WO2023127876A1 - Ultra-high molecular weight polyethylene fiber - Google Patents

Ultra-high molecular weight polyethylene fiber Download PDF

Info

Publication number
WO2023127876A1
WO2023127876A1 PCT/JP2022/048170 JP2022048170W WO2023127876A1 WO 2023127876 A1 WO2023127876 A1 WO 2023127876A1 JP 2022048170 W JP2022048170 W JP 2022048170W WO 2023127876 A1 WO2023127876 A1 WO 2023127876A1
Authority
WO
WIPO (PCT)
Prior art keywords
molecular weight
less
polyethylene
ultra
high molecular
Prior art date
Application number
PCT/JP2022/048170
Other languages
French (fr)
Japanese (ja)
Inventor
明久 古田
靖憲 福島
優二 池田
広樹 津島
剛 鴨崎
敏昭 林
Original Assignee
東洋紡エムシー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡エムシー株式会社 filed Critical 東洋紡エムシー株式会社
Publication of WO2023127876A1 publication Critical patent/WO2023127876A1/en

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/02Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F6/04Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds from polyolefins
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/02Yarns or threads characterised by the material or by the materials from which they are made
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B1/00Constructional features of ropes or cables
    • D07B1/02Ropes built-up from fibrous or filamentary material, e.g. of vegetable origin, of animal origin, regenerated cellulose, plastics

