WO2023130343A1 - Transmission configuration indicator states for sounding reference signal resources - Google Patents

Transmission configuration indicator states for sounding reference signal resources Download PDF

Info

Publication number
WO2023130343A1
WO2023130343A1 PCT/CN2022/070654 CN2022070654W WO2023130343A1 WO 2023130343 A1 WO2023130343 A1 WO 2023130343A1 CN 2022070654 W CN2022070654 W CN 2022070654W WO 2023130343 A1 WO2023130343 A1 WO 2023130343A1
Authority
WO
WIPO (PCT)
Prior art keywords
srs resource
srs
tci state
resource set
same
Prior art date
Application number
PCT/CN2022/070654
Other languages
French (fr)
Inventor
Chenxi Zhu
Bingchao LIU
Yi Zhang
Wei Ling
Lingling Xiao
Original Assignee
Lenovo (Beijing) Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lenovo (Beijing) Limited filed Critical Lenovo (Beijing) Limited
Priority to PCT/CN2022/070654 priority Critical patent/WO2023130343A1/en
Publication of WO2023130343A1 publication Critical patent/WO2023130343A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0404Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas the mobile station comprising multiple antennas, e.g. to provide uplink diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0602Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using antenna switching
    • H04B7/0604Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using antenna switching with predefined switching scheme
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers

Definitions

  • the subject matter disclosed herein relates generally to wireless communications and more particularly relates to transmission configuration indicator states for sounding reference signal resources.
  • sounding reference signal resources may use different transmission configuration indicator states. Such networks may not know which transmission configuration indicator state applies to which sounding reference signal resource.
  • One embodiment of a method includes determining, at a base station, a transmission configuration indicator (TCI) state to be applied to at least one sounding reference signal (SRS) resource, at least one SRS resource set, or a combination thereof.
  • TCI transmission configuration indicator
  • the method includes signaling to a user equipment (UE) the TCI state to be applied to the at least one SRS resource, the at least one SRS resource set, or the combination thereof.
  • UE user equipment
  • One apparatus for transmission configuration indicator states for sounding reference signal resources includes a base station.
  • the apparatus includes a processor that determines a transmission configuration indicator (TCI) state to be applied to at least one sounding reference signal (SRS) resource, at least one SRS resource set, or a combination thereof.
  • the apparatus includes a transmitter that signals to a user equipment (UE) the TCI state to be applied to the at least one SRS resource, the at least one SRS resource set, or the combination thereof.
  • TCI transmission configuration indicator
  • UE user equipment
  • Another embodiment of a method for transmission configuration indicator states for sounding reference signal resources includes receiving, at a user equipment, signaling from a base station indicating a TCI state to be applied to at least one SRS resource, at least one SRS resource set, or a combination thereof. In some embodiments, the method includes applying the TCI state to the at least one SRS resource, the at least one SRS resource set, or the combination thereof.
  • Another apparatus for transmission configuration indicator states for sounding reference signal resources includes a user equipment.
  • the apparatus includes a receiver that receives signaling from a base station indicating a TCI state to be applied to at least one SRS resource, at least one SRS resource set, or a combination thereof.
  • the apparatus includes a processor that applies the TCI state to the at least one SRS resource, the at least one SRS resource set, or the combination thereof.
  • Figure 1 is a schematic block diagram illustrating one embodiment of a wireless communication system for transmission configuration indicator states for sounding reference signal resources
  • Figure 2 is a schematic block diagram illustrating one embodiment of an apparatus that may be used for transmission configuration indicator states for sounding reference signal resources;
  • Figure 3 is a schematic block diagram illustrating one embodiment of an apparatus that may be used for transmission configuration indicator states for sounding reference signal resources;
  • FIGS. 4A through 4C illustrate one embodiment of an SRS-Config IE
  • Figure 5 is a schematic block diagram illustrating one embodiment of an enhanced SRS spatial relation indication MAC CE
  • Figure 6 is a schematic block diagram illustrating one embodiment of a serving cell set based SRS spatial relation indication MAC CE
  • Figure 7 is a schematic block diagram illustrating one embodiment of a MAC-CE for indicating a TCI state for SRS resources in an SRS resource set;
  • Figure 8 is a schematic block diagram illustrating one embodiment of a MAC-CE for indicating a TCI state for multiple SRS resources
  • Figure 9 is a schematic block diagram illustrating one embodiment of a MAC-CE for indicating a TCI state for multiple SRS resource sets
  • Figure 10 is one embodiment of an SRS resource configuration
  • Figure 11 is another embodiment of an SRS resource configuration
  • Figure 12 is a flow chart diagram illustrating one embodiment of a method for transmission configuration indicator states for sounding reference signal resources.
  • Figure 13 is a flow chart diagram illustrating another embodiment of a method for transmission configuration indicator states for sounding reference signal resources.
  • embodiments may be embodied as a system, apparatus, method, or program product. Accordingly, embodiments may take the form of an entirely hardware embodiment, an entirely software embodiment (including firmware, resident software, micro-code, etc. ) or an embodiment combining software and hardware aspects that may all generally be referred to herein as a “circuit, ” “module” or “system. ” Furthermore, embodiments may take the form of a program product embodied in one or more computer readable storage devices storing machine readable code, computer readable code, and/or program code, referred hereafter as code. The storage devices may be tangible, non-transitory, and/or non-transmission. The storage devices may not embody signals. In a certain embodiment, the storage devices only employ signals for accessing code.
  • modules may be implemented as a hardware circuit comprising custom very-large-scale integration ( “VLSI” ) circuits or gate arrays, off-the-shelf semiconductors such as logic chips, transistors, or other discrete components.
  • VLSI very-large-scale integration
  • a module may also be implemented in programmable hardware devices such as field programmable gate arrays, programmable array logic, programmable logic devices or the like.
  • Modules may also be implemented in code and/or software for execution by various types of processors.
  • An identified module of code may, for instance, include one or more physical or logical blocks of executable code which may, for instance, be organized as an object, procedure, or function. Nevertheless, the executables of an identified module need not be physically located together, but may include disparate instructions stored in different locations which, when joined logically together, include the module and achieve the stated purpose for the module.
  • a module of code may be a single instruction, or many instructions, and may even be distributed over several different code segments, among different programs, and across several memory devices.
  • operational data may be identified and illustrated herein within modules, and may be embodied in any suitable form and organized within any suitable type of data structure. The operational data may be collected as a single data set, or may be distributed over different locations including over different computer readable storage devices.
  • the software portions are stored on one or more computer readable storage devices.
  • the computer readable medium may be a computer readable storage medium.
  • the computer readable storage medium may be a storage device storing the code.
  • the storage device may be, for example, but not limited to, an electronic, magnetic, optical, electromagnetic, infrared, holographic, micromechanical, or semiconductor system, apparatus, or device, or any suitable combination of the foregoing.
  • a storage device More specific examples (a non-exhaustive list) of the storage device would include the following: an electrical connection having one or more wires, a portable computer diskette, a hard disk, a random access memory ( “RAM” ) , a read-only memory ( “ROM” ) , an erasable programmable read-only memory ( “EPROM” or Flash memory) , a portable compact disc read-only memory (CD-ROM” ) , an optical storage device, a magnetic storage device, or any suitable combination of the foregoing.
  • a computer readable storage medium may be any tangible medium that can contain, or store a program for use by or in connection with an instruction execution system, apparatus, or device.
  • Code for carrying out operations for embodiments may be any number of lines and may be written in any combination of one or more programming languages including an object oriented programming language such as Python, Ruby, Java, Smalltalk, C++, or the like, and conventional procedural programming languages, such as the "C" programming language, or the like, and/or machine languages such as assembly languages.
  • the code may execute entirely on the user's computer, partly on the user's computer, as a stand-alone software package, partly on the user's computer and partly on a remote computer or entirely on the remote computer or server.
  • the remote computer may be connected to the user's computer through any type of network, including a local area network ( “LAN” ) or a wide area network ( “WAN” ) , or the connection may be made to an external computer (for example, through the Internet using an Internet Service Provider) .
  • LAN local area network
  • WAN wide area network
  • the code may also be stored in a storage device that can direct a computer, other programmable data processing apparatus, or other devices to function in a particular manner, such that the instructions stored in the storage device produce an article of manufacture including instructions which implement the function/act specified in the schematic flowchart diagrams and/or schematic block diagrams block or blocks.
  • the code may also be loaded onto a computer, other programmable data processing apparatus, or other devices to cause a series of operational steps to be performed on the computer, other programmable apparatus or other devices to produce a computer implemented process such that the code which execute on the computer or other programmable apparatus provide processes for implementing the functions/acts specified in the flowchart and/or block diagram block or blocks.
  • each block in the schematic flowchart diagrams and/or schematic block diagrams may represent a module, segment, or portion of code, which includes one or more executable instructions of the code for implementing the specified logical function (s) .
  • Figure 1 depicts an embodiment of a wireless communication system 100 for transmission configuration indicator states for sounding reference signal resources.
  • the wireless communication system 100 includes remote units 102 and network units 104. Even though a specific number of remote units 102 and network units 104 are depicted in Figure 1, one of skill in the art will recognize that any number of remote units 102 and network units 104 may be included in the wireless communication system 100.
  • the remote units 102 may include computing devices, such as desktop computers, laptop computers, personal digital assistants ( “PDAs” ) , tablet computers, smart phones, smart televisions (e.g., televisions connected to the Internet) , set-top boxes, game consoles, security systems (including security cameras) , vehicle on-board computers, network devices (e.g., routers, switches, modems) , aerial vehicles, drones, or the like.
  • the remote units 102 include wearable devices, such as smart watches, fitness bands, optical head-mounted displays, or the like.
  • the remote units 102 may be referred to as subscriber units, mobiles, mobile stations, users, terminals, mobile terminals, fixed terminals, subscriber stations, UE, user terminals, a device, or by other terminology used in the art.
  • the remote units 102 may communicate directly with one or more of the network units 104 via UL communication signals. In certain embodiments, the remote units 102 may communicate directly with other remote units 102 via sidelink communication.
  • the network units 104 may be distributed over a geographic region.
  • a network unit 104 may also be referred to and/or may include one or more of an access point, an access terminal, a base, a base station, a location server, a core network ( “CN” ) , a radio network entity, a Node-B, an evolved node-B ( “eNB” ) , a 5G node-B ( “gNB” ) , a Home Node-B, a relay node, a device, a core network, an aerial server, a radio access node, an access point ( “AP” ) , new radio ( “NR” ) , a network entity, an access and mobility management function ( “AMF” ) , a unified data management ( “UDM” ) , a unified data repository ( “UDR” ) , a UDM/UDR, a policy control function ( “PCF” ) , a radio access network ( “RAN”
  • the network units 104 are generally part of a radio access network that includes one or more controllers communicably coupled to one or more corresponding network units 104.
  • the radio access network is generally communicably coupled to one or more core networks, which may be coupled to other networks, like the Internet and public switched telephone networks, among other networks. These and other elements of radio access and core networks are not illustrated but are well known generally by those having ordinary skill in the art.
  • the wireless communication system 100 is compliant with NR protocols standardized in third generation partnership project ( “3GPP” ) , wherein the network unit 104 transmits using an OFDM modulation scheme on the downlink ( “DL” ) and the remote units 102 transmit on the uplink ( “UL” ) using a single-carrier frequency division multiple access ( “SC-FDMA” ) scheme or an orthogonal frequency division multiplexing ( “OFDM” ) scheme.
  • 3GPP third generation partnership project
  • SC-FDMA single-carrier frequency division multiple access
  • OFDM orthogonal frequency division multiplexing
  • the wireless communication system 100 may implement some other open or proprietary communication protocol, for example, WiMAX, institute of electrical and electronics engineers ( “IEEE” ) 802.11 variants, global system for mobile communications ( “GSM” ) , general packet radio service ( “GPRS” ) , universal mobile telecommunications system ( “UMTS” ) , long term evolution ( “LTE” ) variants, code division multiple access 2000 ( “CDMA2000” ) , ZigBee, Sigfoxx, among other protocols.
  • WiMAX institute of electrical and electronics engineers
  • IEEE institute of electrical and electronics engineers
  • GSM global system for mobile communications
  • GPRS general packet radio service
  • UMTS universal mobile telecommunications system
  • LTE long term evolution
  • CDMA2000 code division multiple access 2000
  • ZigBee ZigBee
  • Sigfoxx among other protocols.
  • the network units 104 may serve a number of remote units 102 within a serving area, for example, a cell or a cell sector via a wireless communication link.
  • the network units 104 transmit DL communication signals to serve the remote units 102 in the time, frequency, and/or spatial domain.
  • a remote unit 102 may receiving signaling from a base station indicating a TCI state to be applied to at least one SRS resource, at least one SRS resource set, or a combination thereof. In some embodiments, the remote unit 102 may apply the TCI state to the at least one SRS resource, the at least one SRS resource set, or the combination thereof. Accordingly, the remote unit 102 may be used for transmission configuration indicator states for sounding reference signal resources.
  • a network unit 104 may determine a transmission configuration indicator (TCI) state to be applied to at least one sounding reference signal (SRS) resource, at least one SRS resource set, or a combination thereof.
  • the network unit 104 may signal to a user equipment (UE) the TCI state to be applied to the at least one SRS resource, the at least one SRS resource set, or the combination thereof. Accordingly, the network unit 104 may be used for transmission configuration indicator states for sounding reference signal resources.
  • TCI transmission configuration indicator
  • UE user equipment
  • Figure 2 depicts one embodiment of an apparatus 200 that may be used for transmission configuration indicator states for sounding reference signal resources.
  • the apparatus 200 includes one embodiment of the remote unit 102.
  • the remote unit 102 may include a processor 202, a memory 204, an input device 206, a display 208, a transmitter 210, and a receiver 212.
  • the input device 206 and the display 208 are combined into a single device, such as a touchscreen.
  • the remote unit 102 may not include any input device 206 and/or display 208.
  • the remote unit 102 may include one or more of the processor 202, the memory 204, the transmitter 210, and the receiver 212, and may not include the input device 206 and/or the display 208.
  • the processor 202 may include any known controller capable of executing computer-readable instructions and/or capable of performing logical operations.
  • the processor 202 may be a microcontroller, a microprocessor, a central processing unit ( “CPU” ) , a graphics processing unit ( “GPU” ) , an auxiliary processing unit, a field programmable gate array ( “FPGA” ) , or similar programmable controller.
  • the processor 202 executes instructions stored in the memory 204 to perform the methods and routines described herein.
  • the processor 202 is communicatively coupled to the memory 204, the input device 206, the display 208, the transmitter 210, and the receiver 212.
  • the memory 204 in one embodiment, is a computer readable storage medium.
  • the memory 204 includes volatile computer storage media.
