WO2023128261A1 - Wavelength-selective laser system using mems mirror array - Google Patents

Wavelength-selective laser system using mems mirror array Download PDF

Info

Publication number
WO2023128261A1
WO2023128261A1 PCT/KR2022/017834 KR2022017834W WO2023128261A1 WO 2023128261 A1 WO2023128261 A1 WO 2023128261A1 KR 2022017834 W KR2022017834 W KR 2022017834W WO 2023128261 A1 WO2023128261 A1 WO 2023128261A1
Authority
WO
WIPO (PCT)
Prior art keywords
wavelength
diffraction grating
mems mirror
mems
mirror array
Prior art date
Application number
PCT/KR2022/017834
Other languages
French (fr)
Korean (ko)
Inventor
김경수
김윤구
엄준성
김희민
Original Assignee
탈렌티스 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020220011907A external-priority patent/KR102610091B1/en
Application filed by 탈렌티스 주식회사 filed Critical 탈렌티스 주식회사
Publication of WO2023128261A1 publication Critical patent/WO2023128261A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/42Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof

Definitions

  • the present invention relates to a wavelength selective laser system, and more particularly, to a wavelength selective laser system using a micro electro mechanical system (MEMS) mirror array having a nonlinear arrangement structure.
  • MEMS micro electro mechanical system
  • WDM Wavelength Division Multiplexing
  • DWDM Dense Wavelength Division Multiplexing
  • the wavelength band according to the ITU-T DWDM Grid standard includes wavelength bands used in broadband optical communication, such as C-band (1530-1565 nm), L-band (1565-1625 nm), and O-band (1260-1360 nm).
  • a wavelength selective laser system equipped with a wavelength selective switch (WSS) conforming to the Grid standard is required.
  • the wavelength selection switch refers to a device capable of quickly selecting and outputting a laser having a desired wavelength freely from a multi-wavelength channel laser light source.
  • the user can provide a laser light source of a desired wavelength as needed, such as diagnosing a mesh network and providing an emergency light source.
  • the wavelength selection switch operates by dividing an input signal of a multi-wavelength channel by wavelength and then operating a switch for selecting a wavelength to determine an output wavelength.
  • a bulk optical system is used for wavelength branching and combining in a wavelength selection switch, and MEMS (Micro Electro Mechanical System), LC (Liquid Crystal), LCoS (Liquid Crystal on Silicon), etc. are mainly used as switching engines.
  • a MEMS mirror array or scanning mirror array (SMA) manufactured by a MEMS process is fabricated from silicon using a wafer-scale lithography process used in the semiconductor industry.
  • each mirror angle can be tilted by an electrical method, that is, an electrostatic attraction, so that a light path reflected from each mirror can be controlled.
  • Ordinary wavelength selective laser disperses the incident wavelength signal in a wide band using a diffraction grating, and selectively reflects the wavelength by the MEMS mirror at the position where it is dispersed according to each wavelength and returns to the laser gain material to form a laser resonator. Formation, causing laser oscillation of the desired wavelength.
  • the dispersion by the diffraction grating is distributed at non-linear intervals because the angle is not constant according to the wavelength.
  • the MEMS mirrors that select the wavelength are arranged at regular intervals as in the past, a laser with a wavelength that does not exactly meet the international standard for DWDM optical communication systems (ITU ITU-T DWDM Grid standard) is selected and output, which falls short of the standard. or cause noise in optical communication.
  • an object of the present invention is to provide a wavelength selective laser system using a MEMS mirror array having a nonlinear arrangement structure in consideration of the characteristics of a wavelength band in which a wideband optical signal is nonlinearly dispersed.
  • the present invention is an optical fiber amplifier having a broadband gain distribution; A diffraction grating for dispersing into a plurality of wavelength channels spatially arranged according to wavelengths; and a plurality of MEMS mirrors nonlinearly arranged to correspond to the plurality of wavelength channels nonlinearly dispersed by the diffraction grating, wherein only a specific wavelength channel among the plurality of wavelength channels input to the plurality of MEMS mirrors.
  • a wavelength selection switch for a wavelength-selective laser system comprising a; MEMS mirror array that selectively reflects and causes laser resonance.
  • the wavelength selection switch collects broadband spectrum emitted from an optical fiber amplifier, which is a feedback structure component of a laser resonator, into parallel light and transmits it to the diffraction grating, or transmits light of a specific wavelength selected from the MEMS mirror array.
  • an input/output optical collimator that collects and transmits the light to an optical fiber amplifier; and an optical system for transmitting lasers of a plurality of wavelength channels nonlinearly dispersed by the diffraction grating to the MEMS mirror array in parallel.
  • the optical fiber amplifier may have at least one wavelength band among C-band (1530 to 1565 nm), L-band (1565 to 1625 nm) and O-band (1260 to 1360 nm), and an optical fiber gain medium and optical fiber of any other wavelength band.
  • an optical gain medium in a bulk form such as SOA (Semiconductor Optical Amplifier) can also be used.
  • the central wavelength of the outputted laser is determined by calculating an optical path that is dispersed in the diffraction grating and incident on the MEMS mirror array, and an array of the plurality of MEMS mirrors may be designed according to the determined optical path.
  • the diffraction grating disperses the laser such that a wavelength interval between wavelength channels becomes nonlinearly longer as the wavelength of the laser becomes longer.
  • the plurality of MEMS mirrors may be disposed so that the intervals between the MEMS mirrors are nonlinearly increased to correspond to the wavelength intervals of the wavelength channels that are nonlinearly lengthened.
  • the MEMS mirror array may further include a plurality of electrostatic actuators for independently oscillating the plurality of MEMS mirrors in a uniaxial direction.
  • the plurality of MEMS mirrors may be arranged in a line, and the plurality of electrostatic actuators may be alternately connected up and down to the plurality of MEMS mirrors in the uniaxial direction, respectively.
  • the MEMS mirror may be formed in a rectangular shape, the electrostatic driver may be connected to one side of a short side in the 1-axis direction, and a line width of a laser selected by a width of the short side may be determined.
  • the line width of the output laser may be determined by calculating an optical path that is dispersed in the diffraction grating and incident on the MEMS mirror array, and the widths of the plurality of MEMS mirrors may be designed according to the determined optical path.
  • the present invention provides a wavelength selective laser system including; the wavelength selection switch for selectively outputting the laser of a specific wavelength channel that meets laser resonance conditions using a broadband optical gain medium.
  • the MEMS mirror array since the MEMS mirror array has a nonlinear arrangement structure in consideration of the characteristics of a wavelength band in which a broadband optical signal (laser) is nonlinearly dispersed, it is possible to accurately select and output a desired channel wavelength. That is, by calculating an optical path where the broadband laser is dispersed in the diffraction grating and incident on the MEMS mirror array, and arranging the MEMS mirrors on the calculated optical path, the MEMS mirror array accurately selects the wavelength of the desired channel from the incident broadband laser. You can choose to print.
  • the MEMS mirror array according to the present invention can easily adjust the line width of the laser output by adjusting the width of the MEMS mirror. That is, the MEMS mirror can output a laser with a wide line width if the width of the MEMS mirror is wide, and can output a laser with a narrow line width if the width of the MEMS mirror is narrow.
  • FIG. 1 is a block diagram showing a wavelength selective laser system according to an embodiment of the present invention.
  • FIG. 2 is a block diagram showing a wavelength selection switch of FIG. 1 .
  • FIG. 3 is an exemplary diagram illustrating a process of selecting and outputting a specific wavelength from the wavelength selection switch of FIG. 2 .
  • FIG. 4 is a plan view showing the MEMS mirror array of FIG. 2 .
  • FIG. 5 is an enlarged view of the MEMS mirror of FIG. 4 .
  • FIG. 6 is an exemplary view showing a change in the line width of an output laser according to the line width of the MEMS mirror of FIG. 5 .
  • FIG. 7 is a graph showing an array of MEMS mirrors according to wavelengths dispersed in a specific band according to an experimental example.
  • FIG. 1 is a block diagram showing a wavelength selective laser system according to an embodiment of the present invention.
  • the wavelength-selective laser system 100 includes a wavelength-selective switch 30 that receives broadband laser and selectively outputs laser of a specific wavelength channel.
  • the wavelength selective laser system 100 includes an optical fiber amplifier 10, an optical coupler 20, a wavelength selection switch 30, and a controller 90.
  • the optical fiber amplifier 10 provides sufficient optical gain for laser oscillation over a wide wavelength band, configures a feedback resonator to oscillate only the wavelength selected by the wavelength selection switch 30, and oscillates the laser.
  • the optical fiber amplifier 10 may have a wavelength band of C-band (1530 to 1565 nm), L-band (1565 to 1625 nm), and O-band (1260 to 1360 nm) depending on the material added to the optical fiber gain medium. It may have different wavelength bands depending on an optical fiber additive material such as ytterbium (Yb) or neodium (Nd) and an optical amplification medium such as SOA (Semiconductor Optical Amplifier).
