WO2023128377A1 - Pharmaceutical composition comprising activated t cells specific to k-ras for preventing and treating lung papillary adenocarcinoma and method for preparing same - Google Patents

Pharmaceutical composition comprising activated t cells specific to k-ras for preventing and treating lung papillary adenocarcinoma and method for preparing same Download PDF

Info

Publication number
WO2023128377A1
WO2023128377A1 PCT/KR2022/019961 KR2022019961W WO2023128377A1 WO 2023128377 A1 WO2023128377 A1 WO 2023128377A1 KR 2022019961 W KR2022019961 W KR 2022019961W WO 2023128377 A1 WO2023128377 A1 WO 2023128377A1
Authority
WO
WIPO (PCT)
Prior art keywords
ras
cells
epitope
papillary adenocarcinoma
rop
Prior art date
Application number
PCT/KR2022/019961
Other languages
French (fr)
Korean (ko)
Inventor
이왕준
문현종
임선기
Original Assignee
의료법인 명지의료재단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 의료법인 명지의료재단 filed Critical 의료법인 명지의료재단
Publication of WO2023128377A1 publication Critical patent/WO2023128377A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/14Blood; Artificial blood
    • A61K35/17Lymphocytes; B-cells; T-cells; Natural killer cells; Interferon-activated or cytokine-activated lymphocytes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0634Cells from the blood or the immune system
    • C12N5/0636T lymphocytes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/20Cytokines; Chemokines
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/998Proteins not provided for elsewhere

Definitions

  • the present invention relates to a pharmaceutical composition for preventing and treating lung papillary adenocarcinoma containing K-ras-specific activated T cells and a method for preparing the same.
  • Immunotherapy is a method of inducing cancer-specific CTL (Cytotoxic T Lymphocyte) endogenously or injecting it to kill cancer cells.
  • CTL Cytotoxic T Lymphocyte
  • LAK Lymphokine activate killer
  • the LAK immune cell therapy showed encouraging clinical results for cancer patients who had failed surgery, chemotherapy, and radiation therapy.
  • the LAK immune cell therapy not only has a problem of low cancer cell killing efficiency due to a non-specific immune response, but also uses only interleukin-2 (IL-2) lymphokine in the culture process, so immune cells are exhausted and survive in vivo
  • IL-2 interleukin-2
  • the peptide vaccine selects a part with high immunogenicity among cancer antigens, designs it as a peptide, and uses it to activate immune cells. Therefore, there is an advantage that there is no concern about exhaustion of immune cells due to the use of IL-2 lymphokine.
  • the peptide vaccine can not only cause immune evasion when the target site of cancer cells mutates, but also can have low immunoreactivity due to the lack of help from CD4 T cells in the immune response.
  • Design with peptides loaded on MHC class I molecules Because of this, there was a disadvantage in that there was a limitation in the type of human leukocyte antigen (HLA).
  • OLP vaccines designed by overlapping peptides containing the entire antigen and having high immunogenicity are being developed.
  • the OLP vaccine contains all antigens, so it has a high immune response with the help of CD4 T cells, a longer immune response period, and no HLA type restrictions.
  • the OLP vaccine has a problem in that manufacturing cost is high and immunomodulation is relatively difficult.
  • a method for producing antigen-specific T cells using a vaccine is also an important factor.
  • mo dendritic cells are obtained through a maturation process, and then the dendritic cells are separately treated in an environment where antigens are separately treated. Ag-specific T cells are produced by co-culture with T cells.
  • the method using the moDC has disadvantages of requiring additional time, cost, and blood because the antigen-specific T cell induction method proceeds by dividing the DC cell maturation process and the T cell culture process.
  • K-ras mutation is a carcinogenic mutation found in about 20% of solid cancers, and is found mainly in pancreatic and colon adenocarcinomas and lung cancers.
  • Therapies targeting tumors dependent on K-ras mutant genes inhibit or inactivate the function of K-ras because it is difficult to make antibodies that individually bind to K-ras mutants expressed by K-ras mutant genes. The effect was limited because it was limited to an indirect treatment method.
  • an antigen that solves the above problems, including the most frequently occurring mutation sites of K-ras, it selectively amplifies endogenous immune cells capable of inducing a direct immune response by binding to K-ras mutations, and using them as a target cancer treatment It is expected that it can be used as an effective treatment that maximizes the effect of cancer treatment and has a high durability of anti-cancer effect because it can efficiently target and kill cancer cells.
  • An object of the present invention is to develop a K-ras-specific activated T cell induced with an antigen for inducing K-ras-specific activated T cells, which is designed to include the entire amino acid sequence and mutations of K-ras and is manufactured using recombinant technology and has excellent economic efficiency. It is to provide a pharmaceutical composition for preventing and treating cell-containing lung papillary adenocarcinoma and a method for preparing the same.
  • the present invention relates to an antigen composition for inducing K-ras-specific activated T cells and a medicament for preventing and treating lung papillary adenocarcinoma, including K-ras-specific activated T cells induced using cytokine It is characterized by providing a medical composition, wherein the cancer cells of the lung papillary adenocarcinoma are K-ras, K-ras mutant G12V, K-ras mutant G12D, or K-ras mutant G13D is detected do.
  • the K-ras-specific activated T cells are obtained by culturing peripheral blood mononuclear cells (PBMC) in a medium containing the antigen composition for inducing K-ras-specific activated T cells and a primary cytokine.
  • PBMC peripheral blood mononuclear cells
  • the primary cytokines are Interleukin-4 and Granulocyte-Macrophage Colony-Stimulating Factor (GM-CSF);
  • the secondary cytokines are characterized in that they are tumor necrosis factor- ⁇ , interleukin-1 ⁇ , and prostaglandin E2.
  • a K-ras mutant G12D, G12V, and G13D
  • the pharmaceutical composition for preventing and treating lung papillary adenocarcinoma containing K-ras-specific activated T cells of the present invention is used, not only K-ras but also lung adenocarcinoma in which K-ras mutations are detected, especially However, it has the advantage of effectively preventing and treating lung papillary adenocarcinoma.
  • Figure 1 shows the amino acid sequence structure of K-ras (M) -ROP of the present invention.
  • Figure 2 shows the results of analyzing the reactivity of PBMC to K-ras (M) -ROP of the present invention.
  • FIG 3 shows the result of analyzing the ratio of specific CD3+ T cells in LP-1 PBMC according to the concentration of K-ras(M)-ROP according to the present invention.
  • Figure 4 shows the results of analyzing the ratio of antigen-specific CD3+ T cells in LP-1 PBMCs for K-ras(M)-ROP, K-ras1-24Wild-type, and K-ras1-24 mutants of the present invention. .
  • Figure 5 shows the results of comparing the Fast-IVS process and the No-Cytokine process of the present invention.
  • FIG 6 shows the results of K-ras mutant epitope screening for ROP-T cells of the present invention.
  • Figure 8 shows the ratio of CD3+ T cells secreting IFN- ⁇ (IFN- ⁇ +) for each condition of the present invention.
  • Figure 9 shows the extent to which ROP-T cells and LAK-T cells of the present invention kill cancer cells.
  • FIG. 10 shows the degree to which ROP-T cells and LAK-T cells of the present invention inhibit the growth of colon cancer cells (K-ras-G12D) obtained from a colon cancer patient.
  • the present invention relates to an antigen composition for inducing K-ras-specific activated T cells and a medicament for preventing and treating lung papillary adenocarcinoma, including K-ras-specific activated T cells induced using cytokine
  • a scientific composition is provided.
  • "Prevention” of the present invention refers to all activities in which cancer is suppressed or delayed by administration of a pharmaceutical composition for preventing and treating lung papillary adenocarcinoma of the present invention, and “treatment” of the present invention means lung It refers to all activities that improve or beneficially change the symptoms of cancer by administering a pharmaceutical composition for the prevention and treatment of lung papillary adenocarcinoma.
  • the lung papillary adenocarcinoma of the present invention is characterized in that K-ras, K-ras mutant G12V, K-ras mutant G12D, or K-ras mutant G13D is detected in cancer cells.
  • KRAS the K-ras gene
  • KRAS is a representative proto-oncogene, which is involved in cell growth and differentiation in vertebrates, and is involved in point mutation, chromosomal translocation, and gene amplification
  • the activity of K-ras abnormally increases and causes cancer.
  • the detection of K-ras, K-ras mutant G12V, K-ras mutant G12D, or K-ras mutant G13D in lung papillary adenocarcinoma cancer cells of the present invention means that KRAS is expressed as an oncogene and K-ras mutant G12V is detected. This means that the activity of ras is abnormally increased.
  • the lung papillary adenocarcinoma of the present invention is characterized in that K-ras mutation G12V, K-ras mutation G12D, or K-ras mutation G13D is detected in cancer cells, more preferably K-ras mutation G13D. It is characterized in that the mutation G12V is detected.
  • the K-ras mutations G12V, G12D, and G13D are mutations found in lung adenocarcinoma, pancreatic adenocarcinoma, crystalline adenocarcinoma, colorectal adenocarcinoma, and rectal adenocarcinoma, and prevent GTP hydrolysis by GTPase-activating proteins (GAPs) from occurring smoothly, resulting in GTP- It is known to induce the proliferation of cancer cells by increasing the cellular level of bound RAS protein and thereby abnormally activating lower signaling pathways.
  • GAPs GTPase-activating proteins
  • the pharmaceutical composition for preventing and treating lung papillary adenocarcinoma containing K-ras-specific activated T cells of the present invention includes an antigen composition for inducing K-ras-specific activated T cells and cytokines.
  • It can be used for the treatment of cancer, and preferably can be used for the treatment of lung adenocarcinoma in which K-ras, K-ras mutation G12V, K-ras mutation G12D, or K-ras mutation G13D are detected among lung cancers, and more Preferably, it can be used for the treatment of lung papillary adenocarcinoma in which K-ras, K-ras mutation G12V, K-ras mutation G12D, or K-ras mutation G13D is detected, most preferably K-ras It can be used for the treatment of lung papillary adenocarcinoma in which mutant G12V is detected.
  • composition refers to K-ras-specific activated T cells according to the present invention as an active ingredient, along with natural or artificial carriers, inactive ingredients such as labels or detection agents, or adjuvants, diluents, binders, stabilizers, It refers to a combination with active ingredients such as buffers, salts, lipophilic solvents, and preservatives, and includes pharmaceutically acceptable carriers.
  • Such carriers may include pharmaceutical excipients and additional proteins, peptides, amino acids, lipids, and carbohydrates (e.g., monosaccharides; disaccharides; trisaccharides; tetrasaccharides; oligosaccharides; sugars such as alditols, aldonic acids, esterified sugars); derivatives of, polysaccharides, sugar polymers, etc.) alone or in combination, and may be included in an amount of 1 to 99.99% by weight or volume%.
  • pharmaceutical excipients and additional proteins, peptides, amino acids, lipids, and carbohydrates e.g., monosaccharides; disaccharides; trisaccharides; tetrasaccharides; oligosaccharides; sugars such as alditols, aldonic acids, esterified sugars); derivatives of, polysaccharides, sugar polymers, etc.
  • Protein excipients may include, but are not limited to, human serum albumin, recombinant human albumin, gelatin, casein, and the like.
  • Representative amino acid components that can play a buffering role may include alanine, arginine, glycine, betaine, histidine, glutamic acid, aspartic acid, cysteine, lysine, leucine, isoleucine, valine, methionine, phenylalanine, aspartame, and the like. Not limited.
  • Carbohydrate excipients include monosaccharides such as fructose, maltose, galactose, glucose, D-mannose, sorbose; disaccharides such as lactose, sucrose, trehalose, cellobiose, raffinose, maltodextrin, dextran, polysaccharides such as starch, and alditols such as mannitol, xylitol, maltitol, lactitol, sorbitol, and myoinositol; and the like. can and is not limited thereto.
  • the pharmaceutical composition for preventing and treating lung papillary adenocarcinoma containing the K-ras-specific activated T cells of the present invention can be formulated by a method known to those skilled in the art.
  • the pharmaceutical composition of the present invention if necessary, can be used parenterally in the form of an injection of a sterile solution or suspension in water or other pharmaceutically acceptable liquids, and can be used in a pharmaceutically acceptable carrier or medium, specifically As an appropriate combination with sterilized water, physiological saline, vegetable oil, emulsifier, suspending agent, surfactant, stabilizer, excipient, vehicle, preservative, binder, etc., by mixing in a unit dosage form required for generally recognized pharmaceutical practice can be formulated.
  • the amount of active ingredient means that an appropriate dose within the indicated range can be obtained.
  • a vehicle such as distilled water for injection
  • a vehicle such as distilled water for injection
  • isotonic solutions containing physiological saline, glucose, and other adjuvants, such as D-sorbitol, D-mannose, D-mannitol, and sodium chloride
  • Alcohol, propylene glycol, and polyethylene glycol, polysorbate 80 (TM), and HCO-50, which are nonionic surfactants, may be used in combination.
  • sesame oil and soybean oil can be used as an oily liquid, and can be used in combination with benzyl benzoate and benzyl alcohol as a dissolution aid.
  • the injection formulation examples include intravenous injection formulation, intraarterial injection formulation, selective intraarterial injection formulation, intramuscular injection formulation, intraperitoneal injection formulation, subcutaneous injection formulation, intraventricular injection formulation, intracerebral injection formulation, and intramedullary injection formulation. And preferably, the injection formulation is an intravenous injection formulation.
  • the pharmaceutical composition for preventing and treating lung papillary adenocarcinoma containing K-ras-specific activated T cells of the present invention includes a pharmaceutically effective amount of K-ras-specific activated T cells. Determination of the effective amount can be easily determined by those skilled in the art based on the contents disclosed herein.
  • the pharmaceutically effective amount is gradually increased until the desired effect, for example, reduction or elimination of cancer-related symptoms, is obtained without side effects in the subject. determined by the method
  • a method for determining an appropriate dosage or administration interval of the pharmaceutical composition for preventing and treating lung papillary adenocarcinoma of the present invention is described in Goodman and Gilman's The Pharmacological Basis of Therapeutics, Goodman et al., eds., 11th Edition, McGraw-Hill 2005, and Remington: The Science and Practice of Pharmacy, 20th and 21st Editions, Gennaro and University of the Sciences in Philadelphia, Eds., Lippencott Williams & Wilkins (2003 and 2005).
  • Administration method of the pharmaceutical composition for the prevention and treatment of lung papillary adenocarcinoma of the present invention is the type of cancer, the patient's age, weight, sex, medical condition, severity of disease, administration route, and separately administered It can be determined considering various factors such as drug.
  • the amount of the pharmaceutical composition for the prevention and treatment of lung papillary adenocarcinoma of the present invention administered to a patient may be determined by many factors such as the administration method, the patient's health condition, weight, and the doctor's prescription, which It is within the knowledge of one of ordinary skill in the art.
  • the pharmaceutical composition for preventing and treating lung papillary adenocarcinoma of the present invention contains about 1x10 6 cells/mL or more, about 2x10 6 cells/mL or more, about 3x10 6 cells/mL or more, about 4x10 6 cells/mL or more.
  • the "about” can be understood within a range commonly accepted in the art, for example, within the average standard deviation range, and is 50%, 45%, 40%, 35%, 30%, 25%, Understand to within 20%, 15%, 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, 1%, 0.5%, 0.1%, 0.05%, or 0.01% It can be.
  • buffering agents such as phosphate buffer and sodium acetate buffer, analgesic agents such as procaine hydrochloride, stabilizers such as benzyl alcohol or phenol, and antioxidants may be further combined.
  • the prepared injection solution is usually filled into an appropriate ampoule.
  • Suspensions and emulsions may contain, as carriers, natural gum, agar, sodium alginate, pectin, methylcellulose, carboxymethylcellulose, or polyvinyl alcohol.
  • Suspensions or solutions for intramuscular injection can contain the active compound together with pharmaceutically acceptable carriers such as sterile water, olive oil, ethyl oleate, glycols and suitable amounts of lidocaine hydrochloride.
  • the pharmaceutical composition for preventing and treating lung papillary adenocarcinoma of the present invention may be administered to patients by bolus injection or continuous infusion.
  • the pharmaceutical composition for preventing and treating lung papillary adenocarcinoma of the present invention is 1 hour or less, 1 hour or more, 2 hours or more, 3 hours or more, 4 hours or more, 8 hours or more, 12 hours or more, 1 hour or less More than 1 day, more than 2 days, more than 3 days, more than 4 days, more than 5 days, more than 6 days, more than 7 days, more than 2 weeks, more than 3 weeks, more than 4 weeks, more than 1 month, more than 3 months, more than 6 months It may be administered at least once, at least twice, at least three times, at least four times, or at least five times, continuously, or at regular time intervals, or at time intervals determined by clinical judgment.
  • the injection may be formulated in the form of an ampoule or a unit dosage form in a multi-dose container.
  • the dosage of the pharmaceutical composition according to the present invention may vary depending on various factors such as the patient's age, weight, height, sex, general medical condition and previous treatment history.
  • the K-ras-specific activated T cells are isolated from peripheral blood mononuclear cells (PBMC) in a medium containing an antigen composition for inducing K-ras-specific activated T cells and a primary cytokine.
  • PBMC peripheral blood mononuclear cells