Definitions

  • the present invention relates to ultra-high molecular weight polyethylene fibers, and more particularly to ultra-high molecular weight polyethylene fibers having excellent creep resistance properties.
  • ultra-high molecular weight polyethylene is used in various applications because of its good properties such as impact resistance.
  • ultra-high molecular weight polyethylene fibers have the drawback that they easily slip between molecular chains and tend to creep. For this reason, techniques have been proposed to improve creep resistance by, for example, introducing branches into ultra-high molecular weight polyethylene fibers (Patent Documents 1 and 2).
  • Patent Documents 3 to 5 techniques have been proposed to further improve properties such as tensile strength and elastic modulus by reducing defects existing inside ultra-high molecular weight polyethylene fibers.
  • the present invention has been made in view of the circumstances as described above, and an object of the present invention is to provide an ultra-high molecular weight polyethylene fiber having both moldability during processing and dimensional stability during use, and a method for producing the same. is to provide
  • the present invention which has solved the above problems, has the following configuration.
  • [1] Made of ethylene having a limiting viscosity [ ⁇ ] of 5.0 dL/g or more and 40.0 dL/g or less and a repeating unit of 90 mol% or more, containing at least one alkyl side chain selected from the group consisting of a methyl group, an ethyl group, and a butyl group; the number of alkyl branches, which means the number of alkyl side chains per 1000 carbon atoms, is 0.6/1000 carbon atoms or more and 1.4/1000 carbon atoms or less; Ultra high molecular weight polyethylene fiber.
  • a preferred embodiment of the polyethylene fiber of the present invention has the following configuration.
  • the ratio of the number of alkyl branches to the elongation stress of the polyethylene fiber is 2 to 30/1000 carbon atoms/MPa;
  • the creep rate at a measurement temperature of 140°C is 2.0 ⁇ 10 -3 sec -1 or more, and the creep speed at a measurement temperature of 60°C is 4.0 ⁇ 10 -7 sec -1 or less,
  • the polyethylene fiber is composed of one or more single yarns, and the single yarn has a tensile strength of 18 cN/dtex or more, an initial elastic modulus of 500 cN/dtex or more, and a breaking elongation of 3.0% or more.
  • the dissolving step includes Made of ethylene having a limiting viscosity [ ⁇ ] of 5.0 dL/g or more and 40.0 dL/g or less and a repeating unit of 90 mol% or more, containing at least one alkyl side chain selected from the group consisting of a methyl group, an ethyl group, and a butyl group;
  • the spinning process is A step of discharging the obtained polyethylene solution from a spinning nozzle at a temperature 15° C. or more higher than the melting point of the polyethylene, and then cooling it to 60° C. or less,
  • the stretching step is While drawing the obtained polyethylene yarn one or more times, In the step of setting the drawing temperature at the final drawing to 140° C. or more and less than 155° C., the drawing time at 2 minutes or more and 8 minutes or less, and the tension of the yarn at the time of drawing at 1.5 cN/dtex or more and 8 cN/dtex or less. be.
  • the ultra-high molecular weight polyethylene fiber of the present invention has both moldability during processing and dimensional stability during use. Moreover, the production method of the present invention is suitable for producing ultra-high molecular weight polyethylene fibers having the above properties.
  • the inventors of the present invention have extensively studied ultra-high molecular weight polyethylene fibers that have both moldability during processing and dimensional stability during use. It has been found that the creep properties suitable for processing and the creep properties suitable for use are obtained depending on the difference in temperature.
  • Ultra-high molecular weight polyethylene fibers having such characteristics are not only excellent in heat moldability (hereinafter referred to as heat moldability), but also can be used even when a load is applied to the ultra-high molecular weight polyethylene fibers in an outdoor environment. The change in the amount of strain can be small, and the change in dimension after the load is removed can also be small (these are called dimensional stability).
  • the ultra-high molecular weight polyethylene fiber (hereinafter referred to as polyethylene fiber) of the present invention will be described below.
  • the creep property at 140°C which is an index for heat moldability
  • the creep property at 60°C 60°C creep property
  • the relationship between the heat moldability and the 140° C. creep property is that the heat moldability is improved when the 140° C. creep property is low, that is, when creep at 140° C. is easy.
  • the relationship between the dimensional stability and the 60° C. creep property is that the 60° C. creep property is high, that is, the 60° C. creep resistance is low (good creep resistance) and the dimensional stability is good. Therefore, the polyethylene fiber of the present invention has low 140° C. creep property and high 60° C.
  • the outdoor use environment means outdoor use within the range of temperature changes due to seasons and the like.
  • the evaluation of 140°C creep property is preferably based on creep rate at 140°C (140°C creep rate) or rupture life at 140°C (140°C rupture life), more preferably 140°C creep. Rating based on both speed and 140° C. judged life.
  • Evaluation of 60°C creep property is preferably based on creep rate at 60°C (60°C creep rate) or rupture life at 60°C (60°C rupture life), more preferably 60°C creep rate. and 60° C. rupture life.
  • the balance between 140 ° C. creep property and 60 ° C. creep property can be appropriately controlled. Both moldability and dimensional stability can be achieved. Any range can be selected for each of the evaluation items of the 140° C. creep property evaluation and the 60° C. creep property evaluation, and the combination of the items can also be made by combining the selected ranges. .
  • the polyethylene fiber includes a single yarn (monofilament) and a multifilament consisting of a plurality of single yarns, preferably a multifilament.
  • the number of single yarns constituting the multifilament can be appropriately selected according to the application, and is preferably 5 or more, more preferably 10 or more, still more preferably 15 or more.
  • the polyethylene fiber of the present invention is made of ethylene having a limiting viscosity [ ⁇ ] of 5.0 dL/g or more and 40.0 dL/g or less and a repeating unit of 90 mol% or more.
  • the polyethylene used in the present invention has an ultrahigh molecular weight, and the intrinsic viscosity of the polyethylene is 5.0 dL/g or more, preferably 8.0 dL/g or more, and 40.0 dL/g or less, preferably 30.0 dL/g. /g or less, more preferably 25.0 dL/g or less. Alternatively, it is 5.0 to 40.0 dL/g, preferably 8.0 to 30.0 dL/g, more preferably 8.0 to 25.0 dL/g.
  • the tensile strength of the final polyethylene fiber becomes low, and it may not be possible to obtain a polyethylene fiber having a desired high strength, for example, a tensile strength of 18 cN/dtex or more. Also, the desired heat moldability and dimensional stability of the polyethylene fibers cannot be obtained. If the intrinsic viscosity exceeds 40.0 dL/g, the processability will deteriorate, making it difficult to produce polyethylene fibers.
  • the numerical ranges of the lower and upper limits of the intrinsic viscosity can be determined by arbitrarily combining the above values (the following numerical ranges can also be similarly determined by combining arbitrary upper and lower limits).
  • repeating Unit In the polyethylene constituting the polyethylene fiber of the present invention, 90 mol % or more of the repeating unit is ethylene.
  • the repeating unit of ethylene is preferably 92 mol % or more, more preferably 94 mol % or more, still more preferably 98 mol % or more.
  • copolymers of ethylene and minor amounts of other monomers of the present invention as long as they do not adversely affect the thermoformability and dimensional stability of the polyethylene fibers. Examples of other monomers include ⁇ -olefins, acrylic acid and its derivatives, methacrylic acid and its derivatives, vinylsilane and its derivatives, and the like.
  • copolymers of copolymers ethylene and other monomers
  • blends of homopolyethylene and ethylene-based copolymers and homopolyethylene and other homopolymers ( ⁇ -olefins, etc.). It may be a blend and may have partial cross-linking.
  • the polyethylene fiber of the present invention contains at least one alkyl side chain selected from the group consisting of methyl groups, ethyl groups, and butyl groups,
  • the number of alkyl branches which means the number of alkyl side chains per 1000 carbon atoms, is 0.6/1000 carbon atoms or more and 1.4/1000 carbon atoms or less.
  • the alkyl side chains can be arbitrarily combined, and when two or more types are used, they may be a combination of different functional groups, a combination of the same functional groups, or a combination of the same functional group and a different functional group. may For example, if it is one type, it is preferably any one of a methyl group, an ethyl group, and a butyl group.
  • two groups are preferably methyl group and ethyl group, methyl group and butyl group, ethyl group and butyl group, methyl group and methyl group, ethyl group and ethyl group, or butyl group and butyl group.
  • they may be all different functional groups, all the same functional groups, or a combination of the same functional groups and different functional groups.
  • the creep rate is high both at 140°C and 60°C, and the heat moldability (molding processability) at 140°C is good, while the temperature at 60°C is high. Creep resistance (dimensional stability) tends to be poor.
  • the creep rate decreases at both 140°C and 60°C, so the heat moldability decreases, while the creep resistance at 60°C improves.
  • the number of alkyl branches becomes extremely large (for example, about 6.0/1000 carbon atoms)
  • drawing becomes difficult, and the tensile strength of the final polyethylene fiber becomes low.
  • the creep rate tends to increase remarkably, and the heat moldability recovers, but the creep resistance at 60°C deteriorates.
  • both heat moldability and creep resistance can be improved by adjusting the number of alkyl branches to the range of 0.6 to 1.4/1000 carbon atoms.
  • the ethyl side chain is preferable because it is excellent in thermoformability.
  • the number of alkyl branches which means the number of alkyl side chains per 1,000 carbon atoms contained in the polyethylene fiber of the present invention, is 0.6/1,000 carbon atoms or more, preferably 0.7. per 1,000 or more carbon atoms, more preferably 0.8 per 1,000 or more carbon atoms, still more preferably 0.9 per 1,000 or more carbon atoms, and 1.4 per 1,000 or less carbon atoms, More preferably, it is 1.3/1000 or less carbon atoms.
  • the number of alkyl branches is, for example, 0.6/1000 to 1.4 carbon atoms/1000 carbon atoms, preferably 0.7/1000 to 1.3 carbon atoms/1000 carbon atoms, more preferably may be 0.8/1000 to 1.3 carbon atoms/1000 carbon atoms, more preferably 0.9/1000 to 1.3 carbon atoms/1000 carbon atoms.
  • the intrinsic viscosity [ ⁇ ] the repeating unit of ethylene, the alkyl side chain, and the number of alkyl branches can be combined with arbitrary values.
  • ultra-high molecular weight polyethylene fiber of the present invention can be combined with any of the following preferred embodiments of the present invention in addition to the above arbitrary combinations, and each preferred embodiment can be combined with any value.
  • Preferred embodiments include, for example, the number of alkyl branches/elongation stress, requirements (i) to (iv) for creep measurement at a measurement load of 6.6 g/dtex, ratio of storage elastic moduli, tensile strength, initial elastic modulus, elongation at break degree, weight average molecular weight ratio, weight average molecular weight, and the like.
  • the ratio of the number of alkyl branches to the elongation stress of the polyethylene fiber is 2 to 30/1000 carbon atoms/MPa.
  • the polyethylene fiber having the number of alkyl branches of 0.6/1000 carbon atoms or more and 1.4/1000 carbon atoms or less has a ratio of the number of alkyl branches to the elongation stress of the polyethylene fiber (number of alkyl branches/elongation stress) is preferably 2/1000 carbon atoms/MPa or more, more preferably 2.1/1000 carbon atoms/MPa or more, preferably 30/1000 carbon atoms/MPa or less, more preferably is 25/1000 carbon atoms/MPa or less, more preferably 20/1000 carbon atoms/MPa or less.
  • the number of alkyl branches/elongation stress is, for example, preferably 2/1000 carbon atoms/MPa to 30/1000 carbon atoms/MPa, more preferably 2.1/1000 carbon atoms/MPa to 25/carbon 1000 atoms/MPa, more preferably 2.1 atoms/1000 carbon atoms/MPa or more to 20 atoms/1000 carbon atoms/MPa. If the intrinsic viscosity and the number of alkyl branches are satisfied, and the ratio of the number of alkyl branches to the elongation stress is within the above specific range, it contributes to the improvement of heat moldability and dimensional stability.
  • the ratio of the number of alkyl branches to the elongation stress can be controlled, for example, by the intrinsic viscosity of raw material polyethylene.
  • the intrinsic viscosity of the fiber becomes small, so the elongation stress also becomes small, and as a result, the ratio of the number of alkyl branches to the elongation stress increases.
  • the 140° C. creep property and 60° C. creep property of the polyethylene fiber of the present invention are preferably the following (i) and (ii), more preferably the following (i) to (iv), in creep measurement at a measurement load of 6.6 g/dtex. ) are preferably satisfied.
  • the following (i) (ii) and (iii), or the following (i) (ii) and (iv) may be satisfied, or the following (iii) and (iv), or the following (iii) It may be a combination of (iv) and (i) and/or (ii) below. In the above combinations, arbitrary values may be combined to determine the range.
  • the creep rate is preferably 2.0 ⁇ 10 -3 sec -1 or more, more preferably 2.1 ⁇ 10 -3 sec -1 above, more preferably 2.3 ⁇ 10 ⁇ 3 sec ⁇ 1 or more, still more preferably 2.5 ⁇ 10 ⁇ 3 sec ⁇ 1 or more, and preferably 6.0 ⁇ 10 ⁇ 3 sec ⁇ 1 or less, It is more preferably 5.5 ⁇ 10 ⁇ 3 sec ⁇ 1 or less, still more preferably 5.0 ⁇ 10 ⁇ 3 sec ⁇ 1 or less.
  • the above (i) creep rate is preferably 2.0 ⁇ 10 ⁇ 3 sec ⁇ 1 to 6.0 ⁇ 10 ⁇ 3 sec ⁇ 1 , more preferably 2.1 ⁇ 10 ⁇ 3 sec ⁇ 1 to 5.5 ⁇ 10 -3 sec -1 , more preferably 2.3 ⁇ 10 -3 sec -1 to 5.0 ⁇ 10 -3 sec -1 , still more preferably 2.5 ⁇ 10 -3 sec -1 to 5.0 ⁇ 10 -3 sec -1 or less.
  • the measurement temperature of 140° C. is a temperature considering the temperature conditions during processing of polyethylene fibers, and the 140° C. creep rate is a value set as a standard that contributes to the improvement of thermoformability. If the 140° C. creep rate is too slow, heat molding of polyethylene fibers may become difficult.
  • the upper limit is not particularly limited, the above range is preferable in consideration of the balance with the 60° C. creep resistance.
  • the creep rate is preferably 4.0 ⁇ 10 -7 sec -1 or less, more preferably 3.95 ⁇ 10 -7 sec -1 . below, more preferably 3.93 ⁇ 10 ⁇ 7 sec ⁇ 1 or less, preferably 3.0 ⁇ 10 ⁇ 8 sec ⁇ 1 or more, more preferably 6.0 ⁇ 10 ⁇ 8 sec ⁇ 1 or more, and further It is preferably 8.0 ⁇ 10 ⁇ 8 sec ⁇ 1 or more.
  • the above (ii) creep rate is preferably 3.0 ⁇ 10 ⁇ 8 sec ⁇ 1 to 4.0 ⁇ 10 ⁇ 7 sec ⁇ 1 , more preferably 6.0 ⁇ 10 ⁇ 8 sec ⁇ 1 to 3.95 ⁇ 10 -7 sec -1 , more preferably 8.0 ⁇ 10 -8 sec -1 to 3.93 ⁇ 10 -7 sec -1 .
  • the measurement temperature of 60°C is a temperature considering the use environment of the product using the polyethylene fiber of the present invention, and the 60°C creep rate is a value set as a standard that contributes to the improvement of dimensional stability at normal use temperature. If the 60° C. creep rate is too fast, the dimensional change of polyethylene fibers may increase even when used at around room temperature.
  • the lower limit is not particularly limited, the above range is preferable in consideration of the balance with the 140° C. creep resistance.
  • the time required to break is preferably less than 1.2 minutes, more preferably 1.1 minutes or less.
  • the 140° C. rupture life is a value set as a standard that contributes to the improvement of heat moldability. If the time to rupture is too short, the polyethylene fibers may break frequently during molding, making processing difficult. Although the lower limit is not particularly limited, it is preferably 0.1 minute or more in consideration of the balance with other requirements.
  • the (iii) 140° C. rupture life is preferably 0.1 minutes to less than 1.2 minutes, more preferably 0.1 minutes to 1.1 minutes.
  • the time required to break is preferably 216 hours or more, more preferably 225 hours or more.
  • the 60° C. rupture life is a value set as a standard contributing to improvement in dimensional stability at normal operating temperature (for example, room temperature). If the time to rupture is too short, the product life may be shortened.
  • the polyethylene fiber of the present invention has a ratio of the storage modulus at 70 ° C. to the storage modulus at 120 ° C. (70 ° C. storage modulus / 120 ° C. storage modulus: hereinafter referred to as the storage modulus ratio
  • the storage modulus ratio is preferably 1.5 or more, more preferably 1.6 or more.
  • the polyethylene fiber of the present invention is composed of one or more single yarns, and the tensile strength, breaking elongation, and initial elastic modulus of this single yarn are within specific ranges.
  • Tensile strength The tensile strength of the single yarn constituting the polyethylene fiber of the present invention is preferably 18 cN/dtex or more, more preferably 20 cN/dtex or more, still more preferably 25 cN/dtex or more, and even more preferably 30 cN/dtex or more. , preferably 85 cN/dtex or less, more preferably 60 cN/dtex or less.
  • the tensile strength is, for example, preferably 18 cN/dtex to 85 cN/dtex, more preferably 20 cN/dtex to 60 cN/dtex, still more preferably 25 cN/dtex to 60 cN/dtex, still more preferably 30 cN/dtex to 60 cN/dtex. be.
  • the initial elastic modulus of the single yarn constituting the polyethylene fiber of the present invention is preferably 500 cN/dtex or more, more preferably 600 cN/dtex or more, still more preferably 700 cN/dtex or more, and preferably 1500 cN/dtex. Below, it is more preferably 1400 cN/dtex or less, still more preferably 1300 cN/dtex or less, and even more preferably 1200 cN/dtex or less.
  • the initial elastic modulus is, for example, preferably 500 cN/dtex to 1500 cN/dtex, more preferably 600 cN/dtex to 1400 cN/dtex, still more preferably 700 cN/dtex to 1300 cN/dtex, still more preferably 700 cN/dtex to 1200 cN/dtex. is. If the initial elastic modulus of the single yarn is too low, the physical properties and shape of the polyethylene fiber may change due to external force. If the initial elastic modulus of the single yarn is too high, the elasticity of the yarn becomes too high, which impairs the suppleness of the yarn.
  • the breaking elongation of the single yarn constituting the polyethylene fiber of the present invention is preferably 3.0% or more, more preferably 3.4% or more, still more preferably 3.7% or more, and preferably It is 7.0% or less, more preferably 6.0% or less, still more preferably 5.0% or less.
  • the elongation at break is, for example, preferably 3.0% to 7.0%, more preferably 3.4% to 6.0%, still more preferably 3.7% to 5.0%. If the breaking elongation of the single yarn is too low, the single yarn breakage and fluffing may easily occur when the polyethylene fiber is slightly distorted. If the elongation at break of the single yarn is too high, the heat processing of the polyethylene fiber may become difficult and the dimensional stability may be impaired.
  • the polyethylene fiber of the present invention contains polyethylene having a ratio of weight average molecular weight to number average molecular weight of 4.0 or more.
  • the weight-average molecular weight to number-average molecular weight ratio (Mw/Mn) of the polyethylene constituting the polyethylene fiber is more preferably 4.2 or more, and still more preferably 4.5 or more.
  • the upper limit of Mw/Mn is not particularly limited, it is preferably 9.0 or less, more preferably 8.0 or less, and still more preferably 7.5 or less.
  • the weight average molecular weight ratio (Mw/Mn) is, for example, preferably 4.0 to 9.0, more preferably 4.2 to 8.0, still more preferably 4.5 to 7.5.
  • the ratio of the weight average molecular weight to the number average molecular weight of polyethylene is too small, the creep phenomenon will hardly occur. While this works well to improve creep resistance at 60°C, it works badly to improve moldability at 140°C. When the creep resistance at 60°C is sufficiently high but the moldability at 140°C is poor, it is preferable to improve the moldability by increasing Mw/Mn. If the ratio of the weight average molecular weight to the number average molecular weight of polyethylene is too high, the tensile strength of the final polyethylene fiber may be low and the creep resistance may be poor.
  • the polyethylene fiber of the present invention is ultra-high molecular weight polyethylene, and the weight average molecular weight of the polyethylene is preferably 490,000 or more, more preferably 550,000 or more, still more preferably 800,000 or more, and preferably It is 8,000,000 or less, more preferably 6,000,000 or less, and still more preferably 5,000,000 or less.
  • the weight average molecular weight is, for example, preferably 490,000 to 8,000,000, more preferably 550,000 to 6,000,000, still more preferably 800,000 to 5,000,000.
  • the weight-average molecular weight is too low, the number of molecular ends per cross-sectional area of the polyethylene fiber increases, which may cause structural defects, and the tensile strength and initial elastic modulus of the polyethylene fiber cannot be sufficiently increased even if drawing or the like is performed. Moreover, the desired heat workability and dimensional stability may not be obtained. If the weight-average molecular weight is too high, the tension of the polyethylene fiber during drawing becomes too high, causing breakage, and the like, making it difficult to produce the polyethylene fiber.
  • the weight average molecular weight (Mw) and number average molecular weight (Mn) of the polyethylene of the present invention are values determined by gel permeation chromatography (GPC measurement method).
  • the measurement conditions are the conditions described in Examples.
  • the polyethylene fiber of the present invention has both thermoformability during processing and dimensional stability during use, the polyethylene fiber of the present invention can be processed to suit various uses.
  • the product containing the polyethylene fiber of the present invention can be used for a long period of time because the dimensional change over time is small even when a load is applied. Therefore, since the frequency of product replacement can be reduced, the environmental load can be reduced.
  • the polyethylene fiber of the present invention may be either a single yarn (monofilament) or a multifilament obtained by twisting a plurality of single yarns, and can be used as appropriate depending on the application.
  • Examples of the multifilament include a twisted yarn obtained by twisting a plurality of single yarns, a braid obtained by combining a plurality of single yarns, a rope obtained by twisting a plurality of twisted yarns, and the like. Twisted yarns, braids, and ropes may contain the ultra-high molecular weight polyethylene fibers of the present invention. It may be a high-molecular-weight polyethylene fiber, or may be composed only of the ultra-high-molecular-weight polyethylene fiber of the present invention.
  • the rope using the polyethylene fiber of the present invention is lightweight, has high strength, and has excellent creep resistance. useful for mooring ropes. Since floating structures are built offshore, conventional heavy mooring ropes such as chains and wires can solve the problem of prolonging the transportation period on a carrier ship and the mooring rope installation period.
  • the mooring rope (mooring rope) for a floating structure using the polyethylene fibers of the present invention is lighter than conventional chains, wires, and the like, so it is easy to transport and install, and contributes to shortening the construction period.
  • the floating structure is moored for several years, and a tensile load is constantly applied to maintain the position of the floating structure.
  • the fibers will gradually expand under tension and the floating structure will move.
  • the rope for floating structure using the polyethylene fiber of the present invention since the rope for floating structure using the polyethylene fiber of the present invention has a lower creep than the conventional rope, it is effective in holding the position of the floating structure. Since the polyethylene fiber of the present invention has low creep and excellent seawater resistance (resistance to deterioration of physical properties against seawater), it exhibits particularly excellent effects in marine applications as described above.
  • the method of applying the polyethylene fiber of the present invention to a rope for a floating structure is, for example, a plurality of raw yarns are plied, and 12 strands are twisted once or multiple times. A sub-rope is prepared using a plurality of sub-ropes, and a torque-neutral construction or a torque-matched construction is used to make a full rope, and if necessary, a cover is attached to prevent sand from entering.
  • the above multifilaments and monofilaments can be applied to various uses, such as nets, fishing lines, material protective covers, woven fabrics, knitted fabrics, reinforcing fabrics, kite strings, bow strings, sail cloths, curtain materials, protective materials, bulletproof materials, and medical applications. sutures, artificial tendons, artificial muscles, fiber-reinforced resin reinforcing materials, cement reinforcing materials, fiber-reinforced rubber reinforcing materials, machine tool parts, battery separators, chemical filters, etc., industrial materials and products with excellent performance and design and can be widely applied.
  • each condition in the production process can be selected from any range, and the combination of each condition can be combined with each other. can produce fibers.
  • the polyethylene fiber of the present invention can be produced through, for example, a melting process, a spinning process, and a drawing process.
  • a raw material polyethylene having a high molecular weight, specifically, an intrinsic viscosity [ ⁇ ] of 5.0 dL / g or more and 40.0 dL / g or less and a repeating unit of 90% or more is made of ethylene, and methyl at least one alkyl side chain selected from the group consisting of groups, ethyl groups, and butyl groups, and the number of alkyl branches, which means the number of said alkyl side chains per 1000 carbon atoms, is 0.6/carbon atom
  • the raw material polyethylene consists of ethylene having an intrinsic viscosity [ ⁇ ] of 5.0 dL/g or more and 40.0 dL/g or less and a repeating unit of 90% or more.
  • the intrinsic viscosity of polyethylene is preferably 5.0 dL/g or more, more preferably 8.0 dL/g or more, preferably 40.0 dL/g or less, more preferably 30.0 dL/g or less, and still more preferably 25.0 dL/g or less.
  • Intrinsic viscosity is preferably 5.0 to 40.0 dL/g, more preferably 8.0 to 30.0 dL/g, still more preferably 8.0 to 25.0 dL/g. If the intrinsic viscosity is too low, the desired heat processability and dimensional stability of polyethylene fibers may not be obtained. If the intrinsic viscosity is too high, it may become difficult to produce polyethylene fibers.
  • repeating units are ethylene.
  • the repeating unit of ethylene is preferably 92 mol % or more, more preferably 94 mol % or more, still more preferably 98 mol % or more.
  • copolymers of ethylene with minor amounts of other monomers according to the invention.
  • Other monomers include the compounds already described.
  • the raw material polyethylene contains at least one alkyl side chain selected from the group consisting of methyl groups, ethyl groups, and butyl groups, and the number of alkyl branches, which means the number of alkyl side chains per 1000 carbon atoms, is preferred. has 0.6/1000 carbon atoms or more and 1.4/1000 carbon atoms or less.
  • the above-mentioned alkyl side chains and the number of alkyl branches within a predetermined range are requirements specified for obtaining heat processability and dimensional stability of polyethylene fibers. The preferred range and the like are the same as those of the polyethylene fiber already explained.
  • the alkyl side chain is at least one selected from the group consisting of methyl group, ethyl group and butyl group, and these can be arbitrarily combined.
  • a combination of different functional groups, a combination of the same functional groups, or a combination of the same functional group and a different functional group may be used. Examples of combinations are the same as those described for the above repeating units, and the above description is incorporated.
  • a polyethylene solution is prepared by dissolving the preferred raw material polyethylene.
  • the solvent is preferably a volatile organic solvent such as decalin or tetralin, a solid at room temperature, or a non-volatile solvent.
  • the concentration of polyethylene in the polyethylene solution is preferably 0.5% by mass or more and 40% by mass or less, more preferably 2.0% by mass or more and 30% by mass or less, and still more preferably 3.0% by mass or more and 20% by mass or less. is.
  • the concentration of polyethylene is, for example, preferably 0.5 to 40% by mass, more preferably 2.0 to 30% by mass, still more preferably 3.0 to 20% by mass. If the polyethylene concentration is too low, production efficiency can be very poor. If the polyethylene concentration is too high, it may become difficult to discharge from a nozzle described later in the gel spinning method due to the extremely high molecular weight.
  • the polyethylene concentration it is desirable to select an optimum concentration according to the intrinsic viscosity [ ⁇ ] of the raw material polyethylene.
  • a polyethylene solution can be prepared by known methods such as using a twin-screw extruder; suspending solid polyethylene in a solvent and stirring at a high temperature.
  • the mixing conditions for the raw material polyethylene and the solvent are preferably within a temperature range of 150° C. or higher and 200° C. or lower for 1 minute or longer and 80 minutes or shorter. If the temperature is maintained within the above temperature range for too short a time, incomplete mixing may occur and a uniform polyethylene solution may not be obtained. If the temperature is maintained in the above temperature range for too long, a large number of breakages and crosslinks of the polyethylene molecules occur, which may make it difficult to achieve both heat processability and dimensional stability.
  • the mixing time in the temperature range exceeding 200°C is preferably 30 minutes or less. If it exceeds 30 minutes, too many breaks and cross-links of the polyethylene molecules may occur beyond the spinnable range.
  • the above-mentioned spinnable range means that spinning is possible at preferably 10 m/min or more, and the spinning tension at that time is 0.01 cN or more and 300 cN or less per single yarn.
  • the polyethylene solution obtained above is discharged at a temperature 15 ° C. or more higher than the melting point of the polyethylene using a nozzle having holes through which the solution flows, and then cooled to 60 ° C. or less. It is a process to do.
  • the polyethylene solution is heated to a temperature that is preferably 15° C. or higher, more preferably 20° C. or higher, and still more preferably 30° C. or higher than the melting point of polyethylene.
  • the raw material polyethylene dispersed in the solvent is dissolved to obtain a uniform polyethylene solution.
  • the polyethylene solution heated to the above temperature is extruded using, for example, an extruder, and then supplied to a spinning nozzle (spinneret) using a constant supply device or the like. After that, a thread (gel thread) is formed by discharging the polyethylene solution through the fine holes provided in the spinning nozzle.
  • the temperature of the polyethylene passing through the spinning nozzle is the melting point of polyethylene or higher, preferably 140° C. or higher, more preferably 150° C. or higher, and lower than the thermal decomposition temperature of polyethylene. If the temperature of the polyethylene is too low, the viscosity of the polyethylene may decrease, making it difficult to take up the polyethylene fibrous material. If the temperature of polyethylene is too high, the polyethylene solvent boils immediately after it is discharged from the spinning nozzle, which may easily cause yarn breakage.
  • the time required for the polyethylene solution to pass through an orifice provided inside the spinning nozzle and be discharged from the pores of the spinning nozzle (hereinafter referred to as the orifice passage time) is preferably 1 second or longer and 8 minutes or shorter. If the orifice passage time is too short, the flow of the polyethylene solution in the orifice may be disturbed and the polyethylene solution may not be discharged stably. In addition, the structure of the entire single yarn may become non-uniform due to the influence of turbulence in the flow of the polyethylene solution. If the orifice passage time is too long, the polyethylene molecules are extruded with little orientation, and the spinning tension per single yarn may be outside the above range. In addition, the crystal structure of the obtained single yarn becomes non-uniform, and the desired characteristics may not be obtained.
  • the polyethylene solution is preferably discharged from a spinning nozzle having a diameter of 0.2 to 3.5 mm, more preferably 0.5 to 2.5 mm, at a discharge rate of preferably 0.1 g/min or more.
  • the number of ejection pores provided in the spinning nozzle may be appropriately adjusted according to the number of threads constituting the polyethylene fiber, and the number of pores may be singular or plural.
  • the number of pores is preferably 1 or more, more preferably 5 or more.
  • the diameter of the pore may be appropriately set according to the application, but considering the physical properties of the single yarn such as tensile strength, initial elastic modulus, and elongation at break, the diameter of the pore is preferably 0.2 mm or more, It is more preferably 0.3 mm or more, still more preferably 0.5 mm or more, preferably 3.5 mm or less, more preferably 3.0 mm or less, still more preferably 2.0 mm or less. Also, the diameter of the pores is preferably 0.2 to 3.5 mm, more preferably 0.3 to 3.0 mm, still more preferably 0.5 to 2.0 mm.
  • the temperature difference between the pores of the spinning nozzle is small so that the amount of polyethylene solution discharged from each of the pores of the spinning nozzle is as uniform as possible.
  • the variation coefficient CV of the discharge amount in each pore ((standard deviation of the discharge amount in all the pores provided in the spinning nozzle) / (average value of the discharge amount in all the pores provided in the spinning nozzle ) ⁇ 100) is preferably 20% or less, more preferably 18% or less.
  • the difference between the maximum temperature and the minimum temperature of all pores is preferably 10°C or less, more preferably 8°C or less.
  • the method of reducing the temperature difference between the pores with the highest temperature and the pores with the lowest temperature is to shield the spinning nozzle from direct contact with the outside air; shielding from the outside air with a shielding plate;
  • the atmosphere in which the filaments (gel filaments) discharged from the pores are cooled by the refrigerant after being discharged from the pores is not particularly limited.
  • a dry-wet quench method using a miscible liquid or an immiscible liquid such as water may be used.
  • the discharged yarn (gel yarn) is taken up at a speed of preferably 800 m/min or less, more preferably 200 m/min or less while being cooled with a cooling medium.
  • the temperature of the cooling medium is adjusted to cool the yarn (gel yarn) to preferably 60° C. or lower, more preferably 35° C. or lower, preferably 10° C. or higher, more preferably 12° C. or higher. Cooling is, for example, preferably 60°C to 10°C, more preferably 35°C to 12°C. If the temperature of the yarn (gel yarn) is too high or too low, the crystal structure of the polyethylene yarn becomes uneven and the physical properties such as tensile strength are greatly reduced, resulting in a loss of polyethylene fiber obtained by drawing.
  • the cooling medium may be either a miscible liquid that is miscible with the solvent of the polyethylene solution or an immiscible liquid such as water that is immiscible with the solvent of the polyethylene solution.
  • the solvent present in the polyethylene yarn may be removed before the drawing process, or the drawing process may be performed while the solvent is removed during the drawing process.
  • the solvent extraction method may be appropriately selected according to the type of solvent.
  • the solvent may be removed in a heat medium such as inert gas or steam, or a heat medium such as a heating roller may be used.
  • extraction may be performed using a known extractant. The shorter the time from the end of cooling to the removal of the solvent (hereinafter referred to as solvent removal time), the better.
  • the solvent removal time is the time until the amount of residual solvent in the polyethylene yarn becomes 10% or less, preferably within 10 hours, more preferably within 2 hours, and even more preferably within 30 minutes. If the solvent removal time is too long, the crystalline structure of the polyethylene yarn may become non-uniform.
  • the polyethylene fiber of the present invention may be a monofilament consisting of one single yarn, or may be a multifilament consisting of a plurality of single yarns twisted together.
  • the method of forming the multifilament is not particularly limited, and various known methods can be employed. For example, a large number of filaments ejected from the pores may be squeezed into a multifilament bundle.
  • the obtained polyethylene yarn (undrawn yarn) is drawn once or more, and the drawing temperature at the last drawing is 140 ° C. or more and less than 155 ° C., and the drawing time is 2 minutes or more and 8 minutes.
  • the tension applied to the yarn during drawing is set to 1.5 cN/dtex or more and 8 cN/dtex or less.
  • the drawing step is performed continuously or after winding the undrawn yarn taken in the spinning step.
  • the undrawn yarn is drawn several times in a heated state.
  • the drawing may be performed once or in multiple steps so as to achieve a desired draw ratio, but the number of times of drawing is preferably 6 or less.
  • the stretching step may be performed in a heat medium atmosphere or may be performed using a heating roller. Examples of the heat medium include air, inert gas such as nitrogen, water vapor, liquid medium, and the like.
  • the total draw ratio of the undrawn yarn is preferably 7.0 times or more and 60 times or less, more preferably 8.0 times or more and 55 times or less, regardless of whether the drawing process is a single stage or a multi-stage drawing process. times or less, more preferably 9.0 times or more and 50 times or less.
  • the total draw ratio is, for example, preferably 7.0 to 60 times, more preferably 8.0 to 55 times, still more preferably 9.0 to 50 times.
  • Stretching is preferably carried out at a temperature below the melting point of polyethylene. When stretching is performed multiple times, it is preferable to increase the temperature during the stretching as the process progresses to a later stage.
  • the drawing temperature in the final stage of drawing is preferably 140° C. or higher, more preferably 145° C. or higher, and preferably 155° C. or lower, more preferably 150° C. or lower.
  • the stretching temperature in the final stage of stretching is, for example, preferably 140°C to 155°C, more preferably 145°C to 150
  • the drawing time of the final drawing is preferably 2 minutes or more, preferably 8 minutes or less, more preferably 6 minutes or less, and even more preferably 4 minutes or less.
  • the stretching time is, for example, preferably 2 to 8 minutes, more preferably 2 to 6 minutes, still more preferably 2 to 4 minutes. If the final stretching time is too long, the molecular chains relax during the stretching even if the production conditions other than the stretching time are set within a suitable range, which may deteriorate the heat processability and dimensional stability.
  • the deformation speed during stretching is preferably 0.0001 s -1 or more, more preferably 0.008 s -1 or more, and preferably 0.8 s -1 or less, more preferably 0.1 s -1 or less.
  • the deformation speed is, for example, preferably 0.0001 s -1 to 0.8 s -1 , more preferably 0.008 s -1 to 0.1 s -1 .
  • the deformation speed can be calculated from the draw ratio of the polyethylene fiber, the drawing speed, and the length of the drawing section.
  • Deformation speed (s ⁇ 1 ) [(stretching speed ⁇ stretching speed/stretching ratio)/stretching section length] If the deformation speed is too high, the polyethylene fibers are broken before reaching a sufficient draw ratio, which is not preferable. If the deformation speed is too slow, the molecular chains are relaxed during drawing, so that polyethylene fibers having sufficient strength and elastic modulus cannot be obtained, and the tensile strength and initial elastic modulus of the polyethylene fibers are also lowered, which is not preferable.
  • the tension applied to the yarn at the final drawing is preferably 1.5 cN/dtex or more, more preferably 2.0 cN/dtex or more, still more preferably 2.5 cN/dtex or more, and preferably 8 cN/dtex or less, It is more preferably 5 cN/dtex or less, still more preferably 4 cN/dtex or less, still more preferably 3 cN/dtex or less.
  • the tension is, for example, preferably 1.5 to 8 cN/dtex, more preferably 2.0 to 5 cN/dtex, still more preferably 2.5 to 4 cN/dtex, still more preferably 2.5 to 3 cN/dtex. . If the tension during stretching is too low, heat processability and dimensional stability may not be improved. If the tension during drawing is too high, yarn breakage or the like may occur, making production difficult.
  • the stretched polyethylene fiber is preferably wound by various known methods and under known winding conditions.
  • additives such as antioxidants and anti-reduction agents, pH adjusters, surface tension reducing agents, thickeners, humectants, and thickening agents are added.
  • Various known additives such as staining agents, preservatives, antifungal agents, antistatic agents, pigments, mineral fibers, other organic fibers, metal fibers, and sequestering agents may be added.
  • the measurement conditions and evaluation criteria for the characteristics of each sample are as follows.
  • Intrinsic Viscosity Decalin at a temperature of 135° C. was used as the solvent, and the specific viscosity of various dilute solutions was measured using an Ubbelohde capillary viscosity tube.
  • the intrinsic viscosity was determined from the point of extrapolation to the origin of a straight line obtained by least-squares approximation from the plot of dilute solution viscosity versus concentration.
  • the sample was divided or cut into lengths of about 3 mm, 1% by mass of an antioxidant ("Yoshinox (registered trademark) BHT" manufactured by API Corporation) was added to the sample, and 135 C. for 4 hours with stirring to prepare a measurement solution.
  • weight average molecular weight (Mw), number average molecular weight (Mn) The weight average molecular weight (Mw) and number average molecular weight (Mn) of each sample were determined using gel permeation chromatography (GPC). Measurement was performed by washing a fiber sample cut to a length of about 2 mm with acetone twice for 15 minutes, followed by solvent (1,2,4-trichlorobenzene with 0.1% antioxidant BHT added). was added, dissolved by shaking at 140° C. for 2.5 hours, and heated and filtered through a 0.5 ⁇ m sintered filter to obtain a measurement solution.
  • GPC gel permeation chromatography
  • the integrated value of the ethylene chain peak is 1000
  • the peak integrated value at 37.5 ppm is A
  • the peak integrated value at 34 ppm is B
  • the peak integrated value at 23.5 ppm is C
  • the number of methyl side chains is A/ 2 (pieces/1000C)
  • the number of ethyl side chains is B/2 (pieces/1000C)
  • the number of butyl side chains is C/2 (pieces/1000C).
  • the sample was first washed with acetone and then press-molded under the following conditions to prepare a sheet-like test piece. Molding temperature: 210°C, preheating conditions: 5 MPa for 15 minutes, total molding conditions: 10 MPa for 30 minutes, average cooling rate: 15°C/minute, molded article removal temperature: 40°C or less, testing machine used: Ohtake Machine Industry Co., Ltd. ) was used. Using the obtained test piece, the elongation stress was measured under the following conditions. The test piece is cut from a press molded product (see JIS K 6936-2: 2007 Annex A Fig.
  • test piece for the shape of the test piece the number of test pieces is 6, the distance between grips is 20 mm, the test temperature is 150 ° C ⁇ 2°C (in the gas phase), the tester used is a precision universal testing machine Autograph AG-I 100kN manufactured by Shimadzu Corporation, the capacity of the tester is a load cell type of 1kN, and the test load is 600% of the parallel narrow part of the test piece.
  • a load (unit: MPa) was applied with six different weights so that the time required for elongation was in the range of 1 to 20 minutes.
  • the horizontal axis is each measurement time (unit: minutes)
  • the vertical axis is each stress (unit: MPa)
  • the estimated tensile stress that reaches 600% elongation in 10 minutes was calculated.
  • the estimated tensile stress was taken as elongation stress (unit: MPa).
  • Fineness A sample was cut into 10 m lengths at five different locations, the weights were measured, and the fineness (dtex) was determined using the average value of the five locations.
  • the initial load applied to the sample during measurement was 1/10 of the mass (g) per 10,000 m of the sample.
  • the tensile strength, initial elastic modulus, and elongation at break of the polyethylene fiber (stretched multifilament) were evaluated according to the following criteria. Tensile strength 35 cN / dtex or more: ⁇ Less than 35 cN / dtex: ⁇ Initial elastic modulus 950 cN/dtex or more: ⁇ Less than 950 cN/dtex: ⁇ Breaking elongation 4% or more: ⁇ Less than 4%: ⁇
  • Thermal stress A thermal stress strain measuring device manufactured by Seiko Instruments Inc., "TMA/SS120C" was used for the measurement. Prepare a sample to have a length of 20 mm, set the initial load to 0.01764 cN / dtex, heat up from room temperature (20 ° C.) to the melting point at a heating rate of 20 ° C./min, and thermal stress at which thermal shrinkage becomes maximum. and its temperature was measured.
  • Creep resistance Creep measurement was performed using a dynamic viscoelasticity measuring device (TA Instruments "DMA-Q800") with a sample length of 10 mm (length between chucks) and a preload of 0.10 N. measurement temperature (60 ° C. or 140 ° C.), a load of 6.6 g / dtex for the fineness of the sample, a soak time of 1.00 min, and a date sampling interval of 0.50 s / pt. Measurements were taken until the sample broke. After the measurement, the sample elongation ⁇ i (t) [% unit], creep rate ⁇ [1/sec unit], and the time until fracture were obtained from the measurement data by the following methods.
  • DMA-Q800 dynamic viscoelasticity measuring device
  • ⁇ i (t) [% unit] (L (t) - L 0 ) x 100/L 0
  • the time obtained by subtracting the time of the measurement data when the load started to be applied to the sample from the time of the final measurement data when the sample was broken and the measurement was completed was defined as the creep life.
  • the obtained slurry-like liquid was dissolved in a twin-screw extruder equipped with a mixing and conveying section, and the obtained polyethylene solution was extruded from a spinneret at a spinneret surface temperature of 175°C and a single hole discharge rate of 3.0 g/min. Dispensed.
  • the number of orifices formed in the spinneret was 16 and the orifice diameter was 0.8 mm.
  • the filament was cooled at a speed of 80.0 m / min using a water cooling bath at 20 ° C. with a distance between the nozzle and the water surface of 1.5 cm, and 16 single yarns were obtained.
  • Comparative Example 1 is an example in which the number of alkyl branches is 0/1000 carbon atoms. Comparative Example 1 has a high creep rate at both 140°C and 60°C, and good moldability at 140°C, but poor dimensional stability at 60°C. Comparative Example 2 is an example in which the number of alkyl branches is more than 0/1000 carbon atoms and less than 0.6/1000 carbon atoms. In Comparative Example 2, the creep rate was slow at both 140°C and 60°C, and the dimensional stability at 60°C was good, but the moldability at 140°C was poor.
  • Comparative Examples 3 and 4 are examples in which the number of alkyl branches is increased to over 1.4/1000 carbon atoms. Comparative Example 3 has a short creep rupture life at both 140° C. and 60° C., and is inferior in heat moldability and dimensional stability. In Comparative Example 4, the creep rate is remarkably high at both 140° C. and 60° C., and both heat moldability and dimensional stability are inferior.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Artificial Filaments (AREA)
  • Ropes Or Cables (AREA)

