WO2023128019A1 - X-ray sensing device capable of acquiring dual-energy image through one-time photography, and image processing method - Google Patents

X-ray sensing device capable of acquiring dual-energy image through one-time photography, and image processing method Download PDF

Info

Publication number
WO2023128019A1
WO2023128019A1 PCT/KR2021/020281 KR2021020281W WO2023128019A1 WO 2023128019 A1 WO2023128019 A1 WO 2023128019A1 KR 2021020281 W KR2021020281 W KR 2021020281W WO 2023128019 A1 WO2023128019 A1 WO 2023128019A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
dual
sensing device
interest
color filter
Prior art date
Application number
PCT/KR2021/020281
Other languages
French (fr)
Korean (ko)
Inventor
박원기
이성철
전병찬
서연호
Original Assignee
한국전자기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국전자기술연구원 filed Critical 한국전자기술연구원
Publication of WO2023128019A1 publication Critical patent/WO2023128019A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/48Diagnostic techniques
    • A61B6/482Diagnostic techniques involving multiple energy imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/42Arrangements for detecting radiation specially adapted for radiation diagnosis
    • A61B6/4208Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/50Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications
    • A61B6/505Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications for diagnosis of bone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/52Devices using data or image processing specially adapted for radiation diagnosis
    • A61B6/5205Devices using data or image processing specially adapted for radiation diagnosis involving processing of raw data to produce diagnostic data
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/161Applications in the field of nuclear medicine, e.g. in vivo counting

Definitions

  • the present invention relates to an X-ray sensing device and an image processing method using the same, and more particularly, to an X-ray sensing device composed of a scintillator, a color filter, and a CMOS image sensor, and a method for processing an image obtained using the same. It's about
  • the filter consists of a grid pattern or vertical stripe type attenuation part and a transmission part, but the difference in information between the respective images obtained through the attenuation part and the transmission part is not large, so the image enhancement effect may be limited. there is.
  • the existing dual energy subtraction image processing method targets two types of images obtained based on different bands of X-ray energy.
  • Image information of a specific material (ex. bone, tissue, etc.) may be highlighted by performing a subtraction operation.
  • this conventional dual energy subtraction image processing method applies the same coefficient to all pixels of an image and proceeds with the calculation, the difference in information for each pixel is different, but it is inevitable to apply the coefficient of the average value, resulting in an image enhancement effect. may be limited.
  • the present invention has been devised to solve the above problems, and an object of the present invention is to acquire dual energy images including X-ray energies of different bands in one shot and process them to obtain X-ray images.
  • An object of the present invention is to provide an X-ray sensing device capable of increasing the amount of information obtainable through a ray image and an image processing method using the same.
  • an X-ray sensing device is a dual layer scintillator provided with two layers of scintillators to convert energy spectra of different bands into visible light of different colors.
  • Reiter a color filter disposed behind the dual layer scintillator; and a CMOS image sensor disposed at a rear end of the color filter to obtain and process an image passing through the dual layer scintillator and color filter.
  • the dual-layer scintillator may include a first scintillator that converts an energy spectrum of a low band in the X-Ray spectrum into visible light of a specific color; and a second scintillator for converting an energy spectrum of a high band among the X-ray spectrum into visible light of a different color that does not overlap with visible light of a specific color converted by the first scintillator.
  • the color filter includes a first filter through which first visible light converted into a high-band energy spectrum passes and a second filter through which second visible light converted into a low-band energy spectrum passes.
  • the first filter and the second filter may be arranged in a lattice pattern such that the number of pixels of the first visible light and the second visible light input to the CMOS image sensor is the same.
  • the CMOS image sensor separates and acquires a first image obtained by converting a high-band energy spectrum and a second image obtained by converting a low-band energy spectrum from data passing through a color filter, and selects various regions of interest in each image. (Region of Interest) can be separated, and a Dual Energy Subtraction algorithm can be applied to each region of interest.
  • the CMOS image sensor may acquire the first image and the second image by performing a bilinear interpolation operation.
  • the CMOS image sensor may separate a first ROI corresponding to a bone and a second ROI corresponding to a tissue from the first and second images, respectively.
  • the CMOS image sensor acquires an image I defined in Equation 1 below by applying a dual energy subtraction algorithm using a different coefficient for each region of interest, and in the case of the first region of interest, a tissue corresponding to To remove the image, the coefficient of tissue thickness (xt) Become 0, and in the case of the second region of interest, in order to remove the image corresponding to the bone, the coefficient of the bone thickness (xb) can be set to 0.
  • an image processing method includes a dual layer scintillator provided with two layers of scintillators to convert energy spectra of different bands into visible light of different colors, and a dual layer scintillator of the dual layer scintillator.
  • An X-ray sensing device including a color filter disposed at the rear and a CMOS image sensor disposed at the rear of the color filter to acquire and process an image passing through the dual-layer scintillator and the color filter, separating and acquiring a first image obtained by converting a high-band energy spectrum and a second image obtained by converting a low-band energy spectrum from data that has passed through a color filter; Separating, by an X-ray sensing device, several types of regions of interest from each image; and applying, by the X-ray sensing device, a dual energy subtraction algorithm for each region of interest.
  • dual energy images including X-ray energies of different bands are obtained with one shot and image processing is performed to obtain a dual energy image obtained through an X-ray image. information can be increased.
  • FIG. 1 is a diagram provided for explanation of an X-ray sensing device capable of acquiring a dual energy image with one shot according to an embodiment of the present invention
  • FIG. 2 is a diagram provided for explanation of a color filter according to an embodiment of the present invention.
  • FIG. 3 illustrates a process of separating a first image obtained by converting a high-band energy spectrum and a second image obtained by converting a low-band energy spectrum from data acquired through a CMOS image sensor according to an embodiment of the present invention.
  • FIG. 4 is a diagram provided for explanation of a process of separating various types of regions of interest through a CMOS image sensor according to an embodiment of the present invention.
  • FIG. 5 is a diagram provided for explanation of an image processing method capable of acquiring a dual energy image with one shot according to an embodiment of the present invention