  • Yb ytterbium
  • Nd neodium
  • SOA semiconductor Optical Amplifier
  • the optical coupler 20 outputs some of the laser amplified by the optical fiber amplifier 10 and returns the remainder to the wavelength selection switch 30 to form a laser resonator so that laser oscillation of the selected wavelength is maintained.
  • the wavelength selection switch 30 receives the broadband laser from the optical coupler 20, selects a laser of a specific wavelength channel using the MEMS mirror array 70, and outputs the laser to the optical fiber amplifier 10.
  • the wavelength selection switch 30 disperses light of a broadband wavelength input through the optical fiber amplifier 10 through a wavelength splitter such as a diffraction grating 50, and selects only specific wavelengths by the MEMS mirror array 70.
  • a wavelength splitter such as a diffraction grating 50
  • the MEMS mirror array 70 is arranged nonlinearly to correspond to each of the plurality of nonlinearly dispersed wavelength channels, and the wavelength channel spacing is corrected to accurately meet the DWDM optical communication standard. can do.
  • the controller 90 controls driving of the optical fiber amplifier 10 and the wavelength selection switch 30 to select and output the laser of a specific wavelength channel from the input wideband laser. That is, the controller 90 controls the optical gain by driving the optical fiber amplifier 10 and selectively drives the MEMS mirror 71 of the wavelength selection switch 30 to output the laser of a specific wavelength channel among the input broadband lasers. Control.
  • the wavelength selection switch 30 according to this embodiment will be described with reference to FIGS. 2 to 7 as follows.
  • FIG. 2 is a block diagram showing the wavelength selection switch 30 of FIG. 1 .
  • FIG. 3 is an exemplary view showing a process of selecting and outputting a specific wavelength in the wavelength selection switch 30 of FIG. 2 .
  • the wavelength selection switch 30 includes a diffraction grating 50 and an MEMS mirror array 70.
  • the diffraction grating 50 receives broadband parallel light and spatially disperses it according to the wavelength.
  • the MEMS mirror array 70 includes a plurality of MEMS mirrors 71 non-linearly arranged to correspond to a plurality of wavelength channels non-linearly dispersed by the diffraction grating 50, respectively, and a plurality of MEMS mirrors 71 ) Selectively reflects the light of a specific wavelength channel among a plurality of wavelength channels input to the optical fiber amplifier 10 to cause laser oscillation.
  • the wavelength selection switch 30 may further include an input/output optical collimator 40 and an optical system 60 .
  • the input/output optical collimator 40 includes an input optical collimator and an output optical collimator.
  • the input light collimator 40 collects the input broadband laser into parallel light and transmits it to the diffraction grating 50 .
  • the collimated light reaching the MEMS mirror array 70 through the optical system 60 returns only a specific wavelength reflected from the specific MEMS mirror 71 to the optical fiber amplifier 10 and oscillates as a laser to output the laser beam.
  • the input optical collimator and the output optical collimator can be simultaneously used as one component, that is, the input/output collimator 40 . That is, one optical collimator may be simultaneously used as an input optical collimator and an output optical collimator.
  • Lasers input and output to the input/output optical collimator 40 are input and output through an optical fiber.
  • a reflection type or transmission type diffraction grating may be used as the diffraction grating 50 .
  • a blaze grating capable of reducing light loss may be used as the diffraction grating 50 .
  • the angle between the diffraction grating 50 and the incident angle of the broadband laser is only slightly shifted by 5 degrees or less from the blaze angle, because the laser This is to avoid excessive complexity of the optical system 60 by returning to the incident path.
  • the optical system 60 vertically enters the MEMS mirror array 70 through the optical system 60 with lasers of a plurality of wavelength channels that are nonlinearly dispersed by the diffraction grating 50 .
  • the optical system 60 may include a mirror or a lens.
  • the mirror reflects lasers of a plurality of wavelength channels nonlinearly dispersed by the diffraction grating 70 to the MEMS mirror array 70 in parallel.
  • the mirror may be replaced with a lens, and the lens should be positioned so that the output light scattered by the diffraction grating reaches the MEMS mirror array 70 in parallel.
  • the MEMS mirror array 70 is disposed to be perpendicular to the laser light incident by the optical system 60.
  • the MEMS mirror array 70 includes a plurality of MEMS mirrors 71 corresponding to wavelength channels for wavelength selection. Each of the plurality of MEMS mirrors 71 is disposed at a position corresponding to a wavelength channel so as to oscillate a laser having an exact wavelength corresponding to a wavelength channel that meets a standard.
  • the MEMS mirror array 70 includes a plurality of MEMS mirrors 71 that reflect light, and a plurality of MEMS mirrors ( 71) each independently swinging in one axis direction.
  • axis 1 may be the Y axis.
  • FIG. 4 is a plan view showing the MEMS mirror array 70 of FIG. 2 .
  • FIG. 5 is an enlarged view of the MEMS mirror 71 of FIG. 4 .
  • the plurality of MEMS mirrors 71 are arranged 70 in a line. Also, the plurality of electrostatic actuators 73 are alternately connected up and down to the plurality of MEMS mirrors 71 in one axis direction.
  • the 1-axis direction is the Y-axis
  • up and down indicate the Y-axis direction.
  • the empty space is the electrostatic driver 73 connected to the adjacent MEMS mirror 71 in the opposite direction.
  • the MEMS mirror array 70 can be designed compactly.
  • the electrostatic actuator 73 is connected in the -Y axis direction of the MEMS mirror 71, a portion of the MEMS mirror 71 in the +Y axis direction corresponds to an empty space.
  • the plurality of MEMS mirrors 71 may each connect the electrostatic actuators 73 in only one direction, but in this case, the size of the MEMS mirror array 70 increases due to the space required for installing the electrostatic actuators 73. problems can arise
  • the MEMS mirror 71 is formed in a rectangular shape, and an electrostatic driver 73 is connected to one side of a short side.
  • the MEMS mirror 71 can adjust the line widths A and B of the laser selected by the widths a and b of the short sides.
  • FIG. 6 is an exemplary view showing changes in the line widths A and B of the output laser according to the line widths a and b of the MEMS mirror 71 of FIG. 5 .
  • the MEMS mirror array 70 can easily adjust the line widths A and B of the output laser by adjusting the widths a and b of the MEMS mirror 71 . That is, the MEMS mirror 71 outputs a laser having a wide line width A when the width (a) of the MEMS mirror 71 is wide (FIG. 6(a)), and conversely, when the width (b) of the MEMS mirror 71 is If it is narrow, a laser with a narrow line width B can be output (FIG. 6(b)).
  • the line widths A and B of the laser output here are determined by calculating an optical path that is dispersed in the diffraction grating 50 and incident on the MEMS mirror array 70.
  • Widths a and b of the plurality of MEMS mirrors 71 may be designed according to the determined optical path.
  • the plurality of MEMS mirrors 71 are nonlinearly arranged to correspond to the plurality of wavelength channels nonlinearly dispersed by the diffraction grating 50 . That is, the central wavelength of the outputted laser is determined by calculating an optical path that is dispersed in the diffraction grating 50 and incident on the MEMS mirror array 70.
  • a plurality of MEMS mirrors 70 may be designed to be arranged according to a determined optical path.
  • the reason for nonlinearly arranging the plurality of MEMS mirrors 71 in the MEMS mirror array 70 is as follows.
  • the ITU-T DWDM Grid standard defines the interval between channels as 25 GHz, 50 GHz or 100 GHz based on the frequency of the optical signal.
  • the direction in which it travels is determined according to each wavelength, and the laser is dispersed at non-regular, non-linear intervals.
  • elements such as MEMS mirrors that select wavelengths are arranged at regular intervals, lasers with wavelengths that do not exactly meet the ITU-T DWDM Grid standard are output, which does not meet the system standard or causes noise between communication channels.
  • the plurality of MEMS mirrors 71 are disposed at positions corresponding to specific wavelength channels so as to output lasers of precise wavelengths corresponding to the respective wavelength channels. That is, the diffraction grating 50 disperses the laser so that the wavelength interval between the wavelength channels becomes nonlinearly longer as the wavelength of the laser increases.
  • the MEMS mirror array 70 is designed so that the distance between the MEMS mirrors 71 is nonlinearly long to correspond to the wavelength distance of the wavelength channel that is nonlinearly long, so that the laser of a specific desired wavelength channel can be accurately selected and output. there is.
  • Table 1 below shows positions of MEMS mirror arrays according to wavelengths dispersed in a specific band.
  • Table 1 is graphed as shown in FIG. 7 .
  • 7 is a graph showing a MEMS mirror array according to wavelengths dispersed in a specific band according to an experimental example.
  • the specific band includes 1525.66 nm (196.5 GHz) to 1567.95 nm (191.2 GHz).
  • the interval for each wavelength channel is 0.1 GHz.
  • the diffraction grating disperses the laser such that the wavelength interval between the wavelength channels becomes nonlinearly longer as the wavelength of the laser becomes longer.
  • the spacing between the MEMS mirrors is also nonlinear to correspond to the wavelength spacing of the wavelength channel in which the plurality of MEMS mirrors are nonlinearly long so that the laser that is nonlinearly dispersed by the diffraction grating can be accurately selected and output. It is arranged to be lengthened by