Abstract

The present invention addresses the problem of providing: an ultra-high molecular weight polyethylene fiber having both moldability during processing and dimensional stability during use; and a method for manufacturing the same. This ultra-high molecular weight polyethylene fiber comprises ethylene having an intrinsic viscosity [η] of 5.0-40.0 dL/g and a repeat unit of 90 mol% or more, and includes at least one alkyl side chain selected from the group consisting of a methyl group, an ethyl group, and a butyl group, wherein the number of alkyl branches representing the number of the alkyl side chains per 1000 carbon atoms is 0.6-1.4/1000 carbon atoms.

Description

超高分子量ポリエチレン繊維ultra high molecular weight polyethylene fiber
 本発明は超高分子量ポリエチレン繊維に関し、詳細には耐クリープ性に優れた特性を有する超高分子量ポリエチレン繊維に関するものである。 The present invention relates to ultra-high molecular weight polyethylene fibers, and more particularly to ultra-high molecular weight polyethylene fibers having excellent creep resistance properties.
 いわゆる超高分子量ポリエチレンは、耐衝撃性などの特性が良好であることから様々な用途に利用されている。
 しかしながら超高分子量ポリエチレン繊維は、分子鎖間のスリップが容易に起こり、クリープしやすいという欠点があった。そのため例えば超高分子量ポリエチレン繊維に分岐を導入することにより、耐クリープ性を向上させる技術が提案されている(特許文献1、2)。
So-called ultra-high molecular weight polyethylene is used in various applications because of its good properties such as impact resistance.
However, ultra-high molecular weight polyethylene fibers have the drawback that they easily slip between molecular chains and tend to creep. For this reason, techniques have been proposed to improve creep resistance by, for example, introducing branches into ultra-high molecular weight polyethylene fibers (Patent Documents 1 and 2).
 また超高分子量ポリエチレン繊維の内部に存在する欠陥を少なくすることで、さらに引張強度や弾性率などの特性を向上させる技術が提案されている(特許文献3~5)。 In addition, techniques have been proposed to further improve properties such as tensile strength and elastic modulus by reducing defects existing inside ultra-high molecular weight polyethylene fibers (Patent Documents 3 to 5).
特開昭64-38439号公報JP-A-64-38439 特開平6-280111号公報JP-A-6-280111 国際公開第01/012885号WO 01/012885 特開2006-089898号公報JP 2006-089898 A 特開2006-045753号公報JP 2006-045753 A
 超高分子量ポリエチレン繊維の用途の拡大に伴い、超高分子量ポリエチレン繊維には耐クリープ性などの各種特性の向上が求められているが、これら特性を向上させると加工性が低下するため、優れた加工性を有しつつ、特性を向上させることが難しかった。 With the expansion of the use of ultra-high molecular weight polyethylene fibers, improvements in various properties such as creep resistance are required for ultra-high molecular weight polyethylene fibers. It was difficult to improve the characteristics while maintaining workability.
 本発明は上記のような事情に着目してなされたものであって、その目的は、加工時の成形性と、使用時の寸法安定性とを兼備した超高分子量ポリエチレン繊維、およびその製造方法を提供することである。 The present invention has been made in view of the circumstances as described above, and an object of the present invention is to provide an ultra-high molecular weight polyethylene fiber having both moldability during processing and dimensional stability during use, and a method for producing the same. is to provide
 上記課題を解決し得た本発明は以下の構成を有する。
[1] 極限粘度[η]が5.0dL/g以上、40.0dL/g以下、且つ
 繰り返し単位が90モル%以上のエチレンからなり、
 メチル基、エチル基、およびブチル基からなる群より選ばれる少なくとも1種のアルキル側鎖を含み、
 炭素原子1000個当たりの前記アルキル側鎖の数を意味するアルキル分岐数が0.6個/炭素原子1000個以上、1.4個/炭素原子1000個以下、
 である超高分子量ポリエチレン繊維。
The present invention, which has solved the above problems, has the following configuration.
[1] Made of ethylene having a limiting viscosity [η] of 5.0 dL/g or more and 40.0 dL/g or less and a repeating unit of 90 mol% or more,
containing at least one alkyl side chain selected from the group consisting of a methyl group, an ethyl group, and a butyl group;
the number of alkyl branches, which means the number of alkyl side chains per 1000 carbon atoms, is 0.6/1000 carbon atoms or more and 1.4/1000 carbon atoms or less;
Ultra high molecular weight polyethylene fiber.
 本発明のポリエチレン繊維の好ましい実施態様は以下の構成を有する。
[2] 前記ポリエチレン繊維の伸び応力に対する前記アルキル分岐数の比が2~30個/炭素原子1000個/MPaであり、
 測定荷重が6.6g/dtexにおけるクリープ測定において、 測定温度140℃におけるクリープ速度が2.0×10-3sec-1以上、且つ
 測定温度60℃におけるクリープ速度が4.0×10-7sec-1以下、
 である上記[1]に記載の超高分子量ポリエチレン繊維。
A preferred embodiment of the polyethylene fiber of the present invention has the following configuration.
[2] the ratio of the number of alkyl branches to the elongation stress of the polyethylene fiber is 2 to 30/1000 carbon atoms/MPa;
In creep measurement at a measurement load of 6.6 g/dtex, the creep rate at a measurement temperature of 140°C is 2.0 × 10 -3 sec -1 or more, and the creep speed at a measurement temperature of 60°C is 4.0 × 10 -7 sec -1 or less,
The ultra-high molecular weight polyethylene fiber according to [1] above.
[3] 測定荷重が6.6g/dtexにおけるクリープ測定において、
 測定温度140℃における破断までの時間が1.2分未満であり、且つ、
 測定温度60℃における破断までの時間が216時間以上、
 である上記[1]または[2]に記載の超高分子量ポリエチレン繊維。
[4] 熱応力測定において、
 120℃条件下の貯蔵弾性率に対する70℃条件下の貯蔵弾性率の比が、1.5以上である上記[1]~[3]のいずれかに記載の超高分子量ポリエチレン繊維。
[5] 前記ポリエチレン繊維が1本以上の単糸から構成されており、この単糸の引張強度が18cN/dtex以上、初期弾性率が500cN/dtex以上、破断伸度が3.0%以上である上記[1]~[4]のいずれかに記載の超高分子量ポリエチレン繊維。
[6] 数平均分子量に対する重量平均分子量の比が3.0以上である上記[1]~[5]のいずれかに記載の超高分子量ポリエチレン繊維。
[3] In creep measurement at a measurement load of 6.6 g/dtex,
The time to rupture at a measurement temperature of 140 ° C. is less than 1.2 minutes, and
The time to fracture at a measurement temperature of 60 ° C. is 216 hours or more,
The ultra-high molecular weight polyethylene fiber according to the above [1] or [2].
[4] In thermal stress measurement,
The ultra-high molecular weight polyethylene fiber according to any one of [1] to [3] above, wherein the ratio of the storage modulus at 70°C to the storage modulus at 120°C is 1.5 or more.
[5] The polyethylene fiber is composed of one or more single yarns, and the single yarn has a tensile strength of 18 cN/dtex or more, an initial elastic modulus of 500 cN/dtex or more, and a breaking elongation of 3.0% or more. The ultra-high molecular weight polyethylene fiber according to any one of [1] to [4] above.
[6] The ultra-high molecular weight polyethylene fiber according to any one of [1] to [5], wherein the ratio of weight average molecular weight to number average molecular weight is 3.0 or more.
[7] 上記[1]~[6]のいずれか1項に記載の超高分子量ポリエチレン繊維を含む撚糸。
[8] 上記[1]~[6]のいずれか1項に記載の超高分子量ポリエチレン繊維を含む組紐。
[9] 上記[1]~[6]のいずれか1項に記載の超高分子量ポリエチレン繊維を含むロープ。
[10] 洋上の浮体構造物の係留に用いるものである上記[9]に記載のロープ。
[7] Twisted yarn containing the ultra-high molecular weight polyethylene fiber according to any one of [1] to [6] above.
[8] A braid containing the ultra-high molecular weight polyethylene fiber according to any one of [1] to [6] above.
[9] A rope comprising the ultra-high molecular weight polyethylene fiber according to any one of [1] to [6] above.
[10] The rope according to [9] above, which is used for mooring a floating structure on the ocean.
 また上記課題を解決し得た本発明に係る超高分子量ポリエチレン繊維の製造方法は、以下の構成を有する。
[11] 溶解工程、紡糸工程、延伸工程を経て得られる超高分子量ポリエチレン繊維の製造方法であって、
 前記溶解工程は、
 極限粘度[η]が5.0dL/g以上、40.0dL/g以下、且つ
 繰り返し単位が90モル%以上のエチレンからなり、
 メチル基、エチル基、およびブチル基からなる群より選ばれる少なくとも1種のアルキル側鎖を含み、
 炭素原子1000個当たりの前記アルキル側鎖の数を意味するアルキル分岐数が0.6個/炭素原子1000個以上、1.4個/炭素原子1000個以下を有するポリエチレンを溶媒に溶解させる工程であり、
 前記紡糸工程は、
 得られたポリエチレン溶液を、該ポリエチレンの融点よりも15℃以上高い温度で、紡糸ノズルを用いて吐出させた後、60℃以下に冷却する工程であり、
 前記延伸工程は、
 得られたポリエチレン糸を1回以上延伸すると共に、
 最後の延伸時の延伸温度を140℃以上、155℃未満、延伸時間を2分間以上、8分間以内、延伸時の糸に係る張力を1.5cN/dtex以上、8cN/dtex以下とする工程である。
Moreover, the method for producing an ultra-high molecular weight polyethylene fiber according to the present invention, which has solved the above problems, has the following configuration.
[11] A method for producing an ultra-high molecular weight polyethylene fiber obtained through a dissolving step, a spinning step, and a drawing step, comprising:
The dissolving step includes
Made of ethylene having a limiting viscosity [η] of 5.0 dL/g or more and 40.0 dL/g or less and a repeating unit of 90 mol% or more,
containing at least one alkyl side chain selected from the group consisting of a methyl group, an ethyl group, and a butyl group;
A step of dissolving polyethylene having an alkyl branch number of 0.6/1000 carbon atoms or more and 1.4/1000 carbon atoms or less, which means the number of alkyl side chains per 1000 carbon atoms, in a solvent. can be,
The spinning process is
A step of discharging the obtained polyethylene solution from a spinning nozzle at a temperature 15° C. or more higher than the melting point of the polyethylene, and then cooling it to 60° C. or less,
The stretching step is
While drawing the obtained polyethylene yarn one or more times,
In the step of setting the drawing temperature at the final drawing to 140° C. or more and less than 155° C., the drawing time at 2 minutes or more and 8 minutes or less, and the tension of the yarn at the time of drawing at 1.5 cN/dtex or more and 8 cN/dtex or less. be.
 本発明の超高分子量ポリエチレン繊維は、加工時の成形性と使用時の寸法安定性とを兼備している。また本発明の製造方法は、上記特性を兼備した超高分子量ポリエチレン繊維の製造に好適である。 The ultra-high molecular weight polyethylene fiber of the present invention has both moldability during processing and dimensional stability during use. Moreover, the production method of the present invention is suitable for producing ultra-high molecular weight polyethylene fibers having the above properties.
 本発明者らは加工時の成形性と使用時の寸法安定性とを兼備した超高分子量ポリエチレン繊維について研究を重ねた結果、以下の構成を満足する超高分子量ポリエチレン繊維は成形時と使用時の温度の違いに応じて加工に適したクリープ性と使用に適したクリープ性を有することを見出した。このような特性を有する超高分子量ポリエチレン繊維は、加熱による成形性(以下、加熱成形性という)に優れているだけでなく、屋外の使用環境下において超高分子量ポリエチレン繊維に荷重をかけても歪み量の変化が小さく、また負荷を除去した後の寸法の変化も小さく(これらを寸法安定性という)できる。
 以下、本発明の超高分子量ポリエチレン繊維(以下、ポリエチレン繊維という)について説明する。
 本発明では、加熱成形性に関する指標となる140℃でのクリープ性(140℃クリープ性)と、使用時の寸法安定性に関する指標となる60℃でのクリープ性(60℃クリープ性)を規定している。
 加熱成形性と140℃クリープ性の関係は、140℃クリープ性が低い、すなわち140℃でクリープしやすいと加熱成形性が良くなる関係がある。
 寸法安定性と60℃クリープ性の関係は、60℃クリープ性が高い、すなわち60℃でクリープしにくい(耐クリープ性が良好)と寸法安定性が良くなる関係にある。
 したがって本発明のポリエチレン繊維は、下記要件を満足することで140℃クリープ性が低く、かつ60℃クリープ性が高いため、優れた加熱成形性と、屋外の使用環境下における優れた寸法安定性とを有している。屋外の使用環境とは季節等による温度変化の範囲内における屋外での使用を意味する。
 なお、140℃クリープ性の評価は、好ましくは140℃でのクリープ速度(140℃クリープ速度)、または140℃での破断寿命(140℃破断寿命)に基づく評価であり、より好ましくは140℃クリープ速度と140℃判断寿命の両方に基づく評価である。
 また60℃クリープ性の評価は、好ましくは60℃でのクリープ速度(60℃クリープ速度)、または60℃での破断寿命(60℃破断寿命)に基づく評価であり、より好ましくは60℃クリープ速度と60℃破断寿命の両方に基づく評価である。
 本発明は、所定の極限粘度[η]を有する超高分子量ポリエチレン繊維において、アルキル分岐数が所定の範囲であれば、140℃クリープ性と60℃クリープ性のバランスを適切に制御できるため、加熱成形性と寸法安定性を両立できる。
 なお、上記140℃クリープ性の評価と60℃クリープ性の評価の各項目は夫々任意の範囲を選択可能であり、また各項目間の組合わせも夫々選択した任意の範囲同士を組み合わせてもよい。
The inventors of the present invention have extensively studied ultra-high molecular weight polyethylene fibers that have both moldability during processing and dimensional stability during use. It has been found that the creep properties suitable for processing and the creep properties suitable for use are obtained depending on the difference in temperature. Ultra-high molecular weight polyethylene fibers having such characteristics are not only excellent in heat moldability (hereinafter referred to as heat moldability), but also can be used even when a load is applied to the ultra-high molecular weight polyethylene fibers in an outdoor environment. The change in the amount of strain can be small, and the change in dimension after the load is removed can also be small (these are called dimensional stability).
The ultra-high molecular weight polyethylene fiber (hereinafter referred to as polyethylene fiber) of the present invention will be described below.
In the present invention, the creep property at 140°C (140°C creep property), which is an index for heat moldability, and the creep property at 60°C (60°C creep property), which is an index for dimensional stability during use, are defined. ing.
The relationship between the heat moldability and the 140° C. creep property is that the heat moldability is improved when the 140° C. creep property is low, that is, when creep at 140° C. is easy.
The relationship between the dimensional stability and the 60° C. creep property is that the 60° C. creep property is high, that is, the 60° C. creep resistance is low (good creep resistance) and the dimensional stability is good.
Therefore, the polyethylene fiber of the present invention has low 140° C. creep property and high 60° C. creep property by satisfying the following requirements, so that it has excellent heat moldability and excellent dimensional stability in outdoor use environments. have. The outdoor use environment means outdoor use within the range of temperature changes due to seasons and the like.
The evaluation of 140°C creep property is preferably based on creep rate at 140°C (140°C creep rate) or rupture life at 140°C (140°C rupture life), more preferably 140°C creep. Rating based on both speed and 140° C. judged life.
Evaluation of 60°C creep property is preferably based on creep rate at 60°C (60°C creep rate) or rupture life at 60°C (60°C rupture life), more preferably 60°C creep rate. and 60° C. rupture life.
In the present invention, in ultra-high molecular weight polyethylene fibers having a predetermined intrinsic viscosity [η], if the number of alkyl branches is within a predetermined range, the balance between 140 ° C. creep property and 60 ° C. creep property can be appropriately controlled. Both moldability and dimensional stability can be achieved.
Any range can be selected for each of the evaluation items of the 140° C. creep property evaluation and the 60° C. creep property evaluation, and the combination of the items can also be made by combining the selected ranges. .
 本発明においてポリエチレン繊維とは、単糸(モノフィラメント)、および複数の単糸からなるマルチフィラメントを含み、好ましくはマルチフィラメントである。またマルチフィラメントを構成する単糸の数は用途に応じて適宜選択でき、好ましくは5本以上、より好ましくは10本以上、さらに好ましくは15本以上の単糸で構成されている。 In the present invention, the polyethylene fiber includes a single yarn (monofilament) and a multifilament consisting of a plurality of single yarns, preferably a multifilament. The number of single yarns constituting the multifilament can be appropriately selected according to the application, and is preferably 5 or more, more preferably 10 or more, still more preferably 15 or more.
 本発明のポリエチレン繊維は、極限粘度[η]が5.0dL/g以上、40.0dL/g以下、かつ繰り返し単位が90モル%以上のエチレンからなる。 The polyethylene fiber of the present invention is made of ethylene having a limiting viscosity [η] of 5.0 dL/g or more and 40.0 dL/g or less and a repeating unit of 90 mol% or more.
 極限粘度[η]
 本発明で用いられるポリエチレンは超高分子量であり、ポリエチレンの極限粘度は、5.0dL/g以上、好ましくは8.0dL/g以上であって、40.0dL/g以下、好ましくは30.0dL/g以下、より好ましくは25.0dL/g以下である。或いは5.0~40.0dL/g、好ましくは8.0dL/g~30.0dL/g、より好ましくは8.0~25.0dL/gである。
 極限粘度が5.0dL/g未満であると、最終的なポリエチレン繊維の引張強度が低くなり、所望とする高強度、例えば引張強度18cN/dtex以上のポリエチレン繊維が得られないことがある。また所望とするポリエチレン繊維の加熱成形性と寸法安定性が得られない。
 極限粘度が40.0dL/gを超えると、加工性が低下してポリエチレン繊維の製造が困難になる。
 なお、極限粘度の下限と上限の数値は上記各値を任意に組み合わせて数値範囲を決定できる(以下の数値範囲の組み合わせについても同様に任意の上下限を組み合わせて数値範囲を決定できる)。
Intrinsic viscosity [η]
The polyethylene used in the present invention has an ultrahigh molecular weight, and the intrinsic viscosity of the polyethylene is 5.0 dL/g or more, preferably 8.0 dL/g or more, and 40.0 dL/g or less, preferably 30.0 dL/g. /g or less, more preferably 25.0 dL/g or less. Alternatively, it is 5.0 to 40.0 dL/g, preferably 8.0 to 30.0 dL/g, more preferably 8.0 to 25.0 dL/g.
When the intrinsic viscosity is less than 5.0 dL/g, the tensile strength of the final polyethylene fiber becomes low, and it may not be possible to obtain a polyethylene fiber having a desired high strength, for example, a tensile strength of 18 cN/dtex or more. Also, the desired heat moldability and dimensional stability of the polyethylene fibers cannot be obtained.
If the intrinsic viscosity exceeds 40.0 dL/g, the processability will deteriorate, making it difficult to produce polyethylene fibers.
The numerical ranges of the lower and upper limits of the intrinsic viscosity can be determined by arbitrarily combining the above values (the following numerical ranges can also be similarly determined by combining arbitrary upper and lower limits).
 繰り返し単位
 本発明のポリエチレン繊維を構成するポリエチレンは、繰り返し単位の90モル%以上がエチレンである。エチレンの繰り返し単位は好ましくは92モル%以上、より好ましくは94モル%以上、さらに好ましくは98モル%以上である。
 ポリエチレン繊維の加熱成形性と寸法安定性に好ましくない影響を与えない範囲で本発明のエチレンと少量の他のモノマーとの共重合体を使用することも好ましい実施態様である。他のモノマーとしては、α-オレフィン、アクリル酸およびその誘導体、メタクリル酸およびその誘導体、ビニルシランおよびその誘導体等が例示される。またこれらは共重合体同士(エチレンと他のモノマー)との共重合体、あるいはホモポリエチレンとエチレン系共重合体とのブレンド体や、ホモポリエチレンと他のホモポリマー(α-オレフィン等)とのブレンド体であってもよく、部分的な架橋があってもよい。
Repeating Unit In the polyethylene constituting the polyethylene fiber of the present invention, 90 mol % or more of the repeating unit is ethylene. The repeating unit of ethylene is preferably 92 mol % or more, more preferably 94 mol % or more, still more preferably 98 mol % or more.
It is also a preferred embodiment to use copolymers of ethylene and minor amounts of other monomers of the present invention as long as they do not adversely affect the thermoformability and dimensional stability of the polyethylene fibers. Examples of other monomers include α-olefins, acrylic acid and its derivatives, methacrylic acid and its derivatives, vinylsilane and its derivatives, and the like. In addition, these are copolymers of copolymers (ethylene and other monomers), blends of homopolyethylene and ethylene-based copolymers, and homopolyethylene and other homopolymers (α-olefins, etc.). It may be a blend and may have partial cross-linking.
 本発明のポリエチレン繊維は、メチル基、エチル基、およびブチル基からなる群より選ばれる少なくとも1種のアルキル側鎖を含み、
 炭素原子1000個当たりの前記アルキル側鎖の数を意味するアルキル分岐数が0.6個/炭素原子1000個以上、1.4個/炭素原子1000個以下である。
 アルキル側鎖は任意に組み合わせることができ、2種以上の場合、異なる官能基同士の組合わせ、同一官能基同士の組合わせ、または同一の官能基とこれと異なる官能基との組合わせであってもよい。例えば1種であれば、好ましくはメチル基、エチル基、およびブチル基のいずれか一つである。例えば2種であれば、好ましくはメチル基とエチル基、メチル基とブチル基、エチル基とブチル基、メチル基とメチル基、エチル基とエチル基、またはブチル基とブチル基である。また例えば3種であれば、全て異なる官能基、全て同じ官能基、または同じ官能基同士とこれと異なる官能基との組合わせであってもよい。 アルキル分岐数が0.6個/炭素原子1000個未満のときは、140℃でも60℃でもクリープ速度が高く、140℃での加熱成形性(成形加工性)は良好である一方で、60℃での耐クリープ性(寸法安定性)は劣る傾向にある。
 アルキル分岐数を大きくしていくと、140℃でも60℃でもクリープ速度が下がっていくため、加熱成形性が低下していく一方で、60℃での耐クリープ性は改善する。
 なお、アルキル分岐数が極端に大きくなると(例えば、6.0個/炭素原子1000個程度)、延伸が困難となって、最終的なポリエチレン繊維の引張強度が低くなり、140℃でも60℃でも著しくクリープ速度が高くなりやすくなり、加熱成形性は回復する一方で、60℃での耐クリープ性は劣化する。
 以上のような現象が生じる結果、アルキル分岐数を0.6個~1.4個/炭素原子1000個の範囲にすることで、加熱成形性と耐クリープ性の両方を良好にできる。
 上記アルキル側鎖のうち、エチル側鎖は加熱成形性に優れているため好ましい。
The polyethylene fiber of the present invention contains at least one alkyl side chain selected from the group consisting of methyl groups, ethyl groups, and butyl groups,
The number of alkyl branches, which means the number of alkyl side chains per 1000 carbon atoms, is 0.6/1000 carbon atoms or more and 1.4/1000 carbon atoms or less.
The alkyl side chains can be arbitrarily combined, and when two or more types are used, they may be a combination of different functional groups, a combination of the same functional groups, or a combination of the same functional group and a different functional group. may For example, if it is one type, it is preferably any one of a methyl group, an ethyl group, and a butyl group. For example, two groups are preferably methyl group and ethyl group, methyl group and butyl group, ethyl group and butyl group, methyl group and methyl group, ethyl group and ethyl group, or butyl group and butyl group. Further, for example, if there are three types, they may be all different functional groups, all the same functional groups, or a combination of the same functional groups and different functional groups. When the number of alkyl branches is less than 0.6/1000 carbon atoms, the creep rate is high both at 140°C and 60°C, and the heat moldability (molding processability) at 140°C is good, while the temperature at 60°C is high. Creep resistance (dimensional stability) tends to be poor.
As the number of alkyl branches increases, the creep rate decreases at both 140°C and 60°C, so the heat moldability decreases, while the creep resistance at 60°C improves.
When the number of alkyl branches becomes extremely large (for example, about 6.0/1000 carbon atoms), drawing becomes difficult, and the tensile strength of the final polyethylene fiber becomes low. The creep rate tends to increase remarkably, and the heat moldability recovers, but the creep resistance at 60°C deteriorates.
As a result of the phenomenon described above, both heat moldability and creep resistance can be improved by adjusting the number of alkyl branches to the range of 0.6 to 1.4/1000 carbon atoms.
Among the above alkyl side chains, the ethyl side chain is preferable because it is excellent in thermoformability.
 本発明のポリエチレン繊維に含まれる炭素原子1000個当たりのアルキル側鎖の数を意味するアルキル分岐数(以下、アルキル分岐数という)が0.6個/炭素原子1000個以上、好ましくは0.7個/炭素原子1000個以上、より好ましくは0.8個/炭素原子1000個以上、さらに好ましくは0.9個/炭素原子1000個以上であって、1.4個/炭素原子1000個以下、より好ましくは1.3個/炭素原子1000個以下である。アルキル分岐数は、例えば0.6個/炭素原子1000個~1.4個/炭素原子1000個、好ましくは0.7個/炭素原子1000個~1.3個/炭素原子1000個、より好ましくは0.8個/炭素原子1000個~1.3個/炭素原子1000個、さらに好ましくは0.9個/炭素原子1000個~1.3個/炭素原子1000個であってもよい。
 なお、本発明の超高分子量ポリエチレン繊維は、上記極限粘度[η]、エチレンの繰り返し単位、アルキル側鎖、アルキル分岐数を任意の値で組み合わせることができる。更に本発明の超高分子量ポリエチレン繊維は、上記任意の組合わせに加えて、下記本発明の好ましい実施態様を任意でいずれも組み合わせることができ、各好ましい実施態様も任意の値で組み合わせることができる。好ましい実施態様とは例えば、アルキル分岐数/伸び応力、測定荷重が6.6g/dtexにおけるクリープ測定の要件(i)~(iv)、貯蔵弾性率の比、引張強度、初期弾性率、破断伸度、重量平均分子量の比、重量平均分子量などである。
The number of alkyl branches (hereinafter referred to as the number of alkyl branches), which means the number of alkyl side chains per 1,000 carbon atoms contained in the polyethylene fiber of the present invention, is 0.6/1,000 carbon atoms or more, preferably 0.7. per 1,000 or more carbon atoms, more preferably 0.8 per 1,000 or more carbon atoms, still more preferably 0.9 per 1,000 or more carbon atoms, and 1.4 per 1,000 or less carbon atoms, More preferably, it is 1.3/1000 or less carbon atoms. The number of alkyl branches is, for example, 0.6/1000 to 1.4 carbon atoms/1000 carbon atoms, preferably 0.7/1000 to 1.3 carbon atoms/1000 carbon atoms, more preferably may be 0.8/1000 to 1.3 carbon atoms/1000 carbon atoms, more preferably 0.9/1000 to 1.3 carbon atoms/1000 carbon atoms.
In the ultra-high molecular weight polyethylene fiber of the present invention, the intrinsic viscosity [η], the repeating unit of ethylene, the alkyl side chain, and the number of alkyl branches can be combined with arbitrary values. Furthermore, the ultra-high molecular weight polyethylene fiber of the present invention can be combined with any of the following preferred embodiments of the present invention in addition to the above arbitrary combinations, and each preferred embodiment can be combined with any value. . Preferred embodiments include, for example, the number of alkyl branches/elongation stress, requirements (i) to (iv) for creep measurement at a measurement load of 6.6 g/dtex, ratio of storage elastic moduli, tensile strength, initial elastic modulus, elongation at break degree, weight average molecular weight ratio, weight average molecular weight, and the like.
 本発明のポリエチレン繊維は、前記ポリエチレン繊維の伸び応力に対する前記アルキル分岐数の比が2~30個/炭素原子1000個/MPaであることも好ましい実施態様である。
 上記アルキル分岐数が0.6個/炭素原子1000個以上、1.4個/炭素原子1000個以下であるポリエチレン繊維は、ポリエチレン繊維の伸び応力に対する該アルキル分岐数の比(アルキル分岐数/伸び応力)が好ましくは2個/炭素原子1000個/MPa以上、より好ましくは2.1個/炭素原子1000個/MPa以上であって、好ましくは30個/炭素原子1000個/MPa以下、より好ましくは25個/炭素原子1000個/MPa以下、さらに好ましくは20個/炭素原子1000個/MPa以下である。