  • FIG. 1 is a diagram provided for explanation of an X-ray sensing device capable of obtaining a dual energy image with one shot according to an embodiment of the present invention
  • FIG. 2 is a description of a color filter according to an embodiment of the present invention. It is a drawing provided in
  • An X-ray sensing device capable of obtaining a dual energy image with one shot according to the present embodiment (hereinafter, collectively referred to as an 'X-ray sensing device') has different X-ray energies of different bands with one shot. It is provided to acquire a dual energy image including and image processing it.
  • the X-ray sensing device may include a dual layer scintillator 100, a color filter 200, and a CMOS image sensor 300.
  • the dual layer scintillator 100 is disposed on the rear surface of the object 20 so that X-rays transmitted from the X-ray generator 10 pass through the object 20 and are transmitted to the dual layer scintillator 100. can do.
  • the dual-layer scintillator 100 is provided with two layers of scintillators, and can convert energy spectra of different bands into visible light of different colors.
  • the dual layer scintillator 100 includes a first scintillator that converts the energy spectrum of a low band of the X-Ray spectrum into visible light of a specific color, and the energy spectrum of a high band of the X-Ray spectrum to the first scintillator. It may include a second scintillator that converts the visible light of a specific color into visible light of a different color that does not overlap with the visible light of a specific color converted by the scintillator.
  • the first scintillator can convert the energy spectrum of a high band (ex: about 60 to 110 keV) of the X-Ray spectrum into visible light of a specific color that does not overlap.
  • An energy spectrum of a low band (ex: about 10 to 60 keV) of the spectrum can be converted into visible light of a specific color.
  • the color filter 200 may be disposed at a rear end of the dual layer scintillator 100, and includes a first filter through which first visible light converted into a high band energy spectrum passes and a first filter through which a low band energy spectrum is converted. A second filter through which second visible light may pass may be included.
  • the first filter and the second filter may be arranged in a lattice pattern such that the number of pixels of the first visible light and the second visible light input to the CMOS image sensor are the same.
  • the CMOS image sensor 300 is disposed at the rear end of the color filter 200 to obtain an image that has passed through the dual layer scintillator 100 and the color filter 200 and process the image.
  • FIG. 3 is a diagram for separating a first image obtained by converting a high-band energy spectrum from data acquired through a CMOS image sensor 300 according to an embodiment of the present invention and a second image obtained by converting a low-band energy spectrum.
  • 4 is a diagram provided for description of a process
  • FIG. 4 is a diagram provided for description of a process for separating various types of regions of interest through the CMOS image sensor 300 according to an embodiment of the present invention.
  • the CMOS image sensor 300 obtains image data converted into visible light of two different colors passing through the dual layer scintillator 100 and the color filter 200, and performs image processing. there is.
  • the CMOS image sensor 300 may separate and acquire a first image obtained by converting a high-band energy spectrum and a second image obtained by converting a low-band energy spectrum from data passing through the color filter 200.
  • various types of regions of interest may be separated from the obtained first image and the second image, and a dual energy subtraction algorithm may be applied to each region of interest.
  • the CMOS image sensor 300 acquires the first image and the second image
  • the high-band energy is converted to a first region of interest (High-Bone) corresponding to a bone and tissue in the first image.
  • the corresponding second region of interest (High-Tissue) is separated, and in the second image in which the energy of the low band is converted, the first region of interest (Low-Bone) corresponding to the bone and the second region of interest (Low-Bone) corresponding to the tissue are separated.
  • -Tissue can be separated, and a dual energy subtraction algorithm can be applied to each region of interest.
  • the CMOS image sensor 300 may acquire the first image and the second image by performing a bilinear interpolation operation as illustrated in FIG. 3 .
  • the CMOS image sensor 300 performs a bilinear interpolation operation
  • the high energy of the high band is the band value of H13 and
  • Low energy of the low band can be calculated as (L12 + L14 + L23) / 3
  • the low energy of the band is the band of L34. value
  • the high energy of the band can be calculated as (H24 + H33 + H35 + H44) / 4.
  • the CMOS image sensor 300 may separate various types of regions of interest from the first image and the second image using a histogram separation method or an edge detection method, respectively, as illustrated in FIG. 4 . there is.
  • the CMOS image sensor 300 determines a first region of interest corresponding to bones, a second region of interest corresponding to tissues, and a third region of interest where bones and tissues coexist, respectively, from the first and second images. can be separated
  • the CMOS image sensor 300 may obtain an image I defined in Equation 1 below by applying a dual energy subtraction algorithm using a different coefficient for each region of interest.
  • Equation 2 the intensity of radiation transmitted through tissues and bones is equal to Equation 2 below in the case of the second image in which low-band energy is converted, and high-band energy is converted In the case of the first image, it is equal to Equation 3 below.
  • Equation 1 can be calculated.
  • the CMOS image sensor 300 coefficients the tissue thickness (xt) to remove an image corresponding to the tissue. can be set to 0.
  • the coefficient of the bone thickness (xb) can be set to 0.
  • the CMOS image sensor 300 detects a first region of interest (High-Bone) corresponding to bone and a second region of interest (High-Tissue) corresponding to tissue in the first image in which high-band energy is converted.
  • a first region of interest (Low-Bone) corresponding to a bone and a second region of interest (Low-Tissue) corresponding to a tissue are separated from the second image in which the energy of the low band is converted, and each of the separated regions of interest is separated.
  • a dual energy subtraction algorithm can be applied for each.
  • FIG. 5 is a diagram provided to explain an image processing method capable of acquiring a dual energy image with one shot according to an embodiment of the present invention.
  • An image processing method capable of obtaining a dual energy image with one shot according to the present embodiment includes the X-ray sensing device described above with reference to FIGS. 1 to 4. You can run it using
  • a first image in which a high-band energy spectrum is converted from data that has passed through the dual-layer scintillator 100 and the color filter 200 using the CMOS image sensor 300 is used.
  • the second image obtained by converting the energy spectrum of the low band and the energy spectrum of the low band may be separated and obtained (S510).
  • the image processing method when the first image and the second image are acquired, separates several types of ROI from each image (S520), and applies a dual energy subtraction algorithm to each separated ROI (S530), thereby making it easier than before.
  • An X-Ray image with an increased amount of information can be obtained.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Surgery (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Dentistry (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