Abstract

A wavelength-selective laser system according to the present invention comprises a wavelength-selective switch which generates and outputs laser oscillation by dispersing a broadband wavelength emitted from an optical fiber amplifier by means of a diffraction grating and selectively feeding back only a specific wavelength. The wavelength-selective switch comprises the diffraction grating and a MEMS mirror array. The diffraction grating nonlinearly disperses the broadband wavelength emitted from the optical fiber amplifier into multiple wavelength channels. The MEMS mirror array comprises multiple MEMS mirrors nonlinearly arranged to correspond to the multiple wavelength channels nonlinearly dispersed by a diffraction grating. The MEMS mirror array generates laser resonance by selectively reflecting only a specific wavelength channel among the multiple wavelength channels that are input to the multiple MEMS mirrors.

Description

MEMS 미러 배열을 이용한 파장 선택형 레이저 시스템Wavelength selective laser system using MEMS mirror array
본 발명은 파장 선택형 레이저 시스템에 관한 것으로, 더욱 상세하게는 비선형적인 배치 구조를 갖는 MEMS(Micro Electro Mechanical System) 미러 배열을 이용한 파장 선택형 레이저 시스템에 관한 것이다.The present invention relates to a wavelength selective laser system, and more particularly, to a wavelength selective laser system using a micro electro mechanical system (MEMS) mirror array having a nonlinear arrangement structure.
광대역 광통신을 위해 하나의 광케이블에 여러 파장의 광신호를 동시에 송수신하는 WDM(Wavelength Division Multiplexing) 기술이 활용되고 있다. 최근에는 WDM 기술의 고도화에 따라 더 넓은 대역폭을 위해 파장 간격이 더 촘촘한 DWDM (Dense Wavelength Division Multiplexing) 기술이 활용되고 있다.For broadband optical communication, WDM (Wavelength Division Multiplexing) technology for simultaneously transmitting and receiving optical signals of various wavelengths through one optical cable is used. Recently, with the advancement of WDM technology, Dense Wavelength Division Multiplexing (DWDM) technology is being used for a wider bandwidth.
DWDM 기술을 이용한 광통신을 위한 파장 채널은 ITU-T DWDM Grid 규격에 권고되어 있으며 이를 통해 고속 통신을 가능하게 한다. 예컨대 ITU-T DWDM Grid 규격에 따른 파장 대역은 C-band(1530~1565nm), L-band(1565~1625nm), O-band(1260~1360nm) 등 광대역 광통신에 사용되는 파장 대역을 포함한다.A wavelength channel for optical communication using DWDM technology is recommended in the ITU-T DWDM Grid standard and enables high-speed communication through this. For example, the wavelength band according to the ITU-T DWDM Grid standard includes wavelength bands used in broadband optical communication, such as C-band (1530-1565 nm), L-band (1565-1625 nm), and O-band (1260-1360 nm).
이러한 광대역 광통신을 위한 DWDM 기술의 고성능 구현을 위해 Grid 규격에 맞는 파장 선택 스위치(wavelength selective switch, WSS)을 구비하는 파장 선택형 레이저 시스템이 필요하다.For high-performance implementation of DWDM technology for such broadband optical communication, a wavelength selective laser system equipped with a wavelength selective switch (WSS) conforming to the Grid standard is required.
여기서 파장 선택 스위치란 다파장 채널 레이저 광원에서 자유로이 원하는 파장의 레이저를 신속하게 선택하여 출력할 수 있는 장치를 말한다. 이러한 파장 선택 스위치의 도입으로 사용자는 메쉬 네트워크의 진단, 비상 광원 제공 등 필요에 따라 원하는 파장의 레이저 광원 제공이 가능하다.Here, the wavelength selection switch refers to a device capable of quickly selecting and outputting a laser having a desired wavelength freely from a multi-wavelength channel laser light source. With the introduction of such a wavelength selection switch, the user can provide a laser light source of a desired wavelength as needed, such as diagnosing a mesh network and providing an emergency light source.
파장 선택 스위치는 다파장 채널의 입력 신호를 파장별로 분기한 뒤 파장 선택을 위한 스위치를 동작시켜 출력 파장을 정하는 방식으로 동작한다. 파장 선택 스위치에서 파장 분기 및 결합은 벌크 광학계를 이용하며, 스위칭 엔진으로는 MEMS(Micro Electro Mechanical System), LC(Liquid Crystal), LCoS (Liquid Crystal on Silicon) 등이 주로 사용되고 있다.The wavelength selection switch operates by dividing an input signal of a multi-wavelength channel by wavelength and then operating a switch for selecting a wavelength to determine an output wavelength. A bulk optical system is used for wavelength branching and combining in a wavelength selection switch, and MEMS (Micro Electro Mechanical System), LC (Liquid Crystal), LCoS (Liquid Crystal on Silicon), etc. are mainly used as switching engines.
스위칭 엔진 중 MEMS 공정으로 제조된 MEMS 미러 배열(MEMS mirror array) 또는 스캐닝 미러 배열(scanning mirror array, SMA)은 반도체 산업에서 활용되는 웨이퍼 스케일 리소그래피 프로세스를 사용하여 실리콘으로 제작된다. MEMS 미러 배열은 전기적 방법, 즉 정전기적 인력에 의해 각각의 미러 각도를 기울일 수 있어 각각의 미러에서 반사되는 광 경로를 제어할 수 있다. Among switching engines, a MEMS mirror array or scanning mirror array (SMA) manufactured by a MEMS process is fabricated from silicon using a wafer-scale lithography process used in the semiconductor industry. In the MEMS mirror array, each mirror angle can be tilted by an electrical method, that is, an electrostatic attraction, so that a light path reflected from each mirror can be controlled.
통상 파장 선택 레이저는 회절격자를 이용해 넓은 대역의 입사 파장신호를 분산시켜 각 파장에 따라 분산되어 진행하는 위치에 MEMS 미러에 의해 파장을 선택적으로 반사하여 레이저 이득 물질로 회귀(feedback)시켜 레이저 공진기를 형성, 원하는 파장의 레이저 발진을 일으킨다. 그러나 회절격자에 의한 분산은 파장에 따라 각도가 일정하지 않아 비선형적인 간격으로 분산된다. 하지만 파장을 선택하는 MEMS 미러가 기존과 같이 일정한 간격으로 배치되어 있는 경우, DWDM 광통신 시스템의 국제적 규격(ITU ITU-T DWDM Grid 규격)에 정확히 맞지 않는 파장의 레이저를 선택해 출력하게 되어, 규격에 미달하거나 광통신에 있어 잡음의 원인이 될 수 있다.Ordinary wavelength selective laser disperses the incident wavelength signal in a wide band using a diffraction grating, and selectively reflects the wavelength by the MEMS mirror at the position where it is dispersed according to each wavelength and returns to the laser gain material to form a laser resonator. Formation, causing laser oscillation of the desired wavelength. However, the dispersion by the diffraction grating is distributed at non-linear intervals because the angle is not constant according to the wavelength. However, if the MEMS mirrors that select the wavelength are arranged at regular intervals as in the past, a laser with a wavelength that does not exactly meet the international standard for DWDM optical communication systems (ITU ITU-T DWDM Grid standard) is selected and output, which falls short of the standard. or cause noise in optical communication.
[선행기술문헌][Prior art literature]
[특허문헌][Patent Literature]
등록특허공보 제10-1646289호 (2016.08.05. 공고)Registered Patent Publication No. 10-1646289 (2016.08.05. Notice)
따라서 본 발명의 목적은 광대역의 광신호가 비선형적으로 분산되는 파장 대역의 특성을 고려하여 비선형적인 배치 구조를 갖는 MEMS 미러 배열을 이용한 파장 선택형 레이저 시스템을 제공하는 데 있다.Accordingly, an object of the present invention is to provide a wavelength selective laser system using a MEMS mirror array having a nonlinear arrangement structure in consideration of the characteristics of a wavelength band in which a wideband optical signal is nonlinearly dispersed.
상기 목적을 달성하기 위하여, 본 발명은 광대역 이득분포를 갖는 광섬유 증폭기; 파장에 따라 공간적으로 배열된 복수의 파장 채널로 분산시키는 회절격자; 및 상기 회절격자에 의해 비선형적으로 분산된 복수의 파장 채널에 각각 대응되게 비선형적으로 배치된 복수의 MEMS 미러를 포함하고, 상기 복수의 MEMS 미러로 입력되는 상기 복수의 파장 채널 중 특정 파장 채널만 선택적으로 반사하여 레이저 공진을 일으키는 MEMS 미러 배열;을 포함하는 파장 선택형 레이저 시스템용 파장 선택 스위치를 제공한다.In order to achieve the above object, the present invention is an optical fiber amplifier having a broadband gain distribution; A diffraction grating for dispersing into a plurality of wavelength channels spatially arranged according to wavelengths; and a plurality of MEMS mirrors nonlinearly arranged to correspond to the plurality of wavelength channels nonlinearly dispersed by the diffraction grating, wherein only a specific wavelength channel among the plurality of wavelength channels input to the plurality of MEMS mirrors. Provides a wavelength selection switch for a wavelength-selective laser system comprising a; MEMS mirror array that selectively reflects and causes laser resonance.
본 발명에 따른 파장 선택 스위치는, 레이저 공진기의 회귀(feedback)구조 구성 요소인 광섬유 증폭기에서 방출되는 광대역 스펙트럼을 평행광으로 모아서 상기 회절격자로 전달하거나, 상기 MEMS 미러 배열에서 선택된 특정 파장의 광을 모아서 광섬유 증폭기로 전달하는 입출력 광 콜리메이터; 및 상기 회절격자에 의해 비선형적으로 분산된 복수의 파장 채널의 레이저를 상기 MEMS 미러 배열로 평행하게 전달하는 광학계;를 더 포함할 수 있다.The wavelength selection switch according to the present invention collects broadband spectrum emitted from an optical fiber amplifier, which is a feedback structure component of a laser resonator, into parallel light and transmits it to the diffraction grating, or transmits light of a specific wavelength selected from the MEMS mirror array. an input/output optical collimator that collects and transmits the light to an optical fiber amplifier; and an optical system for transmitting lasers of a plurality of wavelength channels nonlinearly dispersed by the diffraction grating to the MEMS mirror array in parallel.
상기 광섬유 증폭기는 C-band(1530~1565nm), L-band(1565~1625nm) 및 O-band(1260~1360nm) 중에 적어도 하나의 파장 대역을 가질 수 있으며 다른 어떠한 파장대역의 광섬유 이득 매질 및 광섬유 형태 대신 SOA(Semiconductor Optical Amplifier) 등 벌크 형태의 광 이득 매질도 사용 가능하다.The optical fiber amplifier may have at least one wavelength band among C-band (1530 to 1565 nm), L-band (1565 to 1625 nm) and O-band (1260 to 1360 nm), and an optical fiber gain medium and optical fiber of any other wavelength band. Instead of a shape, an optical gain medium in a bulk form such as SOA (Semiconductor Optical Amplifier) can also be used.
