WO2023128109A1 - Method for manufacturing surface having nanohole pattern separation membrane structure - Google Patents

Method for manufacturing surface having nanohole pattern separation membrane structure Download PDF

Info

Publication number
WO2023128109A1
WO2023128109A1 PCT/KR2022/011077 KR2022011077W WO2023128109A1 WO 2023128109 A1 WO2023128109 A1 WO 2023128109A1 KR 2022011077 W KR2022011077 W KR 2022011077W WO 2023128109 A1 WO2023128109 A1 WO 2023128109A1
Authority
WO
WIPO (PCT)
Prior art keywords
micropattern
resin
substrate
hole pattern
manufacturing
Prior art date
Application number
PCT/KR2022/011077
Other languages
French (fr)
Korean (ko)
Inventor
조영태
김석
최수현
김우영
오승민
Original Assignee
창원대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 창원대학교 산학협력단 filed Critical 창원대학교 산학협력단
Publication of WO2023128109A1 publication Critical patent/WO2023128109A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0002Lithographic processes using patterning methods other than those involving the exposure to radiation, e.g. by stamping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/16Coating processes; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/16Coating processes; Apparatus therefor
    • G03F7/161Coating processes; Apparatus therefor using a previously coated surface, e.g. by stamping or by transfer lamination

Definitions

  • the present invention relates to a method for fabricating a surface having a nano hole pattern separator structure, and more particularly, to a method for fabricating a structure having a surface capable of separating a nano-sized material from a mixture easily and at low cost. .
  • An object of the present invention to solve the above problems is to propose a new type of technology capable of selectively separating only nano-sized materials from a mixture using a nano-imprint process.
  • the present invention comprises the steps of forming a resin layer by applying an ultraviolet curable resin on a first substrate on which a first micropattern is formed; forming a second micropattern in a columnar shape on a second substrate; bringing the resin layer and the micropattern into contact with each other by moving the first substrate or the second substrate such that the resin layer and the second micropattern face each other; and curing the resin by irradiating ultraviolet rays in a state in which the resin located around the pillars of the second micropattern moves a predetermined distance along the pillars in the longitudinal direction of the second micropattern by capillary force; and removing the first substrate after the UV irradiation is completed, wherein the first micropattern is embossed and has a smaller size than the second micropattern.
  • the resin is characterized in that it is applied in a uniform thickness by a roller on the first substrate.
  • the ultraviolet rays are characterized in that the resin is irradiated through the transparent first substrate.
  • the cross section of the pillar of the micropattern in contact with the resin layer is formed in a reentrant structure having a larger area than other cross sections of the pillar. do.
  • a separator having a fine hole pattern is formed on top of the second fine pattern.
  • the thickness of the separation film is characterized in that the closer it is to the second micropattern, the thicker it is formed.
  • an internal space is formed between the second micro-patterned pillar and the separator.
  • the surface of the separator is characterized in that it is a hydrophobic surface with a predetermined contact angle or more.
  • a separator having a nano-hole pattern is formed on the surface of the pattern fabricated by embossing the first micropattern, it is useful for separating nano-sized materials through the nano-holes.
  • nano-sized nutrients are supplied through the nano-holes and harmful components such as micro-sized viruses can be blocked, so that it can be used for purposes such as cell culture under a separation membrane.
  • FIG. 1 is a flowchart schematically illustrating a method of manufacturing a surface having a nano hole pattern separator structure according to an embodiment of the present invention.
  • FIG. 2 is a view showing a shape in which a first micropattern according to an embodiment of the present invention is embossed.
  • 3A to 3E are diagrams sequentially illustrating a manufacturing process of a surface having a nano hole pattern separator structure according to an embodiment of the present invention.
  • 4A and 4B are views showing a surface having a nano hole pattern separator structure manufactured when a first micropattern is embossed.
  • FIG. 5 is a view of measuring a contact angle by contacting water to a surface manufactured according to an embodiment of the present invention.
  • FIG. 1 is a flowchart schematically illustrating a method for manufacturing a surface having a nano hole pattern separator structure according to an embodiment of the present invention
  • FIG. 2 shows a shape in which a first micropattern is embossed according to an embodiment of the present invention
  • 3A to 3E are diagrams sequentially illustrating a manufacturing process of a surface having a nano hole pattern separator structure according to an embodiment of the present invention.
  • the surface having the nano hole pattern separator structure includes applying a resin on a first substrate on which a first micropattern is formed (S100), and a second micropattern on a second substrate. Forming a pattern (S200), contacting the resin layer with the second micropattern (S300), irradiating ultraviolet rays (S400), and removing the first substrate (S500).
  • the first substrate 10 is made of a transparent material through which ultraviolet rays can pass.
  • a separately manufactured first micropattern 12 is formed on the first substrate 10 .
  • the first micropattern 12 is embossed.
  • a resin 14 is applied on the first micropattern 12 .
  • the resin 14 is a photocurable polymer resin that undergoes physical and chemical changes by light energy.
  • the resin 14 applied on the first substrate 10 is in a flowable state (flowable state). Accordingly, the resin 14 may flow into the grooves of the first micropattern 12 .
  • the resin 14 is applied by a roller to have a uniform thickness. Accordingly, a resin layer is formed on the first micropattern 12 . On the other hand, if the resin 14 can be applied with a uniform thickness on the first micropattern 12, various methods such as ejection by an ejection device or spin coating may be used.
  • a step of forming a second micropattern on a second substrate will be described. Referring to the drawing shown below in FIG. 3A , a separately manufactured second micropattern 22 is formed on the second substrate 20 .
  • the second substrate 20 used in one embodiment of the present invention is a PET (Polyethylene terephthalate) film, but is not limited thereto.
  • the first micropattern 12 has a smaller size than the second micropattern 22 .
  • the pillar size of the first micropattern 12 is smaller than that of the second micropattern 22 .
  • the first micropattern 12 has a nano-sized size
  • the second micropattern 22 has a micro-sized size.
  • Various lithography techniques may be used as a method of forming the first and second fine patterns 12 and 22 .
  • first and second micropatterns are formed by nanoimprint lithography.
  • Nanoimprint is a technology that can imprint a nano-level pattern like a stamp. After applying the imprint resin on the first substrate 10 and the second substrate 20 to be patterned, press it with a stamp designed in a desired pattern to imprint it. and patterning a predetermined layer by dry or wet etching.
  • the first and second micropatterns 12 and 22 formed by the nanoimprint technology have a vertical cross section of a pillar shape as shown in FIG. 3A. At this time, the width (or horizontal cross section) of the column is approximately constant according to the height.
  • the manufactured first or second micropatterns 12 and 22 may be polygonal or circular pillar-shaped array patterns or polygonal or circular wall-pillar array patterns when viewed from above. And the shapes of the second micropatterns 12 and 22 may be variously set according to a designer's intention.
  • the resin 14 located around the pillar of the second micropattern 22 becomes wet while touching the pillar. Therefore, as shown in FIG. 3C, the resin 14 moves along the pillar in the longitudinal direction of the pillar by the pillar force. At this time, the height of the liquid (resin in the present invention) that has risen along the column according to the capillary force can be obtained as shown in Equation 1 below.
  • H is the maximum height moved in the longitudinal direction of the column, is the surface tension between the resin/air interface, is the contact angle between the resin and the pillar, is the density of the resin, G is the gravitational constant, and L is the distance between columns.
  • the cross section (horizontal cross section) of the upper column in contact between the resin layer 14 and the second micropattern 22 has a larger area than the lower cross section (horizontal cross section) of the column, or the upper width is wider than the lower width.
  • the distance the resin 14 moves along the pillar is important. For example, if the resin 14 moves too much, the overall shape of the column may have a hyperbolic shape. Therefore, in this specification, the moving distance of the resin 14 for forming the reentrant structure is referred to as H'.
  • the distance traveled by the resin 14 is calculated according to Equation 1, and when the value H is greater than H', the distance traveled by the resin 14 is the distance between the resin layer 14 and the second Since the state is affected by the contact time between the micropatterns 22, an appropriate contact time is required.
  • the contact time may be variously set according to the type of resin 14 and the shape of the micropatterns 12 and 22 .
  • UV ultraviolet
  • the step of removing the first substrate will be described.
  • the first substrate 10 is removed.
  • a separation film which is a thin film covering the surface of the second micropattern 22, is formed.
  • the separator is formed by curing and connecting the resins 14 that have penetrated the lower surface of the pillar pattern.
  • a cavity which is an internal space C, is formed between the pillars and the separator.
  • a nano-sized hole (N) pattern is formed in the separator.
  • the size and shape of the nanoholes may be variously set according to design.
  • the present invention can be used for purposes such as cell culture under a separation membrane because nutrients having a nano size are supplied through the nano holes and harmful components such as viruses having a micro size can be blocked.
  • it is not limited thereto, and can be applied to various uses capable of separating materials having a nano size.
  • the first substrate 10 on which the resin layer is formed in steps S100 to S500 may be located below, and the second substrate 20 may be located above.
  • the principle of moving the resin 14 along the pillar is the same, and in step S400, ultraviolet rays are irradiated from bottom to top.
  • the inventors of the present invention fabricated a surface having a nano hole pattern separator structure according to the above-described manufacturing process, and in this case, a hexagonal columnar array pattern was used as the second micropattern 22 . It was observed through a scanning electron microscope (SEM).
  • 4A and 4B are views showing a surface having a nano hole pattern separator structure manufactured when a first micropattern is embossed.
  • the second micropattern 22 has a reentrant structure, and a separator S is formed on the top of the second micropattern 22 .
  • An internal space C was formed between the separator and the pillars of the second micropattern 22 .
  • Figure 4a (b) is an enlarged view of the X1 portion of Figure 4a (a).
  • the length of the column of the second micropattern 22 was measured to be 9.88 ⁇ m, and the width of the upper end of the reentrant structure was measured to be 8.45 ⁇ m.
  • Figure 4a (c) is an enlarged view of the X2 portion of Figure 4a (b). Referring to (c) of FIG. 4A, the length (depth) of the nanohole was measured to be 450 nm and the width was measured to be 265 nm.
  • the upper end of the reentrant structure of the second micropattern 22 is connected to the boundary of the separator (S).
  • the thin part of FIG. 4B is the separator S, and the thick part is the upper end of the reentrant structure.
  • Figure 4b (b) is an enlarged view of the X3 portion of Figure 4b. As shown in (b) of FIG. 4B, it can be seen that nano holes N are formed in the separator.
  • Figure 4b (c) is a view measuring the cross-sectional thickness of the line A1-A1' of Figure 4b (a) and the height difference with the separator. Looking at the measurement results, the thickness of the top of the reentrant structure was 11.634 ⁇ m, and the height difference with the separator was measured to be 0.436 ⁇ m.
  • Figure 4b (d) is a view showing a cross section of the BB' line of Figure 4b (b). That is, it can be seen that nano-sized holes are formed in the separator (S).
  • a surface capable of selectively separating only nano-sized materials through nano-holes formed in a separator can be manufactured by a simple method at low cost.
  • FIG. 5 is a view of measuring a contact angle by contacting water to a surface manufactured according to an embodiment of the present invention.
  • Hydrophobicity means a state in which the contact angle between the micropattern surface and water droplets exceeds 90° (hydrophobic reference contact angle).
  • the contact angle of water (Di-water) in contact with the surface of the separator manufactured according to an embodiment of the present invention was measured to be 98.5 ° ⁇ 2.0 °. That is, it can be confirmed that the surface having the nano hole pattern separator structure prepared according to the present invention has hydrophobicity.
  • hydrophobicity or oleophobicity of the surface of the separator prepared according to an embodiment of the present invention may vary depending on the type of resin 14 used and the surface shape (eg, shape, size, surface roughness of nanoholes).