Provided are: an X-ray sensing device comprising a scintillator, a color filter, and a CMOS image sensor; and a method for processing an image acquired using same. The X-ray sensing device according to an embodiment of the present invention comprises: a dual-layer scintillator provided as a two-layer scintillator in order to convert energy spectra of different bands into visible light of different colors; a color filter arranged at the rear end of the dual-layer scintillator; and a CMOS image sensor arranged at the rear end of the color filter so as to acquire and process an image having passed through the dual-layer scintillator and the color filter. Therefore, a dual-energy image including X-ray energy of different bands is acquired through one-time photography and is processed as an image, and thus the amount of information that can be obtained through an X-ray image can be increased.

Description

1회 촬영으로 듀얼 에너지 영상 획득이 가능한 X-선 센싱 장치 및 영상처리 방법X-ray sensing device and image processing method enabling dual energy image acquisition with one shot
본 발명은 X-선 센싱 장치 및 이를 이용한 영상처리 방법에 관한 것으로, 더욱 상세하게는 신틸레이터, 컬러 필터 및 CMOS 이미지 센서로 구성된 X-선 센싱 장치와 이를 이용하여 획득된 영상을 처리하는 방법에 관한 것이다.The present invention relates to an X-ray sensing device and an image processing method using the same, and more particularly, to an X-ray sensing device composed of a scintillator, a color filter, and a CMOS image sensor, and a method for processing an image obtained using the same. it's about
인체를 1회 촬영하여 인체의 해부학적인 정보를 갖는 X-선 영상을 일반 X-선 영상 및 감쇠된 X-선 영상으로 획득하기 위해, 기존에는 한국등록특허 제10-1980533호와 같이 2개의 디텍터와 감쇠 필터를 이용하였다. In order to obtain an X-ray image with anatomical information of the human body as a normal X-ray image and an attenuated X-ray image by taking a picture of the human body once, two detectors were used as in Korean Patent Registration No. 10-1980533. and an attenuation filter were used.
한국등록특허 제10-1980533호의 경우, 필터가 격자무늬 또는 세로 줄무늬 타입의 감쇠부 및 투과부로 이루어져 있으나, 감쇠부와 투과부를 통해 얻은 각각의 이미지의 정보 차이가 크지 않아, 이미지 향상 효과가 제한적일 수 있다. In the case of Korean Patent Registration No. 10-1980533, the filter consists of a grid pattern or vertical stripe type attenuation part and a transmission part, but the difference in information between the respective images obtained through the attenuation part and the transmission part is not large, so the image enhancement effect may be limited. there is.
또한, 기존의 듀얼 에너지 차감(Dual Energy Subtraction) 영상 처리 방법은, X-선 에너지에 따라 물질의 감쇠계수가 다르기 때문에, 서로 다른 대역의 X-선 에너지를 기반으로 얻어진 두 종류의 이미지를 대상으로 감산 연산을 수행하여 특정 물질(ex. 뼈, 조직 등)의 이미지 정보를 부각시킬 수 있다.In addition, since the attenuation coefficient of a material is different according to the X-ray energy, the existing dual energy subtraction image processing method targets two types of images obtained based on different bands of X-ray energy. Image information of a specific material (ex. bone, tissue, etc.) may be highlighted by performing a subtraction operation.
그러나 이러한 기존의 듀얼 에너지 차감 영상 처리 방법은, 이미지의 모든 픽셀에 같은 계수를 적용하여 연산을 진행하기 때문에, 픽셀마다 정보의 차이가 다른데 평균적인 값의 계수를 적용할 수 밖에 없어, 이미지 향상 효과가 제한적일 수 있다. However, since this conventional dual energy subtraction image processing method applies the same coefficient to all pixels of an image and proceeds with the calculation, the difference in information for each pixel is different, but it is inevitable to apply the coefficient of the average value, resulting in an image enhancement effect. may be limited.
본 발명은 상기와 같은 문제점을 해결하기 위하여 안출된 것으로서, 본 발명의 목적은, 1회 촬영으로 서로 다른 대역의 X-선 에너지를 포함하는 듀얼 에너지 영상을 획득하고, 이를 영상 처리함으로써, X-Ray 영상을 통해 얻을 수 있는 정보량을 증가시킬 수 있는 X-선 센싱 장치 및 이를 이용한 영상처리 방법을 제공함에 있다.The present invention has been devised to solve the above problems, and an object of the present invention is to acquire dual energy images including X-ray energies of different bands in one shot and process them to obtain X-ray images. An object of the present invention is to provide an X-ray sensing device capable of increasing the amount of information obtainable through a ray image and an image processing method using the same.
상기 목적을 달성하기 위한 본 발명의 일 실시예에 따른, X-선 센싱 장치는, 서로 다른 대역의 에너지 스펙트럼을 서로 다른 색의 가시광으로 변환하기 위해, 두 겹의 신틸레이터로 마련되는 듀얼 레이어 신틸레이터; 듀얼 레이어 신틸레이터의 후단에 배치되는 컬러 필터; 및 컬러 필터의 후단에 배치되어, 듀얼 레이어 신틸레이터와 컬러 필터를 통과한 이미지를 획득하여 영상 처리하는 CMOS 이미지 센서;를 포함한다.According to an embodiment of the present invention for achieving the above object, an X-ray sensing device is a dual layer scintillator provided with two layers of scintillators to convert energy spectra of different bands into visible light of different colors. Reiter; a color filter disposed behind the dual layer scintillator; and a CMOS image sensor disposed at a rear end of the color filter to obtain and process an image passing through the dual layer scintillator and color filter.
그리고 듀얼 레이어 신틸레이터는, X-Ray 스펙트럼 중 낮은 대역의 에너지 스펙트럼을 특정 색의 가시광으로 변환하는 제1 신틸레이터; 및 X-Ray 스펙트럼 중 높은 대역의 에너지 스펙트럼을 제1 신틸레이터에 의해 변환되는 특정 색의 가시광과 겹치지 않는 다른 색의 가시광으로 변환하는 제2 신틸레이터;를 포함할 수 있다. The dual-layer scintillator may include a first scintillator that converts an energy spectrum of a low band in the X-Ray spectrum into visible light of a specific color; and a second scintillator for converting an energy spectrum of a high band among the X-ray spectrum into visible light of a different color that does not overlap with visible light of a specific color converted by the first scintillator.
또한, 컬러 필터는, 높은 대역의 에너지 스펙트럼이 변환된 제1 가시광이 통과할 수 있는 제1 필터와 낮은 대역의 에너지 스펙트럼이 변환된 제2 가시광이 통과할 수 있는 제2 필터를 포함하고, 이때, 제1 필터 및 제2 필터는, CMOS 이미지 센서로 입력되는 제1 가시광 및 제2 가시광의 픽셀수가 서로 동일하도록, 격자 무늬로 배치될 수 있다. In addition, the color filter includes a first filter through which first visible light converted into a high-band energy spectrum passes and a second filter through which second visible light converted into a low-band energy spectrum passes. , The first filter and the second filter may be arranged in a lattice pattern such that the number of pixels of the first visible light and the second visible light input to the CMOS image sensor is the same.
그리고 CMOS 이미지 센서는, 컬러 필터를 통과한 데이터에서 높은 대역의 에너지 스펙트럼이 변환된 제1 이미지와 낮은 대역의 에너지 스펙트럼이 변환된 제2 이미지를 분리하여 획득하고, 각 이미지에서 여러 종류의 관심영역(Region of Interest)를 분리하며, 각 관심영역별로 듀얼 에너지 차감(Dual Energy Subtraction) 알고리즘을 적용할 수 있다. In addition, the CMOS image sensor separates and acquires a first image obtained by converting a high-band energy spectrum and a second image obtained by converting a low-band energy spectrum from data passing through a color filter, and selects various regions of interest in each image. (Region of Interest) can be separated, and a Dual Energy Subtraction algorithm can be applied to each region of interest.