출력되는 레이저의 중심 파장은 상기 회절격자에서 분산되어 상기 MEMS 미러 배열에 입사되는 광경로를 산출하여 확정하고, 확정된 광경로에 따라 상기 복수의 MEMS 미러의 배열이 설계될 수 있다.The central wavelength of the outputted laser is determined by calculating an optical path that is dispersed in the diffraction grating and incident on the MEMS mirror array, and an array of the plurality of MEMS mirrors may be designed according to the determined optical path.
상기 회절격자는 상기 레이저의 파장이 길어질수록 파장 채널 간의 파장 간격이 비선형적으로 길어지게 상기 레이저를 분산시킨다.The diffraction grating disperses the laser such that a wavelength interval between wavelength channels becomes nonlinearly longer as the wavelength of the laser becomes longer.
상기 복수의 MEMS 미러는 비선형적으로 길어지는 상기 파장 채널의 파장 간격에 대응되게 상기 MEMS 미러 간의 간격도 비선형적으로 길어지게 배치될 수 있다.The plurality of MEMS mirrors may be disposed so that the intervals between the MEMS mirrors are nonlinearly increased to correspond to the wavelength intervals of the wavelength channels that are nonlinearly lengthened.
상기 MEMS 미러 배열은, 상기 복수의 MEMS 미러를 각각 독립적으로 1축 방향으로 요동시키는 복수의 정전 구동기;를 더 포함한다.The MEMS mirror array may further include a plurality of electrostatic actuators for independently oscillating the plurality of MEMS mirrors in a uniaxial direction.
상기 MEMS 미러 배열은, 상기 복수의 MEMS 미러가 일렬로 배열되고, 상기 복수의 정전 구동기가 각각 상기 1축 방향으로 복수의 MEMS 미러에 상하로 교번되게 연결될 수 있다.In the MEMS mirror arrangement, the plurality of MEMS mirrors may be arranged in a line, and the plurality of electrostatic actuators may be alternately connected up and down to the plurality of MEMS mirrors in the uniaxial direction, respectively.
상기 MEMS 미러는 직사각형 형태로 형성되고, 단변의 한 쪽에 상기 정전 구동기가 상기 1축 방향으로 연결되고, 상기 단변의 폭에 의해 선택되는 레이저의 선폭이 결정될 수 있다.The MEMS mirror may be formed in a rectangular shape, the electrostatic driver may be connected to one side of a short side in the 1-axis direction, and a line width of a laser selected by a width of the short side may be determined.
출력되는 레이저의 선폭은 상기 회절격자에서 분산되어 상기 MEMS 미러 배열에 입사되는 광경로를 산출하여 확정하고, 확정된 광경로에 따라 상기 복수의 MEMS 미러의 폭이 설계될 수 있다.The line width of the output laser may be determined by calculating an optical path that is dispersed in the diffraction grating and incident on the MEMS mirror array, and the widths of the plurality of MEMS mirrors may be designed according to the determined optical path.
그리고 본 발명은 광대역의 광 이득 매질을 사용하여 레이저 공진 조건에 맞는 특정 파장 채널의 레이저를 선택적으로 출력하는 상기 파장 선택 스위치;를 포함하는 파장 선택형 레이저 시스템을 제공한다.And the present invention provides a wavelength selective laser system including; the wavelength selection switch for selectively outputting the laser of a specific wavelength channel that meets laser resonance conditions using a broadband optical gain medium.
본 발명에 따르면, MEMS 미러 배열은 광대역의 광신호(레이저)가 비선형적으로 분산되는 파장 대역의 특성을 고려하여 비선형적인 배치 구조를 갖기 때문에, 원하는 채널의 파장을 정확하게 선택하여 출력할 수 있다. 즉 광대역의 레이저가 회절격자에서 분산되어 MEMS 미러 배열로 입사되는 광경로를 산출하고, 산출된 광경로 상에 MEMS 미러들을 배치함으로써, MEMS 미러 배열은 입사되는 광대역의 레이저로부터 원하는 채널의 파장을 정확하게 선택하여 출력할 수 있다.According to the present invention, since the MEMS mirror array has a nonlinear arrangement structure in consideration of the characteristics of a wavelength band in which a broadband optical signal (laser) is nonlinearly dispersed, it is possible to accurately select and output a desired channel wavelength. That is, by calculating an optical path where the broadband laser is dispersed in the diffraction grating and incident on the MEMS mirror array, and arranging the MEMS mirrors on the calculated optical path, the MEMS mirror array accurately selects the wavelength of the desired channel from the incident broadband laser. You can choose to print.
그리고 본 발명에 따른 MEMS 미러 배열은 MEMS 미러의 폭 조절을 통해서 출력되는 레이저의 선폭을 쉽게 조절할 수 있다. 즉 MEMS 미러는 MEMS 미러의 폭이 넓으면 넓은 선폭의 레이저를 출력시키고, 반대로 MEMS 미러의 폭이 좁으면 좁은 선폭의 레이저를 출력시킬 수 있다.In addition, the MEMS mirror array according to the present invention can easily adjust the line width of the laser output by adjusting the width of the MEMS mirror. That is, the MEMS mirror can output a laser with a wide line width if the width of the MEMS mirror is wide, and can output a laser with a narrow line width if the width of the MEMS mirror is narrow.
도 1은 본 발명의 실시예에 따른 파장 선택형 레이저 시스템을 보여주는 블록도이다.1 is a block diagram showing a wavelength selective laser system according to an embodiment of the present invention.
도 2는 도 1의 파장 선택 스위치를 보여주는 블록도이다.FIG. 2 is a block diagram showing a wavelength selection switch of FIG. 1 .
도 3은 도 2의 파장 선택 스위치에서 특정 파장을 선택하여 출력하는 과정을 보여주는 예시도이다.FIG. 3 is an exemplary diagram illustrating a process of selecting and outputting a specific wavelength from the wavelength selection switch of FIG. 2 .
도 4는 도 2의 MEMS 미러 배열을 보여주는 평면도이다.FIG. 4 is a plan view showing the MEMS mirror array of FIG. 2 .
도 5의 도 4의 MEMS 미러의 확대도이다.FIG. 5 is an enlarged view of the MEMS mirror of FIG. 4 .
도 6은 도 5의 MEMS 미러의 선폭에 따른 출력 레이저의 선폭 변화를 보여주는 예시도이다.FIG. 6 is an exemplary view showing a change in the line width of an output laser according to the line width of the MEMS mirror of FIG. 5 .
도 7은 실험예에 따른 특정 대역에서 분산되는 파장에 따른 MEMS 미러 배열을 보여주는 그래프이다.7 is a graph showing an array of MEMS mirrors according to wavelengths dispersed in a specific band according to an experimental example.
하기의 설명에서는 본 발명의 실시예를 이해하는데 필요한 부분만이 설명되며, 그 이외 부분의 설명은 본 발명의 요지를 벗어나지 않는 범위에서 생략될 것이라는 것을 유의하여야 한다.It should be noted that in the following description, only parts necessary for understanding the embodiments of the present invention are described, and descriptions of other parts will be omitted without departing from the gist of the present invention.
이하에서 설명되는 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념으로 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다. 따라서 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 바람직한 실시예에 불과할 뿐이고, 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.The terms or words used in this specification and claims described below should not be construed as being limited to ordinary or dictionary meanings, and the inventors have appropriately used the concept of terms to describe their inventions in the best way. It should be interpreted as a meaning and concept consistent with the technical spirit of the present invention based on the principle that it can be defined in the following way. Therefore, the embodiments described in this specification and the configurations shown in the drawings are only preferred embodiments of the present invention, and do not represent all of the technical spirit of the present invention, so various equivalents that can replace them at the time of the present application. It should be understood that there may be variations and variations.
이하, 첨부된 도면을 참조하여 본 발명의 실시예를 보다 상세하게 설명하고자 한다.Hereinafter, embodiments of the present invention will be described in more detail with reference to the accompanying drawings.
도 1은 본 발명의 실시예에 따른 파장 선택형 레이저 시스템을 보여주는 블록도이다.1 is a block diagram showing a wavelength selective laser system according to an embodiment of the present invention.
도 1을 참조하면, 본 실시예에 따른 파장 선택형 레이저 시스템(100)은 광대역의 레이저를 입력받아 특정 파장 채널의 레이저를 선택적으로 출력하는 파장 선택 스위치(30)를 포함한다. 이러한 본 실시예에 따른 파장 선택형 레이저 시스템(100)은 광섬유 증폭기(10), 광 커플러(20), 파장 선택 스위치(30) 및 제어기(90)를 포함한다.Referring to FIG. 1 , the wavelength-selective laser system 100 according to the present embodiment includes a wavelength-selective switch 30 that receives broadband laser and selectively outputs laser of a specific wavelength channel. The wavelength selective laser system 100 according to this embodiment includes an optical fiber amplifier 10, an optical coupler 20, a wavelength selection switch 30, and a controller 90.
광섬유 증폭기(10)는 넓은 파장대역에 걸쳐 레이저 발진이 가능한 충분한 광 이득을 제공하고, 파장 선택 스위치(30)로부터 선택된 파장만 발진하도록 회귀(feedback) 공진기를 구성하여 레이저를 발진시킨다. 여기서 광섬유 증폭기(10)는 광섬유 이득 매질 첨가 물질에 따라 통상 C-band(1530~1565nm), L-band(1565~1625nm) 및 O-band(1260~1360nm) 파장 대역을 가질 수 있으며, 그 외에도 이터븀(Yb), 네오듐(Nd) 등 광섬유 첨가 물질, SOA(Semiconductor Optical Amplifier)와 같은 광 증폭 매질에 따라 다른 파장 대역을 가질 수 있다.The optical fiber amplifier 10 provides sufficient optical gain for laser oscillation over a wide wavelength band, configures a feedback resonator to oscillate only the wavelength selected by the wavelength selection switch 30, and oscillates the laser. Here, the optical fiber amplifier 10 may have a wavelength band of C-band (1530 to 1565 nm), L-band (1565 to 1625 nm), and O-band (1260 to 1360 nm) depending on the material added to the optical fiber gain medium. It may have different wavelength bands depending on an optical fiber additive material such as ytterbium (Yb) or neodium (Nd) and an optical amplification medium such as SOA (Semiconductor Optical Amplifier).