  • the method of inducing K-ras-specific activated T cells according to the present invention is Fast-IVS (in vitro stimulation), which is different from conventional IVS.
  • the IVS induces K-ras-specific activated T cells of the present invention after obtaining monocyte-derived dendritic cells (moDC) through a differentiation and maturation process from monocytes isolated from blood. It refers to a method of co-culture with T cells in an environment treated with an antigen composition for use.
  • the Fast-IVS of the present invention has a difference in that it simultaneously performs the maturation process and antigen (antigen composition for inducing K-ras-specific activated T cells) treatment of DC cells in PBMC.
  • the antigen composition for inducing K-ras-specific activated T cells used as an antigen in the T cell induction process may further include cytokines, hormones, and buffers required for DC cell maturation and growth.
  • the cytokine is interleukin-4, interleukin-1 ⁇ , granulocyte-macrophage colony-stimulating factor (GM-CSF), tumor necrosis factor- ⁇ (Tumor Necrosis Factor). - ⁇ , TNF- ⁇ ), and the hormone may be prostaglandin E2 (PGE2).
  • the interleukin-4 and the granulocyte-macrophage colony-stimulating factor (GM-CSF) are primary cytokines, which induce monocytes in PBMC into DC It was used to induce differentiation into dendritic cells, and the tumor necrosis factor- ⁇ , interleukin-1 ⁇ , and prostaglandin E2 are secondary cytokines, immature DC ) was used to mature.
  • GM-CSF granulocyte-macrophage colony-stimulating factor
  • the culturing of the first step is performed for 1 day
  • the culturing of the second step is performed for 2 days
  • the culturing of the third step is performed for 10 days.
  • the step-by-step culturing period was optimized through the examples to most efficiently induce K-ras-specific activated T cells.
  • the present invention is characterized in that the antigen composition for inducing K-ras-specific activated T cells includes the K-ras mutant recombinant overlapping peptide consisting of the amino acid sequence of SEQ ID NO: 1 as an active ingredient.
  • SEQ ID NO: 1 is derived from the amino acid sequence (SEQ ID NO: 2) of K-ras protein.
  • the 12th amino acid is substituted from glycine (G) to aspartic acid (D)
  • the 12th amino acid is substituted from glycine (G) to valine (V)
  • the 13th amino acid is substituted from glycine (G) to aspartic acid (D).
  • the recombinant means inserting into a recombinant plasmid DNA containing the genetic information of the designed antigen, and the recombinant plasmid DNA is transformed into a microorganism to express a protein and purify the K-ras-specific An antigen for inducing activated T cells is obtained.
  • the linker is a linker composed of Leucine (L), Arginine (R), Methionine (M), and Lysine (K), and has an advantage in the MHC class I pathway by dendritic cells. there is.
  • the antigen composition for inducing K-ras-specific activated T cells of the present invention is designed as follows.
  • T cells specific for K-ras mutations (G12D, G12V, G13D) can be induced, and the K-ras mutations (G12D, G12V, G13D) can be used to treat cancer cells with K-ras mutations (G12D, G12V, G13D).
  • K-ras a type of ras protein
  • KRAS a gene of the ras protein
  • oncogene found as a mutation in various carcinomas
  • 85% of ras-derived carcinomas are known to be caused by K-ras mutation. Therefore, when T cells specifically recognizing K-ras expressed in cancer cells and its mutations are amplified, cancer with abnormally increased activity of K-ras can be effectively removed and treated.
  • the cancer is not limited as long as the cancer has increased K-ras activity, and examples thereof include adrenocortical carcinoma (ACC), bladder urothelial carcinoma (BLCA), invasive breast carcinoma (BRCA), cervical squamous cell carcinoma and intracervical adenocarcinoma (CESC).
  • ACC adrenocortical carcinoma
  • BLCA bladder urothelial carcinoma
  • BRCA invasive breast carcinoma
  • CESC intracervical adenocarcinoma
  • colon adenocarcinoma COAD
  • chronic lymphocytic leukemia CLL
  • colorectal cancer CRC
  • DLBCL diffuse large B-cell lymphoma
  • GBM glioblastoma multiforme
  • HNSC head and neck squamous cell carcinoma
  • KICH chromophobe kidney
  • KIRC renal clear cell carcinoma
  • LAML renal papillary cell carcinoma
  • LIHC acute myelogenous leukemia
  • LAML acute myelogenous leukemia
  • LIHC acute myelogenous leukemia
  • LAML hepatocellular carcinoma
  • LAD lung adenocarcinoma
  • LUSC lung squamous cell carcinoma
  • MM multiple myeloma
  • OV pancreatic adenocarcinoma
  • PAAD prostate adenocarcinoma
  • PRAD rectal adenocarcinoma
  • READ skin melanoma
  • STAD gastric adeno
  • K-ras amino acid sequence (SEQ ID NO: 2) was inserted into the expression vector.
  • K-ras (WT) consists of 189 amino acids, and the amino acid sequence is shown in Table 1 below.
  • K-ras K-ras (WT) MTEYKLVVVG 10 AGGVGKSALT 20 IQLIQNHFVD 30 EYDPTIEDSY 40 RKQVVIDGET 50 CLLDILDTAG 60 QEEYSAMRDQ 70 YMRTGEGFLC 80 VFAINNTKSF 90 EDIHHYREQI 100 KRVKDSEDVP 110 MVLVGNKCDL 120 PSRTVDTKQA 130 QDLARSYGIP 140 FIETSAKTRQ 150 RVEDAFYTLV 160 REIRQYRLKK 170 ISKEEKTPGC 180 VKIKKCIIM 189
  • an expression vector was prepared by inserting it into a pET30a vector, and the expression vector was transformed into E. coli to express the protein.
  • K-ras(M)-ROP An antigen of K-ras Mutant Recombinant Overlapping Peptide (K-ras(M)-ROP) was designed and an expression vector was prepared in the same manner as for K-ras(WT).
  • the K-ras(M)-ROP is G12D in which G (Glycine) at the 12th position of K-ras amino acid is mutated to D (Asapartic acid), and G (Glycine) at the 12th position of K-ras amino acid is V (Valine) It includes G12V mutated to , or G13D in which G (Glycine) at the 13th position of K-ras amino acid is mutated to D (Asapartic acid).
  • the K-ras(M)-ROP is characterized by having a sequence of 500 amino acids, and the amino acids are sequentially divided into 30 units, and one epitope is designed such that 15 amino acid sequences overlap each other.
  • Table 2 shows the amino acid sequence of K-ras(M)-ROP (SEQ ID NO: 1) and the amino acid sequence of K-ras(M)-ROP epitope.
  • the K-ras(M)-ROP was synthesized (Genescript Co. Ltd.), cloned into a pET30a vector, and then transformed into E.coli and expressed.
  • the expressed protein was cleaved using activated protein C (APC) to prepare K-ras(M)-ROP.
  • APC activated protein C
  • PBMC peripheral blood mononuclear cells
  • Figure 2 shows the results of analyzing the reactivity of PBMC to K-ras (M) -ROP of the present invention.
  • Panel A shows the SFC image of the ELISpot (IFN- ⁇ ) assay and
  • panel B shows the SFC graph of the ELISpot (IFN- ⁇ ) assay.
  • PBMC peripheral blood mononuclear cell
  • LP-1 PBMC, LP-4 PBMC, and LP-6 PBMC peripheral blood mononuclear cells
  • antigen 5 ⁇ g/ml, 1.0 ⁇ g/ml, and 0.1 ⁇ g/ml of K-ras(M)-ROP were used, and anti-CD3 was used as a positive control.
  • Cell culture was performed under conditions of 37°C, 5% CO 2 , overnight (O/N), and the cultured cells were stained with IFN- ⁇ and analyzed by reading SFC (Spot Forming Cell). As a result of the experiment, it was confirmed that the reactivity to K-ras(M)-ROP was the best in LP-1 among normal PBMCs.
  • the ratio of K-ras(M)-ROP-specific CD3+ T cells according to the K-ras(M)-ROP concentration was analyzed for the LP-1 PBMCs. To this end, IFN- ⁇ capture staining was performed after antigen treatment on LP-1 PBMCs, and this was analyzed.
  • Panel 3 shows the result of analyzing the ratio of K-ras(M)-ROP-specific CD3+ T cells in LP-1 PBMC according to the concentration of K-ras(M)-ROP according to the present invention.
  • Panel A shows the SFC image for each condition of the ELISpot (IFN- ⁇ ) assay
  • Panel B shows the SFC graph for each condition of the ELISpot (IFN- ⁇ ) assay.
  • Panel C shows the principle light method of IFN- ⁇ capture staining
  • Panel D shows the results of IFN- ⁇ capture FACS analysis.
  • Panel E shows a graph of the percentage (%) of IFN- ⁇ secreting CD3+ T cells.
  • LP-1 PBMC 1x10 6 cells were seeded and cultured, and then antigens (K-ras(M)-ROP 5 ⁇ g/ml, K-ras(M)-ROP 1.0 ⁇ g/ml, K-ras(M)-ROP 0.1 ⁇ g/ml) was treated.
  • LP-1 PBMC treated with tetanus toxoid vaccine (TTX) at 5 ⁇ g/ml and 1.0 ⁇ g/ml and anti-CD3 were used as positive controls.
  • TTX tetanus toxoid vaccine
  • IFN- ⁇ capture staining antigen-treated LP-1 PBMC was treated with 1st capture antibody, then incubated at 37°C for 45 minutes, and secondary detection antibody ( 2nd detection andtibody) and CD3, CD4 , CD8, and CD137.
  • secondary detection antibody 2nd detection andtibody
  • CD3, CD4 , CD8, and CD137 Cell characteristics of the LP-1 PBMCs subjected to the IFN- ⁇ capture staining were analyzed using a Fluorescence activated cell sorter (FACS).
  • FACS Fluorescence activated cell sorter
  • Figure 4 analyzes the ratio of antigen-specific CD3+ T-cells of LP-1 PBMC to K-ras(M)-ROP, K-ras 1-24 Wild-type, and K-ras 1-24 mutants of the present invention show one result.
  • Panel A shows the results of IFN- ⁇ capture FACS analysis of LP-1 PBMCs treated with K-ras(M)-ROP, K-ras 1-24 Wild-type, and K-ras 1-24 mutants.
  • Panel B shows a graph of IFN- ⁇ -secreting CD3+ T cell ratio (%)
  • panel C shows the graph of antigen-specific CD3+ T cell ratio (%) tabulated.
  • No Ag means that only the effector was used, and @CD3 means that anti-CD3 was used as a positive control.
  • the 12th amino acid G in K-ras 1-24 Wild-type is substituted with D or V, or the 12th amino acid G is replaced with D (Pep.G12D, Pep.G12V, Pep.G13D).
  • D the 12th amino acid G is replaced with D
  • K-ras(M)-ROP 500aa
  • Peptide Wt Pep.G12D, Pep.G12V, and Pep.G13D were used as antigens.
  • CD+ T cells that responded to Peptide Wt were not confirmed, and CD3+ T cells that responded to Pep.G12D, Pep.G12V, and Pep.G13D were also 0.31% (Pep.G12D), 0.11% (Pep.G12V) and It was confirmed that it was remarkably low at 0.25% (Pep.G13D).
  • the ratio of CD3+ T cells induced in response to K-ras(M)-ROP is 2.41%, the above results indicate that the induction of antigen-specific CD3+ T cells is insignificant with only the epitope, which is a peptide composed of 24 amino acids.
  • CD3+ T cells responding to K-ras(M)-ROP were prepared.
  • ROP-T cells were prepared by applying Fast-IVS (Fast-In vitro Stimulation).
  • Figure 5 shows the results of comparing the Fast-IVS process and the No-Cytokine process of the present invention.
  • Panel A shows the manufacturing process and evaluation process of ROP-T cells using Fast-IVS, and the characterization process of ROP-T cells.
  • Panel B shows the result of comparing the ratio of IFN- ⁇ + CD3+ T cells in T cells expanded under the Fast-IVS process condition and the No-Cytokine process condition.
  • the Fast-IVS process is characterized in that a process of inducing antigen-specific CD3+ T cells using an antigen and a process of performing cell expansion by treating cytokines are performed at the same time.
  • the No-Cytokine process is characterized in that cell amplification is performed without treating antigen-specific CD3+ T cells with cytokines.
  • the cytokines used for cell amplification in the Fast-IVS process include Interleukin-4 (IL-4), Granulocyte-Macrophage Colony-Stimulating Factor (GM-CSF), and tumor necrosis. They are Tumor Necrosis Factor- ⁇ (TNF- ⁇ ), Interleukin-1 ⁇ (IL-1 ⁇ ), and Prostaglandin E2 (PGE2).
  • IL-4 Interleukin-4
  • GM-CSF Granulocyte-Macrophage Colony-Stimulating Factor
  • TNF- ⁇ Tumor Necrosis Factor- ⁇
  • IL-1 ⁇ Interleukin-1 ⁇
  • PGE2 Prostaglandin E2
  • Table 3 below shows the Fast-IVS process and the No-Cytokine process of the present invention.
  • the Fast-IVS process for preparing ROP-T cells was optimized by changing the treatment concentration of K-ras(M)-ROP and the Fast-IVS process conditions. Table 4 below shows examples for optimization of the Fast-IVS process.
  • Example 1 Example 2 Example 3 Experiment conditions Scale PBMCs 10M@24well 10M@24well 10M@24well Cytokine manufacturing company JW Creagene JW Creagene JW Creagene K-ras(M)-ROP ⁇ g/mL 5.0 1.0 1.0 1.0 Fast-IVS (Badge AIM-V) Period Days 5 5 7 Expansion period Days 10 10 10 Experiment result Expansion Fold No Ag-T 45 34 55 ROP-T 55 49 65 Helper T cells No Ag-T 54.7 35.8 21.1 ROP-T 64.4 75.3 60.4 K-ras(M)-ROP specific T cell (IFN- ⁇ +, CD3+) (%) No Ag-T 4.6 1.1 1.2 ROP-T 19.7 18.6 52.9
  • K-ras mutant epitope screening was performed to characterize the amplified ROP-T cells.
  • autologous dendritic cells are induced from PBMC, and antigen pulsed dendritic cells (Ag pulsed DC) capable of stimulating antigen-specific T cells are prepared by sensitizing the autologous dendritic cells with an antigen.
  • antigen pulsed dendritic cells Ag pulsed DC
  • the reactivity was analyzed by calculating the re-stimulation IFN- ⁇ secretion T frequency (%).
  • Panel 6 shows the results of K-ras mutant epitope screening for ROP-T cells of the present invention.
  • Panel A shows the results of FACS analysis for IFN- ⁇ +, CD3+, and CD4+.
  • Panel B shows the result of analyzing the cell ratio (%) of the restimulation IFN- ⁇ secreting T cell ratio for each condition.
  • autologous DCs were cultured for 4 days and Ag pulsed DCs were prepared by sensitizing them to an antigen.
  • the Ag pulsed DC was dispensed at 5x10 3 cells/100 ⁇ l in 96 well.
  • K-ras(M)-ROP-specific CD3+ T cells were dispensed into the 96 well to be 1x10 5 cells/100 ⁇ l, but the Ag pulsed DC and K-ras(M)-ROP-specific CD3+ T cells were divided into 1:20 cells. ratio was made.
  • a medium containing Ag pulsed DC and K-ras(M)-ROP-specific CD3+ T cells was cultured for 4 hours.
  • CD3+, CD4+, CD137+, IFN- ⁇ cap, and IFN- ⁇ secreting T cell ratios (%) of the cultured cells were analyzed using the FACS.
  • Antigens used in the preparation of the Ag pulsed DC were K-ras (M)-ROP (500aa) (ROP_DC), K-ras 1-24 wild type peptide (WT_DC), K-ras 1-24 G12D mutant peptide (G12D_DC) , K-ras 1-24 G12V mutant peptide (G12V_DC), and K-ras 1-24 G13D mutant peptide (G13D_DC).
  • DC (NoAg_DC) using only an effector without an antigen (Ag) was used.
  • Ratio of K-ras(M)-ROP-specific CD3+/CD4+ T cells and K-ras(M)-ROP-specific CD3+/CD8+ T cells present in CD3+ ROP-T cells when restimulated with ROP_DC were found to be 10% and 5%, respectively.
  • HLA-DQ human leukocyte antigen DQ
  • antigen-primed DC (Ag pulsed DC) was prepared.
  • Antigens used in the preparation of the Ag pulsed DC were K-ras (M)-ROP (500aa) (ROP_DC), K-ras 1-24 wild type peptide (WT_DC), K-ras 1-24 G12D mutant peptide (G12D_DC) , K-ras 1-24 G12V mutant peptide (G12V_DC), and K-ras 1-24 G13D mutant peptide (G13D_DC).
  • HLA-DQ blocking was performed by treating the prepared Ag pulsed DC with an HLA-DQ antibody for 1 hour. After re-stimulation of ROP-T using HLA-DQ blocked Ag pulsed DC, IFN- ⁇ +, CD3 +, and CD4 + were analyzed by FACS analysis.
  • antigen-specific T cells showed that the ratio of CD3+CD4+ T cells secreting IFN- ⁇ was insignificant, regardless of the type of DC used for restimulation and whether or not HLA-DQ blocking was performed on the DC. Confirmed. On the other hand, when ROP-T cells were re-stimulated using ROP_DC, it was confirmed that the ratio of CD3+CD4+ T cells secreting IFN- ⁇ increased to 15% or more regardless of HLA-DQ blocking for DC.
  • the ROP-T cells of the present invention induce the expansion of CD4+ T cells that are specific for the ROP antigen, restrictive for HLA-DQ, and show specificity for the G13D mutation.
  • FIG. 8 shows the ratio of CD3+ T cells secreting IFN- ⁇ (IFN- ⁇ +) for each condition of the present invention.
  • T cells were induced using the Fast-IVS process using K-ras(M)-ROP or native K-ras(189aa) as an antigen.
  • Fast-IVS process using a mixture of K-ras 1-24 wild type peptide, K-ras 1-24 G12D peptide, K-ras 1-24 G12V peptide, and K-ras 1-24 G13D peptide as antigens was used Thus, T cells were induced.
  • As a control T cells were induced using the Fast-IVS process using only the effector without antigen.
  • the induced T cells were re-stimulated using ROP_DC and the percentage of IFN- ⁇ + CD3+ T cells was analyzed using FACS.
  • K-ras epitope wild type means Native K-ras 1-24 (24aa); K-ras epitope G12D means K-ras 1-24 G12D (24aa); K-ras epitope G12V means K-ras 1-24 G12V (24aa); K-ras epitope G13D means K-ras 1-24 G13D (24aa).
  • the K-ras(M)-ROP antigen has an IFN- ⁇ + CD3+ T cell induction effect that is about twice as good as that using native K-ras or an epitope containing a K-ras mutation.
  • T cells induced through the Fast-IVS process were confirmed.
  • cell lines of breast adenocarcinoma, melanoma, colorectal adenocarcinoma, lung papillary adenocarcinoma, or lung large cell carcinoma and ROP are used as antigens.
  • T cells induced using the Fast-IVS process (ROP-T) or T cells induced using the Fast-IVS process (LAK-T) that do not use antigens are co-cultured so that each T cell can kill each cancer cell. It was confirmed how soluble it was.
  • Table 6 below shows analysis information for each carcinoma cell line.
  • HLA-type HLA-A HLA-DR B1 HLA-DQ
  • MCF7 breast adenocarcinoma (breast adenocarcinoma) doesn't exist 02:01, 02:01 15:01, 15:01 06:02, 06:02 526mel melanoma (melanoma) doesn't exist 02:01, 03 - - MDA MB231 breast adenocarcinoma (breast adenocarcinoma) G13D 02:17, 02:01 13:05, 07:01 03:04, 03:04 SW480 colorectal adenocarcinoma (colorectal adenocarcinoma) G12V 24:02, 02:01 13:27, 15:01 06:03, 05:01 NCI-H441 lung papillary adenocarcinoma (lung papillary adenocarcinoma) G12V 03:01,
  • MCF7 a cell line of breast carcinoma, and 526mel, a cell line of melanoma, confirmed that K-ras was detected, but no mutation was detected.
  • ras G13D mutation SW480, a cell line of colorectal adenocarcinoma, and NCI-H441, a cell line of lung papillary adenocarcinoma, had K-ras G12V mutation; and T3M-10, a lung large cell carcinoma cell line, were found to contain the K-ras G12D mutation.
  • Figure 9 shows the toxicity test results of ROP-T cells of the present invention on cancer cells.
  • the ROP-T cells of the present invention showed a significant level of toxicity against breast adenocarcinoma cells, melanoma cells, colon adenocarcinoma cells, lung papillary adenocarcinoma cells, and lung colon adenocarcinoma cells compared to LAK-T cells not subjected to ROP antigen treatment. confirmed to be high.
  • Table 7 below shows test results for cancer cells (primary culture) obtained from colorectal cancer patients.
  • Colorectal cancer cells are obtained by performing primary culture from the cancer tissue of the colorectal cancer patient, and T cells (ROP-T) induced using the Fast-IVS process using ROP as an antigen or Fast-IVS process using no antigen T cells (LAK-T) induced using were cultured together to confirm how much each T cell inhibits the growth of colon cancer cells.
  • FIG. 10 shows the results of analyzing the growth curve of the ROP-T cells of the present invention for cancer cells of colorectal cancer patients. As a result of the experiment, it was confirmed that the ROP-T cells of the present invention inhibited the growth of colon cancer cells by about 10% compared to the LAK-T cells.
  • lung papillary adenocarcinoma comprising K-ras-specific activated T cells induced using the antigen composition for inducing K-ras-specific activated T cells of the present invention and cytokine
  • the pharmaceutical composition can be used to treat lung papillary adenocarcinoma.

