WO2023128527A1 - Antiviral composition for fish against viral hemorrhagic septicemia virus, containing chitosan nanoparticles having mirna-155 encapsulated therein as active ingredient - Google Patents

Antiviral composition for fish against viral hemorrhagic septicemia virus, containing chitosan nanoparticles having mirna-155 encapsulated therein as active ingredient Download PDF

Info

Publication number
WO2023128527A1
WO2023128527A1 PCT/KR2022/021319 KR2022021319W WO2023128527A1 WO 2023128527 A1 WO2023128527 A1 WO 2023128527A1 KR 2022021319 W KR2022021319 W KR 2022021319W WO 2023128527 A1 WO2023128527 A1 WO 2023128527A1
Authority
WO
WIPO (PCT)
Prior art keywords
mirna
fish
cnps
encapsulated
vhsv
Prior art date
Application number
PCT/KR2022/021319
Other languages
French (fr)
Korean (ko)
Inventor
디조이사마하나마
신현진
라란티 니크피티야차밀라니
딜룩시 리야나지틸로마
Original Assignee
충남대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 충남대학교 산학협력단 filed Critical 충남대학교 산학협력단
Publication of WO2023128527A1 publication Critical patent/WO2023128527A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5107Excipients; Inactive ingredients
    • A61K9/513Organic macromolecular compounds; Dendrimers
    • A61K9/5161Polysaccharides, e.g. alginate, chitosan, cellulose derivatives; Cyclodextrin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • A61K31/7105Natural ribonucleic acids, i.e. containing only riboses attached to adenine, guanine, cytosine or uracil and having 3'-5' phosphodiester links
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • A61K48/0008Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the 'non-active' part of the composition delivered, e.g. wherein such 'non-active' part is not delivered simultaneously with the 'active' part of the composition
    • A61K48/0025Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the 'non-active' part of the composition delivered, e.g. wherein such 'non-active' part is not delivered simultaneously with the 'active' part of the composition wherein the non-active part clearly interacts with the delivered nucleic acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses

Definitions

  • the present invention relates to an antiviral composition for fish against viral hemorrhagic sepsis virus (VHSV) containing chitosan nanoparticles encapsulated with miRNA 155 as an active ingredient.
  • VHSV viral hemorrhagic sepsis virus
  • Viral hemorrhagic septicemia virus is a single-stranded RNA virus, an enveloped virus belonging to the family Rhabdoviridae and Novirhabdovirus.
  • Visual examination of flounder infected with VHSV shows blackening of the body, hemorrhage throughout the body, abdominal distension due to ascites retention, hernia, discoloration of the gills, and red spot-like bleeding on the anatomical body surface.
  • Outbreaks caused by VHSV occur in the winter when the water temperature is low at 10-13 °C, and it mainly occurs during the stocking period, causing mass mortality of fry.
  • VHSV The target organs of infection are the heart and kidneys, and damage to the spleen, brain, muscles, and gills is also caused.
  • VHSV was first reported as an important viral disease of rainbow trout, and has recently been reported in a variety of fish, such as trout, rainbow trout, silver salmon, river trout, brown trout, and steelhead trout, as well as salmonids such as cod and herring. It also occurs widely in fish in natural waters and marine cultured fish such as halibut, mainly in Europe, North America and Asia.
  • VHS Viral hemorrhagic septicemia
  • OIE Office of International Animal Health
  • chitosan ((1,4)-2-amino-2-deoxy- ⁇ -D-glucan), a natural biopolymer obtained by deacetylating chitin (the main component of crustacean shells), has excellent biocompatibility and low immunogenicity.
  • chitosan ((1,4)-2-amino-2-deoxy- ⁇ -D-glucan)
  • chitin the main component of crustacean shells
  • the inventors of the present invention continued research to find a new substance exhibiting a preventive or therapeutic effect on VHSV infectious fish disease, miRNA (micro RNA) 155 or a mimic thereof (mimic) encapsulated in chitosan nanoparticles and administered to fish, the present invention was completed by confirming the excellent effect of protecting fish from VHSV infection without causing toxicity.
  • One object of the present invention is to provide an antiviral composition for fish against viral hemorrhagic septicemia virus (VHSV) comprising chitosan nanoparticles encapsulated with miRNA 155 as an active ingredient.
  • VHSV viral hemorrhagic septicemia virus
  • Another object of the present invention is (a) mixing miRNA 155 and tripolyphosphate solution; (b) dissolving chitosan in an acidic solvent; and (c) mixing and stirring the mixed solution obtained in step (a) and the solution obtained in step (b) to provide a method for preparing chitosan nanoparticles encapsulated with miRNA 155.
  • Another object of the present invention is a method for preventing or treating VHSV-infected fish disease comprising administering to fish an antiviral composition for fish against VHSV containing the miRNA 155-encapsulated chitosan nanoparticles or the same as an active ingredient. want to provide
  • Another object of the present invention is to provide an antiviral use of the miRNA 155-encapsulated chitosan nanoparticles or a composition containing the chitosan nanoparticles as an active ingredient against fish-infectious VHSV.
  • Another object of the present invention is to provide a use of the miRNA 155-encapsulated chitosan nanoparticles or a composition containing the chitosan nanoparticles as an active ingredient for preventing or treating VHSV-infected fish disease.
  • Another object of the present invention is to provide a use of the miRNA 155-encapsulated chitosan nanoparticles for preparing an antiviral composition for fish against VHSV or a medicament (or pharmaceutical composition) for preventing or treating VHSV infectious fish disease. want to do
  • One aspect provides an antiviral composition for fish against viral hemorrhagic septicemia virus (VHSV) comprising chitosan nanoparticles encapsulated with miRNA 155 as an active ingredient.
  • VHSV viral hemorrhagic septicemia virus
  • miRNA micro RNA
  • UTR 3' untranslated region
  • nt non-translated RNA. miRNAs are known to be involved in critical biological processes related to development, differentiation, apoptosis, and proliferation, as well as diseases such as diabetes, neurodegenerative diseases, and cancer.
  • the miRNA 155 may include the nucleotide sequence of SEQ ID NO: 1.
  • the nucleotide sequence composed of SEQ ID NO: 1 but also 80% or more, specifically 90% or more, more specifically 95% or more, more specifically 98% or more, and most specifically 99% or more of the above sequence
  • any nucleotide sequence showing substantially the same or equivalent efficacy as the miRNA 155 is included without limitation.
  • it is a nucleotide sequence having such homology it is obvious that a nucleotide sequence in which some sequences are deleted, modified, substituted or added is also included within the scope of the present invention.
  • homology refers to the degree of similarity of a base sequence or amino acid sequence, and may be expressed as a percentage according to the degree of matching with a given amino acid sequence or base sequence.
  • a homologous sequence having the same or similar activity as a given amino acid sequence or nucleotide sequence is expressed as "% homology”.
  • hybridization using standard software, specifically BLAST 2.0 that calculates parameters such as score, identity and similarity, or under defined stringent conditions. It can be confirmed experimentally by comparing sequences, and appropriate hybridization conditions defined are within the skill of the art and are well known to those skilled in the art (e.g., J.
  • the miRNA 155 may be derived from humans or mice, but is not limited thereto, and may be artificially synthesized or manufactured in vitro. In order to synthesize or prepare the miRNA 155, chemical or biological methods or methods known in the art that are not limited thereto may be used. Thus, the miRNA 155 may include a miRNA 155 mimic.
  • the miRNA 155 mimic may refer to a synthetic miRNA made of a sequence identical to or partially modified from the sequence of miRNA 155 in a cell.
  • chitosan refers to a polysaccharide, a natural polymeric material derived by deacetylation of -CH 3 CONH of chitin obtained from crustacean shells. That is, chitosan may have a form in which an acetyl group (-COCH 3 ) present in a chitin monomer is substituted with an amino group (-NH 3 ).
  • chitin obtained from the shells of crustaceans such as crabs, crayfish, and shrimps, is a natural polymer that is the second most abundant after cellulose.
  • the chitosan may be a compound represented by Formula 1 as follows:
  • n is any integer selected from 1 to 10000).
  • the chitosan may be low molecular weight chitosan (LMWC). Specifically, the chitosan may have a weight average molecular weight of about 50,000 to about 190,000 Da.
  • LMWC low molecular weight chitosan
  • the miRNA 155-encapsulated chitosan nanoparticles when the weight average molecular weight of the chitosan is less than about 50,000 Da, the miRNA 155-encapsulated chitosan nanoparticles reduce the electrostatic interaction between miRNA 155 and chitosan, such as the strength of the ionic bond, , the encapsulation strength for encapsulating the miRNA 155 inside the chitosan nanoparticles may be weakened. As a result, miRNA 155 may be exposed to the external environment and its effectiveness may decrease.
  • the weight average molecular weight of the chitosan is greater than about 190,000 Da
  • the cell penetration is reduced due to the increase in the size of the chitosan nanoparticles encapsulated with the miRNA 155, thereby reducing the efficiency of delivering miRNA 155 into fish in vivo or into cells. can do.
  • the chitosan may exhibit biodegradability and/or biocompatibility, and may include a salt form or a chitosan derivative.
  • the chitosan derivative may be an alkylate, an acylate, an arylide, a sulfur oxide, or a phosphate of chitosan, but is not limited thereto.
  • Chitosan nanoparticles may be prepared using the chitosan, and a specific material (eg, miRNA 155) may be encapsulated or encapsulated inside the chitosan nanoparticles.
  • a specific substance (eg, miRNA 155) encapsulated or encapsulated inside the chitosan nanoparticles can be stably protected from the external environment, such as enzymes, and can be released under specific conditions.
  • the enzyme may be a DNA degrading enzyme (DNase) or an RNA degrading enzyme (RNase), but is not limited thereto.
  • the chitosan nanoparticles may include the chitosan as one component, and may further include tripolyphosphate (TPP).
  • TPP tripolyphosphate
  • the chitosan nanoparticles may be one in which the chitosan and the tripolyphosphate form a cross-linked bond.
  • the tripolyphosphate may be sodium tripolyphosphate (Na 5 P 3 O 10 ) or potassium tripolyphosphate (K 5 P 3 O 10 ).
  • the chitosan may exhibit a positive charge, and the miRNA 155 may exhibit a negative charge. Therefore, the chitosan nanoparticles encapsulated with the miRNA 155 may be one in which the chitosan and the miRNA 155 are bonded or connected through an electrostatic interaction, for example, an ionic bond. That is, the chitosan nanoparticles encapsulated with miRNA 155 are coated with chitosan on the surface of miRNA 155 by electrostatic interaction to form chitosan nanoparticles on the outside, and spherical nanoparticles or nanoparticles with miRNA 155 inside them. It may have the shape of a sphere (nanosphere). In this case, the chitosan nanoparticles formed on the outside may be one in which the chitosan and the tripolyphosphate form a cross-linked bond.
  • encapsulation refers to the art of enclosing or coating one material with another.
  • nano capsule means a nano-sized capsule, and a specific material may be contained inside the nanocapsule.
  • nanoparticle may be used interchangeably with the term “nanocapsule”.
  • the chitosan nanoparticle encapsulated with the miRNA 155 is a complex of the miRNA 155 and the chitosan; Alternatively, it may be a complex of the miRNA 155, the chitosan, and the tripolyphosphate.
  • the weight ratio of miRNA 155 and chitosan contained in the miRNA 155-encapsulated chitosan nanoparticles may be about 1:5 to 15, 1:7 to 13, 1:9 to 11, or 1:10.
  • encapsulation efficiency, encapsulation strength, or miRNA 155 releasing ability of chitosan nanoparticles encapsulated with miRNA 155 can be significantly reduced.
  • the efficiency of delivering effective miRNA 155 into the body or cells of fish and the effect of preventing or treating viral infectious diseases in fish can be significantly reduced.
  • chitosan nanoparticles encapsulated with miRNA 155" may be used interchangeably with the term “miRNA 155-CNPs”.
  • the miRNA 155-encapsulated chitosan nanoparticles may exhibit positive surface charges.
  • the miRNA 155-encapsulated chitosan nanoparticles may have a zeta potential of about 30 to 60 or 35 to 45 mV.
  • zeta potential means the magnitude of the repulsive force and attractive force between particles in units. represents density. Particles of colloidal matter in water have the property of floating rather than settling. These materials have the property of repelling each other due to the + and - ions of the particles, and this repulsive force can be called zeta potential. Therefore, the zeta potential can be applied to evaluate the degree of dispersion or aggregation of particles suspended in a liquid phase, and generally, the higher the absolute value of the zeta potential, the more stable the dispersion of the particles in the suspension can be evaluated.
  • the miRNA 155-encapsulated chitosan nanoparticles exhibit a high zeta potential of about 30 to 60 mV, they can maintain a stable dispersion state in a liquid phase. This also means that the miRNA 155-encapsulated chitosan nanoparticles can maintain a very stable encapsulation state by forming a strong static interaction between the internal negative charge and the external positive charge, for example, an ionic bond.
  • the miRNA 155-encapsulated chitosan nanoparticles exhibit a very stable nanosphere form, strongly protect the internal miRNA 155 from the external environment, and are stably dispersed in the liquid phase, making it easy to use in various formulations suitable for direct administration to fish. can be applied Therefore, even if it is not by means of transforming fish using a gene expression vector, etc., effectiveness is maintained by a simple method of directly administering (oral or parenteral administration) the miRNA 155-encapsulated chitosan nanoparticles to fish.
  • oral or parenteral administration the miRNA 155-encapsulated chitosan nanoparticles to fish.
  • the miRNA 155-encapsulated chitosan nanoparticles may have a diameter of about 200 to 500 or 300 to 400 nm.
  • the diameter of the miRNA 155-encapsulated chitosan nanoparticles is less than about 200 nm, the amount of miRNA 155 that can be encapsulated inside the chitosan nanoparticles is reduced, so that miRNA 155 can be in vivo or in vivo in fish.
  • the efficiency of intracellular delivery may be reduced.
  • the miRNA 155-encapsulated chitosan nanoparticles have a diameter greater than about 500 nm, the electrostatic interaction between miRNA 155 and chitosan, for example, the strength of ionic bond, decreases and miRNA 155 is incorporated into the chitosan nanoparticles.
  • the encapsulation strength for encapsulation may be weakened, and miRNA 155 may be exposed to the external environment, reducing effectiveness.
  • the cell penetration of the chitosan nanoparticles encapsulated with the miRNA 155 may decrease, and thus the efficiency of delivering the miRNA 155 into the body or cells of the fish may decrease.
  • the miRNA 155-encapsulated chitosan nanoparticles may have miRNA 155 releasing ability.
  • miRNA 155-encapsulated chitosan nanoparticles may continuously release miRNA 155 as chitosan on the outside is gradually biodegraded over time. This can be understood as the release of miRNA 155 as the strong electrostatic interaction formed between chitosan and miRNA 155 by the biodegradation of chitosan, for example, the strength of ionic bond, is reduced.
  • miRNA 155-encapsulated chitosan nanoparticles are absorbed into the living body or cells of the fish, miRNA 155 is continuously released to continuously maintain the effect of miRNA 155 in the living body of the fish.
  • an effective ingredient means an appropriately effective amount of an ingredient that affects a beneficial or desirable clinical or biochemical outcome. Specifically, it may refer to chitosan nanoparticles encapsulated with an effective amount of miRNA 155.
  • Such an effective amount can prevent disease, alleviate symptoms, reduce the extent of a disease, stabilize (i.e., not worsen) a disease state, delay or reduce the rate of disease progression, or a disease, without limitation, for a subject. It may be an appropriate amount for improvement or palliation and relief (partial or total) of the condition.
  • the effective amount is the type of subject, the condition of the subject, the amount of the subject, the type of disease, the severity, the activity of the drug, the sensitivity to the drug, the time of administration, the route of administration and the excretion rate, the duration of treatment, factors including drugs used concurrently, and It may be determined according to factors well known in other related fields.
  • the chitosan nanoparticles encapsulated with miRNA 155 significantly improve the stability of miRNA 155 by blocking the influence of the external environment, and can effectively deliver miRNA 155 with maintained efficacy into fish in vivo or into cells.
  • the miRNA 155-encapsulated chitosan nanoparticles are very small and exhibit a positive surface charge, the bioabsorption rate, bioavailability, and cell permeability can be remarkably increased, and after being absorbed into the living body or cells of fish, the chitosan Due to the gradual biodegradation, miRNA 155 is continuously released, so that the effect of miRNA 155 can be continuously maintained in the body of fish.
  • the antiviral composition for fish containing chitosan nanoparticles encapsulated with miRNA 155 as an active ingredient may exhibit an antiviral effect against viral hemorrhagic sepsis virus.
  • VHS viral hemorrhagic septicemia
  • VHSV viral hemorrhagic septicemia virus
  • Infected fish blackening of the body, retention of clear ascitic fluid in the peritoneum and abdominal cavity, hepatic congestion, splenomegaly, nephroplegia, necrosis of the liver, kidney, spleen and skeletal muscle, and gill fronds
  • internal symptoms such as thickening of the liver, thickening of the liver, and accumulation of skeletal muscle blood cells appear, and the virus invades the fish body through the epithelial layer of the skin or endothelial cells of the gills and moves rapidly through the bloodstream to internal organs such as the kidney and spleen hematopoietic tissue.
  • the proliferation or replication of VHSV in fish tissue can be reduced, and the survival rate of VHSV-infected fish can be significantly increased.
  • the antiviral response, immune response regulation, and cell death response induced by VHSV in fish tissue Gene expression of factors related to can be regulated. That is, the miRNA 155-encapsulated chitosan nanoparticles can regulate antiviral, immune, and apoptotic responses of VHSV-infected fish.
  • the miRNA 155-encapsulated chitosan nanoparticles can exhibit excellent preventive or therapeutic effects against VHSV infectious diseases of fish.
  • administration means introducing a predetermined substance into fish by any suitable method, and the administration route of the antiviral composition for fish may be administered through any general route as long as it can reach the target tissue.
  • intraperitoneal administration intravenous administration, intramuscular administration, subcutaneous administration, intradermal administration, oral administration, topical administration, intranasal administration, intrapulmonary administration, intrarectal administration may be administered, but is not limited thereto.
  • the dose of the antiviral composition for fish depends on the formulation method, body weight of the subject, age of the animal, sex, morbid condition, health condition, diet, administration time, administration route, administration method, excretion rate, excretion rate, severity of the disease, And the range may vary depending on reaction sensitivity, etc., and may be divided and administered once or several times a day. Ordinarily, a skilled physician can easily determine and prescribe a dose of the antiviral composition for fish that is effective for the desired treatment or prevention.
  • the daily dosage of the antiviral composition for fish may be about 0.001 to 10000 mg/kg, but is not limited thereto.
  • the antiviral composition for fish may be administered to fish as an individual therapeutic agent or in combination with other therapeutic agents, sequentially or simultaneously with conventional therapeutic agents, and may be administered single or multiple times. Considering all of the above factors, it is important to administer an amount that can obtain the maximum effect with the minimum amount without side effects, which can be easily determined by those skilled in the art.
  • the antiviral composition for fish is used for fish, and may be a feed, a feed additive, an antiviral drug, a drug for preventing or treating a viral infectious disease, or a drug for enhancing immunity.
  • the antiviral composition for fish may be a drug for preventing or treating viral hemorrhagic sepsis virus infectious diseases.
  • prevention refers to any action that suppresses or delays the onset of viral hemorrhagic sepsis virus infectious disease by administration of the composition.
  • treatment means any action that improves or benefits the symptoms of a disease already caused by a viral hemorrhagic sepsis virus infectious disease by administration of the composition.
  • the antiviral composition for fish may further include one or more veterinarily acceptable carriers.
  • Veterinarily acceptable carriers may include saline, sterile water, Ringer's solution, buffered saline, dextrose solution, maltodextrin solution, glycerol, ethanol, and a mixture of one or more of these components, and, if necessary, an antioxidant, Other customary additives such as buffers and bacteriostats may be added.
  • a diluent, a dispersing agent, a surfactant, a binder, and a lubricant may be additionally added and formulated using a method well known in the art.
  • a binder, an emulsifier, a preservative, etc. added to prevent quality deterioration may be further included, and amino acids, vitamins, enzymes, and probiotics to increase efficacy .
  • Flavors, non-protein nitrogen compounds, silicate agents, buffers, coloring agents, extractants, oligosaccharides, etc. may be further included, and in addition, feed mixtures may be further included.
  • the antiviral composition for fish when used as a feed or feed additive, grains, roots and fruits, food processing by-products, algae, fibers, oils and fats, starches, meal, grain by-products, proteins, inorganic It can be mixed with feed or feed additives such as logistics, oils, mineral oils, oils, single cell proteins, zooplankton, and fish meal.
  • the fish may be normal fish that require prevention against VHSV infection or infected fish that are already infected with VHSV and require treatment.
  • the fish may collectively refer to all fish that can be infected with the viral hemorrhagic sepsis virus without limitation.
  • the fish include halibut (Paralichthys olivaceus), yellowtail (Seriola quinqueradiata), red sea bream (Pagrus major), purple tiger (Takifugurubripes), sea bass (Seriola aureovittata), trout (Oncorhynchus masou), rainbow trout (Oncorhynchus mykiss), and amberjack (Seriola) dumerili), horse mackerel (Trachurus japonicus), blackspotted horse mackerel (Pseudocaranx dentex), grouper fish (Epinephelus septemfasciatus), bluefin tuna (Thunnus thynnus), carp (Cyprinus carpio), zebrafish (Danio rerio), catfish (Silurus asotus), clary It may include Clarias gariepinus, tilapia (Oreochronis niloticus,
  • the antiviral composition for fish is prepared in unit dosage form by formulation using a pharmaceutically acceptable carrier and/or excipient according to a method that can be easily performed by a person skilled in the art. or it may be prepared by incorporating into a multi-dose container.
  • the dosage form may be in the form of a solution, suspension or emulsion in an oil or aqueous medium, or in the form of an extract, powder, granule, tablet, or capsule, but is not limited thereto.
  • Another aspect is (a) mixing miRNA 155 and tripolyphosphate solution; (b) dissolving chitosan in an acidic solvent; and (c) mixing and stirring the mixed solution obtained in step (a) and the solution obtained in step (b) to provide a method for preparing chitosan nanoparticles encapsulated with miRNA 155.
  • the tripolyphosphate may be sodium tripolyphosphate (Na 5 P 3 O 10 ) or potassium tripolyphosphate (K 5 P 3 O 10 ).
  • miRNA 155 and tripolyphosphate may be mixed in a weight ratio of about 1:2 to 4, 1:3 to 4, or 1:3 to 3.5.
  • the miRNA 155-encapsulated chitosan nanoparticles prepared by the above method have encapsulation efficiency, encapsulation strength, or miRNA 155 Since the release function is remarkably excellent, miRNA 155, which remains effective, can be effectively delivered into the body or cells of fish, and as a result, the effect of preventing or treating viral infectious diseases in fish can be remarkably increased.
  • the concentration of the tripolyphosphate solution and the type of solvent can be allowed without any limitation as long as the concentration and solvent can dissolve the tripolyphosphate without affecting the characteristics of the miRNA 155 and the tripolyphosphate.
  • the acidic solvent is acetic acid, malonic acid, CMEBAC (N carboxymethyl N,N diethylbenzene ammonium chloride), lactic acid, citric acid, or sodium acetate (sodium acetate), but is not limited thereto.
  • an acidic solution such as an aqueous acetic acid solution, may be used as the acidic solvent in step (b).
  • the concentration of the aqueous acetic acid solution may be about 0.01 to 2, 0.01 to 1, 0.01 to 0.1, or 0.03 to 0.07% by weight, but is not limited thereto.
  • the chitosan may be dissolved in the acidic solvent at a concentration of about 1 to 5, 1 to 4, or 1 to 3 mg/mL, but is not limited thereto.
  • step (c) the mixed solution obtained in step (a) and the solution obtained in step (b) are mixed in a weight ratio of about 1:1 to 3, 1:1 to 2, or 1:1 to 1.5. It may be, but is not limited thereto.
  • the weight ratio of miRNA 155 and chitosan in the mixture obtained in step (c) may be about 1:5 to 15, 1:7 to 13, 1:9 to 11, or 1:10. According to one embodiment, when the weight ratio of the miRNA 155 and chitosan contained in the mixture obtained in step (c) is about 1: 5 to 15, the miRNA 155-encapsulated chitosan nanoparticles prepared by the method Since the encapsulation efficiency, encapsulation strength, or miRNA 155 release ability is remarkably excellent, miRNA 155 with maintained efficacy can be effectively delivered in vivo or into the cells of fish, thereby significantly preventing or treating fish viral infectious diseases. can increase
  • chitosan nanoparticles may be formed by forming a cross-link between the chitosan and tripolyphosphate, and an electrostatic interaction, such as an ionic bond, is formed between the chitosan and miRNA 155, thereby forming the chitosan nanoparticle.
  • miRNA 155 may be encapsulated inside the nanoparticle to form chitosan nanoparticles encapsulated with miRNA 155.
  • the method may further include obtaining chitosan nanoparticles encapsulated with miRNA 155 by centrifuging the mixture obtained in step (c).
  • the miRNA 155-encapsulated chitosan nanoparticles prepared by the above method may exhibit a preventive or therapeutic effect against viral hemorrhagic sepsis virus infectious fish disease.
  • miRNA 155-encapsulated chitosan nanoparticles when miRNA 155-encapsulated chitosan nanoparticles are prepared by the above method, significantly superior encapsulation efficiency and significantly lower polydispersity index are exhibited, and the particle size is uniform and the miRNA encapsulated very stably.
  • 155 encapsulated chitosan nanoparticles can be prepared.
  • the miRNA 155 encapsulated chitosan nanoparticles prepared by the above method exhibit a very stable nanosphere shape, and thus miRNA 155 inside can be strongly protected from the external environment.
  • miRNA 155-encapsulated chitosan nanoparticles prepared by the above method are nano-sized and exhibit a positive surface charge, bioabsorption, bioavailability, and cell permeability can be remarkably increased, and fish After being absorbed into a living body or cells, miRNA 155 is continuously released due to the gradual biodegradation of chitosan, so that the effect of miRNA 155 can be continuously maintained in the living body of fish.
  • the miRNA 155-encapsulated chitosan nanoparticles prepared by the above method significantly improve the stability of miRNA 155 by blocking the influence of the external environment, and can effectively deliver miRNA 155 with maintained efficacy into fish organisms, As a result, it is possible to exhibit a significantly increased preventive or therapeutic effect against viral hemorrhagic sepsis virus infectious fish disease.
  • Another aspect is to prevent or treat viral hemorrhagic sepsis virus infectious fish disease comprising administering to fish an antiviral composition for fish against VHSV containing the miRNA 155-encapsulated chitosan nanoparticles or the same as an active ingredient.
  • Another aspect provides an antiviral use of the miRNA 155-encapsulated chitosan nanoparticles or a composition containing the miRNA 155 as an active ingredient against fish-infectious viral hemorrhagic septicemia virus (VHSV).
  • VHSV fish-infectious viral hemorrhagic septicemia virus
  • Another aspect provides the use of the miRNA 155-encapsulated chitosan nanoparticles or a composition containing the chitosan nanoparticles as an active ingredient for preventing or treating VHSV-infected fish disease.
  • Another aspect provides a use of the miRNA 155-encapsulated chitosan nanoparticles for preparing an antiviral composition for fish against VHSV or a medicament (or pharmaceutical composition) for preventing or treating VHSV-infected fish disease.
  • an antiviral composition for fish comprising chitosan nanoparticles encapsulated with miRNA 155 as an active ingredient and a method using the same according to one aspect, when fish are infected with VHSV, the proliferation or replication of VHSV in fish tissue is reduced. In addition, the antiviral response, immune response, and cell death response are regulated, and the survival rate of fish is significantly increased, so that VHSV-infected fish diseases can be prevented or treated.
  • the miRNA 155-encapsulated chitosan nanoparticles significantly improve the stability of miRNA 155, can effectively deliver miRNA 155 with maintained efficacy into the fish body, and do not induce toxicity in fish tissue, resulting in VHSV infectious disease in fish. It can be applied as a safe treatment that can prevent or treat very effectively.
  • FIG. 1 is a diagram schematically showing the structure of miRNA 155-CNPs and the release of miRNA 155 from miRNA 155-CNPs according to an embodiment.
  • FIG. 2 is a diagram schematically showing a manufacturing process of miRNA 155-CNPs according to an embodiment.
  • LMWC low molecular weight chitosan
  • FIG. 4 is a diagram showing the results of (a) scanning electron microscopy (SEM) and (b) transmission electron microscopy (TEM) imaging of miRNA 155-CNPs according to an embodiment. .
  • 5 is a graph showing the results of analyzing the particle size of miRNA 155-CNPs according to an embodiment.
  • FIG. 6 is a graph showing the results of analyzing the zeta potential of miRNA 155-CNPs according to an embodiment.
  • FIG. 7 is a graph showing the results of analyzing miRNA 155 release levels over time of miRNA 155-CNPs according to an embodiment.
  • FIG. 8 is a view showing the results of evaluating (a) the encapsulation strength of miRNA 155-CNPs and (b) the integrity of miRNA 155 stored therein according to an embodiment.
  • FIG. 9 is a diagram schematically illustrating an experimental procedure for confirming the effect of miRNA 155-CNPs on VHSV (viral hemorrhagic septicemia virus) infection of fish according to an embodiment.
  • VHSV viral hemorrhagic septicemia virus
  • VCS 10 is (a) viral mRNA copy numbers in tissues of fish infected with VHSV after administration of miRNA 155-CNPs to confirm the effect of miRNA 155-CNPs on VHSV infection of fish according to an embodiment; (VCN) and (b) a graph showing the results of measuring the level of viral gRNA copy numbers (VCN).
  • FIG. 11 is a graph showing the results of analyzing the survival rate of VHSV-infected fish after administration of miRNA 155-CNPs in order to confirm the effect of miRNA 155-CNPs on VHSV infection of fish according to an embodiment.
  • FIG. 12 is a view of miRNA 155-CNPs according to an embodiment in order to confirm the effect of regulating the antiviral response of fish against VHSV infection, in tissues of fish infected with VHSV after administration of miRNA 155-CNPs (a ) ifn ⁇ ; (b) irf2bpl; and (c) a graph showing the result of measuring the mRNA expression level of irf9.
  • FIG. 13 is a view of (a) socs1a in tissues of VHSV-infected fish after administration of miRNA 155-CNPs to confirm the effect of miRNA 155-CNPs on regulating the immune response against VHSV infection in fish according to an embodiment; ; (b) il1 ⁇ ; (c) tnf ⁇ ; (d) il6; (e) il10; And (f) a graph showing the results of measuring the mRNA expression level of cxcl18b.
  • FIG. 14 is a diagram in the tissues of fish infected with VHSV after administration of miRNA 155-CNPs in order to confirm the effect of miRNA 155-CNPs on regulating the apoptosis response of fish to VHSV infection according to an embodiment (a) cd8a; (b) caspase3; and (c) a graph showing the results of measuring the mRNA expression level of p53.
  • EC represents one layer of epithelial cells
  • PL represents primary lamellar epithelium
  • SL represents secondary lamella
  • MC represents mucous cells of the inner wall of the SL.
  • VHSV N gene
  • Example 1 Preparation of miRNA 155 encapsulated chitosan nanoparticles (miRNA 155-CNPs)
  • miRNA 155-CNPs A complex of miRNA 155 and CNPs (miRNA 155-CNPs) having a structure in which miRNA 155 is encapsulated inside chitosan nanoparticles (CNPs) was prepared.
  • FIG. 1 is a diagram schematically showing the structure of miRNA 155-CNPs and the release of miRNA 155 from miRNA 155-CNPs according to an embodiment.
  • FIG. 2 is a diagram schematically showing a manufacturing process of miRNA 155-CNPs according to an embodiment.
  • LMWC low molecular weight chitosan
  • miRNA 155 containing the nucleotide sequence of SEQ ID NO: 1 was added to about 1.2 mL of sodium tripolyphosphate (Na 5 P 3 O 10 ) solution (about 0.83 mg/mL) and mixed. did The miRNA 155 was purchased from GenePharma (Shanghai, China) and used. Then, the mixed solution and a low molecular weight chitosan (LMWC) solution were mixed.
  • Na 5 P 3 O 10 sodium tripolyphosphate
  • LMWC low molecular weight chitosan
  • a chitosan solution obtained by dissolving low molecular weight chitosan in an aqueous solution of about 0.05% acetic acid at a concentration of about 2 mg/mL and about 1.2 mL of a mixture of the miRNA 155 and sodium tripolyphosphate were mixed. Then, the mixture was mixed while stirring at room temperature for about 1 hour. Thereafter, the mixed solution was centrifuged for about 30 minutes at about 4° C. and about 12,000 rpm, and then the supernatant was removed and the obtained precipitate was examined under a scanning electron microscope (SEM) and transmission electron microscope (transmission electron microscope). Electron microscopy: TEM) analysis was performed.
  • SEM scanning electron microscope
  • transmission electron microscope transmission electron microscope
  • FIG. 4 is a diagram showing the results of (a) scanning electron microscopy (SEM) and (b) transmission electron microscopy (TEM) imaging of miRNA 155-CNPs according to an embodiment. .
  • spherical chitosan nanoparticles in which miRNA 155 was encapsulated were obtained.
  • miRNA 155-CNPs about 1 mL of miRNA 155-CNPs was suspended in pH 7.4 PBS, and the particle size distribution, polydispersity index (PDI), and zeta potential of the suspension were measured using Zetasizer ® Nano-ZS (Malvern Instruments, Malvern, UK). measured.
  • PDI polydispersity index
  • zeta potential of the suspension were measured using Zetasizer ® Nano-ZS (Malvern Instruments, Malvern, UK). measured.
  • the encapsulation efficiency (%) is the final After centrifugation to obtain miRNA 155-CNPs, the concentration of non-captured miRNA 155 present in the recovered supernatant was measured and analyzed.
  • the concentration of non-captured miRNA 155 present in the supernatant was determined by measuring absorbance at a wavelength of about 260 nm using a NanoDrop One UV-Vis Spectrophotometer (Thermo Fisher Scientific, USA). The absorbance of the supernatant of CNP without miRNA 155 was used as a blank. Encapsulation efficiency (%) was calculated according to:
  • Encapsulation efficiency (%) (mass of encapsulated miRNA 155 / initial mass of miRNA 155 used) * 100.
  • the miRNA 155-CNPs were added to a PBS solution (pH 7.4) and mixed while stirring at about 37 ° C. for about 20 days. Samples of the mixed solution were collected and centrifuged at intervals of days, and then the amount of miRNA 155 contained in the supernatant was measured using a NanoDrop One UV-Vis spectrophotometer.
  • 5 is a graph showing the results of analyzing the particle size of miRNA 155-CNPs according to an embodiment.
  • FIG. 6 is a graph showing the results of analyzing the zeta potential of miRNA 155-CNPs according to an embodiment.
  • FIG. 7 is a graph showing the results of analyzing miRNA 155 release levels over time of miRNA 155-CNPs according to an embodiment.
  • the particle size of the miRNA 155-CNPs was about 341.45 ⁇ 10.00 nm, the surface charge was positive, and the zeta potential was about 39.30 ⁇ 3.90 mv.
  • the polydispersity index (PDI) was remarkably low at about 0.516 ⁇ 0.05, and the encapsulation efficiency (EE (%)) was about 98.80%. was found to be significantly higher.
  • the miRNA 155-CNPs could continuously release miRNA 155 for a certain period of time. Specifically, it was confirmed that the miRNA 155-CNPs could release about 40% or more of the total amount of miRNA 155 contained in the miRNA 155-CNPs by continuously releasing miRNA 155 for about 20 days or more. This can be understood as the fact that miRNA 155 is released as the CNPs are gradually biodegraded, and the strong electrostatic interaction formed between the CNPs and miRNA 155, eg, the strength of the ionic bond, is reduced.
  • the miRNA 155-CNPs as shown in Figure 1, the surface of miRNA 155 is coated with positively charged CNPs, so that miRNA 155 exists inside, and positively charged CNPs are outside miRNA 155 inside. It was confirmed that the nanospheres or spherical nanoparticles exhibiting a surface positive charge having a structure surrounding the .
  • Example 1 In addition, in the case of the preparation method of Example 1, remarkably excellent encapsulation efficiency and remarkably low polydispersity index are exhibited, and the particle size is uniform and very stably encapsulated nano-sized miRNA 155-CNPs can be prepared confirmed.
  • the miRNA 155-CNPs exhibited a very stable nanosphere shape as described above, and while strongly protecting the internal miRNA 155 from the external environment, the external CNPs gradually biodegraded over time, continuously releasing miRNA 155. It was confirmed that it could be released.
  • the miRNA 155-CNPs significantly improved the stability of miRNA 155 by blocking the influence of the external environment, and could effectively deliver miRNA 155 with maintained efficacy into the fish body.
  • the miRNA 155-CNPs have very small particles and exhibit a positive surface charge, they can increase bioabsorption, bioavailability, and cell permeability, and after being absorbed into the body or cells of fish, miRNA It was found that the effect of miRNA 155 could be continuously maintained in the body of fish by continuously releasing 155.
  • Chitosan nanoparticles in which miRNA 155 was encapsulated were prepared according to the preparation method of Example 1, and various types of miRNA 155-CNPs having different weight ratios of miRNA 155 and chitosan were prepared. Afterwards, the difference in encapsulation efficiency according to the difference in the weight ratio of miRNA 155 and chitosan was compared and analyzed. Encapsulation efficiency analysis was performed in the same manner as described in Example 2.1 above.
  • Example 3 Evaluation of encapsulation strength of miRNA 155-CNPs and integrity of internally stored miRNA 155
  • the encapsulation strength of the chitosan nanoparticles (miRNA 155-CNPs) in which miRNA 155 prepared in Example 1 was encapsulated was evaluated, that is, the binding strength between CNPs and miRNA 155, and the storage ability to retain miRNA 155 inside.
  • RNA integrity was evaluated.
  • DNA marker 100 bp
  • miRNA 155 naked miR-155
  • miRNA 155 naked miR-155
  • 10 ⁇ L of CNPs about 10 ⁇ L of suspension containing about 1.5 ⁇ g of miRNA 155-CNPs
  • centrifugation supernatant miRNA 155-CNPs SN
  • a DNA marker 100 bp
  • miRNA 155 naked miR-155
  • miRNA 155 and about 0.1 ⁇ L of RNase A solution (10 mg/mL) were mixed and incubated at about 37° C. for about 5 minutes
  • FIG. 8 is a view showing the results of evaluating (a) the encapsulation strength of miRNA 155-CNPs and (b) the integrity of miRNA 155 stored therein according to an embodiment.
  • RNA integrity was maintained by maintaining the original state of the released miRNA 155 when the CNPs of the miRNA 155-CNPs were degraded by chitosanase.
  • the miRNA 155-CNPs protect the internally stored miRNA 155 from external enzymes by preventing miRNA 155 from being degraded by ribonucleic acid hydrolase A (RNase A).
  • the miRNA 155-CNPs had remarkably excellent binding strength between CNPs and miRNA 155 and storage ability to retain miRNA 155 therein.
  • the miRNA 155 stored inside the miRNA 155-CNPs is not affected by the external environment (e.g., RNase A, etc.), and maintains its original state intact, maintaining the integrity of the miRNA 155-CNPs. It was found that it was stored in and then released. Therefore, the miRNA 155-CNPs are used as a therapeutic agent that can effectively prevent or treat infectious diseases in fish by protecting miRNA 155 from the external environment and delivering miRNA 155 into the body or cells of fish while maintaining the effectiveness of miRNA 155. knew it could be.
  • miRNA 155-CNPs chitosan nanoparticles encapsulated with miRNA 155 prepared in Example 1 against viral hemorrhagic septicemia virus (VHSV) infectious diseases in fish
  • VHSV viral hemorrhagic septicemia virus
  • the miRNA in fish survival rate of fish infected with VHSV after administration of 155-CNPs levels of viral RNA copy numbers (VCN) in fish tissue
  • VCN viral RNA copy numbers
  • gene expression levels of factors related to antiviral responses, regulatory and inflammatory responses, and apoptotic responses induced by VHSV in fish tissues were analyzed.
  • FIG. 9 is a diagram schematically illustrating an experimental procedure for confirming the effect of miRNA 155-CNPs on VHSV (viral hemorrhagic septicemia virus) infection of fish according to an embodiment.
  • VHSV viral hemorrhagic septicemia virus
  • VHSV culture medium about 10 5 TCID 50 /mL/ fish
  • tissues were collected from the VHSV-infected fish about 57 hours after VHSV infection, and the survival rate of the VHSV-infected fish was analyzed for about 120 hours after VHSV infection, and the miRNA 155 - The preventive or therapeutic effects of CNPs against VHSV infectious diseases in fish were analyzed.
  • VHSV-infected fish Analysis of the survival rate of VHSV-infected fish and the level of viral RNA copy numbers (VCN) in VHSV-infected fish tissues
  • the miRNA 155-CNPs were i.p. About 14 hours after injection, VHSV infection, and about 57 hours after VHSV infection, tissues (gills, muscles, kidneys, etc.) were taken and viral mRNA copy numbers (VCN) per tissue weight (g) were calculated. Viral gRNA copy numbers (VCN) levels were measured.
  • VCN was calculated by absolute quantification (qRT-PCR) of the N gene transcript of VHSV from RNA isolated from each tissue.
  • the standard curve and standard formula used are shown in FIG. 16 .
  • the specific VCN level measurement method was performed according to a known method (Avunje et al., 2011).
  • the miRNA 155-CNPs i.p. About 14 hours after the injection, VHSV infection was performed, and survival of the fish infected with VHSV was observed for about 120 hours after VHSV infection, and then the survival rate was analyzed.
  • VCS 10 is (a) viral mRNA copy numbers in tissues of fish infected with VHSV after administration of miRNA 155-CNPs to confirm the effect of miRNA 155-CNPs on VHSV infection of fish according to an embodiment; (VCN) and (b) a graph showing the results of measuring the level of viral gRNA copy numbers (VCN).
  • FIG. 11 is a graph showing the results of analyzing the survival rate of VHSV-infected fish after administration of miRNA 155-CNPs in order to confirm the effect of miRNA 155-CNPs on VHSV infection of fish according to an embodiment.
  • the miRNA 155-CNPs were i.p. About 14 hours after injection, after infection with VHSV, about 57 hours after infection with VHSV, tissues (gills, muscles, kidneys, etc.) were collected and the antiviral response and immune response induced by VHSV in each tissue Changes in gene expression levels of factors related to regulation and cell death responses were analyzed. Changes in mRNA expression levels of ifn ⁇ , irf2bpl, and irf9 were analyzed in relation to antiviral responses, and changes in mRNA expression levels of socs1a, il1 ⁇ , tnf ⁇ , il6, il10, and cxcl18b were analyzed in relation to immune response regulation. , Changes in mRNA expression levels of cd8a, caspase3, and p53 in relation to the apoptosis response were analyzed.
  • the mRNA expression level can be analyzed by a known method. For example, after reverse transcription of mRNA isolated from each tissue using RT-PCR to obtain cDNA, the antiviral reaction using the cDNA as a template , immune response regulation, and mRNA expression levels can be analyzed by amplifying genes with primers capable of amplifying genes of factors related to apoptosis response. Primers capable of amplifying genes of factors related to the antiviral response, immune response regulation, and cell death response can all be purchased from existing vendors.
  • FIG. 12 is a view of miRNA 155-CNPs according to an embodiment in order to confirm the effect of regulating the antiviral response of fish against VHSV infection, in tissues of fish infected with VHSV after administration of miRNA 155-CNPs (a ) ifn ⁇ ; (b) irf2bpl; and (c) a graph showing the result of measuring the mRNA expression level of irf9.
  • FIG. 13 is a view of (a) socs1a in tissues of VHSV-infected fish after administration of miRNA 155-CNPs to confirm the effect of miRNA 155-CNPs on regulating the immune response against VHSV infection in fish according to an embodiment; ; (b) il1 ⁇ ; (c) tnf ⁇ ; (d) il6; (e) il10; And (f) a graph showing the results of measuring the mRNA expression level of cxcl18b.
  • FIG. 14 is a diagram in the tissues of fish infected with VHSV after administration of miRNA 155-CNPs in order to confirm the effect of miRNA 155-CNPs on regulating the apoptosis response of fish to VHSV infection according to an embodiment (a) cd8a; (b) caspase3; and (c) a graph showing the results of measuring the mRNA expression level of p53.
  • the fish administered with the miRNA 155-CNPs showed antiviral activity in all tissues of the gills, muscles, and kidneys when compared to VHSV-infected fish not administered with the miRNA 155-CNPs. It was confirmed that the mRNA expression of ifn ⁇ and irf9, which are response-related factors, decreased. On the other hand, it was confirmed that the mRNA expression level of irf2bpl measured in kidney tissue was increased compared to the VHSV-infected fish not administered with miRNA 155-CNPs, unlike the level measured in gill and muscle tissue.
  • the miRNA 155-CNPs-administered fish were VHSV-infected, compared to VHSV-infected fish not administered miRNA 155-CNPs, related to the regulation of immune responses in all tissues of the gills, muscles, and kidneys. It was confirmed that the mRNA expression of the factors il10 and cxcl18b decreased, whereas the mRNA expression of il1 ⁇ and tnf ⁇ increased. In addition, it was confirmed that the mRNA expression levels of socs1a and il6 measured in kidney tissue were increased compared to VHSV-infected fish not administered with miRNA 155-CNPs, unlike those measured in gill and muscle tissue.
  • miRNA 155-CNPs chitosan nanoparticles encapsulated with miRNA 155 prepared in Example 1
  • the gill tissue of the fish was collected. H & E staining was performed on tissue sections obtained by terminating the collected tissue, and the safety of the miRNA 155-CNPs was analyzed by comparing the pathological state of the tissue with a control group.
  • a normal control group normal fish to which NF H 2 O was administered instead of the miRNA 155-CNPs were used, and fish to which CNPs were administered instead of the miRNA 155-CNPs were used as a comparative control group.
  • EC represents one layer of epithelial cells
  • PL represents primary lamellar epithelium
  • SL represents secondary lamella
  • MC represents mucous cells of the inner wall of the SL.
  • the miRNA 155-CNPs could be applied as a safe therapeutic agent capable of preventing or treating VHSV infectious diseases in fish because they did not induce toxicity in fish tissue.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Epidemiology (AREA)
  • Molecular Biology (AREA)
  • Virology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biochemistry (AREA)
  • Optics & Photonics (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Biomedical Technology (AREA)
  • Communicable Diseases (AREA)
  • Oncology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

The present application pertains to chitosan nanoparticles having miRNA-155 encapsulated therein and uses thereof and provides a method for preparing the chitosan nanoparticles having miRNA-155 encapsulated therein, an antiviral composition for fish against viral hemorrhagic septicemia virus (VHSV) comprising the chitosan nanoparticles having miRNA-155 encapsulated therein as an active ingredient, and a method for preventing or treating diseases in fish caused by VHSV infection using same.