광 커플러(20)는 광섬유 증폭기(10)에서 증폭된 레이저 중 일부를 출력시키고, 나머지를 파장 선택 스위치(30)로 회귀시켜 레이저 공진기를 형성, 선택된 파장의 레이저 발진이 유지되도록 한다.The optical coupler 20 outputs some of the laser amplified by the optical fiber amplifier 10 and returns the remainder to the wavelength selection switch 30 to form a laser resonator so that laser oscillation of the selected wavelength is maintained.
파장 선택 스위치(30)는 광 커플러(20)로부터 광대역의 레이저를 입력받아 MEMS 미러 배열(70)을 이용해 특정 파장 채널의 레이저를 선택해서 광섬유 증폭기(10)로 출력한다. 상세하게 설명하면 파장 선택 스위치(30)는 광섬유 증폭기(10)를 통해 입력받은 광대역 파장의 광을 회절격자(50)와 같은 파장 분산기를 통해 분산시켜 MEMS 미러 배열(70)에 의해 특정 파장만 선택적으로 반사도록 레이저 공진기를 구성함으로서 광대역에 걸쳐 파장선택이 가능한 레이저를 제공한다. 이때 파장 분산기는 통상 파장에 따른 분산이 비선형적이므로 MEMS 미러 배열(70)은 비선형적으로 분산된 복수의 파장 채널에 각각 대응되게 비선형적으로 배치하여, 파장 채널 간격을 DWDM 광통신 규격에 정확하게 맞도록 보정할 수 있다. The wavelength selection switch 30 receives the broadband laser from the optical coupler 20, selects a laser of a specific wavelength channel using the MEMS mirror array 70, and outputs the laser to the optical fiber amplifier 10. In detail, the wavelength selection switch 30 disperses light of a broadband wavelength input through the optical fiber amplifier 10 through a wavelength splitter such as a diffraction grating 50, and selects only specific wavelengths by the MEMS mirror array 70. By configuring the laser resonator so that it is reflective, it provides a laser capable of selecting a wavelength over a wide band. At this time, since the dispersion according to the wavelength is generally nonlinear in the wavelength splitter, the MEMS mirror array 70 is arranged nonlinearly to correspond to each of the plurality of nonlinearly dispersed wavelength channels, and the wavelength channel spacing is corrected to accurately meet the DWDM optical communication standard. can do.
그리고 제어기(90)는 광섬유 증폭기(10) 및 파장 선택 스위치(30)의 구동을 제어하여 입력되는 광대역의 레이저로부터 특정 파장 채널의 레이저를 선택하여 출력시킨다. 즉 제어기(90)는 광섬유 증폭기(10)를 구동하여 광 이득을 제어하고 파장 선택 스위치(30)의 MEMS 미러(71)를 선택적으로 구동시켜 입력된 광대역의 레이저 중 특정 파장 채널의 레이저를 출력하도록 제어한다.Further, the controller 90 controls driving of the optical fiber amplifier 10 and the wavelength selection switch 30 to select and output the laser of a specific wavelength channel from the input wideband laser. That is, the controller 90 controls the optical gain by driving the optical fiber amplifier 10 and selectively drives the MEMS mirror 71 of the wavelength selection switch 30 to output the laser of a specific wavelength channel among the input broadband lasers. Control.
이와 같은 본 실시예에 따른 파장 선택 스위치(30)에 대해서 도 2 내지 도 7을 참조하여 설명하면 다음과 같다.The wavelength selection switch 30 according to this embodiment will be described with reference to FIGS. 2 to 7 as follows.
도 2는 도 1의 파장 선택 스위치(30)를 보여주는 블록도이다. 그리고 도 3은 도 2의 파장 선택 스위치(30)에서 특정 파장을 선택하여 출력하는 과정을 보여주는 예시도이다.FIG. 2 is a block diagram showing the wavelength selection switch 30 of FIG. 1 . And FIG. 3 is an exemplary view showing a process of selecting and outputting a specific wavelength in the wavelength selection switch 30 of FIG. 2 .
본 실시예에 따른 파장 선택 스위치(30)는 회절격자(50)와 MEMS 미러 배열(70)을 포함한다. 회절격자(50)는 광대역의 평행광을 입력받아 파장 크기에 따라 공간적으로 분산시킨다. 그리고 MEMS 미러 배열(70)은 회절격자(50)에 의해 비선형적으로 분산된 복수의 파장 채널에 각각 대응되게 비선형적으로 배치된 복수의 MEMS 미러(71)를 포함하고, 복수의 MEMS 미러(71)로 입력되는 복수의 파장 채널 중 특정 파장 채널의 광을 선택적으로 반사하여 광섬유 증폭기(10)로 회귀시켜 레이저 발진을 일으킨다. The wavelength selection switch 30 according to this embodiment includes a diffraction grating 50 and an MEMS mirror array 70. The diffraction grating 50 receives broadband parallel light and spatially disperses it according to the wavelength. In addition, the MEMS mirror array 70 includes a plurality of MEMS mirrors 71 non-linearly arranged to correspond to a plurality of wavelength channels non-linearly dispersed by the diffraction grating 50, respectively, and a plurality of MEMS mirrors 71 ) Selectively reflects the light of a specific wavelength channel among a plurality of wavelength channels input to the optical fiber amplifier 10 to cause laser oscillation.
그 외 본 실시예에 따른 파장 선택 스위치(30)는 입출력 광 콜리메이터(40)와 광학계(60)를 더 포함할 수 있다.In addition, the wavelength selection switch 30 according to the present embodiment may further include an input/output optical collimator 40 and an optical system 60 .
입출력 광 콜리메이터(40)는 입력 광 콜리메이터와 출력 광 콜리메이터를 포함한다. 입력 광 콜리메이터(40)는 입력되는 광대역의 레이저를 평행광으로 모아서 회절격자(50)로 전달한다. 광학계(60)를 통해 MEMS 미러 배열(70)에 도달한 평행광은 특정 MEMS 미러(71)에서 반사된 특정 파장만을 광섬유 증폭기(10)로 회귀, 레이저로 발진시켜 출력한다. 입력 광 콜레이터 및 출력 광 콜리메이터는 하나의 부품, 즉 입출력 광 콜리메이터(40)로 동시에 사용할 수 있다. 즉 하나의 광 콜리메이터를 입력 광 콜리메이터 및 출력 광 콜리메이터로 동시에 사용할 수 있다.The input/output optical collimator 40 includes an input optical collimator and an output optical collimator. The input light collimator 40 collects the input broadband laser into parallel light and transmits it to the diffraction grating 50 . The collimated light reaching the MEMS mirror array 70 through the optical system 60 returns only a specific wavelength reflected from the specific MEMS mirror 71 to the optical fiber amplifier 10 and oscillates as a laser to output the laser beam. The input optical collimator and the output optical collimator can be simultaneously used as one component, that is, the input/output collimator 40 . That is, one optical collimator may be simultaneously used as an input optical collimator and an output optical collimator.
입출력 광 콜리메이터(40)로 입출력되는 레이저는 광섬유를 통해서 입출력된다.Lasers input and output to the input/output optical collimator 40 are input and output through an optical fiber.
회절격자(50)로는 반사형 또는 투과형 회절격자가 사용될 수 있다. 회절격자(50)로는 광 손실을 줄일 수 있는 블레이즈 격자(blaze grating)가 사용될 수 있다. 회절격자(50)와 광대역의 레이저의 입사각 사이의 각도는 브레이즈 각(blaze angle)에서 5도 이하로 약간만 어긋난 정도이다, 그 이유는 회절격자(50)의 낮은 광 손실 장점을 가져가면서, 레이저가 입사된 경로로 회귀하여 광학계(60)가 과도하게 복잡해지는 것을 피하기 위해서이다.A reflection type or transmission type diffraction grating may be used as the diffraction grating 50 . A blaze grating capable of reducing light loss may be used as the diffraction grating 50 . The angle between the diffraction grating 50 and the incident angle of the broadband laser is only slightly shifted by 5 degrees or less from the blaze angle, because the laser This is to avoid excessive complexity of the optical system 60 by returning to the incident path.
광학계(60)는 회절격자(50)에 의해 비선형적으로 분산된 복수의 파장 채널의 레이저를 광학계(60)를 통해 MEMS 미러 배열(70)로 수직 입사시킨다. 이러한 광학계(60)는 거울 또는 렌즈를 포함할 수 있다. 거울은 회절격자(70)에 의해 비선형적으로 분산된 복수의 파장 채널의 레이저를 MEMS 미러 배열(70)로 평행하게 반사한다. 거울은 렌즈로 대체될 수 있으며, 렌즈는 회절격자에 의해 분산된 출력광을 MEMS 미러 배열(70)로 평행하게 도달하도록 위치해야 한다.The optical system 60 vertically enters the MEMS mirror array 70 through the optical system 60 with lasers of a plurality of wavelength channels that are nonlinearly dispersed by the diffraction grating 50 . The optical system 60 may include a mirror or a lens. The mirror reflects lasers of a plurality of wavelength channels nonlinearly dispersed by the diffraction grating 70 to the MEMS mirror array 70 in parallel. The mirror may be replaced with a lens, and the lens should be positioned so that the output light scattered by the diffraction grating reaches the MEMS mirror array 70 in parallel.
그리고 MEMS 미러 배열(70)은 광학계(60)에 의해 입사되는 레이저 광과 수직이 되게 배치한다. MEMS 미러 배열(70)은 파장 선택을 위해서 파장 채널에 대응되는 복수의 MEMS 미러(71)를 포함한다. 복수의 MEMS 미러(71)는 각각 규격에 맞는 파장 채널에 대응되는 정확한 파장의 레이저를 발진할 수 있도록 파장 채널에 대응되는 위치에 배치한다.Also, the MEMS mirror array 70 is disposed to be perpendicular to the laser light incident by the optical system 60. The MEMS mirror array 70 includes a plurality of MEMS mirrors 71 corresponding to wavelength channels for wavelength selection. Each of the plurality of MEMS mirrors 71 is disposed at a position corresponding to a wavelength channel so as to oscillate a laser having an exact wavelength corresponding to a wavelength channel that meets a standard.
이러한 본 실시예에 따른 MEMS 미러 배열(70)은, 도 4 및 도 5에 도시된 바와 같이, MEMS 미러 배열(70)은 광을 반사시키는 복수의 MEMS 미러(71)와, 복수의 MEMS 미러(71)를 각각 독립적으로 1축 방향으로 요동시키는 정전 구동기(73)를 포함한다. 도면에서 1축은 Y축일 수 있다. 여기서 도 4는 도 2의 MEMS 미러 배열(70)을 보여주는 평면도이다. 그리고 도 5의 도 4의 MEMS 미러(71)의 확대도이다.As shown in FIGS. 4 and 5, the MEMS mirror array 70 according to this embodiment includes a plurality of MEMS mirrors 71 that reflect light, and a plurality of MEMS mirrors ( 71) each independently swinging in one axis direction. In the drawing, axis 1 may be the Y axis. Here, FIG. 4 is a plan view showing the MEMS mirror array 70 of FIG. 2 . And FIG. 5 is an enlarged view of the MEMS mirror 71 of FIG. 4 .
이때 복수의 MEMS 미러(71)는 일렬로 배열(70)된다. 그리고 복수의 정전 구동기(73)는 각각 1축 방향으로 복수의 MEMS 미러(71)에 상하로 교번되게 연결된다. 여기서 1축 방향이 Y축인 경우, 상하는 ㅁY축 방향을 나타낸다.At this time, the plurality of MEMS mirrors 71 are arranged 70 in a line. Also, the plurality of electrostatic actuators 73 are alternately connected up and down to the plurality of MEMS mirrors 71 in one axis direction. Here, when the 1-axis direction is the Y-axis, up and down indicate the Y-axis direction.