Abstract

The present invention relates to a manufacturing method enabling a structure having a surface capable of separating nano-sized materials from a mixture to be simply manufactured at low cost, the method comprising the steps of: forming a resin layer by applying an ultraviolet-curable resin onto a first substrate having a first micropattern; forming a columnar second micropattern on a second substrate; moving the first substrate or the second substrate so that the resin layer and the second micropattern are opposite to each other, thereby making the resin layer and the micropattern come in contact with each other; performing ultraviolet irradiation in a state in which the resin positioned in the vicinity of the columns of the second micropattern has moved, due to capillary force, a predetermined distance along the columns of the second micropattern in the longitudinal direction of the columns, thereby curing the resin; and removing the first substrate after the ultraviolet irradiation is complete, wherein the first micropattern is embossed and is smaller than the second micropattern.

Description

나노 홀 패턴 분리막 구조를 갖는 표면의 제작 방법Method for fabricating a surface having a nano hole pattern separator structure
본 발명은 나노 홀 패턴 분리막 구조를 갖는 표면의 제작 방법에 관한 것으로, 더욱 상세하게는 혼합물에서 나노 크기를 가진 물질을 분리할 수 있는 표면 가진 구조를 저비용으로 간단하게 제작할 수 있는 제작 방법에 관한 것이다.The present invention relates to a method for fabricating a surface having a nano hole pattern separator structure, and more particularly, to a method for fabricating a structure having a surface capable of separating a nano-sized material from a mixture easily and at low cost. .
유슈 분리 장치, 원심 분리기와 같이 성분이나 비중이 다른 물질들을 분리하는 용도의 장치들이 사용되고 있다. 나노 크기의 물질이 섞인 혼합물에서 나노 크기의 물질을 분리하는데 상술한 장치들을 사용할 수 있으나, 이러한 장치들은 고가이며, 제작하는데 많은 구성이 필요하다. 따라서, 상술한 장치들과 유사한 기능을 가지면서 저비용으로 간단하게 제조할 수 있는 기술이 필요하다.Devices for separating materials having different components or specific gravities, such as a Yushu separator and a centrifugal separator, are being used. Although the above-described devices can be used to separate nano-sized materials from a mixture of nano-sized materials, these devices are expensive and require many configurations to manufacture. Therefore, there is a need for a technology that can be simply manufactured at low cost while having functions similar to those of the above-described devices.
상술한 문제를 해결하기 위한 본 발명의 과제는, 나노 임프린트 공정을 이용하여 혼합물에서 나노 크기의 물질 만을 선택적으로 분리할 수 있는 새로운 형태의 기술을 제시함에 있다.An object of the present invention to solve the above problems is to propose a new type of technology capable of selectively separating only nano-sized materials from a mixture using a nano-imprint process.
본 발명은 상술한 과제를 해결하기 위해, 제1 미세패턴이 형성된 제1 기재 위에 자외선 경화 레진을 도포하여 레진층을 형성하는 단계; 제2 기재 위에 기둥 형상의 제2 미세패턴을 형성하는 단계; 상기 레진층과 상기 제2 미세패턴이 마주보도록 상기 제1 기재 또는 제2 기재를 이동시켜 상기 레진층과 상기 미세패턴을 서로 접촉시키는 단계; 및 상기 제2 미세패턴의 기둥 주변에 위치한 레진이 모세관력에 의해 상기 제2 미세패턴의 기둥 길이방향으로 기둥을 따라 일정 거리 이동한 상태에서 자외선을 조사하여 상기 레진을 경화시키는 단계; 및 상기 자외선 조사가 완료된 후 상기 제1 기재를 제거하는 단계;를 포함하고, 상기 제1 미세패턴은 양각으로 형성되며, 제2 미세패턴 보다 크기가 작은 것을 특징으로 한다.In order to solve the above problems, the present invention comprises the steps of forming a resin layer by applying an ultraviolet curable resin on a first substrate on which a first micropattern is formed; forming a second micropattern in a columnar shape on a second substrate; bringing the resin layer and the micropattern into contact with each other by moving the first substrate or the second substrate such that the resin layer and the second micropattern face each other; and curing the resin by irradiating ultraviolet rays in a state in which the resin located around the pillars of the second micropattern moves a predetermined distance along the pillars in the longitudinal direction of the second micropattern by capillary force; and removing the first substrate after the UV irradiation is completed, wherein the first micropattern is embossed and has a smaller size than the second micropattern.
본 발명의 일 실시예에 따르면, 상기 레진은 상기 제1 기재 위에 롤러에 의해 균일한 두께로 도포되는 것을 특징으로 한다.According to one embodiment of the present invention, the resin is characterized in that it is applied in a uniform thickness by a roller on the first substrate.
또한, 본 발명의 일 실시예에 따르면, 상기 자외선은 투명한 제1 기재를 통해 레진에 조사되는 것을 특징으로 한다.Further, according to one embodiment of the present invention, the ultraviolet rays are characterized in that the resin is irradiated through the transparent first substrate.
또한, 본 발명의 일 실시예에 따르면, 상기 제2 미세패턴의 기둥에 가까운 레진일수록 상기 제2 미세패턴의 기둥 길이방향으로 더 크게 이동하는 것을 특징으로 한다.Further, according to an embodiment of the present invention, the closer the resin is to the pillars of the second micropattern, the more it moves in the longitudinal direction of the pillars of the second micropattern.
또한, 본 발명의 일 실시예에 따르면, 상기 레진이 자외선에 의해 경화된 후 상기 레진층과 접촉된 상기 미세패턴의 기둥 단면은 기둥의 다른 단면보다 넓은 면적을 갖는 재진입 구조로 형성되는 것을 특징으로 한다.In addition, according to one embodiment of the present invention, after the resin is cured by ultraviolet rays, the cross section of the pillar of the micropattern in contact with the resin layer is formed in a reentrant structure having a larger area than other cross sections of the pillar. do.
또한, 본 발명의 일 실시예에 따르면, 상기 제1 기재를 제거한 후에 상기 제2 미세패턴 상단에 미세 홀 패턴을 가진 분리막이 형성되는 것을 특징으로 한다.Further, according to an embodiment of the present invention, after removing the first substrate, a separator having a fine hole pattern is formed on top of the second fine pattern.