Description

miRNA 155가 봉입된 키토산 나노입자를 유효성분으로 포함하는 바이러스성 출혈성 패혈증 바이러스에 대한 어류용 항바이러스 조성물Antiviral composition for fish against viral hemorrhagic sepsis virus containing chitosan nanoparticles encapsulated with miRNA 155 as an active ingredient
본 발명은 miRNA 155가 봉입된 키토산 나노입자를 유효성분으로 포함하는 바이러스성 출혈성 패혈증 바이러스 (VHSV)에 대한 어류용 항바이러스 조성물에 관한 것으로, 본 특허출원은 2021년 12월 29일에 대한민국 특허청에 제출된 대한민국 특허출원 제10-2021-0191859호에 대하여 우선권을 주장하며, 상기 특허출원의 개시 사항은 본 명세서에 참조로서 삽입된다.The present invention relates to an antiviral composition for fish against viral hemorrhagic sepsis virus (VHSV) containing chitosan nanoparticles encapsulated with miRNA 155 as an active ingredient. Priority is claimed for the submitted Republic of Korea Patent Application No. 10-2021-0191859, the disclosure of which is incorporated herein by reference.
바이러스성 출혈성 패혈증 바이러스 (viral hemorrhagic septicemia virus: VHSV)는 단일가닥의 RNA 바이러스로 Rhabdoviridae과 Novirhabdovirus속의 외막을 가진 바이러스이다. VHSV에 감염된 넙치를 육안으로 살펴보면, 체색흑화, 전신의 출혈, 복수 저류로 인한 복부팽만, 탈장, 아가미 퇴색, 무안축 체표에 붉은 반점모양의 출혈이 관찰된다. VHSV로 인한 발병은 수온이 낮은 10-13 ℃의 겨울철에 발생하고 종묘 입식시기에 주로 발생하여 치어의 대량폐사를 일으킨다. 감염 표적 장기는 심장과 신장이며 이외에도 비장, 뇌, 근육, 아가미 등의 손상을 초래한다. VHSV는 무지개송어의 중요 바이러스성 질병으로 처음 보고가 되었는데 최근 다양한 어류, 송어, 무지개송어, 은연어, 강송어, 브라운송어, 스틸헤드 송어 (steelhead trout) 등의 연어과 어류뿐만 아니라 대구, 청어 등과 같은 자연수계의 어류 및 넙치 등과 같은 해산 양식 어류에서도 널리 발생하며, 주로 유럽, 북미, 아시아 지역에서 널리 발생한다.Viral hemorrhagic septicemia virus (VHSV) is a single-stranded RNA virus, an enveloped virus belonging to the family Rhabdoviridae and Novirhabdovirus. Visual examination of flounder infected with VHSV shows blackening of the body, hemorrhage throughout the body, abdominal distension due to ascites retention, hernia, discoloration of the gills, and red spot-like bleeding on the anatomical body surface. Outbreaks caused by VHSV occur in the winter when the water temperature is low at 10-13 ℃, and it mainly occurs during the stocking period, causing mass mortality of fry. The target organs of infection are the heart and kidneys, and damage to the spleen, brain, muscles, and gills is also caused. VHSV was first reported as an important viral disease of rainbow trout, and has recently been reported in a variety of fish, such as trout, rainbow trout, silver salmon, river trout, brown trout, and steelhead trout, as well as salmonids such as cod and herring. It also occurs widely in fish in natural waters and marine cultured fish such as halibut, mainly in Europe, North America and Asia.
바이러스성 출혈성 패혈증 (viral hemorrhagic septicemia: VHS)은 국내에서는 2001년 넙치에서 처음 보고되었고, 이후 각종 자연산 해산어에서도 보고되고 있으며, 현재 넙치의 바이러스 질병 중 가장 높은 비율을 차지하는 양식 넙치의 피해가 매우 심각한 치명적인 질병이다. 또한, VHS는 국제수역사무국 (OIE)에서 'OIE 신고대상 질병 (OIE notifiable disease)'으로 규정되어 있어 수산물 유통시 검역 대상이 되는 질병으로 넙치를 포함한 양식 어류의 수출입에 있어서 무역장벽으로 작용하는 중요한 질병 요인이기도 하다.Viral hemorrhagic septicemia (VHS) was first reported in domestic flatfish in 2001, and has since been reported in various wild fish. It is a fatal disease. In addition, VHS is regulated as an 'OIE notifiable disease' by the Office of International Animal Health (OIE), so it is a disease subject to quarantine when distributing aquatic products. It is also a disease factor.
VHSV의 구조와 항원단백질에 대한 연구, 및 이들 기초 연구를 바탕으로 불활화 백신, 단백질 재조합 백신, 약독화 백신, DNA 백신 등에 대한 연구가 수행되고 있다 (한국 공개특허 제10-2014-0003826호). 그러나 약독화 (attenuated) 바이러스 백신은 실험 조건에서는 효과가 있는 것으로 보고되고 있으나 바이러스의 병원성 회복의 위험성과 자연계로의 확산 위험성 때문에 허가가 되지 않고 있다. 또한, 출혈성 패혈증 바이러스 G 혹은 N 유전자를 삽입한 플라스미드를 근육 주사한 DNA 백신 실험에서는 강력한 면역반응이 유도되고 폐사율도 경감되었다는 보고가 무지개송어와 넙치에서 보고되고 있으나 DNA 백신의 유전자 조작에 대한 안전성의 문제 때문에 상용화되어 있지 않다.Research on the structure and antigenic protein of VHSV, and research on inactivated vaccines, protein recombinant vaccines, attenuated vaccines, and DNA vaccines, etc. are being conducted based on these basic studies (Korean Patent Publication No. 10-2014-0003826) . However, attenuated virus vaccines are reported to be effective under experimental conditions, but are not approved due to the risk of pathogenic recovery of the virus and the risk of spreading to the natural world. In addition, in DNA vaccine experiments in which plasmids inserted with hemorrhagic sepsis virus G or N genes were injected intramuscularly, strong immune responses were induced and mortality was reported in rainbow trout and halibut, but the safety of genetic manipulation of DNA vaccines was reported. It is not commercialized because of problems.
한편, 키틴 (갑각류 껍질의 주성분)을 탈 아세틸화시킨 천연 생체 고분자인 키토산 ((1,4)-2-아미노-2-데옥시-β-D-글루칸)은, 뛰어난 생체 적합성, 낮은 면역원성, 그리고 다른 폴리머들에 비해 낮은 세포 독성 때문에 섬유고분자 산업이나 의공학을 비롯한 최첨단 기술 분야에서 응용되기 시작하였으나, VHSV 감염성 어류 질병에 대한 예방 또는 치료 분야로의 적용은 미비한 실정이다.On the other hand, chitosan ((1,4)-2-amino-2-deoxy-β-D-glucan), a natural biopolymer obtained by deacetylating chitin (the main component of crustacean shells), has excellent biocompatibility and low immunogenicity. , And because of its low cytotoxicity compared to other polymers, it has begun to be applied in the high-tech fields, including the fiber polymer industry and medical engineering, but its application to the field of prevention or treatment of VHSV-infected fish diseases is insufficient.
상기한 바와 같은 문제를 해결하기 위하여, 본 발명의 발명자들은, VHSV 감염성 어류 질병에 대한 예방 또는 치료 효과를 나타내는 신규한 물질을 찾기 위해 연구를 계속한 결과, miRNA (micro RNA) 155 또는 이의 모방체 (mimic)를 키토산 나노입자에 봉입하여 어류에 투여하는 경우, 독성을 야기하지 않으면서 VHSV 감염으로부터 어류를 보호하는 우수한 효과를 확인함으로써, 본 발명을 완성하였다.In order to solve the problems described above, the inventors of the present invention continued research to find a new substance exhibiting a preventive or therapeutic effect on VHSV infectious fish disease, miRNA (micro RNA) 155 or a mimic thereof (mimic) encapsulated in chitosan nanoparticles and administered to fish, the present invention was completed by confirming the excellent effect of protecting fish from VHSV infection without causing toxicity.
본 발명의 일 목적은 miRNA 155가 봉입된 키토산 나노입자를 유효성분으로 포함하는 바이러스성 출혈성 패혈증 바이러스 (viral hemorrhagic septicemia virus: VHSV)에 대한 어류용 항바이러스 조성물를 제공하고자 한다.One object of the present invention is to provide an antiviral composition for fish against viral hemorrhagic septicemia virus (VHSV) comprising chitosan nanoparticles encapsulated with miRNA 155 as an active ingredient.
본 발명의 다른 목적은 (a) miRNA 155 및 트리폴리인산염 (tripolyphosphate) 용액을 혼합하는 단계; (b) 키토산 (chitosan)을 산성 용매에 용해시키는 단계; 및 (c) 상기 (a) 단계에서 얻어진 혼합액 및 상기 (b) 단계에서 얻어진 용액을 혼합하여 교반하는 단계를 포함하는 miRNA 155가 봉입된 키토산 나노입자를 제조하는 방법을 제공하고자 한다.Another object of the present invention is (a) mixing miRNA 155 and tripolyphosphate solution; (b) dissolving chitosan in an acidic solvent; and (c) mixing and stirring the mixed solution obtained in step (a) and the solution obtained in step (b) to provide a method for preparing chitosan nanoparticles encapsulated with miRNA 155.
본 발명의 또 다른 목적은 어류에 상기 miRNA 155가 봉입된 키토산 나노입자 또는 이를 유효성분으로 포함하는 VHSV에 대한 어류용 항바이러스 조성물을 투여하는 단계를 포함하는 VHSV 감염성 어류 질병을 예방 또는 치료하는 방법을 제공하고자 한다.Another object of the present invention is a method for preventing or treating VHSV-infected fish disease comprising administering to fish an antiviral composition for fish against VHSV containing the miRNA 155-encapsulated chitosan nanoparticles or the same as an active ingredient. want to provide
본 발명의 또 다른 목적은 상기 miRNA 155가 봉입된 키토산 나노입자 또는 이를 유효성분으로 포함하는 조성물의, 어류-감염성 VHSV에 대한 항바이러스 용도를 제공하고자 한다.Another object of the present invention is to provide an antiviral use of the miRNA 155-encapsulated chitosan nanoparticles or a composition containing the chitosan nanoparticles as an active ingredient against fish-infectious VHSV.
본 발명의 또 다른 목적은 상기 miRNA 155가 봉입된 키토산 나노입자 또는 이를 유효성분으로 포함하는 조성물의, VHSV 감염성 어류 질병을 예방 또는 치료하기 위한 용도를 제공하고자 한다.Another object of the present invention is to provide a use of the miRNA 155-encapsulated chitosan nanoparticles or a composition containing the chitosan nanoparticles as an active ingredient for preventing or treating VHSV-infected fish disease.
본 발명의 또 다른 목적은 상기 miRNA 155가 봉입된 키토산 나노입자의, VHSV에 대한 어류용 항바이러스 조성물 또는 VHSV 감염성 어류 질병의 예방 또는 치료용 약제 (또는 약제학적 조성물)를 제조하기 위한 용도를 제공하고자 한다.Another object of the present invention is to provide a use of the miRNA 155-encapsulated chitosan nanoparticles for preparing an antiviral composition for fish against VHSV or a medicament (or pharmaceutical composition) for preventing or treating VHSV infectious fish disease. want to do
그러나 본 발명이 이루고자 하는 기술적 과제는 이상에서 언급한 과제에 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업계에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다. However, the technical problem to be achieved by the present invention is not limited to the above-mentioned problems, and other problems not mentioned will be clearly understood by those skilled in the art from the following description.
다른 식으로 정의되지 않는 한, 본 명세서에서 사용된 모든 기술적 및 과학적 용어들은 본 발명이 속하는 기술 분야에서 숙련된 전문가에 의해서 통상적으로 이해되는 것과 동일한 의미를 갖는다. 일반적으로 본 명세서에서 사용된 명명법은 본 기술 분야에서 잘 알려져 있고 통상적으로 사용되는 것이다.Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. In general, the nomenclature used herein is one well known and commonly used in the art.
일 양상은 miRNA 155가 봉입된 키토산 나노입자를 유효성분으로 포함하는 바이러스성 출혈성 패혈증 바이러스 (viral hemorrhagic septicemia virus: VHSV)에 대한 어류용 항바이러스 조성물을 제공한다.One aspect provides an antiviral composition for fish against viral hemorrhagic septicemia virus (VHSV) comprising chitosan nanoparticles encapsulated with miRNA 155 as an active ingredient.
용어 "miRNA (micro RNA)"는 mRNA의 3' 비번역 영역 (UTR) 부위와의 염기결합을 통해 전사 후 단계에서 유전자의 발현을 조절하는 조절 RNA (regulatory RNA) 분자로서, 대략 20 내지 25 뉴클레오티드 (nt)의 비번역 RNA를 의미한다. miRNA는 발생, 분화, 세포사멸, 및 증식과 관련된 결정적인 생물학적 과정뿐만 아니라 당뇨병, 신경변성의 질환, 및 암과 같은 질환들과 관련되어 있는 것으로 알려져 있다.The term "miRNA (micro RNA)" is a regulatory RNA molecule that regulates gene expression in the post-transcriptional stage through base binding to the 3' untranslated region (UTR) of mRNA, and is about 20 to 25 nucleotides long. (nt) means non-translated RNA. miRNAs are known to be involved in critical biological processes related to development, differentiation, apoptosis, and proliferation, as well as diseases such as diabetes, neurodegenerative diseases, and cancer.
상기 miRNA 155는 서열번호 1의 염기서열을 포함하는 것일 수 있다. 또한, 상기 서열번호 1로 구성된 염기서열뿐만 아니라, 상기 서열과 80% 이상, 구체적으로는 90% 이상, 보다 구체적으로는 95% 이상, 더욱 구체적으로는 98% 이상, 가장 구체적으로는 99% 이상의 상동성을 나타내는 염기서열로서 실질적으로 상기 miRNA 155와 동일하거나 상응하는 효능을 나타내는 염기서열이라면 제한 없이 포함한다. 또한, 이러한 상동성을 갖는 염기서열이라면, 일부 서열이 결실, 변형, 치환 또는 부가된 염기서열도 본 발명의 범위 내에 포함됨은 자명하다.The miRNA 155 may include the nucleotide sequence of SEQ ID NO: 1. In addition, not only the nucleotide sequence composed of SEQ ID NO: 1, but also 80% or more, specifically 90% or more, more specifically 95% or more, more specifically 98% or more, and most specifically 99% or more of the above sequence As a nucleotide sequence showing homology, any nucleotide sequence showing substantially the same or equivalent efficacy as the miRNA 155 is included without limitation. In addition, if it is a nucleotide sequence having such homology, it is obvious that a nucleotide sequence in which some sequences are deleted, modified, substituted or added is also included within the scope of the present invention.
용어 "상동성" 이란, 염기서열이나 아미노산 서열의 유사한 정도를 의미하는데, 주어진 아미노산 서열 또는 염기서열과 일치하는 정도에 따라 백분율로 표시될 수 있다. 본 명세서에서, 주어진 아미노산 서열 또는 염기서열과 동일하거나 유사한 활성을 가지는 그의 상동성 서열이 "% 상동성"으로 표시된다. 예를 들면, 점수 (score), 동일성 (identity) 및 유사도 (similarity) 등의 매개 변수 (parameter)들을 계산하는 표준 소프트웨어, 구체적으로 BLAST 2.0을 이용하거나, 정의된 엄격한 조건 (stringent condition)하에서 썼던 혼성화 실험에 의해 서열을 비교함으로써 확인할 수 있으며, 정의되는 적절한 혼성화 조건은 해당 기술 범위 내이고, 당업자에게 잘 알려진 방법 (예컨대, J. Sambrook et al., Molecular Cloning, A Laboratory Manual, 2nd Edition, Cold Spring Harbor Laboratory press, Cold Spring Harbor,New York, 1989; F.M. Ausubel et al., Current Protocols in Molecular Biology, John Wiley & Sons, Inc., New York)으로 결정될 수 있다.The term "homology" refers to the degree of similarity of a base sequence or amino acid sequence, and may be expressed as a percentage according to the degree of matching with a given amino acid sequence or base sequence. In the present specification, a homologous sequence having the same or similar activity as a given amino acid sequence or nucleotide sequence is expressed as "% homology". For example, hybridization using standard software, specifically BLAST 2.0, that calculates parameters such as score, identity and similarity, or under defined stringent conditions. It can be confirmed experimentally by comparing sequences, and appropriate hybridization conditions defined are within the skill of the art and are well known to those skilled in the art (e.g., J. Sambrook et al., Molecular Cloning, A Laboratory Manual, 2nd Edition, Cold Spring Harbor Laboratory press, Cold Spring Harbor, New York, 1989; F.M. Ausubel et al., Current Protocols in Molecular Biology, John Wiley & Sons, Inc., New York).
상기 miRNA 155는 인간 또는 마우스로부터 유래된 것일 수 있으며, 이에 한정되지 않고, 체외에서 인위적으로 합성 또는 제조된 것일 수 있다. 상기 miRNA 155를 합성 또는 제조하기 위하여, 화학적 또는 생물학적 방법 또는 이에 제한되지 않는 당업계에 공지된 방법을 이용할 수 있다. 따라서, 상기 miRNA 155는 miRNA 155 모방체 (mimic)를 포함할 수 있다. 상기 miRNA 155 모방체는 세포 내에 있는 miRNA 155의 서열과 동일하거나 일부 변형된 서열로 만들어진 합성 miRNA를 의미할 수 있다.The miRNA 155 may be derived from humans or mice, but is not limited thereto, and may be artificially synthesized or manufactured in vitro. In order to synthesize or prepare the miRNA 155, chemical or biological methods or methods known in the art that are not limited thereto may be used. Thus, the miRNA 155 may include a miRNA 155 mimic. The miRNA 155 mimic may refer to a synthetic miRNA made of a sequence identical to or partially modified from the sequence of miRNA 155 in a cell.
용어 "키토산 (chitosan)"은 다당류로, 갑각류 껍질로부터 얻어지는 키틴의 -CH3CONH의 탈세틸화에 의하여 유도된 천연 고분자 물질을 의미한다. 즉, 키토산은 키틴의 단량체에 존재하는 아세틸기 (acetyl group; -COCH3)가 아미노기(-NH3)로 치환된 형태를 가질 수 있다. 한편, 게, 가재, 새우 등 갑각류의 껍질로부터 얻어지는 키틴은 셀룰로오스 다음으로 풍부한 천연 고분자로, 셀룰로오스 C-2 위치의 OH가 CH3CONH로 치환된 구조를 가지며, 셀룰로오스와 매우 비슷한 구조를 가지는 물질일 수 있다. 예를 들어, 상기 키토산은 하기와 같은 화학식 1로 표시되는 화합물일 수 있다:The term "chitosan" refers to a polysaccharide, a natural polymeric material derived by deacetylation of -CH 3 CONH of chitin obtained from crustacean shells. That is, chitosan may have a form in which an acetyl group (-COCH 3 ) present in a chitin monomer is substituted with an amino group (-NH 3 ). On the other hand, chitin, obtained from the shells of crustaceans such as crabs, crayfish, and shrimps, is a natural polymer that is the second most abundant after cellulose. can For example, the chitosan may be a compound represented by Formula 1 as follows:
[화학식 1] [Formula 1]
Figure PCTKR2022021319-appb-img-000001
Figure PCTKR2022021319-appb-img-000001
(상기 화학식 1에서, n은 1 내지 10000으로부터 선택되는 어느 하나의 정수이다).(In Formula 1, n is any integer selected from 1 to 10000).
상기 키토산은 저분자량의 키토산 (low molecular weight chitosan: LMWC)일 수 있다. 구체적으로, 상기 키토산의 중량평균분자량은 약 50,000 내지 190,000 Da일 수 있다.The chitosan may be low molecular weight chitosan (LMWC). Specifically, the chitosan may have a weight average molecular weight of about 50,000 to about 190,000 Da.
일 구체예에 따르면, 상기 키토산의 중량평균분자량이 약 50,000 Da 미만인 경우, 상기 miRNA 155가 봉입된 키토산 나노입자는 miRNA 155와 키토산 사이의 정전기적 상호작용, 예컨대, 이온성 결합의 세기가 감소하여, 상기 miRNA 155를 키토산 나노입자의 내부에 봉입하기 위한 캡슐화 강도가 약해질 수 있다. 이로 인해, miRNA 155가 외부 환경에 노출되어 유효성이 감소할 수 있다. 또한, 상기 키토산의 중량평균분자량이 약 190,000 Da 초과인 경우, 상기 miRNA 155가 봉입된 키토산 나노입자의 사이즈 증가로 인해 세포 침투력이 감소하여 miRNA 155를 어류의 생체 내 또는 세포 내로 전달하는 효율이 감소할 수 있다.According to one embodiment, when the weight average molecular weight of the chitosan is less than about 50,000 Da, the miRNA 155-encapsulated chitosan nanoparticles reduce the electrostatic interaction between miRNA 155 and chitosan, such as the strength of the ionic bond, , the encapsulation strength for encapsulating the miRNA 155 inside the chitosan nanoparticles may be weakened. As a result, miRNA 155 may be exposed to the external environment and its effectiveness may decrease. In addition, when the weight average molecular weight of the chitosan is greater than about 190,000 Da, the cell penetration is reduced due to the increase in the size of the chitosan nanoparticles encapsulated with the miRNA 155, thereby reducing the efficiency of delivering miRNA 155 into fish in vivo or into cells. can do.
또한, 상기 키토산은 생분해성 또는/및 생체적합성을 나타내는 것일 수 있고, 상기 키토산은 염의 형태 또는 키토산 유도체를 포함할 수 있다. 예를 들어, 상기 키토산 유도체는 키토산의 알킬화물, 아실화물, 아릴화물, 황산화물, 또는 인산화물일 수 있으나, 이에 한정되지 않는다.In addition, the chitosan may exhibit biodegradability and/or biocompatibility, and may include a salt form or a chitosan derivative. For example, the chitosan derivative may be an alkylate, an acylate, an arylide, a sulfur oxide, or a phosphate of chitosan, but is not limited thereto.
상기 키토산을 이용하여 키토산 나노입자 (chitosan nanoparticles: CNPs)를 제조할 수 있고, 상기 키토산 나노입자의 내부에 특정 물질 (예컨대, miRNA 155)이 봉입 또는 캡슐화될 수 있다. 상기 키토산 나노입자의 내부에 봉입된 또는 캡슐화된 특정 물질 (예컨대, miRNA 155)은 외부 환경, 예컨대 효소 등으로부터 안정하게 보호될 수 있으며, 특정 조건에서 방출될 수 있다. 상기 효소는 DNA 분해효소 (DNase) 또는 RNA 분해효소 (RNase) 일 수 있으나, 이에 한정되지 않는다.Chitosan nanoparticles (CNPs) may be prepared using the chitosan, and a specific material (eg, miRNA 155) may be encapsulated or encapsulated inside the chitosan nanoparticles. A specific substance (eg, miRNA 155) encapsulated or encapsulated inside the chitosan nanoparticles can be stably protected from the external environment, such as enzymes, and can be released under specific conditions. The enzyme may be a DNA degrading enzyme (DNase) or an RNA degrading enzyme (RNase), but is not limited thereto.
상기 키토산 나노입자는 상기 키토산을 일 구성 요소로 포함할 수 있고, 추가로, 트리폴리인산염 (tripolyphosphate: TPP)을 포함할 수 있다. 또한, 상기 키토산 나노입자는 상기 키토산과 상기 트리폴리인산염이 가교 결합을 형성하고 있는 것일 수 있다. 상기 트리폴리인산염은 트리폴리인산나트륨 (sodium tripolyphosphate; Na5P3O10) 또는 트리폴리인산칼륨 (potassium tripolyphosphate; K5P3O10)일 수 있다. The chitosan nanoparticles may include the chitosan as one component, and may further include tripolyphosphate (TPP). In addition, the chitosan nanoparticles may be one in which the chitosan and the tripolyphosphate form a cross-linked bond. The tripolyphosphate may be sodium tripolyphosphate (Na 5 P 3 O 10 ) or potassium tripolyphosphate (K 5 P 3 O 10 ).
상기 키토산은 양전하를 나타내고, 상기 miRNA 155는 음전하를 나타내는 것일 수 있다. 따라서, 상기 miRNA 155가 봉입된 키토산 나노입자는 상기 키토산과 상기 miRNA 155가 정전기적 상호작용, 예컨대, 이온성 결합에 의하여 결합 또는 연결되어 있는 것일 수 있다. 즉, 상기 miRNA 155가 봉입된 키토산 나노입자는 정전기적 상호작용에 의하여 miRNA 155의 표면이 키토산으로 코팅되어 외곽에 키토산 나노입자가 형성되고, 그 내부에 miRNA 155가 존재하는 구형의 나노입자 또는 나노구 (nanosphere)의 형태를 가지는 것일 수 있다. 이때, 상기 외곽에 형성된 키토산 나노입자는 상기 키토산과 상기 트리폴리인산염이 가교 결합을 형성하고 있는 것일 수 있다.The chitosan may exhibit a positive charge, and the miRNA 155 may exhibit a negative charge. Therefore, the chitosan nanoparticles encapsulated with the miRNA 155 may be one in which the chitosan and the miRNA 155 are bonded or connected through an electrostatic interaction, for example, an ionic bond. That is, the chitosan nanoparticles encapsulated with miRNA 155 are coated with chitosan on the surface of miRNA 155 by electrostatic interaction to form chitosan nanoparticles on the outside, and spherical nanoparticles or nanoparticles with miRNA 155 inside them. It may have the shape of a sphere (nanosphere). In this case, the chitosan nanoparticles formed on the outside may be one in which the chitosan and the tripolyphosphate form a cross-linked bond.
용어 "봉입 또는 캡슐화 (encapsulation)"는 특정 물질을 다른 물질로 둘러싸거나 코팅하는 기술을 의미한다.The term “encapsulation” refers to the art of enclosing or coating one material with another.
용어 "나노캡슐 (nano capsule)"은 나노 크기의 캡슐을 의미하며, 나노캡슐의 내부에 특정 물질이 포함되어 있을 수 있다. 용어 "나노입자 (nanoparticle)"는 용어 "나노캡슐"과 상호교환적으로 사용될 수 있다.The term "nano capsule" means a nano-sized capsule, and a specific material may be contained inside the nanocapsule. The term "nanoparticle" may be used interchangeably with the term "nanocapsule".
다시 말해, 상기 miRNA 155가 봉입된 키토산 나노입자는 상기 miRNA 155와 상기 키토산의 복합체; 또는 상기 miRNA 155, 상기 키토산, 및 상기 트리폴리인산염의 복합체일 수 있다.In other words, the chitosan nanoparticle encapsulated with the miRNA 155 is a complex of the miRNA 155 and the chitosan; Alternatively, it may be a complex of the miRNA 155, the chitosan, and the tripolyphosphate.
상기 miRNA 155가 봉입된 키토산 나노입자에 포함된 miRNA 155 및 키토산의 중량비는 약 1 : 5 내지 15, 1 : 7 내지 13, 1 : 9 내지 11, 또는 1 : 10일 수 있다. 상기 miRNA 155가 봉입된 키토산 나노입자에 포함된 miRNA 155 및 키토산의 중량비가 상기 수치 또는 수치범위를 벗어나는 경우, 약 200 내지 500 nm의 균일한 사이즈의 miRNA 155가 봉입된 키토산 나노입자가 형성되기 어렵고, miRNA 155가 봉입된 키토산 나노입자의 캡슐화 효율, 캡슐화 강도, 또는 miRNA 155 방출능이 현저히 감소할 수 있다. 그 결과, 상기 miRNA 155가 봉입된 키토산 나노입자에 있어서, 유효한 miRNA 155를 어류의 생체 내 또는 세포 내로 전달하는 효율 및 어류의 바이러스 감염성 질병에 대한 예방 또는 치료 효과가 현저히 감소할 수 있다. The weight ratio of miRNA 155 and chitosan contained in the miRNA 155-encapsulated chitosan nanoparticles may be about 1:5 to 15, 1:7 to 13, 1:9 to 11, or 1:10. When the weight ratio of miRNA 155 and chitosan contained in the chitosan nanoparticles encapsulated with miRNA 155 is out of the above value or range, it is difficult to form miRNA 155 encapsulated chitosan nanoparticles having a uniform size of about 200 to 500 nm. , encapsulation efficiency, encapsulation strength, or miRNA 155 releasing ability of chitosan nanoparticles encapsulated with miRNA 155 can be significantly reduced. As a result, in the chitosan nanoparticles encapsulated with miRNA 155, the efficiency of delivering effective miRNA 155 into the body or cells of fish and the effect of preventing or treating viral infectious diseases in fish can be significantly reduced.
용어 "miRNA 155가 봉입된 키토산 나노입자"는 용어 "miRNA 155-CNPs"와 상호교환적으로 사용될 수 있다.The term "chitosan nanoparticles encapsulated with miRNA 155" may be used interchangeably with the term "miRNA 155-CNPs".
상기 miRNA 155가 봉입된 키토산 나노입자는 표면 양전하를 나타내는 것일 수 있다. 또한, 상기 miRNA 155가 봉입된 키토산 나노입자의 제타전위 (zeta potential)는 약 30 내지 60 또는 35 내지 45 mV인 것일 수 있다. The miRNA 155-encapsulated chitosan nanoparticles may exhibit positive surface charges. In addition, the miRNA 155-encapsulated chitosan nanoparticles may have a zeta potential of about 30 to 60 or 35 to 45 mV.
용어 "제타전위 (zeta potential)"는 입자사이의 반발력과 인력의 크기를 단위로 나타낸 것을 의미하고, 일반적으로, 제타전위는 입자의 표면전위 (구체적으로는, slipping plane의 전위) 즉, 표면 양전하 밀도를 나타낸다. 수중에 있는 콜로이드 물질의 입자는 침전되지 않고 부유하는 성질을 지닌다. 이러한 물질들은 입자들이 가지는 +, - 이온들로 인해 서로 반발하는 성질을 가지는데, 이렇게 반발하는 힘을 제타전위라고 할 수 있다. 따라서, 제타전위는 액상에 현탁된 입자의 분산 혹은 응집의 정도를 평가하는데 적용될 수 있으며, 일반적으로 제타전위의 절대값이 클수록 현탁액 내의 입자의 분산상태가 안정적이라고 평가할 수 있다. The term "zeta potential" means the magnitude of the repulsive force and attractive force between particles in units. represents density. Particles of colloidal matter in water have the property of floating rather than settling. These materials have the property of repelling each other due to the + and - ions of the particles, and this repulsive force can be called zeta potential. Therefore, the zeta potential can be applied to evaluate the degree of dispersion or aggregation of particles suspended in a liquid phase, and generally, the higher the absolute value of the zeta potential, the more stable the dispersion of the particles in the suspension can be evaluated.
일 구체예에 따르면, 상기 miRNA 155가 봉입된 키토산 나노입자는 약 30 내지 60 mV의 높은 제타전위를 나타내므로, 액상에서 안정적인 분산상태를 유지할 수 있다. 이는 또한, 상기 miRNA 155가 봉입된 키토산 나노입자는 내부 음전하와 외부 양전하가 강력한 정적기적 상호작용, 예컨대, 이온성 결합을 형성하여 매우 안정적인 캡슐화 상태를 유지할 수 있음을 의미한다. 이로 인해, 상기 miRNA 155가 봉입된 키토산 나노입자는 매우 안정적인 나노구 형태를 나타내어 내부의 miRNA 155를 외부 환경으로부터 강력하게 보호하고, 액상에서 안정적으로 분산되므로 어류에 직접 투여하기 적합한 다양한 제형으로 용이하게 적용될 수 있다. 따라서, 유전자 발현 벡터 등을 이용하여 어류를 형질전환시키는 등의 방식에 의하지 않더라도, 상기 miRNA 155가 봉입된 키토산 나노입자를 어류에 직접 투여 (경구 또는 비경구 투여)하는 간단한 방식만으로도 유효성이 유지된 miRNA 155를 어류의 생체 또는 세포 내로 효과적으로 전달하여 어류의 바이러스 감염성 질병을 예방 또는 치료할 수 있다. According to one embodiment, since the miRNA 155-encapsulated chitosan nanoparticles exhibit a high zeta potential of about 30 to 60 mV, they can maintain a stable dispersion state in a liquid phase. This also means that the miRNA 155-encapsulated chitosan nanoparticles can maintain a very stable encapsulation state by forming a strong static interaction between the internal negative charge and the external positive charge, for example, an ionic bond. As a result, the miRNA 155-encapsulated chitosan nanoparticles exhibit a very stable nanosphere form, strongly protect the internal miRNA 155 from the external environment, and are stably dispersed in the liquid phase, making it easy to use in various formulations suitable for direct administration to fish. can be applied Therefore, even if it is not by means of transforming fish using a gene expression vector, etc., effectiveness is maintained by a simple method of directly administering (oral or parenteral administration) the miRNA 155-encapsulated chitosan nanoparticles to fish. By effectively delivering miRNA 155 into living organisms or cells of fish, viral infectious diseases in fish can be prevented or treated.