이로 인해 MEMS 미러(71)를 기준으로 정전 구동기(73)가 연결되지 않은 다른 쪽 영역은 빈 공간이기 때문에, 해당 빈 공간은 이웃하는 MEMS 미러(71)에 반대 방향으로 연결되는 정전 구동기(73)가 설치되는 공간으로 사용함으로써, 컴팩트하게 MEMS 미러 배열(70)을 설계할 수 있다. 여기서 MEMS 미러(71)의 -Y축 방향으로 정전 구동기(73)가 연결된 경우, MEMS 미러(71)의 +Y축 방향 부분이 빈 공간에 해당된다.Because of this, since the area on the other side of the MEMS mirror 71 to which the electrostatic driver 73 is not connected is an empty space, the empty space is the electrostatic driver 73 connected to the adjacent MEMS mirror 71 in the opposite direction. By using it as a space where is installed, the MEMS mirror array 70 can be designed compactly. Here, when the electrostatic actuator 73 is connected in the -Y axis direction of the MEMS mirror 71, a portion of the MEMS mirror 71 in the +Y axis direction corresponds to an empty space.
물론 복수의 MEMS 미러(71)는 한 쪽 방향으로만 정전 구동기(73)를 각각 연결할 수도 있지만, 이 경우 정전 구동기(73)의 설치에 필요한 공간으로 인해 MEMS 미러 배열(70)의 크기가 증가하는 문제가 발생할 수 있다Of course, the plurality of MEMS mirrors 71 may each connect the electrostatic actuators 73 in only one direction, but in this case, the size of the MEMS mirror array 70 increases due to the space required for installing the electrostatic actuators 73. problems can arise
MEMS 미러(71)는 직사각형 형태로 형성되고, 단변의 한 쪽에 정전 구동기(73)가 연결된다.The MEMS mirror 71 is formed in a rectangular shape, and an electrostatic driver 73 is connected to one side of a short side.
MEMS 미러(71)는, 도 6에 도시된 바와 같이, 단변의 폭(a,b)에 의해 선택되는 레이저의 선폭(A,B)을 조절할 수 있다. 여기서 도 6은 도 5의 MEMS 미러(71)의 선폭(a,b)에 따른 출력 레이저의 선폭(A,B) 변화를 보여주는 예시도이다.As shown in FIG. 6 , the MEMS mirror 71 can adjust the line widths A and B of the laser selected by the widths a and b of the short sides. Here, FIG. 6 is an exemplary view showing changes in the line widths A and B of the output laser according to the line widths a and b of the MEMS mirror 71 of FIG. 5 .
MEMS 미러 배열(70)은 MEMS 미러(71)의 폭(a,b) 조절을 통해서 출력되는 레이저의 선폭(A,B)을 쉽게 조절할 수 있다. 즉 MEMS 미러(71)는 MEMS 미러(71)의 폭(a)이 넓으면 넓은 선폭(A)의 레이저를 출력시키고(도 6(a)), 반대로 MEMS 미러(71)의 폭(b)이 좁으면 좁은 선폭(B)의 레이저를 출력시킬 수 있다(도 6(b)).The MEMS mirror array 70 can easily adjust the line widths A and B of the output laser by adjusting the widths a and b of the MEMS mirror 71 . That is, the MEMS mirror 71 outputs a laser having a wide line width A when the width (a) of the MEMS mirror 71 is wide (FIG. 6(a)), and conversely, when the width (b) of the MEMS mirror 71 is If it is narrow, a laser with a narrow line width B can be output (FIG. 6(b)).
여기서 출력되는 레이저의 선폭(A,B)은 회절격자(50)에서 분산되어 MEMS 미러 배열(70)에 입사되는 광경로를 산출하여 확정한다. 확정된 광경로에 따라 복수의 MEMS 미러(71)의 폭(a,b)이 설계될 수 있다.The line widths A and B of the laser output here are determined by calculating an optical path that is dispersed in the diffraction grating 50 and incident on the MEMS mirror array 70. Widths a and b of the plurality of MEMS mirrors 71 may be designed according to the determined optical path.
그리고 복수의 MEMS 미러(71)는 회절격자(50)에 의해 비선형적으로 분산된 복수의 파장 채널에 각각 대응되게 비선형적으로 배치된다. 즉 출력되는 레이저의 중심 파장은 회절격자(50)에서 분산되어 MEMS 미러 배열(70)에 입사되는 광경로를 산출하여 확정한다. 확정된 광경로에 따라 복수의 MEMS 미러(70)가 배열되게 설계될 수 있다.In addition, the plurality of MEMS mirrors 71 are nonlinearly arranged to correspond to the plurality of wavelength channels nonlinearly dispersed by the diffraction grating 50 . That is, the central wavelength of the outputted laser is determined by calculating an optical path that is dispersed in the diffraction grating 50 and incident on the MEMS mirror array 70. A plurality of MEMS mirrors 70 may be designed to be arranged according to a determined optical path.
MEMS 미러 배열(70)에서 복수의 MEMS 미러(71)를 비선형적으로 배열하는 이유는 다음과 같다.The reason for nonlinearly arranging the plurality of MEMS mirrors 71 in the MEMS mirror array 70 is as follows.
ITU-T DWDM Grid 규격에서는 광신호의 주파수를 기준으로 채널 사이의 간격을 25GHz, 50GHz 또는 100GHz으로 정의하고 있다.The ITU-T DWDM Grid standard defines the interval between channels as 25 GHz, 50 GHz or 100 GHz based on the frequency of the optical signal.
회절격자(50)를 이용해 광대역의 레이저를 분산할 때, 각 파장에 따라 진행하는 방향이 결정되며, 일정하지 않은 비선형적인 간격으로 분산된다. 그런데 파장을 선택하는 MEMS 미러와 같은 소자가 일정한 간격으로 배치되어 있는 경우, ITU-T DWDM Grid 규격에 정확히 맞지 않는 파장의 레이저가 출력되어 시스템 규격에 부합하지 않거나 통신 채널간 잡음의 원인이 된다.When a broadband laser is dispersed using the diffraction grating 50, the direction in which it travels is determined according to each wavelength, and the laser is dispersed at non-regular, non-linear intervals. However, when elements such as MEMS mirrors that select wavelengths are arranged at regular intervals, lasers with wavelengths that do not exactly meet the ITU-T DWDM Grid standard are output, which does not meet the system standard or causes noise between communication channels.
따라서 본 실시예에서는 복수의 MEMS 미러(71)는 각각 파장 채널에 대응되는 정확한 파장의 레이저를 출력할 수 있도록 특정된 파장 채널에 대응되는 위치에 배치한다. 즉 회절격자(50)는 레이저의 파장이 길어질수록 파장 채널 간의 파장 간격이 비선형적으로 길어지게 레이저를 분산시킨다. 그리고 MEMS 미러 배열(70)은 비선형적으로 길어지는 파장 채널의 파장 간격에 대응되게 MEMS 미러(71) 간의 간격도 비선형적으로 길어지게 설계함으로써, 원하는 특정 파장 채널의 레이저를 정확하게 선택하여 출력할 수 있다.Therefore, in this embodiment, the plurality of MEMS mirrors 71 are disposed at positions corresponding to specific wavelength channels so as to output lasers of precise wavelengths corresponding to the respective wavelength channels. That is, the diffraction grating 50 disperses the laser so that the wavelength interval between the wavelength channels becomes nonlinearly longer as the wavelength of the laser increases. In addition, the MEMS mirror array 70 is designed so that the distance between the MEMS mirrors 71 is nonlinearly long to correspond to the wavelength distance of the wavelength channel that is nonlinearly long, so that the laser of a specific desired wavelength channel can be accurately selected and output. there is.
아래의 표 1은 특정 대역에서 분산되는 파장에 따른 MEMS 미러 배열의 위치를 나타낸다. 표 1을 그래프로 도시하면 도 7과 같다. 여기서 도 7은 실험예에 따른 특정 대역에서 분산되는 파장에 따른 MEMS 미러 배열을 보여주는 그래프이다. 여기서 특정 대역은 1525.66nm(196.5GHz) 내지 1567.95 nm(191.2GHz)를 포함한다. 파장 채널별 간격은 0.1GHz이다.Table 1 below shows positions of MEMS mirror arrays according to wavelengths dispersed in a specific band. Table 1 is graphed as shown in FIG. 7 . 7 is a graph showing a MEMS mirror array according to wavelengths dispersed in a specific band according to an experimental example. Here, the specific band includes 1525.66 nm (196.5 GHz) to 1567.95 nm (191.2 GHz). The interval for each wavelength channel is 0.1 GHz.
채널번호channel number 주파수
(THz)
frequency
(THz)
파장
(nm)
wavelength
(nm)
파장 간격
(nm)
wavelength spacing
(nm)
MEMS 미러 위치
(㎛)
MEMS mirror position
(μm)
MEMS 미러 간격
(㎛)
MEMS mirror spacing
(μm)
1One 196.5196.5 1525.661525.66 -- 0.00.0 --
22 196.4196.4 1526.441526.44 776.81776.81 271.3271.3 271.3271.3
33 196.3196.3 1527.221527.22 777.60777.60 543.9543.9 272.6272.6
44 196.2196.2 1527.991527.99 778.40778.40 817.5817.5 273.6273.6
......
5151 191.5191.5 1565.501565.50 817.06817.06 15,300.515,300.5 348.6348.6
5252 191.4191.4 1566.311566.31 817.92817.92 15,651.315,651.3 350.8350.8
5353 191.3191.3 1567.131567.13 818.77818.77 16,004.216,004.2 352.9352.9
5454 191.2191.2 1567.951567.95 819.63819.63 16,359.516,359.5 355.3355.3
표 1 및 도 7을 참조하면, 회절격자는 레이저의 파장이 길어질수록 파장 채널 간의 파장 간격이 비선형적으로 길어지게 레이저를 분산시키는 것을 알 수 있다.Referring to Table 1 and FIG. 7, it can be seen that the diffraction grating disperses the laser such that the wavelength interval between the wavelength channels becomes nonlinearly longer as the wavelength of the laser becomes longer.
따라서 MEMS 미러 배열은, 회절격자에 의해 비선형적으로 분산된 레이저를 정확히 선택하여 출력할 수 있도록, 복수의 MEMS 미러가 비선형적으로 길어지는 파장 채널의 파장 간격에 대응되게 MEMS 미러 간의 간격도 비선형적으로 길어지는 배치된다.Therefore, in the MEMS mirror array, the spacing between the MEMS mirrors is also nonlinear to correspond to the wavelength spacing of the wavelength channel in which the plurality of MEMS mirrors are nonlinearly long so that the laser that is nonlinearly dispersed by the diffraction grating can be accurately selected and output. It is arranged to be lengthened by
한편, 본 명세서와 도면에 개시된 실시예들은 이해를 돕기 위해 특정 예를 제시한 것에 지나지 않으며, 본 발명의 범위를 한정하고자 하는 것은 아니다. 여기에 개시된 실시예들 이외에도 본 발명의 기술적 사상에 바탕을 둔 다른 변형예들이 실시 가능하다는 것은, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게는 자명한 것이다.On the other hand, the embodiments disclosed in this specification and drawings are only presented as specific examples to aid understanding, and are not intended to limit the scope of the present invention. In addition to the embodiments disclosed herein, it is obvious to those skilled in the art that other modifications based on the technical idea of the present invention can be implemented.
[부호의 설명][Description of code]
10 : 광섬유 증폭기10: fiber optic amplifier
20 : 광 커플러20: optical coupler
30 : 파장 선택 스위치30: wavelength selection switch
40 : 입출력 광 콜리메이터40: input/output optical collimator
50 : 회절격자50: diffraction grating
60 : 광학계60: optical system
61 : 거울61 : Mirror
63 : 초점 조정 렌즈63: focusing lens
70 : MEMS 미러 배열70: MEMS mirror array
71 : MEMS 미러71: MEMS mirror
73 : 정전 구동기73: electrostatic driver
90 : 제어기90: controller
100 : 파장 선택 레이저 시스템100: wavelength selective laser system