  • the memory 204 may include a RAM, including dynamic RAM ( “DRAM” ) , synchronous dynamic RAM ( “SDRAM” ) , and/or static RAM ( “SRAM” ) .
  • the memory 204 includes non-volatile computer storage media.
  • the memory 204 may include a hard disk drive, a flash memory, or any other suitable non-volatile computer storage device.
  • the memory 204 includes both volatile and non-volatile computer storage media.
  • the memory 204 also stores program code and related data, such as an operating system or other controller algorithms operating on the remote unit 102.
  • the input device 206 may include any known computer input device including a touch panel, a button, a keyboard, a stylus, a microphone, or the like.
  • the input device 206 may be integrated with the display 208, for example, as a touchscreen or similar touch-sensitive display.
  • the input device 206 includes a touchscreen such that text may be input using a virtual keyboard displayed on the touchscreen and/or by handwriting on the touchscreen.
  • the input device 206 includes two or more different devices, such as a keyboard and a touch panel.
  • the display 208 may include any known electronically controllable display or display device.
  • the display 208 may be designed to output visual, audible, and/or haptic signals.
  • the display 208 includes an electronic display capable of outputting visual data to a user.
  • the display 208 may include, but is not limited to, a liquid crystal display ( “LCD” ) , a light emitting diode ( “LED” ) display, an organic light emitting diode ( “OLED” ) display, a projector, or similar display device capable of outputting images, text, or the like to a user.
  • LCD liquid crystal display
  • LED light emitting diode
  • OLED organic light emitting diode
  • the display 208 may include a wearable display such as a smart watch, smart glasses, a heads-up display, or the like. Further, the display 208 may be a component of a smart phone, a personal digital assistant, a television, a table computer, a notebook (laptop) computer, a personal computer, a vehicle dashboard, or the like.
  • the display 208 includes one or more speakers for producing sound.
  • the display 208 may produce an audible alert or notification (e.g., a beep or chime) .
  • the display 208 includes one or more haptic devices for producing vibrations, motion, or other haptic feedback.
  • all or portions of the display 208 may be integrated with the input device 206.
  • the input device 206 and display 208 may form a touchscreen or similar touch-sensitive display.
  • the display 208 may be located near the input device 206.
  • the receiver 212 receives signaling from a base station indicating a TCI state to be applied to at least one SRS resource, at least one SRS resource set, or a combination thereof.
  • the processor 202 applies the TCI state to the at least one SRS resource, the at least one SRS resource set, or the combination thereof.
  • the remote unit 102 may have any suitable number of transmitters 210 and receivers 212.
  • the transmitter 210 and the receiver 212 may be any suitable type of transmitters and receivers.
  • the transmitter 210 and the receiver 212 may be part of a transceiver.
  • Figure 3 depicts one embodiment of an apparatus 300 that may be used for transmission configuration indicator states for sounding reference signal resources.
  • the apparatus 300 includes one embodiment of the network unit 104.
  • the network unit 104 may include a processor 302, a memory 304, an input device 306, a display 308, a transmitter 310, and a receiver 312.
  • the processor 302, the memory 304, the input device 306, the display 308, the transmitter 310, and the receiver 312 may be substantially similar to the processor 202, the memory 204, the input device 206, the display 208, the transmitter 210, and the receiver 212 of the remote unit 102, respectively.
  • the processor 302 determines a transmission configuration indicator (TCI) state to be applied to at least one sounding reference signal (SRS) resource, at least one SRS resource set, or a combination thereof.
  • TCI transmission configuration indicator
  • the transmitter 310 signals to a user equipment (UE) the TCI state to be applied to the at least one SRS resource, the at least one SRS resource set, or the combination thereof.
  • UE user equipment
  • a common transmission configuration indicator ( “TCI” ) state may be indicated in a downlink control information ( “DCI” ) format (e.g., DCI format 1_1, DCI format 1_2) for use by a physical uplink channel (e.g., physical uplink shared channel ( “PUSCH” ) , physical uplink control channel ( “PUCCH” ) ) and sounding reference signal ( “SRS” ) resources that share the same TCI state with the physical uplink channel (e.g., PUSCH and/or PUCCH) . Some SRS resources do not share this common TCI state.
  • DCI downlink control information
  • PUSCH physical uplink shared channel
  • PUCCH physical uplink control channel
  • SRS sounding reference signal
  • TCI states for such SRS resources may need to be signaled to a user equipment ( “UE” ) .
  • UE user equipment
  • TCI states for SRS resources not sharing the same TCI with a physical uplink channel e.g., PUSCH and/or PUCCH may be signaled.
  • parameters of an SRS resource are configured by radio resource control ( “RRC” ) signaling.
  • RRC radio resource control
  • SRS configuration defines a list of SRS-Resources, a list of SRS-PosResources, a list of SRS-PosResourceSets, and a list of SRS-ResourceSets.
  • Each resource set defines a set of SRS-Resources or SRS-PosResources.
  • a network may trigger the transmission of the set of SRS-Resources or SRS-PosResources using a configured aperiodicSRS-ResourceTrigger (e.g., layer 1 ( “L1” ) DCI) .
  • aperiodicSRS-ResourceTrigger e.g., layer 1 ( “L1” ) DCI.
  • Figures 4A through 4C illustrate one embodiment of an SRS-Config IE 400.
  • UL TX power control parameters e.g., p0, alpha, path loss reference signal ( “PL-RS” ) , srs-PowerControlAdjustmentStates
  • PL-RS path loss reference signal
  • srs-PowerControlAdjustmentStates may be configured in an SRS resource set.
  • spatial relation information, p0, alpha, PL-RS, srs-PowerControlAdjustmentStates may all be taken from a TCI state.
  • spatial relation information may be updated with a medium access control ( “MAC” ) control element ( “CE” ) ( “MAC-CE” ) .
  • MAC medium access control
  • CE control element
  • two MAC-CEs are defined for activation and/or deactivation spatial relation for SRS resources.
  • an enhanced SRS spatial relation indication MAC CE and serving cell set based SRS spatial relation indication MAC CE may be used to update spatial relation information for SRS resources.
  • Figure 5 is a schematic block diagram illustrating one embodiment of an enhanced SRS spatial relation indication MAC CE 500.
  • Figure 6 is a schematic block diagram illustrating one embodiment of a serving cell set based SRS spatial relation indication MAC CE 600.
  • a TCI state of SRS resources may be signaled with a combination of an RRC configuration and MAC-CE.
  • the RRC configuration determines which SRS resources or SRS resource sets share the same UL or joint TCI state with a PUCCH and/or a PUSCH. For those SRS resources not sharing the same TCI with the PUCCH and/or the PUSCH, their UL TCIs may be indicated with a MAC-CE SRS TCI state indication message.
  • SRS resources for non-codebook and antenna switching may be treated differently than other type of SRS because a TCI state for SRS resources for non-codebook and antenna switching may be defined at a level of an SRS resource set (e.g., TCI state configured for SRS resources in a set may be the same) , while the TCI state for other SRS resources (e.g., SRS for codebook and/or for beam management) may be defined per SRS resource.
  • TCI state for SRS resources for non-codebook and antenna switching may be defined at a level of an SRS resource set (e.g., TCI state configured for SRS resources in a set may be the same)
  • the TCI state for other SRS resources e.g., SRS for codebook and/or for beam management
  • there may be two different types of MAC-CE one for TCI state indication for SRS resources, and another for TCI state indication for SRS resource sets.
  • a MAC-CE for TCI state indication for SRS resources.
  • SRS resources with usage “codebook” and/or “beammanagement” different resources in the same resource set may have different TCIs. TCI states may need to be signaled for each SRS resource. Two MAC-CE may be designed for this.
  • the first MAC-CE indicates TCI states for the SRS resources in an SRS resource set.
  • Figure 7 is a schematic block diagram illustrating one embodiment of a MAC-CE 700 for indicating a TCI state for SRS resources in an SRS resource set.
  • a MAC-CE may indicate an UL or joint TCI state for each of the N SRS resources in the same SRS resource set.
  • the MAC-CE may include a cell identifier ( “ID” ) , a bandwidth part ( “BWP” ) ID, and an SRS resource set ID of an SRS resource, and the UL or joint TCI state of each of the SRS resources in the SRS resource set may be in sequential order.
  • a TCI state ID field may indicate an UL TCI state or a joint TCI state dependent on the TCI framework configured on a cell indicated by the serving cell ID field.
  • TCI state ID 0 may be the TCI state for a first SRS resource in an SRS resource set
  • TCI state ID 1 may be the TCI state for a second SRS resource in the SRS resource set
  • a bit width of the TCI state ID field may depend on a maximal number of joint TCI states or UL TCI states configured on the serving cell indicated by the serving cell ID field.
  • a supplementary uplink ( “SUL” ) field may indicate whether a MAC CE applies to a normal uplink ( “NUL” ) carrier or SUL carrier configuration (e.g., 1 to indicate that it applies to the SUL carrier configuration, and 0 to indicate that it applies to the NUL carrier configuration) .
  • a PL-RS and UL power control ( “PC” ) parameter set including P0, alpha, and a closed loop index for SRS associated with an indicated TCI state may be applied to corresponding SRS resources.
  • a UE may expect SRS resources within the same SRS resource set to be indicated with the same power control parameters.
  • a second MAC-CE indicates TCI states for one or more SRS resources. These SRS resources may not necessarily be from the same SRS resource set.
  • Figure 8 is a schematic block diagram illustrating one embodiment of a MAC-CE 800 for indicating a TCI state for multiple SRS resources. The TCI state for SRS resource i is TCI state ID i. These SRS resources are not necessarily all from the same SRS resource set. This may give more flexibility.
  • all SRS resources with an SRS resource set used for non-codebook may be indicated with a same TCI state, and all the SRS resource used for antenna switching may be indicated with a same TCI state
  • the UE may apply the indicated TCI state and an associated UL PC parameter set for SRS to all the SRS resources within the SRS resource set used for non-codebook. If the UE receives a MAC CE to indicate a TCI state to an SRS resource used for antenna switching, the UE may apply the indicated TCI state to all the SRS resources within all the SRS resource sets used for antenna switching.
  • a same TCI state may be expected to be indicated to all of those SRS resources. If the UE receives a MAC CE containing multiple SRS resources used for antenna switching, a same TCI state may be expected to be indicated for all of those SRS resources.
  • SRS resource set with usage configured as “noncodebook” or “antenna switching” all the SRS resources in the same SRS resource set have the same TCI.
  • a MAC-CE may be applied to indicate the TCI states for one or more SRS resource sets.
  • the TCI state for SRS resource set i is TCI state ID i.
  • a PL-RS and an UL PC parameter set including P0, alpha, and a closed loop index for SRS associated with an indicated TCI state may be applied to corresponding SRS resource sets.
  • FIG. 9 is a schematic block diagram illustrating one embodiment of a MAC-CE 900 for indicating a TCI state for multiple SRS resource sets.
  • indicated TCI state IDs may be applied to multiple carriers (e.g., component carriers ( “CCs” ) ) .
  • a MAC-CE message may be used to update TCI states for SRS resources or SRS resource sets in multiple CCs. This may require a definition of one or more lists of multiple carriers in an RRC configuration (e.g., simultaneousTCI_UpdateList) . If a MAC-CE is sent to a UE to update a TCI state for SRS resources or SRS resource sets in a carrier c, and c is part of the list simultaneousTCI_UpdateList, the same TCI states signaled in the MAC-CE may be applied to the SRS resources or SRS resource sets in all the BWPs of all CCs in the list with the same SRS resource ID or SRS resource set ID.
  • simultaneousTCI_UpdateList e.g., simultaneousTCI_UpdateList
  • simultaneousTCI_UpdateList1 and simultaneousTCI_UpdateList2 with different sets of CCs.
  • the corresponding UE behavior may be defined as: 1) if the CC is configured with an UL TCI state pool or joint TCI state pool, the UE may update the TCI state with the same ID configured in each CC to the SRS resource or SRS resource set with the same indicated resource or set ID in the CC; and 2) if the CC is not configured with UL TCI state pool or joint TCI state pool, the UE may update the TCI state with the same ID configured in the reference BWP and/or CC to the SRS resource or SRS resource set with the same indicated resource or set ID in the CC.
  • TCI state indication for other SRS resources.
  • their TCI states may be dynamically signaled in a TCI field of a DCI format (e.g., DCI format 1_1, DCI format 1_2) . It may be sufficient to only signal which SRS resources share (or do not share) a common TCI state with PUCCH and PUSCH. This may be done in an RRC configuration of SRS resource or an SRS resource set.
  • FIG 10 is one embodiment of an SRS resource configuration 1000.
  • SRS resources with usage “codebook” or “beammanagement” ” different resources in the same resource set may have different TCIs.
  • the SRS resource may be configured to share a common TCI with PUCCH and/or PUSCH if the field “commonTCI” set to “ENABLED” .
  • the TCI state applied to the SRS resource may be dynamically signaled in DCI. Otherwise, its TCI state is configured by MAC-CE.
  • Figure 11 is another embodiment of an SRS resource configuration 1100.
  • whether a SRS resource or a SRS resource set share the TCI state indicated by a DCI format may be implicitly determined by whether a TCI state is configured for the SRS resource. If a TCI state is configured for an SRS resource by RRC, the SRS resource may not share the TCI state indicated by the DCI format (e.g., DCI format 1_1, DCI format 1_2) and the applied TCI state may be further updated by a MAC CE. If the SRS resource is not configured with a TCI state, it may share the TCI state indicated by a DCI format (e.g., DCI format 1_1, DCI format 1_2) .
  • a DCI format e.g., DCI format 1_1, DCI format 1_2
  • the SRS resource set may be configured to share the common TCI with PUCCH and/or PUSCH if a field “commonTCI” being set to “ENABLED” .
  • the TCI state applied to the SRS resource may be dynamically signaled in DCI, otherwise its TCI state is configured by MAC-CE.
  • Figure 12 is a flow chart diagram illustrating one embodiment of a method 1200 for transmission configuration indicator states for sounding reference signal resources.
  • the method 1200 is performed by an apparatus, such as the network unit 104.
  • the method 1200 may be performed by a processor executing program code, for example, a microcontroller, a microprocessor, a CPU, a GPU, an auxiliary processing unit, a FPGA, or the like.
  • the method 1200 includes determining 1202 a transmission configuration indicator (TCI) state to be applied to at least one sounding reference signal (SRS) resource, at least one SRS resource set, or a combination thereof. In some embodiments, the method 1200 includes signaling 1204 to a user equipment (UE) the TCI state to be applied to the at least one SRS resource, the at least one SRS resource set, or the combination thereof.
  • TCI transmission configuration indicator
  • UE user equipment
  • the TCI state is to be applied to all SRS resources of the at least one SRS resource set if a medium access control (MAC) control element (CE) indicates the TCI state for the at least one SRS resource set.
  • MAC medium access control
  • CE control element
  • the TCI state is to be applied to all SRS resources in the SRS resource set.
  • the TCI state is applied to all SRS resources in the SRS resource set.
  • the TCI state is to be applied to all SRS resource sets with the same resource set identifier (ID) in all bandwidth parts (BWPs) of all component carriers (CCs) in the carrier list defined in radio resource control (RRC) signaling for simultaneously updating SRS TCI in more than one carrier.
  • the method 1200 further comprises, if a CC is configured with an uplink (UL) TCI state pool or joint TCI state pool, updating the TCI state with the same ID configured in the CC for the at least one SRS resource, the at least one SRS resource set, or the combination thereof with the same resource ID or resource set ID in the CC.