Abstract

A pharmaceutical composition comprising activated T cells specific to K-ras for preventing and treating lung papillary adenocarcinoma, according to the present invention, uses, as an antigen composition, a K-ras mutant (G12D, G12V, and G13D) recombinant overlapping peptide, which is designed such that a total of 12 epitopes (n= 1 to 12, and the last epitope (n=12) consists of 23 amino acids) in units of 30 amino acids sequentially in the amino acid sequence of K-ras are distinguished, and the sequence of 15 amino acids overlaps between the epitopes. Accordingly, the pharmaceutical composition has an advantageous effect of recognizing and killing lung papillary adenocarcinoma in which K-ras, K-ras mutant G12V, K-ras mutant G12D, or K-ras mutant G13D is detected. Accordingly, the use of the pharmaceutical composition comprising activated T cells specific to K-ras for preventing and treating lung papillary adenocarcinoma of the present invention has the advantage of effectively preventing and treating lung adenocarcinoma, particularly lung papillary adenocarcinoma, in which K-ras as well as K-ras mutants are detected,.

Description

K-RAS 특이적 활성화 T 세포를 포함하는 폐 유두상 선암종의 예방 및 치료용 약제학적 조성물 및 이의 제조방법Pharmaceutical composition for preventing and treating lung papillary adenocarcinoma containing K-RAS-specific activated T cells and method for preparing the same
본 발명은 K-ras 특이적 활성화 T 세포를 포함하는 폐 유두상 선암종(lung papillary adenocarcinoma)의 예방 및 치료용 약제학적 조성물 및 이의 제조방법에 관한 것이다. The present invention relates to a pharmaceutical composition for preventing and treating lung papillary adenocarcinoma containing K-ras-specific activated T cells and a method for preparing the same.
종래의 항암 화학요법은 암의 재발 및 전이를 억제하는데 한계가 있으며 정상세포들을 사멸시키는 부작용이 있었다. 이를 극복하기 위하여 종양에 대한 면역반응을 증강시켜 암을 치료하는 다양한 면역항암치료방법들이 연구되고 있다.Conventional anticancer chemotherapy has limitations in suppressing recurrence and metastasis of cancer and has side effects of killing normal cells. In order to overcome this, various immuno-anticancer treatment methods for treating cancer by enhancing the immune response to tumors have been studied.
면역항암치료법은 암 환자의 면역계를 활성화시켜 암 치료효과를 높이는 치료법으로 암 특이적인 CTL(Cytotoxic T Lymphocyte)를 내인성으로 유도하거나 이를 주입하여 암세포를 사멸시키는 방법이다. 면역항암치료법 중 면역세포를 이용하는 방법으로 Lymphokine activate killer (LAK) 면역세포 치료법이 있다.Immunotherapy is a method of inducing cancer-specific CTL (Cytotoxic T Lymphocyte) endogenously or injecting it to kill cancer cells. As a method of using immune cells among immuno-anticancer treatments, there is a Lymphokine activate killer (LAK) immune cell therapy.
상기 LAK 면역세포 치료법은 수술, 항암요법, 방사선 치료등에 실패 했던 암 환자들에 대해 고무적인 임상결과들을 보여주었다. 그러나 상기 LAK 면역세포 치료법은 비특이적 면역 반응으로 인해 암세포 사멸 효율이 낮은 문제점이 있을 뿐 아니라 배양공정에서 인터루킨-2(IL-2) 림포카인만을 사용하므로 면역세포가 탈진(Exhaustion)되어 생체내 생존 능력이 떨어지므로 주기적이며 반복적인 치료가 필요한 임상적 한계가 있었다.The LAK immune cell therapy showed encouraging clinical results for cancer patients who had failed surgery, chemotherapy, and radiation therapy. However, the LAK immune cell therapy not only has a problem of low cancer cell killing efficiency due to a non-specific immune response, but also uses only interleukin-2 (IL-2) lymphokine in the culture process, so immune cells are exhausted and survive in vivo There was a clinical limitation that required periodic and repetitive treatment because of poor ability.
상기 문제점을 해결하기 위하여 항암용 펩타이드 백신이 개발되고 있다. 상기 펩타이드 백신은 암항원 중 면역원성이 높은 부분을 선별하고 이를 펩타이드로 디자인한 후 이를 이용하여 면역세포를 활성화시킨다. 따라서 IL-2 림포카인의 사용으로 인한 면역세포의 탈진에 대한 우려가 없는 장점이 있다. 그러나 상기 펩타이드 백신은 암세포의 타겟 부위가 돌연변이를 일으키게 되면 면역회피가 일어 날 수 있을 뿐 아니라 면역반응에서 CD4 T 세포의 도움을 받지 못하여 면역반응성이 낮을 수 있고 MHC class I 분자에 올려지는 펩타이드로 디자인되었기 때문에 인간백혈구 항원(Human leukocyte antigen, HLA) 타입에 제한이 있는 단점이 있었다.In order to solve the above problems, anti-cancer peptide vaccines are being developed. The peptide vaccine selects a part with high immunogenicity among cancer antigens, designs it as a peptide, and uses it to activate immune cells. Therefore, there is an advantage that there is no concern about exhaustion of immune cells due to the use of IL-2 lymphokine. However, the peptide vaccine can not only cause immune evasion when the target site of cancer cells mutates, but also can have low immunoreactivity due to the lack of help from CD4 T cells in the immune response. Design with peptides loaded on MHC class I molecules Because of this, there was a disadvantage in that there was a limitation in the type of human leukocyte antigen (HLA).
상기 문제를 해소하기 위해 항원전체를 포함하고 면역원성이 높은 부분의 펩타이드를 중첩하여 설계하는 중첩 펩타이드(overlapping peptide, OLP) 백신이 개발되고 있다. 상기 OLP 백신은 종래의 펩타이드 백신과 달리 항원전체를 포함하므로 CD4 T세포 도움을 받아 면역 반응성이 높을 뿐 아니라 면역 반응기간도 더 오래 지속되며 HLA 타입에 대한 제한이 없는 장점이 있다. 그러나 상기 OLP 백신은 제조비용이 높고 면역조절이 상대적으로 어렵다는 문제점이 있었다.In order to solve the above problem, overlapping peptide (OLP) vaccines designed by overlapping peptides containing the entire antigen and having high immunogenicity are being developed. Unlike conventional peptide vaccines, the OLP vaccine contains all antigens, so it has a high immune response with the help of CD4 T cells, a longer immune response period, and no HLA type restrictions. However, the OLP vaccine has a problem in that manufacturing cost is high and immunomodulation is relatively difficult.
면역세포 치료법에 있어서 백신을 이용하여 항원 특이적 T 세포를 제조하는 방법 또한 중요한 요소이다. 일반적으로 항원 특이적 T 세포를 제조하기 위해서는 혈액으로부터 단핵구(monocyte)를 분리한 후 성숙(maturation)과정을 통해 mo수지상 세포(mo dendritic cell)를 수득한 후 항원을 별도로 처리한 환경에서 상기 수지상 세포와 T 세포를 공배양(co-culture)하므로 항원 특이적 T 세포(Ag-specific T cell)를 제조하게 된다. 상기 moDC를 이용한 방법은 항원 특이적 T 세포유도 방법은 DC 세포의 성숙공정과 T 세포 배양 공정을 나누어 진행하게 되므로 추가적인 시간, 비용 ,혈액이 요구되는 단점이 있었다.In immune cell therapy, a method for producing antigen-specific T cells using a vaccine is also an important factor. In general, in order to produce antigen-specific T cells, after isolating monocytes from blood, mo dendritic cells are obtained through a maturation process, and then the dendritic cells are separately treated in an environment where antigens are separately treated. Ag-specific T cells are produced by co-culture with T cells. The method using the moDC has disadvantages of requiring additional time, cost, and blood because the antigen-specific T cell induction method proceeds by dividing the DC cell maturation process and the T cell culture process.
여러 암 항원 중 K-ras 돌연변이는 고형암의 약 20%에서 발견되고 있는 발암유발변이로, 주로 췌장 및 대장의 선암, 폐암 등에서 발견되고 있다. K-ras 돌연변이 유전자에 의존성을 보이는 종양을 타겟으로 하는 치료법은 K-ras 돌연변이 유전자에 의해 발현되는 K-ras 돌연변이체들에 개별적으로 결합하는 항체를 만들기 어려운 이유로 K-ras의 기능을 억제하거나 비활성화 하는 간접적인 치료법에 국한되어 있어 효과가 제한적이었다.Among various cancer antigens, K-ras mutation is a carcinogenic mutation found in about 20% of solid cancers, and is found mainly in pancreatic and colon adenocarcinomas and lung cancers. Therapies targeting tumors dependent on K-ras mutant genes inhibit or inactivate the function of K-ras because it is difficult to make antibodies that individually bind to K-ras mutants expressed by K-ras mutant genes. The effect was limited because it was limited to an indirect treatment method.
따라서 K-ras의 가장 빈번하게 나타나는 여러 돌연변이 부위를 포함하되 상기 문제점을 해결한 항원을 제시하여 K-ras 돌연변이에 결합하여 직접적인 면역반응을 일으킬 수 있는 내인성 면역세포를 선택적으로 증폭하고 이를 타겟 암 치료제로 개발하게 되면 효율적으로 암세포를 표적하고 이를 사멸 할 수 있으므로 암 치료 효과가 극대화되고 항암효과 지속력이 높은 효율적인 치료제로서 사용 가능할 것으로 기대된다.Therefore, by presenting an antigen that solves the above problems, including the most frequently occurring mutation sites of K-ras, it selectively amplifies endogenous immune cells capable of inducing a direct immune response by binding to K-ras mutations, and using them as a target cancer treatment It is expected that it can be used as an effective treatment that maximizes the effect of cancer treatment and has a high durability of anti-cancer effect because it can efficiently target and kill cancer cells.
본 명세서에서 언급된 특허문헌 및 참고문헌은 각각의 문헌이 참조에 의해 개별적이고 명확하게 특정된 것과 동일한 정도로 본 명세서에 참조로 삽입된다. The patents and references mentioned herein are incorporated herein by reference to the same extent as if each document were individually and expressly specified by reference.
본 발명의 목적은 K-ras 전체 아미노산 서열 및 돌연변이를 포함하도록 디자인되며 재조합 기술을 이용하여 제조되어 경제적 효율성이 뛰어난 K-ras 특이적 활성화 T 세포 유도용 항원으로 유도된 K-ras 특이적 활성화 T 세포를 포함하는 폐 유두상 선암종(lung papillary adenocarcinoma)의 예방 및 치료용 약제학적 조성물 및 이의 제조방법을 제공하는데 있다.An object of the present invention is to develop a K-ras-specific activated T cell induced with an antigen for inducing K-ras-specific activated T cells, which is designed to include the entire amino acid sequence and mutations of K-ras and is manufactured using recombinant technology and has excellent economic efficiency. It is to provide a pharmaceutical composition for preventing and treating cell-containing lung papillary adenocarcinoma and a method for preparing the same.
본 발명의 다른 목적 및 기술적 특징은 이하의 발명의 상세한 설명, 청구의 범위 및 도면에 의해 보다 구체적으로 제시된다. Other objects and technical features of the present invention are presented more specifically by the following detailed description, claims and drawings.
본 발명은 K-ras 특이적 활성화 T 세포 유도용 항원 조성물과 싸이토카인(cytokine)을 이용하여 유도한 K-ras 특이적 활성화 T 세포를 포함하는 폐유두상 선암종(lung papillary adenocarcinoma)의 예방 및 치료용 약제학적 조성물을 제공하는 것을 특징으로 하며 상기 폐 유두상 선암종(lung papillary adenocarcinoma)의 암세포는 K-ras, K-ras 돌연변이 G12V, K-ras 돌연변이 G12D, 또는 K-ras 돌연변이 G13D가 검출되는 것을 특징으로 한다. The present invention relates to an antigen composition for inducing K-ras-specific activated T cells and a medicament for preventing and treating lung papillary adenocarcinoma, including K-ras-specific activated T cells induced using cytokine It is characterized by providing a medical composition, wherein the cancer cells of the lung papillary adenocarcinoma are K-ras, K-ras mutant G12V, K-ras mutant G12D, or K-ras mutant G13D is detected do.
상기 K-ras 특이적 활성화 T 세포 유도용 항원 조성물은 서열번호 1의 아미노산 서열로 이루어진 K-ras 돌연변이 재조합 중첩 펩타이드를 유효성분으로 포함하는 것을 특징으로 하며 상기 K-ras 돌연변이 재조합 중첩 펩타이드는 서열번호 2로 이루어진 K-ras의 아미노산 서열에서 어느 하나의 아미노산으로부터 순차적으로 나열된 아미노산 서열을 단위로 하는 총 12 종류의 에피토프(epitope(n=1, 2, 3....10, 11, 12); 여기서 n은 에피토프의 순번을 의미하며 에피토프(n=1 내지 11)는 30개의 아미노산 서열을 포함하고 마지막 에프토프(n=12)는 23개의 아미노산 서열을 포함한다.)를 포함하되 에피토프(n=1)를 제외한 에피토프(n=2, 3,...12)는 N-terminal 방향 15개의 아미노산 서열이 직전 순번의 에피토프(n-1)의 C-terminal 방향 15개의 아미노산 서열과 서로 중첩되도록 디자인된 것을 특징으로 한다.The antigen composition for inducing K-ras-specific activated T cells is characterized by comprising a K-ras mutant recombinant overlapping peptide consisting of the amino acid sequence of SEQ ID NO: 1 as an active ingredient, wherein the K-ras mutant recombinant overlapping peptide is SEQ ID NO: A total of 12 types of epitopes (epitope (n = 1, 2, 3 .... 10, 11, 12) consisting of amino acid sequences sequentially listed from any one amino acid in the amino acid sequence of K-ras consisting of 2; Here, n means the order of the epitope, and the epitope (n = 1 to 11) includes a 30 amino acid sequence, and the last epitope (n = 12) includes a 23 amino acid sequence), but the epitope (n = For epitopes (n=2, 3,...12) except for 1), the 15 amino acid sequence in the N-terminal direction is designed to overlap with the 15 amino acid sequence in the C-terminal direction of the immediately preceding epitope (n-1). characterized by being
상기 K-ras 돌연변이 재조합 중첩 펩타이드는 상기 에피토프(n=1, 2, 3...10, 11, 12)가 순번에 따라 위치하며 상기 에피토프 사이는 LRMK-링커로 연결되는 것을 특징으로 한다. The K-ras mutant recombinant overlapping peptide is characterized in that the epitopes (n = 1, 2, 3...10, 11, 12) are located in sequence, and the epitopes are linked by an LRMK-linker.
상기 에피토프(n=1)는 K-ras 돌연변이 G12V를 포함하며; 상기 에피토프(n=1)의 N-terminal에는 K-ras 돌연변이 G12D를 포함하는 에피토프(n=1)가 LRMK-링커로 더 연결되고; 상기 에피토프(n=12)의 C-terminal에는 K-ras 돌연변이 G13D을 포함하는 에피토프(n=1)가 LRMK-링커로 더 연결되며; 상기 K-ras 돌연변이 G13D을 포함하는 에피토프(n=1)의 C-terminal에는 K-ras 돌연변이가 포함되지 않은 에피토프(n=1)가 LRMK-링커로 더 연결되는 것을 특징으로 한다.The epitope (n=1) includes the K-ras mutation G12V; An epitope (n = 1) containing K-ras mutant G12D is further linked to the N-terminal of the epitope (n = 1) by an LRMK-linker; An epitope (n = 1) containing K-ras mutant G13D is further linked to the C-terminal of the epitope (n = 12) by an LRMK-linker; The C-terminal of the epitope (n = 1) containing the K-ras mutation G13D is characterized in that an epitope (n = 1) not containing the K-ras mutation is further linked by an LRMK-linker.
상기 K-ras 특이적 활성화 T 세포는 상기 K-ras 특이적 활성화 T 세포 유도용 항원 조성물과 1차 싸이토카인(cytokine)을 포함하는 배지에서 말초혈액 단핵세포(Peripheral Blood Mononuclear Cell, PBMC)를 배양하여 수지상 세포(dentritic cell)를 성숙시키는 동시에 K-ras 특이적 활성화 T 세포를 유도하는 제 1 단계; 상기 배양된 PBMC에 2차 싸이토카인을 첨가하고 배양하여 K-ras 특이적 활성화 T 세포를 더 유도하는 제 2 단계; 및 상기 2차 싸이토카인을 첨가하고 배양한 PBMC를 배양하여 K-ras 특이적 활성화 T 세포를 증폭시킨 후 수득하는 제 3 단계;를 포함하는 것을 특징으로 하는 K-ras 특이적 활성화 T 세포 유도용 항원 조성물을 이용한 K-ras 특이적 활성화 T 세포의 유도 방법으로 제조되는 것을 특징으로 한다.The K-ras-specific activated T cells are obtained by culturing peripheral blood mononuclear cells (PBMC) in a medium containing the antigen composition for inducing K-ras-specific activated T cells and a primary cytokine. A first step of maturating dentritic cells and inducing K-ras-specific activated T cells; a second step of further inducing K-ras-specific activated T cells by adding and culturing a secondary cytokine to the cultured PBMC; and a third step of amplifying K-ras-specific activated T cells by culturing the PBMCs cultured with the addition of the secondary cytokine. It is characterized in that it is prepared by a method for inducing K-ras-specific activated T cells using the composition.
상기 1차 싸이토카인은 인터루킨-4(Interleukin-4) 및 과립구 대식 세포 콜로니 자극인자(Granulocyte-Macrophage Colony-Stimulating Factor, GM-CSF)이며; 상기 2차 싸이토카인은 종양괴사인자-α(Tumor Necrosis Factor-α), 인터루킨-1β(Interleukin-1β), 및 프로스타글란딘 E2(Prostaglandin E2)인 것을 특징으로 한다.The primary cytokines are Interleukin-4 and Granulocyte-Macrophage Colony-Stimulating Factor (GM-CSF); The secondary cytokines are characterized in that they are tumor necrosis factor-α, interleukin-1β, and prostaglandin E2.
본 발명의 K-ras 특이적 활성화 T 세포를 포함하는 폐 유두상 선암종(lung papillary adenocarcinoma)의 예방 및 치료용 약제학적 조성물은 항원 조성물로서 K-ras 돌연변이(G12D, G12V, 및 G13D) 재조합 중첩 펩타이드를 K-ras의 아미노산 서열에서 순차적으로 30개의 아미노산을 단위로 총 12개의 에피토프(epitope, n=1 내지 12이며 단, 마지막 에프토프(n=12)는 23개의 아미노산이다.)로 구분하되 에피토프 사이에 15개의 아미노산 서열이 중첩되도록 디자인하여 사용하므로 K-ras, K-ras 돌연변이 G12V, K-ras 돌연변이 G12D, 또는 K-ras 돌연변이 G13D가 검출되는 폐 유두상 선암종(lung papillary adenocarcinoma)을 인식하고 사멸시키는데 보다 효과적인 장점이 있다.A pharmaceutical composition for the prevention and treatment of lung papillary adenocarcinoma containing K-ras-specific activated T cells of the present invention comprises, as an antigen composition, a K-ras mutant (G12D, G12V, and G13D) recombinant overlapping peptide is sequentially divided into a total of 12 epitopes (epitope, n = 1 to 12, but the last epitope (n = 12) is 23 amino acids) in units of 30 amino acids sequentially in the amino acid sequence of K-ras. Since it is designed and used so that 15 amino acid sequences overlap between them, it recognizes lung papillary adenocarcinoma in which K-ras, K-ras mutation G12V, K-ras mutation G12D, or K-ras mutation G13D is detected. It has the advantage of being more effective in killing.
따라서 본 발명의 K-ras 특이적 활성화 T 세포를 포함하는 폐 유두상 선암종(lung papillary adenocarcinoma)의 예방 및 치료용 약제학적 조성물을 이용하면 K-ras 뿐 아니라 K-ras 돌연변이가 검출되는 폐선암종 특히, 폐 유두상 선암종(lung papillary adenocarcinoma)을 효과적으로 예방하고 치료 할 수 있는 장점이 있다.Therefore, when the pharmaceutical composition for preventing and treating lung papillary adenocarcinoma containing K-ras-specific activated T cells of the present invention is used, not only K-ras but also lung adenocarcinoma in which K-ras mutations are detected, especially However, it has the advantage of effectively preventing and treating lung papillary adenocarcinoma.
도 1은 본 발명의 K-ras(M)-ROP의 아미노산 서열 구조를 보여준다.Figure 1 shows the amino acid sequence structure of K-ras (M) -ROP of the present invention.
도 2는 본 발명의 K-ras(M)-ROP에 대한 PBMC의 반응성을 분석한 결과를 보여준다.Figure 2 shows the results of analyzing the reactivity of PBMC to K-ras (M) -ROP of the present invention.
도 3은 본 발명의 K-ras(M)-ROP 농도에 따른 LP-1 PBMC의 특이적 CD3+ T 세포 비율을 분석한 결과를 보여준다.3 shows the result of analyzing the ratio of specific CD3+ T cells in LP-1 PBMC according to the concentration of K-ras(M)-ROP according to the present invention.