 アルキル分岐数/伸び応力は、例えば好ましくは2個/炭素原子1000個/MPa~30個/炭素原子1000個/MPa、より好ましくは2.1個/炭素原子1000個/MPa~25個/炭素原子1000個/MPa、さらに好ましくは2.1個/炭素原子1000個/MPa以上~20個/炭素原子1000個/MPaである。
 極限粘度、およびアルキル分岐数を満足し、かつアルキル分岐数と伸び応力との比が上記特定の範囲であれば加熱成形性と寸法安定性の向上に寄与する。
 伸び応力に対するアルキル分岐数の比は、例えば原料ポリエチレンの極限粘度によって制御できる。極限粘度が非常に小さい原料ポリエチレンを使用すると、繊維での極限粘度が小さくなるため、伸び応力も小さくなり、その結果、伸び応力に対するアルキル分岐数の比は大きくなる。
Another preferred embodiment of the polyethylene fiber of the present invention is that the ratio of the number of alkyl branches to the elongation stress of the polyethylene fiber is 2 to 30/1000 carbon atoms/MPa.
The polyethylene fiber having the number of alkyl branches of 0.6/1000 carbon atoms or more and 1.4/1000 carbon atoms or less has a ratio of the number of alkyl branches to the elongation stress of the polyethylene fiber (number of alkyl branches/elongation stress) is preferably 2/1000 carbon atoms/MPa or more, more preferably 2.1/1000 carbon atoms/MPa or more, preferably 30/1000 carbon atoms/MPa or less, more preferably is 25/1000 carbon atoms/MPa or less, more preferably 20/1000 carbon atoms/MPa or less.
The number of alkyl branches/elongation stress is, for example, preferably 2/1000 carbon atoms/MPa to 30/1000 carbon atoms/MPa, more preferably 2.1/1000 carbon atoms/MPa to 25/carbon 1000 atoms/MPa, more preferably 2.1 atoms/1000 carbon atoms/MPa or more to 20 atoms/1000 carbon atoms/MPa.
If the intrinsic viscosity and the number of alkyl branches are satisfied, and the ratio of the number of alkyl branches to the elongation stress is within the above specific range, it contributes to the improvement of heat moldability and dimensional stability.
The ratio of the number of alkyl branches to the elongation stress can be controlled, for example, by the intrinsic viscosity of raw material polyethylene. When raw material polyethylene with a very low intrinsic viscosity is used, the intrinsic viscosity of the fiber becomes small, so the elongation stress also becomes small, and as a result, the ratio of the number of alkyl branches to the elongation stress increases.
 本発明のポリエチレン繊維の140℃クリープ性と60℃クリープ性は、測定荷重が6.6g/dtexにおけるクリープ測定において、好ましくは下記(i)(ii)、より好ましくは下記(i)~(iv)の全てを満足することが好ましい。あるいは下記(i)(ii)と(iii)、または下記(i)(ii)と(iv)を満足するものであってもよいし、下記(iii)と(iv)、あるいは下記(iii)(iv)と下記(i)および/または(ii)の組合わせであってもよい。
 上記組み合わせにおいては夫々任意の値同士を組み合わせて範囲を決定してもよい。
 (i)測定温度140℃におけるクリープ速度が2.0×10-3sec-1以上
 (ii)測定温度60℃におけるクリープ速度が4.0×10-7sec-1以下
 (iii)測定温度140℃における破断までの時間が1.2分未満
 (iv)測定温度60℃における破断までの時間が216時間以上
The 140° C. creep property and 60° C. creep property of the polyethylene fiber of the present invention are preferably the following (i) and (ii), more preferably the following (i) to (iv), in creep measurement at a measurement load of 6.6 g/dtex. ) are preferably satisfied. Alternatively, the following (i) (ii) and (iii), or the following (i) (ii) and (iv) may be satisfied, or the following (iii) and (iv), or the following (iii) It may be a combination of (iv) and (i) and/or (ii) below.
In the above combinations, arbitrary values may be combined to determine the range.
(i) A creep rate of 2.0×10 −3 sec −1 or more at a measurement temperature of 140° C. (ii) A creep rate of 4.0×10 −7 sec −1 or less at a measurement temperature of 60° C. (iii) A measurement temperature of 140° C. Less than 1.2 minutes to rupture at ° C. (iv) 216 hours or more to rupture at a measurement temperature of 60 ° C.
 (i)測定温度140℃、測定荷重6.6g/dtexにおけるクリープ測定において、クリープ速度は好ましくは2.0×10-3sec-1以上、より好ましくは2.1×10-3sec-1以上、さらに好ましくは2.3×10-3sec-1以上、よりさらに好ましくは2.5×10-3sec-1以上であって、好ましくは6.0×10-3sec-1以下、より好ましくは5.5×10-3sec-1以下、よりさらに好ましくは5.0×10-3sec-1以下である。また上記(i)クリープ速度は好ましくは2.0×10-3sec-1~6.0×10-3sec-1、より好ましくは2.1×10-3sec-1~5.5×10-3sec-1、さらに好ましくは2.3×10-3sec-1~5.0×10-3sec-1、よりさらに好ましくは2.5×10-3sec-1~5.0×10-3sec-1以下である。
 測定温度140℃は、ポリエチレン繊維の加工時の温度条件を考慮した温度であり、140℃クリープ速度は加熱成形性向上に寄与する基準として設定した値である。
 140℃クリープ速度が遅すぎるとポリエチレン繊維の加熱成形が難しくなることがある。
 上限は特に限定されないが、60℃クリープ性とのバランスを考慮すると上記範囲が好ましい。
(i) In creep measurement at a measurement temperature of 140°C and a measurement load of 6.6 g/dtex, the creep rate is preferably 2.0 × 10 -3 sec -1 or more, more preferably 2.1 × 10 -3 sec -1 above, more preferably 2.3×10 −3 sec −1 or more, still more preferably 2.5×10 −3 sec −1 or more, and preferably 6.0×10 −3 sec −1 or less, It is more preferably 5.5×10 −3 sec −1 or less, still more preferably 5.0×10 −3 sec −1 or less. The above (i) creep rate is preferably 2.0×10 −3 sec −1 to 6.0×10 −3 sec −1 , more preferably 2.1×10 −3 sec −1 to 5.5× 10 -3 sec -1 , more preferably 2.3×10 -3 sec -1 to 5.0×10 -3 sec -1 , still more preferably 2.5×10 -3 sec -1 to 5.0 ×10 -3 sec -1 or less.
The measurement temperature of 140° C. is a temperature considering the temperature conditions during processing of polyethylene fibers, and the 140° C. creep rate is a value set as a standard that contributes to the improvement of thermoformability.
If the 140° C. creep rate is too slow, heat molding of polyethylene fibers may become difficult.
Although the upper limit is not particularly limited, the above range is preferable in consideration of the balance with the 60° C. creep resistance.
 (ii)測定温度60℃、測定荷重6.6g/dtexにおけるクリープ測定において、クリープ速度は好ましくは4.0×10-7sec-1以下、より好ましくは3.95×10-7sec-1以下、さらに好ましくは3.93×10-7sec-1以下であって、好ましくは3.0×10-8sec-1以上、より好ましくは6.0×10-8sec-1以上、さらに好ましくは8.0×10-8sec-1以上である。また上記(ii)クリープ速度は好ましくは3.0×10-8sec-1~4.0×10-7sec-1、より好ましくは6.0×10-8sec-1~3.95×10-7sec-1、さらに好ましくは8.0×10-8sec-1~3.93×10-7sec-1である。
 測定温度60℃は、本発明のポリエチレン繊維を用いた製品の使用環境を考慮した温度であり、60℃クリープ速度は通常の使用温度における寸法安定性向上に寄与する基準として設定した値である。
 60℃クリープ速度が速すぎると室温付近で使用してもポリエチレン繊維の寸法変化が大きくなることがある。
 下限は特に限定されないが、140℃クリープ性とのバランスを考慮すると上記範囲が好ましい。
(ii) In creep measurement at a measurement temperature of 60°C and a measurement load of 6.6 g/dtex, the creep rate is preferably 4.0 × 10 -7 sec -1 or less, more preferably 3.95 × 10 -7 sec -1 . below, more preferably 3.93×10 −7 sec −1 or less, preferably 3.0×10 −8 sec −1 or more, more preferably 6.0×10 −8 sec −1 or more, and further It is preferably 8.0×10 −8 sec −1 or more. The above (ii) creep rate is preferably 3.0×10 −8 sec −1 to 4.0×10 −7 sec −1 , more preferably 6.0×10 −8 sec −1 to 3.95× 10 -7 sec -1 , more preferably 8.0×10 -8 sec -1 to 3.93×10 -7 sec -1 .
The measurement temperature of 60°C is a temperature considering the use environment of the product using the polyethylene fiber of the present invention, and the 60°C creep rate is a value set as a standard that contributes to the improvement of dimensional stability at normal use temperature.
If the 60° C. creep rate is too fast, the dimensional change of polyethylene fibers may increase even when used at around room temperature.
Although the lower limit is not particularly limited, the above range is preferable in consideration of the balance with the 140° C. creep resistance.
 (iii)測定温度140℃、測定荷重6.6g/dtexにおけるクリープ測定において、破断までに要する時間(140℃破断寿命)は好ましくは1.2分未満であり、より好ましくは1.1分以下である。
 140℃破断寿命は加熱成形性向上に寄与する基準として設定した値である。
 破断までの時間が短すぎると成形加工時にポリエチレン繊維の破断が多発し、加工が困難となることがある。
 下限は特に限定されないが、他の要件とのバランスを考慮すると0.1分以上が好ましい。また上記(iii)140℃破断寿命は好ましくは0.1分~1.2分未満、より好ましくは0.1分~1.1分である。
(iii) In creep measurement at a measurement temperature of 140°C and a measurement load of 6.6 g/dtex, the time required to break (140°C breaking life) is preferably less than 1.2 minutes, more preferably 1.1 minutes or less. is.
The 140° C. rupture life is a value set as a standard that contributes to the improvement of heat moldability.
If the time to rupture is too short, the polyethylene fibers may break frequently during molding, making processing difficult.
Although the lower limit is not particularly limited, it is preferably 0.1 minute or more in consideration of the balance with other requirements. The (iii) 140° C. rupture life is preferably 0.1 minutes to less than 1.2 minutes, more preferably 0.1 minutes to 1.1 minutes.
 (iv)測定温度60℃、測定荷重6.6g/dtexにおけるクリープ測定において、破断までに要する時間(60℃破断寿命)は好ましくは216時間以上、より好ましくは225時間以上である。
 60℃破断寿命は通常の使用温度(例えば室温)における寸法安定性向上に寄与する基準として設定した値である。
 破断までの時間が短すぎると、製品寿命が短くなることがある。
(iv) In creep measurement at a measurement temperature of 60°C and a measurement load of 6.6 g/dtex, the time required to break (60°C breaking life) is preferably 216 hours or more, more preferably 225 hours or more.
The 60° C. rupture life is a value set as a standard contributing to improvement in dimensional stability at normal operating temperature (for example, room temperature).
If the time to rupture is too short, the product life may be shortened.
 本発明のポリエチレン繊維は、熱応力測定において、120℃での貯蔵弾性率に対する70℃での貯蔵弾性率の比(70℃貯蔵弾性率/120℃貯蔵弾性率:以下、貯蔵弾性率の比ということがある)が、特定の範囲であると低温と高温でのクリープバランス向上に寄与し、加熱加工性と寸法安定性を確保するための好ましい実施態様である。
 貯蔵弾性率の比は好ましくは1.5以上、より好ましくは1.6以上である。
 貯蔵弾性率の比を高くすると、室温下においてもポリエチレン繊維は環境変化の影響を受けることが少なく、良好な物性を保持できる。また高温での弾性を相対的に下げて加工成形性を良好にする一方で、低温での弾性を相対的に上げて耐クリープ性を良好にすることにも貢献できる。
In the thermal stress measurement, the polyethylene fiber of the present invention has a ratio of the storage modulus at 70 ° C. to the storage modulus at 120 ° C. (70 ° C. storage modulus / 120 ° C. storage modulus: hereinafter referred to as the storage modulus ratio However, if it is in a specific range, it contributes to improving the creep balance at low and high temperatures, and is a preferred embodiment for ensuring heat workability and dimensional stability.
The storage modulus ratio is preferably 1.5 or more, more preferably 1.6 or more.
When the ratio of storage elastic modulus is increased, polyethylene fibers are less affected by environmental changes even at room temperature and can retain good physical properties. In addition, while the elasticity at high temperatures is relatively lowered to improve the workability, the elasticity at low temperatures is relatively increased to contribute to the creep resistance.
 本発明のポリエチレン繊維は1本以上の単糸から構成されており、この単糸の引張強度、破断伸度、および初期弾性率が特定の範囲であることも好ましい実施態様である。
 引張強度
 本発明のポリエチレン繊維を構成する単糸の引張強度は、好ましくは18cN/dtex以上、より好ましくは20cN/dtex以上、さらに好ましくは25cN/dtex以上、よりさらに好ましくは30cN/dtex以上であって、好ましくは85cN/dtex以下、より好ましくは60cN/dtex以下である。また引張強度は、例えば好ましくは18cN/dtex~85cN/dtex、より好ましくは20cN/dtex~60cN/dtex、さらに好ましくは25cN/dtex~60cN/dtex、よりさらに好ましくは30cN/dtex~60cN/dtexである。
 単糸の引張強度を高くすると荷重を負荷した場合のポリエチレン繊維の歪み量を小さくできる。したがって例えば高い寸法安定性が求められる用途に好適である。
 単糸の引張強度は高い程好ましいため上限は限定されないが、単糸の引張強度を高くし過ぎるとポリエチレン繊維の製造や加工が技術的に難しくなることがある。
It is also a preferred embodiment that the polyethylene fiber of the present invention is composed of one or more single yarns, and the tensile strength, breaking elongation, and initial elastic modulus of this single yarn are within specific ranges.
Tensile strength The tensile strength of the single yarn constituting the polyethylene fiber of the present invention is preferably 18 cN/dtex or more, more preferably 20 cN/dtex or more, still more preferably 25 cN/dtex or more, and even more preferably 30 cN/dtex or more. , preferably 85 cN/dtex or less, more preferably 60 cN/dtex or less. The tensile strength is, for example, preferably 18 cN/dtex to 85 cN/dtex, more preferably 20 cN/dtex to 60 cN/dtex, still more preferably 25 cN/dtex to 60 cN/dtex, still more preferably 30 cN/dtex to 60 cN/dtex. be.
By increasing the tensile strength of the single yarn, the amount of distortion of the polyethylene fiber when a load is applied can be reduced. Therefore, it is suitable for applications requiring high dimensional stability, for example.
The higher the tensile strength of the single yarn, the more preferable it is, so the upper limit is not limited.
 初期弾性率
 本発明のポリエチレン繊維を構成する単糸の初期弾性率は、好ましくは500cN/dtex以上、より好ましくは600cN/dtex以上、さらに好ましくは700cN/dtex以上であって、好ましくは1500cN/dtex以下、より好ましくは1400cN/dtex以下、さらに好ましくは1300cN/dtex以下、よりさらに好ましくは1200cN/dtex以下である。また初期弾性率は、例えば好ましくは500cN/dtex~1500cN/dtex、より好ましくは600cN/dtex~1400cN/dtex、さらに好ましくは700cN/dtex~1300cN/dtex、りさらに好ましくは700cN/dtex~1200cN/dtexである。
 単糸の初期弾性率が低すぎると、ポリエチレン繊維が受ける外力に起因する物性変化や形状変化が生じることがある。
 単糸の初期弾性率が高すぎると、弾性が高くなりすぎて糸のしなやかさが損なわれたり、組紐やロープの成形加工時に引き揃えが困難になって単糸切れが発生するため好ましくない。
Initial elastic modulus The initial elastic modulus of the single yarn constituting the polyethylene fiber of the present invention is preferably 500 cN/dtex or more, more preferably 600 cN/dtex or more, still more preferably 700 cN/dtex or more, and preferably 1500 cN/dtex. Below, it is more preferably 1400 cN/dtex or less, still more preferably 1300 cN/dtex or less, and even more preferably 1200 cN/dtex or less. The initial elastic modulus is, for example, preferably 500 cN/dtex to 1500 cN/dtex, more preferably 600 cN/dtex to 1400 cN/dtex, still more preferably 700 cN/dtex to 1300 cN/dtex, still more preferably 700 cN/dtex to 1200 cN/dtex. is.
If the initial elastic modulus of the single yarn is too low, the physical properties and shape of the polyethylene fiber may change due to external force.
If the initial elastic modulus of the single yarn is too high, the elasticity of the yarn becomes too high, which impairs the suppleness of the yarn.
 破断伸度
 本発明のポリエチレン繊維を構成する単糸の破断伸度は、好ましくは3.0%以上、より好ましくは3.4%以上、さらに好ましくは3.7%以上であって、好ましくは7.0%以下、より好ましくは6.0%以下、さらに好ましくは5.0%以下である。また破断伸度は、例えば好ましくは3.0%~7.0%、より好ましくは3.4%~6.0%、さらに好ましくは3.7%~5.0%である。
 単糸の破断伸度が低すぎると、ポリエチレン繊維にわずかな歪みが生じると単糸切れや毛羽の発生が生じやすくなることがある。
 単糸の破断伸度が高すぎると、ポリエチレン繊維の加熱加工が難しくなったり、寸法安定性が損なわれることがある。
Breaking elongation The breaking elongation of the single yarn constituting the polyethylene fiber of the present invention is preferably 3.0% or more, more preferably 3.4% or more, still more preferably 3.7% or more, and preferably It is 7.0% or less, more preferably 6.0% or less, still more preferably 5.0% or less. The elongation at break is, for example, preferably 3.0% to 7.0%, more preferably 3.4% to 6.0%, still more preferably 3.7% to 5.0%.
If the breaking elongation of the single yarn is too low, the single yarn breakage and fluffing may easily occur when the polyethylene fiber is slightly distorted.
If the elongation at break of the single yarn is too high, the heat processing of the polyethylene fiber may become difficult and the dimensional stability may be impaired.
 本発明のポリエチレン繊維は、数平均分子量に対する重量平均分子量の比が4.0以上のポリエチレンを含むものであることも好ましい実施態様である。
 ポリエチレン繊維を構成するポリエチレンの数平均分子量に対する重量平均分子量の比(Mw/Mn)は、より好ましくは4.2以上、さらに好ましくは4.5以上である。Mw/Mnの上限は特に限定されないが、好ましくは9.0以下、より好ましくは8.0以下、さらに好ましくは7.5以下である。また重量平均分子量の比(Mw/Mn)は、例えば好ましくは4.0~9.0、より好ましくは4.2~8.0、さらに好ましくは4.5~7.5である。
 ポリエチレンの数平均分子量に対する重量平均分子量の比が小さすぎると、クリープ現象が生じ難くなる。このことは60℃での耐クリープ性を高めるには良好に作用する一方、140℃での成形加工性を高めるには悪い方向に作用する。60℃での耐クリープ性が十分に高い一方で、140℃での成形加工性に劣る場合には、Mw/Mnを高くして成形加工性を改善することが好ましい。
 ポリエチレンの数平均分子量に対する重量平均分子量の比を高めすぎると最終的なポリエチレン繊維の引張強度が低くなったり、耐クリープ性が悪くなったりすることがある。
It is also a preferred embodiment that the polyethylene fiber of the present invention contains polyethylene having a ratio of weight average molecular weight to number average molecular weight of 4.0 or more.
The weight-average molecular weight to number-average molecular weight ratio (Mw/Mn) of the polyethylene constituting the polyethylene fiber is more preferably 4.2 or more, and still more preferably 4.5 or more. Although the upper limit of Mw/Mn is not particularly limited, it is preferably 9.0 or less, more preferably 8.0 or less, and still more preferably 7.5 or less. The weight average molecular weight ratio (Mw/Mn) is, for example, preferably 4.0 to 9.0, more preferably 4.2 to 8.0, still more preferably 4.5 to 7.5.
If the ratio of the weight average molecular weight to the number average molecular weight of polyethylene is too small, the creep phenomenon will hardly occur. While this works well to improve creep resistance at 60°C, it works badly to improve moldability at 140°C. When the creep resistance at 60°C is sufficiently high but the moldability at 140°C is poor, it is preferable to improve the moldability by increasing Mw/Mn.
If the ratio of the weight average molecular weight to the number average molecular weight of polyethylene is too high, the tensile strength of the final polyethylene fiber may be low and the creep resistance may be poor.
 また本発明のポリエチレン繊維は超高分子量ポリエチレンであり、上記ポリエチレンの重量平均分子量は、好ましくは490,000以上、より好ましくは550,000以上、さらに好ましくは800,000以上であって、好ましくは8,000,000以下、より好ましくは6,000,000以下、さらに好ましくは5,000,000以下である。また重量平均分子量は、例えば好ましくは490,000~8,000,000、より好ましくは550,000~6,000,000、さらに好ましくは800,000~5,000,000である。
 重量平均分子量が低すぎると構造欠陥の一因となるポリエチレン繊維の断面積あたりの分子末端数が多くなって延伸等を行ってもポリエチレン繊維の引張強度や初期弾性率を十分に高めることができず、また所望の加熱加工性と寸法安定性が得られないことがある。
 重量平均分子量が高くなりすぎると延伸時のポリエチレン繊維の張力が大きくなりすぎて破断が生じる等、ポリエチレン繊維の製造が困難になることがある。
The polyethylene fiber of the present invention is ultra-high molecular weight polyethylene, and the weight average molecular weight of the polyethylene is preferably 490,000 or more, more preferably 550,000 or more, still more preferably 800,000 or more, and preferably It is 8,000,000 or less, more preferably 6,000,000 or less, and still more preferably 5,000,000 or less. The weight average molecular weight is, for example, preferably 490,000 to 8,000,000, more preferably 550,000 to 6,000,000, still more preferably 800,000 to 5,000,000.
If the weight-average molecular weight is too low, the number of molecular ends per cross-sectional area of the polyethylene fiber increases, which may cause structural defects, and the tensile strength and initial elastic modulus of the polyethylene fiber cannot be sufficiently increased even if drawing or the like is performed. Moreover, the desired heat workability and dimensional stability may not be obtained.
If the weight-average molecular weight is too high, the tension of the polyethylene fiber during drawing becomes too high, causing breakage, and the like, making it difficult to produce the polyethylene fiber.
 本発明のポリエチレンの重量平均分子量(Mw)と数平均分子量(Mn)はゲル浸透クロマトグラフィー(GPC測定法)によって求められる値である。なお、測定条件は実施例に記載の条件である。 The weight average molecular weight (Mw) and number average molecular weight (Mn) of the polyethylene of the present invention are values determined by gel permeation chromatography (GPC measurement method). The measurement conditions are the conditions described in Examples.
 本発明のポリエチレン繊維は、加工時の加熱成形性と使用時の寸法安定性とを兼備しているため、本発明のポリエチレン繊維は様々な用途に適した加工ができる。また本発明のポリエチレン繊維を含む製品は、荷重をかけても経時の寸法変化が小さいため長期間使用可能である。したがって製品交換の頻度を低減できるため環境負荷を低減可能である。
 本発明のポリエチレン繊維は、単糸(モノフィラメント)、または複数の単糸を撚り合わせたマルチフィラメントのいずれでもよく、用途に応じて適宜使用できる。
 マルチフィラメントとしては複数の単糸を撚り合わせた撚糸、複数の単糸を組み合わせた組紐、複数の撚糸を撚り合わせたロープなどが例示される。撚糸、組紐、ロープは上記本発明の超高分子量ポリエチレン繊維を含むものであればよく、例えば繊維の20%以上、40%以上、50%以上、60%以上、80%以上が本発明の超高分子量ポリエチレン繊維であってもよく、本発明の超高分子量ポリエチレン繊維のみから構成されていてもよい。
Since the polyethylene fiber of the present invention has both thermoformability during processing and dimensional stability during use, the polyethylene fiber of the present invention can be processed to suit various uses. In addition, the product containing the polyethylene fiber of the present invention can be used for a long period of time because the dimensional change over time is small even when a load is applied. Therefore, since the frequency of product replacement can be reduced, the environmental load can be reduced.
The polyethylene fiber of the present invention may be either a single yarn (monofilament) or a multifilament obtained by twisting a plurality of single yarns, and can be used as appropriate depending on the application.
Examples of the multifilament include a twisted yarn obtained by twisting a plurality of single yarns, a braid obtained by combining a plurality of single yarns, a rope obtained by twisting a plurality of twisted yarns, and the like. Twisted yarns, braids, and ropes may contain the ultra-high molecular weight polyethylene fibers of the present invention. It may be a high-molecular-weight polyethylene fiber, or may be composed only of the ultra-high-molecular-weight polyethylene fiber of the present invention.
 特に本発明のポリエチレン繊維を用いたロープは、軽量、高強度であり、かつ、耐クリープ性に優れることから、洋上風力発電、浮体式海洋石油・ガス貯蔵設備、石油生産プラットホーム等の浮体構造物の係留索に有用である。浮体構造物は沖合に建築されるため従来のチェーンやワイヤーのような重量がある係留索では、運搬船での輸送期間や係留索の設置期間が長期化していたという問題を解決できる。本発明のポリエチレン繊維を用いた浮体構造物の係留用ロープ(係留索)は、従来のチェーンやワイヤー等と比べて軽量であるから運搬や設置が容易であり、工期の短縮化に寄与する。
 また浮体構造物は、数年に及ぶ係留であり、しかも浮体構造物の位置を保持のために張力負荷が常時かかる。そのため従来のポリエチレン繊維では、張力下で徐々に繊維が伸びて浮体構造物が移動してしまうことが懸念される。しかしながら本発明のポリエチレン繊維を用いた浮体構造物用のロープは従来と比べて低クリープであることから浮体構造物の位置の保持に効果がある。本発明のポリエチレン繊維は低クリープであり、且つ耐海水性(海水に対する物性劣化耐性)に優れているため上記の様に海洋用途での利用において特に優れた効果を発揮する。
 なお、本発明のポリエチレン繊維を浮体構造物用のロープに適用する方法は、例えば原糸を複数本合糸し、1回、もしくは複数回のより数の撚りをかけた状態のストランドを12本用いてSub-ropeを作製し、そのSub-ropeを複数本用いてTorque-neutral construction、もしくは、Torque-matched constructionでフルロープとし、必要に応じて、砂等の侵入を防ぐカバーを装着する。
In particular, the rope using the polyethylene fiber of the present invention is lightweight, has high strength, and has excellent creep resistance. useful for mooring ropes. Since floating structures are built offshore, conventional heavy mooring ropes such as chains and wires can solve the problem of prolonging the transportation period on a carrier ship and the mooring rope installation period. The mooring rope (mooring rope) for a floating structure using the polyethylene fibers of the present invention is lighter than conventional chains, wires, and the like, so it is easy to transport and install, and contributes to shortening the construction period.
Moreover, the floating structure is moored for several years, and a tensile load is constantly applied to maintain the position of the floating structure. Therefore, with conventional polyethylene fibers, there is a concern that the fibers will gradually expand under tension and the floating structure will move. However, since the rope for floating structure using the polyethylene fiber of the present invention has a lower creep than the conventional rope, it is effective in holding the position of the floating structure. Since the polyethylene fiber of the present invention has low creep and excellent seawater resistance (resistance to deterioration of physical properties against seawater), it exhibits particularly excellent effects in marine applications as described above.
In addition, the method of applying the polyethylene fiber of the present invention to a rope for a floating structure is, for example, a plurality of raw yarns are plied, and 12 strands are twisted once or multiple times. A sub-rope is prepared using a plurality of sub-ropes, and a torque-neutral construction or a torque-matched construction is used to make a full rope, and if necessary, a cover is attached to prevent sand from entering.