  • UL uplink
  • the method 1200 further comprises, if a CC is not configured with an UL TCI state pool or joint TCI state pool, updating the TCI state with the same ID configured in a reference BWP or reference CC with the SRS resource or SRS resource set with the same ID configured in the CC for the at least one SRS resource, the at least one SRS resource set, or the combination thereof with the same resource ID or resource set ID in the CC.
  • the TCI state is to be applied to each SRS resource of the at least one SRS resource if a MAC CE indicates the TCI state for the at least one SRS resource.
  • the TCI state is to be applied to all SRS resources in the same SRS resource set. In certain embodiments, if one SRS resource is used for antenna switching, the TCI state is to be applied to all SRS resources in the same SRS resource set. In some embodiments, the at least one SRS resource is configured with usage “codebook” or “beammanagement” .
  • the TCI state is to be applied to all SRS resources with the same resource ID in all BWPs of all CCs in the carrier list defined in RRC for simultaneously updating SRS TCI in more than one carrier.
  • the method 1200 further comprises, if a CC is configured with an UL TCI state pool or joint TCI state pool, updating the TCI state with the same ID configured in the CC for the at least one SRS resource, the at least one SRS resource set, or the combination thereof with the same resource ID or resource set ID in the CC.
  • the method 1200 further comprises, if a CC is not configured with an UL TCI state pool or joint TCI state pool, updating the TCI state with the same ID configured in a reference BWP or reference CC with the SRS resource or SRS resource set with the same ID configured in the CC for the at least one SRS resource, the at least one SRS resource set, or the combination thereof with the same resource ID or resource set ID in the CC.
  • the TCI state is not shared with a physical uplink control channel and a physical uplink shared channel, and the signaling is sent as a MAC CE message.
  • the at least one SRS resource belong to the same SRS resource set. In one embodiment, the at least one SRS resource belong to different SRS resource sets.
  • the TCI state is shared with a physical uplink control channel and a physical uplink shared channel, and the signaling is sent as a RRC configuration message.
  • Figure 13 is a flow chart diagram illustrating another embodiment of a method 1300 for transmission configuration indicator states for sounding reference signal resources.
  • the method 1300 is performed by an apparatus, such as the remote unit 102.
  • the method 1300 may be performed by a processor executing program code, for example, a microcontroller, a microprocessor, a CPU, a GPU, an auxiliary processing unit, a FPGA, or the like.
  • the method 1300 includes receiving 1302 signaling from a base station indicating a TCI state to be applied to at least one SRS resource, at least one SRS resource set, or a combination thereof. In some embodiments, the method 1300 includes applying 1304 the TCI state to the at least one SRS resource, the at least one SRS resource set, or the combination thereof.
  • the TCI state is to be applied to all SRS resources of the at least one SRS resource set if a medium access control (MAC) control element (CE) indicates the TCI state for the at least one SRS resource set.
  • MAC medium access control
  • CE control element
  • the TCI state is applied to all SRS resources in the SRS resource set.
  • the TCI state is to be applied to all SRS resource sets with the same resource set identifier (ID) in all bandwidth parts (BWPs) of all component carriers (CCs) in the carrier list defined in radio resource control (RRC) signaling for simultaneously updating SRS TCI in more than one carrier.
  • the TCI state is to be applied to each SRS resource of the at least one SRS resource if a MAC CE indicates the TCI state for the at least one SRS resource.
  • the TCI state is to be applied to all SRS resources in the same SRS resource set. In various embodiments, if one SRS resource is used for antenna switching, the TCI state is to be applied to all SRS resources in the same SRS resource set. In one embodiment, the at least one SRS resource is configured with usage “codebook” or “beammanagement” .
  • the TCI state is to be applied to all SRS resources with the same resource ID in all BWPs of all CCs in the carrier list defined in RRC for simultaneously updating SRS TCI in more than one carrier.
  • the TCI state is not shared with a physical uplink control channel and a physical uplink shared channel, and the signaling is sent as a MAC CE message.
  • the at least one SRS resource belong to the same SRS resource set. In one embodiment, the at least one SRS resource belong to different SRS resource sets.
  • the TCI state is shared with a physical uplink control channel and a physical uplink shared channel, and the signaling is sent as a RRC configuration message.
  • a method of a base station comprises: determining a transmission configuration indicator (TCI) state to be applied to at least one sounding reference signal (SRS) resource, at least one SRS resource set, or a combination thereof; and signaling to a user equipment (UE) the TCI state to be applied to the at least one SRS resource, the at least one SRS resource set, or the combination thereof.
  • TCI transmission configuration indicator
  • the TCI state is to be applied to all SRS resources of the at least one SRS resource set if a medium access control (MAC) control element (CE) indicates the TCI state for the at least one SRS resource set.
  • MAC medium access control
  • CE control element
  • the TCI state is to be applied to all SRS resources in the SRS resource set.
  • the TCI state is applied to all SRS resources in the SRS resource set.
  • the TCI state is to be applied to all SRS resource sets with the same resource set identifier (ID) in all bandwidth parts (BWPs) of all component carriers (CCs) in the carrier list defined in radio resource control (RRC) signaling for simultaneously updating SRS TCI in more than one carrier.
  • ID resource set identifier
  • BWPs bandwidth parts
  • CCs component carriers
  • RRC radio resource control
  • the method further comprises, if a CC is configured with an uplink (UL) TCI state pool or joint TCI state pool, updating the TCI state with the same ID configured in the CC for the at least one SRS resource, the at least one SRS resource set, or the combination thereof with the same resource ID or resource set ID in the CC.
  • UL uplink
  • the method further comprises, if a CC is not configured with an UL TCI state pool or joint TCI state pool, updating the TCI state with the same ID configured in a reference BWP or reference CC with the SRS resource or SRS resource set with the same ID configured in the CC for the at least one SRS resource, the at least one SRS resource set, or the combination thereof with the same resource ID or resource set ID in the CC.
  • the TCI state is to be applied to each SRS resource of the at least one SRS resource if a MAC CE indicates the TCI state for the at least one SRS resource.
  • the TCI state is to be applied to all SRS resources in the same SRS resource set.
  • the TCI state is to be applied to all SRS resources in the same SRS resource set.
  • the at least one SRS resource is configured with usage “codebook” or “beammanagement” .
  • the TCI state is to be applied to all SRS resources with the same resource ID in all BWPs of all CCs in the carrier list defined in RRC for simultaneously updating SRS TCI in more than one carrier.
  • the method further comprises, if a CC is configured with an UL TCI state pool or joint TCI state pool, updating the TCI state with the same ID configured in the CC for the at least one SRS resource, the at least one SRS resource set, or the combination thereof with the same resource ID or resource set ID in the CC.
  • the method further comprises, if a CC is not configured with an UL TCI state pool or joint TCI state pool, updating the TCI state with the same ID configured in a reference BWP or reference CC with the SRS resource or SRS resource set with the same ID configured in the CC for the at least one SRS resource, the at least one SRS resource set, or the combination thereof with the same resource ID or resource set ID in the CC.
  • the TCI state is not shared with a physical uplink control channel and a physical uplink shared channel, and the signaling is sent as a MAC CE message.
  • the at least one SRS resource belong to the same SRS resource set.
  • the at least one SRS resource belong to different SRS resource sets.
  • the TCI state is shared with a physical uplink control channel and a physical uplink shared channel, and the signaling is sent as a RRC configuration message.
  • an apparatus comprises a base station.
  • the apparatus further comprises: a processor that determines a transmission configuration indicator (TCI) state to be applied to at least one sounding reference signal (SRS) resource, at least one SRS resource set, or a combination thereof; and a transmitter that signals to a user equipment (UE) the TCI state to be applied to the at least one SRS resource, the at least one SRS resource set, or the combination thereof.
  • TCI transmission configuration indicator
  • the TCI state is to be applied to all SRS resources of the at least one SRS resource set if a medium access control (MAC) control element (CE) indicates the TCI state for the at least one SRS resource set.
  • MAC medium access control
  • CE control element
  • the TCI state is to be applied to all SRS resources in the SRS resource set.
  • the TCI state is applied to all SRS resources in the SRS resource set.
  • the TCI state is to be applied to all SRS resource sets with the same resource set identifier (ID) in all bandwidth parts (BWPs) of all component carriers (CCs) in the carrier list defined in radio resource control (RRC) signaling for simultaneously updating SRS TCI in more than one carrier.
  • ID resource set identifier
  • BWPs bandwidth parts
  • CCs component carriers
  • RRC radio resource control
  • the processor if a CC is configured with an uplink (UL) TCI state pool or joint TCI state pool, updates the TCI state with the same ID configured in the CC for the at least one SRS resource, the at least one SRS resource set, or the combination thereof with the same resource ID or resource set ID in the CC.
  • UL uplink
  • the processor if a CC is not configured with an UL TCI state pool or joint TCI state pool, updates the TCI state with the same ID configured in a reference BWP or reference CC with the SRS resource or SRS resource set with the same ID configured in the CC for the at least one SRS resource, the at least one SRS resource set, or the combination thereof with the same resource ID or resource set ID in the CC.
  • the TCI state is to be applied to each SRS resource of the at least one SRS resource if a MAC CE indicates the TCI state for the at least one SRS resource.
  • the TCI state is to be applied to all SRS resources in the same SRS resource set.
  • the TCI state is to be applied to all SRS resources in the same SRS resource set.
  • the at least one SRS resource is configured with usage “codebook” or “beammanagement” .
  • the TCI state is to be applied to all SRS resources with the same resource ID in all BWPs of all CCs in the carrier list defined in RRC for simultaneously updating SRS TCI in more than one carrier.
  • the processor if a CC is configured with an UL TCI state pool or joint TCI state pool, updates the TCI state with the same ID configured in the CC for the at least one SRS resource, the at least one SRS resource set, or the combination thereof with the same resource ID or resource set ID in the CC.
  • the processor if a CC is not configured with an UL TCI state pool or joint TCI state pool, updates the TCI state with the same ID configured in a reference BWP or reference CC with the SRS resource or SRS resource set with the same ID configured in the CC for the at least one SRS resource, the at least one SRS resource set, or the combination thereof with the same resource ID or resource set ID in the CC.
  • the TCI state is not shared with a physical uplink control channel and a physical uplink shared channel, and the signaling is sent as a MAC CE message.
  • the at least one SRS resource belong to the same SRS resource set.
  • the at least one SRS resource belong to different SRS resource sets.
  • the TCI state is shared with a physical uplink control channel and a physical uplink shared channel, and the signaling is sent as a RRC configuration message.
  • a method of a user equipment comprises: receiving signaling from a base station indicating a TCI state to be applied to at least one SRS resource, at least one SRS resource set, or a combination thereof; and applying the TCI state to the at least one SRS resource, the at least one SRS resource set, or the combination thereof.
  • the TCI state is to be applied to all SRS resources of the at least one SRS resource set if a medium access control (MAC) control element (CE) indicates the TCI state for the at least one SRS resource set.
  • MAC medium access control
  • CE control element
  • the TCI state is to be applied to all SRS resources in the SRS resource set.
  • the TCI state is applied to all SRS resources in the SRS resource set.
  • the TCI state is to be applied to all SRS resource sets with the same resource set identifier (ID) in all bandwidth parts (BWPs) of all component carriers (CCs) in the carrier list defined in radio resource control (RRC) signaling for simultaneously updating SRS TCI in more than one carrier.
  • ID resource set identifier
  • BWPs bandwidth parts
  • CCs component carriers
  • RRC radio resource control
  • the TCI state is to be applied to each SRS resource of the at least one SRS resource if a MAC CE indicates the TCI state for the at least one SRS resource.
  • the TCI state is to be applied to all SRS resources in the same SRS resource set.
  • the TCI state is to be applied to all SRS resources in the same SRS resource set.
  • the at least one SRS resource is configured with usage “codebook” or “beammanagement” .
  • the TCI state is to be applied to all SRS resources with the same resource ID in all BWPs of all CCs in the carrier list defined in RRC for simultaneously updating SRS TCI in more than one carrier.
  • the TCI state is not shared with a physical uplink control channel and a physical uplink shared channel, and the signaling is sent as a MAC CE message.
  • the at least one SRS resource belong to the same SRS resource set.
  • the at least one SRS resource belong to different SRS resource sets.
  • the TCI state is shared with a physical uplink control channel and a physical uplink shared channel, and the signaling is sent as a RRC configuration message.
  • an apparatus comprises a user equipment (UE) .
  • the apparatus further comprises: a receiver that receives signaling from a base station indicating a TCI state to be applied to at least one SRS resource, at least one SRS resource set, or a combination thereof; and a processor that applies the TCI state to the at least one SRS resource, the at least one SRS resource set, or the combination thereof.
  • UE user equipment
  • the TCI state is to be applied to all SRS resources of the at least one SRS resource set if a medium access control (MAC) control element (CE) indicates the TCI state for the at least one SRS resource set.
  • MAC medium access control
  • CE control element
  • the TCI state is to be applied to all SRS resources in the SRS resource set.
  • the TCI state is applied to all SRS resources in the SRS resource set.
  • the TCI state is to be applied to all SRS resource sets with the same resource set identifier (ID) in all bandwidth parts (BWPs) of all component carriers (CCs) in the carrier list defined in radio resource control (RRC) signaling for simultaneously updating SRS TCI in more than one carrier.
  • ID resource set identifier
  • BWPs bandwidth parts
  • CCs component carriers
  • RRC radio resource control
  • the TCI state is to be applied to each SRS resource of the at least one SRS resource if a MAC CE indicates the TCI state for the at least one SRS resource.
  • the TCI state is to be applied to all SRS resources in the same SRS resource set.
  • the TCI state is to be applied to all SRS resources in the same SRS resource set.
  • the at least one SRS resource is configured with usage “codebook” or “beammanagement” .
  • the TCI state is to be applied to all SRS resources with the same resource ID in all BWPs of all CCs in the carrier list defined in RRC for simultaneously updating SRS TCI in more than one carrier.
  • the TCI state is not shared with a physical uplink control channel and a physical uplink shared channel, and the signaling is sent as a MAC CE message.
  • the at least one SRS resource belong to the same SRS resource set.
  • the at least one SRS resource belong to different SRS resource sets.
  • the TCI state is shared with a physical uplink control channel and a physical uplink shared channel, and the signaling is sent as a RRC configuration message.