상기 miRNA 155가 봉입된 키토산 나노입자의 직경은 약 200 내지 500 또는 300 내지 400 nm인 것일 수 있다.The miRNA 155-encapsulated chitosan nanoparticles may have a diameter of about 200 to 500 or 300 to 400 nm.
일 구체예에 따르면, 상기 miRNA 155가 봉입된 키토산 나노입자의 직경이 약 200 nm 미만인 경우, 상기 키토산 나노입자의 내부에 봉입될 수 있는 miRNA 155의 양이 줄어들어, miRNA 155를 어류의 생체 내 또는 세포 내로 전달하는 효율이 감소할 수 있다. 또한, 상기 miRNA 155가 봉입된 키토산 나노입자의 직경이 약 500 nm 초과인 경우, miRNA 155와 키토산 사이의 정전기적 상호작용, 예컨대, 이온성 결합의 세기가 감소하고 miRNA 155를 키토산 나노입자의 내부에 봉입하기 위한 캡슐화 강도가 약해져 miRNA 155가 외부 환경에 노출되어 유효성이 감소될 수 있다. 또한, 나노입자의 사이즈 증가로 인해 상기 miRNA 155가 봉입된 키토산 나노입자의 세포 침투력이 감소하여 miRNA 155를 어류의 생체 내 또는 세포 내로 전달하는 효율이 감소할 수 있다.According to one embodiment, when the diameter of the miRNA 155-encapsulated chitosan nanoparticles is less than about 200 nm, the amount of miRNA 155 that can be encapsulated inside the chitosan nanoparticles is reduced, so that miRNA 155 can be in vivo or in vivo in fish. The efficiency of intracellular delivery may be reduced. In addition, when the miRNA 155-encapsulated chitosan nanoparticles have a diameter greater than about 500 nm, the electrostatic interaction between miRNA 155 and chitosan, for example, the strength of ionic bond, decreases and miRNA 155 is incorporated into the chitosan nanoparticles. The encapsulation strength for encapsulation may be weakened, and miRNA 155 may be exposed to the external environment, reducing effectiveness. In addition, due to the increase in the size of the nanoparticles, the cell penetration of the chitosan nanoparticles encapsulated with the miRNA 155 may decrease, and thus the efficiency of delivering the miRNA 155 into the body or cells of the fish may decrease.
상기 miRNA 155가 봉입된 키토산 나노입자는 miRNA 155 방출능을 가지는 것일 수 있다. 일 구체예에 따르면, 상기 miRNA 155가 봉입된 키토산 나노입자는 시간이 경과함에 따라 외곽의 키토산이 점진적으로 (gradually) 생분해되면서 miRNA 155가 지속적으로 방출되는 것일 수 있다. 이는 상기 키토산의 생분해에 의해 키토산과 miRNA 155 사이에서 형성되었던 강력한 정전기적 상호작용, 예컨대, 이온성 결합의 세기가 감소하여, miRNA 155가 방출되는 것으로 이해될 수 있다. 이로 인해, 상기 miRNA 155가 봉입된 키토산 나노입자는 어류의 생체 또는 세포 내로 흡수된 후, miRNA 155를 지속적으로 방출하여 어류의 생체 내에서 miRNA 155의 효과를 지속적으로 유지시킬 수 있다.The miRNA 155-encapsulated chitosan nanoparticles may have miRNA 155 releasing ability. According to one embodiment, miRNA 155-encapsulated chitosan nanoparticles may continuously release miRNA 155 as chitosan on the outside is gradually biodegraded over time. This can be understood as the release of miRNA 155 as the strong electrostatic interaction formed between chitosan and miRNA 155 by the biodegradation of chitosan, for example, the strength of ionic bond, is reduced. As a result, after the miRNA 155-encapsulated chitosan nanoparticles are absorbed into the living body or cells of the fish, miRNA 155 is continuously released to continuously maintain the effect of miRNA 155 in the living body of the fish.
용어 "유효성분 (effective ingredient)"은 이롭거나 바람직한 임상적 또는 생화학적 결과에 영향을 주는 적절한 유효량의 성분을 의미한다. 구체적으로는, 유효량의 miRNA 155가 봉입된 키토산 나노입자를 의미할 수 있다.The term "effective ingredient" means an appropriately effective amount of an ingredient that affects a beneficial or desirable clinical or biochemical outcome. Specifically, it may refer to chitosan nanoparticles encapsulated with an effective amount of miRNA 155.
상기 유효량은 개체에 대하여 질병을 예방하거나, 질병 상태를 비제한적으로, 증상의 완화, 질병 범위의 감소, 질병 상태의 안정화 (즉, 악화되지 않음), 질병 진행의 지연 또는 속도의 감소, 또는 질병 상태의 개선 또는 일시적 완화 및 경감 (부분적이거나 전체적으로)을 위한 적절한 양일 수 있다. 상기 유효량은 개체의 종류, 개체의 상태, 개체의 양, 질환의 종류, 중증도, 약물의 활성, 약물에 대한 민감도, 투여 시간, 투여 경로 및 배출 비율, 치료기간, 동시 사용되는 약물을 포함한 요소 및 기타 관련 분야에 잘 알려진 요소에 따라 결정될 수 있다.Such an effective amount can prevent disease, alleviate symptoms, reduce the extent of a disease, stabilize (i.e., not worsen) a disease state, delay or reduce the rate of disease progression, or a disease, without limitation, for a subject. It may be an appropriate amount for improvement or palliation and relief (partial or total) of the condition. The effective amount is the type of subject, the condition of the subject, the amount of the subject, the type of disease, the severity, the activity of the drug, the sensitivity to the drug, the time of administration, the route of administration and the excretion rate, the duration of treatment, factors including drugs used concurrently, and It may be determined according to factors well known in other related fields.
일 구체예에 따르면, 상기 miRNA 155가 봉입된 키토산 나노입자는 외부 환경에 의한 영향을 차단하여 miRNA 155의 안정성을 현저히 향상시키고, 유효성이 유지된 miRNA 155를 어류 생체 내 또는 세포 내로 효과적으로 전달할 수 있다. 또한, 상기 miRNA 155가 봉입된 키토산 나노입자는 입자가 매우 작고, 표면 양전하를 나타내므로 생체 흡수율, 생체 이용률, 및 세포 투과성이 현저히 증가될 수 있고, 어류의 생체 또는 세포 내로 흡수된 후, 키토산의 점진적인 생분해로 인해 miRNA 155를 지속적으로 방출하여 어류의 생체 내에서 miRNA 155의 효과를 지속적으로 유지시킬 수 있다. According to one embodiment, the chitosan nanoparticles encapsulated with miRNA 155 significantly improve the stability of miRNA 155 by blocking the influence of the external environment, and can effectively deliver miRNA 155 with maintained efficacy into fish in vivo or into cells. . In addition, since the miRNA 155-encapsulated chitosan nanoparticles are very small and exhibit a positive surface charge, the bioabsorption rate, bioavailability, and cell permeability can be remarkably increased, and after being absorbed into the living body or cells of fish, the chitosan Due to the gradual biodegradation, miRNA 155 is continuously released, so that the effect of miRNA 155 can be continuously maintained in the body of fish.
상기 miRNA 155가 봉입된 키토산 나노입자를 유효성분으로 포함하는 어류용 항바이러스 조성물은 바이러스성 출혈성 패혈증 바이러스에 대하여 항바이러스 효과를 나타내는 것일 수 있다.The antiviral composition for fish containing chitosan nanoparticles encapsulated with miRNA 155 as an active ingredient may exhibit an antiviral effect against viral hemorrhagic sepsis virus.
용어 "바이러스성 출혈성 패혈증 (viral hemorrhagic septicemia: VHS)"은 유럽, 미국 및 동남 아시아 전역의 담수 및 해양 어류 약 70 종 이상에 큰 피해를 주고 있는 특정 바이러스의 감염으로 인한 패혈증을 의미한다. 늦은 겨울부터 봄철에 주로 발생하며, 수온이 약 8 내지 15℃에서 넙치의 모든 연령군 (치어부터 성어)에서 약 50 내지 70%의 높은 사망률을 보인다.The term "viral hemorrhagic septicemia (VHS)" refers to sepsis caused by infection with a specific virus that afflicts over 70 species of freshwater and marine fish throughout Europe, the United States and Southeast Asia. It occurs mainly from late winter to spring, and shows a high mortality rate of about 50 to 70% in all age groups (from fry to adult fish) of flounder at a water temperature of about 8 to 15 ° C.
용어 "바이러스성 출혈성 패혈증 바이러스 (viral hemorrhagic septicemia virus: VHSV)"는 상기 바이러스성 출혈성 패혈증의 원인 바이러스를 의미하고, 음성 단일가닥 RNA 바이러스로 랍도바이러스 (rhabdovirus)과에 속한다. VHSV는 어린 치어기뿐 아니라 출하 시기의 큰 성어에서도 폐사를 일으키며 감염어는 체색흑화, 복막과 복강 내의 투명 복수액 저류, 간 울혈, 비장 비대, 신장종대, 간, 신장, 비장 및 골격근에 괴사와 아가미 새엽의 비후, 간농축, 골격근 혈구 축적 등의 내부증상이 나타나며, 피부 상피층 또는 아가미 내피 세포를 통해 바이러스가 어체로 침입하여 혈류를 타고 신장, 비장의 조혈 형성조직 등 내부장기로 빠르게 이동하는 것으로 알려져 있다.The term "viral hemorrhagic septicemia virus (VHSV)" refers to a virus that causes the above viral hemorrhagic septicemia, and belongs to the rhabdovirus family as a negative single-stranded RNA virus. VHSV causes death not only in juvenile fry but also in large adult fish at the time of shipment. Infected fish, blackening of the body, retention of clear ascitic fluid in the peritoneum and abdominal cavity, hepatic congestion, splenomegaly, nephroplegia, necrosis of the liver, kidney, spleen and skeletal muscle, and gill fronds It is known that internal symptoms such as thickening of the liver, thickening of the liver, and accumulation of skeletal muscle blood cells appear, and the virus invades the fish body through the epithelial layer of the skin or endothelial cells of the gills and moves rapidly through the bloodstream to internal organs such as the kidney and spleen hematopoietic tissue. .
일 구체예에 따르면, 상기 miRNA 155가 봉입된 키토산 나노입자를 투여받은 어류는 VHSV에 감염시, 어류 조직 내에서의 VHSV의 증식 또는 복제가 감소될 수 있고, VHSV 감염 어류의 생존율이 현저히 증가될 수 있다. 또한, 일 구체예에 따르면, 상기 miRNA 155가 봉입된 키토산 나노입자를 투여받은 어류는 VHSV에 감염시, 어류 조직 내에서의 VHSV에 의해 유도된 항바이러스성 반응, 면역반응 조절, 및 세포 사멸 반응과 관련된 인자의 유전자 발현이 조절될 수 있다. 즉, 상기 miRNA 155가 봉입된 키토산 나노입자는 VHSV 감염 어류의 항바이러스성 반응, 면역반응, 및 세포 사멸 반응 등을 조절할 수 있다. 이를 통해, 상기 miRNA 155가 봉입된 키토산 나노입자는 어류의 VHSV 감염성 질병에 대하여 우수한 예방 또는 치료 효과를 나타낼 수 있다.According to one embodiment, when the fish administered with the miRNA 155-encapsulated chitosan nanoparticles are infected with VHSV, the proliferation or replication of VHSV in fish tissue can be reduced, and the survival rate of VHSV-infected fish can be significantly increased. can In addition, according to one embodiment, when the fish administered with the miRNA 155-encapsulated chitosan nanoparticles are infected with VHSV, the antiviral response, immune response regulation, and cell death response induced by VHSV in fish tissue Gene expression of factors related to can be regulated. That is, the miRNA 155-encapsulated chitosan nanoparticles can regulate antiviral, immune, and apoptotic responses of VHSV-infected fish. Through this, the miRNA 155-encapsulated chitosan nanoparticles can exhibit excellent preventive or therapeutic effects against VHSV infectious diseases of fish.
용어 "투여"란 어떠한 적절한 방법으로 어류에게 소정의 물질을 도입하는 것을 의미하며, 상기 어류용 항바이러스 조성물의 투여 경로는 목적 조직에 도달할 수 있는 한 어떠한 일반적인 경로를 통하여 투여될 수 있다. 구체적으로, 복강 내 투여, 정맥 내 투여, 근육 내 투여, 피하 투여, 피내 투여, 경구 투여, 국소 투여, 비 내 투여, 폐 내 투여, 직장 내 투여될 수 있으나, 이에 제한되지는 않는다. 상기 어류용 항바이러스 조성물의 투여량은 제제화 방법, 개체의 체중, 동물의 수령, 성별, 병적상태, 건강상태, 식이, 투여시간, 투여경로, 투여방법, 배설율, 배설 속도, 질환의 중증도, 및 반응 감응성 등에 따라 그 범위가 달라질 수 있으며, 하루 일회 내지 수회에 나누어 투여할 수 있다. 보통으로 숙련된 의사는 소망하는 치료 또는 예방에 효과적인 상기 어류용 항바이러스 조성물의 투여량을 용이하게 결정 및 처방할 수 있다. 예컨대, 상기 어류용 항바이러스 조성물의 1일 투여량은 약 0.001 내지 10000 ㎎/㎏일 수 있고, 이에 제한되는 것은 아니다. The term "administration" means introducing a predetermined substance into fish by any suitable method, and the administration route of the antiviral composition for fish may be administered through any general route as long as it can reach the target tissue. Specifically, intraperitoneal administration, intravenous administration, intramuscular administration, subcutaneous administration, intradermal administration, oral administration, topical administration, intranasal administration, intrapulmonary administration, intrarectal administration may be administered, but is not limited thereto. The dose of the antiviral composition for fish depends on the formulation method, body weight of the subject, age of the animal, sex, morbid condition, health condition, diet, administration time, administration route, administration method, excretion rate, excretion rate, severity of the disease, And the range may vary depending on reaction sensitivity, etc., and may be divided and administered once or several times a day. Ordinarily, a skilled physician can easily determine and prescribe a dose of the antiviral composition for fish that is effective for the desired treatment or prevention. For example, the daily dosage of the antiviral composition for fish may be about 0.001 to 10000 mg/kg, but is not limited thereto.
상기 어류용 항바이러스 조성물은 어류에 대하여 개별 치료제로 투여하거나 다른 치료제와 병용하여 투여될 수 있고 종래의 치료제와는 순차적 또는 동시에 투여될 수 있으며, 단일 또는 다중 투여될 수 있다. 상기 요소들을 모두 고려하여 부작용 없이 최소한의 양으로 최대 효과를 얻을 수 있는 양을 투여하는 것이 중요하며, 이는 당업자에 의해 용이하게 결정될 수 있다.The antiviral composition for fish may be administered to fish as an individual therapeutic agent or in combination with other therapeutic agents, sequentially or simultaneously with conventional therapeutic agents, and may be administered single or multiple times. Considering all of the above factors, it is important to administer an amount that can obtain the maximum effect with the minimum amount without side effects, which can be easily determined by those skilled in the art.
상기 어류용 항바이러스 조성물은 어류에 사용되는 것으로서, 사료, 사료 첨가제, 항바이러스용 약제, 바이러스 감염성 질병의 예방 또는 치료용 약제, 또는 면역 증진용 약제인 것일 수 있다. 구체적으로, 상기 어류용 항바이러스 조성물은 바이러스성 출혈성 패혈증 바이러스 감염성 질병의 예방 또는 치료용 약제인 것일 수 있다.The antiviral composition for fish is used for fish, and may be a feed, a feed additive, an antiviral drug, a drug for preventing or treating a viral infectious disease, or a drug for enhancing immunity. Specifically, the antiviral composition for fish may be a drug for preventing or treating viral hemorrhagic sepsis virus infectious diseases.
용어 "예방"이란 조성물의 투여로 바이러스성 출혈성 패혈증 바이러스 감염성 질병의 발병을 억제 또는 지연시키는 모든 행위를 의미한다.The term "prevention" refers to any action that suppresses or delays the onset of viral hemorrhagic sepsis virus infectious disease by administration of the composition.
용어 "치료"란 조성물의 투여로 바이러스성 출혈성 패혈증 바이러스 감염성 질병에 의해 이미 유발된 질환의 증세가 호전되거나 이롭게 되는 모든 행위를 의미한다.The term "treatment" means any action that improves or benefits the symptoms of a disease already caused by a viral hemorrhagic sepsis virus infectious disease by administration of the composition.
상기 어류용 항바이러스 조성물은 추가로 수의학적으로 허용 가능한 담체를 1 종이상 포함할 수 있다. 수의학적으로 허용가능한 담체는 식염수, 멸균수, 링거액, 완충 식염수, 덱스트로오스 용액, 말토덱스트린 용액, 글리세롤, 에탄올, 및 이들 성분 중 1 성분 이상을 혼합하여 사용할 수 있으며, 필요에 따라 항산화제, 완충액, 정균제 등 다른 통상의 첨가제를 첨가할 수 있다. 또한 희석제, 분산제, 계면활성제, 결합제, 및 윤활제를 부가적으로 첨가하여 당업계에 잘 알려진 방법을 사용하여 제형화할 수 있다. The antiviral composition for fish may further include one or more veterinarily acceptable carriers. Veterinarily acceptable carriers may include saline, sterile water, Ringer's solution, buffered saline, dextrose solution, maltodextrin solution, glycerol, ethanol, and a mixture of one or more of these components, and, if necessary, an antioxidant, Other customary additives such as buffers and bacteriostats may be added. In addition, a diluent, a dispersing agent, a surfactant, a binder, and a lubricant may be additionally added and formulated using a method well known in the art.
상기 어류용 항바이러스 조성물이 사료 또는 사료 첨가제로서 사용되는 경우에는, 품질 저하를 방지하기 위하여 첨가하는 결착제, 유화제, 보존제 등이 더 포함될 수 있고, 효용 증대를 위하여 아미노산제, 비타민제, 효소제, 생균제, 향미제, 비단백태질소화합물, 규산염제, 완충제, 착색제, 추출제, 올리고당 등을 더 포함할 수 있으며, 그 외에도 사료 혼합제 등을 추가로 포함할 수 있다. 또한, 상기 어류용 항바이러스 조성물이 사료 또는 사료 첨가제로서 사용되는 경우에는, 곡물류, 근과류, 식품가공 부산물류, 조류, 섬유질류, 유지류, 전분류, 박류, 곡물부산물류, 단백질류, 무기물류, 유지류, 광물성류, 유지류, 단세포 단백질, 동물성플랑크톤류, 어분 등의 사료 또는 사료첨가제와 혼합되어 사용될 수 있다.When the antiviral composition for fish is used as a feed or feed additive, a binder, an emulsifier, a preservative, etc. added to prevent quality deterioration may be further included, and amino acids, vitamins, enzymes, and probiotics to increase efficacy , Flavors, non-protein nitrogen compounds, silicate agents, buffers, coloring agents, extractants, oligosaccharides, etc. may be further included, and in addition, feed mixtures may be further included. In addition, when the antiviral composition for fish is used as a feed or feed additive, grains, roots and fruits, food processing by-products, algae, fibers, oils and fats, starches, meal, grain by-products, proteins, inorganic It can be mixed with feed or feed additives such as logistics, oils, mineral oils, oils, single cell proteins, zooplankton, and fish meal.
상기 어류는 VHSV 감염에 대한 예방이 필요한 정상 어류이거나, 이미 VHSV에 감염되어 치료가 필요한 감염 어류일 수 있다. 또한, 상기 어류는 바이러스성 출혈성 패혈증 바이러스에 감염될 수 있는 모든 어류를 제한없이 통칭할 수 있다. 구체적으로 상기 어류는 넙치 (Paralichthys olivaceus), 방어 (Seriola quinqueradiata), 참돔 (Pagrus major), 자주복 (Takifugurubripes), 부시리 (Seriola aureovittata), 송어 (Oncorhynchus masou), 무지개 송어 (Oncorhynchusmykiss), 잿방어 (Seriola dumerili), 전갱이 (Trachurus japonicus), 흑점줄전갱이(Pseudocaranx dentex), 능성어 (Epinephelus septemfasciatus), 참다랑어 (Thunnus thynnus), 잉어 (Cyprinus carpio), 제브라피쉬 (Danio rerio), 메기 (Silurus asotus), 클라리아스 가리에피누스 (Clarias gariepinus), 틸라피아 (Oreochronis niloticus), 연어 (Oncorhynchus keta), 대서양 연어 (Salmo salar), 및 송사리 (Oryziaslatipes)를 포함할 수 있고, 바람직하게는 양식 어류일 수 있으나 이에 제한되지 않는다.The fish may be normal fish that require prevention against VHSV infection or infected fish that are already infected with VHSV and require treatment. In addition, the fish may collectively refer to all fish that can be infected with the viral hemorrhagic sepsis virus without limitation. Specifically, the fish include halibut (Paralichthys olivaceus), yellowtail (Seriola quinqueradiata), red sea bream (Pagrus major), purple tiger (Takifugurubripes), sea bass (Seriola aureovittata), trout (Oncorhynchus masou), rainbow trout (Oncorhynchus mykiss), and amberjack (Seriola) dumerili), horse mackerel (Trachurus japonicus), blackspotted horse mackerel (Pseudocaranx dentex), grouper fish (Epinephelus septemfasciatus), bluefin tuna (Thunnus thynnus), carp (Cyprinus carpio), zebrafish (Danio rerio), catfish (Silurus asotus), clary It may include Clarias gariepinus, tilapia (Oreochronis niloticus), salmon (Oncorhynchus keta), Atlantic salmon (Salmo salar), and killifish (Oryziaslatipes), preferably farmed fish, but is not limited thereto. don't
상기 어류용 항바이러스 조성물은 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있는 방법에 따라, 약제학적으로 허용되는 담체 및/또는 부형제를 이용하여 제제화 함으로써 단위 용량 형태로 제조되거나 또는 다용량 용기 내에 내입시켜 제조될 수 있다. 이때 제형은 오일 또는 수성 매질중의 용액, 현탁액 또는 유화액 형태이거나 엑스제, 분말제, 과립제, 정제, 또는 캅셀제 형태일 수도 있으며, 이에 제한되는 것은 아니다.The antiviral composition for fish is prepared in unit dosage form by formulation using a pharmaceutically acceptable carrier and/or excipient according to a method that can be easily performed by a person skilled in the art. or it may be prepared by incorporating into a multi-dose container. At this time, the dosage form may be in the form of a solution, suspension or emulsion in an oil or aqueous medium, or in the form of an extract, powder, granule, tablet, or capsule, but is not limited thereto.
다른 양상은 (a) miRNA 155 및 트리폴리인산염 용액을 혼합하는 단계; (b) 키토산을 산성 용매에 용해시키는 단계; 및 (c) 상기 (a) 단계에서 얻어진 혼합액 및 상기 (b) 단계에서 얻어진 용액을 혼합하여 교반하는 단계를 포함하는 miRNA 155가 봉입된 키토산 나노입자를 제조하는 방법을 제공한다.Another aspect is (a) mixing miRNA 155 and tripolyphosphate solution; (b) dissolving chitosan in an acidic solvent; and (c) mixing and stirring the mixed solution obtained in step (a) and the solution obtained in step (b) to provide a method for preparing chitosan nanoparticles encapsulated with miRNA 155.
상기 방법에 사용된 키토산은 전술한 바와 같다.Chitosan used in the method is as described above.
상기 (a) 단계에서 상기 트리폴리인산염은 트리폴리인산나트륨 (sodium tripolyphosphate; Na5P3O10) 또는 트리폴리인산칼륨 (potassium tripolyphosphate; K5P3O10)일 수 있다.In step (a), the tripolyphosphate may be sodium tripolyphosphate (Na 5 P 3 O 10 ) or potassium tripolyphosphate (K 5 P 3 O 10 ).
상기 (a) 단계에서 상기 miRNA 155 및 트리폴리인산염은 약 1 : 2 내지 4, 1 : 3 내지 4, 또는 1 : 3 내지 3.5의 중량비로 혼합되는 것일 수 있다. 일 구체예에 따르면, 상기 (a) 단계에서 상기 miRNA 155 및 트리폴리인산염이 상기 중량비로 혼합되는 경우, 상기 방법에 의하여 제조된 miRNA 155가 봉입된 키토산 나노입자는 캡슐화 효율, 캡슐화 강도, 또는 miRNA 155 방출능이 현저히 우수하여, 어류의 생체 내 또는 세포 내로 유효성이 유지된 miRNA 155를 효과적으로 전달할 수 있고, 이로 인해, 어류의 바이러스 감염성 질병에 대한 예방 또는 치료 효과가 현저히 증가할 수 있다. In step (a), miRNA 155 and tripolyphosphate may be mixed in a weight ratio of about 1:2 to 4, 1:3 to 4, or 1:3 to 3.5. According to one embodiment, when the miRNA 155 and tripolyphosphate are mixed in the above weight ratio in step (a), the miRNA 155-encapsulated chitosan nanoparticles prepared by the above method have encapsulation efficiency, encapsulation strength, or miRNA 155 Since the release function is remarkably excellent, miRNA 155, which remains effective, can be effectively delivered into the body or cells of fish, and as a result, the effect of preventing or treating viral infectious diseases in fish can be remarkably increased.
또한, 상기 (a) 단계에서 상기 트리폴리인산염 용액의 농도 및 용매의 종류는 상기 miRNA 155 및 트리폴리인산염의 특성에 영향을 미치지 않으면서, 상기 트리폴리인산염을 용해시킬 수 있는 농도 및 용매이면 제한없이 허용될 수 있다.In addition, in the step (a), the concentration of the tripolyphosphate solution and the type of solvent can be allowed without any limitation as long as the concentration and solvent can dissolve the tripolyphosphate without affecting the characteristics of the miRNA 155 and the tripolyphosphate. can
상기 (b) 단계에서 상기 산성 용매는 아세트산 (acetic acid), 말론산 (malonic acid), CMEBAC (N carboxymethyl N,N diethylbenzene ammonium chloride), 젖산 (lactic acid), 시트르산 (citric acid), 또는 아세트산 나트륨 (sodium acetate)일 수 있고, 이에 제한되는 것은 아니다. 일 구체예에 따르면, 상기 (b) 단계에서 상기 산성 용매로서, 산성 용액, 예컨대, 아세트산 수용액을 사용할 수 있다. 상기 아세트산 수용액의 농도는 약 0.01 내지 2, 0.01 내지 1, 0.01 내지 0.1, 또는 0.03 내지 0.07 중량%일 수 있고, 이에 제한되는 것은 아니다.In the step (b), the acidic solvent is acetic acid, malonic acid, CMEBAC (N carboxymethyl N,N diethylbenzene ammonium chloride), lactic acid, citric acid, or sodium acetate (sodium acetate), but is not limited thereto. According to one embodiment, as the acidic solvent in step (b), an acidic solution, such as an aqueous acetic acid solution, may be used. The concentration of the aqueous acetic acid solution may be about 0.01 to 2, 0.01 to 1, 0.01 to 0.1, or 0.03 to 0.07% by weight, but is not limited thereto.
또한, 상기 (b) 단계에서는 상기 산성 용매에 상기 키토산을 약 1 내지 5, 1 내지 4, 또는 1 내지 3 mg/mL의 농도로 용해시키는 것일 수 있으나, 이에 제한되는 것은 아니다.In addition, in step (b), the chitosan may be dissolved in the acidic solvent at a concentration of about 1 to 5, 1 to 4, or 1 to 3 mg/mL, but is not limited thereto.
상기 (c) 단계에서, 상기 (a) 단계에서 얻어진 혼합액 및 상기 (b) 단계에서 얻어진 용액은 약 1 : 1 내지 3, 1 : 1 내지 2, 또는 1 : 1 내지 1.5의 중량비로 혼합되는 것일 수 있으나, 이에 제한되는 것은 아니다. In step (c), the mixed solution obtained in step (a) and the solution obtained in step (b) are mixed in a weight ratio of about 1:1 to 3, 1:1 to 2, or 1:1 to 1.5. It may be, but is not limited thereto.
상기 (c) 단계에서 수득된 혼합물에 포함된 상기 miRNA 155 및 키토산의 중량비는 약 1 : 5 내지 15, 1 : 7 내지 13, 1 : 9 내지 11, 또는 1 : 10일 수 있다. 일 구체예에 따르면, 상기 (c) 단계에서 수득된 혼합물에 포함된 상기 miRNA 155 및 키토산의 중량비가 약 1 : 5 내지 15인 경우, 상기 방법에 의하여 제조된 miRNA 155가 봉입된 키토산 나노입자는 캡슐화 효율, 캡슐화 강도, 또는 miRNA 155 방출능이 현저히 우수하여, 어류의 생체 내 또는 세포 내로 유효성이 유지된 miRNA 155를 효과적으로 전달할 수 있고, 이로 인해, 어류의 바이러스 감염성 질병에 대한 예방 또는 치료 효과가 현저히 증가할 수 있다.The weight ratio of miRNA 155 and chitosan in the mixture obtained in step (c) may be about 1:5 to 15, 1:7 to 13, 1:9 to 11, or 1:10. According to one embodiment, when the weight ratio of the miRNA 155 and chitosan contained in the mixture obtained in step (c) is about 1: 5 to 15, the miRNA 155-encapsulated chitosan nanoparticles prepared by the method Since the encapsulation efficiency, encapsulation strength, or miRNA 155 release ability is remarkably excellent, miRNA 155 with maintained efficacy can be effectively delivered in vivo or into the cells of fish, thereby significantly preventing or treating fish viral infectious diseases. can increase
상기 (c) 단계에서는, 상기 키토산 및 트리폴리인산염이 가교 결합을 형성하여 키토산 나노입자를 형성할 수 있고, 상기 키토산 및 miRNA 155 사이에서 정전기적 상호작용, 예컨대, 이온성 결합이 형성되어, 상기 키토산 나노입자의 내부에 miRNA 155가 봉입되어 상기 miRNA 155가 봉입된 키토산 나노입자가 형성되는 것일 수 있다.In the step (c), chitosan nanoparticles may be formed by forming a cross-link between the chitosan and tripolyphosphate, and an electrostatic interaction, such as an ionic bond, is formed between the chitosan and miRNA 155, thereby forming the chitosan nanoparticle. miRNA 155 may be encapsulated inside the nanoparticle to form chitosan nanoparticles encapsulated with miRNA 155.
상기 방법은 상기 (c) 단계에서 수득된 혼합물을 원심분리하여 miRNA 155가 봉입된 키토산 나노입자를 수득하는 단계를 더 포함할 수 있다.The method may further include obtaining chitosan nanoparticles encapsulated with miRNA 155 by centrifuging the mixture obtained in step (c).
일 구체예에 따르면, 상기 방법에 의하여 제조된 miRNA 155가 봉입된 키토산 나노입자는 바이러스성 출혈성 패혈증 바이러스 감염성 어류 질병에 대하여 예방 또는 치료 효과를 나타내는 것일 수 있다.According to one embodiment, the miRNA 155-encapsulated chitosan nanoparticles prepared by the above method may exhibit a preventive or therapeutic effect against viral hemorrhagic sepsis virus infectious fish disease.