또한, CMOS 이미지 센서는, 이중선형보간법(Bilinear Interpolation) 연산을 수행하여 제1 이미지와 제2 이미지를 획득할 수 있다. Also, the CMOS image sensor may acquire the first image and the second image by performing a bilinear interpolation operation.
그리고 CMOS 이미지 센서는, 제1 이미지 및 제2 이미지를 대상으로 뼈에 해당하는 제1 관심영역 및 조직에 해당하는 제2 관심영역를 각각 분리할 수 있다. The CMOS image sensor may separate a first ROI corresponding to a bone and a second ROI corresponding to a tissue from the first and second images, respectively.
또한, CMOS 이미지 센서는, 각 관심영역별로 서로 다른 계수를 이용하여 듀얼 에너지 차감 알고리즘을 적용하여, 하기 수식 1에 정의된 영상(I)를 획득하고, 제1 관심영역의 경우, 조직에 해당하는 영상을 제거하기 위해, 조직의 두께(xt)의 계수
Figure PCTKR2021020281-appb-img-000001
가 0이 되도록 하고, 제2 관심영역의 경우, 뼈에 해당하는 영상을 제거하기 위해, 뼈의 두께(xb)의 계수
Figure PCTKR2021020281-appb-img-000002
가 0이 되도록 할 수 있다.
In addition, the CMOS image sensor acquires an image I defined in Equation 1 below by applying a dual energy subtraction algorithm using a different coefficient for each region of interest, and in the case of the first region of interest, a tissue corresponding to To remove the image, the coefficient of tissue thickness (xt)
Figure PCTKR2021020281-appb-img-000001
Become 0, and in the case of the second region of interest, in order to remove the image corresponding to the bone, the coefficient of the bone thickness (xb)
Figure PCTKR2021020281-appb-img-000002
can be set to 0.
(수식 1)
Figure PCTKR2021020281-appb-img-000003
(Equation 1)
Figure PCTKR2021020281-appb-img-000003
Figure PCTKR2021020281-appb-img-000004
Figure PCTKR2021020281-appb-img-000004
한편, 본 발명의 다른 실시예에 따른, 영상처리 방법은, 서로 다른 대역의 에너지 스펙트럼을 서로 다른 색의 가시광으로 변환하기 위해 두 겹의 신틸레이터로 마련되는 듀얼 레이어 신틸레이터, 듀얼 레이어 신틸레이터의 후단에 배치되는 컬러 필터 및 컬러 필터의 후단에 배치되어, 듀얼 레이어 신틸레이터와 컬러 필터를 통과한 이미지를 획득하여 영상 처리하는 CMOS 이미지 센서를 포함하는 X-선 센싱 장치가, 듀얼 레이어 신틸레이터와 컬러 필터를 통과한 데이터에서 높은 대역의 에너지 스펙트럼이 변환된 제1 이미지와 낮은 대역의 에너지 스펙트럼이 변환된 제2 이미지를 분리하여 획득하는 단계; X-선 센싱 장치가, 각 이미지에서 여러 종류의 관심영역(Region of Interest)를 분리하는 단계; 및 X-선 센싱 장치가, 각 관심영역별로 듀얼 에너지 차감(Dual Energy Subtraction) 알고리즘을 적용하는 단계;를 포함한다. Meanwhile, an image processing method according to another embodiment of the present invention includes a dual layer scintillator provided with two layers of scintillators to convert energy spectra of different bands into visible light of different colors, and a dual layer scintillator of the dual layer scintillator. An X-ray sensing device including a color filter disposed at the rear and a CMOS image sensor disposed at the rear of the color filter to acquire and process an image passing through the dual-layer scintillator and the color filter, separating and acquiring a first image obtained by converting a high-band energy spectrum and a second image obtained by converting a low-band energy spectrum from data that has passed through a color filter; Separating, by an X-ray sensing device, several types of regions of interest from each image; and applying, by the X-ray sensing device, a dual energy subtraction algorithm for each region of interest.
이상 설명한 바와 같이, 본 발명의 실시예들에 따르면, 1회 촬영으로 서로 다른 대역의 X-선 에너지를 포함하는 듀얼 에너지 영상을 획득하고, 이를 영상 처리함으로써, X-선 영상을 통해 얻을 수 있는 정보량을 증가시킬 수 있다. As described above, according to the embodiments of the present invention, dual energy images including X-ray energies of different bands are obtained with one shot and image processing is performed to obtain a dual energy image obtained through an X-ray image. information can be increased.
도 1은, 본 발명의 일 실시예에 따른 1회 촬영으로 듀얼 에너지 영상 획득이 가능한 X-선 센싱 장치의 설명에 제공된 도면, 1 is a diagram provided for explanation of an X-ray sensing device capable of acquiring a dual energy image with one shot according to an embodiment of the present invention;
도 2는, 본 발명의 일 실시예에 따른 컬러 필터의 설명에 제공된 도면, 2 is a diagram provided for explanation of a color filter according to an embodiment of the present invention;
도 3은, 본 발명의 일 실시예에 따른 CMOS 이미지 센서를 통해 획득된 데이터에서 높은 대역의 에너지 스펙트럼이 변환된 제1 이미지와 낮은 대역의 에너지 스펙트럼이 변환된 제2 이미지를 분리하는 과정의 설명에 제공된 도면, 3 illustrates a process of separating a first image obtained by converting a high-band energy spectrum and a second image obtained by converting a low-band energy spectrum from data acquired through a CMOS image sensor according to an embodiment of the present invention. drawings provided in
도 4는, 본 발명의 일 실시예에 따른 CMOS 이미지 센서를 통해 여러 종류의 관심영역(Region of Interest)를 분리하는 과정의 설명에 제공된 도면, 그리고 4 is a diagram provided for explanation of a process of separating various types of regions of interest through a CMOS image sensor according to an embodiment of the present invention; and
도 5는, 본 발명의 일 실시예에 따른 1회 촬영으로 듀얼 에너지 영상 획득이 가능한 영상처리 방법의 설명에 제공된 도면, 5 is a diagram provided for explanation of an image processing method capable of acquiring a dual energy image with one shot according to an embodiment of the present invention;
이하에서는 도면을 참조하여 본 발명을 보다 상세하게 설명한다.Hereinafter, the present invention will be described in more detail with reference to the drawings.
도 1은, 본 발명의 일 실시예에 따른 1회 촬영으로 듀얼 에너지 영상 획득이 가능한 X-선 센싱 장치의 설명에 제공된 도면이고, 도 2는, 본 발명의 일 실시예에 따른 컬러 필터의 설명에 제공된 도면이다. 1 is a diagram provided for explanation of an X-ray sensing device capable of obtaining a dual energy image with one shot according to an embodiment of the present invention, and FIG. 2 is a description of a color filter according to an embodiment of the present invention. It is a drawing provided in
본 실시예에 따른 1회 촬영으로 듀얼 에너지 영상 획득이 가능한 X-선 센싱 장치(이하에서는 'X-선 센싱 장치'로 총칭하기로 함)는, 1회 촬영으로 서로 다른 대역의 X-선 에너지를 포함하는 듀얼 에너지 영상을 획득하고, 이를 영상 처리하기 위해 마련된다. An X-ray sensing device capable of obtaining a dual energy image with one shot according to the present embodiment (hereinafter, collectively referred to as an 'X-ray sensing device') has different X-ray energies of different bands with one shot. It is provided to acquire a dual energy image including and image processing it.
이를 위해, X-선 센싱 장치는, 듀얼 레이어 신틸레이터(100), 컬러 필터(200), CMOS 이미지 센서(300)를 포함할 수 있다. To this end, the X-ray sensing device may include a dual layer scintillator 100, a color filter 200, and a CMOS image sensor 300.
듀얼 레이어 신틸레이터(100)는, 대상체(20)의 후면에 배치되어, X-선 발생기(10)로부터 전달되는 X-선이 대상체(20)를 통과하여 듀얼 레이어 신틸레이터(100)로 전달되도록 할 수 있다. The dual layer scintillator 100 is disposed on the rear surface of the object 20 so that X-rays transmitted from the X-ray generator 10 pass through the object 20 and are transmitted to the dual layer scintillator 100. can do.