 上記マルチフィラメントやモノフィラメントは様々な用途に適用でき、例えばネット、釣り糸、資材防護カバー、織物、編み物、補強用布帛、カイト用糸、洋弓弦、セイルクロス、幕材、防護材、防弾材、医療用縫合糸、人工腱、人工筋肉、繊維強化樹脂補強材、セメント補強材、繊維強化ゴム補強材、工作機械部品、電池セパレーター、化学フィルター等、産業用資材、製品として優れた性能、および意匠性を発揮し、幅広く応用できる。 The above multifilaments and monofilaments can be applied to various uses, such as nets, fishing lines, material protective covers, woven fabrics, knitted fabrics, reinforcing fabrics, kite strings, bow strings, sail cloths, curtain materials, protective materials, bulletproof materials, and medical applications. sutures, artificial tendons, artificial muscles, fiber-reinforced resin reinforcing materials, cement reinforcing materials, fiber-reinforced rubber reinforcing materials, machine tool parts, battery separators, chemical filters, etc., industrial materials and products with excellent performance and design and can be widely applied.
 以下、上記説明した本発明のポリエチレン繊維の製造方法について説明するが、本発明のポリエチレン繊維の製造方法は以下の説明に限定されず、適宜変更して製造することができる。なお、製造過程の各条件は、夫々任意の範囲を選択可能であり、また各条件間の組合わせも夫々選択した任意の範囲同士を組み合わせて、所望の物性を有する本発明の超高分子量ポリエチレン繊維を製造できる。 The above-described method for producing the polyethylene fiber of the present invention will be described below, but the method for producing the polyethylene fiber of the present invention is not limited to the following explanation, and can be produced by appropriately changing it. In addition, each condition in the production process can be selected from any range, and the combination of each condition can be combined with each other. can produce fibers.
 本発明のポリエチレン繊維は、例えば溶解工程、紡糸工程、延伸工程を経て製造できる。
 本発明の溶解工程は、高分子量の原料ポリエチレン、具体的には極限粘度[η]が5.0dL/g以上、40.0dL/g以下、かつ繰り返し単位が90%以上のエチレンからなり、メチル基、エチル基、およびブチル基からなる群より選ばれる少なくとも1種のアルキル側鎖を含み、炭素原子1000個当たりの前記アルキル側鎖の数を意味するアルキル分岐数が0.6個/炭素原子1000個以上、1.4個/炭素原子1000個以下を有するポリエチレンを溶媒に溶解させる工程である。
The polyethylene fiber of the present invention can be produced through, for example, a melting process, a spinning process, and a drawing process.
In the dissolution step of the present invention, a raw material polyethylene having a high molecular weight, specifically, an intrinsic viscosity [η] of 5.0 dL / g or more and 40.0 dL / g or less and a repeating unit of 90% or more is made of ethylene, and methyl at least one alkyl side chain selected from the group consisting of groups, ethyl groups, and butyl groups, and the number of alkyl branches, which means the number of said alkyl side chains per 1000 carbon atoms, is 0.6/carbon atom This is a step of dissolving polyethylene having 1000 or more and 1.4 carbon atoms/1000 or less carbon atoms in a solvent.
 原料ポリエチレンは極限粘度[η]が5.0dL/g以上、40.0dL/g以下、かつ繰り返し単位が90%以上のエチレンからなる。
 ポリエチレンの極限粘度は、好ましくは5.0dL/g以上、より好ましくは8.0dL/g以上であって、好ましくは40.0dL/g以下、より好ましくは30.0dL/g以下、さらに好ましくは25.0dL/g以下である。また極限粘度は、好ましくは5.0~40.0dL/g、より好ましくは8.0~30.0dL/g、さらに好ましくは8.0~25.0dL/gである。
 極限粘度が低すぎると所望とするポリエチレン繊維の加熱加工性や寸法安定性が得られないことがある。
 極限粘度が高すぎるとポリエチレン繊維の製造が困難になることがある。
The raw material polyethylene consists of ethylene having an intrinsic viscosity [η] of 5.0 dL/g or more and 40.0 dL/g or less and a repeating unit of 90% or more.
The intrinsic viscosity of polyethylene is preferably 5.0 dL/g or more, more preferably 8.0 dL/g or more, preferably 40.0 dL/g or less, more preferably 30.0 dL/g or less, and still more preferably 25.0 dL/g or less. Intrinsic viscosity is preferably 5.0 to 40.0 dL/g, more preferably 8.0 to 30.0 dL/g, still more preferably 8.0 to 25.0 dL/g.
If the intrinsic viscosity is too low, the desired heat processability and dimensional stability of polyethylene fibers may not be obtained.
If the intrinsic viscosity is too high, it may become difficult to produce polyethylene fibers.
 原料ポリエチレンは、繰り返し単位の90モル%以上がエチレンである。エチレンの繰り返し単位は好ましくは92モル%以上、より好ましくは94モル%以上、さらに好ましくは98モル%以上である。
 既に説明したように本発明のエチレンと少量の他のモノマーとの共重合体を使用することも好ましい実施態様である。他のモノマーとしては既に説明した化合物があげられる。
In raw material polyethylene, 90 mol % or more of repeating units are ethylene. The repeating unit of ethylene is preferably 92 mol % or more, more preferably 94 mol % or more, still more preferably 98 mol % or more.
As already mentioned, it is also a preferred embodiment to use copolymers of ethylene with minor amounts of other monomers according to the invention. Other monomers include the compounds already described.
 さらに原料ポリエチレンは、メチル基、エチル基、およびブチル基からなる群より選ばれる少なくとも1種のアルキル側鎖を含み、炭素原子1000個当たりの前記アルキル側鎖の数を意味するアルキル分岐数が好ましくは0.6個/炭素原子1000個以上、1.4個/炭素原子1000個以下を有する。
 既に説明したように上記アルキル側鎖、および所定範囲のアルキル分岐数はポリエチレン繊維の加熱加工性や寸法安定性を得るために規定された要件である。好適な範囲等は既に説明したポリエチレン繊維と同じである。アルキル側鎖はメチル基、エチル基、およびブチル基からなる群より選ばれる少なくとも1種であり、これらは任意に組み合わせることができる。2種以上の場合、異なる官能基同士の組合わせ、同一官能基同士の組合わせ、または同一の官能基とこれと異なる官能基との組合わせであってもよい。組合わせの例示は上記繰り返し単位に関する説明と同じであり、上記記載を援用する。
Further, the raw material polyethylene contains at least one alkyl side chain selected from the group consisting of methyl groups, ethyl groups, and butyl groups, and the number of alkyl branches, which means the number of alkyl side chains per 1000 carbon atoms, is preferred. has 0.6/1000 carbon atoms or more and 1.4/1000 carbon atoms or less.
As already explained, the above-mentioned alkyl side chains and the number of alkyl branches within a predetermined range are requirements specified for obtaining heat processability and dimensional stability of polyethylene fibers. The preferred range and the like are the same as those of the polyethylene fiber already explained. The alkyl side chain is at least one selected from the group consisting of methyl group, ethyl group and butyl group, and these can be arbitrarily combined. When two or more types are used, a combination of different functional groups, a combination of the same functional groups, or a combination of the same functional group and a different functional group may be used. Examples of combinations are the same as those described for the above repeating units, and the above description is incorporated.
 上記好ましい原料ポリエチレンを溶解してポリエチレン溶液を作製する。溶剤は、デカリン・テトラリン等の揮発性の有機溶剤や常温固体または非揮発性の溶剤であることが好ましい。 A polyethylene solution is prepared by dissolving the preferred raw material polyethylene. The solvent is preferably a volatile organic solvent such as decalin or tetralin, a solid at room temperature, or a non-volatile solvent.
 ポリエチレン溶液におけるポリエチレンの濃度は好ましくは0.5質量%以上、40質量%以下、より好ましくは2.0質量%以上、30質量%以下、さらに好ましくは3.0質量%以上、20質量%以下である。ポリエチレンの濃度は例えば好ましくは0.5~40質量%、より好ましくは2.0~30質量%、さらに好ましくは3.0~20質量%である。
 ポリエチレン濃度が小さすぎると生産効率が非常に悪くなることがある。
 ポリエチレン濃度が大きすぎると分子量が非常に大きいことに起因して、ゲル紡糸法では後述するノズルから吐出することが困難になることがある。
 ポリエチレン濃度は原料のポリエチレンの極限粘度[η]に応じて最適な濃度を選択することが望ましい。
The concentration of polyethylene in the polyethylene solution is preferably 0.5% by mass or more and 40% by mass or less, more preferably 2.0% by mass or more and 30% by mass or less, and still more preferably 3.0% by mass or more and 20% by mass or less. is. The concentration of polyethylene is, for example, preferably 0.5 to 40% by mass, more preferably 2.0 to 30% by mass, still more preferably 3.0 to 20% by mass.
If the polyethylene concentration is too low, production efficiency can be very poor.
If the polyethylene concentration is too high, it may become difficult to discharge from a nozzle described later in the gel spinning method due to the extremely high molecular weight.
As for the polyethylene concentration, it is desirable to select an optimum concentration according to the intrinsic viscosity [η] of the raw material polyethylene.
 ポリエチレン溶液は種々の公知の方法を採用できる。例えば、2軸スクリュー押出機を用いる;固体ポリエチレンを溶媒中に懸濁させて高温下で撹拌する;など公知の方法によりポリエチレン溶液を作製できる。
 原料ポリエチレンと溶媒との混合条件は、150℃以上200℃以下の温度範囲で1分以上80分以内とすることが好ましい。
 上記温度範囲に保持する時間が短すぎると不完全な混合になり、均一なポリエチレン溶液が得られないおそれがある。
 上記温度範囲に保持する時間が長すぎると、ポリエチレン分子の破断や架橋が非常に多く発生するため、加熱加工性と寸法安定性とを兼備させることが難しくなることがある。
 なお、ポリマーの分子量や濃度によっては、200℃を超える温度での混合が必要になる場合があるが、その場合は200℃を超える温度域での混合時間は30分以下であることが好ましい。30分を超えると、紡糸可能な範囲を超えるほどにポリエチレン分子の破断や架橋が非常に多く発生することがある。なお、上記の紡糸可能な範囲とは、好ましくは10m/分以上での紡糸が可能であり、そのときの紡糸張力が単糸1本あたり0.01cN以上、300cN以下であることをいう。
Various known methods can be employed for the polyethylene solution. For example, a polyethylene solution can be prepared by known methods such as using a twin-screw extruder; suspending solid polyethylene in a solvent and stirring at a high temperature.
The mixing conditions for the raw material polyethylene and the solvent are preferably within a temperature range of 150° C. or higher and 200° C. or lower for 1 minute or longer and 80 minutes or shorter.
If the temperature is maintained within the above temperature range for too short a time, incomplete mixing may occur and a uniform polyethylene solution may not be obtained.
If the temperature is maintained in the above temperature range for too long, a large number of breakages and crosslinks of the polyethylene molecules occur, which may make it difficult to achieve both heat processability and dimensional stability.
Depending on the molecular weight and concentration of the polymer, mixing at a temperature exceeding 200°C may be required. In this case, the mixing time in the temperature range exceeding 200°C is preferably 30 minutes or less. If it exceeds 30 minutes, too many breaks and cross-links of the polyethylene molecules may occur beyond the spinnable range. The above-mentioned spinnable range means that spinning is possible at preferably 10 m/min or more, and the spinning tension at that time is 0.01 cN or more and 300 cN or less per single yarn.
 本発明の紡糸工程は、上記得られたポリエチレン溶液を、該ポリエチレンの融点よりも15℃以上高い温度で、該溶液が流通する孔を有するノズルを用いて吐出させた後、60℃以下に冷却する工程である。
 ポリエチレン溶液は、ポリエチレンの融点よりも好ましくは15℃以上、より好ましくは20℃以上、さらに好ましくは30℃以上の温度に加熱する。
 ポリエチレン溶液を加熱すると溶媒中に分散している原料ポリエチレンを溶解させて均一なポリエチレン溶液が得られる。
In the spinning step of the present invention, the polyethylene solution obtained above is discharged at a temperature 15 ° C. or more higher than the melting point of the polyethylene using a nozzle having holes through which the solution flows, and then cooled to 60 ° C. or less. It is a process to do.
The polyethylene solution is heated to a temperature that is preferably 15° C. or higher, more preferably 20° C. or higher, and still more preferably 30° C. or higher than the melting point of polyethylene.
When the polyethylene solution is heated, the raw material polyethylene dispersed in the solvent is dissolved to obtain a uniform polyethylene solution.
 上記温度に加熱されたポリエチレン溶液を、例えば押出機などを用いて押し出し、その後、定量供給装置などを用いて紡糸ノズル(紡糸口金)に供給する。その後ポリエチレン溶液を紡糸ノズルに設けられた細孔を通して吐出することで糸条(ゲル糸条)が形成される。
 紡糸ノズルを通過するポリエチレンの温度はポリエチレンの融点以上、好ましくは140℃以上、より好ましくは150℃以上であって、ポリエチレンの熱分解温度未満にすることが望ましい。
 ポリエチレンの温度が低すぎるとポリエチレンの粘度が低下してポリエチレン繊維状物の引き取りが困難になることがある。
 ポリエチレンの温度が高すぎるとポリエチレン溶媒が紡糸ノズルから吐出された直後に溶媒が沸騰し、糸切れが発生しやすくなることがある。
The polyethylene solution heated to the above temperature is extruded using, for example, an extruder, and then supplied to a spinning nozzle (spinneret) using a constant supply device or the like. After that, a thread (gel thread) is formed by discharging the polyethylene solution through the fine holes provided in the spinning nozzle.
It is desirable that the temperature of the polyethylene passing through the spinning nozzle is the melting point of polyethylene or higher, preferably 140° C. or higher, more preferably 150° C. or higher, and lower than the thermal decomposition temperature of polyethylene.
If the temperature of the polyethylene is too low, the viscosity of the polyethylene may decrease, making it difficult to take up the polyethylene fibrous material.
If the temperature of polyethylene is too high, the polyethylene solvent boils immediately after it is discharged from the spinning nozzle, which may easily cause yarn breakage.
 ポリエチレン溶液が紡糸ノズルの内部に設けられたオリフィスを通過して紡糸ノズルの細孔から吐出されるまでの時間(以下、オリフィス通過時間という)は好ましくは1秒以上、8分以下である。
 オリフィス通過時間が短すぎるとオリフィス内でのポリエチレン溶液の流れが乱れてポリエチレン溶液を安定して吐出できないことがある。またポリエチレン溶液の流れの乱れが影響して単糸全体の構造が不均一となることがある。
 オリフィス通過時間が長すぎるとポリエチレン分子がほとんど配向することなく吐出され、単糸あたりの紡糸張力が上記範囲外となることがある。また得られた単糸の結晶構造が不均一となり、所望の特性が得られなくなることがある。
The time required for the polyethylene solution to pass through an orifice provided inside the spinning nozzle and be discharged from the pores of the spinning nozzle (hereinafter referred to as the orifice passage time) is preferably 1 second or longer and 8 minutes or shorter.
If the orifice passage time is too short, the flow of the polyethylene solution in the orifice may be disturbed and the polyethylene solution may not be discharged stably. In addition, the structure of the entire single yarn may become non-uniform due to the influence of turbulence in the flow of the polyethylene solution.
If the orifice passage time is too long, the polyethylene molecules are extruded with little orientation, and the spinning tension per single yarn may be outside the above range. In addition, the crystal structure of the obtained single yarn becomes non-uniform, and the desired characteristics may not be obtained.
 ポリエチレン溶液は好ましくは直径0.2~3.5mm、より好ましくは直径0.5~2.5mmを有する紡糸ノズルから、好ましくは0.1g/分以上の吐出量で吐出する。
 また紡糸ノズルに設ける吐出用の細孔数は、ポリエチレン繊維を構成する糸数に応じて適宜調整すればよく、細孔数は、単数、または複数のいずれでもよい。例えば細孔数は、好ましくは1個以上、より好ましくは5個以上である。
 細孔の直径は用途に応じて適宜設定してもよいが、引張強度や初期弾性率、破断伸度などの単糸の物性を考慮すると、細孔の直径は例えば好ましくは0.2mm以上、より好ましくは0.3mm以上、さらに好ましくは0.5mm以上であって、好ましくは3.5mm以下、より好ましくは3.0mm以下、さらに好ましくは2.0mm以下である。また細孔の直径は例えば好ましくは0.2~3.5mm、より好ましくは0.3~3.0mm、さらに好ましくは0.5~2.0mmである。
The polyethylene solution is preferably discharged from a spinning nozzle having a diameter of 0.2 to 3.5 mm, more preferably 0.5 to 2.5 mm, at a discharge rate of preferably 0.1 g/min or more.
Also, the number of ejection pores provided in the spinning nozzle may be appropriately adjusted according to the number of threads constituting the polyethylene fiber, and the number of pores may be singular or plural. For example, the number of pores is preferably 1 or more, more preferably 5 or more.
The diameter of the pore may be appropriately set according to the application, but considering the physical properties of the single yarn such as tensile strength, initial elastic modulus, and elongation at break, the diameter of the pore is preferably 0.2 mm or more, It is more preferably 0.3 mm or more, still more preferably 0.5 mm or more, preferably 3.5 mm or less, more preferably 3.0 mm or less, still more preferably 2.0 mm or less. Also, the diameter of the pores is preferably 0.2 to 3.5 mm, more preferably 0.3 to 3.0 mm, still more preferably 0.5 to 2.0 mm.
 紡糸ノズルの各細孔からのポリエチレン溶液の吐出量ができるだけ均一な量となるように、各細孔間の温度差は小さい方が好ましい。具体的には、各細孔における吐出量の変動係数CV((紡糸ノズルに設けられた全細孔における吐出量の標準偏差)/(紡糸ノズルに設けられた全細孔における吐出量の平均値)×100)は好ましくは20%以下、より好ましくは18%以下である。
 また上記の変動係数CVとするためには、全細孔の最高温度と最低温度との差が好ましくは10℃以下、より好ましくは8℃以下である。
 全細孔のうち、最高温度を有する細孔と最低温度を有する細孔との温度差を小さくする方法は、紡糸ノズルが直接外気と接することのないように遮蔽する;紡糸ノズルを断熱ガラス製の遮蔽板によって外気から遮蔽する;などの方法が例示されるがこれに限定されない。
It is preferable that the temperature difference between the pores of the spinning nozzle is small so that the amount of polyethylene solution discharged from each of the pores of the spinning nozzle is as uniform as possible. Specifically, the variation coefficient CV of the discharge amount in each pore ((standard deviation of the discharge amount in all the pores provided in the spinning nozzle) / (average value of the discharge amount in all the pores provided in the spinning nozzle )×100) is preferably 20% or less, more preferably 18% or less.
In order to achieve the above coefficient of variation CV, the difference between the maximum temperature and the minimum temperature of all pores is preferably 10°C or less, more preferably 8°C or less.
Among all the pores, the method of reducing the temperature difference between the pores with the highest temperature and the pores with the lowest temperature is to shield the spinning nozzle from direct contact with the outside air; shielding from the outside air with a shielding plate;
 細孔から吐出された糸条(ゲル糸条)が、細孔からの吐出後、冷媒により冷却されるまでの雰囲気は特に限定されないが、例えば、空気や窒素などの不活性ガスによる乾式クエンチ法でもよいし、混和性の液体、もしくは水等の不混和性の液体を用いた乾湿式クエンチ法でもよい。 The atmosphere in which the filaments (gel filaments) discharged from the pores are cooled by the refrigerant after being discharged from the pores is not particularly limited. Alternatively, a dry-wet quench method using a miscible liquid or an immiscible liquid such as water may be used.
 吐出された糸条(ゲル糸条)は冷却媒体で冷却しながら好ましくは800m/分以下、より好ましくは200m/分以下の速度で引き取る。
 冷却媒体の温度を調節して糸条(ゲル糸条)を好ましくは60℃以下、より好ましくは35℃以下であって、好ましくは10℃以上、より好ましくは12℃以上に冷却する。また冷却は例えば好ましくは60℃~10℃、より好ましくは35℃~12℃である。
 糸条(ゲル糸条)の温度が高すぎたり、低すぎるとポリエチレン糸の結晶構造が不均一となって引張強度などの物性が大幅に低下し、その結果、延伸して得られるポリエチレン繊維の加熱加工性や寸法安定性が大幅に低下することがある。
 冷却媒体は、ポリエチレン溶液の溶媒と混和する混和性の液体、ポリエチレン溶液の溶媒と混和しない水などの不混和性の液体のいずれでもよい。
The discharged yarn (gel yarn) is taken up at a speed of preferably 800 m/min or less, more preferably 200 m/min or less while being cooled with a cooling medium.
The temperature of the cooling medium is adjusted to cool the yarn (gel yarn) to preferably 60° C. or lower, more preferably 35° C. or lower, preferably 10° C. or higher, more preferably 12° C. or higher. Cooling is, for example, preferably 60°C to 10°C, more preferably 35°C to 12°C.
If the temperature of the yarn (gel yarn) is too high or too low, the crystal structure of the polyethylene yarn becomes uneven and the physical properties such as tensile strength are greatly reduced, resulting in a loss of polyethylene fiber obtained by drawing. Heat workability and dimensional stability may be significantly reduced.
The cooling medium may be either a miscible liquid that is miscible with the solvent of the polyethylene solution or an immiscible liquid such as water that is immiscible with the solvent of the polyethylene solution.
 冷却終了後にポリエチレン糸中に存在する溶媒を除去してから延伸工程を行ってもよいし、延伸工程で脱溶媒しながら延伸してもよい。
 溶媒の抽出方法は溶媒の種類に応じて適宜選択すればよい。例えば揮発性溶媒であれば不活性ガスや水蒸気などの熱媒体中で溶媒を除去させたり、加熱ローラー等の熱媒体を使用してもよい。また不揮発性溶媒の場合は公知の抽出剤を用いて抽出してもよい。
 冷却終了から溶媒を除去するまでの時間(以下、溶媒除去時間という)は短い方が好ましい。溶媒除去時間は、ポリエチレン糸中の残存溶媒量が10%以下になるまでの時間であり、好ましくは10時間以内、より好ましくは2時間以内、さらに好ましくは30分以内である。
 溶媒除去時間が長すぎると、ポリエチレン糸の結晶構造が不均一になることがある。
After cooling, the solvent present in the polyethylene yarn may be removed before the drawing process, or the drawing process may be performed while the solvent is removed during the drawing process.
The solvent extraction method may be appropriately selected according to the type of solvent. For example, if the solvent is a volatile solvent, the solvent may be removed in a heat medium such as inert gas or steam, or a heat medium such as a heating roller may be used. Moreover, in the case of a non-volatile solvent, extraction may be performed using a known extractant.
The shorter the time from the end of cooling to the removal of the solvent (hereinafter referred to as solvent removal time), the better. The solvent removal time is the time until the amount of residual solvent in the polyethylene yarn becomes 10% or less, preferably within 10 hours, more preferably within 2 hours, and even more preferably within 30 minutes.
If the solvent removal time is too long, the crystalline structure of the polyethylene yarn may become non-uniform.
 本発明のポリエチレン繊維は単糸1本からなるモノフィラメントであってもよいし、複数の単糸を撚り合わせたマルチフィラメントのいずれでもよい。マルチフィラメントにする方法は特に限定されず、各種公知の方法を採用でき、例えば細孔から吐出された多数のフィラメントをマルチフィラメント束に絞ってもよい。 The polyethylene fiber of the present invention may be a monofilament consisting of one single yarn, or may be a multifilament consisting of a plurality of single yarns twisted together. The method of forming the multifilament is not particularly limited, and various known methods can be employed. For example, a large number of filaments ejected from the pores may be squeezed into a multifilament bundle.
 本発明の延伸工程は、得られたポリエチレン糸(未延伸糸)を1回以上延伸すると共に、最後の延伸時の延伸温度を140℃以上、155℃未満、延伸時間を2分間以上、8分間以内、延伸時の糸に係る張力を1.5cN/dtex以上、8cN/dtex以下とする工程である。
 紡糸工程で引き取った未延伸糸を連続的に、または一旦巻き取った後、延伸工程を行う。延伸工程では未延伸糸を加熱状態で数倍に延伸する。延伸は1回、または複数回にわけて所望の延伸倍率となるように行ってもよいが、延伸回数は好ましくは6回以下である。
 延伸工程は、熱媒体雰囲気中で行ってもよいし、加熱ローラーを用いて行ってもよい。熱媒体としては、空気、窒素等の不活性ガス、水蒸気、液体媒体等が例示される。
In the drawing process of the present invention, the obtained polyethylene yarn (undrawn yarn) is drawn once or more, and the drawing temperature at the last drawing is 140 ° C. or more and less than 155 ° C., and the drawing time is 2 minutes or more and 8 minutes. Within this step, the tension applied to the yarn during drawing is set to 1.5 cN/dtex or more and 8 cN/dtex or less.
The drawing step is performed continuously or after winding the undrawn yarn taken in the spinning step. In the drawing step, the undrawn yarn is drawn several times in a heated state. The drawing may be performed once or in multiple steps so as to achieve a desired draw ratio, but the number of times of drawing is preferably 6 or less.
The stretching step may be performed in a heat medium atmosphere or may be performed using a heating roller. Examples of the heat medium include air, inert gas such as nitrogen, water vapor, liquid medium, and the like.
 未延伸糸の延伸倍率は、延伸工程が1段の場合でも多段の場合でも合計の延伸倍率で7.0倍以上、60倍以下であることが好ましく、より好ましくは8.0倍以上、55倍以下、さらに好ましくは9.0倍以上、50倍以下である。また合計の延伸倍率は例えば好ましくは7.0~60倍、より好ましくは8.0~55倍、さらに好ましくは9.0~50倍である。
 延伸はポリエチレンの融点以下の温度で延伸を行うことが好ましい。複数回延伸する場合、後段に進むほど、延伸時の温度を高くすることが好ましい。延伸の最後段の延伸温度は、好ましくは140℃以上、より好ましくは145℃以上であって、好ましくは155℃以下、より好ましくは150℃以下である。また延伸の最後段の延伸温度は、例えば好ましくは140℃~155℃、より好ましくは145℃~150℃である。
The total draw ratio of the undrawn yarn is preferably 7.0 times or more and 60 times or less, more preferably 8.0 times or more and 55 times or less, regardless of whether the drawing process is a single stage or a multi-stage drawing process. times or less, more preferably 9.0 times or more and 50 times or less. The total draw ratio is, for example, preferably 7.0 to 60 times, more preferably 8.0 to 55 times, still more preferably 9.0 to 50 times.
Stretching is preferably carried out at a temperature below the melting point of polyethylene. When stretching is performed multiple times, it is preferable to increase the temperature during the stretching as the process progresses to a later stage. The drawing temperature in the final stage of drawing is preferably 140° C. or higher, more preferably 145° C. or higher, and preferably 155° C. or lower, more preferably 150° C. or lower. The stretching temperature in the final stage of stretching is, for example, preferably 140°C to 155°C, more preferably 145°C to 150°C.
 最後の延伸の延伸時間は好ましくは2分間以上であって、好ましくは8分間以下、より好ましくは6分間以下、さらに好ましくは4分間以下である。また延伸時間は例えば好ましくは2~8分間、より好ましくは2~6分間、さらに好ましくは2~4分間である。
 最後の延伸時間が長すぎると延伸時間以外の製造条件を好適な範囲内としても分子鎖が延伸中に緩和してしまうため、加熱加工性や寸法安定性が低下することがある。
The drawing time of the final drawing is preferably 2 minutes or more, preferably 8 minutes or less, more preferably 6 minutes or less, and even more preferably 4 minutes or less. The stretching time is, for example, preferably 2 to 8 minutes, more preferably 2 to 6 minutes, still more preferably 2 to 4 minutes.
If the final stretching time is too long, the molecular chains relax during the stretching even if the production conditions other than the stretching time are set within a suitable range, which may deteriorate the heat processability and dimensional stability.
 延伸時の変形速度は、好ましくは0.0001s-1以上、より好ましくは0.008s-1以上であって、好ましくは0.8s-1以下、より好ましくは0.1s-1以下である。また変形速度は、例えば好ましくは0.0001s-1~0.8s-1、より好ましくは0.008s-1~0.1s-1である。
 変形速度は、ポリエチレン繊維の延伸倍率、延伸速度、および延伸区間の長さより計算可能である。
 変形速度(s-1)=[(延伸速度-延伸速度/延伸倍率)/延伸区間の長さ]
 変形速度が速すぎると十分な延伸倍率に達する前にポリエチレン繊維の破断が生じてしまい好ましくない。