또한, 일 구체예에 따르면, 상기 방법에 의하여 miRNA 155가 봉입된 키토산 나노입자를 제조하는 경우, 현저히 우수한 캡슐화 효율 및 현저히 낮은 다분산성 지수를 나타내어, 입자의 크기가 균일하며 매우 안정적으로 캡슐화된 miRNA 155가 봉입된 키토산 나노입자를 제조할 수 있다. 이로 인해, 상기 방법에 의하여 제조된 miRNA 155가 봉입된 키토산 나노입자는 매우 안정적인 나노구 형태를 나타내어 내부의 miRNA 155를 외부 환경으로부터 강력하게 보호할 수 있다. 또한, 상기 방법에 의하여 제조된 miRNA 155가 봉입된 키토산 나노입자는 입자의 크기가 나노 사이즈로 매우 작고 표면 양전하를 나타내므로, 생체 흡수율, 생체 이용률, 및 세포 투과성이 현저히 증가될 수 있고, 어류의 생체 또는 세포 내로 흡수된 후 키토산의 점진적인 생분해로 인해 miRNA 155를 지속적으로 방출하여 어류의 생체 내에서 miRNA 155의 효과를 지속적으로 유지시킬 수 있다.In addition, according to one embodiment, when miRNA 155-encapsulated chitosan nanoparticles are prepared by the above method, significantly superior encapsulation efficiency and significantly lower polydispersity index are exhibited, and the particle size is uniform and the miRNA encapsulated very stably. 155 encapsulated chitosan nanoparticles can be prepared. As a result, the miRNA 155 encapsulated chitosan nanoparticles prepared by the above method exhibit a very stable nanosphere shape, and thus miRNA 155 inside can be strongly protected from the external environment. In addition, since the miRNA 155-encapsulated chitosan nanoparticles prepared by the above method are nano-sized and exhibit a positive surface charge, bioabsorption, bioavailability, and cell permeability can be remarkably increased, and fish After being absorbed into a living body or cells, miRNA 155 is continuously released due to the gradual biodegradation of chitosan, so that the effect of miRNA 155 can be continuously maintained in the living body of fish.
종합하면, 상기 방법에 의하여 제조된 miRNA 155가 봉입된 키토산 나노입자는 외부 환경에 의한 영향을 차단하여 miRNA 155의 안정성을 현저히 향상시키고, 유효성이 유지된 miRNA 155를 어류 생체 내로 효과적으로 전달할 수 있으며, 이로 인해, 바이러스성 출혈성 패혈증 바이러스 감염성 어류 질병에 대하여 현저히 증가된 예방 또는 치료 효과를 나타낼 수 있다.In summary, the miRNA 155-encapsulated chitosan nanoparticles prepared by the above method significantly improve the stability of miRNA 155 by blocking the influence of the external environment, and can effectively deliver miRNA 155 with maintained efficacy into fish organisms, As a result, it is possible to exhibit a significantly increased preventive or therapeutic effect against viral hemorrhagic sepsis virus infectious fish disease.
상기 제조 방법에서 언급된 용어 또는 요소 중 상기 조성물에 대한 설명에서 언급된 것과 같은 것은, 앞에서 상기 조성물에 대한 설명에서 언급된 바와 같은 것으로 이해된다.It is to be understood that any of the terms or elements mentioned in the manufacturing method as mentioned in the description of the composition are the same as those mentioned in the description of the composition above.
또 다른 양상은 어류에 상기 miRNA 155가 봉입된 키토산 나노입자 또는 이를 유효성분으로 포함하는 VHSV에 대한 어류용 항바이러스 조성물을 투여하는 단계를 포함하는 바이러스성 출혈성 패혈증 바이러스 감염성 어류 질병을 예방 또는 치료하는 방법을 제공한다.Another aspect is to prevent or treat viral hemorrhagic sepsis virus infectious fish disease comprising administering to fish an antiviral composition for fish against VHSV containing the miRNA 155-encapsulated chitosan nanoparticles or the same as an active ingredient. provides a way
상기 예방 또는 치료 방법에서 언급된 용어 또는 요소 중 상기 조성물 또는 제조 방법에 대한 설명에서 언급된 것과 같은 것은, 앞에서 상기 조성물 또는 제조 방법에 대한 설명에서 언급된 바와 같은 것으로 이해된다.Among the terms or elements mentioned in the prevention or treatment method, the same as those mentioned in the description of the composition or preparation method are understood to be the same as those mentioned in the description of the composition or preparation method.
또 다른 양상은 상기 miRNA 155가 봉입된 키토산 나노입자 또는 이를 유효성분으로 포함하는 조성물의, 어류-감염성 바이러스성 출혈성 패혈증 바이러스 (viral hemorrhagic septicemia virus: VHSV)에 대한 항바이러스 용도를 제공한다.Another aspect provides an antiviral use of the miRNA 155-encapsulated chitosan nanoparticles or a composition containing the miRNA 155 as an active ingredient against fish-infectious viral hemorrhagic septicemia virus (VHSV).
또 다른 양상은 상기 miRNA 155가 봉입된 키토산 나노입자 또는 이를 유효성분으로 포함하는 조성물의, VHSV 감염성 어류 질병을 예방 또는 치료하기 위한 용도를 제공한다. Another aspect provides the use of the miRNA 155-encapsulated chitosan nanoparticles or a composition containing the chitosan nanoparticles as an active ingredient for preventing or treating VHSV-infected fish disease.
또 다른 양상은 상기 miRNA 155가 봉입된 키토산 나노입자의, VHSV에 대한 어류용 항바이러스 조성물 또는 VHSV 감염성 어류 질병의 예방 또는 치료용 약제 (또는 약제학적 조성물)를 제조하기 위한 용도를 제공한다.Another aspect provides a use of the miRNA 155-encapsulated chitosan nanoparticles for preparing an antiviral composition for fish against VHSV or a medicament (or pharmaceutical composition) for preventing or treating VHSV-infected fish disease.
상기 용도에서 언급된 용어 또는 요소 중 상기 조성물, 제조 방법, 또는 예방 또는 치료 방법에 대한 설명에서 언급된 것과 같은 것은, 앞에서 상기 조성물, 제조 방법, 또는 예방 또는 치료 방법에 대한 설명에서 언급된 바와 같은 것으로 이해된다.Any of the terms or elements mentioned in this application as mentioned in the description of the composition, method of manufacture, or method of prevention or treatment are the same as those mentioned in the description of the composition, method of manufacture, or method of prevention or treatment above. It is understood that
일 양상에 따른 miRNA 155가 봉입된 키토산 나노입자를 유효성분으로 포함하는 어류용 항바이러스 조성물 및 이를 이용하는 방법에 의하면, 어류가 VHSV에 감염되는 경우, 어류 조직 내에서의 VHSV의 증식 또는 복제가 감소되고, 항바이러스성 반응, 면역반응, 및 세포 사멸 반응 등이 조절되며, 어류의 생존율이 현저히 증가되어 VHSV 감염성 어류 질병을 예방 또는 치료할 수 있다.According to an antiviral composition for fish comprising chitosan nanoparticles encapsulated with miRNA 155 as an active ingredient and a method using the same according to one aspect, when fish are infected with VHSV, the proliferation or replication of VHSV in fish tissue is reduced. In addition, the antiviral response, immune response, and cell death response are regulated, and the survival rate of fish is significantly increased, so that VHSV-infected fish diseases can be prevented or treated.
또한, 상기 miRNA 155가 봉입된 키토산 나노입자는 miRNA 155의 안정성을 현저히 향상시키고, 유효성이 유지된 miRNA 155를 어류 생체 내로 효과적으로 전달할 수 있으며, 어류 조직 내에서 독성을 유발하지 않아 어류의 VHSV 감염성 질병을 매우 효과적으로 예방 또는 치료할 수 있는 안전한 치료제로서 적용될 수 있다.In addition, the miRNA 155-encapsulated chitosan nanoparticles significantly improve the stability of miRNA 155, can effectively deliver miRNA 155 with maintained efficacy into the fish body, and do not induce toxicity in fish tissue, resulting in VHSV infectious disease in fish. It can be applied as a safe treatment that can prevent or treat very effectively.
도 1은 일 실시예에 따른 miRNA 155-CNPs의 구성 및 miRNA 155-CNPs로부터 miRNA 155가 방출되는 작용을 개략적으로 나타내는 도면이다.1 is a diagram schematically showing the structure of miRNA 155-CNPs and the release of miRNA 155 from miRNA 155-CNPs according to an embodiment.
도 2는 일 실시예에 따른 miRNA 155-CNPs의 제조 과정을 개략적으로 나타내는 도면이다. 2 is a diagram schematically showing a manufacturing process of miRNA 155-CNPs according to an embodiment.
도 3은 일 실시예에 따른 miRNA 155-CNPs의 제조를 위해 사용된 저분자량의 키토산 (low molecular weight chitosan: LMWC)의 화학식을 나타내는 도면이다.3 is a diagram showing the chemical formula of low molecular weight chitosan (LMWC) used for the preparation of miRNA 155-CNPs according to an embodiment.
도 4는 일 실시예에 따른 miRNA 155-CNPs에 대하여 (a) 주사전자현미경 (scanning electron microscopy: SEM) 및 (b) 투과전자현미경 (transmission electron microscopy: TEM) 촬영을 수행한 결과를 나타내는 도면이다.4 is a diagram showing the results of (a) scanning electron microscopy (SEM) and (b) transmission electron microscopy (TEM) imaging of miRNA 155-CNPs according to an embodiment. .
도 5는 일 실시예에 따른 miRNA 155-CNPs의 입자 사이즈를 분석한 결과를 나타내는 그래프이다.5 is a graph showing the results of analyzing the particle size of miRNA 155-CNPs according to an embodiment.
도 6은 일 실시예에 따른 miRNA 155-CNPs의 제타전위 (zeta potential)를 분석한 결과를 나타내는 그래프이다.6 is a graph showing the results of analyzing the zeta potential of miRNA 155-CNPs according to an embodiment.
도 7은 일 실시예에 따른 miRNA 155-CNPs의 시간 경과에 따른 miRNA 155 방출 수준을 분석한 결과를 나타내는 그래프이다.7 is a graph showing the results of analyzing miRNA 155 release levels over time of miRNA 155-CNPs according to an embodiment.
도 8은 일 실시예에 따른 miRNA 155-CNPs의 (a) 캡슐화 강도 및 (b) 내부에 저장된 miRNA 155의 무결성 (integrity)을 평가한 결과를 나타내는 도면이다.8 is a view showing the results of evaluating (a) the encapsulation strength of miRNA 155-CNPs and (b) the integrity of miRNA 155 stored therein according to an embodiment.
도 9는 일 실시예에 따른 miRNA 155-CNPs의 어류의 VHSV (viral hemorrhagic septicemia virus) 감염에 대한 효과를 확인하기 위한 실험 과정을 개략적으로 나타낸 도면이다.9 is a diagram schematically illustrating an experimental procedure for confirming the effect of miRNA 155-CNPs on VHSV (viral hemorrhagic septicemia virus) infection of fish according to an embodiment.
도 10은 일 실시예에 따른 miRNA 155-CNPs의 어류의 VHSV 감염에 대한 효과를 확인하기 위하여, miRNA 155-CNPs를 투여한 후 VHSV에 감염시킨 어류의 조직 내에서의 (a) viral mRNA copy numbers (VCN) 및 (b) viral gRNA copy numbers (VCN) 수준을 측정한 결과를 나타내는 그래프이다.10 is (a) viral mRNA copy numbers in tissues of fish infected with VHSV after administration of miRNA 155-CNPs to confirm the effect of miRNA 155-CNPs on VHSV infection of fish according to an embodiment; (VCN) and (b) a graph showing the results of measuring the level of viral gRNA copy numbers (VCN).
도 11은 일 실시예에 따른 miRNA 155-CNPs의 어류의 VHSV 감염에 대한 효과를 확인하기 위하여, miRNA 155-CNPs를 투여한 후 VHSV에 감염시킨 어류의 생존율을 분석한 결과를 나타내는 그래프이다.11 is a graph showing the results of analyzing the survival rate of VHSV-infected fish after administration of miRNA 155-CNPs in order to confirm the effect of miRNA 155-CNPs on VHSV infection of fish according to an embodiment.
도 12는 일 실시예에 따른 miRNA 155-CNPs의 어류의 VHSV 감염에 대한 항바이러스성 반응 조절 효과를 확인하기 위하여, miRNA 155-CNPs를 투여한 후 VHSV에 감염시킨 어류의 조직 내에서의 (a) ifnγ; (b) irf2bpl; 및 (c) irf9의 mRNA 발현 수준을 측정한 결과를 나타내는 그래프이다.12 is a view of miRNA 155-CNPs according to an embodiment in order to confirm the effect of regulating the antiviral response of fish against VHSV infection, in tissues of fish infected with VHSV after administration of miRNA 155-CNPs (a ) ifnγ; (b) irf2bpl; and (c) a graph showing the result of measuring the mRNA expression level of irf9.
도 13은 일 실시예에 따른 miRNA 155-CNPs의 어류의 VHSV 감염에 대한 면역반응 조절 효과를 확인하기 위하여, miRNA 155-CNPs를 투여한 후 VHSV에 감염시킨 어류의 조직 내에서의 (a) socs1a; (b) il1β; (c) tnfα; (d) il6; (e) il10; 및 (f) cxcl18b의 mRNA 발현 수준을 측정한 결과를 나타내는 그래프이다.13 is a view of (a) socs1a in tissues of VHSV-infected fish after administration of miRNA 155-CNPs to confirm the effect of miRNA 155-CNPs on regulating the immune response against VHSV infection in fish according to an embodiment; ; (b) il1β; (c) tnfα; (d) il6; (e) il10; And (f) a graph showing the results of measuring the mRNA expression level of cxcl18b.
도 14는 일 실시예에 따른 miRNA 155-CNPs의 어류의 VHSV 감염에 대한 세포 사멸 반응 조절 효과를 확인하기 위하여, miRNA 155-CNPs를 투여한 후 VHSV에 감염시킨 어류의 조직 내에서의 (a) cd8a; (b) caspase3; 및 (c) p53의 mRNA 발현 수준을 측정한 결과를 나타내는 그래프이다.14 is a diagram in the tissues of fish infected with VHSV after administration of miRNA 155-CNPs in order to confirm the effect of miRNA 155-CNPs on regulating the apoptosis response of fish to VHSV infection according to an embodiment (a) cd8a; (b) caspase3; and (c) a graph showing the results of measuring the mRNA expression level of p53.
도 15는 일 실시예에 따른 miRNA 155-CNPs의 어류 조직 내 독성 유발 여부를 확인하기 위하여, miRNA 155-CNPs가 투여된 어류로부터 채취된 아가미 조직 필라멘트 (filaments)를 종단하여 얻어진 조직 절편에 대하여 H & E 염색을 수행하여, 조직의 병리적 상태를 확인한 결과를 나타내는 도면이다 ((a): NF H2O 투여 정상 대조군; (b): CNPs 투여 비교 대조군; (c): miRNA 155-CNPs 투여 실험군). EC는 상피세포의 한 층을 나타내고, PL은 1차 판 상피 (primary lamellar epithelium)를 나타내며, SL은 2차 판 (secondary lamella)을 나타내고, MC는 상기 SL의 내벽의 점액세포 (mucous cell)를 나타낸다.15 is H for tissue slices obtained by terminating gill tissue filaments collected from fish to which miRNA 155-CNPs were administered, in order to confirm whether miRNA 155-CNPs induce toxicity in fish tissue according to an embodiment. & E staining is performed to show the result of confirming the pathological state of the tissue ((a): NF H 2 O administration normal control group; (b): CNPs administration comparison control group; (c): miRNA 155-CNPs administration experimental group). EC represents one layer of epithelial cells, PL represents primary lamellar epithelium, SL represents secondary lamella, and MC represents mucous cells of the inner wall of the SL. indicate
도 16은 일 실시예에 따른 miRNA 155-CNPs가 주입되고 VHSV에 감염된 어류에서의 VCN을 측정하기 위해 N 유전자 (VHSV)의 절대 정량화 (qRT-PCR)에 사용된 표준 곡선 및 표준식을 나타내는 그래프이다.16 is a graph showing a standard curve and standard formula used for absolute quantification (qRT-PCR) of N gene (VHSV) to measure VCN in VHSV-infected fish injected with miRNA 155-CNPs according to an embodiment. .
이하 본 발명을 실시예를 통하여 보다 상세하게 설명한다. 그러나, 이들 실시예는 본 발명을 예시적으로 설명하기 위한 것으로 본 발명의 범위가 이들 실시예에 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail through examples. However, these examples are intended to illustrate the present invention by way of example, and the scope of the present invention is not limited to these examples.
실시예 1. miRNA 155가 봉입된 키토산 나노입자 (miRNA 155-CNPs)의 제조Example 1. Preparation of miRNA 155 encapsulated chitosan nanoparticles (miRNA 155-CNPs)
키토산 나노입자 (chitosan nanoparticles: CNPs)의 내부에 miRNA 155가 봉입된 구조를 가지는 miRNA 155 및 CNPs의 복합체 (miRNA 155-CNPs)를 제조하였다.A complex of miRNA 155 and CNPs (miRNA 155-CNPs) having a structure in which miRNA 155 is encapsulated inside chitosan nanoparticles (CNPs) was prepared.
도 1은 일 실시예에 따른 miRNA 155-CNPs의 구성 및 miRNA 155-CNPs로부터 miRNA 155가 방출되는 작용을 개략적으로 나타내는 도면이다.1 is a diagram schematically showing the structure of miRNA 155-CNPs and the release of miRNA 155 from miRNA 155-CNPs according to an embodiment.
도 2는 일 실시예에 따른 miRNA 155-CNPs의 제조 과정을 개략적으로 나타내는 도면이다. 2 is a diagram schematically showing a manufacturing process of miRNA 155-CNPs according to an embodiment.
도 3은 일 실시예에 따른 miRNA 155-CNPs의 제조를 위해 사용된 저분자량의 키토산 (low molecular weight chitosan: LMWC)의 화학식을 나타내는 도면이다. 3 is a diagram showing the chemical formula of low molecular weight chitosan (LMWC) used for the preparation of miRNA 155-CNPs according to an embodiment.
구체적으로, 서열번호 1의 염기서열을 포함하는 miRNA 155 약 300 μg을 소듐트리폴리포스페이트 (sodium TPP (tripolyphosphate); Na5P3O10) 용액 (약 0.83 mg/mL) 약 1.2 mL에 첨가하여 혼합하였다. 상기 miRNA 155는 GenePharma (Shanghai, China)에서 구매하여 이용하였다. 그 후, 상기 혼합액과 저분자량의 키토산 (low molecular weight chitosan: LMWC) 용액을 혼합하였다. 구체적으로, 저분자량의 키토산을 약 0.05 % 아세트산 (acetic acid) 수용액에 약 2 mg/mL의 농도로 용해시켜 얻어진 키토산 용액 약 1.5 mL 및 상기 miRNA 155와 소듐트리폴리포스페이트의 혼합액 약 1.2 mL를 혼합한 후, 상온에서 약 1시간 동안 교반하면서 혼합하였다. 그 후, 혼합액을 약 4℃ 및 약 12,000 rpm의 조건에서 약 30분 동안 원심분리한 후, 상층액을 제거하고 수득된 침강물에 대하여 주사전자현미경 (scanning electron microscopy: SEM) 및 투과전자현미경 (transmission electron microscopy: TEM) 분석을 수행하였다.Specifically, about 300 μg of miRNA 155 containing the nucleotide sequence of SEQ ID NO: 1 was added to about 1.2 mL of sodium tripolyphosphate (Na 5 P 3 O 10 ) solution (about 0.83 mg/mL) and mixed. did The miRNA 155 was purchased from GenePharma (Shanghai, China) and used. Then, the mixed solution and a low molecular weight chitosan (LMWC) solution were mixed. Specifically, about 1.5 mL of a chitosan solution obtained by dissolving low molecular weight chitosan in an aqueous solution of about 0.05% acetic acid at a concentration of about 2 mg/mL and about 1.2 mL of a mixture of the miRNA 155 and sodium tripolyphosphate were mixed. Then, the mixture was mixed while stirring at room temperature for about 1 hour. Thereafter, the mixed solution was centrifuged for about 30 minutes at about 4° C. and about 12,000 rpm, and then the supernatant was removed and the obtained precipitate was examined under a scanning electron microscope (SEM) and transmission electron microscope (transmission electron microscope). Electron microscopy: TEM) analysis was performed.
도 4는 일 실시예에 따른 miRNA 155-CNPs에 대하여 (a) 주사전자현미경 (scanning electron microscopy: SEM) 및 (b) 투과전자현미경 (transmission electron microscopy: TEM) 촬영을 수행한 결과를 나타내는 도면이다. 4 is a diagram showing the results of (a) scanning electron microscopy (SEM) and (b) transmission electron microscopy (TEM) imaging of miRNA 155-CNPs according to an embodiment. .
그 결과, 도 4에 나타낸 바와 같이, miRNA 155가 내부에 봉입된 구형의 키토산 나노입자 (miRNA 155-CNPs)를 수득하였음을 확인하였다.As a result, as shown in FIG. 4, it was confirmed that spherical chitosan nanoparticles (miRNA 155-CNPs) in which miRNA 155 was encapsulated were obtained.
실시예 2. miRNA 155-CNPs의 특성 분석Example 2. Characterization of miRNA 155-CNPs
2.1 miRNA 155-CNPs의 입자 사이즈, 제타전위, 다분산성, 캡슐화 효율, 및 miRNA 155 방출 수준 분석 2.1 Analysis of particle size, zeta potential, polydispersity, encapsulation efficiency, and miRNA 155 release level of miRNA 155-CNPs
상기 실시예 1에서 제조된 miRNA 155가 내부에 봉입된 키토산 나노입자 (miRNA 155-CNPs)의 입자 사이즈, 제타전위 (zeta potential), 다분산성 (polydispersity), 캡슐화 효율 (encapsulation efficiency), 및 miRNA 155 방출 수준을 분석하였다.Particle size, zeta potential, polydispersity, encapsulation efficiency, and miRNA 155 of chitosan nanoparticles (miRNA 155-CNPs) encapsulated in miRNA 155 prepared in Example 1 Emission levels were analyzed.
구체적으로, miRNA 155-CNPs 약 1 mL을 pH 7.4 PBS에 현탁하고 현탁액의 입자 크기 분포, 다분산 지수 (PDI), 및 제타전위를 Zetasizer® Nano-ZS (Malvern Instruments, Malvern, UK)를 이용하여 측정하였다. 또한, 캡슐화 효율 (%)은, 상기 실시예 1에서 최종 miRNA 155-CNPs를 수득하기 위해 원심분리한 후 회수된 상층액에 존재하는 비포집 miRNA 155의 농도를 측정하여 분석되었다. 상기 상층액에 존재하는 비포집 miRNA 155의 농도는 NanoDrop One UV-Vis Spectrophotometer (Thermo Fisher Scientific, USA)를 사용하여 약 260 nm의 파장에서 흡광도를 측정하여 결정되었다. miRNA 155를 포함하지 않는 CNP의 상층액에 대한 흡광도를 블랭크로 사용하였다. 캡슐화 효율 (%)은 하기에 따라 계산되었다:Specifically, about 1 mL of miRNA 155-CNPs was suspended in pH 7.4 PBS, and the particle size distribution, polydispersity index (PDI), and zeta potential of the suspension were measured using Zetasizer ® Nano-ZS (Malvern Instruments, Malvern, UK). measured. In addition, the encapsulation efficiency (%) is the final After centrifugation to obtain miRNA 155-CNPs, the concentration of non-captured miRNA 155 present in the recovered supernatant was measured and analyzed. The concentration of non-captured miRNA 155 present in the supernatant was determined by measuring absorbance at a wavelength of about 260 nm using a NanoDrop One UV-Vis Spectrophotometer (Thermo Fisher Scientific, USA). The absorbance of the supernatant of CNP without miRNA 155 was used as a blank. Encapsulation efficiency (%) was calculated according to:
캡슐화 효율 (%) = (캡슐화된 miRNA 155의 질량 / 사용된 miRNA 155의 초기 질량) * 100. Encapsulation efficiency (%) = (mass of encapsulated miRNA 155 / initial mass of miRNA 155 used) * 100.
또한, 상기 miRNA 155-CNPs의 시간 경과에 따른 miRNA 155 방출 수준을 측정하기 위하여, 상기 miRNA 155-CNPs를 PBS 용액 (pH 7.4)에 첨가하여 약 20일 동안 약 37℃에서 교반하면서 혼합하였고, 5일 간격으로 혼합액의 샘플을 채취하여 원심분리한 후, NanoDrop One UV-Vis 분광광도계 (spectrophotometer)를 사용하여 상층액에 포함된 miRNA 155의 양을 측정하였다. In addition, in order to measure the miRNA 155 release level over time of the miRNA 155-CNPs, the miRNA 155-CNPs were added to a PBS solution (pH 7.4) and mixed while stirring at about 37 ° C. for about 20 days. Samples of the mixed solution were collected and centrifuged at intervals of days, and then the amount of miRNA 155 contained in the supernatant was measured using a NanoDrop One UV-Vis spectrophotometer.
도 5는 일 실시예에 따른 miRNA 155-CNPs의 입자 사이즈를 분석한 결과를 나타내는 그래프이다.5 is a graph showing the results of analyzing the particle size of miRNA 155-CNPs according to an embodiment.
도 6은 일 실시예에 따른 miRNA 155-CNPs의 제타전위 (zeta potential)를 분석한 결과를 나타내는 그래프이다.6 is a graph showing the results of analyzing the zeta potential of miRNA 155-CNPs according to an embodiment.
도 7은 일 실시예에 따른 miRNA 155-CNPs의 시간 경과에 따른 miRNA 155 방출 수준을 분석한 결과를 나타내는 그래프이다.7 is a graph showing the results of analyzing miRNA 155 release levels over time of miRNA 155-CNPs according to an embodiment.
그 결과, 도 5 및 6에 나타낸 바와 같이, 상기 miRNA 155-CNPs의 입자 사이즈는 약 341.45±10.00 nm이고, 표면 전하는 양전하를 나타내며, 제타전위는 약 39.30±3.90 mv임을 확인하였다. As a result, as shown in Figures 5 and 6, it was confirmed that the particle size of the miRNA 155-CNPs was about 341.45 ± 10.00 nm, the surface charge was positive, and the zeta potential was about 39.30 ± 3.90 mv.
또한, 상기 miRNA 155-CNPs의 다분산성 및 캡슐화 효율 분석 결과, 다분산성 지수 (polydispersity index: PDI)는 약 0.516±0.05로 현저히 낮고, 캡슐화 효율 (encapsulation efficiency: EE (%))은 약 98.80%로 현저히 높음을 확인하였다. In addition, as a result of analyzing the polydispersity and encapsulation efficiency of the miRNA 155-CNPs, the polydispersity index (PDI) was remarkably low at about 0.516±0.05, and the encapsulation efficiency (EE (%)) was about 98.80%. was found to be significantly higher.
더하여, 도 7에 나타낸 바와 같이, 상기 miRNA 155-CNPs는 일정 기간 동안 miRNA 155를 지속적으로 방출할 수 있음을 확인하였다. 구체적으로, 상기 miRNA 155-CNPs는 약 20일 이상 동안 miRNA 155를 지속적으로 방출하여 miRNA 155-CNPs에 포함된 miRNA 155 전체 양의 약 40% 이상을 방출할 수 있음을 확인하였다. 이는 CNPs가 점진적으로 (gradually) 생분해되면서, CNPs와 miRNA 155 사이에서 형성되었던 강력한 정전기적 상호작용, 예컨대, 이온성 결합의 세기가 감소하여 miRNA 155가 방출되는 것으로 이해될 수 있다.In addition, as shown in FIG. 7, it was confirmed that the miRNA 155-CNPs could continuously release miRNA 155 for a certain period of time. Specifically, it was confirmed that the miRNA 155-CNPs could release about 40% or more of the total amount of miRNA 155 contained in the miRNA 155-CNPs by continuously releasing miRNA 155 for about 20 days or more. This can be understood as the fact that miRNA 155 is released as the CNPs are gradually biodegraded, and the strong electrostatic interaction formed between the CNPs and miRNA 155, eg, the strength of the ionic bond, is reduced.
본 실시예를 통해, 상기 miRNA 155-CNPs는, 도 1에 나타낸 바와 같이, miRNA 155의 표면이 양전하의 CNPs로 코팅되어, 내부에는 miRNA 155가 존재하고, 외곽에는 양전하의 CNPs가 내부의 miRNA 155를 둘러싼 구조를 가지는, 표면 양전하를 나타내는 나노구 (nanosphere) 또는 구형의 나노입자임을 확인하였다.Through this embodiment, the miRNA 155-CNPs, as shown in Figure 1, the surface of miRNA 155 is coated with positively charged CNPs, so that miRNA 155 exists inside, and positively charged CNPs are outside miRNA 155 inside. It was confirmed that the nanospheres or spherical nanoparticles exhibiting a surface positive charge having a structure surrounding the .
또한, 상기 실시예 1의 제조 방법에 의할 경우, 현저히 우수한 캡슐화 효율 및 현저히 낮은 다분산성 지수를 나타내어, 입자의 크기가 균일하며 매우 안정적으로 캡슐화된 나노 사이즈의 miRNA 155-CNPs를 제조할 수 있음을 확인하였다.In addition, in the case of the preparation method of Example 1, remarkably excellent encapsulation efficiency and remarkably low polydispersity index are exhibited, and the particle size is uniform and very stably encapsulated nano-sized miRNA 155-CNPs can be prepared confirmed.
더불어, 상기 miRNA 155-CNPs는 상술한 바와 같은 매우 안정적인 나노구 형태를 나타내어 내부의 miRNA 155를 외부 환경으로부터 강력하게 보호하면서도, 시간이 경과함에 따라 외곽의 CNPs가 점진적으로 생분해되면서 miRNA 155를 지속적으로 방출할 수 있음을 확인하였다.In addition, the miRNA 155-CNPs exhibited a very stable nanosphere shape as described above, and while strongly protecting the internal miRNA 155 from the external environment, the external CNPs gradually biodegraded over time, continuously releasing miRNA 155. It was confirmed that it could be released.
이로 인해, 상기 miRNA 155-CNPs는 외부 환경에 의한 영향을 차단하여 miRNA 155의 안정성을 현저히 향상시키고, 유효성이 유지된 miRNA 155를 어류 생체 내로 효과적으로 전달할 수 있음을 알 수 있었다. 또한, 상기 miRNA 155-CNPs는 입자가 매우 작고, 표면 양전하를 나타내므로 생체 흡수율, 생체 이용률, 및 세포 투과성을 증가시킬 수 있으며, 어류의 생체 또는 세포 내로 흡수된 후, CNPs의 점진적인 생분해로 인해 miRNA 155를 지속적으로 방출하여 어류의 생체 내에서 miRNA 155의 효과를 지속적으로 유지시킬 수 있음을 알 수 있었다.As a result, it was found that the miRNA 155-CNPs significantly improved the stability of miRNA 155 by blocking the influence of the external environment, and could effectively deliver miRNA 155 with maintained efficacy into the fish body. In addition, since the miRNA 155-CNPs have very small particles and exhibit a positive surface charge, they can increase bioabsorption, bioavailability, and cell permeability, and after being absorbed into the body or cells of fish, miRNA It was found that the effect of miRNA 155 could be continuously maintained in the body of fish by continuously releasing 155.
2.2 miRNA 155-CNPs의 miRNA 155 및 키토산의 중량비에 따른 캡슐화 효율 분석 2.2 Analysis of encapsulation efficiency of miRNA 155-CNPs according to the weight ratio of miRNA 155 and chitosan
상기 실시예 1의 제조 방법에 따라 miRNA 155가 내부에 봉입된 키토산 나노입자 (miRNA 155-CNPs)를 제조하였고, 이때, miRNA 155 및 키토산의 중량비를 달리하는 여러 종류의 miRNA 155-CNPs을 제조한 후, miRNA 155 및 키토산의 중량비 차이에 따른 캡슐화 효율 차이를 비교 분석하였다. 캡슐화 효율 분석은 상기 실시예 2.1에 기재된 방법과 동일한 방법으로 수행되었다.Chitosan nanoparticles (miRNA 155-CNPs) in which miRNA 155 was encapsulated were prepared according to the preparation method of Example 1, and various types of miRNA 155-CNPs having different weight ratios of miRNA 155 and chitosan were prepared. Afterwards, the difference in encapsulation efficiency according to the difference in the weight ratio of miRNA 155 and chitosan was compared and analyzed. Encapsulation efficiency analysis was performed in the same manner as described in Example 2.1 above.