도 4는 본 발명의 K-ras(M)-ROP, K-ras1-24Wild-type, 및 K-ras1-24돌연변이에 대한 LP-1 PBMC의 항원 특이적 CD3+ T 세포 비율을 분석한 결과를 보여준다. Figure 4 shows the results of analyzing the ratio of antigen-specific CD3+ T cells in LP-1 PBMCs for K-ras(M)-ROP, K-ras1-24Wild-type, and K-ras1-24 mutants of the present invention. .
도 5는 본 발명의 Fast-IVS 공정과 No-Cytokine 공정을 비교한 결과를 보여준다.Figure 5 shows the results of comparing the Fast-IVS process and the No-Cytokine process of the present invention.
도 6은 본 발명의 ROP-T 세포에 대한 K-ras 돌연변이 에피토프 스크리닝 결과를 보여준다.6 shows the results of K-ras mutant epitope screening for ROP-T cells of the present invention.
도 7은 본 발명의 HLA-DQ blocking 에세이 결과를 보여준다.7 shows the results of the HLA-DQ blocking assay of the present invention.
도 8은 본 발명의 조건별 IFN-γ를 분비(IFN-γ+)하는 CD3+ T 세포의 비율을 보여준다.Figure 8 shows the ratio of CD3+ T cells secreting IFN-γ (IFN-γ+) for each condition of the present invention.
도 9는 본 발명의 ROP-T 세포와 LAK-T 세포가 암세포를 사멸하는 정도를 보여준다.Figure 9 shows the extent to which ROP-T cells and LAK-T cells of the present invention kill cancer cells.
도 10는 본 발명의 ROP-T 세포와 LAK-T 세포가 대장암 환자로부터 수득한 대장암세포(K-ras-G12D)의 성장을 억제하는 정도를 보여준다.10 shows the degree to which ROP-T cells and LAK-T cells of the present invention inhibit the growth of colon cancer cells (K-ras-G12D) obtained from a colon cancer patient.
본 발명은 K-ras 특이적 활성화 T 세포 유도용 항원 조성물과 싸이토카인(cytokine)을 이용하여 유도한 K-ras 특이적 활성화 T 세포를 포함하는 폐유두상 선암종(lung papillary adenocarcinoma)의 예방 및 치료용 약제학적 조성물을 제공한다. 본 발명의 "예방"이란 본 발명의 폐 유두상 선암종(lung papillary adenocarcinoma)의 예방 및 치료용 약제학적 조성물 투여에 의해 암이 억제되거나 지연되는 모든 행위를 의미하며, 본 발명의 "치료"란 폐 유두상 선암종(lung papillary adenocarcinoma)의 예방 및 치료용 약제학적 조성물 투여에 의해 암의 증세가 호전되거나 이롭게 변경하는 모든 행위를 의미한다.The present invention relates to an antigen composition for inducing K-ras-specific activated T cells and a medicament for preventing and treating lung papillary adenocarcinoma, including K-ras-specific activated T cells induced using cytokine A scientific composition is provided. "Prevention" of the present invention refers to all activities in which cancer is suppressed or delayed by administration of a pharmaceutical composition for preventing and treating lung papillary adenocarcinoma of the present invention, and "treatment" of the present invention means lung It refers to all activities that improve or beneficially change the symptoms of cancer by administering a pharmaceutical composition for the prevention and treatment of lung papillary adenocarcinoma.
본 발명의 폐 유두상 선암종(lung papillary adenocarcinoma)은 암세포에서 K-ras, K-ras 돌연변이 G12V, K-ras 돌연변이 G12D, 또는 K-ras 돌연변이 G13D가 검출되는 것을 특징으로 한다. 상기 K-ras의 유전자인 KRAS는 대표적인 원종양유전자(proto-oncogene)로서 척추동물에서 세포의 성장, 분화에 관여하며 점돌연변이(point mutation), 염색체전위(chromosomal translocation), 유전자 증폭(gene amplification)등에 의해 종양유전자(oncogene)로 바뀌는 경우 K-ras의 활성을 비정상적으로 증가시켜 암을 유발한다. 따라서 본 발명의 폐 유두상 선암종(lung papillary adenocarcinoma) 암세포에서 K-ras, K-ras 돌연변이 G12V, K-ras 돌연변이 G12D, 또는 K-ras 돌연변이 G13D가 검출된다는 것은 KRAS가 종양유전자로서 발현되어 K-ras의 활성이 비정상적으로 증가된 상태임을 의미한다. 바람직하게는 본 발명의 폐 유두상 선암종(lung papillary adenocarcinoma)은 암세포에서 K-ras 돌연변이 G12V, K-ras 돌연변이 G12D, 또는 K-ras 돌연변이 G13D가 검출되는 것을 특징으로 하며 보다 바람직하게는 K-ras 돌연변이 G12V가 검출되는 것을 특징으로 한다.The lung papillary adenocarcinoma of the present invention is characterized in that K-ras, K-ras mutant G12V, K-ras mutant G12D, or K-ras mutant G13D is detected in cancer cells. KRAS, the K-ras gene, is a representative proto-oncogene, which is involved in cell growth and differentiation in vertebrates, and is involved in point mutation, chromosomal translocation, and gene amplification When converted into an oncogene, the activity of K-ras abnormally increases and causes cancer. Therefore, the detection of K-ras, K-ras mutant G12V, K-ras mutant G12D, or K-ras mutant G13D in lung papillary adenocarcinoma cancer cells of the present invention means that KRAS is expressed as an oncogene and K-ras mutant G12V is detected. This means that the activity of ras is abnormally increased. Preferably, the lung papillary adenocarcinoma of the present invention is characterized in that K-ras mutation G12V, K-ras mutation G12D, or K-ras mutation G13D is detected in cancer cells, more preferably K-ras mutation G13D. It is characterized in that the mutation G12V is detected.
상기 K-ras 돌연변이 G12V, G12D, G13D는 폐선암, 취장선암, 결정선암, 결장직장선암 및 직장선암에서 발견되는 돌연변이로서 GTPase-activating proteins (GAPs)에 의한 GTP hydrolysis가 원활하게 일어나지 못하게 하여 GTP-bound RAS protein의 cellular level을 증가시키고 이로 인하여 하위 신호전달체계를 비정상적으로 활성화시키므로 암세포의 증식을 유도하는 것으로 알려져 있다. The K-ras mutations G12V, G12D, and G13D are mutations found in lung adenocarcinoma, pancreatic adenocarcinoma, crystalline adenocarcinoma, colorectal adenocarcinoma, and rectal adenocarcinoma, and prevent GTP hydrolysis by GTPase-activating proteins (GAPs) from occurring smoothly, resulting in GTP- It is known to induce the proliferation of cancer cells by increasing the cellular level of bound RAS protein and thereby abnormally activating lower signaling pathways.
본 발명의 K-ras 특이적 활성화 T 세포를 포함하는 폐 유두상 선암종(lung papillary adenocarcinoma)의 예방 및 치료용 약제학적 조성물은 K-ras 특이적 활성화 T 세포 유도용 항원 조성물 및 싸이토카인(cytokine)을 이용하여 유도한 K-ras 특이적 활성화 T 세포를 포함하므로 K-ras, K-ras 돌연변이 G12V, K-ras 돌연변이 G12D, 또는 K-ras 돌연변이 G13D가 검출되는 폐암, 대장암, 유방암, 흑색종 등의 암 치료에 사용 가능하며 바람직하게는 폐암 중 K-ras, K-ras 돌연변이 G12V, K-ras 돌연변이 G12D, 또는 K-ras 돌연변이 G13D가 검출되는 폐선암종(lung carcinoma)의 치료에 사용 가능하며 보다 바람직하게는 K-ras, K-ras 돌연변이 G12V, K-ras 돌연변이 G12D, 또는 K-ras 돌연변이 G13D가 검출되는 폐 유두상 선암종(lung papillary adenocarcinoma)의 치료에 사용 가능하며 가장 바람직하게는 K-ras 돌연변이 G12V가 검출되는 폐 유두상 선암종(lung papillary adenocarcinoma)의 치료에 사용 가능하다.The pharmaceutical composition for preventing and treating lung papillary adenocarcinoma containing K-ras-specific activated T cells of the present invention includes an antigen composition for inducing K-ras-specific activated T cells and cytokines. Lung cancer, colorectal cancer, breast cancer, melanoma, etc. in which K-ras, K-ras mutant G12V, K-ras mutant G12D, or K-ras mutant G13D are detected because K-ras-specific activated T cells are included. It can be used for the treatment of cancer, and preferably can be used for the treatment of lung adenocarcinoma in which K-ras, K-ras mutation G12V, K-ras mutation G12D, or K-ras mutation G13D are detected among lung cancers, and more Preferably, it can be used for the treatment of lung papillary adenocarcinoma in which K-ras, K-ras mutation G12V, K-ras mutation G12D, or K-ras mutation G13D is detected, most preferably K-ras It can be used for the treatment of lung papillary adenocarcinoma in which mutant G12V is detected.
본 발명에 기재된 “조성물”은 활성 성분으로서 본 발명에 따른 K-ras 특이적 활성화 T 세포와 함께 천연 또는 인공의 담체, 라벨 또는 탐지제와 같은 불활성 성분 또는 애주번트, 희석제, 결합제, 안정화제, 완충제, 염, 친지방성 용매, 보존제와 같은 활성 성분과의 조합을 의미하며, 약학적으로 허용 가능한 담체를 포함한다. The “composition” described in the present invention refers to K-ras-specific activated T cells according to the present invention as an active ingredient, along with natural or artificial carriers, inactive ingredients such as labels or detection agents, or adjuvants, diluents, binders, stabilizers, It refers to a combination with active ingredients such as buffers, salts, lipophilic solvents, and preservatives, and includes pharmaceutically acceptable carriers.
상기 담체는 약학적 부형제 및 부가적인 단백질, 펩티드, 아미노산, 지질, 및 탄수화물 (예를 들어, 단당류; 이당류; 삼당류; 사당류; 올리고당류; 알디톨, 알돈산, 에스테르화된 설탕과 같은 설탕의 유도체, 폴리사카라이드, 또는 당 중합체 등)을 단독으로 또는 조합하여 포함할 수 있으며, 1 내지 99.99 중량% 또는 부피%로 포함할 수 있다.Such carriers may include pharmaceutical excipients and additional proteins, peptides, amino acids, lipids, and carbohydrates (e.g., monosaccharides; disaccharides; trisaccharides; tetrasaccharides; oligosaccharides; sugars such as alditols, aldonic acids, esterified sugars); derivatives of, polysaccharides, sugar polymers, etc.) alone or in combination, and may be included in an amount of 1 to 99.99% by weight or volume%.
단백질 부형제는 인간 혈청 알부민, 재조합 인간 알부민, 젤라틴, 카제인 등을 포함할 수 있으며 이에 제한되지 않는다.Protein excipients may include, but are not limited to, human serum albumin, recombinant human albumin, gelatin, casein, and the like.
완충 역할을 할 수 있는 대표적인 아미노산 성분으로는 알라닌, 알기닌, 글리신, 베타인, 히스티딘, 글루탐산, 아스파르트산, 시스테인, 라이신, 루신, 아이소루신, 발린, 메티오닌, 페닐알라닌, 아스파탐 등을 포함할 수 있으며 이에 제한되지 않는다.Representative amino acid components that can play a buffering role may include alanine, arginine, glycine, betaine, histidine, glutamic acid, aspartic acid, cysteine, lysine, leucine, isoleucine, valine, methionine, phenylalanine, aspartame, and the like. Not limited.
탄수화물 부형제는 프룩토스, 말토스, 갈락토스, 글루코스, D-만노스, 솔보스와 같은 단당류; 락토스, 수크로스, 트레할로스, 셀로비오스와 같은 이당류, 라피노스, 말토덱스트린, 텍스트란, 전분과 같은 다당류, 및 만니톨, 자일리톨, 말티톨, 락티톨, 소르비톨, 및 마이오이노시톨과 같은 알디톨 등을 포함할 수 있으며 이에 제한되지 않는다.Carbohydrate excipients include monosaccharides such as fructose, maltose, galactose, glucose, D-mannose, sorbose; disaccharides such as lactose, sucrose, trehalose, cellobiose, raffinose, maltodextrin, dextran, polysaccharides such as starch, and alditols such as mannitol, xylitol, maltitol, lactitol, sorbitol, and myoinositol; and the like. can and is not limited thereto.
본 발명의 K-ras 특이적 활성화 T 세포를 포함하는 폐 유두상 선암종(lung papillary adenocarcinoma)의 예방 및 치료용 약제학적 조성물은 당업자에 의해 공지의 방법으로 제제화할 수 있다. 본 발명의 약제학적 조성물은 필요에 따라서 물 또는 그 외의 약학적으로 허용되는 액과의 무균성 용액, 또는 현탁액제의 주사제의 형태로 비경구적으로 사용할 수 있으며 약학적으로 허용되는 담체 또는 매체, 구체적으로는, 멸균수나 생리 식염수, 식물유, 유화제, 현탁제, 계면활성제, 안정제, 부형제, 비히클(vehicle), 방부제, 결합제 등과 적당 조합하여, 일반적으로 인정된 제약 실시에 요구되는 단위 용량 형태로 혼화함으로써 제제화 할 수 있다. 상기 제제화에 있어서 유효성분량은 지시받은 범위의 적당한 용량을 얻을 수 있도록 하는 것을 의미한다. The pharmaceutical composition for preventing and treating lung papillary adenocarcinoma containing the K-ras-specific activated T cells of the present invention can be formulated by a method known to those skilled in the art. The pharmaceutical composition of the present invention, if necessary, can be used parenterally in the form of an injection of a sterile solution or suspension in water or other pharmaceutically acceptable liquids, and can be used in a pharmaceutically acceptable carrier or medium, specifically As an appropriate combination with sterilized water, physiological saline, vegetable oil, emulsifier, suspending agent, surfactant, stabilizer, excipient, vehicle, preservative, binder, etc., by mixing in a unit dosage form required for generally recognized pharmaceutical practice can be formulated. In the above formulation, the amount of active ingredient means that an appropriate dose within the indicated range can be obtained.
본 발명의 K-ras 특이적 활성화 T 세포를 포함하는 폐 유두상 선암종(lung papillary adenocarcinoma)의 예방 및 치료용 약제학적 조성물을 주사를 위한 무균 조성물로서 제제화 하는 경우 주사용 증류수와 같은 부형액을 이용해 통상의 제제 실시에 따라 처방할 수 있다. 주사용의 수용액으로서는 생리 식염수, 포도당 및 그 외의 보조약을 포함한 등장용액 예를 들어, D-소르비톨, D-만노스, D-만니톨, 염화 나트륨을 사용할 수 있으며 적당한 용해 보조제 예를 들어, 에탄올류인 폴리 알코올, 프로필렌 글리콜, 및 폴리에틸렌 글리콜과 비이온성 계면활성제류인 폴리소르베이트 80(TM), 및HCO-50을 병용하여 사용 할 수 있다. 또한 유성액으로서 참기름, 콩기름을 사용 할 수 있으며 용해 보조제로서 안식향산벤질, 벤질 알코올과 병용하여 사용 할 수 있다.When the pharmaceutical composition for preventing and treating lung papillary adenocarcinoma containing K-ras-specific activated T cells of the present invention is formulated as a sterile composition for injection, a vehicle such as distilled water for injection is used. It can be prescribed according to the usual pharmaceutical practices. As the aqueous solution for injection, isotonic solutions containing physiological saline, glucose, and other adjuvants, such as D-sorbitol, D-mannose, D-mannitol, and sodium chloride, can be used. Alcohol, propylene glycol, and polyethylene glycol, polysorbate 80 (TM), and HCO-50, which are nonionic surfactants, may be used in combination. In addition, sesame oil and soybean oil can be used as an oily liquid, and can be used in combination with benzyl benzoate and benzyl alcohol as a dissolution aid.
상기 주사제형의 예로서는 정맥내 주사제형, 동맥내 주사제형, 선택적 동맥내 주사제형, 근육내 주사제형, 복강내 주사제형, 피하주사제형, 뇌실내 주사제형, 뇌내 주사제형, 골수액강내 주사제형이 있으며 바람직하게는 상기 주사제형은 정맥내 주사제형이다.Examples of the injection formulation include intravenous injection formulation, intraarterial injection formulation, selective intraarterial injection formulation, intramuscular injection formulation, intraperitoneal injection formulation, subcutaneous injection formulation, intraventricular injection formulation, intracerebral injection formulation, and intramedullary injection formulation. And preferably, the injection formulation is an intravenous injection formulation.
본 발명의 K-ras 특이적 활성화 T 세포를 포함하는 폐 유두상 선암종(lung papillary adenocarcinoma)의 예방 및 치료용 약제학적 조성물은 약제학적 유효량의 K-ras 특이적 활성화 T 세포를 포함한다. 상기 유효량의 결정은 당해 기술 분야에서 통상의 지식을 가진 자가 본 명세서에 개시된 내용을 기반으로 용이하게 결정될 수 있다. The pharmaceutical composition for preventing and treating lung papillary adenocarcinoma containing K-ras-specific activated T cells of the present invention includes a pharmaceutically effective amount of K-ras-specific activated T cells. Determination of the effective amount can be easily determined by those skilled in the art based on the contents disclosed herein.
일반적으로 상기 약제학적 유효량은 유효성분을 낮은 농도로 1차 투여한 후, 대상체에서 부작용이 없으면서도 요망되는 효과 예를 들어, 암과 관련된 증상이 감소되거나 제거되는 효과를 얻을 때까지 점진적으로 증량시키는 방법으로 결정된다. 본 발명의 폐 유두상 선암종(lung papillary adenocarcinoma)의 예방 및 치료용 약제학적 조성물의 적절한 투여량이나 투여 간격을 결정하는 방법은 Goodman and Gilman's The Pharmacological Basis of Therapeutics, Goodman et al., eds., 11th Edition, McGraw-Hill 2005, 및 Remington: The Science and Practice of Pharmacy, 20th and 21st Editions, Gennaro and University of the Sciences in Philadelphia, Eds., Lippencott Williams & Wilkins (2003 and 2005)에 상세히 설명되어 있다.In general, after the first administration of the active ingredient at a low concentration, the pharmaceutically effective amount is gradually increased until the desired effect, for example, reduction or elimination of cancer-related symptoms, is obtained without side effects in the subject. determined by the method A method for determining an appropriate dosage or administration interval of the pharmaceutical composition for preventing and treating lung papillary adenocarcinoma of the present invention is described in Goodman and Gilman's The Pharmacological Basis of Therapeutics, Goodman et al., eds., 11th Edition, McGraw-Hill 2005, and Remington: The Science and Practice of Pharmacy, 20th and 21st Editions, Gennaro and University of the Sciences in Philadelphia, Eds., Lippencott Williams & Wilkins (2003 and 2005).
본 발명의 폐 유두상 선암종(lung papillary adenocarcinoma)의 예방 및 치료용 약제학적 조성물의 투여 방법은 암의 종류, 환자의 나이, 체중, 성별, 의학적 상태, 질환의 중증도, 투여 경로, 및 별도로 투여되는 약물과 같은 다양한 인자를 고려하여 결정될 수 있다. 본 발명의 폐 유두상 선암종(lung papillary adenocarcinoma)의 예방 및 치료용 약제학적 조성물이 환자에 투여되는 양은 투여 방법, 환자의 건강 상태, 체중, 의사의 처방과 같은 많은 인자에 의하여 결정될 수 있으며, 이는 당해 기술 분야의 통상의 지식을 가진 자의 지식 범위 내에 있다. Administration method of the pharmaceutical composition for the prevention and treatment of lung papillary adenocarcinoma of the present invention is the type of cancer, the patient's age, weight, sex, medical condition, severity of disease, administration route, and separately administered It can be determined considering various factors such as drug. The amount of the pharmaceutical composition for the prevention and treatment of lung papillary adenocarcinoma of the present invention administered to a patient may be determined by many factors such as the administration method, the patient's health condition, weight, and the doctor's prescription, which It is within the knowledge of one of ordinary skill in the art.
본 발명의 폐 유두상 선암종(lung papillary adenocarcinoma)의 예방 및 치료용 약제학적 조성물은 약 1x106cells/㎖ 이상, 약 2x106cells/㎖ 이상, 약 3x106cells/㎖ 이상, 약 4x106cells/㎖ 이상, 약 5x106cells/㎖ 이상, 약 6x106cells/㎖이상, 약 7x106cells/㎖ 이상, 약 8x106cells/㎖ 이상, 약 9x106cells/㎖ 이상, 약 1x107cells/㎖ 이상, 약 2x107cells/㎖ 이상, 약 3x107cells/㎖ 이상, 약 4x107cells/㎖ 이상, 약 5x107cells/㎖ 이상, 약 6x107cells/㎖ 이상, 약 7x107cells/㎖ 이상, 약 8x107cells/㎖ 이상, 약 9x107cells/㎖ 이상, 약1x108cells/㎖ 이상, 약 2x108108cells/㎖ 이상, 약 3x108cells/㎖ 이상, 약 4x108cells/㎖ 이상, 약 5x108cells/㎖ 이상, 약 6x108cells/㎖ 이상, 약 7x108cells/㎖ 이상, 약 8x108cells/㎖ 이상, 또는 약 9x108cells/㎖ 이상의 K-ras 특이적 활성화 T 세포를 포함하나, 통상의 기술자는 동일한 효과를 얻기 위하여 변형 가능한 범위 내에서 조성물 내의 K-ras 특이적 활성화 T 세포의 농도를 조절할 수 있을 것이다.The pharmaceutical composition for preventing and treating lung papillary adenocarcinoma of the present invention contains about 1x10 6 cells/mL or more, about 2x10 6 cells/mL or more, about 3x10 6 cells/mL or more, about 4x10 6 cells/mL or more. ㎖ or more, about 5x10 6 cells/mL or more, about 6x10 6 cells/mL or more, about 7x10 6 cells/mL or more, about 8x10 6 cells/mL or more, about 9x10 6 cells/mL or more, about 1x10 7 cells/mL or more , about 2x10 7 cells/mL or more, about 3x10 7 cells/mL or more, about 4x10 7 cells/mL or more, about 5x10 7 cells/mL or more, about 6x10 7 cells/mL or more, about 7x10 7 cells/mL or more, about 8x10 7 cells/mL or more, about 9x10 7 cells/mL or more, about 1x10 8 cells/mL or more, about 2x10 8 108 cells/mL or more, about 3x10 8 cells/mL or more, about 4x10 8 cells/mL or more, about 5x10 8 cells/mL or more, about 6x10 8 cells/mL or more, about 7x10 8 cells/mL or more, about 8x10 8 cells/mL or more, or about 9x10 8 cells/mL or more K-ras-specific activated T cells, but usually A person skilled in the art will be able to adjust the concentration of K-ras-specific activated T cells in the composition within a modifiable range to obtain the same effect.