 変形速度が遅すぎると分子鎖が延伸中に緩和してしまうため、十分な強度や弾性率のポリエチレン繊維が得られず、ポリエチレン繊維の引張強度や初期弾性率も低くなり好ましくない。
The deformation speed during stretching is preferably 0.0001 s -1 or more, more preferably 0.008 s -1 or more, and preferably 0.8 s -1 or less, more preferably 0.1 s -1 or less. The deformation speed is, for example, preferably 0.0001 s -1 to 0.8 s -1 , more preferably 0.008 s -1 to 0.1 s -1 .
The deformation speed can be calculated from the draw ratio of the polyethylene fiber, the drawing speed, and the length of the drawing section.
Deformation speed (s −1 )=[(stretching speed−stretching speed/stretching ratio)/stretching section length]
If the deformation speed is too high, the polyethylene fibers are broken before reaching a sufficient draw ratio, which is not preferable.
If the deformation speed is too slow, the molecular chains are relaxed during drawing, so that polyethylene fibers having sufficient strength and elastic modulus cannot be obtained, and the tensile strength and initial elastic modulus of the polyethylene fibers are also lowered, which is not preferable.
 最後の延伸時の糸に係る張力は、好ましくは1.5cN/dtex以上、より好ましくは2.0cN/dtex以上、さらに好ましくは2.5cN/dtex以上であって、好ましくは8cN/dtex以下、より好ましくは5cN/dtex以下、さらに好ましくは4cN/dtex以下、よりさらに好ましくは3cN/dtex以下である。また張力は、例えば好ましくは1.5~8cN/dtex、より好ましくは2.0~5cN/dtex、さらに好ましくは2.5~4cN/dtex、よりさらに好ましくは2.5~3cN/dtexである。
 延伸時の張力が低すぎると加熱加工性や寸法安定性を向上できないことがある。
 延伸時の張力が高すぎると糸切れなどが生じて製造が困難となることがある。
The tension applied to the yarn at the final drawing is preferably 1.5 cN/dtex or more, more preferably 2.0 cN/dtex or more, still more preferably 2.5 cN/dtex or more, and preferably 8 cN/dtex or less, It is more preferably 5 cN/dtex or less, still more preferably 4 cN/dtex or less, still more preferably 3 cN/dtex or less. The tension is, for example, preferably 1.5 to 8 cN/dtex, more preferably 2.0 to 5 cN/dtex, still more preferably 2.5 to 4 cN/dtex, still more preferably 2.5 to 3 cN/dtex. .
If the tension during stretching is too low, heat processability and dimensional stability may not be improved.
If the tension during drawing is too high, yarn breakage or the like may occur, making production difficult.
 延伸されたポリエチレン繊維は、各種公知の方法・公知の巻き取り条件で巻き取ることが好ましい。 The stretched polyethylene fiber is preferably wound by various known methods and under known winding conditions.
 その他
 他の機能を付与するために、本発明のポリエチレン繊維を製造する際に、酸化防止剤、還元防止剤等の添加剤、pH調整剤、表面張力低下剤、増粘剤、保湿剤、濃染化剤、防腐剤、防黴剤、帯電防止剤、顔料、鉱物繊維、他の有機繊維、金属繊維、金属イオン封鎖剤等の各種公知の添加剤を添加してもよい。
Others In order to impart other functions to the polyethylene fiber of the present invention, additives such as antioxidants and anti-reduction agents, pH adjusters, surface tension reducing agents, thickeners, humectants, and thickening agents are added. Various known additives such as staining agents, preservatives, antifungal agents, antistatic agents, pigments, mineral fibers, other organic fibers, metal fibers, and sequestering agents may be added.
 本願は、2021年12月27日に出願された日本国特許出願第2021-212367号に基づく優先権の利益を主張するものである。2021年12月27日に出願された日本国特許出願第2021-212367号の明細書の全内容が、本願に参考のため援用される。 This application claims the benefit of priority based on Japanese Patent Application No. 2021-212367 filed on December 27, 2021. The entire contents of the specification of Japanese Patent Application No. 2021-212367 filed on December 27, 2021 are incorporated herein by reference.
 以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited by the following examples, and can be modified appropriately within the scope that can conform to the gist of the above and later descriptions. It is of course possible to implement them, and all of them are included in the technical scope of the present invention.
 各試料の特性の測定条件、および評価基準は以下のとおりである。 The measurement conditions and evaluation criteria for the characteristics of each sample are as follows.
(1)極限粘度
 溶媒を温度135℃のデカリンとし、ウベローデ型毛細粘度管を用いて、種々の希薄溶液の比粘度を測定した。希薄溶液粘度の濃度に対するプロットから最小2乗近似で得られる直線の原点への外挿点より極限粘度を決定した。測定に際し、サンプルを約3mm長の長さに分割、または切断し、サンプルに対して1質量%の酸化防止剤(エーピーアイコーポレーション社製、「ヨシノックス(登録商標)BHT」)を添加し、135℃で4時間攪拌溶解して測定溶液を調製した。
(1) Intrinsic Viscosity Decalin at a temperature of 135° C. was used as the solvent, and the specific viscosity of various dilute solutions was measured using an Ubbelohde capillary viscosity tube. The intrinsic viscosity was determined from the point of extrapolation to the origin of a straight line obtained by least-squares approximation from the plot of dilute solution viscosity versus concentration. For measurement, the sample was divided or cut into lengths of about 3 mm, 1% by mass of an antioxidant ("Yoshinox (registered trademark) BHT" manufactured by API Corporation) was added to the sample, and 135 C. for 4 hours with stirring to prepare a measurement solution.
(2)重量平均分子量(Mw)、数平均分子量(Mn)
 各試料の重量平均分子量(Mw)と数平均分子量(Mn)はゲル浸透クロマトグラフィー(GPC)を用いて測定した。測定は2mm程度の長さにカットした繊維サンプルをアセトンにて15分間の洗浄を2回行った後、溶媒(0.1%の酸化防止剤BHTを添加した1,2,4-トリクロロベンゼン)を加え、140℃で2.5時間振とう溶解させ、0.5μm焼結フィルターにて加熱ろ過したものを測定溶液とした。
・カラム:TSKgel GMHHR-H(20)HT×3
 (7.8mm I.D.×300mm×3本)
・溶離液:1,2,4-トリクロロベンゼン(0.05% BHT添加)
・流量:1.0mL/min
・検出器:RI検出器(ポラリティ―)
・カラム温度:140℃
・注入量:300μL
・試料濃度:0.1mg/mL
・分子量標準:標準ポリスチレン
(2) weight average molecular weight (Mw), number average molecular weight (Mn)
The weight average molecular weight (Mw) and number average molecular weight (Mn) of each sample were determined using gel permeation chromatography (GPC). Measurement was performed by washing a fiber sample cut to a length of about 2 mm with acetone twice for 15 minutes, followed by solvent (1,2,4-trichlorobenzene with 0.1% antioxidant BHT added). was added, dissolved by shaking at 140° C. for 2.5 hours, and heated and filtered through a 0.5 μm sintered filter to obtain a measurement solution.
・Column: TSKgel GMH HR -H(20)HT×3
(7.8mm ID x 300mm x 3)
- Eluent: 1,2,4-trichlorobenzene (0.05% BHT added)
・Flow rate: 1.0 mL/min
・Detector: RI detector (polarity)
・Column temperature: 140°C
・Injection volume: 300 μL
・Sample concentration: 0.1 mg/mL
・Molecular weight standard: standard polystyrene
(3)アルキル分岐数
 各試料、250mgをo-ジクロロベンゼン+p-ジクロロベンゼン-d4(7+3vol)に145℃で溶解、120℃で13C-NMRを測定し、得られた13C-NMRスペクトルより以下の要領で見積もった。
 ポリエチレンのエチレン連鎖ピークを30ppmとした時、メチル側鎖由来のピークは37.5ppm付近に、エチル側鎖由来のピークは34ppm付近に、ブチル側鎖由来のピークは23.5ppm付近に検出される。エチレン連鎖ピークの積分値を1000とした時、37.5ppmのピーク積分値をA、34ppmのピーク積分値をB、23.5ppmのピーク積分値をCとした場合、メチル側鎖数はA/2(個/1000C)、エチル側鎖数はB/2(個/1000C)、ブチル側鎖数はC/2(個/1000C)と算出することができる。
(3) Number of alkyl branches 250 mg of each sample was dissolved in o-dichlorobenzene + p-dichlorobenzene-d4 (7 + 3 vol) at 145 ° C., 13 C-NMR was measured at 120 ° C., and the resulting 13 C-NMR spectrum Estimated according to the following criteria.
When the ethylene chain peak of polyethylene is 30 ppm, the peak derived from the methyl side chain is detected around 37.5 ppm, the peak derived from the ethyl side chain is detected around 34 ppm, and the peak derived from the butyl side chain is detected around 23.5 ppm. . When the integrated value of the ethylene chain peak is 1000, the peak integrated value at 37.5 ppm is A, the peak integrated value at 34 ppm is B, and the peak integrated value at 23.5 ppm is C, the number of methyl side chains is A/ 2 (pieces/1000C), the number of ethyl side chains is B/2 (pieces/1000C), and the number of butyl side chains is C/2 (pieces/1000C).
(4)伸び応力
 本発明では以下のとおり、上記ISO規格と同じ「JIS K 6936-2:2007、プラスチック-超高分子量ポリエチレン(PE-UHMW)成型用および押出用材料-第2部:試験片の作り方および性質の求め方」附属書A(規定)超高分子量ポリエチレン成型材料の伸長応力の試験方法に、ほぼ準拠してプレス成型および伸長応力試験を行ない、ポリエチレン繊維の伸び応力を測定した。前述したとおりJIS K 6936-2:2007法と本発明との主な測定方法の違いは、担持を、クランプからチャックに変更すると共に、測定環境を液相(例えばシリコンオイル内など)から気相に変更した点である。
 具体的には、まず試料をアセトンで洗浄した後、次の条件でプレス成型し、シート状試験片を作製した。
 成型温度:210℃、予熱条件:5MPaで15分、全成型条件:10MPaで30分、平均冷却速度:15℃/分、成型品取出温度:40℃以下、使用試験機:大竹機械工業(株)製の電熱プレス機を使用
 得られた試験片を用いて次の条件で伸び応力を測定した。
 試験片はプレス成型品より切削加工(試験片形状はJIS K 6936-2:2007附属書A図3試験片を参照)、試験片数は6、掴み間距離は20mm、試験温度は150℃±2℃(気相中)、使用試験機は(株)島津製作所製、精密万能試験機オートグラフAG-I 100kN、試験機容量はロードセル式1kN、試験荷重は試験片の平行狭部の600%伸びに要する時間が1~20分間の範囲に入るよう、異なる重り6種にて荷重(単位はMPa)を負荷した。試験片6点の結果から、横軸に各測定時間(単位は分)、縦軸に各応力(単位はMPa)とし、10分で600%伸びに達する推定引張応力を算出し、算出された推定引張応力を伸び応力(単位はMPa)とした。
(4) Elongation stress In the present invention, as follows, the same as the above ISO standard "JIS K 6936-2: 2007, Plastics-Ultrahigh molecular weight polyethylene (PE-UHMW) molding and extrusion materials-Part 2: Test piece The elongation stress of the polyethylene fiber was measured by press molding and elongation stress test in almost accordance with the test method for elongation stress of ultra-high molecular weight polyethylene molding materials in Annex A (normative). As described above, the main difference between the JIS K 6936-2:2007 method and the present invention is that the carrier is changed from a clamp to a chuck, and the measurement environment is changed from a liquid phase (such as in silicon oil) to a gas phase. The point is that it was changed to
Specifically, the sample was first washed with acetone and then press-molded under the following conditions to prepare a sheet-like test piece.
Molding temperature: 210°C, preheating conditions: 5 MPa for 15 minutes, total molding conditions: 10 MPa for 30 minutes, average cooling rate: 15°C/minute, molded article removal temperature: 40°C or less, testing machine used: Ohtake Machine Industry Co., Ltd. ) was used. Using the obtained test piece, the elongation stress was measured under the following conditions.
The test piece is cut from a press molded product (see JIS K 6936-2: 2007 Annex A Fig. 3 test piece for the shape of the test piece), the number of test pieces is 6, the distance between grips is 20 mm, the test temperature is 150 ° C ± 2°C (in the gas phase), the tester used is a precision universal testing machine Autograph AG-I 100kN manufactured by Shimadzu Corporation, the capacity of the tester is a load cell type of 1kN, and the test load is 600% of the parallel narrow part of the test piece. A load (unit: MPa) was applied with six different weights so that the time required for elongation was in the range of 1 to 20 minutes. From the results of 6 test pieces, the horizontal axis is each measurement time (unit: minutes), the vertical axis is each stress (unit: MPa), and the estimated tensile stress that reaches 600% elongation in 10 minutes was calculated. The estimated tensile stress was taken as elongation stress (unit: MPa).
(5)繊度
 位置の異なる5箇所で試料を各々10mにカットしてその重量を測定し、5箇所の平均値を用いて繊度(dtex)を求めた。
(5) Fineness A sample was cut into 10 m lengths at five different locations, the weights were measured, and the fineness (dtex) was determined using the average value of the five locations.
(6)引張強度、初期弾性率、および破断伸度
 これらは、JIS L1013 8.5.1に準拠して測定した。
 具体的には、オリエンテック社製「テンシロン」を用いて、試料長200mm(チャック間長さ)、伸長速度100mm/分、雰囲気温度20℃、相対湿度65%条件下で歪-応力曲線を求め、得られた曲線の破断点での応力から引張強度(cN/dtex)を算出すると共に、伸びから破断伸度を算出した。
 また、得られた曲線の原点付近の最大勾配を与える接線から弾性率(cN/dtex)を算出した。
 これらは、測定回数を10回とし、その平均値で表した。なお測定時に試料に印加する初荷重は、試料10000m当たりの質量(g)の1/10とした。
 なお、ポリエチレン繊維(延伸マルチフィラメント)の引張強度、初期弾性率、および破断伸度は以下の基準で評価した。
 引張強度
  35cN/dtex以上:〇
  35cN/dtex未満:×
 初期弾性率
  950cN/dtex以上:〇
  950cN/dtex未満:×
 破断伸度
  4%以上:〇
  4%未満:×
(6) Tensile strength, initial elastic modulus, and elongation at break These were measured according to JIS L1013 8.5.1.
Specifically, using Orientec's "Tensilon", the strain-stress curve was obtained under the conditions of a sample length of 200 mm (length between chucks), an elongation rate of 100 mm / min, an ambient temperature of 20 ° C., and a relative humidity of 65%. , the tensile strength (cN/dtex) was calculated from the stress at the breaking point of the obtained curve, and the elongation at break was calculated from the elongation.
Also, the elastic modulus (cN/dtex) was calculated from the tangent line giving the maximum gradient near the origin of the obtained curve.
These were measured 10 times and expressed as the average value. The initial load applied to the sample during measurement was 1/10 of the mass (g) per 10,000 m of the sample.
The tensile strength, initial elastic modulus, and elongation at break of the polyethylene fiber (stretched multifilament) were evaluated according to the following criteria.
Tensile strength 35 cN / dtex or more: ○ Less than 35 cN / dtex: ×
Initial elastic modulus 950 cN/dtex or more: ○ Less than 950 cN/dtex: ×
Breaking elongation 4% or more: ○ Less than 4%: ×
(7)熱応力
 測定には、熱応力歪測定装置(セイコーインスツルメンツ社製、「TMA/SS120C」)を用いた。長さ20mmとなるようにサンプルを準備し、初荷重0.01764cN/dtexとし、室温(20℃)から融点まで昇温速度20℃/分で昇温して、熱収縮が最大となる熱応力とその温度を測定した。
(7) Thermal stress A thermal stress strain measuring device (manufactured by Seiko Instruments Inc., "TMA/SS120C") was used for the measurement. Prepare a sample to have a length of 20 mm, set the initial load to 0.01764 cN / dtex, heat up from room temperature (20 ° C.) to the melting point at a heating rate of 20 ° C./min, and thermal stress at which thermal shrinkage becomes maximum. and its temperature was measured.
(8)耐クリープ性
 クリープ測定は動的粘弾性測定装置(TAインスツルメント社製「DMA-Q800」)を用いて、試料長を10mm(チャック間長さ)、Preloadを0.10N、所定の測定温度(60℃、または140℃)、測定荷重を試料の繊度に対して6.6g/dtexの荷重を負荷、Soak timeを1.00min、Date sampling intervalを0.50s/ptの条件で試料が破断するまで測定した。
 測定後、測定データから試料の伸びε(t)[%単位]とクリープ速度τ[1/秒単位]、破断までの時間を次の方法で求めた。
 試料に荷重がかかり始めた時点での時間をt=0secとし、その時の試料長をL0とする。ある時刻tにおける試料長をL(t)とした場合、試料の伸びε(t)[%単位]は次のように示される。
  ε(t)[%単位]=(L(t)-L)×100/L
 クリープ速度τ[1/秒単位]は時間1秒刻みの試料の長さの変化と定義され、次のように示される。
 τ=(ε-εi-1)/(t-ti-1)×1/100
 試料が破断して測定が終了した時点での最終測定データの時間から試料に荷重がかかり始めた時点での測定データの時間を差し引いた時間をクリープ寿命とした。
 試料に荷重がかかり始めた時点(t=0sec)から試料が破断するまでの全測定データにおいて、上式でクリープ速度を算出し、最小値を測定した試料のクリープ速度とした。
(8) Creep resistance Creep measurement was performed using a dynamic viscoelasticity measuring device (TA Instruments "DMA-Q800") with a sample length of 10 mm (length between chucks) and a preload of 0.10 N. measurement temperature (60 ° C. or 140 ° C.), a load of 6.6 g / dtex for the fineness of the sample, a soak time of 1.00 min, and a date sampling interval of 0.50 s / pt. Measurements were taken until the sample broke.
After the measurement, the sample elongation ε i (t) [% unit], creep rate τ [1/sec unit], and the time until fracture were obtained from the measurement data by the following methods.
Let t 0 =0 sec be the time when the load starts to be applied to the sample, and L0 be the sample length at that time. When the sample length at a certain time t is L (t) , the sample elongation ε i (t) [in %] is expressed as follows.
ε i (t) [% unit] = (L (t) - L 0 ) x 100/L 0
The creep rate τ [in 1/sec] is defined as the change in length of the sample in 1 second steps of time and is given by:
τ i =(ε i −ε i−1 )/(t i −t i−1 )×1/100
The time obtained by subtracting the time of the measurement data when the load started to be applied to the sample from the time of the final measurement data when the sample was broken and the measurement was completed was defined as the creep life.
The creep rate was calculated by the above formula for all measurement data from the time when the load started to be applied to the sample (t 0 =0 sec) until the sample fractured, and the minimum value was taken as the creep rate of the measured sample.
(実施例1)
 チーグラー触媒の存在下でエチレン重合を行った平均分子量が異なる2種以上の超高分子量ポリエチレンを含む原料ポリエチレンを用いてポリエチレン繊維を作製した。
 具体的には、表1に示す超高分子量ポリエチレン(A)と、超高分子量ポリエチレン(B)と、デカヒドロナフタレン(デカリン)を、超高分子量ポリエチレン(A):超高分子量ポリエチレン(B):デカリン=2.9:6.1:91.0(重量比)で混合したスラリー状液体を得た。
 得られたスラリー状液体を、混合および搬送部を備えた二軸スクリュー押出機で溶解し、得られたポリエチレン溶液を紡糸口金から紡糸口金表面温度175℃で単孔吐出量3.0g/分で吐出した。紡糸口金に形成されたオリフィス数は16個であり、オリフィス直径は0.8mmであった。
 次に、吐出された糸状を引き取りつつ、ノズルと水面の距離を1.5cmとした20℃の水冷バスを用いて速度80.0m/minで引き取りながら糸状物を冷却し、16本の単糸からなる未延伸マルチフィラメント(ゲル糸)とした。連続して、該未延伸マルチフィラメントを110℃の熱風で乾燥しながら1.5倍に延伸し、さらに連続して140℃の熱風で2.7倍に延伸し、合計延伸倍率が4.0倍の第1延伸糸を得た。
 得られた第1延伸糸をさらに150℃の熱風で2.8倍に延伸し、延伸した状態で直ちに延伸マルチフィラメントを巻き取った。
 このようにして得られた延伸マルチフィラメントのエチル分岐数、伸び応力、伸び応力に対するエチル分岐数を表1に示す。
 また、延伸マルチフィラメントの繊度、引張強度、初期弾性率、破断伸度、耐クリープ性を測定した結果を表1に示す。
(Example 1)
A polyethylene fiber was produced using raw material polyethylene containing two or more types of ultrahigh molecular weight polyethylene having different average molecular weights, which was subjected to ethylene polymerization in the presence of a Ziegler catalyst.
Specifically, ultra high molecular weight polyethylene (A), ultra high molecular weight polyethylene (B), and decahydronaphthalene (decalin) shown in Table 1 are combined into ultra high molecular weight polyethylene (A): ultra high molecular weight polyethylene (B). : decalin = 2.9:6.1:91.0 (weight ratio) to obtain a slurry-like liquid.
The obtained slurry-like liquid was dissolved in a twin-screw extruder equipped with a mixing and conveying section, and the obtained polyethylene solution was extruded from a spinneret at a spinneret surface temperature of 175°C and a single hole discharge rate of 3.0 g/min. Dispensed. The number of orifices formed in the spinneret was 16 and the orifice diameter was 0.8 mm.
Next, while taking up the extruded filament, the filament was cooled at a speed of 80.0 m / min using a water cooling bath at 20 ° C. with a distance between the nozzle and the water surface of 1.5 cm, and 16 single yarns were obtained. An unstretched multifilament (gel yarn) consisting of Continuously, the undrawn multifilament was stretched 1.5 times while being dried with hot air at 110°C, and further stretched continuously by 2.7 times with hot air at 140°C, so that the total draw ratio was 4.0. A double first drawn yarn was obtained.
The obtained first drawn yarn was further drawn by 2.8 times with hot air at 150° C., and the drawn multifilament was immediately wound up in the drawn state.
Table 1 shows the number of ethyl branches of the thus obtained drawn multifilament, the elongation stress, and the number of ethyl branches with respect to the elongation stress.
Table 1 shows the results of measuring the fineness, tensile strength, initial elastic modulus, breaking elongation, and creep resistance of the drawn multifilament.
(実施例2)
 超高分子量ポリエチレン(A):超高分子量ポリエチレン(B):デカリン=3.4:5.6:91.0(重量比)で混合してスラリー状液体とし、また得られた第1延伸糸をさらに149℃の熱風で延伸した以外は実施例1と同様にして延伸マルチフィラメントを得た。測定結果を表1に示す。
(Example 2)
Ultra high molecular weight polyethylene (A): ultra high molecular weight polyethylene (B): decalin = 3.4: 5.6: 91.0 (weight ratio) to form a slurry liquid, and the obtained first drawn yarn A drawn multifilament was obtained in the same manner as in Example 1, except that the was further drawn with hot air at 149°C. Table 1 shows the measurement results.
(実施例3)
 超高分子量ポリエチレン(A)を変更すると共に、超高分子量ポリエチレン(A):超高分子量ポリエチレン(B):デカリン=4.0:5.0:91.0(重量比)で混合してスラリー状液体を得た以外は実施例1と同様にして延伸マルチフィラメントを得た。測定結果を表1に示す。
(Example 3)
While changing the ultra high molecular weight polyethylene (A), ultra high molecular weight polyethylene (A): ultra high molecular weight polyethylene (B): decalin = 4.0: 5.0: 91.0 (weight ratio) mixed to slurry A drawn multifilament was obtained in the same manner as in Example 1, except that a liquid was obtained. Table 1 shows the measurement results.
(比較例1)
 超高分子量ポリエチレン(A)を使用せず、超高分子量ポリエチレン(B):デカリン=9.0:91.0(重量比)で混合してスラリー状液体とし、また得られた第1延伸糸をさらに151℃の熱風で延伸した以外は実施例1と同様にして延伸マルチフィラメントを得た。測定結果を表1に示す。
(Comparative example 1)
Without using ultra high molecular weight polyethylene (A), ultra high molecular weight polyethylene (B): decalin = 9.0: 91.0 (weight ratio) mixed to form a slurry liquid, and the obtained first drawn yarn A drawn multifilament was obtained in the same manner as in Example 1, except that the was further drawn with hot air at 151°C. Table 1 shows the measurement results.
(比較例2)
 超高分子量ポリエチレン(B)を使用せず、超高分子量ポリエチレン(A):デカリン=9.0:91.0(重量比)で混合してスラリー状液体とし、また得られた第1延伸糸をさらに148℃の熱風で延伸した以外は実施例1と同様にして延伸マルチフィラメントを得た。測定結果を表1に示す。
(Comparative example 2)
Without using ultra high molecular weight polyethylene (B), ultra high molecular weight polyethylene (A): decalin = 9.0: 91.0 (weight ratio) mixed to form a slurry liquid, and the obtained first drawn yarn A drawn multifilament was obtained in the same manner as in Example 1, except that the was further drawn with hot air at 148°C. Table 1 shows the measurement results.
(比較例3)
 超高分子量ポリエチレン(A)、超高分子量ポリエチレン(B)を変更すると共に、超高分子量ポリエチレン(A):超高分子量ポリエチレン(B):デカリン=7.7:1.3:91.0(重量比)で混合してスラリー状液体とした。比較例3では実施例1と同様に得た第1延伸糸をさらに延伸ができなかったため、第1延伸糸での測定結果を表1に示す。
(Comparative Example 3)
Ultra high molecular weight polyethylene (A) and ultra high molecular weight polyethylene (B) are changed, and ultra high molecular weight polyethylene (A): ultra high molecular weight polyethylene (B): decalin = 7.7: 1.3: 91.0 ( weight ratio) to form a slurry liquid. In Comparative Example 3, since the first drawn yarn obtained in the same manner as in Example 1 could not be further drawn, Table 1 shows the measurement results for the first drawn yarn.
(比較例4)
 超高分子量ポリエチレン(A)、超高分子量ポリエチレン(B)を変更すると共に、超高分子量ポリエチレン(A):超高分子量ポリエチレン(B):デカリン=5.3:3.7:91.0(重量比)で混合してスラリー状液体とし、また得られた第1延伸糸をさらに145℃の熱風で延伸した以外は実施例1と同様にして延伸マルチフィラメントを得た。測定結果を表1に示す。
(Comparative Example 4)
Ultra high molecular weight polyethylene (A) and ultra high molecular weight polyethylene (B) are changed, and ultra high molecular weight polyethylene (A): ultra high molecular weight polyethylene (B): decalin = 5.3: 3.7: 91.0 ( A drawn multifilament was obtained in the same manner as in Example 1, except that the resulting first drawn yarn was further drawn with hot air at 145°C. Table 1 shows the measurement results.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示すように実施例1~3は、140℃クリープ性、および60℃クリープ性を満足した。
 比較例1はアルキル分岐数が0個/炭素原子1000個の例である。比較例1は140℃でも60℃でもクリープ速度が高く、140℃での成形加工性は良好である一方で、60℃での寸法安定性は劣る。
 比較例2はアルキル分岐数が0個/炭素原子1000個超、0.6個/炭素原子1000個未満の例である。比較例2は140℃でも60℃でもクリープ速度が遅く、60℃での寸法安定性は良好であったが、140℃での成形加工性は劣る。
 比較例3、4は、アルキル分岐数を1.4個/炭素原子1000個を超えて多くした例である。
 比較例3は140℃でも60℃でもクリープ破断寿命が短く、加熱成形性も寸法安定性も劣る。
 比較例4では140℃でも60℃でもクリープ速度が著しく高くなり、加熱成形性も寸法安定性も劣る。
As shown in Table 1, Examples 1 to 3 satisfied 140°C creep resistance and 60°C creep resistance.
Comparative Example 1 is an example in which the number of alkyl branches is 0/1000 carbon atoms. Comparative Example 1 has a high creep rate at both 140°C and 60°C, and good moldability at 140°C, but poor dimensional stability at 60°C.
Comparative Example 2 is an example in which the number of alkyl branches is more than 0/1000 carbon atoms and less than 0.6/1000 carbon atoms. In Comparative Example 2, the creep rate was slow at both 140°C and 60°C, and the dimensional stability at 60°C was good, but the moldability at 140°C was poor.
Comparative Examples 3 and 4 are examples in which the number of alkyl branches is increased to over 1.4/1000 carbon atoms.
Comparative Example 3 has a short creep rupture life at both 140° C. and 60° C., and is inferior in heat moldability and dimensional stability.
In Comparative Example 4, the creep rate is remarkably high at both 140° C. and 60° C., and both heat moldability and dimensional stability are inferior.