그 결과, 표 1에 나타낸 바와 같이, miRNA 155-CNPs에 포함된 miRNA 155 및 키토산의 중량비가 약 1 : 10인 경우, 약 98% 이상의 캡슐화 효율을 나타내어 miRNA 155를 가장 우수한 효율로 캡슐화할 수 있음을 확인하였다.As a result, as shown in Table 1, when the weight ratio of miRNA 155 and chitosan contained in miRNA 155-CNPs is about 1: 10, the encapsulation efficiency is about 98% or more, so miRNA 155 can be encapsulated with the best efficiency confirmed.
번호number miRNA 155 (ug)miRNA 155 (ug) low molecular
weight chitosan (mg)
low molecular
weight chitosan (mg)
weight ratio
(miRNA 155 : chitosan)
weight ratio
(miRNA 155: chitosan)
encapsulation efficiency (%)encapsulation efficiency (%)
1One 300300 66 1 : 201:20 90.45±3.3890.45±3.38
22 300300 33 1 : 101:10 98.80±0.5698.80±0.56
33 300300 1.51.5 1 : 51:5 85.64±0.6485.64±0.64
44 300300 0.750.75 1 : 2.51:2.5 45.35±2.1545.35±2.15
실시예 3. miRNA 155-CNPs의 캡슐화 강도 및 내부에 저장된 miRNA 155의 무결성 평가Example 3. Evaluation of encapsulation strength of miRNA 155-CNPs and integrity of internally stored miRNA 155
상기 실시예 1에서 제조된 miRNA 155가 내부에 봉입된 키토산 나노입자 (miRNA 155-CNPs)의 캡슐화 강도, 즉, CNPs와 miRNA 155의 결합강도 및 내부에 miRNA 155를 유지하는 저장능을 평가하였다. 또한, 상기 miRNA 155-CNPs 내부에 저장된 miRNA 155가 온전한 상태로 유지되는지 여부, 즉, RNA 무결성 (integrity)을 평가하였다.The encapsulation strength of the chitosan nanoparticles (miRNA 155-CNPs) in which miRNA 155 prepared in Example 1 was encapsulated was evaluated, that is, the binding strength between CNPs and miRNA 155, and the storage ability to retain miRNA 155 inside. In addition, whether the miRNA 155 stored inside the miRNA 155-CNPs remains intact, that is, RNA integrity was evaluated.
구체적으로, miRNA 155-CNPs의 캡슐화 강도를 확인하기 위하여, DNA 마커 (100 bp); miRNA 155 (naked miR-155) 약 1.5 μg; CNPs 약 10 μL; miRNA 155-CNPs 약 1.5 μg을 포함하는 현탁액 약 10 μL; 및 miRNA 155-CNPs와 분리된 원심분리 상청액 (miRNA 155-CNPs SN) 약 10 μL의 각 샘플에 약 2 μL의 6x 로딩 버퍼를 추가한 후, 각 샘플을 약 1%의 아가로스 겔에 로딩하여 전기영동 분석하였다. 또한, 상기 miRNA 155-CNPs 내부에 저장된 miRNA 155의 무결성을 확인하기 위하여, DNA 마커 (100 bp); miRNA 155 (naked miR-155) 약 1.5 μg; miRNA 155-CNPs 약 1.5 μg을 포함하는 현탁액 약 10 μL; miRNA 155 및 약 0.1 μL의 RNase A 용액 (10 mg/mL)을 혼합하여 약 37℃에서 약 5분 동안 인큐베이션한 혼합액; miRNA 155-CNPs 약 1.5 μg을 포함하는 현탁액 약 10 μL 및 약 1.9 μL의 키토사나아제 (chitosanase)를 약 37℃에서 약 4시간 동안 인큐베이션한 혼합액; 및 miRNA 155-CNPs 약 1.5 μg을 포함하는 현탁액 약 10 μL 및 약 0.1 μL의 RNase A 용액을 약 37℃에서 약 5분 동안 인큐베이션한 혼합액의 각 샘플에 약 2 μL의 6x 로딩 버퍼를 추가한 후, 각 샘플을 약 1%의 아가로스 겔에 로딩하여 전기영동 분석하였다. 상기 RNase A는 약 5분 동안 약 60℃까지 온도를 높이면서 불활성화되었다.Specifically, in order to confirm the encapsulation strength of miRNA 155-CNPs, DNA marker (100 bp); miRNA 155 (naked miR-155) about 1.5 μg; About 10 μL of CNPs; About 10 μL of suspension containing about 1.5 μg of miRNA 155-CNPs; and centrifugation supernatant (miRNA 155-CNPs SN) separated from miRNA 155-CNPs. After adding about 2 μL of 6x loading buffer to about 10 μL of each sample, each sample was loaded on about 1% agarose gel. Electrophoretic analysis was performed. In addition, in order to confirm the integrity of the miRNA 155 stored in the miRNA 155-CNPs, a DNA marker (100 bp); miRNA 155 (naked miR-155) about 1.5 μg; About 10 μL of suspension containing about 1.5 μg of miRNA 155-CNPs; miRNA 155 and about 0.1 μL of RNase A solution (10 mg/mL) were mixed and incubated at about 37° C. for about 5 minutes; A mixture obtained by incubating about 10 μL of a suspension containing about 1.5 μg of miRNA 155-CNPs and about 1.9 μL of chitosanase at about 37° C. for about 4 hours; And about 10 μL of the suspension containing about 1.5 μg of miRNA 155-CNPs and about 0.1 μL of RNase A solution were incubated at about 37 ° C. for about 5 minutes. After adding about 2 μL of 6x loading buffer to each sample of the mixture, , Each sample was loaded on about 1% agarose gel and analyzed by electrophoresis. The RNase A was inactivated by raising the temperature to about 60° C. for about 5 minutes.
도 8은 일 실시예에 따른 miRNA 155-CNPs의 (a) 캡슐화 강도 및 (b) 내부에 저장된 miRNA 155의 무결성 (integrity)을 평가한 결과를 나타내는 도면이다.8 is a view showing the results of evaluating (a) the encapsulation strength of miRNA 155-CNPs and (b) the integrity of miRNA 155 stored therein according to an embodiment.
그 결과, 도 8에 나타낸 바와 같이, 상기 miRNA 155-CNPs의 캡슐화는 매우 견고하여, 내부의 miRNA 155가 쉽게 외부 환경에 노출되지 않음을 확인하였다. 또한, 상기 miRNA 155-CNPs의 CNPs가 키토사나아제 (chitosanase)에 의해 분해되어 방출된 miRNA 155는 원래의 상태를 온전하게 유지하여 RNA 무결성이 유지됨을 확인하였다. 더하여, 상기 miRNA 155-CNPs는 리보핵산가수분해효소 A (RNase A)에 의하여 miRNA 155가 분해되는 것을 막아 내부에 저장된 miRNA 155를 외부 효소로부터 보호함을 확인하였다.As a result, as shown in FIG. 8, it was confirmed that the encapsulation of the miRNA 155-CNPs was very strong, and the miRNA 155 inside was not easily exposed to the external environment. In addition, it was confirmed that RNA integrity was maintained by maintaining the original state of the released miRNA 155 when the CNPs of the miRNA 155-CNPs were degraded by chitosanase. In addition, it was confirmed that the miRNA 155-CNPs protect the internally stored miRNA 155 from external enzymes by preventing miRNA 155 from being degraded by ribonucleic acid hydrolase A (RNase A).
본 실시예를 통해, 상기 miRNA 155-CNPs는 CNPs와 miRNA 155의 결합 강도 및 내부에 miRNA 155를 유지하는 저장능이 현저히 우수함을 알 수 있었다. 또한, 상기 miRNA 155-CNPs의 내부에 저장된 miRNA 155는 외부 환경 (예컨대 RNase A 등) 등에 의하여 영향을 받지 않고, 원래의 상태를 온전하게 유지하여 RNA 무결성이 유지된 채로 상기 miRNA 155-CNPs의 내부에 저장되어 있다가 방출됨을 알 수 있었다. 따라서, 상기 miRNA 155-CNPs는 miRNA 155를 외부 환경으로부터 보호하고, miRNA 155의 유효성을 유지한 채 miRNA 155를 어류의 생체 또는 세포 내로 전달시켜 어류의 감염성 질병을 효과적으로 예방 또는 치료할 수 있는 치료제로 활용될 수 있음을 알 수 있었다.Through this Example, it was found that the miRNA 155-CNPs had remarkably excellent binding strength between CNPs and miRNA 155 and storage ability to retain miRNA 155 therein. In addition, the miRNA 155 stored inside the miRNA 155-CNPs is not affected by the external environment (e.g., RNase A, etc.), and maintains its original state intact, maintaining the integrity of the miRNA 155-CNPs. It was found that it was stored in and then released. Therefore, the miRNA 155-CNPs are used as a therapeutic agent that can effectively prevent or treat infectious diseases in fish by protecting miRNA 155 from the external environment and delivering miRNA 155 into the body or cells of fish while maintaining the effectiveness of miRNA 155. knew it could be.
실시예 4. 어류의 VHSV 감염에 대한 miRNA 155-CNPs의 효과 확인Example 4. Confirmation of the effect of miRNA 155-CNPs on VHSV infection in fish
상기 실시예 1에서 제조된 miRNA 155가 내부에 봉입된 키토산 나노입자 (miRNA 155-CNPs)의 어류의 VHSV (viral hemorrhagic septicemia virus) 감염성 질병에 대한 예방 또는 치료 효과를 확인하기 위하여, 어류에 상기 miRNA 155-CNPs를 투여한 후, VHSV에 감염시켜 어류의 생존율; 어류 조직 내에서의 viral RNA copy numbers (VCN) 수준; 및 어류 조직 내에서의 VHSV에 의해 유도된 항바이러스성 반응 (antiviral responses), 면역반응 조절 (regulatory and inflammatory responses), 및 세포 사멸 반응 (apoptotic responses)과 관련된 인자의 유전자 발현 수준을 분석하였다.In order to confirm the preventive or therapeutic effect of chitosan nanoparticles (miRNA 155-CNPs) encapsulated with miRNA 155 prepared in Example 1 against viral hemorrhagic septicemia virus (VHSV) infectious diseases in fish, the miRNA in fish survival rate of fish infected with VHSV after administration of 155-CNPs; levels of viral RNA copy numbers (VCN) in fish tissue; And gene expression levels of factors related to antiviral responses, regulatory and inflammatory responses, and apoptotic responses induced by VHSV in fish tissues were analyzed.
도 9는 일 실시예에 따른 miRNA 155-CNPs의 어류의 VHSV (viral hemorrhagic septicemia virus) 감염에 대한 효과를 확인하기 위한 실험 과정을 개략적으로 나타낸 도면이다.9 is a diagram schematically illustrating an experimental procedure for confirming the effect of miRNA 155-CNPs on VHSV (viral hemorrhagic septicemia virus) infection of fish according to an embodiment.
구체적으로, 도 9에 나타낸 바와 같이, 어류 (zebrafish)에 상기 miRNA 155-CNPs를 i.p. 주입 (복강내 주사)한 후, 약 14시간 후에, VHSV 배양액 약 20 μL (약 105 TCID50/mL/fish)를 i.p. 주입하여 감염시켰다 (n=10). 그 다음, VHSV 감염 후 약 57시간 후에 VHSV에 감염된 상기 어류로부터 조직 (아가미, 근육, 신장 등)을 채취하고, VHSV 감염 후 약 120시간 동안 VHSV에 감염된 상기 어류의 생존율을 분석하여, 상기 miRNA 155-CNPs의 어류의 VHSV 감염성 질병에 대한 예방 또는 치료 효과를 분석하였다. 정상 대조군으로 miRNA 155-CNPs 및 VHSV 모두를 주입하지 않은 정상 어류를 사용하였고, 비교 대조군으로 miRNA 155-CNPs의 주입없이 VHSV만을 주입하여 감염시킨 어류 및 miRNA 155-CNPs 대신에 miRNA 155 억제제를 주입한 후 VHSV를 주입하여 감염시킨 어류를 사용하였다.Specifically, as shown in FIG. 9, after ip injection (intraperitoneal injection) of the miRNA 155-CNPs into fish (zebrafish), about 14 hours later, about 20 μL of VHSV culture medium (about 10 5 TCID 50 /mL/ fish) were infected by ip injection (n=10). Next, tissues (gills, muscles, kidneys, etc.) were collected from the VHSV-infected fish about 57 hours after VHSV infection, and the survival rate of the VHSV-infected fish was analyzed for about 120 hours after VHSV infection, and the miRNA 155 - The preventive or therapeutic effects of CNPs against VHSV infectious diseases in fish were analyzed. As a normal control, normal fish not injected with both miRNA 155-CNPs and VHSV were used. As comparative controls, fish infected with only VHSV injection without miRNA 155-CNPs and miRNA 155 inhibitor injected instead of miRNA 155-CNPs were used. Then, fish infected by injecting VHSV were used.
4.1 VHSV 감염 어류의 생존율 및 VHSV 감염 어류 조직 내에서의 viral RNA copy numbers (VCN) 수준 분석4.1 Analysis of the survival rate of VHSV-infected fish and the level of viral RNA copy numbers (VCN) in VHSV-infected fish tissues
상술한 바와 같이, 어류 (zebrafish)에 상기 miRNA 155-CNPs를 i.p. 주입한 후, 약 14시간 후에, VHSV 감염시킨 다음, VHSV 감염 후 약 57시간 후에, 조직 (아가미, 근육, 신장 등)을 채취하여 각 조직의 중량 (g) 당 viral mRNA copy numbers (VCN) 및 viral gRNA copy numbers (VCN) 수준을 측정하였다.As described above, the miRNA 155-CNPs were i.p. About 14 hours after injection, VHSV infection, and about 57 hours after VHSV infection, tissues (gills, muscles, kidneys, etc.) were taken and viral mRNA copy numbers (VCN) per tissue weight (g) were calculated. Viral gRNA copy numbers (VCN) levels were measured.
구체적으로, VCN은 각 조직으로부터 분리된 RNA로부터 VHSV의 N 유전자 전사체의 절대 정량화 (qRT-PCR)에 의해 계산되었다. 사용한 표준 곡선 및 표준식은 도 16에 나타내었다. 구체적인 VCN 수준 측정 방법은 공지된 방법에 따라 수행되었다 (Avunje et al., 2011).Specifically, VCN was calculated by absolute quantification (qRT-PCR) of the N gene transcript of VHSV from RNA isolated from each tissue. The standard curve and standard formula used are shown in FIG. 16 . The specific VCN level measurement method was performed according to a known method (Avunje et al., 2011).
또한, 어류에 상기 miRNA 155-CNPs를 i.p. 주입한 후, 약 14시간 후에, VHSV 감염시킨 다음, VHSV 감염 후 약 120시간 동안 VHSV에 감염된 상기 어류의 생존 여부를 관찰한 후, 생존율을 분석하였다.In addition, the miRNA 155-CNPs i.p. About 14 hours after the injection, VHSV infection was performed, and survival of the fish infected with VHSV was observed for about 120 hours after VHSV infection, and then the survival rate was analyzed.
도 10은 일 실시예에 따른 miRNA 155-CNPs의 어류의 VHSV 감염에 대한 효과를 확인하기 위하여, miRNA 155-CNPs를 투여한 후 VHSV에 감염시킨 어류의 조직 내에서의 (a) viral mRNA copy numbers (VCN) 및 (b) viral gRNA copy numbers (VCN) 수준을 측정한 결과를 나타내는 그래프이다. 10 is (a) viral mRNA copy numbers in tissues of fish infected with VHSV after administration of miRNA 155-CNPs to confirm the effect of miRNA 155-CNPs on VHSV infection of fish according to an embodiment; (VCN) and (b) a graph showing the results of measuring the level of viral gRNA copy numbers (VCN).
도 11은 일 실시예에 따른 miRNA 155-CNPs의 어류의 VHSV 감염에 대한 효과를 확인하기 위하여, miRNA 155-CNPs를 투여한 후 VHSV에 감염시킨 어류의 생존율을 분석한 결과를 나타내는 그래프이다.11 is a graph showing the results of analyzing the survival rate of VHSV-infected fish after administration of miRNA 155-CNPs in order to confirm the effect of miRNA 155-CNPs on VHSV infection of fish according to an embodiment.
그 결과, 도 10에 나타낸 바와 같이, 상기 miRNA 155-CNPs를 투여받은 어류는 VHSV에 감염되었을 때, 상기 miRNA 155-CNPs를 투여받지 않은 대조군에 비해 어류의 조직 내에서의 viral RNA copy numbers (VCN) 수준이 감소함을 확인하였다. As a result, as shown in FIG. 10, when the fish administered with the miRNA 155-CNPs were infected with VHSV, compared to the control group not administered with the miRNA 155-CNPs, the viral RNA copy numbers (VCN ) level was confirmed to decrease.
또한, 도 11에 나타낸 바와 같이, 상기 miRNA 155-CNPs를 투여받은 어류는 VHSV에 감염되더라도, 정상 대조군과 유사한 수준으로 약 80% 이상의 현저히 높은 수준의 생존율을 나타냄을 확인하였다. 반면, 상기 miRNA 155-CNPs를 투여받지 않은 대조군 어류의 경우, VHSV에 감염되었을 때, 약 50% 이하의 현저히 낮은 수준의 생존율을 나타냄을 확인하였다.In addition, as shown in FIG. 11, it was confirmed that the fish administered with the miRNA 155-CNPs exhibited a remarkably high survival rate of about 80% or more, similar to that of the normal control group, even if they were infected with VHSV. On the other hand, in the case of control fish not administered with the miRNA 155-CNPs, when infected with VHSV, it was confirmed that they exhibited a significantly low survival rate of about 50% or less.
본 실시예를 통해, 상기 miRNA 155-CNPs를 투여받은 어류는 VHSV 감염시, 어류 조직 내에서의 VHSV의 증식 또는 복제가 감소될 수 있고, 생존율이 현저히 증가될 수 있음을 확인하였다. 이로 인해, 상기 miRNA 155-CNPs는 어류의 VHSV 감염성 질병에 대하여 예방 또는 치료 효과를 나타냄을 확인하였다.Through this example, it was confirmed that the proliferation or replication of VHSV in fish tissue can be reduced and the survival rate can be remarkably increased when VHSV infection occurs in fish administered with the miRNA 155-CNPs. As a result, it was confirmed that the miRNA 155-CNPs exhibit preventive or therapeutic effects against VHSV infectious diseases in fish.
4.2 어류 조직 내에서의 VHSV에 의해 유도된 항바이러스성 반응, 면역반응 조절, 및 세포 사멸 반응과 관련된 인자의 유전자 발현 수준의 변화 분석4.2 Analysis of changes in gene expression levels of factors related to antiviral response, immune response regulation, and apoptosis response induced by VHSV in fish tissue
상술한 바와 같이, 어류 (zebrafish)에 상기 miRNA 155-CNPs를 i.p. 주입한 후, 약 14시간 후에, VHSV 감염시킨 다음, VHSV 감염 후 약 57시간 후에, 조직 (아가미, 근육, 신장 등)을 채취하여 각 조직에서의 VHSV에 의해 유도된 항바이러스성 반응, 면역반응 조절, 및 세포 사멸 반응과 관련된 인자의 유전자 발현 수준의 변화를 분석하였다. 항바이러스성 반응과 관련하여 ifnγ, irf2bpl, 및 irf9의 mRNA 발현 수준의 변화를 분석하였고, 면역반응 조절과 관련하여 socs1a, il1β, tnfα, il6, il10, 및 cxcl18b의 mRNA 발현 수준의 변화를 분석하였으며, 세포 사멸 반응과 관련하여 cd8a, caspase3, 및 p53의 mRNA 발현 수준의 변화를 분석하였다.As described above, the miRNA 155-CNPs were i.p. About 14 hours after injection, after infection with VHSV, about 57 hours after infection with VHSV, tissues (gills, muscles, kidneys, etc.) were collected and the antiviral response and immune response induced by VHSV in each tissue Changes in gene expression levels of factors related to regulation and cell death responses were analyzed. Changes in mRNA expression levels of ifnγ, irf2bpl, and irf9 were analyzed in relation to antiviral responses, and changes in mRNA expression levels of socs1a, il1β, tnfα, il6, il10, and cxcl18b were analyzed in relation to immune response regulation. , Changes in mRNA expression levels of cd8a, caspase3, and p53 in relation to the apoptosis response were analyzed.
구체적으로, mRNA 발현 수준은 공지된 방법에 의하여 분석될 수 있고, 예컨대, RT-PCR을 이용하여 각 조직으로부터 분리한 mRNA를 역전사하여 cDNA를 수득한 후, cDNA를 주형으로 하여 상기 항바이러스성 반응, 면역반응 조절, 및 세포 사멸 반응과 관련된 인자의 유전자를 증폭할 수 있는 프라이머로 유전자 증폭하여 mRNA 발현 수준을 분석할 수 있다. 상기 항바이러스성 반응, 면역반응 조절, 및 세포 사멸 반응과 관련된 인자의 유전자를 증폭할 수 있는 프라이머는 기존의 판매 업체로부터 모두 구매 가능하다. Specifically, the mRNA expression level can be analyzed by a known method. For example, after reverse transcription of mRNA isolated from each tissue using RT-PCR to obtain cDNA, the antiviral reaction using the cDNA as a template , immune response regulation, and mRNA expression levels can be analyzed by amplifying genes with primers capable of amplifying genes of factors related to apoptosis response. Primers capable of amplifying genes of factors related to the antiviral response, immune response regulation, and cell death response can all be purchased from existing vendors.
도 12는 일 실시예에 따른 miRNA 155-CNPs의 어류의 VHSV 감염에 대한 항바이러스성 반응 조절 효과를 확인하기 위하여, miRNA 155-CNPs를 투여한 후 VHSV에 감염시킨 어류의 조직 내에서의 (a) ifnγ; (b) irf2bpl; 및 (c) irf9의 mRNA 발현 수준을 측정한 결과를 나타내는 그래프이다.12 is a view of miRNA 155-CNPs according to an embodiment in order to confirm the effect of regulating the antiviral response of fish against VHSV infection, in tissues of fish infected with VHSV after administration of miRNA 155-CNPs (a ) ifnγ; (b) irf2bpl; and (c) a graph showing the result of measuring the mRNA expression level of irf9.
도 13은 일 실시예에 따른 miRNA 155-CNPs의 어류의 VHSV 감염에 대한 면역반응 조절 효과를 확인하기 위하여, miRNA 155-CNPs를 투여한 후 VHSV에 감염시킨 어류의 조직 내에서의 (a) socs1a; (b) il1β; (c) tnfα; (d) il6; (e) il10; 및 (f) cxcl18b의 mRNA 발현 수준을 측정한 결과를 나타내는 그래프이다.13 is a view of (a) socs1a in tissues of VHSV-infected fish after administration of miRNA 155-CNPs to confirm the effect of miRNA 155-CNPs on regulating the immune response against VHSV infection in fish according to an embodiment; ; (b) il1β; (c) tnfα; (d) il6; (e) il10; And (f) a graph showing the results of measuring the mRNA expression level of cxcl18b.
도 14는 일 실시예에 따른 miRNA 155-CNPs의 어류의 VHSV 감염에 대한 세포 사멸 반응 조절 효과를 확인하기 위하여, miRNA 155-CNPs를 투여한 후 VHSV에 감염시킨 어류의 조직 내에서의 (a) cd8a; (b) caspase3; 및 (c) p53의 mRNA 발현 수준을 측정한 결과를 나타내는 그래프이다.14 is a diagram in the tissues of fish infected with VHSV after administration of miRNA 155-CNPs in order to confirm the effect of miRNA 155-CNPs on regulating the apoptosis response of fish to VHSV infection according to an embodiment (a) cd8a; (b) caspase3; and (c) a graph showing the results of measuring the mRNA expression level of p53.
그 결과, 도 12에 나타낸 바와 같이, 상기 miRNA 155-CNPs를 투여받은 어류는 VHSV 감염시, miRNA 155-CNPs가 비투여된 VHSV 감염 어류에 비해 아가미, 근육, 및 신장의 모든 조직에서 항바이러스성 반응 관련 인자인 ifnγ 및 irf9의 mRNA 발현이 감소하였음을 확인하였다. 반면, 신장 조직에서 측정된 irf2bpl의 mRNA 발현 수준은, 아가미 및 근육 조직에서 측정된 것과 달리, miRNA 155-CNPs가 비투여된 VHSV 감염 어류에 비해 증가되었음을 확인하였다.As a result, as shown in FIG. 12, the fish administered with the miRNA 155-CNPs showed antiviral activity in all tissues of the gills, muscles, and kidneys when compared to VHSV-infected fish not administered with the miRNA 155-CNPs. It was confirmed that the mRNA expression of ifnγ and irf9, which are response-related factors, decreased. On the other hand, it was confirmed that the mRNA expression level of irf2bpl measured in kidney tissue was increased compared to the VHSV-infected fish not administered with miRNA 155-CNPs, unlike the level measured in gill and muscle tissue.
또한, 도 13에 나타낸 바와 같이, 상기 miRNA 155-CNPs를 투여받은 어류는 VHSV 감염시, miRNA 155-CNPs가 비투여된 VHSV 감염 어류에 비해 아가미, 근육, 및 신장의 모든 조직에서 면역반응 조절 관련 인자인 il10 및 cxcl18b의 mRNA 발현이 감소한 반면, il1β 및 tnfα의 mRNA 발현이 증가하였음을 확인하였다. 또한, 신장 조직에서 측정된 socs1a 및 il6의 mRNA 발현 수준은, 아가미 및 근육 조직에서 측정된 것과 달리, miRNA 155-CNPs가 비투여된 VHSV 감염 어류에 비해 증가되었음을 확인하였다.In addition, as shown in FIG. 13, the miRNA 155-CNPs-administered fish were VHSV-infected, compared to VHSV-infected fish not administered miRNA 155-CNPs, related to the regulation of immune responses in all tissues of the gills, muscles, and kidneys. It was confirmed that the mRNA expression of the factors il10 and cxcl18b decreased, whereas the mRNA expression of il1β and tnfα increased. In addition, it was confirmed that the mRNA expression levels of socs1a and il6 measured in kidney tissue were increased compared to VHSV-infected fish not administered with miRNA 155-CNPs, unlike those measured in gill and muscle tissue.
더하여, 도 14에 나타낸 바와 같이, 상기 miRNA 155-CNPs를 투여받은 어류는 VHSV 감염시, miRNA 155-CNPs가 비투여된 VHSV 감염 어류에 비해 아가미 및 근육 조직에서 세포 사멸 반응 관련 인자인 cd8a, caspase3, 및 p53의 mRNA 발현이 모두 감소한 반면, 신장 조직에서는 상기 인자의 mRNA 발현이 모두 증가하였음을 확인하였다.In addition, as shown in FIG. 14, fish administered with the miRNA 155-CNPs were infected with cd8a and caspase3, which are apoptosis response-related factors in gills and muscle tissue, compared to VHSV-infected fish not administered with miRNA 155-CNPs. , and p53 mRNA expression were all decreased, whereas in renal tissue, the mRNA expression of all of these factors was increased.
본 실시예를 통해, 상기 miRNA 155-CNPs를 투여받은 어류는 VHSV 감염시, 어류 조직 내에서의 VHSV에 의해 유도된 항바이러스성 반응, 면역반응 조절, 및 세포 사멸 반응과 관련된 인자의 유전자 발현이 조절됨을 확인하였다. 이로 인해, 상기 miRNA 155-CNPs는 어류의 항바이러스성 반응, 면역반응, 및 세포 사멸 반응 등을 조절함으로써, 어류의 VHSV 감염성 질병에 대하여 예방 또는 치료 효과를 나타냄을 확인하였다.Through this example, when the fish administered with the miRNA 155-CNPs were infected with VHSV, gene expression of factors related to the antiviral response, immune response regulation, and apoptosis response induced by VHSV in fish tissues was increased. It was confirmed that it was regulated. As a result, it was confirmed that the miRNA 155-CNPs exhibit preventive or therapeutic effects against VHSV infectious diseases in fish by regulating the antiviral response, immune response, and cell death response of fish.
실시예 5. miRNA 155-CNPs의 Example 5. miRNA 155-CNPs In vivoIn vivo 안전성 분석 safety analysis
상기 실시예 1에서 제조된 miRNA 155가 내부에 봉입된 키토산 나노입자 (miRNA 155-CNPs)의 안전성을 분석하기 위해, 어류에 상기 miRNA 155-CNPs를 투여한 후, 어류 조직 내에서의 독성 유발 여부를 분석하였다.In order to analyze the safety of chitosan nanoparticles (miRNA 155-CNPs) encapsulated with miRNA 155 prepared in Example 1, after administering the miRNA 155-CNPs to fish, whether or not they induce toxicity in fish tissues was analyzed.
구체적으로, 어류 (zebrafish)에 약 100 μg/mL 농도의 상기 miRNA 155-CNPs 용액을 i.p. 주입한 후 약 48시간 후에, 상기 어류의 아가미 조직을 채취하였다. 채취된 조직을 종단하여 얻어진 조직 절편에 대하여 H & E 염색을 수행하였고, 조직의 병리적 상태를 대조군과 비교하여 상기 miRNA 155-CNPs의 안전성을 분석하였다. 정상 대조군으로 상기 miRNA 155-CNPs 대신 NF H2O를 투여한 정상 어류를 사용하였고, 비교 대조군으로 상기 miRNA 155-CNPs 대신 CNPs를 투여한 어류를 사용하였다. Specifically, about 48 hours after ip injection of the miRNA 155-CNPs solution at a concentration of about 100 μg/mL into zebrafish, the gill tissue of the fish was collected. H & E staining was performed on tissue sections obtained by terminating the collected tissue, and the safety of the miRNA 155-CNPs was analyzed by comparing the pathological state of the tissue with a control group. As a normal control group, normal fish to which NF H 2 O was administered instead of the miRNA 155-CNPs were used, and fish to which CNPs were administered instead of the miRNA 155-CNPs were used as a comparative control group.
도 15는 일 실시예에 따른 miRNA 155-CNPs의 어류 조직 내 독성 유발 여부를 확인하기 위하여, miRNA 155-CNPs가 투여된 어류로부터 채취된 아가미 조직 필라멘트 (filaments)를 종단하여 얻어진 조직 절편에 대하여 H & E 염색을 수행하여, 조직의 병리적 상태를 확인한 결과를 나타내는 도면이다 ((a): NF H2O 투여 정상 대조군; (b): CNPs 투여 비교 대조군; (c): miRNA 155-CNPs 투여 실험군). EC는 상피세포의 한 층을 나타내고, PL은 1차 판 상피 (primary lamellar epithelium)를 나타내며, SL은 2차 판 (secondary lamella)을 나타내고, MC는 상기 SL의 내벽의 점액세포 (mucous cell)를 나타낸다. 15 is H for tissue slices obtained by terminating gill tissue filaments collected from fish to which miRNA 155-CNPs were administered, in order to confirm whether miRNA 155-CNPs induce toxicity in fish tissue according to an embodiment. & E staining is performed to show the result of confirming the pathological state of the tissue ((a): NF H 2 O administration normal control group; (b): CNPs administration comparison control group; (c): miRNA 155-CNPs administration experimental group). EC represents one layer of epithelial cells, PL represents primary lamellar epithelium, SL represents secondary lamella, and MC represents mucous cells of the inner wall of the SL. indicate
그 결과, 도 15에 나타낸 바와 같이, 상기 miRNA 155-CNPs 투여 어류의 조직과 정상 어류의 조직의 병리적 상태에 있어서 어떠한 차이도 발견할 수 없음을 확인하였다. As a result, as shown in FIG. 15, it was confirmed that no difference was found in the pathological state between the tissue of the miRNA 155-CNPs-administered fish and the tissue of the normal fish.
본 실시예를 통해, 상기 miRNA 155-CNPs는 어류 조직 내에서 독성을 유발하지 않아 어류의 VHSV 감염성 질병을 예방 또는 치료할 수 있는 안전한 치료제로서 적용될 수 있음을 확인하였다.Through this Example, it was confirmed that the miRNA 155-CNPs could be applied as a safe therapeutic agent capable of preventing or treating VHSV infectious diseases in fish because they did not induce toxicity in fish tissue.
이상으로 본 발명의 특정한 부분을 상세히 기술하였는 바, 당업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적인 기술은 단지 바람직한 구현예일 뿐이며, 이에 본 발명의 범위가 제한되는 것이 아닌 점은 명백하다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항과 그의 등가물에 의하여 정의된다고 할 것이다.Having described specific parts of the present invention in detail above, it is clear that these specific techniques are merely preferred embodiments for those skilled in the art, and the scope of the present invention is not limited thereto. Accordingly, the substantial scope of the present invention will be defined by the appended claims and equivalents thereof.

Claims (8)

  1. miRNA 155가 봉입된 키토산 나노입자를 유효성분으로 포함하는 바이러스성 출혈성 패혈증 바이러스 (viral hemorrhagic septicemia virus: VHSV)에 대한 어류용 항바이러스 조성물. An antiviral composition for fish against viral hemorrhagic septicemia virus (VHSV) comprising chitosan nanoparticles encapsulated with miRNA 155 as an active ingredient.
  2. 청구항 1에 있어서, 상기 miRNA 155는 서열번호 1의 염기서열을 포함하는 것인, 조성물. The composition according to claim 1, wherein the miRNA 155 comprises the nucleotide sequence of SEQ ID NO: 1.
  3. 청구항 1에 있어서, 상기 키토산 나노입자의 직경은 200 nm 내지 500 nm인 것인, 조성물.The method according to claim 1, The chitosan nanoparticles will have a diameter of 200 nm to 500 nm, the composition.
  4. 청구항 1에 있어서, 상기 조성물은 사료, 사료 첨가제, 항바이러스용 약제, 바이러스 감염성 질병의 예방 또는 치료용 약제, 또는 면역 증진용 약제인 것인, 조성물.The method according to claim 1, wherein the composition is a feed, feed additive, antiviral drug, a drug for preventing or treating a viral infectious disease, or a drug for enhancing immunity, the composition.
  5. 청구항 1에 있어서, 상기 조성물은 바이러스성 출혈성 패혈증 바이러스 감염성 질병의 예방 또는 치료용 약제인 것인, 조성물.The method according to claim 1, wherein the composition is a composition for the prevention or treatment of viral hemorrhagic sepsis virus infectious disease.
  6. (a) miRNA 155 및 트리폴리인산염 (tripolyphosphate) 용액을 혼합하는 단계;(a) mixing miRNA 155 and tripolyphosphate solution;
    (b) 키토산 (chitosan)을 산성 용매에 용해시키는 단계; 및 (b) dissolving chitosan in an acidic solvent; and
    (c) 상기 (a) 단계에서 얻어진 혼합액 및 상기 (b) 단계에서 얻어진 용액을 혼합하여 교반하는 단계를 포함하는 miRNA 155가 봉입된 키토산 나노입자를 제조하는 방법.(c) A method for preparing miRNA 155-encapsulated chitosan nanoparticles comprising mixing and stirring the mixed solution obtained in step (a) and the solution obtained in step (b).
  7. 청구항 6에 있어서, 상기 miRNA 155가 봉입된 키토산 나노입자는 바이러스성 출혈성 패혈증 바이러스 감염성 어류 질병에 대하여 예방 또는 치료 효과를 나타내는 것인, 방법.The method according to claim 6, wherein the miRNA 155-encapsulated chitosan nanoparticles exhibit a preventive or therapeutic effect against viral hemorrhagic sepsis virus infectious fish disease.
  8. 어류에 청구항 1 내지 5 중 어느 한 항의 조성물을 투여하는 단계를 포함하는 바이러스성 출혈성 패혈증 바이러스 감염성 어류 질병을 예방 또는 치료하는 방법. A method for preventing or treating viral hemorrhagic sepsis virus infectious fish disease comprising administering the composition of any one of claims 1 to 5 to fish.
PCT/KR2022/021319 2021-12-29 2022-12-26 Antiviral composition for fish against viral hemorrhagic septicemia virus, containing chitosan nanoparticles having mirna-155 encapsulated therein as active ingredient WO2023128527A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020210191859A KR20230101608A (en) 2021-12-29 2021-12-29 Antiviral composition for fish against viral hemorrhagic septicemia virus containing miRNA 155 encapsulated in chitosan nanoparticles as an active ingredient
KR10-2021-0191859 2021-12-29

Publications (1)

Publication Number Publication Date
WO2023128527A1 true WO2023128527A1 (en) 2023-07-06

Family

ID=86999934

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/021319 WO2023128527A1 (en) 2021-12-29 2022-12-26 Antiviral composition for fish against viral hemorrhagic septicemia virus, containing chitosan nanoparticles having mirna-155 encapsulated therein as active ingredient

Country Status (2)

Country Link
KR (1) KR20230101608A (en)
WO (1) WO2023128527A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104524599A (en) * 2014-12-19 2015-04-22 青岛大学 Antisense nucleotide MiRNA-532 containing pharmaceutical composition and application thereof
KR20210055574A (en) * 2019-11-06 2021-05-17 강원대학교산학협력단 Role of NF-κB-responsive miR-31-5p and miR-155-5p on inflammatory cytokine-induced impairment of endothelial progenitor cell function, and use thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104524599A (en) * 2014-12-19 2015-04-22 青岛大学 Antisense nucleotide MiRNA-532 containing pharmaceutical composition and application thereof
KR20210055574A (en) * 2019-11-06 2021-05-17 강원대학교산학협력단 Role of NF-κB-responsive miR-31-5p and miR-155-5p on inflammatory cytokine-induced impairment of endothelial progenitor cell function, and use thereof

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
DATABASE Nucleotide 17 April 2019 (2019-04-17), ANONYMOUS : "Pan paniscus microRNA mir-155 (MIR155), microRNA", XP093076128, retrieved from NCBI Database accession no. NR_163123.1 *
KOLE SAJAL, DAR SHOWKAT AHMAD, SHIN SU-MI, JEONG HYEON-JONG, JUNG SUNG-JU: "Potential Efficacy of Chitosan-Poly (Lactide-Co-Glycolide)-Encapsulated Trivalent Immersion Vaccine in Olive Flounder (Paralichthys olivaceus) Against Viral Hemorrhagic Septicemia Virus, Streptococcus parauberis Serotype I, and Miamiensis avidus (Scuticociliate)", FRONTIERS IN IMMUNOLOGY, vol. 12, 2 December 2021 (2021-12-02), pages 761130, XP093075247, DOI: 10.3389/fimmu.2021.761130 *
LIM HYUN JU; ABDELLAOUI NAJIB; KIM KI HONG: "Effect of miR-155 as a molecular adjuvant of DNA vaccine against VHSV in olive flounder (Paralichthys olivaceus)", FISH & SHELLFISH IMMUNOLOGY, ACADEMIC PRESS, LONDON,, GB, vol. 88, 1 January 1900 (1900-01-01), GB , pages 225 - 230, XP085646708, ISSN: 1050-4648, DOI: 10.1016/j.fsi.2019.02.056 *
NGUYEN MY-ANH, WYATT HAILEY, SUSSER LEAH, GEOFFRION MICHELE, RASHEED ADIL, DUCHEZ ANNE-CLAIRE, COTTEE MARY LYNN, AFOLAYAN ESTHER, : "Delivery of MicroRNAs by Chitosan Nanoparticles to Functionally Alter Macrophage Cholesterol Efflux in Vitro and in Vivo", ACS NANO, AMERICAN CHEMICAL SOCIETY, US, vol. 13, no. 6, 25 June 2019 (2019-06-25), US , pages 6491 - 6505, XP093075251, ISSN: 1936-0851, DOI: 10.1021/acsnano.8b09679 *

Also Published As

Publication number Publication date
KR20230101608A (en) 2023-07-06

Similar Documents

Publication Publication Date Title
Ahmed et al. Recent progress in biomedical applications of chitosan and its nanocomposites in aquaculture: A review
Chen et al. Molecular characterization and expression analysis of the IFN-gamma related gene (IFN-γrel) in grass carp Ctenopharyngodon idella
WO2013070010A1 (en) Novel composition for gene delivery
Zheng et al. Development of oral DNA vaccine based on chitosan nanoparticles for the immunization against reddish body iridovirus in turbots (Scophthalmus maximus)
WO2014133351A1 (en) Composition for gene delivery comprising chitosan and liquid crystal formation material
Huo et al. Oral administration of nanopeptide CMCS-20H conspicuously boosts immunity and precautionary effect against bacterial infection in fish
Zhang et al. Antimicrobial activity and mechanisms of a derived antimicrobial peptide TroNKL-27 from golden pompano (Trachinotus ovatus) NK-lysin
WO2023128527A1 (en) Antiviral composition for fish against viral hemorrhagic septicemia virus, containing chitosan nanoparticles having mirna-155 encapsulated therein as active ingredient
Mahboub et al. Chitosan nanogel aqueous treatment improved blood biochemicals, antioxidant capacity, immune response, immune-related gene expression and infection resistance of Nile tilapia
WO2023200275A1 (en) Antibiotic composition for fish against edwardsiella piscicida containing chitosan nanoparticles having mirna 24 encapsulated therein as active ingredient
Wonglapsuwan et al. Roles of phagocytosis activating protein (PAP) in Aeromonas hydrophila infected Cyprinus carpio
CN113201505A (en) Vibrio alginolyticus bacteriophage with cross-species cracking capability, bacteriophage composition and application thereof
Khimmakthong et al. Activation of an immune response in Litopenaeus vannamei by oral immunization with phagocytosis activating protein (PAP) DNA
Ouyang et al. Chitooligosaccharide boosts the immunity of immunosuppressed blunt snout bream against bacterial infections
JP2000336035A (en) Prophylactic and therapeutic agent for infection of fish and shellfish
Zhang et al. Carboxymethyl chitosan nanoparticles loaded with Ctenopharyngodon idella interferon-γ2 (CiIFN-γ2) enhance protective efficacy against bacterial infection in grass carp
JP7487892B2 (en) Methods for preparing pharmaceutical vesicle formulations and related products and uses - Patents.com
KR20030046491A (en) Treatment and prophylaxis of diseases and infections of pigs and poultry
KR20000075860A (en) Infectious disease preventive/remedy for fishes and shellfishes
WO2022174305A1 (en) Combination therapy
Ulanova et al. Treatment of Francisella infections via PLGA-and lipid-based nanoparticle delivery of antibiotics in a zebrafish model
Kuo et al. Delivery of grouper Interferon by chitosan-modified poly (lactic-co-glycolic acid) nanoparticles to protect nervous necrosis virus infection
ES2372915T3 (en) NEOMYCINE FOR INCREASING THE SURVIVAL OF AQUATIC ANIMALS EXPOSED TO IPNV.
KR102082600B1 (en) Vaccine Composition for Viral Hemorrhagic Septicemia Using PLGA
Ruiz-Guerrero et al. Use of brome mosaic virus-like particles in feed, to deliver dsRNA targeting the white spot syndrome virus vp28 gene, reduces Penaeus vannamei mortality

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22916668

Country of ref document: EP

Kind code of ref document: A1