Abstract

Apparatuses, methods, and systems are disclosed for transmission configuration indicator states for sounding reference signal resources. One method (1200) includes determining (1202), at a base station, a transmission configuration indicator (TCI) state to be applied to at least one sounding reference signal (SRS) resource, at least one SRS resource set, or a combination thereof. The method (1200) includes signaling (1204) to a user equipment (UE) the TCI state to be applied to the at least one SRS resource, the at least one SRS resource set, or the combination thereof.

Description

TRANSMISSION CONFIGURATION INDICATOR STATES FOR SOUNDING REFERENCE SIGNAL RESOURCES FIELD
The subject matter disclosed herein relates generally to wireless communications and more particularly relates to transmission configuration indicator states for sounding reference signal resources.
BACKGROUND
In certain wireless communications networks, sounding reference signal resources may use different transmission configuration indicator states. Such networks may not know which transmission configuration indicator state applies to which sounding reference signal resource.
BRIEF SUMMARY
Methods for transmission configuration indicator states for sounding reference signal resources are disclosed. Apparatuses and systems also perform the functions of the methods. One embodiment of a method includes determining, at a base station, a transmission configuration indicator (TCI) state to be applied to at least one sounding reference signal (SRS) resource, at least one SRS resource set, or a combination thereof. In some embodiments, the method includes signaling to a user equipment (UE) the TCI state to be applied to the at least one SRS resource, the at least one SRS resource set, or the combination thereof.
One apparatus for transmission configuration indicator states for sounding reference signal resources includes a base station. In some embodiments, the apparatus includes a processor that determines a transmission configuration indicator (TCI) state to be applied to at least one sounding reference signal (SRS) resource, at least one SRS resource set, or a combination thereof. In various embodiments, the apparatus includes a transmitter that signals to a user equipment (UE) the TCI state to be applied to the at least one SRS resource, the at least one SRS resource set, or the combination thereof.
Another embodiment of a method for transmission configuration indicator states for sounding reference signal resources includes receiving, at a user equipment, signaling from a base station indicating a TCI state to be applied to at least one SRS resource, at least one SRS resource set, or a combination thereof. In some embodiments, the method includes applying the TCI state to the at least one SRS resource, the at least one SRS resource set, or the combination thereof.
Another apparatus for transmission configuration indicator states for sounding reference signal resources includes a user equipment. In some embodiments, the apparatus includes a receiver that receives signaling from a base station indicating a TCI state to be applied to at least one SRS resource, at least one SRS resource set, or a combination thereof. In various embodiments, the apparatus includes a processor that applies the TCI state to the at least one SRS resource, the at least one SRS resource set, or the combination thereof.
BRIEF DESCRIPTION OF THE DRAWINGS
A more particular description of the embodiments briefly described above will be rendered by reference to specific embodiments that are illustrated in the appended drawings. Understanding that these drawings depict only some embodiments and are not therefore to be considered to be limiting of scope, the embodiments will be described and explained with additional specificity and detail through the use of the accompanying drawings, in which:
Figure 1 is a schematic block diagram illustrating one embodiment of a wireless communication system for transmission configuration indicator states for sounding reference signal resources;
Figure 2 is a schematic block diagram illustrating one embodiment of an apparatus that may be used for transmission configuration indicator states for sounding reference signal resources;
Figure 3 is a schematic block diagram illustrating one embodiment of an apparatus that may be used for transmission configuration indicator states for sounding reference signal resources;
Figures 4A through 4C illustrate one embodiment of an SRS-Config IE;
Figure 5 is a schematic block diagram illustrating one embodiment of an enhanced SRS spatial relation indication MAC CE;
Figure 6 is a schematic block diagram illustrating one embodiment of a serving cell set based SRS spatial relation indication MAC CE;
Figure 7 is a schematic block diagram illustrating one embodiment of a MAC-CE for indicating a TCI state for SRS resources in an SRS resource set;
Figure 8 is a schematic block diagram illustrating one embodiment of a MAC-CE for indicating a TCI state for multiple SRS resources;
Figure 9 is a schematic block diagram illustrating one embodiment of a MAC-CE for indicating a TCI state for multiple SRS resource sets;
Figure 10 is one embodiment of an SRS resource configuration;
Figure 11 is another embodiment of an SRS resource configuration;
Figure 12 is a flow chart diagram illustrating one embodiment of a method for transmission configuration indicator states for sounding reference signal resources; and
Figure 13 is a flow chart diagram illustrating another embodiment of a method for transmission configuration indicator states for sounding reference signal resources.
DETAILED DESCRIPTION
As will be appreciated by one skilled in the art, aspects of the embodiments may be embodied as a system, apparatus, method, or program product. Accordingly, embodiments may take the form of an entirely hardware embodiment, an entirely software embodiment (including firmware, resident software, micro-code, etc. ) or an embodiment combining software and hardware aspects that may all generally be referred to herein as a “circuit, ” “module” or “system. ” Furthermore, embodiments may take the form of a program product embodied in one or more computer readable storage devices storing machine readable code, computer readable code, and/or program code, referred hereafter as code. The storage devices may be tangible, non-transitory, and/or non-transmission. The storage devices may not embody signals. In a certain embodiment, the storage devices only employ signals for accessing code.
Certain of the functional units described in this specification may be labeled as modules, in order to more particularly emphasize their implementation independence. For example, a module may be implemented as a hardware circuit comprising custom very-large-scale integration ( “VLSI” ) circuits or gate arrays, off-the-shelf semiconductors such as logic chips, transistors, or other discrete components. A module may also be implemented in programmable hardware devices such as field programmable gate arrays, programmable array logic, programmable logic devices or the like.
Modules may also be implemented in code and/or software for execution by various types of processors. An identified module of code may, for instance, include one or more physical or logical blocks of executable code which may, for instance, be organized as an object, procedure, or function. Nevertheless, the executables of an identified module need not be physically located together, but may include disparate instructions stored in different locations which, when joined logically together, include the module and achieve the stated purpose for the module.
Indeed, a module of code may be a single instruction, or many instructions, and may even be distributed over several different code segments, among different programs, and across several memory devices. Similarly, operational data may be identified and illustrated herein within modules, and may be embodied in any suitable form and organized within any suitable type  of data structure. The operational data may be collected as a single data set, or may be distributed over different locations including over different computer readable storage devices. Where a module or portions of a module are implemented in software, the software portions are stored on one or more computer readable storage devices.
Any combination of one or more computer readable medium may be utilized. The computer readable medium may be a computer readable storage medium. The computer readable storage medium may be a storage device storing the code. The storage device may be, for example, but not limited to, an electronic, magnetic, optical, electromagnetic, infrared, holographic, micromechanical, or semiconductor system, apparatus, or device, or any suitable combination of the foregoing.
More specific examples (a non-exhaustive list) of the storage device would include the following: an electrical connection having one or more wires, a portable computer diskette, a hard disk, a random access memory ( “RAM” ) , a read-only memory ( “ROM” ) , an erasable programmable read-only memory ( “EPROM” or Flash memory) , a portable compact disc read-only memory ( “CD-ROM” ) , an optical storage device, a magnetic storage device, or any suitable combination of the foregoing. In the context of this document, a computer readable storage medium may be any tangible medium that can contain, or store a program for use by or in connection with an instruction execution system, apparatus, or device.
Code for carrying out operations for embodiments may be any number of lines and may be written in any combination of one or more programming languages including an object oriented programming language such as Python, Ruby, Java, Smalltalk, C++, or the like, and conventional procedural programming languages, such as the "C" programming language, or the like, and/or machine languages such as assembly languages. The code may execute entirely on the user's computer, partly on the user's computer, as a stand-alone software package, partly on the user's computer and partly on a remote computer or entirely on the remote computer or server. In the latter scenario, the remote computer may be connected to the user's computer through any type of network, including a local area network ( “LAN” ) or a wide area network ( “WAN” ) , or the connection may be made to an external computer (for example, through the Internet using an Internet Service Provider) .
Reference throughout this specification to “one embodiment, ” “an embodiment, ” or similar language means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment. Thus, appearances of the phrases “in one embodiment, ” “in an embodiment, ” and similar language throughout this  specification may, but do not necessarily, all refer to the same embodiment, but mean “one or more but not all embodiments” unless expressly specified otherwise. The terms “including, ” “comprising, ” “having, ” and variations thereof mean “including but not limited to, ” unless expressly specified otherwise. An enumerated listing of items does not imply that any or all of the items are mutually exclusive, unless expressly specified otherwise. The terms “a, ” “an, ” and “the” also refer to “one or more” unless expressly specified otherwise.
Furthermore, the described features, structures, or characteristics of the embodiments may be combined in any suitable manner. In the following description, numerous specific details are provided, such as examples of programming, software modules, user selections, network transactions, database queries, database structures, hardware modules, hardware circuits, hardware chips, etc., to provide a thorough understanding of embodiments. One skilled in the relevant art will recognize, however, that embodiments may be practiced without one or more of the specific details, or with other methods, components, materials, and so forth. In other instances, well-known structures, materials, or operations are not shown or described in detail to avoid obscuring aspects of an embodiment.
Aspects of the embodiments are described below with reference to schematic flowchart diagrams and/or schematic block diagrams of methods, apparatuses, systems, and program products according to embodiments. It will be understood that each block of the schematic flowchart diagrams and/or schematic block diagrams, and combinations of blocks in the schematic flowchart diagrams and/or schematic block diagrams, can be implemented by code. The code may be provided to a processor of a general purpose computer, special purpose computer, or other programmable data processing apparatus to produce a machine, such that the instructions, which execute via the processor of the computer or other programmable data processing apparatus, create means for implementing the functions/acts specified in the schematic flowchart diagrams and/or schematic block diagrams block or blocks.
The code may also be stored in a storage device that can direct a computer, other programmable data processing apparatus, or other devices to function in a particular manner, such that the instructions stored in the storage device produce an article of manufacture including instructions which implement the function/act specified in the schematic flowchart diagrams and/or schematic block diagrams block or blocks.
The code may also be loaded onto a computer, other programmable data processing apparatus, or other devices to cause a series of operational steps to be performed on the computer, other programmable apparatus or other devices to produce a computer implemented process such  that the code which execute on the computer or other programmable apparatus provide processes for implementing the functions/acts specified in the flowchart and/or block diagram block or blocks.
The schematic flowchart diagrams and/or schematic block diagrams in the Figures illustrate the architecture, functionality, and operation of possible implementations of apparatuses, systems, methods and program products according to various embodiments. In this regard, each block in the schematic flowchart diagrams and/or schematic block diagrams may represent a module, segment, or portion of code, which includes one or more executable instructions of the code for implementing the specified logical function (s) .
It should also be noted that, in some alternative implementations, the functions noted in the block may occur out of the order noted in the Figures. For example, two blocks shown in succession may, in fact, be executed substantially concurrently, or the blocks may sometimes be executed in the reverse order, depending upon the functionality involved. Other steps and methods may be conceived that are equivalent in function, logic, or effect to one or more blocks, or portions thereof, of the illustrated Figures.
Although various arrow types and line types may be employed in the flowchart and/or block diagrams, they are understood not to limit the scope of the corresponding embodiments. Indeed, some arrows or other connectors may be used to indicate only the logical flow of the depicted embodiment. For instance, an arrow may indicate a waiting or monitoring period of unspecified duration between enumerated steps of the depicted embodiment. It will also be noted that each block of the block diagrams and/or flowchart diagrams, and combinations of blocks in the block diagrams and/or flowchart diagrams, can be implemented by special purpose hardware-based systems that perform the specified functions or acts, or combinations of special purpose hardware and code.
The description of elements in each figure may refer to elements of proceeding figures. Like numbers refer to like elements in all figures, including alternate embodiments of like elements.
Figure 1 depicts an embodiment of a wireless communication system 100 for transmission configuration indicator states for sounding reference signal resources. In one embodiment, the wireless communication system 100 includes remote units 102 and network units 104. Even though a specific number of remote units 102 and network units 104 are depicted in Figure 1, one of skill in the art will recognize that any number of remote units 102 and network units 104 may be included in the wireless communication system 100.
In one embodiment, the remote units 102 may include computing devices, such as desktop computers, laptop computers, personal digital assistants ( “PDAs” ) , tablet computers, smart phones, smart televisions (e.g., televisions connected to the Internet) , set-top boxes, game consoles, security systems (including security cameras) , vehicle on-board computers, network devices (e.g., routers, switches, modems) , aerial vehicles, drones, or the like. In some embodiments, the remote units 102 include wearable devices, such as smart watches, fitness bands, optical head-mounted displays, or the like. Moreover, the remote units 102 may be referred to as subscriber units, mobiles, mobile stations, users, terminals, mobile terminals, fixed terminals, subscriber stations, UE, user terminals, a device, or by other terminology used in the art. The remote units 102 may communicate directly with one or more of the network units 104 via UL communication signals. In certain embodiments, the remote units 102 may communicate directly with other remote units 102 via sidelink communication.
The network units 104 may be distributed over a geographic region. In certain embodiments, a network unit 104 may also be referred to and/or may include one or more of an access point, an access terminal, a base, a base station, a location server, a core network ( “CN” ) , a radio network entity, a Node-B, an evolved node-B ( “eNB” ) , a 5G node-B ( “gNB” ) , a Home Node-B, a relay node, a device, a core network, an aerial server, a radio access node, an access point ( “AP” ) , new radio ( “NR” ) , a network entity, an access and mobility management function ( “AMF” ) , a unified data management ( “UDM” ) , a unified data repository ( “UDR” ) , a UDM/UDR, a policy control function ( “PCF” ) , a radio access network ( “RAN” ) , a network slice selection function ( “NSSF” ) , an operations, administration, and management ( “OAM” ) , a session management function ( “SMF” ) , a user plane function ( “UPF” ) , an application function, an authentication server function ( “AUSF” ) , security anchor functionality ( “SEAF” ) , trusted non-3GPP gateway function ( “TNGF” ) , or by any other terminology used in the art. The network units 104 are generally part of a radio access network that includes one or more controllers communicably coupled to one or more corresponding network units 104. The radio access network is generally communicably coupled to one or more core networks, which may be coupled to other networks, like the Internet and public switched telephone networks, among other networks. These and other elements of radio access and core networks are not illustrated but are well known generally by those having ordinary skill in the art.
In one implementation, the wireless communication system 100 is compliant with NR protocols standardized in third generation partnership project ( “3GPP” ) , wherein the network unit 104 transmits using an OFDM modulation scheme on the downlink ( “DL” ) and the remote  units 102 transmit on the uplink ( “UL” ) using a single-carrier frequency division multiple access ( “SC-FDMA” ) scheme or an orthogonal frequency division multiplexing ( “OFDM” ) scheme. More generally, however, the wireless communication system 100 may implement some other open or proprietary communication protocol, for example, WiMAX, institute of electrical and electronics engineers ( “IEEE” ) 802.11 variants, global system for mobile communications ( “GSM” ) , general packet radio service ( “GPRS” ) , universal mobile telecommunications system ( “UMTS” ) , long term evolution ( “LTE” ) variants, code division multiple access 2000 ( “CDMA2000” ) , 
Figure PCTCN2022070654-appb-000001
ZigBee, Sigfoxx, among other protocols. The present disclosure is not intended to be limited to the implementation of any particular wireless communication system architecture or protocol.
The network units 104 may serve a number of remote units 102 within a serving area, for example, a cell or a cell sector via a wireless communication link. The network units 104 transmit DL communication signals to serve the remote units 102 in the time, frequency, and/or spatial domain.
In various embodiments, a remote unit 102 may receiving signaling from a base station indicating a TCI state to be applied to at least one SRS resource, at least one SRS resource set, or a combination thereof. In some embodiments, the remote unit 102 may apply the TCI state to the at least one SRS resource, the at least one SRS resource set, or the combination thereof. Accordingly, the remote unit 102 may be used for transmission configuration indicator states for sounding reference signal resources.