구체적으로, 듀얼 레이어 신틸레이터(100)는, 두 겹의 신틸레이터로 마련되어, 서로 다른 대역의 에너지 스펙트럼을 서로 다른 색의 가시광으로 변환할 수 있다. Specifically, the dual-layer scintillator 100 is provided with two layers of scintillators, and can convert energy spectra of different bands into visible light of different colors.
즉, 듀얼 레이어 신틸레이터(100)는, X-Ray 스펙트럼 중 낮은 대역의 에너지 스펙트럼을 특정 색의 가시광으로 변환하는 제1 신틸레이터 및 X-Ray 스펙트럼 중 높은 대역의 에너지 스펙트럼을 제1 신틸레이터에 의해 변환되는 특정 색의 가시광과 겹치지 않는 다른 색의 가시광으로 변환하는 제2 신틸레이터를 포함할 수 있다. That is, the dual layer scintillator 100 includes a first scintillator that converts the energy spectrum of a low band of the X-Ray spectrum into visible light of a specific color, and the energy spectrum of a high band of the X-Ray spectrum to the first scintillator. It may include a second scintillator that converts the visible light of a specific color into visible light of a different color that does not overlap with the visible light of a specific color converted by the scintillator.
구체적으로, 제1 신틸레이터는, X-Ray 스펙트럼 중 높은 대역(ex:약 60~110 keV)의 에너지 스펙트럼을 겹치지 않는 특정 색의 가시광으로 변환시킬 수 있으며, 제2 신틸레이터는, X-Ray 스펙트럼 중 낮은 대역(ex: 약 10~60 keV)의 에너지 스펙트럼을 특정 색의 가시광으로 변환시킬 수 있다. Specifically, the first scintillator can convert the energy spectrum of a high band (ex: about 60 to 110 keV) of the X-Ray spectrum into visible light of a specific color that does not overlap. An energy spectrum of a low band (ex: about 10 to 60 keV) of the spectrum can be converted into visible light of a specific color.
컬러 필터(200)는, 듀얼 레이어 신틸레이터(100)의 후단에 배치될 수 있으며, 높은 대역의 에너지 스펙트럼이 변환된 제1 가시광이 통과할 수 있는 제1 필터와 낮은 대역의 에너지 스펙트럼이 변환된 제2 가시광이 통과할 수 있는 제2 필터를 포함할 수 있다. The color filter 200 may be disposed at a rear end of the dual layer scintillator 100, and includes a first filter through which first visible light converted into a high band energy spectrum passes and a first filter through which a low band energy spectrum is converted. A second filter through which second visible light may pass may be included.
이때, 제1 필터 및 제2 필터는, 도 2에 예시된 바와 같이 CMOS 이미지 센서로 입력되는 제1 가시광 및 제2 가시광의 픽셀수가 서로 동일하도록, 격자 무늬로 배치될 수 있다. In this case, as illustrated in FIG. 2 , the first filter and the second filter may be arranged in a lattice pattern such that the number of pixels of the first visible light and the second visible light input to the CMOS image sensor are the same.
CMOS 이미지 센서(300)는, 컬러 필터(200)의 후단에 배치되어, 듀얼 레이어 신틸레이터(100)와 컬러 필터(200)를 통과한 이미지를 획득하여 영상 처리할 수 있다. The CMOS image sensor 300 is disposed at the rear end of the color filter 200 to obtain an image that has passed through the dual layer scintillator 100 and the color filter 200 and process the image.
도 3은, 본 발명의 일 실시예에 따른 CMOS 이미지 센서(300)를 통해 획득된 데이터에서 높은 대역의 에너지 스펙트럼이 변환된 제1 이미지와 낮은 대역의 에너지 스펙트럼이 변환된 제2 이미지를 분리하는 과정의 설명에 제공된 도면이고, 도 4는, 본 발명의 일 실시예에 따른 CMOS 이미지 센서(300)를 통해 여러 종류의 관심영역(Region of Interest)를 분리하는 과정의 설명에 제공된 도면이다. 3 is a diagram for separating a first image obtained by converting a high-band energy spectrum from data acquired through a CMOS image sensor 300 according to an embodiment of the present invention and a second image obtained by converting a low-band energy spectrum. 4 is a diagram provided for description of a process, and FIG. 4 is a diagram provided for description of a process for separating various types of regions of interest through the CMOS image sensor 300 according to an embodiment of the present invention.
본 실시예에 따른 CMOS 이미지 센서(300)는, 듀얼 레이어 신틸레이터(100)와 컬러 필터(200)를 통과한 서로 다른 두가지 색의 가시광으로 변환된 이미지 데이터를 획득하여, 영상 처리를 수행할 수 있다. The CMOS image sensor 300 according to the present embodiment obtains image data converted into visible light of two different colors passing through the dual layer scintillator 100 and the color filter 200, and performs image processing. there is.
구체적으로, CMOS 이미지 센서(300)는, 컬러 필터(200)를 통과한 데이터에서 높은 대역의 에너지 스펙트럼이 변환된 제1 이미지와 낮은 대역의 에너지 스펙트럼이 변환된 제2 이미지를 분리하여 획득할 수 있으며, 획득된 제1 이미지 및 제2 이미지에서 여러 종류의 관심영역(Region of Interest)를 분리하고, 각 관심영역별로 듀얼 에너지 차감(Dual Energy Subtraction) 알고리즘을 적용할 수 있다. Specifically, the CMOS image sensor 300 may separate and acquire a first image obtained by converting a high-band energy spectrum and a second image obtained by converting a low-band energy spectrum from data passing through the color filter 200. In addition, various types of regions of interest may be separated from the obtained first image and the second image, and a dual energy subtraction algorithm may be applied to each region of interest.
예를 들면, CMOS 이미지 센서(300)는, 제1 이미지 및 제2 이미지를 획득하면, 높은 대역의 에너지가 변환된 제1 이미지에서 뼈에 해당하는 제1 관심영역(High-Bone) 및 조직에 해당하는 제2 관심영역(High-Tissue)를 분리하고, 낮은 대역의 에너지가 변환된 제2 이미지에서 뼈에 해당하는 제1 관심영역(Low-Bone) 및 조직에 해당하는 제2 관심영역(Low-Tissue)를 분리하여, 각 관심영역별로 듀얼 에너지 차감 알고리즘을 적용할 수 있다. For example, when the CMOS image sensor 300 acquires the first image and the second image, the high-band energy is converted to a first region of interest (High-Bone) corresponding to a bone and tissue in the first image. The corresponding second region of interest (High-Tissue) is separated, and in the second image in which the energy of the low band is converted, the first region of interest (Low-Bone) corresponding to the bone and the second region of interest (Low-Bone) corresponding to the tissue are separated. -Tissue) can be separated, and a dual energy subtraction algorithm can be applied to each region of interest.
이때, CMOS 이미지 센서(300)는, 도 3에 예시된 바와 같이 이중선형보간법(Bilinear Interpolation) 연산을 수행하여 제1 이미지와 제2 이미지를 획득할 수 있다. In this case, the CMOS image sensor 300 may acquire the first image and the second image by performing a bilinear interpolation operation as illustrated in FIG. 3 .
예를 들면, CMOS 이미지 센서(300)는, 이중선형보간법(Bilinear Interpolation) 연산 수행 시, 도 3의 H13 픽셀(High Energy pixel)의 경우, 높은 대역의 에너지(High Energy)은 H13의 대역값이고, 낮은 대역의 에너지(Low Energy)은 (L12+L14+L23)/3으로 연산될 수 있으며, 도 3의 L34 픽셀(Low Energy pixel)의 경우, 낮은 대역의 에너지(Low Energy)은 L34의 대역값이고, 높은 대역의 에너지(High Energy)은, (H24+H33+H35+H44)/4로 연산될 수 있다. For example, when the CMOS image sensor 300 performs a bilinear interpolation operation, in the case of the H13 pixel (High Energy pixel) of FIG. 3, the high energy of the high band is the band value of H13 and , Low energy of the low band can be calculated as (L12 + L14 + L23) / 3, and in the case of the L34 pixel (Low Energy pixel) of FIG. 3, the low energy of the band is the band of L34. value, and the high energy of the band can be calculated as (H24 + H33 + H35 + H44) / 4.
그리고 CMOS 이미지 센서(300)는, 제1 이미지 및 제2 이미지를 대상으로 각각 히스토그램(Histogram) 분리법 또는 테두리 검출법(Edge Detection)을 이용하여 도 4에 예시된 바와 같이 여러 종류의 관심영역를 분리할 수 있다. Also, the CMOS image sensor 300 may separate various types of regions of interest from the first image and the second image using a histogram separation method or an edge detection method, respectively, as illustrated in FIG. 4 . there is.