상기 “약”은 당해 기술 분야에서 통상적으로 관용되는 범위, 예를들어, 평균 표준 편차 범위 내로 이해될 수 있으며 언급된 값의 50%, 45%, 40%,35%, 30%, 25%, 20%, 15%, 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, 1%, 0.5%, 0.1%, 0.05%, 또는 0.01% 이내로 이해될 수 있다.The "about" can be understood within a range commonly accepted in the art, for example, within the average standard deviation range, and is 50%, 45%, 40%, 35%, 30%, 25%, Understand to within 20%, 15%, 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, 1%, 0.5%, 0.1%, 0.05%, or 0.01% It can be.
또한, 인산염 완충액, 및 초산나트륨 완충액과 같은 완충제, 염산 프로카인과 같은 무통화제, 벤질 알코올, 또는 페놀과 같은 안정제, 및 산화 방지제와 더 배합할 수 있다. 상기 조제된 주사액은 통상, 적당한 앰플에 충전시킨다.In addition, buffering agents such as phosphate buffer and sodium acetate buffer, analgesic agents such as procaine hydrochloride, stabilizers such as benzyl alcohol or phenol, and antioxidants may be further combined. The prepared injection solution is usually filled into an appropriate ampoule.
현탁액 및 유탁액은, 담체로서, 천연 검, 한천, 알긴산 나트륨, 펙틴, 메틸셀룰로스, 카복시메틸셀룰로스, 또는 폴리비닐알코올을 함유할 수 있다. 근육 내 주사를 위한 현탁액 또는 용액은 활성 화합물과 함께, 약학적으로 허용되는 담체 예를 들어, 멸균수, 올리브 오일, 에틸 올레에이트, 글리콜류 및 적합한 양의 리도카인 염산염을 함유할 수 있다.Suspensions and emulsions may contain, as carriers, natural gum, agar, sodium alginate, pectin, methylcellulose, carboxymethylcellulose, or polyvinyl alcohol. Suspensions or solutions for intramuscular injection can contain the active compound together with pharmaceutically acceptable carriers such as sterile water, olive oil, ethyl oleate, glycols and suitable amounts of lidocaine hydrochloride.
본 발명의 폐 유두상 선암종(lung papillary adenocarcinoma)의 예방 및 치료용 약제학적 조성물은 정맥 주사 (bolus injection) 또는 연속주입 (continuous infusion)으로 환자에 투여될 수 있다. 본 발명의 폐 유두상 선암종(lung papillary adenocarcinoma)의 예방 및 치료용 약제학적 조성물은 1시간 이하, 1시간 이상, 2시간 이상, 3시간 이상, 4시간 이상, 8시간 이상, 12시간 이상, 1일 이상, 2일 이상, 3일 이상, 4일 이상, 5일 이상, 6일 이상, 7일 이상, 2주 이상, 3주 이상, 4주 이상, 1개월 이상, 3개월 이상, 6개월 이상에 적어도 1회, 적어도 2회, 적어도 3회, 적어도 4회, 또는 적어도 5회에 걸쳐, 연속적으로, 또는 일정 시간 간격으로, 또는 임상적 판단에 의하여 결정된 시간 간격을 두고 투여될 수 있다. The pharmaceutical composition for preventing and treating lung papillary adenocarcinoma of the present invention may be administered to patients by bolus injection or continuous infusion. The pharmaceutical composition for preventing and treating lung papillary adenocarcinoma of the present invention is 1 hour or less, 1 hour or more, 2 hours or more, 3 hours or more, 4 hours or more, 8 hours or more, 12 hours or more, 1 hour or less More than 1 day, more than 2 days, more than 3 days, more than 4 days, more than 5 days, more than 6 days, more than 7 days, more than 2 weeks, more than 3 weeks, more than 4 weeks, more than 1 month, more than 3 months, more than 6 months It may be administered at least once, at least twice, at least three times, at least four times, or at least five times, continuously, or at regular time intervals, or at time intervals determined by clinical judgment.
주사제는 앰플형으로, 또는 복수회 투여 용기의 단위 용량형으로 제형화 될 수 있다. 그러나 통상의 기술자는 본 발명에 따른 약학 조성물의 투여량은 환자의 나이, 체중, 키, 성별, 일반적 의학적 상태 및 기존 치료 이력과 같은 다양한 인자들에 따라 변경될 수 있음을 이해할 것이다.The injection may be formulated in the form of an ampoule or a unit dosage form in a multi-dose container. However, those skilled in the art will understand that the dosage of the pharmaceutical composition according to the present invention may vary depending on various factors such as the patient's age, weight, height, sex, general medical condition and previous treatment history.
본 발명은 상기 K-ras 특이적 활성화 T 세포는 K-ras 특이적 활성화 T 세포 유도용 항원 조성물과 1차 싸이토카인(cytokine)을 포함하는 배지에서 말초혈액단핵세포(Peripheral Blood Mononuclear Cell, PBMC)를 배양하여 수지상 세포(dentritic cell)를 성숙시키는 동시에 K-ras 특이적 활성화 T 세포를 유도하는 제 1 단계; 상기 배양된 PBMC에 2차 싸이토카인을 첨가하고 배양하여 K-ras 특이적 활성화 T 세포를 더 유도하는 제 2 단계; 및 상기 2차 싸이토카인을 첨가하고 배양한 PBMC를 배양하여 K-ras 특이적 활성화 T 세포를 증폭시킨 후 수득하는 제 3 단계;를 포함하는 것을 특징으로 하는 K-ras 특이적 활성화 T 세포 유도용 항원 조성물을 이용한 K-ras 특이적 활성화 T 세포의 유도 방법으로 제조되는 것을 특징으로 한다.In the present invention, the K-ras-specific activated T cells are isolated from peripheral blood mononuclear cells (PBMC) in a medium containing an antigen composition for inducing K-ras-specific activated T cells and a primary cytokine. A first step of culturing to mature dentritic cells and inducing K-ras-specific activated T cells; a second step of further inducing K-ras-specific activated T cells by adding and culturing a secondary cytokine to the cultured PBMC; and a third step of amplifying K-ras-specific activated T cells by culturing the PBMCs cultured with the addition of the secondary cytokine. It is characterized in that it is prepared by a method for inducing K-ras-specific activated T cells using the composition.
본 발명의 K-ras 특이적 활성화 T 세포의 유도 방법은 Fast-IVS(in vitro stimulation)로서 종래의 IVS와 구분된다. 상기 IVS는 혈액에서 분리한 단핵구(monocyte)로부터 분화와 성숙(maturation) 과정을 통해 단핵구 유도 수지상 세포(monocyte-derived dendritic cell, moDC)를 수득한 후 본 발명의 K-ras 특이적 활성화 T 세포 유도용 항원 조성물을 처리한 환경에서 T 세포와 공배양(co-culture)하는 방법을 의미한다. 이에 반하여 본 발명의 Fast-IVS는 PBMC 내의 DC세포에 대하여 성숙과정과 항원(K-ras 특이적 활성화 T 세포 유도용 항원 조성물)처리를 동시에 수행하는 차이점이 있다. The method of inducing K-ras-specific activated T cells according to the present invention is Fast-IVS (in vitro stimulation), which is different from conventional IVS. The IVS induces K-ras-specific activated T cells of the present invention after obtaining monocyte-derived dendritic cells (moDC) through a differentiation and maturation process from monocytes isolated from blood. It refers to a method of co-culture with T cells in an environment treated with an antigen composition for use. In contrast, the Fast-IVS of the present invention has a difference in that it simultaneously performs the maturation process and antigen (antigen composition for inducing K-ras-specific activated T cells) treatment of DC cells in PBMC.
상기 T 세포 유도과정에서 항원으로 사용되는 K-ras 특이적 활성화 T 세포 유도용 항원 조성물은 DC 세포의 성숙 및 생장에 필요한 싸이토카인(cytokine), 호르몬 및 완충용액을 더 포함할 수 있다. 바람직하게는 싸이토카인(cytokine)은 인터루킨-4(interleukin-4), 인터루킨-1β, 과립구 대식세포 콜로니 자극 인자(Granulocyte-Macrophage Colony-Stimulating Factor, GM-CSF), 종양괴사인자-α(Tumor Necrosis Factor-α, TNF-α)일 수 있으며 상기 호르몬은 프로스타글란딘 E2(Prostaglandin E2, PGE2)일 수 있다. The antigen composition for inducing K-ras-specific activated T cells used as an antigen in the T cell induction process may further include cytokines, hormones, and buffers required for DC cell maturation and growth. Preferably, the cytokine is interleukin-4, interleukin-1β, granulocyte-macrophage colony-stimulating factor (GM-CSF), tumor necrosis factor-α (Tumor Necrosis Factor). -α, TNF-α), and the hormone may be prostaglandin E2 (PGE2).
본 발명의 일 실시예에 따르면 상기 인터루킨-4(Interleukin-4) 및 과립구 대식세포 콜로니 자극인자(Granulocyte-Macrophage Colony-Stimulating Factor, GM-CSF)는 1차 싸이토카인으로서 PBMC내 단핵구(Monocyte)를 DC(Dendritic cell)로 분화 유도하는데 사용되었으며 상기 종양괴사인자-α(Tumor Necrosis Factor-α), 인터루킨-1β(Interleukin-1β), 및 프로스타글란딘 E2(Prostaglandin E2)은 2차 싸이토카인으로서 미성숙DC(Immature DC)를 성숙시키기 위하여 사용 되었다.According to one embodiment of the present invention, the interleukin-4 and the granulocyte-macrophage colony-stimulating factor (GM-CSF) are primary cytokines, which induce monocytes in PBMC into DC It was used to induce differentiation into dendritic cells, and the tumor necrosis factor-α, interleukin-1β, and prostaglandin E2 are secondary cytokines, immature DC ) was used to mature.
본 발명의 다른 실시예에 따르면 상기 제 1 단계의 배양은 1 day 동안 수행하며, 상기 제 2 단계의 배양은 2 days 동안 수행하며, 상기 제 3 단계의 배양은 10 days 동안 수행하는 것을 특징으로 한다. 상기 단계별 배양 기간은 실시예를 통해 가장 효율적으로 K-ras 특이적 활성화 T 세포를 유도할 수 있는 방법으로 최적화 된 것이다. According to another embodiment of the present invention, the culturing of the first step is performed for 1 day, the culturing of the second step is performed for 2 days, and the culturing of the third step is performed for 10 days. . The step-by-step culturing period was optimized through the examples to most efficiently induce K-ras-specific activated T cells.
본 발명은 K-ras 특이적 활성화 T 세포 유도용 항원 조성물은 서열번호 1의 아미노산 서열로 이루어진 K-ras 돌연변이 재조합 중첩 펩타이드를 유효성분으로 포함하는 것을 특징으로 한다.The present invention is characterized in that the antigen composition for inducing K-ras-specific activated T cells includes the K-ras mutant recombinant overlapping peptide consisting of the amino acid sequence of SEQ ID NO: 1 as an active ingredient.
상기 서열번호 1은 K-ras 단백질의 아미노산서열(서열번호 2)로부터 유래한다. 상기 K-ras 돌연변이는 12번째 아미노산이 글리신(Glycine, G)에서 아스파르트산(Aspartic acid, D)으로 치환되었거나, 12번째 아미노산이 글리신(Glycine, G)에서 발린(Valine, V)으로 치환되었거나, 13번째 아미노산이 글리신(Glycine, G)에서 아스파르트산(Aspartic acid, D)으로 치환된 것을 의미한다.SEQ ID NO: 1 is derived from the amino acid sequence (SEQ ID NO: 2) of K-ras protein. In the K-ras mutation, the 12th amino acid is substituted from glycine (G) to aspartic acid (D), or the 12th amino acid is substituted from glycine (G) to valine (V), It means that the 13th amino acid is substituted from glycine (G) to aspartic acid (D).
상기 재조합(recombinant)은 디자인된 항원의 유전정보를 포함하는 재조합 플라스미드 DNA에 끼워 넣는 것을 의미하며 상기 재조합 플라스미드 DNA를 미생물에 형질전환시켜 단백질을 발현시키고 이를 정제하게 되면 본 발명의 K-ras 특이적 활성화 T 세포 유도용 항원이 수득된다. The recombinant means inserting into a recombinant plasmid DNA containing the genetic information of the designed antigen, and the recombinant plasmid DNA is transformed into a microorganism to express a protein and purify the K-ras-specific An antigen for inducing activated T cells is obtained.
본 발명의 K-ras 돌연변이 재조합 중첩 펩타이드는 서열번호 2로 이루어진 K-ras의 아미노산 서열에서 어느 하나의 아미노산으로부터 순차적으로 나열된 아미노산 서열을 단위로 하는 총 12 종류의 에피토프(epitope(n=1, 2, 3....10, 11, 12); 여기서 n은 에피토프의 순번을 의미하며 에피토프(n=1 내지 11)는 30개의 아미노산 서열을 포함하고 마지막 에프토프(n=12)는 23개의 아미노산 서열을 포함한다.)를 포함하되 에피토프(n=1)를 제외한 에피토프(n=2, 3,...12)는 N-terminal 방향 15개의 아미노산 서열이 직전 순번의 에피토프(n-1)의 C-terminal 방향 15개의 아미노산 서열과 서로 중첩되도록 디자인된다. The K-ras mutant recombinant overlapping peptide of the present invention has a total of 12 types of epitopes (epitope (n = 1, 2 , 3....10, 11, 12); where n means the sequence of the epitope, the epitope (n = 1 to 11) contains a sequence of 30 amino acids and the last epitope (n = 12) is 23 amino acids Sequence.), but epitope (n = 2, 3, ... 12) except for epitope (n = 1) is the sequence of 15 amino acids in the N-terminal direction of the immediately preceding epitope (n-1) It is designed to overlap with the 15 amino acid sequence in the C-terminal direction.
상기 K-ras 돌연변이 재조합 중첩 펩타이드는 상기 에피토프(n=1, 2, 3...10, 11, 12)가 순번에 따라 위치하며 상기 에피토프 사이는 LRMK-링커로 연결된 것을 특징으로 하며 상기 LRMK-링커는 루신(Leucine, L), 아르기닌(Arginine, R), 메티오닌(Methione, M), 라이신(Lysine, K)으로 구성된 링커로서 수지상세포에 의한 항원제시과정(MHC class I pathway)에 유리한 장점이 있다. The K-ras mutant recombinant overlapping peptide is characterized in that the epitopes (n = 1, 2, 3 ... 10, 11, 12) are located in sequence, and the epitopes are linked by an LRMK-linker, and the LRMK- The linker is a linker composed of Leucine (L), Arginine (R), Methionine (M), and Lysine (K), and has an advantage in the MHC class I pathway by dendritic cells. there is.
상세하게는 본 발명의 K-ras 특이적 활성화 T 세포 유도용 항원 조성물은 하기와 같이 디자인된다. 상기 에피토프(n=1)는 K-ras 돌연변이 G12V를 포함하며; 상기 에피토프(n=1)의 N-terminal에는 K-ras 돌연변이 G12D를 포함하는 에피토프(n=1)가 LRMK-링커로 더 연결되고; 상기 에피토프(n=12)의 C-terminal에는 K-ras 돌연변이 G13D을 포함하는 에피토프(n=1)가 LRMK-링커로 더 연결되며; 상기 K-ras 돌연변이 G13D을 포함하는 에피토프(n=1)의 C-terminal에는 K-ras 돌연변이가 포함되지 않은 에피토프(n=1)가 LRMK-링커로 더 연결된다.In detail, the antigen composition for inducing K-ras-specific activated T cells of the present invention is designed as follows. The epitope (n=1) includes the K-ras mutation G12V; An epitope (n = 1) containing K-ras mutant G12D is further linked to the N-terminal of the epitope (n = 1) by an LRMK-linker; An epitope (n = 1) containing K-ras mutant G13D is further linked to the C-terminal of the epitope (n = 12) by an LRMK-linker; An epitope (n=1) not containing the K-ras mutation is further linked to the C-terminal of the epitope (n=1) containing the K-ras mutation G13D by an LRMK-linker.
본 발명의 K-ras 특이적 활성화 T 세포 유도용 항원 조성물을 이용하면 K-ras 돌연변이(G12D, G12V, G13D)에 대해 특이적인 T 세포를 유도할 수 있으며 상기 K-ras 돌연변이(G12D, G12V, G13D)에 대해 특이적인 T 세포는 K-ras 돌연변이(G12D, G12V, G13D)를 가지는 암세포를 치료하는데 사용 가능하다. When the antigen composition for inducing K-ras-specific activated T cells of the present invention is used, T cells specific for K-ras mutations (G12D, G12V, G13D) can be induced, and the K-ras mutations (G12D, G12V, G13D) can be used to treat cancer cells with K-ras mutations (G12D, G12V, G13D).
K-ras는 ras 단백질의 일종으로 세포의 분화, 증식 및 생존과 관련된 신호전달체계에서 중요한 역할을 하는 small GTPases 단백질이며 K-ras 단백질의 활성이 비정상적으로 증가하게 되면 암이 유발되는 것으로 알려져 있다. 상기 ras 단백질의 유전자인 KRAS는 여러 가지 암종에서 돌연변이로 발견되는 oncogene으로 잘 알려져 있으며 ras-유래 암종의 85%가 K-ras 돌연변이에 의한 것으로 알려져 있다. 따라서 암세포에 발현된 K-ras 및 그 돌연변이를 특이적으로 인식하는 T 세포를 증폭시키게 되면 K-ras의 활성이 비정상적으로 증가된 암을 효과적으로 제거하여 이를 치료 할 수 있게 된다. 상기 암은 K-ras 활성이 증가된 암이라면 제한되지 않으며 그 예로서 부신피질 암종(ACC), 방광요로상피 암종(BLCA), 유방 침습 암종(BRCA), 경부 편평 세포 암종 및 자궁경부내 선암종(CESC), 결장 선암종(COAD), 만성 림프성 백혈병(CLL), 대장암(CRC), 미만성 거대 B-세포 림프종(DLBCL), 다형성아교모세포종(GBM), 두경부 편평 세포 암종(HNSC), 혐색소 신장(KICH), 신장 투명 세포 암종(KIRC), 신장 유두상 세포 암종(KIRP), 급성 골수성 백혈병(LAML), 간세포 암종(LIHC), 폐 선암종(LUAD), 폐 편평 세포 암종(LUSC), 다발성 골수종(MM), 난소 장액낭선암종(OV), 췌장 선암종(PAAD), 전립선 선암종(PRAD), 직장 선암종(READ), 피부 흑색종(SKCM), 위 선암종(STAD), 고환 생식 세포 종양(TGCT), 갑상선 선암종(THCA), 자궁체부 자궁내막 암종(UCEC) 또는 자궁 암육종(UCS)일 수 있다.K-ras, a type of ras protein, is a small GTPases protein that plays an important role in the signal transduction system related to cell differentiation, proliferation, and survival. It is known that cancer is induced when the activity of K-ras protein abnormally increases. KRAS, a gene of the ras protein, is well known as an oncogene found as a mutation in various carcinomas, and 85% of ras-derived carcinomas are known to be caused by K-ras mutation. Therefore, when T cells specifically recognizing K-ras expressed in cancer cells and its mutations are amplified, cancer with abnormally increased activity of K-ras can be effectively removed and treated. The cancer is not limited as long as the cancer has increased K-ras activity, and examples thereof include adrenocortical carcinoma (ACC), bladder urothelial carcinoma (BLCA), invasive breast carcinoma (BRCA), cervical squamous cell carcinoma and intracervical adenocarcinoma (CESC). ), colon adenocarcinoma (COAD), chronic lymphocytic leukemia (CLL), colorectal cancer (CRC), diffuse large B-cell lymphoma (DLBCL), glioblastoma multiforme (GBM), head and neck squamous cell carcinoma (HNSC), chromophobe kidney (KICH), renal clear cell carcinoma (KIRC), renal papillary cell carcinoma (KIRP), acute myelogenous leukemia (LAML), hepatocellular carcinoma (LIHC), lung adenocarcinoma (LUAD), lung squamous cell carcinoma (LUSC), multiple myeloma (MM), ovarian serous cystadenocarcinoma (OV), pancreatic adenocarcinoma (PAAD), prostate adenocarcinoma (PRAD), rectal adenocarcinoma (READ), skin melanoma (SKCM), gastric adenocarcinoma (STAD), testicular germ cell tumor (TGCT) , thyroid adenocarcinoma (THCA), cervical endometrial carcinoma (UCEC) or uterine carcinosarcoma (UCS).
하기에서 실시예를 통해 본 발명을 상세히 설명한다.In the following, the present invention will be described in detail through examples.
실시예 Example
1. K-ras(WT)의 제조1. Preparation of K-ras (WT)
먼저 K-ras 아미노산 서열(서열번호 2)을 발현벡터에 삽입하였다. K-ras(WT)는 189개의 아미노산으로 이루어져 있으며 아미노산 서열은 하기 표 1과 같다.First, the K-ras amino acid sequence (SEQ ID NO: 2) was inserted into the expression vector. K-ras (WT) consists of 189 amino acids, and the amino acid sequence is shown in Table 1 below.
이름name 아미노산 서열(189aa)Amino acid sequence (189aa)
K-ras(WT)K-ras (WT) MTEYKLVVVG10 AGGVGKSALT20 IQLIQNHFVD30 EYDPTIEDSY40