In certain embodiments, a network unit 104 may determine a transmission configuration indicator (TCI) state to be applied to at least one sounding reference signal (SRS) resource, at least one SRS resource set, or a combination thereof. In some embodiments, the network unit 104 may signal to a user equipment (UE) the TCI state to be applied to the at least one SRS resource, the at least one SRS resource set, or the combination thereof. Accordingly, the network unit 104 may be used for transmission configuration indicator states for sounding reference signal resources.
Figure 2 depicts one embodiment of an apparatus 200 that may be used for transmission configuration indicator states for sounding reference signal resources. The apparatus 200 includes one embodiment of the remote unit 102. Furthermore, the remote unit 102 may include a processor 202, a memory 204, an input device 206, a display 208, a transmitter 210, and a receiver 212. In some embodiments, the input device 206 and the display 208 are combined into a single device, such as a touchscreen. In certain embodiments, the remote unit 102 may not  include any input device 206 and/or display 208. In various embodiments, the remote unit 102 may include one or more of the processor 202, the memory 204, the transmitter 210, and the receiver 212, and may not include the input device 206 and/or the display 208.
The processor 202, in one embodiment, may include any known controller capable of executing computer-readable instructions and/or capable of performing logical operations. For example, the processor 202 may be a microcontroller, a microprocessor, a central processing unit ( “CPU” ) , a graphics processing unit ( “GPU” ) , an auxiliary processing unit, a field programmable gate array ( “FPGA” ) , or similar programmable controller. In some embodiments, the processor 202 executes instructions stored in the memory 204 to perform the methods and routines described herein. The processor 202 is communicatively coupled to the memory 204, the input device 206, the display 208, the transmitter 210, and the receiver 212.
The memory 204, in one embodiment, is a computer readable storage medium. In some embodiments, the memory 204 includes volatile computer storage media. For example, the memory 204 may include a RAM, including dynamic RAM ( “DRAM” ) , synchronous dynamic RAM ( “SDRAM” ) , and/or static RAM ( “SRAM” ) . In some embodiments, the memory 204 includes non-volatile computer storage media. For example, the memory 204 may include a hard disk drive, a flash memory, or any other suitable non-volatile computer storage device. In some embodiments, the memory 204 includes both volatile and non-volatile computer storage media. In some embodiments, the memory 204 also stores program code and related data, such as an operating system or other controller algorithms operating on the remote unit 102.
The input device 206, in one embodiment, may include any known computer input device including a touch panel, a button, a keyboard, a stylus, a microphone, or the like. In some embodiments, the input device 206 may be integrated with the display 208, for example, as a touchscreen or similar touch-sensitive display. In some embodiments, the input device 206 includes a touchscreen such that text may be input using a virtual keyboard displayed on the touchscreen and/or by handwriting on the touchscreen. In some embodiments, the input device 206 includes two or more different devices, such as a keyboard and a touch panel.
The display 208, in one embodiment, may include any known electronically controllable display or display device. The display 208 may be designed to output visual, audible, and/or haptic signals. In some embodiments, the display 208 includes an electronic display capable of outputting visual data to a user. For example, the display 208 may include, but is not limited to, a liquid crystal display ( “LCD” ) , a light emitting diode ( “LED” ) display, an organic light emitting diode ( “OLED” ) display, a projector, or similar display device capable of outputting  images, text, or the like to a user. As another, non-limiting, example, the display 208 may include a wearable display such as a smart watch, smart glasses, a heads-up display, or the like. Further, the display 208 may be a component of a smart phone, a personal digital assistant, a television, a table computer, a notebook (laptop) computer, a personal computer, a vehicle dashboard, or the like.
In certain embodiments, the display 208 includes one or more speakers for producing sound. For example, the display 208 may produce an audible alert or notification (e.g., a beep or chime) . In some embodiments, the display 208 includes one or more haptic devices for producing vibrations, motion, or other haptic feedback. In some embodiments, all or portions of the display 208 may be integrated with the input device 206. For example, the input device 206 and display 208 may form a touchscreen or similar touch-sensitive display. In other embodiments, the display 208 may be located near the input device 206.
In certain embodiments, the receiver 212 receives signaling from a base station indicating a TCI state to be applied to at least one SRS resource, at least one SRS resource set, or a combination thereof. In various embodiments, the processor 202 applies the TCI state to the at least one SRS resource, the at least one SRS resource set, or the combination thereof.
Although only one transmitter 210 and one receiver 212 are illustrated, the remote unit 102 may have any suitable number of transmitters 210 and receivers 212. The transmitter 210 and the receiver 212 may be any suitable type of transmitters and receivers. In one embodiment, the transmitter 210 and the receiver 212 may be part of a transceiver.
Figure 3 depicts one embodiment of an apparatus 300 that may be used for transmission configuration indicator states for sounding reference signal resources. The apparatus 300 includes one embodiment of the network unit 104. Furthermore, the network unit 104 may include a processor 302, a memory 304, an input device 306, a display 308, a transmitter 310, and a receiver 312. As may be appreciated, the processor 302, the memory 304, the input device 306, the display 308, the transmitter 310, and the receiver 312 may be substantially similar to the processor 202, the memory 204, the input device 206, the display 208, the transmitter 210, and the receiver 212 of the remote unit 102, respectively.
In certain embodiments, the processor 302 determines a transmission configuration indicator (TCI) state to be applied to at least one sounding reference signal (SRS) resource, at least one SRS resource set, or a combination thereof. In various embodiments, the transmitter 310 signals to a user equipment (UE) the TCI state to be applied to the at least one SRS resource, the at least one SRS resource set, or the combination thereof.
In certain embodiments, in uplink ( “UL” ) a common transmission configuration indicator ( “TCI” ) state may be indicated in a downlink control information ( “DCI” ) format (e.g., DCI format 1_1, DCI format 1_2) for use by a physical uplink channel (e.g., physical uplink shared channel ( “PUSCH” ) , physical uplink control channel ( “PUCCH” ) ) and sounding reference signal ( “SRS” ) resources that share the same TCI state with the physical uplink channel (e.g., PUSCH and/or PUCCH) . Some SRS resources do not share this common TCI state. The TCI states for such SRS resources may need to be signaled to a user equipment ( “UE” ) . In some embodiments, TCI states for SRS resources not sharing the same TCI with a physical uplink channel (e.g., PUSCH and/or PUCCH) may be signaled.
In various embodiments, parameters of an SRS resource (e.g., resource set) are configured by radio resource control ( “RRC” ) signaling. In certain embodiments, there may be an SRS configuration (e.g., SRS-Config) information element ( “IE” ) that is used to configure sounding reference signal transmissions. The SRS configuration defines a list of SRS-Resources, a list of SRS-PosResources, a list of SRS-PosResourceSets, and a list of SRS-ResourceSets. Each resource set defines a set of SRS-Resources or SRS-PosResources. A network may trigger the transmission of the set of SRS-Resources or SRS-PosResources using a configured aperiodicSRS-ResourceTrigger (e.g., layer 1 ( “L1” ) DCI) . Figures 4A through 4C illustrate one embodiment of an SRS-Config IE 400.
In some embodiments, if an UL transmit ( “TX” ) filter (e.g., spatial relation information) is configured in an SRS resource, UL TX power control parameters (e.g., p0, alpha, path loss reference signal ( “PL-RS” ) , srs-PowerControlAdjustmentStates) may be configured in an SRS resource set. In various embodiments, such as in R17 UL TCI framework, spatial relation information, p0, alpha, PL-RS, srs-PowerControlAdjustmentStates may all be taken from a TCI state.
In certain embodiments, such as for aperiodic or semi-persistent SRS, spatial relation information may be updated with a medium access control ( “MAC” ) control element ( “CE” ) ( “MAC-CE” ) . In some embodiments, two MAC-CEs are defined for activation and/or deactivation spatial relation for SRS resources. In various embodiments, an enhanced SRS spatial relation indication MAC CE and serving cell set based SRS spatial relation indication MAC CE may be used to update spatial relation information for SRS resources. Figure 5 is a schematic block diagram illustrating one embodiment of an enhanced SRS spatial relation indication MAC CE 500. Figure 6 is a schematic block diagram illustrating one embodiment of a serving cell set based SRS spatial relation indication MAC CE 600.
In some embodiments, a TCI state of SRS resources may be signaled with a combination of an RRC configuration and MAC-CE. The RRC configuration determines which SRS resources or SRS resource sets share the same UL or joint TCI state with a PUCCH and/or a PUSCH. For those SRS resources not sharing the same TCI with the PUCCH and/or the PUSCH, their UL TCIs may be indicated with a MAC-CE SRS TCI state indication message. SRS resources for non-codebook and antenna switching may be treated differently than other type of SRS because a TCI state for SRS resources for non-codebook and antenna switching may be defined at a level of an SRS resource set (e.g., TCI state configured for SRS resources in a set may be the same) , while the TCI state for other SRS resources (e.g., SRS for codebook and/or for beam management) may be defined per SRS resource. Thus, there may be two different types of MAC-CE, one for TCI state indication for SRS resources, and another for TCI state indication for SRS resource sets.
In various embodiments, there may be a MAC-CE for TCI state indication for SRS resources. For SRS resources with usage “codebook” and/or “beammanagement” , different resources in the same resource set may have different TCIs. TCI states may need to be signaled for each SRS resource. Two MAC-CE may be designed for this. The first MAC-CE indicates TCI states for the SRS resources in an SRS resource set. Specifically, Figure 7 is a schematic block diagram illustrating one embodiment of a MAC-CE 700 for indicating a TCI state for SRS resources in an SRS resource set.
In certain embodiments, a MAC-CE may indicate an UL or joint TCI state for each of the N SRS resources in the same SRS resource set. The MAC-CE may include a cell identifier ( “ID” ) , a bandwidth part ( “BWP” ) ID, and an SRS resource set ID of an SRS resource, and the UL or joint TCI state of each of the SRS resources in the SRS resource set may be in sequential order. In such embodiments, a TCI state ID field may indicate an UL TCI state or a joint TCI state dependent on the TCI framework configured on a cell indicated by the serving cell ID field. TCI state ID 0 may be the TCI state for a first SRS resource in an SRS resource set, TCI state ID 1 may be the TCI state for a second SRS resource in the SRS resource set, and so forth. A bit width of the TCI state ID field may depend on a maximal number of joint TCI states or UL TCI states configured on the serving cell indicated by the serving cell ID field. A supplementary uplink ( “SUL” ) field may indicate whether a MAC CE applies to a normal uplink ( “NUL” ) carrier or SUL carrier configuration (e.g., 1 to indicate that it applies to the SUL carrier configuration, and 0 to indicate that it applies to the NUL carrier configuration) .
In some embodiments, a PL-RS and UL power control ( “PC” ) parameter set including P0, alpha, and a closed loop index for SRS associated with an indicated TCI state may be applied to corresponding SRS resources. In such embodiments, a UE may expect SRS resources within the same SRS resource set to be indicated with the same power control parameters.
In various embodiments, a second MAC-CE indicates TCI states for one or more SRS resources. These SRS resources may not necessarily be from the same SRS resource set. Figure 8 is a schematic block diagram illustrating one embodiment of a MAC-CE 800 for indicating a TCI state for multiple SRS resources. The TCI state for SRS resource i is TCI state ID i. These SRS resources are not necessarily all from the same SRS resource set. This may give more flexibility.
In certain embodiments, with a restriction that all SRS resources with an SRS resource set used for non-codebook may be indicated with a same TCI state, and all the SRS resource used for antenna switching may be indicated with a same TCI state, if a UE receives a MAC CE to indicate a TCI state for an SRS resource used for non-codebook, the UE may apply the indicated TCI state and an associated UL PC parameter set for SRS to all the SRS resources within the SRS resource set used for non-codebook. If the UE receives a MAC CE to indicate a TCI state to an SRS resource used for antenna switching, the UE may apply the indicated TCI state to all the SRS resources within all the SRS resource sets used for antenna switching.
In some embodiments, if a UE receives a MAC CE containing multiple SRS resources from a same SRS resource set used for non-codebook, a same TCI state may be expected to be indicated to all of those SRS resources. If the UE receives a MAC CE containing multiple SRS resources used for antenna switching, a same TCI state may be expected to be indicated for all of those SRS resources.
In various embodiments, there may be a MAC-CE SRS TCI state indication message for resource sets. For an SRS resource set with usage configured as “noncodebook” or “antenna switching” , all the SRS resources in the same SRS resource set have the same TCI. For these SRS resources, it may be sufficient to signal an UL TCI state or joint TCI state that is applied to all the SRS resources of the SRS resource set. A MAC-CE may be applied to indicate the TCI states for one or more SRS resource sets. In such a MAC-CE, the TCI state for SRS resource set i is TCI state ID i.
In certain embodiments, a PL-RS and an UL PC parameter set including P0, alpha, and a closed loop index for SRS associated with an indicated TCI state may be applied to corresponding SRS resource sets.
In some embodiments, since all the SRS resource sets used for antenna switching may be indicated with a same TCI state, if a UE receives a MAC CE to indicate a TCI state for a SRS resource set used for antenna switching, the UE may apply the indicated TCI state and an associated UL PC parameter set for SRS to all the SRS resource sets used for antenna switching. Figure 9 is a schematic block diagram illustrating one embodiment of a MAC-CE 900 for indicating a TCI state for multiple SRS resource sets.
In various embodiments, indicated TCI state IDs may be applied to multiple carriers (e.g., component carriers ( “CCs” ) ) .
In certain embodiments, a MAC-CE message may be used to update TCI states for SRS resources or SRS resource sets in multiple CCs. This may require a definition of one or more lists of multiple carriers in an RRC configuration (e.g., simultaneousTCI_UpdateList) . If a MAC-CE is sent to a UE to update a TCI state for SRS resources or SRS resource sets in a carrier c, and c is part of the list simultaneousTCI_UpdateList, the same TCI states signaled in the MAC-CE may be applied to the SRS resources or SRS resource sets in all the BWPs of all CCs in the list with the same SRS resource ID or SRS resource set ID. As an example, two such lists may be defined, simultaneousTCI_UpdateList1 and simultaneousTCI_UpdateList2, with different sets of CCs. The corresponding UE behavior may be defined as: 1) if the CC is configured with an UL TCI state pool or joint TCI state pool, the UE may update the TCI state with the same ID configured in each CC to the SRS resource or SRS resource set with the same indicated resource or set ID in the CC; and 2) if the CC is not configured with UL TCI state pool or joint TCI state pool, the UE may update the TCI state with the same ID configured in the reference BWP and/or CC to the SRS resource or SRS resource set with the same indicated resource or set ID in the CC.
In some embodiments, there may be a TCI state indication for other SRS resources. For those SRS resources that do not have their individual TCI states but share the same UL or joint TCI state with PUCCH and PUSCH, their TCI states may be dynamically signaled in a TCI field of a DCI format (e.g., DCI format 1_1, DCI format 1_2) . It may be sufficient to only signal which SRS resources share (or do not share) a common TCI state with PUCCH and PUSCH. This may be done in an RRC configuration of SRS resource or an SRS resource set.
In various embodiments, there may be a configuration for an SRS resource. Figure 10 is one embodiment of an SRS resource configuration 1000. For SRS resources with usage “codebook” or “beammanagement” ” , different resources in the same resource set may have different TCIs. The SRS resource may be configured to share a common TCI with PUCCH and/or PUSCH if the field “commonTCI” set to “ENABLED” . In such embodiments, the TCI state  applied to the SRS resource may be dynamically signaled in DCI. Otherwise, its TCI state is configured by MAC-CE. Figure 11 is another embodiment of an SRS resource configuration 1100.
In certain embodiments, whether a SRS resource or a SRS resource set share the TCI state indicated by a DCI format (e.g., DCI format 1_1, DCI format 1_2) may be implicitly determined by whether a TCI state is configured for the SRS resource. If a TCI state is configured for an SRS resource by RRC, the SRS resource may not share the TCI state indicated by the DCI format (e.g., DCI format 1_1, DCI format 1_2) and the applied TCI state may be further updated by a MAC CE. If the SRS resource is not configured with a TCI state, it may share the TCI state indicated by a DCI format (e.g., DCI format 1_1, DCI format 1_2) .
In some embodiments, for an SRS resource set with usage “noncodebook” or “antenna switching” , all the SRS resources in the resource set share the same TCI state. The SRS resource set may be configured to share the common TCI with PUCCH and/or PUSCH if a field “commonTCI” being set to “ENABLED” . In such embodiments, the TCI state applied to the SRS resource may be dynamically signaled in DCI, otherwise its TCI state is configured by MAC-CE.
Figure 12 is a flow chart diagram illustrating one embodiment of a method 1200 for transmission configuration indicator states for sounding reference signal resources. In some embodiments, the method 1200 is performed by an apparatus, such as the network unit 104. In certain embodiments, the method 1200 may be performed by a processor executing program code, for example, a microcontroller, a microprocessor, a CPU, a GPU, an auxiliary processing unit, a FPGA, or the like.
In various embodiments, the method 1200 includes determining 1202 a transmission configuration indicator (TCI) state to be applied to at least one sounding reference signal (SRS) resource, at least one SRS resource set, or a combination thereof. In some embodiments, the method 1200 includes signaling 1204 to a user equipment (UE) the TCI state to be applied to the at least one SRS resource, the at least one SRS resource set, or the combination thereof.
In certain embodiments, the TCI state is to be applied to all SRS resources of the at least one SRS resource set if a medium access control (MAC) control element (CE) indicates the TCI state for the at least one SRS resource set. In some embodiments, if one SRS resource set is configured with usage for “antennaswitching” , the TCI state is to be applied to all SRS resources in the SRS resource set. In various embodiments, if one SRS resource set is configured with usage “noncodebook” , the TCI state is applied to all SRS resources in the SRS resource set.