예를 들면, CMOS 이미지 센서(300)는, 제1 이미지 및 제2 이미지를 대상으로 뼈에 해당하는 제1 관심영역, 조직에 해당하는 제2 관심영역 및 뼈와 조직이 함께하는 제3 관심영역를 각각 분리할 수 있다. For example, the CMOS image sensor 300 determines a first region of interest corresponding to bones, a second region of interest corresponding to tissues, and a third region of interest where bones and tissues coexist, respectively, from the first and second images. can be separated
또한, CMOS 이미지 센서(300)는, 각 관심영역별로 서로 다른 계수를 이용하여 듀얼 에너지 차감 알고리즘을 적용하여, 하기 수식 1에 정의된 영상(I)를 획득할 수 있다. In addition, the CMOS image sensor 300 may obtain an image I defined in Equation 1 below by applying a dual energy subtraction algorithm using a different coefficient for each region of interest.
(수식 1)
Figure PCTKR2021020281-appb-img-000005
(Equation 1)
Figure PCTKR2021020281-appb-img-000005
여기서, 단일 에너지 방사선이 사용되고, 산란이 없을 시, 조직과 뼈를 통하여 투과되는 방사선의 강도는 낮은 대역의 에너지가 변환된 제2 이미지의 경우, 하기 수식 2와 같으며, 높은 대역의 에너지가 변환된 제1 이미지의 경우, 하기 수식 3과 같다. Here, when single-energy radiation is used and there is no scattering, the intensity of radiation transmitted through tissues and bones is equal to Equation 2 below in the case of the second image in which low-band energy is converted, and high-band energy is converted In the case of the first image, it is equal to Equation 3 below.
(수식 2)
Figure PCTKR2021020281-appb-img-000006
(Formula 2)
Figure PCTKR2021020281-appb-img-000006
(수식 3)
Figure PCTKR2021020281-appb-img-000007
(Formula 3)
Figure PCTKR2021020281-appb-img-000007
그리고 각 이미지별로 서로 다른 계수(Weighting factors)를 적용하면, 획득되는 영상은 하기 수식 4와 같다. In addition, when different weighting factors are applied to each image, the obtained image is as shown in Equation 4 below.
(수식 4)
Figure PCTKR2021020281-appb-img-000008
(Formula 4)
Figure PCTKR2021020281-appb-img-000008
이를 통해, 수식 4에 수식 2와 수식 3을 적용하면, 수식 1을 산출할 수 있다. Through this, if Equation 2 and Equation 3 are applied to Equation 4, Equation 1 can be calculated.
이때, CMOS 이미지 센서(300)는, 제1 관심영역의 경우, 조직에 해당하는 영상을 제거하기 위해, 조직의 두께(xt)의 계수
Figure PCTKR2021020281-appb-img-000009
가 0이 되도록 할 수 있다.
In this case, in the case of the first region of interest, the CMOS image sensor 300 coefficients the tissue thickness (xt) to remove an image corresponding to the tissue.
Figure PCTKR2021020281-appb-img-000009
can be set to 0.
또한, CMOS 이미지 센서(300)는, 제2 관심영역의 경우, 뼈에 해당하는 영상을 제거하기 위해, 뼈의 두께(xb)의 계수
Figure PCTKR2021020281-appb-img-000010
가 0이 되도록 할 수 있다.
In addition, the CMOS image sensor 300, in the case of the second region of interest, in order to remove the image corresponding to the bone, the coefficient of the bone thickness (xb)
Figure PCTKR2021020281-appb-img-000010
can be set to 0.
여기서, 각 파라미터는 아래와 같다. Here, each parameter is as follows.
Figure PCTKR2021020281-appb-img-000011
Figure PCTKR2021020281-appb-img-000011
정리하면, CMOS 이미지 센서(300)는, 높은 대역의 에너지가 변환된 제1 이미지에서 뼈에 해당하는 제1 관심영역(High-Bone) 및 조직에 해당하는 제2 관심영역(High-Tissue)를 분리하고, 낮은 대역의 에너지가 변환된 제2 이미지에서 뼈에 해당하는 제1 관심영역(Low-Bone) 및 조직에 해당하는 제2 관심영역(Low-Tissue)를 분리하고, 분리된 각 관심영역별로 듀얼 에너지 차감 알고리즘을 적용할 수 있다. In summary, the CMOS image sensor 300 detects a first region of interest (High-Bone) corresponding to bone and a second region of interest (High-Tissue) corresponding to tissue in the first image in which high-band energy is converted. A first region of interest (Low-Bone) corresponding to a bone and a second region of interest (Low-Tissue) corresponding to a tissue are separated from the second image in which the energy of the low band is converted, and each of the separated regions of interest is separated. A dual energy subtraction algorithm can be applied for each.
이를 통해, 이미지의 모든 픽셀에 같은 계수를 적용한 연산하는 기존의 경우보다 X-Ray 영상을 통해 얻을 수 있는 정보량을 증가시킬 수 있다. Through this, it is possible to increase the amount of information obtained through the X-Ray image compared to the conventional case of applying the same coefficient to all pixels of the image.
도 5는, 본 발명의 일 실시예에 따른 1회 촬영으로 듀얼 에너지 영상 획득이 가능한 영상처리 방법의 설명에 제공된 도면이다. FIG. 5 is a diagram provided to explain an image processing method capable of acquiring a dual energy image with one shot according to an embodiment of the present invention.
본 실시예에 따른 1회 촬영으로 듀얼 에너지 영상 획득이 가능한 영상처리 방법(이하에서는 '영상처리 방법'으로 총칭하기로 함)은, 도 1 내지 도 4를 참조하여 전술한 X-선 센싱 장치를 이용하여 실행할 수 있다. An image processing method capable of obtaining a dual energy image with one shot according to the present embodiment (hereinafter, collectively referred to as an 'image processing method') includes the X-ray sensing device described above with reference to FIGS. 1 to 4. You can run it using
도 5를 참조하면, 본 영상처리 방법은, CMOS 이미지 센서(300)를 이용하여 듀얼 레이어 신틸레이터(100)와 컬러 필터(200)를 통과한 데이터에서 높은 대역의 에너지 스펙트럼이 변환된 제1 이미지와 낮은 대역의 에너지 스펙트럼이 변환된 제2 이미지를 분리하여 획득할 수 있다(S510). Referring to FIG. 5 , in this image processing method, a first image in which a high-band energy spectrum is converted from data that has passed through the dual-layer scintillator 100 and the color filter 200 using the CMOS image sensor 300 is used. The second image obtained by converting the energy spectrum of the low band and the energy spectrum of the low band may be separated and obtained (S510).
그리고 영상처리 방법은, 제1 이미지와 제2 이미지가 획득되면, 각 이미지에서 여러 종류의 관심영역를 분리하고(S520), 분리된 각 관심영역별로 듀얼 에너지 차감 알고리즘을 적용함으로써(S530), 기존보다 정보량이 증가된 X-Ray 영상을 획득할 수 있다. And the image processing method, when the first image and the second image are acquired, separates several types of ROI from each image (S520), and applies a dual energy subtraction algorithm to each separated ROI (S530), thereby making it easier than before. An X-Ray image with an increased amount of information can be obtained.
이상에서는 본 발명의 바람직한 실시예에 대하여 도시하고 설명하였지만, 본 발명은 상술한 특정의 실시예에 한정되지 아니하며, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술분야에서 통상의 지식을 가진자에 의해 다양한 변형실시가 가능한 것은 물론이고, 이러한 변형실시들은 본 발명의 기술적 사상이나 전망으로부터 개별적으로 이해되어져서는 안될 것이다.Although the preferred embodiments of the present invention have been shown and described above, the present invention is not limited to the specific embodiments described above, and is common in the art to which the present invention pertains without departing from the gist of the present invention claimed in the claims. Of course, various modifications are possible by those who have knowledge of, and these modifications should not be individually understood from the technical spirit or prospect of the present invention.