Claims (12)

  1. 광대역의 광 이득 매질을 사용하고 복수의 파장 채널로 비선형적으로 분산시키는 회절격자; 및a diffraction grating that uses a broadband optical gain medium and nonlinearly disperses a plurality of wavelength channels; and
    상기 회절격자에 의해 비선형적으로 분산된 복수의 파장 채널에 각각 대응되게 비선형적으로 배치된 복수의 MEMS 미러를 포함하고, 상기 복수의 MEMS 미러로 입력되는 상기 복수의 파장 채널 중 특정 파장 채널만 선택적으로 반사하여 공진을 일으키는 MEMS 미러 배열;It includes a plurality of MEMS mirrors non-linearly disposed to correspond to a plurality of wavelength channels non-linearly dispersed by the diffraction grating, and selects only a specific wavelength channel among the plurality of wavelength channels input to the plurality of MEMS mirrors. a MEMS mirror array that reflects into and causes resonance;
    을 포함하는 파장 선택형 레이저 시스템용 파장 선택 스위치.A wavelength selection switch for a wavelength selective laser system comprising a.
  2. 제1항에 있어서,According to claim 1,
    광섬유 증폭기에서 방출되는 상기 광대역의 광을 평행하게 모아서 상기 회절격자로 전달하거나, 상기 MEMS 미러 배열에서 선택된 특정 파장의 광을 모아서 상기 광섬유 증폭기로 회귀시키는 입출력 광 콜리메이터; 및an input/output optical collimator that collects the broadband light emitted from the optical fiber amplifier in parallel and transfers the light to the diffraction grating, or collects the light of a specific wavelength selected from the MEMS mirror array and returns it to the optical fiber amplifier; and
    상기 회절격자에 의해 비선형적으로 분산된 복수의 파장 채널의 레이저를 상기 MEMS 미러 배열로 평행하게 전달하는 광학계;an optical system that transmits lasers of a plurality of wavelength channels nonlinearly dispersed by the diffraction grating to the MEMS mirror array in parallel;
    를 더 포함하는 것을 특징으로 하는 파장 선택형 레이저 시스템용 파장 선택 스위치.A wavelength selection switch for a wavelength selective laser system, characterized in that it further comprises.
  3. 제2항에 있어서,According to claim 2,
    상기 광대역의 레이저는 C-band(1530~1565nm), L-band(1565~1625nm) 및 O-band(1260~1360nm)를 포함, 모든 광섬유 증폭기 및 SOA를 포함한 반도체 이득매질 중에 적어도 하나의 이득 매질을 갖는 것을 특징으로 하는 파장 선택형 레이저 시스템용 파장 선택 스위치.The broadband laser is at least one gain medium among semiconductor gain media including all optical fiber amplifiers and SOA including C-band (1530~1565nm), L-band (1565~1625nm) and O-band (1260~1360nm) A wavelength selection switch for a wavelength selective laser system, characterized in that it has a.
  4. 제3항에 있어서,According to claim 3,
    출력되는 레이저의 중심 파장은 상기 회절격자에서 분산되어 상기 MEMS 미러 배열에 입사되는 광경로를 산출하여 확정하고, 확정된 광경로에 따라 상기 복수의 MEMS 미러의 배열이 설계되는 것을 특징으로 하는 파장 선택형 레이저 시스템용 파장 선택 스위치.The central wavelength of the output laser is determined by calculating an optical path that is dispersed in the diffraction grating and incident on the MEMS mirror array, and the arrangement of the plurality of MEMS mirrors is designed according to the determined optical path. Wavelength selection switch for laser systems.
  5. 제3항에 있어서,According to claim 3,
    상기 회절격자는 상기 레이저의 파장이 길어질수록 파장 채널 간의 파장 간격이 비선형적으로 길어지게 상기 레이저를 분산시키는 것을 특징으로 하는 파장 선택형 레이저 시스템용 파장 선택 스위치.The diffraction grating is a wavelength selection switch for a wavelength selective laser system, characterized in that as the wavelength of the laser becomes longer, the wavelength distance between the wavelength channels becomes longer nonlinearly to disperse the laser.
  6. 제5항에 있어서,According to claim 5,
    상기 복수의 MEMS 미러는 비선형적으로 길어지는 상기 파장 채널의 파장 간격에 대응되게 상기 MEMS 미러 간의 간격도 비선형적으로 길어지게 배치되는 것을 특징으로 하는 파장 선택형 레이저 시스템용 파장 선택 스위치.The wavelength selection switch for a wavelength selective laser system, characterized in that the distance between the plurality of MEMS mirrors is arranged to be nonlinearly long so as to correspond to the wavelength spacing of the wavelength channel that is nonlinearly long.
  7. 제6항에 있어서, 상기 MEMS 미러 배열은,The method of claim 6, wherein the MEMS mirror array,
    상기 복수의 MEMS 미러를 각각 독립적으로 1축 방향으로 요동시키는 복수의 정전 구동기;a plurality of electrostatic actuators that independently oscillate the plurality of MEMS mirrors in a uniaxial direction;
    를 더 포함하는 것을 특징으로 하는 파장 선택형 레이저 시스템용 파장 선택 스위치.A wavelength selection switch for a wavelength selective laser system, characterized in that it further comprises.
  8. 제7항에 있어서, 상기 MEMS 미러 배열은,The method of claim 7, wherein the MEMS mirror array,
    상기 복수의 MEMS 미러가 일렬로 배열되고,The plurality of MEMS mirrors are arranged in a line,
    상기 복수의 정전 구동기가 각각 상기 1축 방향으로 복수의 MEMS 미러에 상하로 교번되게 연결되는 것을 특징으로 하는 파장 선택형 레이저 시스템용 파장 선택 스위치.The wavelength selection switch for a wavelength selective laser system, characterized in that the plurality of electrostatic actuators are alternately connected up and down to a plurality of MEMS mirrors in the uniaxial direction, respectively.
  9. 제8항에 있어서, 상기 MEMS 미러는9. The method of claim 8, wherein the MEMS mirror is
    직사각형 형태로 형성되고, 단변의 한 쪽에 상기 정전 구동기가 상기 1축 방향으로 연결되고,It is formed in a rectangular shape, and the electrostatic actuator is connected to one side of a short side in the uniaxial direction,
    상기 단변의 폭에 의해 선택되는 레이저의 선폭이 결정되는 것을 특징으로 하는 파장 선택형 레이저 시스템용 파장 선택 스위치.A wavelength selection switch for a wavelength selective laser system, characterized in that the line width of the laser selected by the width of the short side is determined.
  10. 제8항에 있어서,According to claim 8,
    출력되는 레이저의 선폭은 상기 회절격자에서 분산되어 상기 MEMS 미러 배열에 입사되는 광경로를 산출하여 확정하고, 확정된 광경로에 따라 상기 복수의 MEMS 미러의 폭이 설계되는 것을 특징으로 하는 파장 선택형 레이저 시스템용 파장 선택 스위치.The line width of the output laser is determined by calculating an optical path that is dispersed in the diffraction grating and incident on the MEMS mirror array, and the widths of the plurality of MEMS mirrors are designed according to the determined optical path. Wavelength selection switch for system.
  11. 광대역의 광 이득 매질을 사용하여 레이저 공진 조건에 맞는 특정 파장 채널의 레이저를 선택적으로 출력하는 파장 선택 스위치;를 포함하고,A wavelength selection switch that selectively outputs a laser of a specific wavelength channel suitable for laser resonance conditions using a broadband optical gain medium; includes,
    상기 파장 선택 스위치는,The wavelength selection switch,
    상기 광대역의 광 이득 매질을 사용하고 복수의 파장 채널로 비선형적으로 분산시키는 회절격자; 및a diffraction grating using the broadband optical gain medium and dispersing nonlinearly into a plurality of wavelength channels; and
    상기 회절격자에 의해 비선형적으로 분산된 복수의 파장 채널에 각각 대응되게 비선형적으로 배치된 복수의 MEMS 미러를 포함하고, 상기 복수의 MEMS 미러로 입력되는 상기 복수의 파장 채널 중 특정 파장만 선택적으로 반사하여 공진을 일으키는 MEMS 미러 배열;It includes a plurality of MEMS mirrors nonlinearly arranged to correspond to a plurality of wavelength channels nonlinearly dispersed by the diffraction grating, and selectively selects only a specific wavelength among the plurality of wavelength channels input to the plurality of MEMS mirrors. An array of MEMS mirrors that reflect and cause resonance;
    을 포함하는 파장 선택형 레이저 시스템.A wavelength-selective laser system comprising a.
  12. 제11항에 있어서, 상기 파장 선택 스위치는,The method of claim 11, wherein the wavelength selection switch,
    광섬유 증폭기에서 방출되는 상기 광대역의 광을 평행하게 모아서 상기 회절격자로 전달하거나, 상기 MEMS 미러 배열에서 선택된 특정 파장의 광을 모아서 상기 광섬유 증폭기로 출력하는 입출력 광 콜리메이터; 및an input/output optical collimator that collects the broadband light emitted from the optical fiber amplifier in parallel and transfers the light to the diffraction grating, or collects light of a specific wavelength selected from the MEMS mirror array and outputs the collected light to the optical fiber amplifier; and
    상기 회절격자에 의해 비선형적으로 분산된 복수의 파장 채널의 레이저를 상기 MEMS 미러 배열로 평행하게 전달하는 광학계;an optical system that transmits lasers of a plurality of wavelength channels nonlinearly dispersed by the diffraction grating to the MEMS mirror array in parallel;
    를 더 포함하는 것을 특징으로 하는 파장 선택형 레이저 시스템.A wavelength selective laser system further comprising a.
PCT/KR2022/017834 2021-12-30 2022-11-14 Wavelength-selective laser system using mems mirror array WO2023128261A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20210192542 2021-12-30
KR10-2021-0192542 2021-12-30
KR1020220011907A KR102610091B1 (en) 2021-12-30 2022-01-27 Wavelength selective laser system using MEMS mirror array
KR10-2022-0011907 2022-01-27