In one embodiment, if a carrier signaled in the MAC CE is part of a carrier list, the TCI state is to be applied to all SRS resource sets with the same resource set identifier (ID) in all bandwidth parts (BWPs) of all component carriers (CCs) in the carrier list defined in radio resource control (RRC) signaling for simultaneously updating SRS TCI in more than one carrier. In certain embodiments, the method 1200 further comprises, if a CC is configured with an uplink (UL) TCI state pool or joint TCI state pool, updating the TCI state with the same ID configured in the CC for the at least one SRS resource, the at least one SRS resource set, or the combination thereof with the same resource ID or resource set ID in the CC.
In some embodiments, the method 1200 further comprises, if a CC is not configured with an UL TCI state pool or joint TCI state pool, updating the TCI state with the same ID configured in a reference BWP or reference CC with the SRS resource or SRS resource set with the same ID configured in the CC for the at least one SRS resource, the at least one SRS resource set, or the combination thereof with the same resource ID or resource set ID in the CC. In various embodiments, the TCI state is to be applied to each SRS resource of the at least one SRS resource if a MAC CE indicates the TCI state for the at least one SRS resource.
In one embodiment, if one SRS resource is used for non-codebook, the TCI state is to be applied to all SRS resources in the same SRS resource set. In certain embodiments, if one SRS resource is used for antenna switching, the TCI state is to be applied to all SRS resources in the same SRS resource set. In some embodiments, the at least one SRS resource is configured with usage “codebook” or “beammanagement” .
In various embodiments, if a carrier signaled in the MAC CE is part of a carrier list, the TCI state is to be applied to all SRS resources with the same resource ID in all BWPs of all CCs in the carrier list defined in RRC for simultaneously updating SRS TCI in more than one carrier. In one embodiment, the method 1200 further comprises, if a CC is configured with an UL TCI state pool or joint TCI state pool, updating the TCI state with the same ID configured in the CC for the at least one SRS resource, the at least one SRS resource set, or the combination thereof with the same resource ID or resource set ID in the CC.
In certain embodiments, the method 1200 further comprises, if a CC is not configured with an UL TCI state pool or joint TCI state pool, updating the TCI state with the same ID configured in a reference BWP or reference CC with the SRS resource or SRS resource set with the same ID configured in the CC for the at least one SRS resource, the at least one SRS resource set, or the combination thereof with the same resource ID or resource set ID in the CC. In some  embodiments, the TCI state is not shared with a physical uplink control channel and a physical uplink shared channel, and the signaling is sent as a MAC CE message.
In various embodiments, the at least one SRS resource belong to the same SRS resource set. In one embodiment, the at least one SRS resource belong to different SRS resource sets. In certain embodiments, the TCI state is shared with a physical uplink control channel and a physical uplink shared channel, and the signaling is sent as a RRC configuration message.
Figure 13 is a flow chart diagram illustrating another embodiment of a method 1300 for transmission configuration indicator states for sounding reference signal resources. In some embodiments, the method 1300 is performed by an apparatus, such as the remote unit 102. In certain embodiments, the method 1300 may be performed by a processor executing program code, for example, a microcontroller, a microprocessor, a CPU, a GPU, an auxiliary processing unit, a FPGA, or the like.
In various embodiments, the method 1300 includes receiving 1302 signaling from a base station indicating a TCI state to be applied to at least one SRS resource, at least one SRS resource set, or a combination thereof. In some embodiments, the method 1300 includes applying 1304 the TCI state to the at least one SRS resource, the at least one SRS resource set, or the combination thereof.
In certain embodiments, the TCI state is to be applied to all SRS resources of the at least one SRS resource set if a medium access control (MAC) control element (CE) indicates the TCI state for the at least one SRS resource set. In some embodiments, if one SRS resource set is configured with usage for “antennaswitching” , the TCI state is to be applied to all SRS resources in the SRS resource set.
In various embodiments, if one SRS resource set is configured with usage “noncodebook” , the TCI state is applied to all SRS resources in the SRS resource set. In one embodiment, if a carrier signaled in the MAC CE is part of a carrier list, the TCI state is to be applied to all SRS resource sets with the same resource set identifier (ID) in all bandwidth parts (BWPs) of all component carriers (CCs) in the carrier list defined in radio resource control (RRC) signaling for simultaneously updating SRS TCI in more than one carrier. In certain embodiments, the TCI state is to be applied to each SRS resource of the at least one SRS resource if a MAC CE indicates the TCI state for the at least one SRS resource.
In some embodiments, if one SRS resource is used for non-codebook, the TCI state is to be applied to all SRS resources in the same SRS resource set. In various embodiments, if one SRS resource is used for antenna switching, the TCI state is to be applied to all SRS resources in  the same SRS resource set. In one embodiment, the at least one SRS resource is configured with usage “codebook” or “beammanagement” .
In certain embodiments, if a carrier signaled in the MAC CE is part of a carrier list, the TCI state is to be applied to all SRS resources with the same resource ID in all BWPs of all CCs in the carrier list defined in RRC for simultaneously updating SRS TCI in more than one carrier. In some embodiments, the TCI state is not shared with a physical uplink control channel and a physical uplink shared channel, and the signaling is sent as a MAC CE message.
In various embodiments, the at least one SRS resource belong to the same SRS resource set. In one embodiment, the at least one SRS resource belong to different SRS resource sets. In certain embodiments, the TCI state is shared with a physical uplink control channel and a physical uplink shared channel, and the signaling is sent as a RRC configuration message.
In one embodiment, a method of a base station comprises: determining a transmission configuration indicator (TCI) state to be applied to at least one sounding reference signal (SRS) resource, at least one SRS resource set, or a combination thereof; and signaling to a user equipment (UE) the TCI state to be applied to the at least one SRS resource, the at least one SRS resource set, or the combination thereof.
In certain embodiments, the TCI state is to be applied to all SRS resources of the at least one SRS resource set if a medium access control (MAC) control element (CE) indicates the TCI state for the at least one SRS resource set.
In some embodiments, if one SRS resource set is configured with usage for “antennaswitching” , the TCI state is to be applied to all SRS resources in the SRS resource set.
In various embodiments, if one SRS resource set is configured with usage “noncodebook” , the TCI state is applied to all SRS resources in the SRS resource set.
In one embodiment, if a carrier signaled in the MAC CE is part of a carrier list, the TCI state is to be applied to all SRS resource sets with the same resource set identifier (ID) in all bandwidth parts (BWPs) of all component carriers (CCs) in the carrier list defined in radio resource control (RRC) signaling for simultaneously updating SRS TCI in more than one carrier.
In certain embodiments, the method further comprises, if a CC is configured with an uplink (UL) TCI state pool or joint TCI state pool, updating the TCI state with the same ID configured in the CC for the at least one SRS resource, the at least one SRS resource set, or the combination thereof with the same resource ID or resource set ID in the CC.
In some embodiments, the method further comprises, if a CC is not configured with an UL TCI state pool or joint TCI state pool, updating the TCI state with the same ID configured  in a reference BWP or reference CC with the SRS resource or SRS resource set with the same ID configured in the CC for the at least one SRS resource, the at least one SRS resource set, or the combination thereof with the same resource ID or resource set ID in the CC.
In various embodiments, the TCI state is to be applied to each SRS resource of the at least one SRS resource if a MAC CE indicates the TCI state for the at least one SRS resource.
In one embodiment, if one SRS resource is used for non-codebook, the TCI state is to be applied to all SRS resources in the same SRS resource set.
In certain embodiments, if one SRS resource is used for antenna switching, the TCI state is to be applied to all SRS resources in the same SRS resource set.
In some embodiments, the at least one SRS resource is configured with usage “codebook” or “beammanagement” .
In various embodiments, if a carrier signaled in the MAC CE is part of a carrier list, the TCI state is to be applied to all SRS resources with the same resource ID in all BWPs of all CCs in the carrier list defined in RRC for simultaneously updating SRS TCI in more than one carrier.
In one embodiment, the method further comprises, if a CC is configured with an UL TCI state pool or joint TCI state pool, updating the TCI state with the same ID configured in the CC for the at least one SRS resource, the at least one SRS resource set, or the combination thereof with the same resource ID or resource set ID in the CC.
In certain embodiments, the method further comprises, if a CC is not configured with an UL TCI state pool or joint TCI state pool, updating the TCI state with the same ID configured in a reference BWP or reference CC with the SRS resource or SRS resource set with the same ID configured in the CC for the at least one SRS resource, the at least one SRS resource set, or the combination thereof with the same resource ID or resource set ID in the CC.
In some embodiments, the TCI state is not shared with a physical uplink control channel and a physical uplink shared channel, and the signaling is sent as a MAC CE message.
In various embodiments, the at least one SRS resource belong to the same SRS resource set.
In one embodiment, the at least one SRS resource belong to different SRS resource sets.
In certain embodiments, the TCI state is shared with a physical uplink control channel and a physical uplink shared channel, and the signaling is sent as a RRC configuration message.
In one embodiment, an apparatus comprises a base station. The apparatus further comprises: a processor that determines a transmission configuration indicator (TCI) state to be applied to at least one sounding reference signal (SRS) resource, at least one SRS resource set, or a combination thereof; and a transmitter that signals to a user equipment (UE) the TCI state to be applied to the at least one SRS resource, the at least one SRS resource set, or the combination thereof.
In certain embodiments, the TCI state is to be applied to all SRS resources of the at least one SRS resource set if a medium access control (MAC) control element (CE) indicates the TCI state for the at least one SRS resource set.
In some embodiments, if one SRS resource set is configured with usage for “antennaswitching” , the TCI state is to be applied to all SRS resources in the SRS resource set.
In various embodiments, if one SRS resource set is configured with usage “noncodebook” , the TCI state is applied to all SRS resources in the SRS resource set.
In one embodiment, if a carrier signaled in the MAC CE is part of a carrier list, the TCI state is to be applied to all SRS resource sets with the same resource set identifier (ID) in all bandwidth parts (BWPs) of all component carriers (CCs) in the carrier list defined in radio resource control (RRC) signaling for simultaneously updating SRS TCI in more than one carrier.
In certain embodiments, the processor, if a CC is configured with an uplink (UL) TCI state pool or joint TCI state pool, updates the TCI state with the same ID configured in the CC for the at least one SRS resource, the at least one SRS resource set, or the combination thereof with the same resource ID or resource set ID in the CC.
In some embodiments, the processor, if a CC is not configured with an UL TCI state pool or joint TCI state pool, updates the TCI state with the same ID configured in a reference BWP or reference CC with the SRS resource or SRS resource set with the same ID configured in the CC for the at least one SRS resource, the at least one SRS resource set, or the combination thereof with the same resource ID or resource set ID in the CC.
In various embodiments, the TCI state is to be applied to each SRS resource of the at least one SRS resource if a MAC CE indicates the TCI state for the at least one SRS resource.
In one embodiment, if one SRS resource is used for non-codebook, the TCI state is to be applied to all SRS resources in the same SRS resource set.
In certain embodiments, if one SRS resource is used for antenna switching, the TCI state is to be applied to all SRS resources in the same SRS resource set.
In some embodiments, the at least one SRS resource is configured with usage “codebook” or “beammanagement” .
In various embodiments, if a carrier signaled in the MAC CE is part of a carrier list, the TCI state is to be applied to all SRS resources with the same resource ID in all BWPs of all CCs in the carrier list defined in RRC for simultaneously updating SRS TCI in more than one carrier.
In one embodiment, the processor, if a CC is configured with an UL TCI state pool or joint TCI state pool, updates the TCI state with the same ID configured in the CC for the at least one SRS resource, the at least one SRS resource set, or the combination thereof with the same resource ID or resource set ID in the CC.
In certain embodiments, the processor, if a CC is not configured with an UL TCI state pool or joint TCI state pool, updates the TCI state with the same ID configured in a reference BWP or reference CC with the SRS resource or SRS resource set with the same ID configured in the CC for the at least one SRS resource, the at least one SRS resource set, or the combination thereof with the same resource ID or resource set ID in the CC.
In some embodiments, the TCI state is not shared with a physical uplink control channel and a physical uplink shared channel, and the signaling is sent as a MAC CE message.
In various embodiments, the at least one SRS resource belong to the same SRS resource set.
In one embodiment, the at least one SRS resource belong to different SRS resource sets.
In certain embodiments, the TCI state is shared with a physical uplink control channel and a physical uplink shared channel, and the signaling is sent as a RRC configuration message.
In one embodiment, a method of a user equipment (UE) comprises: receiving signaling from a base station indicating a TCI state to be applied to at least one SRS resource, at least one SRS resource set, or a combination thereof; and applying the TCI state to the at least one SRS resource, the at least one SRS resource set, or the combination thereof.
In certain embodiments, the TCI state is to be applied to all SRS resources of the at least one SRS resource set if a medium access control (MAC) control element (CE) indicates the TCI state for the at least one SRS resource set.
In some embodiments, if one SRS resource set is configured with usage for “antennaswitching” , the TCI state is to be applied to all SRS resources in the SRS resource set.
In various embodiments, if one SRS resource set is configured with usage “noncodebook” , the TCI state is applied to all SRS resources in the SRS resource set.
In one embodiment, if a carrier signaled in the MAC CE is part of a carrier list, the TCI state is to be applied to all SRS resource sets with the same resource set identifier (ID) in all bandwidth parts (BWPs) of all component carriers (CCs) in the carrier list defined in radio resource control (RRC) signaling for simultaneously updating SRS TCI in more than one carrier.
In certain embodiments, the TCI state is to be applied to each SRS resource of the at least one SRS resource if a MAC CE indicates the TCI state for the at least one SRS resource.
In some embodiments, if one SRS resource is used for non-codebook, the TCI state is to be applied to all SRS resources in the same SRS resource set.
In various embodiments, if one SRS resource is used for antenna switching, the TCI state is to be applied to all SRS resources in the same SRS resource set.
In one embodiment, the at least one SRS resource is configured with usage “codebook” or “beammanagement” .
In certain embodiments, if a carrier signaled in the MAC CE is part of a carrier list, the TCI state is to be applied to all SRS resources with the same resource ID in all BWPs of all CCs in the carrier list defined in RRC for simultaneously updating SRS TCI in more than one carrier.
In some embodiments, the TCI state is not shared with a physical uplink control channel and a physical uplink shared channel, and the signaling is sent as a MAC CE message.
In various embodiments, the at least one SRS resource belong to the same SRS resource set.
In one embodiment, the at least one SRS resource belong to different SRS resource sets.
In certain embodiments, the TCI state is shared with a physical uplink control channel and a physical uplink shared channel, and the signaling is sent as a RRC configuration message.
In one embodiment, an apparatus comprises a user equipment (UE) . The apparatus further comprises: a receiver that receives signaling from a base station indicating a TCI state to be applied to at least one SRS resource, at least one SRS resource set, or a combination thereof; and a processor that applies the TCI state to the at least one SRS resource, the at least one SRS resource set, or the combination thereof.
In certain embodiments, the TCI state is to be applied to all SRS resources of the at least one SRS resource set if a medium access control (MAC) control element (CE) indicates the TCI state for the at least one SRS resource set.
In some embodiments, if one SRS resource set is configured with usage for “antennaswitching” , the TCI state is to be applied to all SRS resources in the SRS resource set.
In various embodiments, if one SRS resource set is configured with usage “noncodebook” , the TCI state is applied to all SRS resources in the SRS resource set.
In one embodiment, if a carrier signaled in the MAC CE is part of a carrier list, the TCI state is to be applied to all SRS resource sets with the same resource set identifier (ID) in all bandwidth parts (BWPs) of all component carriers (CCs) in the carrier list defined in radio resource control (RRC) signaling for simultaneously updating SRS TCI in more than one carrier.
In certain embodiments, the TCI state is to be applied to each SRS resource of the at least one SRS resource if a MAC CE indicates the TCI state for the at least one SRS resource.
In some embodiments, if one SRS resource is used for non-codebook, the TCI state is to be applied to all SRS resources in the same SRS resource set.
In various embodiments, if one SRS resource is used for antenna switching, the TCI state is to be applied to all SRS resources in the same SRS resource set.
In one embodiment, the at least one SRS resource is configured with usage “codebook” or “beammanagement” .
In certain embodiments, if a carrier signaled in the MAC CE is part of a carrier list, the TCI state is to be applied to all SRS resources with the same resource ID in all BWPs of all CCs in the carrier list defined in RRC for simultaneously updating SRS TCI in more than one carrier.
In some embodiments, the TCI state is not shared with a physical uplink control channel and a physical uplink shared channel, and the signaling is sent as a MAC CE message.
In various embodiments, the at least one SRS resource belong to the same SRS resource set.
In one embodiment, the at least one SRS resource belong to different SRS resource sets.
In certain embodiments, the TCI state is shared with a physical uplink control channel and a physical uplink shared channel, and the signaling is sent as a RRC configuration message.
Embodiments may be practiced in other specific forms. The described embodiments are to be considered in all respects only as illustrative and not restrictive. The scope of the invention is, therefore, indicated by the appended claims rather than by the foregoing description. All changes which come within the meaning and range of equivalency of the claims are to be embraced within their scope.