RKQVVIDGET50 CLLDILDTAG60 QEEYSAMRDQ70 YMRTGEGFLC80

VFAINNTKSF90 EDIHHYREQI100 KRVKDSEDVP110 MVLVGNKCDL120

PSRTVDTKQA130 QDLARSYGIP140 FIETSAKTRQ150 RVEDAFYTLV160

REIRQYRLKK170 ISKEEKTPGC180 VKIKKCIIM189
MTEYKLVVVG 10 AGGVGKSALT 20 IQLIQNHFVD 30 EYDPTIEDSY 40

RKQVVIDGET 50 CLLDILDTAG 60 QEEYSAMRDQ 70 YMRTGEGFLC 80

VFAINNTKSF 90 EDIHHYREQI 100 KRVKDSEDVP 110 MVLVGNKCDL 120

PSRTVDTKQA 130 QDLARSYGIP 140 FIETSAKTRQ 150 RVEDAFYTLV 160

REIRQYRLKK 170 ISKEEKTPGC 180 VKIKKCIIM 189
상기 K-ras-WT를 제한효소로 처리한 후 pET30a 벡터에 넣어 발현벡터를 제조 하였으며 상기 발현벡터는 E.coli에 형질전환하여 단백질을 발현시켰다. After treating the K-ras-WT with a restriction enzyme, an expression vector was prepared by inserting it into a pET30a vector, and the expression vector was transformed into E. coli to express the protein.
2. K-ras(M)-ROP의 제조2. Preparation of K-ras(M)-ROP
K-ras Mutant Recombinant Overlapping Peptide(K-ras(M)-ROP)의 항원을 디자인하고 K-ras(WT)와 동일한 방법으로 발현벡터를 제조하였다. 상기 K-ras(M)-ROP은 K-ras 아미노산 12번째 위치의 G(Glycine)가 D(Asapartic acid)로 변이한 G12D, K-ras 아미노산 12번째 위치의 G(Glycine)가 V(Valine)로 변이한 G12V, 또는 K-ras 아미노산 13번째 위치의 G(Glycine)가 D(Asapartic acid)로 변이한 G13D를 포함한다. An antigen of K-ras Mutant Recombinant Overlapping Peptide (K-ras(M)-ROP) was designed and an expression vector was prepared in the same manner as for K-ras(WT). The K-ras(M)-ROP is G12D in which G (Glycine) at the 12th position of K-ras amino acid is mutated to D (Asapartic acid), and G (Glycine) at the 12th position of K-ras amino acid is V (Valine) It includes G12V mutated to , or G13D in which G (Glycine) at the 13th position of K-ras amino acid is mutated to D (Asapartic acid).
상기 K-ras(M)-ROP은 500개의 아미노산 서열을 가지는 것을 특징으로 하며 아미노산이 순차적으로 30개씩 구분되되 하나의 에피토프(epitope)는 15개의 아미노산 서열이 서로 중복되도록 디자인되었다. 표 2는 K-ras(M)-ROP의 아미노산 서열(서열번호 1) 및 K-ras(M)-ROP 에피토프의 아미노산 서열을 보여준다. The K-ras(M)-ROP is characterized by having a sequence of 500 amino acids, and the amino acids are sequentially divided into 30 units, and one epitope is designed such that 15 amino acid sequences overlap each other. Table 2 shows the amino acid sequence of K-ras(M)-ROP (SEQ ID NO: 1) and the amino acid sequence of K-ras(M)-ROP epitope.
도 1은 본 발명의 K-ras(M)-ROP의 에피토프 구조를 보여준다.1 shows the epitope structure of K-ras(M)-ROP of the present invention.
이름name 아미노산 서열(500aa)Amino acid sequence (500aa)
K-ras(M)-ROPK-ras(M)-ROP MTEYKLVVVG10 ADGVGKSALT20 IQLIQNHFVD30 LRMK34
MTEYKLVVVG44 AVGVGKSALT54 IQLIQNHFVD64 LRMK68
KSALTIQLIQ78 NHFVDEYDPT88 IEDSYRKQVV98 LRMK102
EYDPTIEDSY112 RKQVVIDGET122 CLLDILDTAG132 LRMK136
IDGETCLLDI146 LDTAGQEEYS156 AMRDQYMRTG166 LRMK170
QEEYSAMRDQ180 YMRTGEGFLC190 VFAINNTKSF200 LRMK204
EGFLCVFAIN214 NTKSFEDIHH224 YREQIKRVKD234 LRMK238
EDIHHYREQI248 KRVKDSEDVP258 MVLVGNKCDL268 LRMK272
SEDVPMVLVG282 NKCDLPSRTV292 DTKQAQDLAR302 LRMK306
PSRTVDTKQA316 QDLARSYGIP326 FIETSAKTRQ336 LRMK340
SYGIPFIETS350 AKTRQRVEDA360 FYTLVREIRQ370 LRMK374
RVEDAFYTLV384 REIRQYRLKK394 ISKEEKTPGC404 LRMK408
YRLKKISKEE418 KTPGCVKIKK428 CIIM432 LRMK436
MTEYKLVVVG446 AGDVGKSALT456 IQLIQNHFVD466 LRMK470
MTEYKLVVVG480 AGGVGKSALT490 IQLIQNHFVD500
MTEYKLVVVG 10 ADGVGKSALT 20 IQLIQNHFVD 30 LRMK 34
MTEYKLVVVG 44 AVGVGKSALT 54 IQLIQNHFVD 64 LRMK 68
KSALTIQLIQ 78 NHFVDEYDPT 88 IEDSYRKQVV 98 LRMK 102
EYDPTIEDSY 112 RKQVVIDGET 122 CLLDILDTAG 132 LRMK 136
IDGETCLLDI 146 LDTAGQEEYS 156 AMRDQYMRTG 166 LRMK 170
QEEYSAMRDQ 180 YMRTGEGFLC 190 VFAINNTKSF 200 LRMK 204
EGFLCVFAIN 214 NTKSFEDIHH 224 YREQIKRVKD 234 LRMK 238
EDIHHYREQI 248 KRVKDSEDVP 258 MVLVGNKCDL 268 LRMK 272
SEDVPMVLVG 282 NKCDLPSRTV 292 DTKQAQDLAR 302 LRMK 306
PSRTVDTKQA 316 QDLARSYGIP 326 FIETSAKTRQ 336 LRMK 340
SYGIPFIETS 350 AKTRQRVEDA 360 FYTLVREIRQ 370 LRMK 374
RVEDAFYTLV 384 REIRQYRLKK 394 ISKEEKTPGC 404 LRMK 408
YRLKKISKEE 418 KTPGCVKIKK 428 CIIM 432 LRMK 436
MTEYKLVVVG 446 AGDVGKSALT 456 IQLIQNHFVD 466 LRMK 470
MTEYKLVVVG 480 AGGVGKSALT 490 IQLIQNHFVD 500
에피토프 이름epitope name 아미노산 서열
(서열번호는 K-rasWT을 기준으로 부여하였음)
amino acid sequence
(Sequence numbers were assigned based on K-rasWT)
에피토프1(E1, n=1)Epitope 1 (E1, n=1) MTEYKLVVVG10 AGGVGKSALT20 IQLIQNHFVD30 MTEYKLVVVG 10 AGGVGKSALT 20 IQLIQNHFVD 30
에피토프2(E2, n=2)Epitope 2 (E2, n=2) KSALT20 IQLIQNHFVD30 EYDPTIEDSY40 RKQVV45 KSALT 20 IQLIQNHFVD 30 EYDPTIEDSY 40 RKQVV 45
에피토프3(E3, n=3)Epitope 3 (E3, n=3) EYDPTIEDSY40 RKQVVIDGET50 CLLDILDTAG60 EYDPTIEDSY 40 RKQVVIDGET 50 CLLDILDTAG 60
에피토프4(E4, n=4)Epitope 4 (E4, n=4) IDGET50 CLLDILDTAG60 QEEYSAMRDQ70 YMRTG75 IDGET 50 CLLDILDTAG 60 QEEYSAMRDQ 70 YMRTG 75
에피토프5(E5, n=5)Epitope 5 (E5, n=5) QEEYSAMRDQ70 YMRTGEGFLC80 VFAINNTKSF90 QEEYSAMRDQ 70 YMRTGEGFLC 80 VFAINNTKSF 90
에피토프6(E6, n=6)Epitope 6 (E6, n=6) EGFLC80 VFAINNTKSF90 EDIHHYREQI100 KRVKD105 EGFLC 80 VFAINNTKSF 90 EDIHHYREQI 100 KRVKD 105
에피토프7(E7, n=7)Epitope 7 (E7, n=7) EDIHHYREQI100 KRVKDSEDVP110 MVLVGNKCDL120 EDIHHYREQI 100 KRVKDSEDVP 110 MVLVGNKCDL 120
에피토프8(E8, n=8)Epitope 8 (E8, n=8) SEDVP110 MVLVGNKCDL120 PSRTVDTKQA130 QDLAR135 SEDVP 110 MVLVGNKCDL 120 PSRTVDTKQA 130 QDLAR 135
에피토프9(E9, n=8)Epitope 9 (E9, n=8) PSRTVDTKQA130 QDLARSYGIP140 FIETSAKTRQ150 PSRTVDTKQA 130 QDLARSYGIP 140 FIETSAKTRQ 150
에피토프10(E10, n=10)Epitope 10 (E10, n=10) SYGIP140 FIETSAKTRQ150 RVEDAFYTLV160 REIRQ165 SYGIP 140 FIETSAKTRQ 150 RVEDAFYTLV 160 REIRQ 165
에피토프11(E11, n=11)Epitope 11 (E11, n=11) RVEDAFYTLV160 REIRQYRLKK170 ISKEEKTPGC180 RVEDAFYTLV 160 REIRQYRLKK 170 ISKEEKTPGC 180
에피토프12(E12, n=12)Epitope 12 (E12, n=12) YRLKK170 ISKEEKTPGC180 VKIKKCIIM189 YRLKK 170 ISKEEKTPGC 180 VKIKKCIIM 189
에피토프1-G12D(E1-G12D)Epitope 1-G12D (E1-G12D) MTEYKLVVVG10 ADGVGKSALT20 IQLIQNHFVD30 MTEYKLVVVG 10 A D GVGKSALT 20 IQLIQNHFVD 30
에피토프1-G12V(E1-G12V)Epitope 1-G12V (E1-G12V) MTEYKLVVVG10 AVGVGKSALT20 IQLIQNHFVD30 MTEYKLVVVG 10 A V GVGKSALT 20 IQLIQNHFVD 30
에피토프1-G13D(E1-G13D)Epitope 1-G13D (E1-G13D) MTEYKLVVVG10 AGDVGKSALT20 IQLIQNHFVD30 MTEYKLVVVG 10 AG D VGKSALT 20 IQLIQNHFVD 30
상기 K-ras(M)-ROP은 합성한 후(Genescript Co. Ltd.) pET30a 벡터에 클로닝(cloning)하였으며 E.coli에 형질전환하여 발현시켰다. 발현된 단백질은 APC(Activated protein C)를 이용하여 절단하는 방법으로 K-ras(M)-ROP을 제조하였다. The K-ras(M)-ROP was synthesized (Genescript Co. Ltd.), cloned into a pET30a vector, and then transformed into E.coli and expressed. The expressed protein was cleaved using activated protein C (APC) to prepare K-ras(M)-ROP.
3. K-ras(M)-ROP 반응성 스크리닝 분석3. K-ras(M)-ROP Reactivity Screening Assay
정상인의 말초 혈액 단핵세포 (peripheral blood mononuclear cell, PBMC)에서 K-ras(M)-ROP의 반응성을 스크리닝 하였다. 상기 스크리닝은 고착화효소항체법(enzyme-linked immune absorbent spot assay, ELISpot assay)을 이용하였다. The reactivity of K-ras(M)-ROP was screened in peripheral blood mononuclear cells (PBMC) of normal subjects. The screening was performed using enzyme-linked immune absorbent spot assay (ELISpot assay).
도 2는 본 발명의 K-ras(M)-ROP에 대한 PBMC의 반응성을 분석한 결과를 보여준다. 패널 A는 ELISpot(IFN-γ) assay의 SFC 이미지를 보여주며 패널 B는 ELISpot(IFN-γ) assay의 SFC 그래프를 보여준다. Figure 2 shows the results of analyzing the reactivity of PBMC to K-ras (M) -ROP of the present invention. Panel A shows the SFC image of the ELISpot (IFN-γ) assay and panel B shows the SFC graph of the ELISpot (IFN-γ) assay.
먼저 정상인 자원자의 백혈구 분반술에서 얻어진 PBMC(LP-1 PBMC, LP-4 PBMC, 및 LP-6 PBMC) 1x105cell을 파종(seeding)하여 세포배양한 후 항원을 처리하였다. 상기 항원으로 K-ras(M)-ROP 5㎍/㎖, 1.0㎍/㎖, 0.1㎍/㎖을 사용하였으며 양성대조군(positive control)로서 anti-CD3을 사용하였다. 세포배양은 37℃, CO2 5%, overnight(O/N)의 조건으로 수행하였으며 배양한 세포는 IFN-γ로 염색하여 SFC(Spot Forming Cell)를 읽어 분석하였다. 실험결과 정상인 PBMC중 LP-1에서 K-ras(M)-ROP에 대한 반응성이 가장 우수한 것으로 확인되었다. First, 1x10 5 cells of PBMC (LP-1 PBMC, LP-4 PBMC, and LP-6 PBMC) obtained from leukocyte division of normal volunteers were seeded, cultured, and treated with antigen. As the antigen, 5 μg/ml, 1.0 μg/ml, and 0.1 μg/ml of K-ras(M)-ROP were used, and anti-CD3 was used as a positive control. Cell culture was performed under conditions of 37°C, 5% CO 2 , overnight (O/N), and the cultured cells were stained with IFN-γ and analyzed by reading SFC (Spot Forming Cell). As a result of the experiment, it was confirmed that the reactivity to K-ras(M)-ROP was the best in LP-1 among normal PBMCs.
4. K-ras(M)-ROP 농도별 특이적 CD3+ T 세포 비율 분석4. Analysis of specific CD3+ T cell ratio by K-ras(M)-ROP concentration
상기 LP-1 PBMC에 대하여 K-ras(M)-ROP 농도에 따른 K-ras(M)-ROP 특이적 CD3+ T세포 비율을 분석하였다. 이를 위하여 LP-1 PBMC에 항원을 처리한 후 IFN-γ capture staining을 수행하고 이를 분석하였다. The ratio of K-ras(M)-ROP-specific CD3+ T cells according to the K-ras(M)-ROP concentration was analyzed for the LP-1 PBMCs. To this end, IFN-γ capture staining was performed after antigen treatment on LP-1 PBMCs, and this was analyzed.
도 3은 본 발명의 K-ras(M)-ROP 농도에 따른 LP-1 PBMC의 K-ras(M)-ROP 특이적 CD3+ T 세포 비율을 분석한 결과를 보여준다. 패널 A는 ELISpot(IFN-γ) assay의 조건별 SFC 이미지를 보여주며 패널 B는 ELISpot(IFN-γ) assay의 조건별 SFC 그래프를 보여준다. 패널 C는 IFN-γ capture staining의 원리 빛 방법을 보여주며 패널 D는 IFN-γ capture FACS 분석결과를 보여준다. 패널 E는 IFN-γ 분비 CD3+ T 세포 비율(%) 그래프를 보여준다.3 shows the result of analyzing the ratio of K-ras(M)-ROP-specific CD3+ T cells in LP-1 PBMC according to the concentration of K-ras(M)-ROP according to the present invention. Panel A shows the SFC image for each condition of the ELISpot (IFN-γ) assay, and Panel B shows the SFC graph for each condition of the ELISpot (IFN-γ) assay. Panel C shows the principle light method of IFN-γ capture staining, and Panel D shows the results of IFN-γ capture FACS analysis. Panel E shows a graph of the percentage (%) of IFN-γ secreting CD3+ T cells.
먼저 LP-1 PBMC 1x106cell을 파종(seeding)하여 세포배양한 후 농도를 달리하여 항원(K-ras(M)-ROP 5㎍/㎖, K-ras(M)-ROP 1.0㎍/㎖, K-ras(M)-ROP 0.1㎍/㎖)을 처리하였다. 또한 파상풍 백신(Tetanus toxoid vaccine, TTX)을 5㎍/㎖, 1.0㎍/㎖으로 처리한 LP-1 PBMC과 anti-CD3를 양성대조군(positive control)으로 사용하였다. 세포배양은 37℃, CO2 5%, overnight(O/N)의 조건으로 수행하였다. First, LP-1 PBMC 1x10 6 cells were seeded and cultured, and then antigens (K-ras(M)-ROP 5μg/ml, K-ras(M)-ROP 1.0μg/ml, K-ras(M)-ROP 0.1 μg/ml) was treated. In addition, LP-1 PBMC treated with tetanus toxoid vaccine (TTX) at 5 μg/ml and 1.0 μg/ml and anti-CD3 were used as positive controls. Cell culture was performed under conditions of 37°C, 5% CO 2 , and overnight (O/N).
IFN-γ capture staining은 항원이 처리된 LP-1 PBMC에 1차 포획 항체(1st capture antibody)를 처리한 후 37℃에서 45분간 배양하고 2차 검출 항체(2nd detection andtibody)와 CD3, CD4, CD8, 및 CD137을 처리하는 방법으로 수행하였다. 상기 IFN-γ capture staining이 수행된 LP-1 PBMC는 세포자동해석분리장치(Fluorescence activated cell sorter, FACS)를 이용하여 세포특성을 분석하였다.For IFN-γ capture staining, antigen-treated LP-1 PBMC was treated with 1st capture antibody, then incubated at 37°C for 45 minutes, and secondary detection antibody ( 2nd detection andtibody) and CD3, CD4 , CD8, and CD137. Cell characteristics of the LP-1 PBMCs subjected to the IFN-γ capture staining were analyzed using a Fluorescence activated cell sorter (FACS).
실험결과 LP-1 PBMC에 농도에 따라 항원을 처리하게 되면 K-ras(M)-ROP 특이적 CD2+ T 세포 비율이 증가하는 것이 확인되었으며 이는 상기 ELISpot(IFN-γ) 결과와 잘 일치하였다. 따라서 LP-1 PBMC의 반응성은 K-ras(M)-ROP에 농도 의존적으로 증가하는 것으로 판단된다. 또한 LP-1 PBMC에 K-ras(M)-ROP에 대한 반응성을 정량적으로 평가한 결과 K-ras(M)-ROP 5㎍/㎖을 처리하는 경우 K-ras(M)-ROP 특이 CD3+ T 세포의 비율이 2.4% 수준인 것으로 확인되었다.As a result of the experiment, it was confirmed that the ratio of K-ras(M)-ROP-specific CD2+ T cells increased when LP-1 PBMCs were treated with the antigen according to the concentration, which was in good agreement with the ELISpot (IFN-γ) result. Therefore, it is believed that the reactivity of LP-1 PBMC increases in a concentration-dependent manner to K-ras(M)-ROP. In addition, as a result of quantitatively evaluating the reactivity of LP-1 PBMC to K-ras(M)-ROP, K-ras(M)-ROP-specific CD3+ T It was confirmed that the percentage of cells was 2.4%.
5. 항원의 종류에 따른 항원 특이적 CD3+ T 세포 비율 비교 분석5. Comparative analysis of the ratio of antigen-specific CD3+ T cells according to the type of antigen
LP-1 PBMC에 K-ras(M)-ROP(500aa), K-ras1-24Wild-type(Peptide Wt, 24aa), 또는 K-ras1-24돌연변이(24aa)를 처리 한 후 항원 특이적 CD3+ T 세포 비율을 비교 분석하였다. After treating LP-1 PBMC with K-ras(M)-ROP (500aa), K-ras 1-24 Wild-type (Peptide Wt, 24aa), or K-ras 1-24 mutant (24aa), antigen-specific The ratio of red CD3+ T cells was comparatively analyzed.
도 4는 본 발명의 K-ras(M)-ROP, K-ras1-24Wild-type, 및 K-ras1-24돌연변이에 대한 LP-1 PBMC의 항원 특이적 CD3+ T-세포 비율을 분석한 결과를 보여준다. 패널 A는 K-ras(M)-ROP, K-ras1-24Wild-type, 및 K-ras1-24돌연변이가 처리된 LP-1 PBMC의 IFN-γ capture FACS 분석결과를 보여준다. 패널 B는 IFN-γ 분비 CD3+ T 세포 비율(%) 그래프를 보여주며, 패널 C는 항원 특이 CD3+ T 세포 비율(%) 그래프를 표로 정리한 결과를 보여준다. No Ag는 실행기(effector)만을 사용한 것을 의미하며, @CD3는 양성대조군(positive control)로서 anti-CD3를 사용한 것을 의미한다.Figure 4 analyzes the ratio of antigen-specific CD3+ T-cells of LP-1 PBMC to K-ras(M)-ROP, K-ras 1-24 Wild-type, and K-ras 1-24 mutants of the present invention show one result. Panel A shows the results of IFN-γ capture FACS analysis of LP-1 PBMCs treated with K-ras(M)-ROP, K-ras 1-24 Wild-type, and K-ras 1-24 mutants. Panel B shows a graph of IFN-γ-secreting CD3+ T cell ratio (%), and panel C shows the graph of antigen-specific CD3+ T cell ratio (%) tabulated. No Ag means that only the effector was used, and @CD3 means that anti-CD3 was used as a positive control.
상기 K-ras1-24돌연변이는 K-ras1-24Wild-type에서 12번째 아미노산인 G가 D, 또는 V로 치환되거나 12번째 아미노산인 G가 D된 것(Pep.G12D, Pep.G12V, Pep.G13D)을 의미한다. 항원 특이적 CD3+ T-세포 비율은 상기와 동일한 방법으로 분석하였으며 항원으로 K-ras(M)-ROP(500aa), Peptide Wt, Pep.G12D, Pep.G12V, 및 Pep.G13D를 사용하였다. In the K-ras 1-24 mutation, the 12th amino acid G in K-ras 1-24 Wild-type is substituted with D or V, or the 12th amino acid G is replaced with D (Pep.G12D, Pep.G12V, Pep.G13D). The ratio of antigen-specific CD3+ T-cells was analyzed in the same manner as above, and K-ras(M)-ROP (500aa), Peptide Wt, Pep.G12D, Pep.G12V, and Pep.G13D were used as antigens.
실험결과 Peptide Wt에 반응한 CD+ T세포는 확인되지 않았으며 Pep.G12D, Pep.G12V, 및 Pep.G13D에 반응한 CD3+ T 세포 역시 0.31%(Pep.G12D), 0.11%(Pep.G12V) 및 0.25%(Pep.G13D)로 현저히 낮은 것을 확인되었다. 상기 결과는 K-ras(M)-ROP에 반응하여 유도된 CD3+ T 세포의 비율이 2.41%임을 감안할 때 24개의 아미노산으로 구성된 펩타이드인 에피토프만으로는 항원 특이 CD3+ T 세포의 유도가 미미하다는 것을 의미한다. As a result of the experiment, CD+ T cells that responded to Peptide Wt were not confirmed, and CD3+ T cells that responded to Pep.G12D, Pep.G12V, and Pep.G13D were also 0.31% (Pep.G12D), 0.11% (Pep.G12V) and It was confirmed that it was remarkably low at 0.25% (Pep.G13D). Considering that the ratio of CD3+ T cells induced in response to K-ras(M)-ROP is 2.41%, the above results indicate that the induction of antigen-specific CD3+ T cells is insignificant with only the epitope, which is a peptide composed of 24 amino acids.
6. K-ras(M)-ROP 및 Fast-IVS를 이용한 ROP-T 세포의 제조6. Preparation of ROP-T cells using K-ras(M)-ROP and Fast-IVS
상기 실험결과를 바탕으로 K-ras(M)-ROP에 반응하는 CD3+ T 세포(ROP-T 세포)를 제조하였다. 본 발명에서는 Fast-IVS(Fast-In vitro Stimulation)을 적용하여 ROP-T 세포를 제조하였다. Based on the above experimental results, CD3+ T cells (ROP-T cells) responding to K-ras(M)-ROP were prepared. In the present invention, ROP-T cells were prepared by applying Fast-IVS (Fast-In vitro Stimulation).
도 5는 본 발명의 Fast-IVS 공정과 No-Cytokine 공정을 비교한 결과를 보여준다. 패널 A는 Fast-IVS를 이용한 ROP-T 세포의 제조공정 및 평가 과정 및 ROP-T 세포의 특성 분석 과정을 보여준다. 패널 B는 Fast-IVS 공정 조건과 No-Cytokine 공정 조건에서 증폭된 T 세포의 IFN-γ+ CD3+ T 세포 비율을 비교한 결과를 보여준다.Figure 5 shows the results of comparing the Fast-IVS process and the No-Cytokine process of the present invention. Panel A shows the manufacturing process and evaluation process of ROP-T cells using Fast-IVS, and the characterization process of ROP-T cells. Panel B shows the result of comparing the ratio of IFN-γ+ CD3+ T cells in T cells expanded under the Fast-IVS process condition and the No-Cytokine process condition.
상기 Fast-IVS 공정은 항원을 이용하여 항원 특이적 CD3+ T 세포를 유도하는 것과 싸이토카인을 처리하여 세포 증폭(Cell Expansion)을 수행하는 공정을 동시에 수행하는 것을 특징으로 한다. 이에 반하여 상기 No-Cytokine 공정은 항원에 의해 유도된 항원 특이적 CD3+ T 세포에 대하여 싸이토카인을 처리하지 않고 세포 증폭을 수행하는 것을 특징으로 한다. The Fast-IVS process is characterized in that a process of inducing antigen-specific CD3+ T cells using an antigen and a process of performing cell expansion by treating cytokines are performed at the same time. In contrast, the No-Cytokine process is characterized in that cell amplification is performed without treating antigen-specific CD3+ T cells with cytokines.
상기 Fast-IVS 공정의 세포 증폭에 사용한 싸이토카인(cytokine)은 인터루킨-4(Interleukin-4, IL-4), 과립구 대식세포 콜로니 자극 인자(Granulocyte-Macrophage Colony-Stimulating Factor, GM-CSF), 종양괴사인자-α(Tumor Necrosis Factor-α, TNF-α), 인터루킨-1b(Interleukin-1β, IL-1β) 및 프로스타글란딘 E2(Prostaglandin E2, PGE2)이다. The cytokines used for cell amplification in the Fast-IVS process include Interleukin-4 (IL-4), Granulocyte-Macrophage Colony-Stimulating Factor (GM-CSF), and tumor necrosis. They are Tumor Necrosis Factor-α (TNF-α), Interleukin-1β (IL-1β), and Prostaglandin E2 (PGE2).
하기 표 3은 본 발명의 Fast-IVS 공정과 No-Cytokine 공정을 보여준다.Table 3 below shows the Fast-IVS process and the No-Cytokine process of the present invention.
Fast-IVS 공정Fast-IVS process No-Cytokine 공정 No-Cytokine Process
Day-0Day-0 LP-1 PBMC Seeding with Ag, IL-4, and GM-CSFLP-1 PBMC Seeding with Ag, IL-4, and GM-CSF LP-1 PBMC Seeding Without CytokineLP-1 PBMC Seeding Without Cytokine
Day-1Day-1 Adding TNF-α, IL-1β and PGE2Adding TNF-α, IL-1β and PGE2 No Cytokine AddingNo Cytokine Adding
Day 3Day 3 Expansion Expansion ExpansionExpansion
Day 5, 7, 9, 11, 12Days 5, 7, 9, 11, 12 Media AddingMedia Adding Media AddingMedia Adding
Day 13Day 13 HarvestHarvest HarvestHarvest
분석결과 Fast-IVS 공정에서 No-Cytokine 공정보다 IFN-γ를 분비하는 항원 특이적 CD3+ T 세포 비율이 4배가량 더 많이 증폭된 것이 확인되었다.As a result of the analysis, it was confirmed that the ratio of antigen-specific CD3+ T cells secreting IFN-γ was amplified about 4 times more in the Fast-IVS process than in the No-Cytokine process.
7. ROP-T 세포 제조용 Fast-IVS 공정의 최적화7. Optimization of the Fast-IVS process for manufacturing ROP-T cells
K-ras(M)-ROP의 처리 농도 및 Fast-IVS 공정조건을 변경하여 ROP-T 세포 제조용 Fast-IVS 공정을 최적화하였다. 하기 표 4는 Fast-IVS 공정의 최적화를 위한 실시예를 보여준다.The Fast-IVS process for preparing ROP-T cells was optimized by changing the treatment concentration of K-ras(M)-ROP and the Fast-IVS process conditions. Table 4 below shows examples for optimization of the Fast-IVS process.
실시예1Example 1 실시예2Example 2 실시예3Example 3
실험조건 Experiment conditions ScaleScale PBMCsPBMCs 10M@24well10M@24well 10M@24well10M@24well 10M@24well10M@24well
CytokineCytokine 제조사manufacturing company JW CreageneJW Creagene JW CreageneJW Creagene JW CreageneJW Creagene
K-ras(M)-ROPK-ras(M)-ROP ㎍/㎖ μg/mL 5.05.0 1.01.0 1.01.0
Fast-IVS(배지 AIM-V) 기간Fast-IVS (Badge AIM-V) Period DaysDays 55 55 77
Expansion 기간 Expansion period DaysDays 1010 1010 1010
실험결과Experiment result Expansion FoldExpansion Fold No Ag-TNo Ag-T 4545 3434 5555
ROP-TROP-T 5555 4949 6565
Helper T cellHelper T cells No Ag-TNo Ag-T 54.754.7 35.835.8 21.121.1
ROP-TROP-T 64.464.4 75.375.3 60.460.4
K-ras(M)-ROP specific T cell(IFN-γ+, CD3+)(%)K-ras(M)-ROP specific T cell (IFN-γ+, CD3+) (%) No Ag-TNo Ag-T 4.64.6 1.11.1 1.21.2
ROP-TROP-T 19.719.7 18.618.6 52.952.9
실험결과 모든 실시예에서 ROP-T 세포가 증폭된 것이 확인되었으며 최적의 Fast-IVS 공정은 K-ras(M)-ROP의 처리 농도 1.0㎍/㎖ 및 Fast-IVS 기간 7일 인 것으로 확인되었다.As a result of the experiment, it was confirmed that ROP-T cells were amplified in all examples, and it was confirmed that the optimal Fast-IVS process was a K-ras(M)-ROP treatment concentration of 1.0 μg/ml and a Fast-IVS period of 7 days.