Publications (1)

Publication Number Publication Date
WO2023128261A1 true WO2023128261A1 (en) 2023-07-06

Family

ID=86999382

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/017834 WO2023128261A1 (en) 2021-12-30 2022-11-14 Wavelength-selective laser system using mems mirror array

Country Status (1)

Country Link
WO (1) WO2023128261A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009003170A (en) * 2007-06-21 2009-01-08 Fujitsu Ltd Light wavelength separation device, wavelength selective switch and light intensity measurement instrument
US20090220192A1 (en) * 2008-02-28 2009-09-03 Olympus Corporation Wavelength selective switch with reduced chromatic dispersion and polarization-dependent loss
KR20110081525A (en) * 2010-01-08 2011-07-14 부산대학교 산학협력단 Controllable linewidth tunable laser
JP2014083562A (en) * 2012-10-23 2014-05-12 Olympus Corp Laser irradiation unit, and laser processing apparatus
JP2016057407A (en) * 2014-09-08 2016-04-21 日本電信電話株式会社 Wavelength selective switch

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009003170A (en) * 2007-06-21 2009-01-08 Fujitsu Ltd Light wavelength separation device, wavelength selective switch and light intensity measurement instrument
US20090220192A1 (en) * 2008-02-28 2009-09-03 Olympus Corporation Wavelength selective switch with reduced chromatic dispersion and polarization-dependent loss
KR20110081525A (en) * 2010-01-08 2011-07-14 부산대학교 산학협력단 Controllable linewidth tunable laser
JP2014083562A (en) * 2012-10-23 2014-05-12 Olympus Corp Laser irradiation unit, and laser processing apparatus
JP2016057407A (en) * 2014-09-08 2016-04-21 日本電信電話株式会社 Wavelength selective switch

Similar Documents

Publication Publication Date Title
US5960133A (en) Wavelength-selective optical add/drop using tilting micro-mirrors
US7376311B2 (en) Method and apparatus for wavelength-selective switches and modulators
EP1445631B1 (en) Optical device with slab waveguide and channel waveguides on substrate
Baxter et al. Highly programmable wavelength selective switch based on liquid crystal on silicon switching elements
US6549699B2 (en) Reconfigurable all-optical multiplexers with simultaneous add-drop capability
US6879750B2 (en) Reconfigurable optical add-drop multiplexers with servo control and dynamic spectral power management capabilities
US20020071627A1 (en) Variable transmission multi-channel optical switch
US7321704B2 (en) Wavelength cross connect with per port performance characteristics
US20080031627A1 (en) Optical communication system
US7835601B2 (en) Device for generating a laser light beam
WO2002093210A2 (en) Tunable band pass optical filter unit
US6693925B2 (en) Modulatable multi-wavelength fiber laser source
US20080316479A1 (en) Optical device
US6956987B2 (en) Planar lightwave wavelength blocker devices using micromachines
JP7256422B2 (en) Light source with monitoring function
EP3136146A1 (en) Agile light source provisioning for information and communications technology systems
GB2043240A (en) Improvements in or relating to the switching of signals
WO2023128261A1 (en) Wavelength-selective laser system using mems mirror array
Suzuki et al. Spatial and planar optical circuit
KR102610091B1 (en) Wavelength selective laser system using MEMS mirror array
Seno et al. Wide-Passband $\mathrm {C}+\mathrm {L} $-Band Wavelength Selective Switch by Alternating Wave-Band Arrangement on LCOS
US6781730B2 (en) Variable wavelength attenuator for spectral grooming and dynamic channel equalization using micromirror routing
US6816643B2 (en) Wavelength tunable demultiplexing filter device, wavelength tunable multiplexing filter device, and wavelength routing device
US20050002670A1 (en) Multi-wavelength light source
Gu et al. First Demonstration of C-band Wavelength Demultiplexer Based on a Bragg Reflector Waveguide Amplifier Using InP Material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22916415

Country of ref document: EP

Kind code of ref document: A1