또한, 본 발명의 일 실시예에 따르면, 상기 분리막의 두께는 상기 제2 미세패턴에 가까울 수록 두껍게 형성되는 것을 특징으로 한다.In addition, according to an embodiment of the present invention, the thickness of the separation film is characterized in that the closer it is to the second micropattern, the thicker it is formed.
또한, 본 발명의 일 실시예에 따르면, 상기 제2 미세패턴 기둥과 상기 분리막 사이에 내부공간이 형성되는 것을 특징으로 한다.Further, according to an embodiment of the present invention, an internal space is formed between the second micro-patterned pillar and the separator.
또한, 본 발명의 일 실시예에 따르면, 상기 분리막 표면은 기 설정된 접촉각 이상의 소수성 표면인 것을 특징으로 한다.In addition, according to an embodiment of the present invention, the surface of the separator is characterized in that it is a hydrophobic surface with a predetermined contact angle or more.
본 발명에 따르면 제1 미세패턴을 양각으로 새김으로써 제작된 패턴 표면에 나노 홀 패턴을 갖는 분리막이 형성되므로, 나노 홀을 통해 나노 크기의 물질을 분리하는데 유용하다.According to the present invention, since a separator having a nano-hole pattern is formed on the surface of the pattern fabricated by embossing the first micropattern, it is useful for separating nano-sized materials through the nano-holes.
또한, 본 발명에 따르면, 나노 홀을 통해 나노 사이즈를 가진 영양분 등이 공급되고 마이크로 크기를 가진 바이러스 등의 위해 성분을 차단할 수 있으므로 분리막 아래에서 세포 배양 등의 용도로 사용이 가능하다.In addition, according to the present invention, nano-sized nutrients are supplied through the nano-holes and harmful components such as micro-sized viruses can be blocked, so that it can be used for purposes such as cell culture under a separation membrane.
도 1은 본 발명의 일 실시예에 따른 나노 홀 패턴 분리막 구조를 갖는 표면의 제작 방법을 개략적으로 나타낸 순서도이다.1 is a flowchart schematically illustrating a method of manufacturing a surface having a nano hole pattern separator structure according to an embodiment of the present invention.
도 2는 본 발명의 일 실시예에 따른 제1 미세패턴이 양각으로 새겨진 형상을 나타낸 도면이다.2 is a view showing a shape in which a first micropattern according to an embodiment of the present invention is embossed.
도 3a 내지 도 3e는 본 발명의 일 실시예에 따른 나노 홀 패턴 분리막 구조를 갖는 표면의 제작 공정을 순서대로 나타낸 도면이다.3A to 3E are diagrams sequentially illustrating a manufacturing process of a surface having a nano hole pattern separator structure according to an embodiment of the present invention.
도 4a 및 도 4b는 제1 미세패턴이 양각으로 새겨진 경우 제작된 나노 홀 패턴 분리막 구조를 갖는 표면을 나타낸 도면이다.4A and 4B are views showing a surface having a nano hole pattern separator structure manufactured when a first micropattern is embossed.
도 5는 본 발명의 일 실시예에 따르 제조된 표면에 물을 접촉시켜 접촉각을 측정한 도면이다.5 is a view of measuring a contact angle by contacting water to a surface manufactured according to an embodiment of the present invention.
이하 첨부된 도면을 참조하여, 바람직한 실시예에 따른 나노 홀 패턴 분리막 구조를 갖는 표면의 제작 방법에 대해 상세히 설명하면 다음과 같다. 여기서, 동일한 구성에 대해서는 동일부호를 사용하며, 반복되는 설명, 발명의 요지를 불필요하게 흐릴 수 있는 공지 기능 및 구성에 대한 상세한 설명은 생략한다. 발명의 실시형태는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것이다. 따라서, 도면에서의 요소들의 형상 및 크기 등은 보다 명확한 설명을 위해 과장될 수 있다.Hereinafter, with reference to the accompanying drawings, a method of manufacturing a surface having a nano hole pattern separator structure according to a preferred embodiment will be described in detail. Here, the same reference numerals are used for the same components, and repeated descriptions and detailed descriptions of known functions and configurations that may unnecessarily obscure the subject matter of the invention are omitted. Embodiments of the invention are provided to more completely explain the present invention to those skilled in the art. Accordingly, the shapes and sizes of elements in the drawings may be exaggerated for clarity.
도 1은 본 발명의 일 실시예에 따른 나노 홀 패턴 분리막 구조를 갖는 표면의 제작 방법을 개략적으로 나타낸 순서도이고, 도 2는 본 발명의 일 실시예에 따른 제1 미세패턴이 양각으로 새겨진 형상을 나타낸 도면이며, 도 3a 내지 도 3e는 본 발명의 일 실시예에 따른 나노 홀 패턴 분리막 구조를 갖는 표면의 제작 공정을 순서대로 나타낸 도면이다.1 is a flowchart schematically illustrating a method for manufacturing a surface having a nano hole pattern separator structure according to an embodiment of the present invention, and FIG. 2 shows a shape in which a first micropattern is embossed according to an embodiment of the present invention. 3A to 3E are diagrams sequentially illustrating a manufacturing process of a surface having a nano hole pattern separator structure according to an embodiment of the present invention.
도 1을 참조하면, 본 발명의 일 실시예에 따른 나노 홀 패턴 분리막 구조를 갖는 표면은, 제1 미세패턴이 형성된 제1 기재 위에 레진을 도포하는 단계(S100), 제2 기재 위에 제2 미세패턴을 형성하는 단계(S200), 레진층과 제2 미세패턴을 접촉시키는 단계(S300), 자외선을 조사하는 단계(S400) 및 제1 기재를 제거하는 단계(S500)를 포함한다.Referring to FIG. 1 , the surface having the nano hole pattern separator structure according to an embodiment of the present invention includes applying a resin on a first substrate on which a first micropattern is formed (S100), and a second micropattern on a second substrate. Forming a pattern (S200), contacting the resin layer with the second micropattern (S300), irradiating ultraviolet rays (S400), and removing the first substrate (S500).
우선, 제1 미세패턴이 형성된 제1 기재(substrate) 위에 레진을 도포하는 단계(S100)를 살펴본다. 도 3a의 위에 도시된 도면을 참조하면, 제1 기재(10)는 자외선이 투과될 수 있는 투명한 재질로 구성된다. 제1 기재(10) 위에는 별도로 제작된 제1 미세패턴(12)이 형성되어 있다. 도 2에 도시된 바와 같이, 제1 미세패턴(12)은 양각으로 새겨져 있다.First, a step of applying a resin on a first substrate on which a first micropattern is formed (S100) will be described. Referring to the drawing shown above in FIG. 3A , the first substrate 10 is made of a transparent material through which ultraviolet rays can pass. A separately manufactured first micropattern 12 is formed on the first substrate 10 . As shown in FIG. 2 , the first micropattern 12 is embossed.
제1 미세패턴(12) 위에는 레진(14)이 도포된다. 레진(14)은 광에너지에 의해 물리적, 화학적 변화를 가져오는 광경화성 고분자 수지이다. 제1 기재(10) 위에 도포된 레진(14)은 흐를 수 있는 상태(유동이 가능한 상태)이다. 따라서, 레진(14)은 제1 미세패턴(12)의 홈 사이로 흘러 들어갈 수 있다.A resin 14 is applied on the first micropattern 12 . The resin 14 is a photocurable polymer resin that undergoes physical and chemical changes by light energy. The resin 14 applied on the first substrate 10 is in a flowable state (flowable state). Accordingly, the resin 14 may flow into the grooves of the first micropattern 12 .
레진(14)은 롤러에 의해 균일한 두께를 가지도록 도포된다. 따라서, 제1 미세패턴(12) 위에는 레진층이 형성된다. 한편, 레진(14)이 제1 미세패턴(12) 위에 균일한 두께를 가지고 도포될 수 있다면, 투출장치에 의해 투출되거나 스핀코팅 등 다양한 방법이 사용될 수 있다.The resin 14 is applied by a roller to have a uniform thickness. Accordingly, a resin layer is formed on the first micropattern 12 . On the other hand, if the resin 14 can be applied with a uniform thickness on the first micropattern 12, various methods such as ejection by an ejection device or spin coating may be used.
다음으로, 제2 기재(substrate) 위에 제2 미세패턴을 형성하는 단계(S200)를 살펴본다. 도 3a의 아래에 도시된 도면을 참조하면, 제2 기재(20) 위에는 별도로 제작된 제2 미세패턴(22)이 형성되어 있다.Next, a step of forming a second micropattern on a second substrate (S200) will be described. Referring to the drawing shown below in FIG. 3A , a separately manufactured second micropattern 22 is formed on the second substrate 20 .
본 발명의 일 실시예서 사용된 제2 기재(20)는 PET(Polyethylene terephthalate) 필름이나, 이에 한정되지 않는다.The second substrate 20 used in one embodiment of the present invention is a PET (Polyethylene terephthalate) film, but is not limited thereto.
한편, 제1 미세패턴(12)은 제2 미세패턴(22) 보다 작은 크기를 갖는다. 구체적으로는 제1 미세패턴(12)의 기둥(pillar) 크기는 제2 미세패턴(22)의 기둥 크기 보다 작다. 본 발명의 일 실시예에서 제1 미세패턴(12)은 나노 사이즈의 크기를 가지며, 제2 미세패턴(22)은 마이크로 사이즈의 크기를 갖는다. 제1 및 제2 미세패턴(12, 22)을 형성하는 방법으로는 다양한 리소그래피 기술이 사용될 수 있다.Meanwhile, the first micropattern 12 has a smaller size than the second micropattern 22 . Specifically, the pillar size of the first micropattern 12 is smaller than that of the second micropattern 22 . In one embodiment of the present invention, the first micropattern 12 has a nano-sized size, and the second micropattern 22 has a micro-sized size. Various lithography techniques may be used as a method of forming the first and second fine patterns 12 and 22 .
본 발명의 일 실시예에서는 나노 임프린트 리소그래피 기술로 제1 및 제2 미세패턴이 형성되었다. 나노 임프린트는 나노 수준의 패턴을 도장처럼 찍어낼 수 있는 기술로 패턴을 만들려고 하는 제1 기재(10) 및 제2 기재(20) 위에 임프린트용 레진을 도포한 후 원하는 패턴으로 설계된 스탬프로 눌러 각인시키고 건식 또는 습식 식각에 의해 소정의 층을 패터닝하게 된다.In one embodiment of the present invention, first and second micropatterns are formed by nanoimprint lithography. Nanoimprint is a technology that can imprint a nano-level pattern like a stamp. After applying the imprint resin on the first substrate 10 and the second substrate 20 to be patterned, press it with a stamp designed in a desired pattern to imprint it. and patterning a predetermined layer by dry or wet etching.
나노 임프린트 기술에 의해 형성된 제1 및 제2 미세패턴(12, 22)은 도 3a에 도시된 도면처럼 그 수직 단면이 기둥(pillar) 형상을 갖는다. 이때, 기둥의 폭(또는 수평 단면)은 높이에 따라 대략 일정하다.The first and second micropatterns 12 and 22 formed by the nanoimprint technology have a vertical cross section of a pillar shape as shown in FIG. 3A. At this time, the width (or horizontal cross section) of the column is approximately constant according to the height.
제작된 제1 또는 제2 미세패턴(12, 22)은 위에서 봤을 때 다각 또는 원 기둥(pillar) 형상의 어레이 패턴 또는 다각 또는 원 벽기둥(wall-pillar) 형상의 어레이 패턴일 수 있으며, 제1 및 제2 미세패턴(12, 22)의 형상은 설계자의 의도에 따라 다양하게 설정될 수 있다.The manufactured first or second micropatterns 12 and 22 may be polygonal or circular pillar-shaped array patterns or polygonal or circular wall-pillar array patterns when viewed from above. And the shapes of the second micropatterns 12 and 22 may be variously set according to a designer's intention.
다음으로, 레진층과 제2 미세패턴을 접촉시키는 단계(S300)를 살펴본다. 도 3b에 도시된 바와 같이, 아래에는 제1 기재(10)가 위치하고 위에는 제2 기재(20)가 위치한다. 이때, 레진층(14)과 제2 미세패턴(22)이 마주보도록 한 후에 레진층(14)과 제2 미세패턴(22)이 접촉될 때까지 제1 기재(10)를 아래 방향으로 이동시킨다.Next, a step of contacting the resin layer and the second micropattern (S300) will be described. As shown in FIG. 3B, the first substrate 10 is located below and the second substrate 20 is located above. At this time, after the resin layer 14 and the second micropattern 22 face each other, the first substrate 10 is moved downward until the resin layer 14 and the second micropattern 22 come into contact with each other. .
레진층(14)과 제2 미세패턴(22)이 접촉되면 제2 미세패턴(22)의 기둥 주변에 위치한 레진(14)은 기둥에 닿으면서 젖게 되는(wetting) 현상이 발생된다. 따라서, 도 3c에 도시된 바와 같이, 레진(14)은 모세관력(pillar force)에 의해 기둥의 길이방향으로 기둥을 따라 이동한다. 이때 모세관력에 따라 기둥을 따라 올라간 액체(본 발명에서는 레진)의 높이는 아래 <수학식 1>과 같이 구해질 수 있다.When the resin layer 14 and the second micropattern 22 come into contact with each other, the resin 14 located around the pillar of the second micropattern 22 becomes wet while touching the pillar. Therefore, as shown in FIG. 3C, the resin 14 moves along the pillar in the longitudinal direction of the pillar by the pillar force. At this time, the height of the liquid (resin in the present invention) that has risen along the column according to the capillary force can be obtained as shown in Equation 1 below.
<수학식 1><Equation 1>
Figure PCTKR2022011077-appb-img-000001
Figure PCTKR2022011077-appb-img-000001
여기서, H는 기둥의 길이방향으로 이동한 최대높이,
Figure PCTKR2022011077-appb-img-000002
는 레진/공기 계면사이의 표면장력,
Figure PCTKR2022011077-appb-img-000003
는 레진과 기둥사이의 접촉각,
Figure PCTKR2022011077-appb-img-000004
는 레진의 밀도, G는 중력상수이며, L은 기둥과 기둥 사이의 거리이다.
Here, H is the maximum height moved in the longitudinal direction of the column,
Figure PCTKR2022011077-appb-img-000002
is the surface tension between the resin/air interface,
Figure PCTKR2022011077-appb-img-000003
is the contact angle between the resin and the pillar,
Figure PCTKR2022011077-appb-img-000004
is the density of the resin, G is the gravitational constant, and L is the distance between columns.
도 3c에 도시된 바와 같이, 제2 미세패턴(22)의 양 기둥 사이에 위치한 레진(14)이 모세관력에 의해 이동하면 레진(14)의 경계면을 따라 오목한 모양의 매니스커스 현상이 나타난다. 즉, 기둥에 가깝게 위치한 레진(14)은 기둥의 길이방향으로 크게 이동하여 레진(14)의 두께가 두꺼워지고, 양 기둥 사이에 위치한 레진(14)은 기둥 쪽으로 이동하면서 그 두께가 얇아진다. 하나의 기둥을 기준으로 보면 그 양쪽에 위치한 레진(14)은 대략 버섯 모양을 형성하면서 기둥을 따라 이동하고, 제2 미세패턴(22)은 재진입 구조를 형성하게 된다.As shown in FIG. 3C , when the resin 14 positioned between the two pillars of the second micropattern 22 moves by capillary force, a concave meniscus phenomenon appears along the interface of the resin 14 . That is, the resin 14 located close to the pillar moves greatly in the longitudinal direction of the pillar, and the thickness of the resin 14 becomes thick, and the resin 14 located between the two pillars moves toward the pillar and becomes thin. Looking at one pillar as a reference, the resin 14 positioned on both sides of the pillar moves along the pillar while forming an approximate mushroom shape, and the second micropattern 22 forms a reentrant structure.
재진입 구조는 레진층(14)과 제2 미세패턴(22) 간 접촉된 상부 기둥 단면(수평 단면)이 기둥의 하부 단면(수평 단면)보다 넓은 면적을 가지거나, 상부 폭이 하부 폭보다 넓은 구조이다.In the reentrant structure, the cross section (horizontal cross section) of the upper column in contact between the resin layer 14 and the second micropattern 22 has a larger area than the lower cross section (horizontal cross section) of the column, or the upper width is wider than the lower width. am.
재진입 구조를 갖는 미세패턴(22)이 형성되기 위해서는 레진(14)이 기둥을 따라 이동한 거리가 중요하다. 예를 들어, 레진(14)이 너무 많이 이동하면 기둥의 형상이 전체적으로 쌍곡선 형태를 가질 수 있다. 따라서, 본 명세서에서는 재진입 구조를 형성하기 위한 레진(14)의 이동거리를 H' 이라 한다.In order to form the micropattern 22 having a reentrant structure, the distance the resin 14 moves along the pillar is important. For example, if the resin 14 moves too much, the overall shape of the column may have a hyperbolic shape. Therefore, in this specification, the moving distance of the resin 14 for forming the reentrant structure is referred to as H'.
상술한 바와 같이, 레진(14)이 이동한 거리는 상기 <수학식 1>에 따라 계산되는데, H 값이 H' 보다 크게 도출되는 경우, 레진(14)의 이동거리는 레진층(14)과 제2 미세패턴(22) 간 접촉 시간에 영향을 받는 상태이므로, 적절한 접촉 시간이 필요하다. 접촉 시간은 레진(14)의 종류, 미세패턴(12, 22)의 형상에 따라 다양하게 설정될 수 있다.As described above, the distance traveled by the resin 14 is calculated according to Equation 1, and when the value H is greater than H', the distance traveled by the resin 14 is the distance between the resin layer 14 and the second Since the state is affected by the contact time between the micropatterns 22, an appropriate contact time is required. The contact time may be variously set according to the type of resin 14 and the shape of the micropatterns 12 and 22 .
다음으로, 자외선(UV)을 조사하는 단계(S400)를 살펴본다. 도 3d에 도시된 바와 같이, 레진층(14)과 제2 미세패턴(22)이 접촉한 상태에서 레진(14)이 기둥을 따라 H' 만큼 이동하면 투명한 재질의 제1 기재(10) 위에 자외선을 조사하여 레진(14)을 경화시킨다.Next, look at the step of irradiating ultraviolet (UV) (S400). As shown in FIG. 3D, when the resin 14 moves as much as H' along the pillar in a state in which the resin layer 14 and the second micropattern 22 are in contact, the ultraviolet rays are placed on the first substrate 10 made of a transparent material. is irradiated to cure the resin 14.
다음으로, 제1 기재를 제거하는 단계(S500)를 살펴본다. 도 3e에 도시된 바와 같이, 레진(14)의 경화가 종료되면 제1 기재(10)를 제거한다. 이때, 제2 미세패턴(22)의 상부에는 표면을 덮는 얇은 막인 분리막이 형성된다. 분리막은 기둥 패턴 아랫면에 침투한 레진(14)들까지 경화되어 연결되면서 형성된 것이다.Next, the step of removing the first substrate (S500) will be described. As shown in FIG. 3E , when the curing of the resin 14 is finished, the first substrate 10 is removed. At this time, a separation film, which is a thin film covering the surface of the second micropattern 22, is formed. The separator is formed by curing and connecting the resins 14 that have penetrated the lower surface of the pillar pattern.
기둥 사이와 분리막에 의해 내부 공간(C)인 공동(cavity)이 형성된다. 분리막에는 나노 크기의 홀(N) 패턴이 형성된다. 나노 홀의 크기, 형상 등은 설계에 따라 다양하게 설정될 수 있다. 상술한 바와 같이 본 발명의 일 실시예에서 제1 미세패턴이 양각으로 새겨진 경우에, 제1 미세패턴(12)은 나노 크기의 사이즈를 가지며, 제2 미세패턴(22) 마이크로 크기의 사이즈를 가진다. 따라서, 본 발명은 나노 홀을 통해 나노 사이즈를 가진 영양분 등이 공급되고 마이크로 크기를 가진 바이러스 등의 위해 성분을 차단할 수 있으므로 분리막 아래에서 세포 배양 등의 용도로 사용이 가능하다. 다만, 이에 한정되지 않으며, 나노 사이즈를 가진 물질을 분리할 수 있는 다양한 용도로 응용이 가능하다.A cavity, which is an internal space C, is formed between the pillars and the separator. A nano-sized hole (N) pattern is formed in the separator. The size and shape of the nanoholes may be variously set according to design. As described above, in the case where the first micropattern is embossed in one embodiment of the present invention, the first micropattern 12 has a nano-sized size, and the second micropattern 22 has a micro-sized size. . Therefore, the present invention can be used for purposes such as cell culture under a separation membrane because nutrients having a nano size are supplied through the nano holes and harmful components such as viruses having a micro size can be blocked. However, it is not limited thereto, and can be applied to various uses capable of separating materials having a nano size.
한편, 본 발명의 다른 실시예에 따르면 S100 내지 S500 단계에서 레진층이 형성된 제1 기재(10)가 아래에 위치하고, 제2 기재(20)가 위에 위치할 수 있다. 이 경우 레진(14)이 기둥을 따라 이동하는 원리는 동일하며, S400 단계에서 자외선은 아래에서 위 방향으로 조사된다.Meanwhile, according to another embodiment of the present invention, the first substrate 10 on which the resin layer is formed in steps S100 to S500 may be located below, and the second substrate 20 may be located above. In this case, the principle of moving the resin 14 along the pillar is the same, and in step S400, ultraviolet rays are irradiated from bottom to top.
한편, 본 발명의 발명자는 상술한 제조 공정에 따라 나노 홀 패턴 분리막 구조를 갖는 표면을 제작하였고, 여기서 제2 미세패턴(22)은 대략 육각 기둥 어레이 패턴이 사용되었다. 주사전자현미경(SEM)을 통해 관찰하였다.Meanwhile, the inventors of the present invention fabricated a surface having a nano hole pattern separator structure according to the above-described manufacturing process, and in this case, a hexagonal columnar array pattern was used as the second micropattern 22 . It was observed through a scanning electron microscope (SEM).
도 4a 및 도 4b는 제1 미세패턴이 양각으로 새겨진 경우 제작된 나노 홀 패턴 분리막 구조를 갖는 표면을 나타낸 도면이다.4A and 4B are views showing a surface having a nano hole pattern separator structure manufactured when a first micropattern is embossed.
도 4a의 (a)를 참조하면, 제2 미세패턴(22)은 재진입 구조가 형성되었고, 제2 미세패턴(22)의 상단에는 분리막(S)이 형성되었다. 그리고, 분리막과 제2 미세패턴(22) 기둥 사이에는 내부공간(C)이 형성되었다.Referring to (a) of FIG. 4A , the second micropattern 22 has a reentrant structure, and a separator S is formed on the top of the second micropattern 22 . An internal space C was formed between the separator and the pillars of the second micropattern 22 .
도 4a의 (b)는 도 4a의 (a)의 X1 부분을 확대한 도면이다. 도 4a의 (b)에서 제2 미세패턴(22) 기둥의 길이는 9.88㎛, 재진입 구조의 상단 폭은 8.45㎛로 측정되었다. 도 4a의 (c)는 도 4a의 (b)의 X2 부분을 확대한 도면이다. 도 4a의 (c)를 참조하면, 나노 홀의 길이(깊이)는 450nm, 폭은 265nm로 측정되었다.Figure 4a (b) is an enlarged view of the X1 portion of Figure 4a (a). In (b) of FIG. 4A, the length of the column of the second micropattern 22 was measured to be 9.88 μm, and the width of the upper end of the reentrant structure was measured to be 8.45 μm. Figure 4a (c) is an enlarged view of the X2 portion of Figure 4a (b). Referring to (c) of FIG. 4A, the length (depth) of the nanohole was measured to be 450 nm and the width was measured to be 265 nm.
도 4b의 (a)를 참조하면, 분리막(S)의 경계에는 제2 미세패턴(22)의 재진입 구조 상단이 이어져 있다. 도 4b의 얇은 부분이 분리막(S)이고, 두꺼운 부분이 재진입 구조의 상단이다.Referring to (a) of FIG. 4B, the upper end of the reentrant structure of the second micropattern 22 is connected to the boundary of the separator (S). The thin part of FIG. 4B is the separator S, and the thick part is the upper end of the reentrant structure.
도 4b의 (b)는 도 4b의 X3 부분을 확대한 도면이다. 도 4b의 (b)에 도시된 바와 같이, 분리막에는 나노 홀(N)이 형성된 것을 알 수 있다.Figure 4b (b) is an enlarged view of the X3 portion of Figure 4b. As shown in (b) of FIG. 4B, it can be seen that nano holes N are formed in the separator.
도 4b의 (c)는 도 4b의 (a)의 A1-A1' 라인의 단면 두께 및 분리막과의 높이 차이를 측정한 도면이다. 측정 결과를 살펴보면, 재진입 구조의 상단 두께는 11.634㎛이고, 분리막과의 높이 차이는 0.436㎛로 측정되었다.Figure 4b (c) is a view measuring the cross-sectional thickness of the line A1-A1' of Figure 4b (a) and the height difference with the separator. Looking at the measurement results, the thickness of the top of the reentrant structure was 11.634 μm, and the height difference with the separator was measured to be 0.436 μm.
도 4b의 (d)는 도 4b의 (b)의 B-B' 라인의 단면을 나타낸 도면이다. 즉, 분리막(S)에는 나노 사이즈의 홀이 형성됨을 알 수 있다.Figure 4b (d) is a view showing a cross section of the BB' line of Figure 4b (b). That is, it can be seen that nano-sized holes are formed in the separator (S).
본 발명에 따르면, 분리막에 형성된 나노 홀을 통해 나노 크기 물질만을 선택적으로 분리할 수 있는 표면을 저비용으로 간단한 방법에 의해 제조할 수 있는 것이다.According to the present invention, a surface capable of selectively separating only nano-sized materials through nano-holes formed in a separator can be manufactured by a simple method at low cost.
도 5는 본 발명의 일 실시예에 따르 제조된 표면에 물을 접촉시켜 접촉각을 측정한 도면이다.5 is a view of measuring a contact angle by contacting water to a surface manufactured according to an embodiment of the present invention.
소수성이란 미세패턴 표면과 물방울 사이의 접촉각이 90°(소수성 기준 접촉각)를 초과하는 상태를 의미한다. 도 5를 참조하면, 본 발명의 일 실시예에 따라 제조된 분리막 표면에 접촉된 물(Di-water)의 접촉각은 98.5° ± 2.0°로 측정되었다. 즉, 본 발명에 따라 제조된 나노 홀 패턴 분리막 구조를 갖는 표면은 소수성을 가짐을 확인할 수 있다.Hydrophobicity means a state in which the contact angle between the micropattern surface and water droplets exceeds 90° (hydrophobic reference contact angle). Referring to FIG. 5 , the contact angle of water (Di-water) in contact with the surface of the separator manufactured according to an embodiment of the present invention was measured to be 98.5 ° ± 2.0 °. That is, it can be confirmed that the surface having the nano hole pattern separator structure prepared according to the present invention has hydrophobicity.
다만, 본 발명의 일 실시예에 따라 제조된 분리막 표면의 소수성 또는 소유성은 사용되는 레진(14)의 종류, 표면 형상(예를 들어, 나노 홀의 형상, 크기, 표면 거칠기) 등에 따라 달라질 수 있다.However, the hydrophobicity or oleophobicity of the surface of the separator prepared according to an embodiment of the present invention may vary depending on the type of resin 14 used and the surface shape (eg, shape, size, surface roughness of nanoholes).
본 발명은 첨부된 도면에 도시된 일 실시예를 참고로 설명되었으나 이는 예시적인 것에 불과하며, 당해 기술분야에서 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시예가 가능하다는 점을 이해할 수 있을 것이다. 따라서, 본 발명의 진정한 보호 범위는 첨부된 청구 범위에 의해서만 정해져야 할 것이다.The present invention has been described with reference to an embodiment shown in the accompanying drawings, but this is only exemplary, and those skilled in the art will understand that various modifications and equivalent other embodiments are possible therefrom. You will be able to. Therefore, the true protection scope of the present invention should be defined only by the appended claims.

Claims (9)

  1. 제1 미세패턴이 형성된 제1 기재 위에 자외선 경화 레진을 도포하여 레진층을 형성하는 단계;forming a resin layer by applying an ultraviolet curable resin on a first substrate on which a first micropattern is formed;
    제2 기재 위에 기둥 형상의 제2 미세패턴을 형성하는 단계;forming a second micropattern in a columnar shape on a second substrate;
    상기 레진층과 상기 제2 미세패턴이 마주보도록 상기 제1 기재 또는 제2 기재를 이동시켜 상기 레진층과 상기 미세패턴을 서로 접촉시키는 단계;bringing the resin layer and the micropattern into contact with each other by moving the first substrate or the second substrate such that the resin layer and the second micropattern face each other;
    상기 제2 미세패턴의 기둥 주변에 위치한 레진이 모세관력에 의해 상기 제2 미세패턴의 기둥 길이방향으로 기둥을 따라 일정 거리 이동한 상태에서 자외선을 조사하여 상기 레진을 경화시키는 단계; 및curing the resin by irradiating ultraviolet rays while the resin located around the pillars of the second micropattern is moved a predetermined distance along the pillars in the lengthwise direction of the pillars of the second micropattern by capillary force; and
    상기 자외선 조사가 완료된 후 상기 제1 기재를 제거하는 단계;를 포함하고,Including; removing the first substrate after the ultraviolet irradiation is completed,
    상기 제1 미세패턴은 양각으로 형성되며, 제2 미세패턴 보다 크기가 작은 것을 특징으로 하는,Characterized in that the first micropattern is formed in an embossed shape and has a smaller size than the second micropattern.
    나노 홀 패턴 분리막 구조를 갖는 표면의 제작 방법.A method for fabricating a surface having a nano hole pattern separator structure.
  2. 제 1 항에 있어서,According to claim 1,
    상기 레진은 상기 제1 기재 위에 롤러에 의해 균일한 두께로 도포되는 것을 특징으로 하는 나노 홀 패턴 분리막 구조를 갖는 표면의 제작 방법.The method of manufacturing a surface having a nano hole pattern separator structure, characterized in that the resin is applied to a uniform thickness by a roller on the first substrate.
  3. 제 1 항에 있어서,According to claim 1,
    상기 자외선은 투명한 제1 기재를 통해 레진에 조사되는 것을 특징으로 하는 나노 홀 패턴 분리막 구조를 갖는 표면의 제작 방법.The method of manufacturing a surface having a nano hole pattern separator structure, characterized in that the ultraviolet rays are irradiated to the resin through a transparent first substrate.
  4. 제 1 항에 있어서,According to claim 1,
    상기 제2 미세패턴의 기둥에 가까운 레진일수록 상기 제2 미세패턴의 기둥 길이방향으로 더 크게 이동하는 것을 특징으로 나노 홀 패턴 분리막 구조를 갖는 표면의 제작 방법.The method of manufacturing a surface having a nano hole pattern separator structure, characterized in that the closer the resin to the pillars of the second micropattern moves in the longitudinal direction of the pillars of the second micropattern.
  5. 제 1 항에 있어서,According to claim 1,
    상기 레진이 자외선에 의해 경화된 후 상기 레진층과 접촉된 상기 제2 미세패턴의 기둥 단면은 기둥의 다른 단면보다 넓은 면적을 갖는 재진입 구조로 형성되는 것을 특징으로 하는 나노 홀 패턴 분리막 구조를 갖는 표면의 제작 방법.After the resin is cured by ultraviolet rays, the cross section of the pillar of the second micropattern in contact with the resin layer is formed as a reentrant structure having a larger area than the other cross section of the pillar, characterized in that the surface having a nano hole pattern separator structure production method.
  6. 제 1 항에 있어서,According to claim 1,
    상기 제1 기재를 제거한 후에 상기 제2 미세패턴 상단에 미세 홀을 가진 분리막이 형성되는 것을 특징으로 하는 나노 홀 패턴 분리막 구조를 갖는 표면의 제작 방법.A method of manufacturing a surface having a nano hole pattern separator structure, characterized in that a separator having fine holes is formed on top of the second micropattern after removing the first substrate.
  7. 제 1 항에 있어서,According to claim 1,
    상기 분리막의 두께는 상기 제2 미세패턴 기둥에 가까울 수록 두껍게 형성되는 것을 특징으로 하는 나노 홀 패턴 분리막 구조를 갖는 표면의 제작 방법.The method of manufacturing a surface having a nano hole pattern separator structure, characterized in that the thickness of the separator is formed thicker as it approaches the second micropattern pillar.
  8. 제 6 항에 있어서,According to claim 6,
    상기 제2 미세패턴 기둥과 상기 분리막 사이에 내부공간이 형성되는 것을 특징으로 하는 나노 홀 패턴 분리막 구조를 갖는 표면의 제작 방법.A method of manufacturing a surface having a nano hole pattern separator structure, characterized in that an inner space is formed between the second micro-patterned pillar and the separator.
  9. 제 1 항에 있어서,According to claim 1,
    상기 분리막 표면은 기 설정된 접촉각 이상의 소수성 표면인 것을 특징으로 하는 나노 홀 패턴 분리막 구조를 갖는 표면의 제작 방법.The method of manufacturing a surface having a nano-hole pattern separator structure, characterized in that the surface of the separator is a hydrophobic surface with a predetermined contact angle or more.
PCT/KR2022/011077 2021-12-31 2022-07-27 Method for manufacturing surface having nanohole pattern separation membrane structure WO2023128109A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0194272 2021-12-31
KR1020210194272A KR20230103398A (en) 2021-12-31 2021-12-31 Method for surface having nano hole pattern seperator structure

Publications (1)

Publication Number Publication Date
WO2023128109A1 true WO2023128109A1 (en) 2023-07-06

Family

ID=86999471

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/011077 WO2023128109A1 (en) 2021-12-31 2022-07-27 Method for manufacturing surface having nanohole pattern separation membrane structure

Country Status (2)

Country Link
KR (1) KR20230103398A (en)
WO (1) WO2023128109A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100696193B1 (en) * 2005-12-07 2007-03-20 한국전자통신연구원 Polymer two dimensional photonic crystal devices and method for manufacturing thereof
KR20080033676A (en) * 2006-10-13 2008-04-17 주식회사 동진쎄미켐 Resin mold for imprint lithography and method of preparing the same
CN104914494A (en) * 2015-06-13 2015-09-16 复旦大学 A method for obtaining full-color-spectrum structural color through preparing metal holes having a chassis by utilizing nano-imprint lithography
KR20160029941A (en) * 2014-09-05 2016-03-16 단국대학교 천안캠퍼스 산학협력단 A method for preparing nano-patterned patch for tissue regeneration

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102052100B1 (en) 2018-03-15 2019-12-05 연세대학교 산학협력단 Super-repellent surface and preparation method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100696193B1 (en) * 2005-12-07 2007-03-20 한국전자통신연구원 Polymer two dimensional photonic crystal devices and method for manufacturing thereof
KR20080033676A (en) * 2006-10-13 2008-04-17 주식회사 동진쎄미켐 Resin mold for imprint lithography and method of preparing the same
KR20160029941A (en) * 2014-09-05 2016-03-16 단국대학교 천안캠퍼스 산학협력단 A method for preparing nano-patterned patch for tissue regeneration
CN104914494A (en) * 2015-06-13 2015-09-16 复旦大学 A method for obtaining full-color-spectrum structural color through preparing metal holes having a chassis by utilizing nano-imprint lithography

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KIM SEONJUN, KIM DO HYEOG, CHOI SU HYUN, KIM WOO YOUNG, KWON SIN, CHO YOUNG TAE: "Effect of surface pattern morphology on inducing superhydrophobicity", APPLIED SURFACE SCIENCE, ELSEVIER, AMSTERDAM , NL, vol. 513, 1 May 2020 (2020-05-01), Amsterdam , NL , pages 145847, XP093074415, ISSN: 0169-4332, DOI: 10.1016/j.apsusc.2020.145847 *

Also Published As

Publication number Publication date
KR20230103398A (en) 2023-07-07

Similar Documents

Publication Publication Date Title
Xue et al. Pattern formation by dewetting of polymer thin film
TWI415735B (en) Modification of surface wetting properties of a substrate
US20180296982A1 (en) Polymer membranes having open through holes, and method of fabrication thereof
US7884530B2 (en) Reversible actuation in arrays of nanostructures
KR100508337B1 (en) Fabrication Method of Patterned Polymer Film with Nanometer Scale
KR20110132758A (en) Surface having superhydrophobic and superhydrophilic region
EP3196924B1 (en) Method for manufacturing microscopic structural body
WO2013119083A1 (en) Free-standing polymer membrane having through-holes and method for manufacturing same
KR20100042436A (en) Tilted micro pillar array formated polymer and fabrication method therefor
Russo et al. Microfabricated plastic devices from silicon using soft intermediates
KR20060029125A (en) Polymer pattern and metal film pattern, metal pattern, plastic mold using thereof, and method of the forming the same
WO2012086986A2 (en) Method for manufacturing a ceramic template having micro patterns, and ceramic template manufactured by same
WO2023128109A1 (en) Method for manufacturing surface having nanohole pattern separation membrane structure
CN108535967A (en) A kind of preparation method of polymer nanocomposite column array
WO2016114622A1 (en) Hierarchical microstructure, mold for manufacturing same, and method for manufacturing mold
WO2023146042A1 (en) Method for fabricating surface having nano-micro hierarchical structure by using capillary force
CN110891895A (en) Method for micro and nano fabrication by selective template removal
Yabu et al. Self-assembled porous templates allow pattern transfer to poly (dimethyl siloxane) sheets through surface wrinkling
WO2023128108A1 (en) Method for manufacturing omniphobic surface using capillary force
KR102146284B1 (en) Apparatus of forming liquid-mediated material pattern, method of manufacturing the same, method of forming liquid-mediated pattern using the same, and liquid-mediated pattern
KR101666023B1 (en) Polymer membrane with nano-apertures, the mould thereof and the manufacturing method using the same
WO2023109661A1 (en) Manufacturing method for micro-nano composite structure
KR101507757B1 (en) Method for fabricating hydrophobic coating layer on micropatterned hydrophilic substrate and micropatterned hydrophilic substrate including hydrophobic coating layer fabricated thereby
US9955584B2 (en) Stamp for printed circuit process and method of fabricating the same and printed circuit process
US20220195129A1 (en) Method for producing microparticles

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22916264

Country of ref document: EP

Kind code of ref document: A1