8. ROP-T 세포 특성 분석8. ROP-T cell characterization
K-ras 돌연변이 에피토프(epitope) 스크리닝을 수행하여 증폭된 ROP-T 세포의 특성을 분석하였다. 이를 위하여 PBMC로부터 자가 수지상세포(Autologous Dendritic Cell)를 유도하고 상기 자가 수지상세포에 항원을 감작시켜 항원 특이적인 T 세포를 자극할 수 있는 항원 감작수지상 세포(Antigen pulsed Dendritic Cell, Ag pulsed DC)를 제조하여 ROP-T 세포의 반응성을 확인하였다. 상기 반응성은 재자극 IFN-γ 분비 T 세포 비율(Re-stimulation IFN-γ secretion T frequency)(%)을 산출하여 분석하였다. K-ras mutant epitope screening was performed to characterize the amplified ROP-T cells. To this end, autologous dendritic cells are induced from PBMC, and antigen pulsed dendritic cells (Ag pulsed DC) capable of stimulating antigen-specific T cells are prepared by sensitizing the autologous dendritic cells with an antigen. Thus, the reactivity of ROP-T cells was confirmed. The reactivity was analyzed by calculating the re-stimulation IFN-γ secretion T frequency (%).
도 6은 본 발명의 ROP-T 세포에 대한 K-ras 돌연변이 에피토프 스크리닝 결과를 보여준다. 패널 A는 IFN-γ+, CD3+, CD4+에 대한 FACS 분석결과를 보여준다. 패널 B는 조건 별 재자극 IFN-γ 분비 T 세포 비율의 세포 비율(%)을 분석한 결과를 보여준다. 6 shows the results of K-ras mutant epitope screening for ROP-T cells of the present invention. Panel A shows the results of FACS analysis for IFN-γ+, CD3+, and CD4+. Panel B shows the result of analyzing the cell ratio (%) of the restimulation IFN-γ secreting T cell ratio for each condition.
먼저 자가 수지상세포(Autologous DC)를 4일간 배양하고 항원에 감작시켜 Ag pulsed DC를 준비하였다. 상기 Ag pulsed DC는 96well에 5x103cells/100㎕으로 분주하였다. K-ras(M)-ROP 특이 CD3+ T 세포를 상기 96well에 1x105cells/100㎕가 되도록 분주하되 상기 Ag pulsed DC와 K-ras(M)-ROP 특이 CD3+ T 세포의 세포수가 1:20의 비율이 되도록 하였다. Ag pulsed DC와 K-ras(M)-ROP 특이 CD3+ T 세포가 혼합된 배지는 4시간동안 배양하였다. 상기 FACS를 이용하여 배양된 세포들의 CD3+, CD4+, CD137+, IFN-γ cap, 및 IFN-γ 분비 T 세포 비율(%)을 분석하였다. 상기 Ag pulsed DC의 제조에 사용한 항원은 K-ras(M)-ROP(500aa)(ROP_DC), K-ras1-24wild type peptide(WT_DC), K-ras1-24G12D mutant peptide(G12D_DC), K-ras1-24G12V mutant peptide(G12V_DC), 및 K-ras1-24G13D mutant peptide(G13D_DC)이었다. 또한 비교를 위하여 항원(Ag) 없이 실행기(effector)만을 사용한 DC(NoAg_DC)를 사용하였다. First, autologous DCs were cultured for 4 days and Ag pulsed DCs were prepared by sensitizing them to an antigen. The Ag pulsed DC was dispensed at 5x10 3 cells/100 μl in 96 well. K-ras(M)-ROP-specific CD3+ T cells were dispensed into the 96 well to be 1x10 5 cells/100 μl, but the Ag pulsed DC and K-ras(M)-ROP-specific CD3+ T cells were divided into 1:20 cells. ratio was made. A medium containing Ag pulsed DC and K-ras(M)-ROP-specific CD3+ T cells was cultured for 4 hours. CD3+, CD4+, CD137+, IFN-γ cap, and IFN-γ secreting T cell ratios (%) of the cultured cells were analyzed using the FACS. Antigens used in the preparation of the Ag pulsed DC were K-ras (M)-ROP (500aa) (ROP_DC), K-ras 1-24 wild type peptide (WT_DC), K-ras 1-24 G12D mutant peptide (G12D_DC) , K-ras 1-24 G12V mutant peptide (G12V_DC), and K-ras 1-24 G13D mutant peptide (G13D_DC). Also, for comparison, DC (NoAg_DC) using only an effector without an antigen (Ag) was used.
실험결과 ROP_DC를 사용하여 재자극한 경우 CD3+ ROP-T 세포에 존재하는 K-ras(M)-ROP 특이 CD3+/CD4+ T 세포와 K-ras(M)-ROP 특이 CD3+/CD8+ T 세포의 비율(%)이 각각 10% 및 5%인 것이 확인되었다. G12D_DC를 사용하여 재자극한 경우 CD3+ ROP-T 세포에 존재하는 K-ras(M)-ROP 특이 CD3+/CD4+ T 세포와 K-ras(M)-ROP 특이 CD3+/CD8+ T 세포의 비율(%)이 각각 1.5% 및 0.5%인 것이 확인되었다. G13D_DC를 사용하여 재자극한 경우 CD3+ ROP-T 세포에 존재하는 K-ras(M)-ROP 특이 CD3+/CD4+ T 세포와 K-ras(M)-ROP 특이 CD3+/CD8+ T 세포의 비율(%)이 각각 3.0% 및 1.5%인 것이 확인되었다. 이에 반하여 Wt_DC 및 G12V_DC를 사용하여 재자극한 경우 K-ras(M)-ROP 특이 CD3+/CD4+ T 세포와 K-ras(M)-ROP 특이 CD3+/CD8+ T 세포가 거의 검출되지 않았다.Experimental results Ratio of K-ras(M)-ROP-specific CD3+/CD4+ T cells and K-ras(M)-ROP-specific CD3+/CD8+ T cells present in CD3+ ROP-T cells when restimulated with ROP_DC ( %) were found to be 10% and 5%, respectively. Ratio (%) of K-ras(M)-ROP-specific CD3+/CD4+ T cells and K-ras(M)-ROP-specific CD3+/CD8+ T cells present in CD3+ ROP-T cells when restimulated with G12D_DC It was confirmed that these were 1.5% and 0.5%, respectively. Ratio (%) of K-ras(M)-ROP-specific CD3+/CD4+ T cells and K-ras(M)-ROP-specific CD3+/CD8+ T cells present in CD3+ ROP-T cells when restimulated with G13D_DC It was confirmed that these were 3.0% and 1.5%, respectively. In contrast, when restimulation using Wt_DC and G12V_DC, K-ras(M)-ROP-specific CD3+/CD4+ T cells and K-ras(M)-ROP-specific CD3+/CD8+ T cells were hardly detected.
9. ROP-T 세포의 HLA 제한 분석9. HLA restriction assay of ROP-T cells
유도된 ROP-T 중 K-ras G13D mutant 특이 T 세포의 HLA 제한(restriction)을 확인하기 위해 인간 백혈구 항원(Human leukocyte antigen DQ, HLA-DQ) 에세이를 수행하였다. In order to confirm HLA restriction of K-ras G13D mutant-specific T cells among induced ROP-T, human leukocyte antigen DQ (HLA-DQ) assay was performed.
도 7은 본 발명의 HLA-DQ blocking 에세이 결과를 보여준다.7 shows the results of the HLA-DQ blocking assay of the present invention.
먼저 항원을 감작시킨 DC(Ag pulsed DC)를 제조하였다. 상기 Ag pulsed DC의 제조에 사용한 항원은 K-ras(M)-ROP(500aa)(ROP_DC), K-ras1-24wild type peptide(WT_DC), K-ras1-24G12D mutant peptide(G12D_DC), K-ras1-24G12V mutant peptide(G12V_DC), 및 K-ras1-24G13D mutant peptide(G13D_DC)이었다. 상기 제조한 Ag pulsed DC에 대하여 1시간동안 HLA-DQ 항체로 처리하는 방법으로 HLA-DQ blocking을 실시하였다. HLA-DQ blocking된 Ag pulsed DC를 이용하여 ROP-T를 재자극(re-stimulation)한 후 FACS 분석을 통해 IFN-γ+, CD3+, CD4+를 분석하였다. First, antigen-primed DC (Ag pulsed DC) was prepared. Antigens used in the preparation of the Ag pulsed DC were K-ras (M)-ROP (500aa) (ROP_DC), K-ras 1-24 wild type peptide (WT_DC), K-ras 1-24 G12D mutant peptide (G12D_DC) , K-ras 1-24 G12V mutant peptide (G12V_DC), and K-ras 1-24 G13D mutant peptide (G13D_DC). HLA-DQ blocking was performed by treating the prepared Ag pulsed DC with an HLA-DQ antibody for 1 hour. After re-stimulation of ROP-T using HLA-DQ blocked Ag pulsed DC, IFN-γ +, CD3 +, and CD4 + were analyzed by FACS analysis.
분석결과 항원 비특이 T 세포(NoAg-T)은 재자극에 사용한 DC의 종류 및 상기 DC에 대한 HLA-DQ blocking의 여부에 상관없이 IFN-γ를 분비하는 CD3+CD4+ T 세포의 비율이 미미한 것으로 확인되었다. 이에 반하여 ROP-T 세포는 ROP_DC를 사용하여 재자극하게 되면 DC에 대한 HLA-DQ blocking 여부에 상관없이 IFN-γ를 분비하는 CD3+CD4+ T 세포의 비율이 15% 이상으로 증가하는 것으로 확인되었다. 또한 ROP-T 세포는 HLA-DQ blocked G13D_DC를 이용하여 재자극을 수행한 경우 IFN-γ를 분비하는 CD3+CD4+ T 세포의 비율이 HLA-DQ unblocked G13D_DC를 사용하여 재자극한 경우에 대비하여 6% 가량 감소(7% →1%)하는 것이 확인 되었다.As a result of the analysis, antigen-specific T cells (NoAg-T) showed that the ratio of CD3+CD4+ T cells secreting IFN-γ was insignificant, regardless of the type of DC used for restimulation and whether or not HLA-DQ blocking was performed on the DC. Confirmed. On the other hand, when ROP-T cells were re-stimulated using ROP_DC, it was confirmed that the ratio of CD3+CD4+ T cells secreting IFN-γ increased to 15% or more regardless of HLA-DQ blocking for DC. In addition, ROP-T cells, when restimulation was performed using HLA-DQ blocked G13D_DC, the ratio of CD3+CD4+ T cells secreting IFN-γ was 6 in preparation for restimulation using HLA-DQ unblocked G13D_DC. % reduction (7% → 1%) was confirmed.
결과적으로 본 발명의 ROP-T 세포는 ROP 항원에 특이적이며 HLA-DQ에 제한적이며 G13D 돌연변이에 특이성을 보이는 CD4+ T 세포의 증폭을 유도하는 것으로 판단된다.As a result, it is determined that the ROP-T cells of the present invention induce the expansion of CD4+ T cells that are specific for the ROP antigen, restrictive for HLA-DQ, and show specificity for the G13D mutation.
10. 대조군 native K-ras-T 세포와 peptide mix-T 세포의 비교10. Comparison of control native K-ras-T cells and peptide mix-T cells
K-ras(M)-ROP의 K-ras 돌연변이에 대한 특이적인 반응 유도를 검증하였다. Induction of a specific reaction of K-ras(M)-ROP to K-ras mutation was verified.
도 8은 본 발명의 조건별 IFN-γ를 분비(IFN-γ+)하는 CD3+ T 세포의 비율을 보여준다. 먼저 K-ras(M)-ROP 또는 native K-ras(189aa)을 항원으로 사용하는 Fast-IVS 공정을 이용하여 T 세포를 유도하였다. 또한 K-ras1-24wild type 펩타이드, K-ras1-24G12D 펩타이드, K-ras1-24G12V 펩타이드, 및 K-ras1-24G13D 펩타이드 혼합물을 항원으로 사용하는 Fast-IVS 공정을 이용하여 T 세포를 유도하였다. 대조군으로는 항원없이 실행기만을 사용하는 Fast-IVS 공정을 이용하여 T 세포를 유도하였다. 상기 유도한 T 세포는 ROP_DC를 이용하여 재자극하고 FACS를 이용하여 IFN-γ+ CD3+ T 세포의 비율을 분석하였다.Figure 8 shows the ratio of CD3+ T cells secreting IFN-γ (IFN-γ+) for each condition of the present invention. First, T cells were induced using the Fast-IVS process using K-ras(M)-ROP or native K-ras(189aa) as an antigen. In addition, Fast-IVS process using a mixture of K-ras 1-24 wild type peptide, K-ras 1-24 G12D peptide, K-ras 1-24 G12V peptide, and K-ras 1-24 G13D peptide as antigens was used Thus, T cells were induced. As a control, T cells were induced using the Fast-IVS process using only the effector without antigen. The induced T cells were re-stimulated using ROP_DC and the percentage of IFN-γ+ CD3+ T cells was analyzed using FACS.
하기 표 5는 K-ras(M)-ROP의 K-ras 돌연변이에 대한 특이적인 반응 유도 검증 실험방법을 보여준다. 하기 표 5에 있어서 K-ras epitope wild type은 Native K-ras1-24(24aa)를 의미하며; K-ras epitope G12D는 K-ras1-24G12D(24aa)를 의미하며; K-ras epitope G12V는 K-ras1-24G12V(24aa)를 의미하며; K-ras epitope G13D는 K-ras1-24G13D(24aa)를 의미한다.Table 5 below shows an experimental method for verifying the induction of a specific reaction of K-ras(M)-ROP to the K-ras mutation. In Table 5 below, K-ras epitope wild type means Native K-ras 1-24 (24aa); K-ras epitope G12D means K-ras 1-24 G12D (24aa); K-ras epitope G12V means K-ras 1-24 G12V (24aa); K-ras epitope G13D means K-ras 1-24 G13D (24aa).
conditionsconditions Fast-IVSFast-IVS ExpansionExpansion
AntigenAntigen CytokineCytokine DaysDays MediaMedia DaysDays
No Ag-TNo Ag-T -- D0:IL-4, GM-CSF
D+1:TNF-a, IL-1b, PGE2
D0:IL-4, GM-CSF
D+1: TNF-a, IL-1b, PGE2
7 Days7 Days Alys+IL-2+SR3%Alys+IL-2+SR3% 10 Days10 days
ROP-TROP-T K-ras(M)-ROP(8.5μM=5㎍/㎖)K-ras(M)-ROP (8.5μM=5μg/ml)
Pep.-TPep. -T K-ras epitope(24mer) 4종 혼합물(wild type, G12D, G12V, G13D)(8.5μM)K-ras epitope (24mer) 4 kinds mixture (wild type, G12D, G12V, G13D) (8.5μM)
WT-TWT-T Native K-ras(8.5μM=2㎍/㎖)Native K-ras (8.5μM=2μg/ml)
실험결과 항원을 사용하지 않고 Fast-IVS를 통해 유도한 T 세포(No Ag-T)의 경우 IFN-γ+ CD3+ T 세포의 비율이 8% 수준인 것으로 확인되었다. K-ras(M)-ROP을 항원으로 사용하는 Fast-IVS 공정을 통해 유도한 T 세포(ROP-T)의 경우 IFN-γ+ CD3+ T 세포의 비율이 37.4%에 달하는 것으로 확인되었다. Native K-ras를 항원으로 사용하는 Fast-IVS 공정을 통해 유도한 T 세포(WT-T)의 경우 IFN-γ+ CD3+ T 세포의 비율이 18.4% 수준인 것으로 확인되었다. K-ras1-24wild type 펩타이드, K-ras1-24G12D 펩타이드, K-ras1-24G12V 펩타이드, 및 K-ras1-24G13D 펩타이드 혼합물을 항원으로 사용하는 Fast-IVS 공정을 통해 유도한 T 세포(Pep_T)의 경우 IFN-γ+ CD3+ T 세포의 비율이 19.0% 수준인 것으로 확인되었다. As a result of the experiment, in the case of T cells (No Ag-T) induced through Fast-IVS without using an antigen, it was confirmed that the ratio of IFN-γ+ CD3+ T cells was 8%. In the case of T cells (ROP-T) induced through the Fast-IVS process using K-ras(M)-ROP as an antigen, the proportion of IFN-γ+ CD3+ T cells reached 37.4%. In the case of T cells (WT-T) induced through the Fast-IVS process using native K-ras as an antigen, the proportion of IFN-γ+ CD3+ T cells was confirmed to be 18.4%. Induced through the Fast-IVS process using a mixture of K-ras 1-24 wild type peptide, K-ras 1-24 G12D peptide, K-ras 1-24 G12V peptide, and K-ras 1-24 G13D peptide as antigens In the case of one T cell (Pep_T), the ratio of IFN-γ+ CD3+ T cells was confirmed to be 19.0%.
정리하면 K-ras(M)-ROP 항원이 Native K-ras 또는 K-ras 돌연변이를 포함하는 에피토프를 사용하는 것보다 2배 가량 우수한 IFN-γ+ CD3+ T 세포 유도 효과가 있는 것으로 판단된다.In summary, it is judged that the K-ras(M)-ROP antigen has an IFN-γ+ CD3+ T cell induction effect that is about twice as good as that using native K-ras or an epitope containing a K-ras mutation.
11. ROP-T 세포의 암세포 독성 효과 확인11. Confirmation of cancer cytotoxic effect of ROP-T cells
Fast-IVS 공정을 통해 유도한 T 세포(ROP-T)의 암세포 용해(killing) 효과를 확인하였다. 이를 위하여 유방선암(breast adenocarcinoma), 흑색종(melanoma), 대장선암(colorectal adenocarcinoma), 폐유두선암(lung papillary adenocarcinoma), 또는 폐대세포암(lung large cell carcinoma)의 세포주와 ROP을 항원으로 사용하는 Fast-IVS 공정을 이용하여 유도한 T 세포(ROP-T) 또는 항원을 사용하지 않는 Fast-IVS 공정을 이용하여 유도한 T 세포(LAK-T)를 함께 배양하여 각각의 T 세포가 각 암세포를 얼마나 용해하는지 확인하였다.Cancer cell lysis (killing) effect of T cells (ROP-T) induced through the Fast-IVS process was confirmed. To this end, cell lines of breast adenocarcinoma, melanoma, colorectal adenocarcinoma, lung papillary adenocarcinoma, or lung large cell carcinoma and ROP are used as antigens. T cells induced using the Fast-IVS process (ROP-T) or T cells induced using the Fast-IVS process (LAK-T) that do not use antigens are co-cultured so that each T cell can kill each cancer cell. It was confirmed how soluble it was.
하기 표 6은 각 암종의 세포주에 대한 분석 정보를 보여준다.Table 6 below shows analysis information for each carcinoma cell line.
세포주명cell line name 암종carcinoma K-ras 돌연변이K-ras mutation HLA-typeHLA-type
HLA-AHLA-A HLA-DR(B1)HLA-DR (B1) HLA-DQ(B1)HLA-DQ (B1)
MCF7MCF7 유방선암
(breast adenocarcinoma)
breast adenocarcinoma
(breast adenocarcinoma)
없음doesn't exist 02:01, 02:0102:01, 02:01 15:01, 15:0115:01, 15:01 06:02, 06:0206:02, 06:02
526mel526mel 흑색종
(melanoma)
melanoma
(melanoma)
없음doesn't exist 02:01, 0302:01, 03 -- --
MDA MB231MDA MB231 유방선암
(breast adenocarcinoma)
breast adenocarcinoma
(breast adenocarcinoma)
G13DG13D 02:17, 02:0102:17, 02:01 13:05, 07:0113:05, 07:01 03:04, 03:0403:04, 03:04
SW480SW480 대장선암
(colorectal adenocarcinoma)
colorectal adenocarcinoma
(colorectal adenocarcinoma)
G12VG12V 24:02, 02:0124:02, 02:01 13:27, 15:0113:27, 15:01 06:03, 05:0106:03, 05:01
NCI-H441NCI-H441 폐유두선암
(lung papillary adenocarcinoma)
lung papillary adenocarcinoma
(lung papillary adenocarcinoma)
G12VG12V 03:01, 02:0103:01, 02:01 13:23, 14:1013:23, 14:10 06:07, 06:0706:07, 06:07
T3M-10T3M-10 폐대세포암
(lung large cell carcinoma)
lung large cell carcinoma
(lung large cell carcinoma)
G12DG12D 24:02, 11:0124:02, 11:01 11:01, 08:0311:01, 08:03 06:01, 03:0406:01, 03:04
분석결과 유방선암(breast carcinoma)의 세포주인 MCF7와 색종(melanoma)의 세포주인 526mel은 K-ras가 검출되었으나 돌연변이는 검출되지 않은 것으로 확인되었으며 유방선암(breast adenocarcinoma)의 세포주인 MDA MB231은 K-ras G13D 돌연변이; 대장선암(colorectal adenocarcinoma)의 세포주인 SW480 및 폐유두선암(lung papillary adenocarcinoma)의 세포주인 NCI-H441는 K-ras G12V 돌연변이; 및 폐대세포암(lung large cell carcinoma)의 세포주인 T3M-10은 K-ras G12D 돌연변이를 포함하고 있는 것으로 확인되었다.As a result of the analysis, MCF7, a cell line of breast carcinoma, and 526mel, a cell line of melanoma, confirmed that K-ras was detected, but no mutation was detected. ras G13D mutation; SW480, a cell line of colorectal adenocarcinoma, and NCI-H441, a cell line of lung papillary adenocarcinoma, had K-ras G12V mutation; and T3M-10, a lung large cell carcinoma cell line, were found to contain the K-ras G12D mutation.
도 9는 본 발명의 ROP-T세포의 암세포에 대한 독성실험결과를 보여준다.Figure 9 shows the toxicity test results of ROP-T cells of the present invention on cancer cells.
실험결과 본 발명의 ROP-T 세포는 ROP 항원처리를 수행하지 않은 LAK-T 세포에 대비하여 유방선암세포, 흑색종세포, 대장선암세포, 폐유두선암세포, 및 폐대세포암세포에 대한 독성이 유의미한 수준으로 높은 것으로 확인되었다. As a result of the experiment, the ROP-T cells of the present invention showed a significant level of toxicity against breast adenocarcinoma cells, melanoma cells, colon adenocarcinoma cells, lung papillary adenocarcinoma cells, and lung colon adenocarcinoma cells compared to LAK-T cells not subjected to ROP antigen treatment. confirmed to be high.
대장암 환자로부터 암조직을 수득한 후 HLA-typing 및 K-ras 돌연변이에 대한 검사를 수행하였다. After obtaining cancer tissues from colorectal cancer patients, tests for HLA-typing and K-ras mutation were performed.
하기 표 7은 대장암 환자로부터 수득한 암세포(primary culture)에 대한 검사결과를 보여준다.Table 7 below shows test results for cancer cells (primary culture) obtained from colorectal cancer patients.
암종carcinoma K-ras 돌연변이K-ras mutation HLA-typeHLA-type
HLA-AHLA-A HLA-DR(B1)HLA-DR (B1) HLA-DQ(B1)HLA-DQ (B1)
대장암(Colorectal cancer)Colorectal cancer G12DG12D 02:01, 24:0202:01, 24:02 04:06, 12:0104:06, 12:01 03:01, 03:0203:01, 03:02
상기 대장암 환자의 암조직으로부터 primary culture 수행하여 대장암 세포를 수득하고 ROP을 항원으로 사용하는 Fast-IVS 공정을 이용하여 유도한 T 세포(ROP-T) 또는 항원을 사용하지 않는 Fast-IVS 공정을 이용하여 유도한 T 세포(LAK-T)를 함께 배양하여 각각의 T 세포가 대장암세포의 생장을 얼마나 억제하는지 확인하였다. Colorectal cancer cells are obtained by performing primary culture from the cancer tissue of the colorectal cancer patient, and T cells (ROP-T) induced using the Fast-IVS process using ROP as an antigen or Fast-IVS process using no antigen T cells (LAK-T) induced using were cultured together to confirm how much each T cell inhibits the growth of colon cancer cells.
도 10은 본 발명의 ROP-T세포의 대장암 환자의 암세포에 대한 growth curve를 분석한 결과를 보여준다. 실험 결과 본 발명의 ROP-T세포는 LAK-T세포에 대비하여 10%가량 대장암세포의 생장을 억제하는 것으로 확인되었다.10 shows the results of analyzing the growth curve of the ROP-T cells of the present invention for cancer cells of colorectal cancer patients. As a result of the experiment, it was confirmed that the ROP-T cells of the present invention inhibited the growth of colon cancer cells by about 10% compared to the LAK-T cells.
본 명세서에서 설명된 구체적인 실시예는 본 발명의 바람직한 구현예 또는 예시를 대표하는 의미이며, 이에 의해 본 발명의 범위가 한정되지는 않는다. 본 발명의 변형과 다른 용도가 본 명세서 특허청구범위에 기재된 발명의 범위로부터 벗어나지 않는다는 것은 당업자에게 명백하다. Specific examples described in this specification are meant to represent preferred embodiments or examples of the present invention, and the scope of the present invention is not limited thereby. It will be apparent to those skilled in the art that variations and other uses of the present invention do not depart from the scope of the invention described in the claims.
본 발명의 K-ras 특이적 활성화 T 세포 유도용 항원 조성물과 싸이토카인(cytokine)을 이용하여 유도한 K-ras 특이적 활성화 T 세포를 포함하는 폐 유두상 선암종(lung papillary adenocarcinoma)의 예방 및 치료용 약제학적 조성물을 이용하면 폐 유두상 선암종을 치료할 수 있다.Prevention and treatment of lung papillary adenocarcinoma comprising K-ras-specific activated T cells induced using the antigen composition for inducing K-ras-specific activated T cells of the present invention and cytokine The pharmaceutical composition can be used to treat lung papillary adenocarcinoma.
1. 서열번호 1의 아미노산 서열1. Amino acid sequence of SEQ ID NO: 1
MTEYKLVVVG ADGVGKSALT IQLIQNHFVD LRMKMTEYKL VVVGAVGVGK SALTIQLIQN 60MTEYKLVVVG ADGVGKSALT IQLIQNHFVD LRMKMTEYKL VVVGAVGVGK SALTIQLIQN 60
HFVDLRMKKS ALTIQLIQNH FVDEYDPTIE DSYRKQVVLR MKEYDPTIED SYRKQVVIDG 120HFVDLRMKKS ALTIQLIQNH FVDEYDPTIE DSYRKQVVLR MKEYDPTIED SYRKQVVIDG 120
ETCLLDILDT AGLRMKIDGE TCLLDILDTA GQEEYSAMRD QYMRTGLRMK QEEYSAMRDQ 180ETCLLDILDT AGLRMKIDGE TCLLDILDTA GQEEYSAMRD QYMRTGLRMK QEEYSAMRDQ 180
YMRTGEGFLC VFAINNTKSF LRMKEGFLCV FAINNTKSFE DIHHYREQIK RVKDLRMKED 240YMRTGEGFLC VFAINNTKSF LRMKEGFLCV FAINNTKSFE DIHHYREQIK RVKDLRMKED 240
IHHYREQIKR VKDSEDVPMV LVGNKCDLLR MKSEDVPMVL VGNKCDLPSR TVDTKQAQDL 300IHHYREQIKR VKDSEDVPMV LVGNKCDLLR MKSEDVPMVL VGNKCDLPSR TVDTKQAQDL 300
ARLRMKPSRT VDTKQAQDLA RSYGIPFIET SAKTRQLRMK SYGIPFIETS AKTRQRVEDA 360ARLRMKPSRT VDTKQAQDLA RSYGIPFIET SAKTRQLRMK SYGIPFIETS AKTRQRVEDA 360
FYTLVREIRQ LRMKRVEDAF YTLVREIRQY RLKKISKEEK TPGCLRMKYR LKKISKEEKT 420FYTLVREIRQ LRMKRVEDAF YTLVREIRQY RLKKISKEEK TPGCLRMKYR LKKISKEEKT 420
PGCVKIKKCI IMLRMKMTEY KLVVVGAGDV GKSALTIQLI QNHFVDLRMK MTEYKLVVVG 480PGCVKIKKCI IMLRMKMTEY KLVVVGAGDV GKSALTIQLI QNHFVDLRMK MTEYKLVVVG 480
AGGVGKSALT IQLIQNHFVDAGGVGKSALT IQLIQNHFVD
2. 서열번호 2의 아미노산 서열2. Amino acid sequence of SEQ ID NO: 2
MTEYKLVVVG AGGVGKSALT IQLIQNHFVD EYDPTIEDSY RKQVVIDGET CLLDILDTAG 60MTEYKLVVVG AGGVGKSALT IQLIQNHFVD EYDPTIEDSY RKQVVIDGET CLLDILDTAG 60
QEEYSAMRDQ YMRTGEGFLC VFAINNTKSF EDIHHYREQI KRVKDSEDVP MVLVGNKCDL 120QEEYSAMRDQ YMRTGEGFLC VFAINNTKSF EDIHHYREQI KRVKDSEDVP MVLVGNKCDL 120
PSRTVDTKQA QDLARSYGIP FIETSAKTRQ RVEDAFYTLV REIRQYRLKK ISKEEKTPGC 180PSRTVDTKQA QDLARSYGIP FIETSAKTRQ RVEDAFYTLV REIRQYRLKK ISKEEKTPGC 180
VKIKKCIIMVKIKKCIIM