Claims (15)

  1. A method of a base station, the method comprising:
    determining a transmission configuration indicator (TCI) state to be applied to at least one sounding reference signal (SRS) resource, at least one SRS resource set, or a combination thereof; and
    signaling to a user equipment (UE) the TCI state to be applied to the at least one SRS resource, the at least one SRS resource set, or the combination thereof.
  2. An apparatus comprising a base station, the apparatus further comprising:
    a processor that determines a transmission configuration indicator (TCI) state to be applied to at least one sounding reference signal (SRS) resource, at least one SRS resource set, or a combination thereof; and
    a transmitter that signals to a user equipment (UE) the TCI state to be applied to the at least one SRS resource, the at least one SRS resource set, or the combination thereof.
  3. The apparatus of claim 2, wherein the TCI state is to be applied to all SRS resources of the at least one SRS resource set if a medium access control (MAC) control element (CE) indicates the TCI state for the at least one SRS resource set.
  4. The apparatus of claim 3, wherein, if one SRS resource set is configured with usage for “antennaswitching” , the TCI state is to be applied to all SRS resources in the SRS resource set.
  5. The apparatus of claim 3, wherein, if one SRS resource set is configured with usage “noncodebook” , the TCI state is applied to all SRS resources in the SRS resource set.
  6. The apparatus of claim 3, wherein, if a carrier signaled in the MAC CE is part of a carrier list, the TCI state is to be applied to all SRS resource sets with the same resource set identifier (ID) in all bandwidth parts (BWPs) of all component carriers (CCs) in the carrier list defined in radio resource control (RRC) signaling for simultaneously updating SRS TCI in more than one carrier.
  7. The apparatus of claim 6, wherein the processor, if a CC is configured with an uplink (UL) TCI state pool or joint TCI state pool, updates the TCI state with the same ID configured in the CC the at least one SRS resource set with the same resource ID or resource set ID in the CC.
  8. The apparatus of claim 6, wherein the processor, if a CC is not configured with an UL TCI state pool or joint TCI state pool, updates the TCI state with the same ID configured in a reference BWP or reference CC with the SRS resource or SRS resource set with the same ID configured in the CC for the at least one SRS resource set with the same resource ID or resource set ID in the CC.
  9. The apparatus of claim 2, wherein the TCI state is to be applied to each SRS resource of the at least one SRS resource if a MAC CE indicates the TCI state for the at least one SRS resource.
  10. The apparatus of claim 9, wherein:
    if one SRS resource is used for non-codebook, the TCI state is to be applied to all SRS resources in the same SRS resource set;
    if one SRS resource is used for antenna switching, the TCI state is to be applied to all SRS resources in the same SRS resource set;
    or a combination thereof.
  11. The apparatus of claim 9, wherein the at least one SRS resource is configured with usage “codebook” or “beammanagement” .
  12. The apparatus of claim 9, wherein, if a carrier signaled in the MAC CE is part of a carrier list, the TCI state is to be applied to all SRS resources with the same resource ID in all BWPs of all CCs in the carrier list defined in RRC for simultaneously updating SRS TCI in more than one carrier, wherein the processor:
    if a CC is configured with an UL TCI state pool or joint TCI state pool, updates the TCI state with the same ID configured in the CC for the at least one SRS resource with the same resource ID or resource set ID in the CC;
    if a CC is not configured with an UL TCI state pool or joint TCI state pool, updates the TCI state with the same ID configured in a reference BWP or reference CC with the SRS resource or SRS resource set with the same ID configured in the CC for the at least one SRS resource with the same resource ID or resource set ID in the CC;
    or a combination thereof.
  13. The apparatus of claim 2, wherein the TCI state is not shared with a physical uplink control channel and a physical uplink shared channel, and the signaling is sent as a MAC CE message, wherein:
    the at least one SRS resource belong to the same SRS resource set; or
    the at least one SRS resource belong to different SRS resource sets.
  14. The apparatus of claim 2, wherein the TCI state is shared with a physical uplink control channel and a physical uplink shared channel, and the signaling is sent as a RRC configuration message.
  15. An apparatus comprising a user equipment (UE) , the apparatus further comprising:
    a receiver that receives signaling from a base station indicating a TCI state to be applied to at least one SRS resource, at least one SRS resource set, or a combination thereof; and
    a processor that applies the TCI state to the at least one SRS resource, the at least one SRS resource set, or the combination thereof.
PCT/CN2022/070654 2022-01-07 2022-01-07 Transmission configuration indicator states for sounding reference signal resources WO2023130343A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/070654 WO2023130343A1 (en) 2022-01-07 2022-01-07 Transmission configuration indicator states for sounding reference signal resources

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/070654 WO2023130343A1 (en) 2022-01-07 2022-01-07 Transmission configuration indicator states for sounding reference signal resources

Publications (1)

Publication Number Publication Date
WO2023130343A1 true WO2023130343A1 (en) 2023-07-13

Family

ID=87072947

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/070654 WO2023130343A1 (en) 2022-01-07 2022-01-07 Transmission configuration indicator states for sounding reference signal resources

Country Status (1)

Country Link
WO (1) WO2023130343A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210105805A1 (en) * 2019-10-03 2021-04-08 Qualcomm Incorporated Default spatial relation for srs/pucch
CN112787763A (en) * 2019-11-08 2021-05-11 联发科技股份有限公司 Method for updating channel state information reference signal configuration and switching space indication
CN112997414A (en) * 2018-11-09 2021-06-18 苹果公司 Beam management for partial beam corresponding user equipment
WO2021155571A1 (en) * 2020-02-07 2021-08-12 Qualcomm Incorporated Uplink transmission configuration indication state signaling

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112997414A (en) * 2018-11-09 2021-06-18 苹果公司 Beam management for partial beam corresponding user equipment
US20210105805A1 (en) * 2019-10-03 2021-04-08 Qualcomm Incorporated Default spatial relation for srs/pucch
CN112787763A (en) * 2019-11-08 2021-05-11 联发科技股份有限公司 Method for updating channel state information reference signal configuration and switching space indication
WO2021155571A1 (en) * 2020-02-07 2021-08-12 Qualcomm Incorporated Uplink transmission configuration indication state signaling

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
QUALCOMM INCORPORATED: "Enhancements on Multi-beam Operation", 3GPP TSG RAN WG1 MEETING #107-E R1-2112196, 6 November 2021 (2021-11-06), XP052075302 *

Similar Documents

Publication Publication Date Title
US20230269769A1 (en) Channel occupancy time sharing
US20230291514A1 (en) Determining transmissions to avoid
WO2020034188A1 (en) Srs configurations and srs transmission
US20230155771A1 (en) Transmission and reception point reporting
US20240114490A1 (en) Configuring demodulation reference signal bundling and transport block scheduling
US20230179383A1 (en) Multiplexing pattern determination based on subcarrier spacing values
WO2022153241A1 (en) Configuring channel occupancy sharing
US20230403055A1 (en) Performing channel occupancy time sensing
US20230361831A1 (en) Determining channel state information reference signals
WO2022153179A1 (en) Configuring dormant bandwidth parts
WO2023130343A1 (en) Transmission configuration indicator states for sounding reference signal resources
WO2023050272A1 (en) Determining a resource configuration based on a list of component carriers
WO2023056597A1 (en) Transmission configuration indicator state carrier configuration
WO2023050142A1 (en) Configuring transmission configuration indicator states
WO2023130297A1 (en) Power control parameters corresponding to beam failure recovery
WO2022205311A1 (en) Downlink control information indicating a transmission configuration indicator state
US20230276455A1 (en) Restrictions based on a configured numerology
US20240129729A1 (en) Rerouting message transmissions
WO2022189971A1 (en) Configuring shared and ue specific beams and tci states
US20230276285A1 (en) Disabling analytics information of a network analytics function
US20230261839A1 (en) Monitoring downlink control information formats
WO2023248137A1 (en) Activating a bandwidth part based on transmission parameter requirements
WO2022208415A1 (en) Configuring physical downlink control channel occasions for monitoring
WO2023194914A1 (en) Selecting a destination as part of a logical channel prioritization procedure
WO2023072419A1 (en) Communicating and storing aerial system security information

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22917816

Country of ref document: EP

Kind code of ref document: A1