESETPoolIndex values and have the same priority order, the power allocation is prioritized to one of the first UL transmission and the second UL transmission that is associated with CORESETPoolIndex = 0.
In a second embodiment, if the first UL transmission and the second UL transmission are two transmission occasions of one UL transmission configured with SFN scheme or FDM scheme, and the first TCI state and the second TCI state are two joint or UL common TCI states pointed to by a codepoint indicated by a DCI or activated by a MAC CE, the power allocation is prioritized to the first UL transmission.
Alternatively, if the first UL transmission and the second UL transmission are two transmission occasions of one UL transmission configured with FDM scheme, and are transmitted with different starting resource blocks, the power allocation is prioritized to one of the first UL transmission and the second UL transmission that is associated with a lower or higher starting resource block according to a predefined rule.
Further alternatively, if the first UL transmission and the second UL transmission are two transmission occasions of one UL transmission configured with SFN scheme or FDM scheme, and the first TCI state and the second TCI state are two joint or UL common TCI states pointed to by a codepoint indicated by a DCI or activated by a MAC CE, and a power allocation priority indicator associated with the UL transmission indicates which transmission occasion has a higher power allocation priority, the power allocation is prioritized to the transmission occasion that is indicated to have the higher power allocation priority. Preferably, the power allocation priority indicator is indicated by a DCI or a MAC CE or configured by an RRC signaling.
Still alternatively, if the first UL transmission and the second UL transmission are two transmission occasions of one UL transmission configured with SFN scheme or FDM scheme, and the first TCI state and the second TCI state, which are two TCI states pointed to by a codepoint indicated by a DCI or activated by a MAC CE, are associated with different power allocation priority indices, the power allocation is prioritized to the transmission occasion associated with the TCI state associated with a higher or lower power allocation priority index according to a predefined rule. Preferably, the first TCI state and the second TCI state are associated with different power allocation priority indices by RRC signaling.
In a third embodiment, if the first UL transmission and the second UL transmission are a first set of layers and a second set of layers of one PUSCH transmission, and the first TCI state and the second TCI state are two TCI states pointed to by a codepoint indicated by a DCI or activated by a MAC CE, the power allocation is prioritized to one of the first set of layers and the second set of layers that is associated with the first TCI state.
Alternatively, if the first UL transmission and the second UL transmission are a first set of layers and a second set of layers of one PUSCH transmission, and the first TCI state and the second TCI state are two joint or UL common TCI states pointed to by a codepoint indicated by a DCI or activated by a MAC CE, and a power allocation priority indicator associated with the PUSCH transmission indicates which set of layers has a higher power allocation priority, the power allocation is prioritized to the set of layers that is indicated to have the higher power allocation priority. Preferably, the power allocation priority indicator is indicated by a DCI or configured by an RRC signaling.
Further alternatively, if the first UL transmission and the second UL transmission are a first set of layers and a second set of layers of one PUSCH transmission, and the first TCI state and the second TCI state, which are two TCI states pointed to by a codepoint indicated by a  DCI or activated by a MAC CE, are associated with different power allocation priority indices, the power allocation is prioritized to the set of layers associated with the TCI state associated with a higher or lower power allocation priority index according to a predefined rule. Preferably, the first TCI state and the second TCI state are associated with different power allocation priority indices by RRC signaling.
Layers of a radio interface protocol may be implemented by the processors. The memories are connected with the processors to store various pieces of information for driving the processors. The transceivers are connected with the processors to transmit and/or receive a radio signal. Needless to say, the transceiver may be implemented as a transmitter to transmit the radio signal and a receiver to receive the radio signal.
The memories may be positioned inside or outside the processors and connected with the processors by various well-known means.
In the embodiments described above, the components and the features of the embodiments are combined in a predetermined form. Each component or feature should be considered as an option unless otherwise expressly stated. Each component or feature may be implemented not to be associated with other components or features. Further, the embodiment may be configured by associating some components and/or features. The order of the operations described in the embodiments may be changed. Some components or features of any embodiment may be included in another embodiment or replaced with the component and the feature corresponding to another embodiment. It is apparent that the claims that are not expressly cited in the claims are combined to form an embodiment or be included in a new claim.
The embodiments may be implemented by hardware, firmware, software, or combinations thereof. In the case of implementation by hardware, according to hardware implementation, the exemplary embodiment described herein may be implemented by using one or more application-specific integrated circuits (ASICs) , digital signal processors (DSPs) , digital signal processing devices (DSPDs) , programmable logic devices (PLDs) , field programmable gate arrays (FPGAs) , processors, controllers, micro-controllers, microprocessors, and the like.
Embodiments may be practiced in other specific forms. The described embodiments are to be considered in all respects to be only illustrative and not restrictive. The scope of the invention is, therefore, indicated in the appended claims rather than by the foregoing description. All changes which come within the meaning and range of equivalency of the claims are to be embraced within their scope.