Claims (8)

  1. 서로 다른 대역의 에너지 스펙트럼을 서로 다른 색의 가시광으로 변환하기 위해, 두 겹의 신틸레이터로 마련되는 듀얼 레이어 신틸레이터;a dual-layer scintillator provided with two layers of scintillators to convert energy spectra of different bands into visible light of different colors;
    듀얼 레이어 신틸레이터의 후단에 배치되는 컬러 필터; 및 a color filter disposed behind the dual layer scintillator; and
    컬러 필터의 후단에 배치되어, 듀얼 레이어 신틸레이터와 컬러 필터를 통과한 이미지를 획득하여 영상 처리하는 CMOS 이미지 센서;를 포함하는 X-선 센싱 장치.An X-ray sensing device comprising: a CMOS image sensor disposed at a rear end of the color filter to obtain and process an image passing through the dual-layer scintillator and the color filter.
  2. 청구항 1에 있어서,The method of claim 1,
    듀얼 레이어 신틸레이터는, The dual layer scintillator,
    X-Ray 스펙트럼 중 낮은 대역의 에너지 스펙트럼을 특정 색의 가시광으로 변환하는 제1 신틸레이터; 및a first scintillator that converts an energy spectrum of a low band in the X-Ray spectrum into visible light of a specific color; and
    X-Ray 스펙트럼 중 높은 대역의 에너지 스펙트럼을 제1 신틸레이터에 의해 변환되는 특정 색의 가시광과 겹치지 않는 다른 색의 가시광으로 변환하는 제2 신틸레이터;를 포함하는 것을 특징으로 하는 X-선 센싱 장치.and a second scintillator for converting the energy spectrum of a high band among the X-ray spectrum into visible light of a different color that does not overlap with the visible light of a specific color converted by the first scintillator. .
  3. 청구항 2에 있어서,The method of claim 2,
    컬러 필터는, color filters,
    높은 대역의 에너지 스펙트럼이 변환된 제1 가시광이 통과할 수 있는 제1 필터와 낮은 대역의 에너지 스펙트럼이 변환된 제2 가시광이 통과할 수 있는 제2 필터를 포함하고, A first filter through which first visible light converted into a high band energy spectrum can pass and a second filter through which second visible light converted into a low band energy spectrum can pass,
    제1 필터 및 제2 필터는,The first filter and the second filter,
    CMOS 이미지 센서로 입력되는 제1 가시광 및 제2 가시광의 픽셀수가 서로 동일하도록, 격자 무늬로 배치되는 것을 특징으로 하는 X-선 센싱 장치.An X-ray sensing device characterized in that the number of pixels of first visible light and second visible light input to a CMOS image sensor is arranged in a grid pattern.
  4. 청구항 3에 있어서,The method of claim 3,
    CMOS 이미지 센서는, CMOS image sensor,
    컬러 필터를 통과한 데이터에서 높은 대역의 에너지 스펙트럼이 변환된 제1 이미지와 낮은 대역의 에너지 스펙트럼이 변환된 제2 이미지를 분리하여 획득하고, 각 이미지에서 여러 종류의 관심영역(Region of Interest)를 분리하며, 각 관심영역별로 듀얼 에너지 차감(Dual Energy Subtraction) 알고리즘을 적용하는 것을 특징으로 하는 X-선 센싱 장치.From the data that has passed through the color filter, a first image in which the energy spectrum of the high band is converted and a second image in which the energy spectrum in the low band is converted are separated and acquired, and several types of regions of interest are obtained from each image. X-ray sensing device characterized by separating and applying a dual energy subtraction algorithm for each region of interest.
  5. 청구항 4에 있어서,The method of claim 4,
    CMOS 이미지 센서는, CMOS image sensor,
    이중선형보간법(Bilinear Interpolation) 연산을 수행하여 제1 이미지와 제2 이미지를 획득하는 것을 특징으로 하는 X-선 센싱 장치.An X-ray sensing device characterized in that a first image and a second image are obtained by performing a bilinear interpolation operation.
  6. 청구항 4에 있어서,The method of claim 4,
    CMOS 이미지 센서는, CMOS image sensor,
    제1 이미지 및 제2 이미지를 대상으로 뼈에 해당하는 제1 관심영역 및 조직에 해당하는 제2 관심영역를 각각 분리하는 것을 특징으로 하는 X-선 센싱 장치.An X-ray sensing device that separates a first region of interest corresponding to a bone and a second region of interest corresponding to a tissue from the first image and the second image, respectively.
  7. 청구항 4에 있어서,The method of claim 4,
    CMOS 이미지 센서는, CMOS image sensor,
    각 관심영역별로 서로 다른 계수를 이용하여 듀얼 에너지 차감 알고리즘을 적용하여, 하기 수식 1에 정의된 영상(I)를 획득하고, An image (I) defined in Equation 1 is obtained by applying a dual energy subtraction algorithm using a different coefficient for each region of interest,
    제1 관심영역의 경우, 조직에 해당하는 영상을 제거하기 위해, 조직의 두께(xt)의 계수
    Figure PCTKR2021020281-appb-img-000012
    가 0이 되도록 하고,
    In the case of the first region of interest, in order to remove an image corresponding to the tissue, the coefficient of tissue thickness (xt)
    Figure PCTKR2021020281-appb-img-000012
    be 0,
    제2 관심영역의 경우, 뼈에 해당하는 영상을 제거하기 위해, 뼈의 두께(xb)의 계수
    Figure PCTKR2021020281-appb-img-000013
    가 0이 되도록 하는 것을 특징으로 하는 X-선 센싱 장치.
    In the case of the second region of interest, in order to remove the image corresponding to the bone, the coefficient of the bone thickness (xb)
    Figure PCTKR2021020281-appb-img-000013
    X-ray sensing device, characterized in that so that is zero.
    (수식 1)
    Figure PCTKR2021020281-appb-img-000014
    (Formula 1)
    Figure PCTKR2021020281-appb-img-000014
    Figure PCTKR2021020281-appb-img-000015
    Figure PCTKR2021020281-appb-img-000015
  8. 서로 다른 대역의 에너지 스펙트럼을 서로 다른 색의 가시광으로 변환하기 위해 두 겹의 신틸레이터로 마련되는 듀얼 레이어 신틸레이터, 듀얼 레이어 신틸레이터의 후단에 배치되는 컬러 필터 및 컬러 필터의 후단에 배치되어, 듀얼 레이어 신틸레이터와 컬러 필터를 통과한 이미지를 획득하여 영상 처리하는 CMOS 이미지 센서를 포함하는 X-선 센싱 장치가, 듀얼 레이어 신틸레이터와 컬러 필터를 통과한 데이터에서 높은 대역의 에너지 스펙트럼이 변환된 제1 이미지와 낮은 대역의 에너지 스펙트럼이 변환된 제2 이미지를 분리하여 획득하는 단계;A dual-layer scintillator provided with two layers of scintillators to convert energy spectrums of different bands into visible light of different colors, a color filter disposed after the dual-layer scintillator, and a color filter disposed after the color filter, An X-ray sensing device including a CMOS image sensor that acquires and processes an image that has passed through a layer scintillator and a color filter converts high-band energy spectrum from data that has passed through a dual-layer scintillator and color filter. separating and acquiring a first image and a second image obtained by converting a low-band energy spectrum;
    X-선 센싱 장치가, 각 이미지에서 여러 종류의 관심영역(Region of Interest)를 분리하는 단계; 및 Separating, by an X-ray sensing device, several types of regions of interest from each image; and
    X-선 센싱 장치가, 각 관심영역별로 듀얼 에너지 차감(Dual Energy Subtraction) 알고리즘을 적용하는 단계;를 포함하는 영상처리 방법.An image processing method comprising: applying, by an X-ray sensing device, a dual energy subtraction algorithm for each region of interest.
PCT/KR2021/020281 2021-12-30 2021-12-30 X-ray sensing device capable of acquiring dual-energy image through one-time photography, and image processing method WO2023128019A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0192034 2021-12-30
KR1020210192034A KR20230102142A (en) 2021-12-30 2021-12-30 X-ray sensing device and image processing method capable of acquiring dual energy images with one shot