Claims (8)

  1. K-ras 특이적 활성화 T 세포 유도용 항원 조성물과 싸이토카인(cytokine)을 이용하여 유도한 K-ras 특이적 활성화 T 세포를 포함하는 폐 유두상 선암종(lung papillary adenocarcinoma)의 예방 및 치료용 약제학적 조성물.A pharmaceutical composition for preventing and treating lung papillary adenocarcinoma, comprising an antigen composition for inducing K-ras-specific activated T cells and K-ras-specific activated T cells induced using cytokine .
  2. 제 1 항에 있어서, 상기 폐 유두상 선암종(lung papillary adenocarcinoma)의 암세포는 K-ras, K-ras 돌연변이 G12V, K-ras 돌연변이 G12D, 또는 K-ras 돌연변이 G13D가 검출되는 것을 특징으로 하는 폐 유두상 선암종(lung papillary adenocarcinoma)의 예방 및 치료용 약제학적 조성물.The lung papilla according to claim 1, wherein K-ras, K-ras mutant G12V, K-ras mutant G12D, or K-ras mutant G13D is detected in the lung papillary adenocarcinoma cancer cells. A pharmaceutical composition for preventing and treating lung papillary adenocarcinoma.
  3. 제 1 항에 있어서, 상기 K-ras 특이적 활성화 T 세포 유도용 항원 조성물은 서열번호 1의 아미노산 서열로 이루어진 K-ras 돌연변이 재조합 중첩 펩타이드를 유효성분으로 포함하는 것을 특징으로 하는 폐 유두상 선암종(lung papillary adenocarcinoma)의 예방 및 치료용 약제학적 조성물.The pulmonary papillary adenocarcinoma according to claim 1, wherein the antigen composition for inducing K-ras-specific activated T cells comprises a K-ras mutant recombinant overlapping peptide consisting of the amino acid sequence of SEQ ID NO: 1 as an active ingredient ( A pharmaceutical composition for preventing and treating lung papillary adenocarcinoma).
  4. 제 3 항에 있어서, 상기 K-ras 돌연변이 재조합 중첩 펩타이드는 서열번호 2로 이루어진 K-ras의 아미노산 서열에서 어느 하나의 아미노산으로부터 순차적으로 나열된 아미노산 서열을 단위로 하는 총 12 종류의 에피토프(epitope(n=1, 2, 3....10, 11, 12); 여기서 n은 에피토프의 순번을 의미하며 에피토프(n=1 내지 11)는 30개의 아미노산 서열을 포함하고 마지막 에프토프(n=12)는 23개의 아미노산 서열을 포함한다.)를 포함하되 에피토프(n=1)를 제외한 에피토프(n=2, 3,...12)는 N-terminal 방향 15개의 아미노산 서열이 직전 순번의 에피토프(n-1)의 C-terminal 방향 15개의 아미노산 서열과 서로 중첩되도록 디자인된 것을 특징으로 하는 폐 유두상 선암종(lung papillary adenocarcinoma)의 예방 및 치료용 약제학적 조성물.The method of claim 3, wherein the K-ras mutant recombinant overlapping peptide is a total of 12 types of epitopes (epitope (n = 1, 2, 3...10, 11, 12); where n means the sequence of epitopes, the epitopes (n = 1 to 11) contain 30 amino acid sequences, and the last epitope (n = 12) contains a 23 amino acid sequence.), but the epitope (n = 2, 3, ... 12) except for the epitope (n = 1) is the epitope (n = 12) of the 15 amino acid sequence in the N-terminal direction A pharmaceutical composition for preventing and treating lung papillary adenocarcinoma, characterized in that it is designed to overlap with the 15 amino acid sequences in the C-terminal direction of -1).
  5. 제 4 항에 있어서, 상기 K-ras 돌연변이 재조합 중첩 펩타이드는 상기 에피토프(n=1, 2, 3...10, 11, 12)가 순번에 따라 위치하며 상기 에피토프 사이는 LRMK-링커로 연결된 것을 특징으로 하는 폐 유두상 선암종(lung papillary adenocarcinoma)의 예방 및 치료용 약제학적 조성물.The method of claim 4, wherein the K-ras mutant recombinant overlapping peptides are located in the order of the epitopes (n = 1, 2, 3...10, 11, 12), and the epitopes are linked by an LRMK-linker A pharmaceutical composition for the prevention and treatment of lung papillary adenocarcinoma.
  6. 제 4 항에 있어서, 상기 에피토프(n=1)는 K-ras 돌연변이 G12V를 포함하며; 상기 에피토프(n=1)의 N-terminal에는 K-ras 돌연변이 G12D를 포함하는 에피토프(n=1)가 LRMK-링커로 더 연결되고; 상기 에피토프(n=12)의 C-terminal에는 K-ras 돌연변이 G13D을 포함하는 에피토프(n=1)가 LRMK-링커로 더 연결되며; 상기 K-ras 돌연변이 G13D을 포함하는 에피토프(n=1)의 C-terminal에는 K-ras 돌연변이가 포함되지 않은 에피토프(n=1)가 LRMK-링커로 더 연결되는 것을 특징으로 하는 폐 유두상 선암종(lung papillary adenocarcinoma)의 예방 및 치료용 약제학적 조성물.5. The method of claim 4, wherein the epitope (n=1) comprises the K-ras mutation G12V; An epitope (n = 1) containing K-ras mutant G12D is further linked to the N-terminal of the epitope (n = 1) by an LRMK-linker; An epitope (n = 1) containing K-ras mutant G13D is further linked to the C-terminal of the epitope (n = 12) by an LRMK-linker; Lung papillary adenocarcinoma, characterized in that an epitope (n = 1) not containing a K-ras mutation is further linked with an LRMK-linker to the C-terminal of the epitope (n = 1) containing the K-ras mutation G13D A pharmaceutical composition for the prevention and treatment of (lung papillary adenocarcinoma).
  7. 제 1 항에 있어서, 상기 K-ras 특이적 활성화 T 세포는 상기 K-ras 특이적 활성화 T 세포 유도용 항원 조성물과 1차 싸이토카인(cytokine)을 포함하는 배지에서 말초혈액단핵세포(Peripheral Blood Mononuclear Cell, PBMC)를 배양하여 수지상 세포(dentritic cell)를 성숙시키는 동시에 K-ras 특이적 활성화 T 세포를 유도하는 제 1 단계;The method of claim 1, wherein the K-ras-specific activated T cells are obtained from peripheral blood mononuclear cells in a medium containing the antigen composition for inducing K-ras-specific activated T cells and a primary cytokine. A first step of culturing PBMC) to mature dentritic cells and inducing K-ras-specific activated T cells;
    상기 배양된 PBMC에 2차 싸이토카인을 첨가하고 배양하여 K-ras 특이적 활성화 T 세포를 더 유도하는 제 2 단계; 및a second step of further inducing K-ras-specific activated T cells by adding and culturing a secondary cytokine to the cultured PBMC; and
    상기 2차 싸이토카인을 첨가하고 배양한 PBMC를 배양하여 K-ras 특이적 활성화 T 세포를 증폭시킨 후 수득하는 제 3 단계;를 포함하는 것을 특징으로 하는 K-ras 특이적 활성화 T 세포 유도용 항원 조성물을 이용한 K-ras 특이적 활성화 T 세포의 유도 방법으로 제조되는 것을 특징으로 하는 폐 유두상 선암종(lung papillary adenocarcinoma)의 예방 및 치료용 약제학적 조성물.Antigen composition for inducing K-ras-specific activated T cells, characterized in that it comprises a; A pharmaceutical composition for preventing and treating lung papillary adenocarcinoma, characterized in that it is prepared by a method for inducing K-ras-specific activated T cells using.
  8. 제 7 항에 있어서, 상기 1차 싸이토카인은 인터루킨-4(Interleukin-4) 및 과립구 대식세포 콜로니 자극인자(Granulocyte-Macrophage Colony-Stimulating Factor, GM-CSF)이며 상기 2차 싸이토카인은 종양괴사인자-α(Tumor Necrosis Factor-α), 인터루킨-1β(Interleukin-1β), 및 프로스타글란딘 E2(Prostaglandin E2)인 것을 특징으로 하는 폐 유두상 선암종(lung papillary adenocarcinoma)의 예방 및 치료용 약제학적 조성물.The method of claim 7, wherein the primary cytokines are interleukin-4 and granulocyte-macrophage colony-stimulating factor (GM-CSF), and the secondary cytokines are tumor necrosis factor-α (Tumor Necrosis Factor-α), interleukin-1β (Interleukin-1β), and prostaglandin E2 (Prostaglandin E2) characterized in that the lung papillary adenocarcinoma (lung papillary adenocarcinoma) for preventing and treating a pharmaceutical composition.
PCT/KR2022/019961 2021-12-29 2022-12-08 Pharmaceutical composition comprising activated t cells specific to k-ras for preventing and treating lung papillary adenocarcinoma and method for preparing same WO2023128377A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020210191261A KR20230101283A (en) 2021-12-29 2021-12-29 Pharmaceutical Composition For Preventing Or Treating Lung Papillary Adenocarcinoma Comprising K-ras Specific Activated T Cell And Manufacturing Method Thereof
KR10-2021-0191261 2021-12-29

Publications (1)

Publication Number Publication Date
WO2023128377A1 true WO2023128377A1 (en) 2023-07-06

Family

ID=86999547

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/019961 WO2023128377A1 (en) 2021-12-29 2022-12-08 Pharmaceutical composition comprising activated t cells specific to k-ras for preventing and treating lung papillary adenocarcinoma and method for preparing same

Country Status (2)

Country Link
KR (1) KR20230101283A (en)
WO (1) WO2023128377A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170096199A (en) * 2014-12-26 2017-08-23 닛토덴코 가부시키가이샤 Methods and compositions for treating malignant tumors associated with kras mutation
KR20170122270A (en) * 2015-03-13 2017-11-03 에스와이제트 셀 테라피 코. Methods of treating cancer using activated T cells
KR20180081532A (en) * 2015-10-30 2018-07-16 알레타 바이오쎄라퓨틱스, 인크. Compositions and methods for the treatment of cancer
CN112300269A (en) * 2020-09-29 2021-02-02 中国科学院微生物研究所 KRAS mutation specific T cell receptor screening and anti-tumor application
CN112646024A (en) * 2019-10-10 2021-04-13 广东香雪精准医疗技术有限公司 T cell receptor for identifying KRAS mutation and coding sequence thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MY190974A (en) 2015-05-20 2022-05-25 Massachusetts Gen Hospital Shared neoantigens
BR112020017645A2 (en) 2018-03-02 2020-12-29 Elicio Therapeutics Inc. COMPOUNDS INCLUDING A MUTANT KRAS SEQUENCE AND A LIPID AND USES THEREOF

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170096199A (en) * 2014-12-26 2017-08-23 닛토덴코 가부시키가이샤 Methods and compositions for treating malignant tumors associated with kras mutation
KR20170122270A (en) * 2015-03-13 2017-11-03 에스와이제트 셀 테라피 코. Methods of treating cancer using activated T cells
KR20180081532A (en) * 2015-10-30 2018-07-16 알레타 바이오쎄라퓨틱스, 인크. Compositions and methods for the treatment of cancer
CN112646024A (en) * 2019-10-10 2021-04-13 广东香雪精准医疗技术有限公司 T cell receptor for identifying KRAS mutation and coding sequence thereof
CN112300269A (en) * 2020-09-29 2021-02-02 中国科学院微生物研究所 KRAS mutation specific T cell receptor screening and anti-tumor application

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DATABASE Protein 19 January 2018 (2018-01-19), ANONYMOUS : "GTPase KRas isoform X3 [Cavia porcellus] ", XP093074300, retrieved from NCBI Database accession no. XP_003470499.2 *
DATABASE Protein 2 May 1996 (1996-05-02), ANONYMOUS : "protein Calu1 Ki-ras ", XP093074275, retrieved from NCBI Database accession no. 0909261A *

Also Published As

Publication number Publication date
KR20230101283A (en) 2023-07-06

Similar Documents

Publication Publication Date Title
Suzuki et al. Viral interleukin 10 (IL-10), the human herpes virus 4 cellular IL-10 homologue, induces local anergy to allogeneic and syngeneic tumors.
EP1698701B1 (en) Use of MHC class II ligands as adjuvant for vaccination and lag-3 in cancer treatment
CA2263503C (en) Melanoma cell lines expressing shared immunodominant melanoma antigens and methods of using same
Nagai et al. Elimination of CD4+ T cells enhances anti-tumor effect of locally secreted interleukin-12 on B16 mouse melanoma and induces vitiligo-like coat color alteration
WO2017039313A1 (en) Antitumor immunity enhancing composition containing adenovirus simultaneously expressing il-12 and shvegf
Ge et al. Prevention of hepatocellular carcinoma in mice by IL-2 and B7-1 genes co-transfected liver cancer cell vaccines
WO2022086988A1 (en) Multi-functional and multi-valent interleukin-tgf-beta receptor fusion polypeptides
WO2023128377A1 (en) Pharmaceutical composition comprising activated t cells specific to k-ras for preventing and treating lung papillary adenocarcinoma and method for preparing same
WO2023128378A1 (en) Pharmaceutical composition for preventing and treating colorectal cancer comprising k-ras-specific activated t cells, and method for preparing same
WO2023128379A1 (en) Pharmaceutical composition comprising k-ras-specific activated t cells for prevention and treatment of breast cancer and method for preparing same
WO2023128380A1 (en) Pharmaceutical composition comprising activation t cells specific to k-ras for preventing and treating lung adenocarcinoma and preparation method therefor
WO2023128381A1 (en) Pharmaceutical composition for preventing and treating melanoma comprising k-ras-specific activated t cells, and method for preparing same
Chapman et al. Non-antibody immunotherapy of cancer
Kim et al. Augmentation of antitumor immunity by genetically engineered fibroblast cells to express both B7. 1 and interleukin-7
AU2021367306A1 (en) Multi-functional and multi-valent interleukin-tgf-beta receptor fusion polypeptides
Redlinger Jr et al. Advanced neuroblastoma impairs dendritic cell function in adoptive immunotherapy
WO2023085656A1 (en) Method for inducing antigen-specific t cells by using antigen composition for inducing kras-specific activated t cells
WO2023153763A1 (en) Cancer vaccine comprising epitope of c-met and epitope of hif1alpha, and use thereof
WO2023153773A1 (en) Cancer vaccine comprising epitope of c-met and use thereof
WO2022250416A1 (en) Immuno-oncology therapeutic composition using adjuvant including lipopeptides and poly (i:c)
WO2024058609A1 (en) Vaccine comprising peripheral blood mononuclear cells loaded with natural killer t cell ligand and antigen
WO2021242002A1 (en) Lsp1-deficient t cell
CN115772497A (en) Dendritic cell vaccine targeting G12V mutant KRAS
AU2004237854B2 (en) Melanoma cell lines expressing shared melanoma antigens and methods of using same
Trinchieri Interleukin-12: Clinical Potential in Infectious Diseases, AIDS and Cancer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22916523

Country of ref document: EP

Kind code of ref document: A1