Claims (11)

  1.  極限粘度[η]が5.0dL/g以上、40.0dL/g以下、且つ
     繰り返し単位が90モル%以上のエチレンからなり、
     メチル基、エチル基、およびブチル基からなる群より選ばれる少なくとも1種のアルキル側鎖を含み、
     炭素原子1000個当たりの前記アルキル側鎖の数を意味するアルキル分岐数が0.6個/炭素原子1000個以上、1.4個/炭素原子1000個以下、
     である超高分子量ポリエチレン繊維。
    Made of ethylene having a limiting viscosity [η] of 5.0 dL/g or more and 40.0 dL/g or less and a repeating unit of 90 mol% or more,
    containing at least one alkyl side chain selected from the group consisting of a methyl group, an ethyl group, and a butyl group;
    the number of alkyl branches, which means the number of alkyl side chains per 1000 carbon atoms, is 0.6/1000 carbon atoms or more and 1.4/1000 carbon atoms or less;
    Ultra high molecular weight polyethylene fiber.
  2.  前記ポリエチレン繊維の伸び応力に対する前記アルキル分岐数の比が2~30個/炭素原子1000個/MPaであり、
     測定荷重が6.6g/dtexにおけるクリープ測定において、
     測定温度140℃におけるクリープ速度が2.0×10-3sec-1以上、且つ
     測定温度60℃におけるクリープ速度が4.0×10-7sec-1以下、
     である請求項1に記載の超高分子量ポリエチレン繊維。
    The ratio of the number of alkyl branches to the elongation stress of the polyethylene fiber is 2 to 30/1000 carbon atoms/MPa,
    In the creep measurement at a measurement load of 6.6 g / dtex,
    a creep rate of 2.0×10 −3 sec −1 or more at a measurement temperature of 140° C. and a creep rate of 4.0×10 −7 sec −1 or less at a measurement temperature of 60° C.,
    The ultra-high molecular weight polyethylene fiber according to claim 1.
  3.  測定荷重が6.6g/dtexにおけるクリープ測定において、
     測定温度140℃における破断までの時間が1.2分未満であり、且つ、
     測定温度60℃における破断までの時間が216時間以上、
     である請求項1または2に記載の超高分子量ポリエチレン繊維。
    In the creep measurement at a measurement load of 6.6 g / dtex,
    The time to rupture at a measurement temperature of 140 ° C. is less than 1.2 minutes, and
    The time to fracture at a measurement temperature of 60 ° C. is 216 hours or more,
    The ultra-high molecular weight polyethylene fiber according to claim 1 or 2.
  4.  熱応力測定において、
     120℃条件下の貯蔵弾性率に対する70℃条件下の貯蔵弾性率の比が、1.5以上である請求項1に記載のポリエチレン繊維。
    In thermal stress measurement,
    The polyethylene fiber according to claim 1, wherein the ratio of the storage modulus at 70°C to the storage modulus at 120°C is 1.5 or more.
  5.  前記ポリエチレン繊維が1本以上の単糸から構成されており、この単糸の引張強度が18cN/dtex以上、初期弾性率が500cN/dtex以上、破断伸度が3.0%以上である請求項1に記載の超高分子量ポリエチレン繊維。 The polyethylene fiber is composed of one or more single yarns, and the single yarn has a tensile strength of 18 cN/dtex or more, an initial elastic modulus of 500 cN/dtex or more, and a breaking elongation of 3.0% or more. 2. The ultra-high molecular weight polyethylene fiber according to 1.
  6.  数平均分子量に対する重量平均分子量の比が4.0以上である請求項1に記載の超高分子量ポリエチレン繊維。 The ultra-high molecular weight polyethylene fiber according to claim 1, wherein the ratio of weight average molecular weight to number average molecular weight is 4.0 or more.
  7.  請求項1に記載の超高分子量ポリエチレン繊維を含む撚糸。 A twisted yarn containing the ultra-high molecular weight polyethylene fiber according to claim 1.
  8.  請求項1に記載の超高分子量ポリエチレン繊維を含む組紐。 A braid containing the ultra-high molecular weight polyethylene fiber according to claim 1.
  9.  請求項1に記載の超高分子量ポリエチレン繊維を含むロープ。 A rope containing the ultra-high molecular weight polyethylene fiber according to claim 1.
  10.  洋上の浮体構造物の係留に用いるものである請求項9に記載のロープ。 The rope according to claim 9, which is used for mooring a floating structure on the ocean.
  11.  溶解工程、紡糸工程、延伸工程を経て得られる超高分子量ポリエチレン繊維の製造方法であって、
     前記溶解工程は、
     極限粘度[η]が5.0dL/g以上、40.0dL/g以下、且つ
     繰り返し単位が90モル%以上のエチレンからなり、
     メチル基、エチル基、およびブチル基からなる群より選ばれる少なくとも1種のアルキル側鎖を含み、
     炭素原子1000個当たりの前記アルキル側鎖の数を意味するアルキル分岐数が0.6個/炭素原子1000個以上、1.4個/炭素原子1000個以下を有するポリエチレンを溶媒に溶解させる工程であり、
     前記紡糸工程は、
     得られたポリエチレン溶液を、該ポリエチレンの融点よりも15℃以上高い温度で、紡糸ノズルを用いて吐出させた後、60℃以下に冷却する工程であり、
     前記延伸工程は、
     得られたポリエチレン糸を1回以上延伸すると共に、
     最後の延伸時の延伸温度を140℃以上、155℃未満、延伸時間を2分間以上、8分間以内、延伸時の糸に係る張力を1.5cN/dtex以上、8cN/dtex以下とする工程である。
    A method for producing ultra-high molecular weight polyethylene fibers obtained through a dissolution process, a spinning process, and a drawing process,
    The dissolving step includes
    Made of ethylene having a limiting viscosity [η] of 5.0 dL/g or more and 40.0 dL/g or less and a repeating unit of 90 mol% or more,
    containing at least one alkyl side chain selected from the group consisting of a methyl group, an ethyl group, and a butyl group;
    A step of dissolving polyethylene having an alkyl branch number of 0.6/1000 carbon atoms or more and 1.4/1000 carbon atoms or less, which means the number of alkyl side chains per 1000 carbon atoms, in a solvent. can be,
    The spinning process is
    A step of discharging the obtained polyethylene solution from a spinning nozzle at a temperature 15° C. or more higher than the melting point of the polyethylene, and then cooling it to 60° C. or less,
    The stretching step is
    While drawing the obtained polyethylene yarn one or more times,
    In the step of setting the drawing temperature at the final drawing to 140° C. or more and less than 155° C., the drawing time at 2 minutes or more and 8 minutes or less, and the tension of the yarn at the time of drawing at 1.5 cN/dtex or more and 8 cN/dtex or less. be.
PCT/JP2022/048170 2021-12-27 2022-12-27 Ultra-high molecular weight polyethylene fiber WO2023127876A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-212367 2021-12-27
JP2021212367 2021-12-27

Publications (1)

Publication Number Publication Date
WO2023127876A1 true WO2023127876A1 (en) 2023-07-06

Family

ID=86999066

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/048170 WO2023127876A1 (en) 2021-12-27 2022-12-27 Ultra-high molecular weight polyethylene fiber

Country Status (2)

Country Link
TW (1) TW202336312A (en)
WO (1) WO2023127876A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61289111A (en) * 1985-06-17 1986-12-19 アライド・コ−ポレ−シヨン Polyolefin molded product and its production
JPH03279413A (en) * 1989-12-07 1991-12-10 Mitsui Petrochem Ind Ltd Molecularly oriented molded body of high-molecular weight polyethylene
WO2016002598A1 (en) * 2014-07-03 2016-01-07 東洋紡株式会社 Highly functional multifilament
JP2016524658A (en) * 2013-05-23 2016-08-18 ディーエスエム アイピー アセッツ ビー.ブイ. UHMWPE fiber
JP2019090136A (en) * 2017-11-15 2019-06-13 旭化成株式会社 Ultrahigh-molecular weight polyethylene fiber
WO2020230809A1 (en) * 2019-05-14 2020-11-19 東洋紡株式会社 Polyethylene fibre

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61289111A (en) * 1985-06-17 1986-12-19 アライド・コ−ポレ−シヨン Polyolefin molded product and its production
JPH03279413A (en) * 1989-12-07 1991-12-10 Mitsui Petrochem Ind Ltd Molecularly oriented molded body of high-molecular weight polyethylene
JP2016524658A (en) * 2013-05-23 2016-08-18 ディーエスエム アイピー アセッツ ビー.ブイ. UHMWPE fiber
WO2016002598A1 (en) * 2014-07-03 2016-01-07 東洋紡株式会社 Highly functional multifilament
JP2019090136A (en) * 2017-11-15 2019-06-13 旭化成株式会社 Ultrahigh-molecular weight polyethylene fiber
WO2020230809A1 (en) * 2019-05-14 2020-11-19 東洋紡株式会社 Polyethylene fibre

Also Published As

Publication number Publication date
TW202336312A (en) 2023-09-16

Similar Documents

Publication Publication Date Title
US10087560B2 (en) Braid
KR101363813B1 (en) Polyethylene fiber and method for production thereof
JP6760062B2 (en) High-performance multifilament
JP2004293030A (en) Net comprising high strength polyethylene fiber
US10287711B2 (en) Multifilament and braid
TW200909621A (en) High strength polyethylene fiber, its precursor and method of manufacturing the same with high productivity
JP7306375B2 (en) Polyethylene fiber and products using it
WO2020230809A1 (en) Polyethylene fibre
JP3734077B2 (en) High strength polyethylene fiber
WO2020065842A1 (en) Polyethylene fiber and product employing same
KR102224257B1 (en) Multifilament and braid
JP6996555B2 (en) Polyethylene fiber and products using it
WO2023127876A1 (en) Ultra-high molecular weight polyethylene fiber
JP7358774B2 (en) polyethylene fiber
JP7176517B2 (en) Multifilament and its constituent monofilaments
JP2021070902A (en) Polyethylene fibers
JP5696809B1 (en) Multifilament
JP7358775B2 (en) polyethylene fiber
JP2020114955A (en) Polyethylene filament excellent in knot strength retention
JP5696808B1 (en) Multifilament

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22916098

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023571052

Country of ref document: JP