Claims (15)

  1. A UE, comprising:
    a transceiver; and
    a processor coupled to the transceiver, wherein, the processor is configured to
    determine a first power of a first UL transmission associated with a first TCI state and a second power of a second UL transmission associated with a second TCI state, wherein the first UL transmission and the second UL transmission are overlapped in at least one symbol, and
    determine power allocation for the first UL transmission and the second UL transmission if the sum of the first power and the second power exceeds the maximum power of the UE in the at least one symbol.
  2. The UE of claim 1, wherein, if the first UL transmission and the second UL transmission are associated with two different CORESETPoolIndex values, the first UL transmission and the second UL transmission have different priority orders, and the power allocation is prioritized to one of the first UL transmission and the second UL transmission that has a higher priority order.
  3. The UE of claim 1, wherein, if the first UL transmission and the second UL transmission are associated with two different CORESETPoolIndex values and have the same priority order, the power allocation is prioritized to one of the first UL transmission and the second UL transmission that is associated with CORESETPoolIndex = 0.
  4. The UE of claim 1, wherein, if the first UL transmission and the second UL transmission are two transmission occasions of one UL transmission configured with SFN scheme or FDM scheme, and the first TCI state and the second TCI state are two joint or UL common TCI states pointed to by a codepoint indicated by a DCI or activated by a MAC CE, the power allocation is prioritized to the first UL transmission.
  5. The UE of claim 1, wherein, if the first UL transmission and the second UL transmission are two transmission occasions of one UL transmission configured with FDM scheme, and are transmitted with different starting resource blocks, the power allocation is prioritized to one of the first UL transmission and the second UL transmission that is associated with a lower or higher starting resource block according to a predefined rule.
  6. The UE of claim 1, wherein, if the first UL transmission and the second UL transmission are two transmission occasions of one UL transmission configured with SFN scheme or FDM scheme, and the first TCI state and the second TCI state are two joint or UL common TCI states pointed to by a codepoint indicated by a DCI or activated by a MAC CE, and a power allocation priority indicator associated with the UL transmission indicates which transmission occasion has a higher power allocation priority, the power allocation is prioritized to the transmission occasion that is indicated to have the higher power allocation priority.
  7. The UE of claim 6, wherein, the power allocation priority indicator is indicated by a DCI or a MAC CE or configured by an RRC signaling.
  8. The UE of claim 1, wherein, if the first UL transmission and the second UL transmission are two transmission occasions of one UL transmission configured with SFN scheme or FDM scheme, and the first TCI state and the second TCI state, which are two TCI states pointed to by a codepoint indicated by a DCI or activated by a MAC CE, are associated with different power allocation priority indices, the power allocation is prioritized to the transmission occasion associated with the TCI state associated with a higher or lower power allocation priority index according to a predefined rule.
  9. The UE of claim 8, wherein, the first TCI state and the second TCI state are associated with different power allocation priority indices by RRC signaling.
  10. The UE of claim 1, wherein, if the first UL transmission and the second UL transmission are a first set of layers and a second set of layers of one PUSCH transmission, and the first TCI state and the second TCI state are two TCI states pointed to by a codepoint  indicated by a DCI or activated by a MAC CE, the power allocation is prioritized to one of the first set of layers and the second set of layers that is associated with the first TCI state.
  11. The UE of claim 1, wherein, if the first UL transmission and the second UL transmission are a first set of layers and a second set of layers of one PUSCH transmission, and the first TCI state and the second TCI state are two joint or UL common TCI states pointed to by a codepoint indicated by a DCI or activated by a MAC CE, and a power allocation priority indicator associated with the PUSCH transmission indicates which set of layers has a higher power allocation priority, the power allocation is prioritized to the set of layers that is indicated to have the higher power allocation priority.
  12. The UE of claim 11, the power allocation priority indicator is indicated by a DCI or configured by an RRC signaling.
  13. The UE of claim 1, wherein, if the first UL transmission and the second UL transmission are a first set of layers and a second set of layers of one PUSCH transmission, and the first TCI state and the second TCI state, which are two TCI states pointed to by a codepoint indicated by a DCI or activated by a MAC CE, are associated with different power allocation priority indices, the power allocation is prioritized to the set of layers associated with the TCI state associated with a higher or lower power allocation priority index according to a predefined rule.
  14. The UE of claim 13, wherein, the first TCI state and the second TCI state are associated with different power allocation priority indices by RRC signaling.
  15. A method of a UE, comprising:
    determining a first power of a first UL transmission associated with a first TCI state and a second power of a second UL transmission associated with a second TCI state, wherein the first UL transmission and the second UL transmission are overlapped in at least one symbol; and
    determining power allocation for the first UL transmission and the second UL transmission if the sum of the first power and the second power exceeds the maximum power of the UE in the at least one symbol.
PCT/CN2022/070917 2022-01-10 2022-01-10 Power allocation determination in multiple trp simultaneous ul transmission WO2023130422A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/070917 WO2023130422A1 (en) 2022-01-10 2022-01-10 Power allocation determination in multiple trp simultaneous ul transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/070917 WO2023130422A1 (en) 2022-01-10 2022-01-10 Power allocation determination in multiple trp simultaneous ul transmission

Publications (1)

Publication Number Publication Date
WO2023130422A1 true WO2023130422A1 (en) 2023-07-13

Family

ID=87072751

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/070917 WO2023130422A1 (en) 2022-01-10 2022-01-10 Power allocation determination in multiple trp simultaneous ul transmission

Country Status (1)

Country Link
WO (1) WO2023130422A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109327893A (en) * 2011-11-04 2019-02-12 交互数字专利控股公司 For in the method and apparatus with the power control being wirelessly transferred on the associated multiple component carriers of multiple timing advances
CN112534889A (en) * 2018-08-09 2021-03-19 联想(新加坡)私人有限公司 Uplink transmission power allocation
WO2022000459A1 (en) * 2020-07-03 2022-01-06 Qualcomm Incorporated Transmit power adjustment for a vehicle with multiple transmission and reception points

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109327893A (en) * 2011-11-04 2019-02-12 交互数字专利控股公司 For in the method and apparatus with the power control being wirelessly transferred on the associated multiple component carriers of multiple timing advances
CN112534889A (en) * 2018-08-09 2021-03-19 联想(新加坡)私人有限公司 Uplink transmission power allocation
WO2022000459A1 (en) * 2020-07-03 2022-01-06 Qualcomm Incorporated Transmit power adjustment for a vehicle with multiple transmission and reception points

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
APPLE: "On Rel-18 MIMO Enhancement", 3GPP DRAFT; RP-212991, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. TSG RAN, no. Electronic Meeting; 20211206 - 20211217, 29 November 2021 (2021-11-29), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052097100 *
HUAWEI, HISILICON: "General discussion of UL power control for NR", 3GPP DRAFT; R1-1701687, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Athens, Greece; 20170213 - 20170217, 12 February 2017 (2017-02-12), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051208853 *
ZTE: "Discussion on Rel-18 NR MIMO evolution", 3GPP DRAFT; RP-213386, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. TSG RAN, no. Electronic Meeting; 20211206 - 20211217, 29 November 2021 (2021-11-29), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052097473 *
ZTE: "Discussion on UL power control for multi-panel operation", 3GPP DRAFT; R1-1904027 DISCUSSION ON UL POWER CONTROL FOR MULTI-PANEL OPERATION, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Xi’an, China; 20190408 - 20190412, 30 March 2019 (2019-03-30), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051691241 *
ZTE: "Further details on Multi-beam and Multi-TRP operation", 3GPP DRAFT; R1-2110955, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20211111 - 20211119, 6 November 2021 (2021-11-06), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052074688 *

Similar Documents

Publication Publication Date Title
CN110505697B (en) Transmission method, terminal and base station for hybrid automatic repeat request
US20100329200A1 (en) Apparatus and method for allocating uplink resources
WO2021258279A1 (en) Default beam determination for ul signal transmission
WO2023206107A1 (en) Terminal device scheduling method and apparatus thereof
WO2021203414A1 (en) Default beam determination
CN113783675A (en) Control information transmission method and equipment
WO2022141006A1 (en) Common tx beam indication and application for ul
US20220345903A1 (en) Determining Default Spatial Relation for UL Signals
WO2023130422A1 (en) Power allocation determination in multiple trp simultaneous ul transmission
WO2022133701A1 (en) Dynamic common beam switching for dl reception
US20210022149A1 (en) Methods and systems for use of carrier aggregation capability
US20230017292A1 (en) Media access control (mac) control element (ce) for configuring pathloss reference signal for sounding reference signal (srs)
WO2023197295A1 (en) Resource multiplexing for multi-dci based multi-panel simultaneous ul transmission
WO2021051379A1 (en) Non anchor carrier synchronization signal
WO2023010377A1 (en) Beam determination for multiple pdsch transmissions or pusch transmissions scheduled by one dci
WO2023133879A1 (en) Multi-dci multi-trp based dl transmission in unified tci framework
WO2024082571A1 (en) Multi-trp operation with unified tci framework before indicating tci states by dci
WO2023193226A1 (en) Single-dci multi-trp based pdsch reception with unified tci framework
WO2023184311A1 (en) Pdcch and csi-rs reception in multi-trp scenario with unified tci framework
WO2023137654A1 (en) Single-dci multi-trp based ul transmission in unified tci framework
WO2023130247A1 (en) Multi-dci multi-trp based ul transmission in unified tci framework
WO2021212397A1 (en) Default beam determination in cross-carrier scheduling
WO2021155572A1 (en) Default spatial relation for srs resource transmission
WO2024065643A1 (en) Support of l1 and l2 signaling based mobility
WO2023236009A1 (en) Ntn iot harq disabling with dci indication

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22917894

Country of ref document: EP

Kind code of ref document: A1