Publications (1)

Publication Number Publication Date
WO2023128019A1 true WO2023128019A1 (en) 2023-07-06

Family

ID=86999369

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/020281 WO2023128019A1 (en) 2021-12-30 2021-12-30 X-ray sensing device capable of acquiring dual-energy image through one-time photography, and image processing method

Country Status (2)

Country Link
KR (1) KR20230102142A (en)
WO (1) WO2023128019A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117747628A (en) * 2024-02-19 2024-03-22 杭州钛光科技有限公司 Preparation method and application of color X-ray detector

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007159925A (en) * 2005-12-15 2007-06-28 Matsushita Electric Ind Co Ltd X-ray sensor, x-ray diagnostic apparatus and bone density measuring instrument
KR20130107124A (en) * 2012-03-21 2013-10-01 삼성디스플레이 주식회사 Apparatus for detecting x-ray
KR20140111818A (en) * 2013-03-12 2014-09-22 삼성전자주식회사 X-ray imaging apparatus and control method for the same
KR20180127987A (en) * 2016-02-19 2018-11-30 카림 에스. 카림 Systems and methods for X-ray detectors
KR102003042B1 (en) * 2012-10-31 2019-10-21 삼성전자주식회사 Medical image processing apparatus and method of synthesizing and displaying of medical image generated by multi-energy x-ray

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101980533B1 (en) 2018-07-24 2019-05-21 주식회사 레메디 Dual energy X-ray apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007159925A (en) * 2005-12-15 2007-06-28 Matsushita Electric Ind Co Ltd X-ray sensor, x-ray diagnostic apparatus and bone density measuring instrument
KR20130107124A (en) * 2012-03-21 2013-10-01 삼성디스플레이 주식회사 Apparatus for detecting x-ray
KR102003042B1 (en) * 2012-10-31 2019-10-21 삼성전자주식회사 Medical image processing apparatus and method of synthesizing and displaying of medical image generated by multi-energy x-ray
KR20140111818A (en) * 2013-03-12 2014-09-22 삼성전자주식회사 X-ray imaging apparatus and control method for the same
KR20180127987A (en) * 2016-02-19 2018-11-30 카림 에스. 카림 Systems and methods for X-ray detectors

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117747628A (en) * 2024-02-19 2024-03-22 杭州钛光科技有限公司 Preparation method and application of color X-ray detector

Also Published As

Publication number Publication date
KR20230102142A (en) 2023-07-07

Similar Documents

Publication Publication Date Title
WO2023128019A1 (en) X-ray sensing device capable of acquiring dual-energy image through one-time photography, and image processing method
AU713076B2 (en) Method of improving a digital image
EP0518282B1 (en) Apparatus for radiographic diagnosis
EP3263006B1 (en) Image processing device
US9330440B2 (en) Medical image processing apparatus and method for synthesizing and displaying medical image generated using multi-energy X-ray
CA2218127A1 (en) A system for quantitative radiographic imaging
CN207491128U (en) A kind of RGB+IR image capture devices
WO2023063646A1 (en) Bone density derivation method for hip fracture diagnosis based on machine learning, and bone density derivation program using same
EP2555681A2 (en) System and method processing images in multi-energy x-ray system
EP1035507A1 (en) Method for detection of elements of interest in a digital radiographic image
JPH08336517A (en) Image processing device
WO2020141811A1 (en) Slide scanning system for microscope for bone marrow reading
EP2348482B1 (en) Image processing device and image processing method
CN105919543A (en) Multispectral endoscope imaging image acquisition method and system
AU8164098A (en) X-ray image processing
CN111667446B (en) image processing method
WO2019017752A1 (en) Metal segmentation method using dual energy x-ray projection, metal artifact removal method, and x-ray image acquisition device using same
JPS6340533A (en) X-ray diagnostic apparatus
CN111127371B (en) Image enhancement parameter automatic optimization method, storage medium and X-ray scanning device
CN205963997U (en) System that acquires of multispectral endoscope formation of image image
CN117017326A (en) Method for generating dual-energy X-ray for detecting bone density based on K-edge filtering
KR101496912B1 (en) X-ray image apparatus and x-ray image forming method
WO2016175386A2 (en) X-ray imaging device and method
WO2021054756A1 (en) Front image generation device for heavy equipment
WO2017003223A1 (en) Image acquisition device and method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21970088

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE