WO2023127855A1 - Cyclopentenone derivative and method for producing same - Google Patents

Cyclopentenone derivative and method for producing same Download PDF

Info

Publication number
WO2023127855A1
WO2023127855A1 PCT/JP2022/048119 JP2022048119W WO2023127855A1 WO 2023127855 A1 WO2023127855 A1 WO 2023127855A1 JP 2022048119 W JP2022048119 W JP 2022048119W WO 2023127855 A1 WO2023127855 A1 WO 2023127855A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
general formula
compound
optionally substituted
compound represented
Prior art date
Application number
PCT/JP2022/048119
Other languages
French (fr)
Japanese (ja)
Inventor
重信 青柳
亮 山田
Original Assignee
大内新興化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大内新興化学工業株式会社 filed Critical 大内新興化学工業株式会社
Publication of WO2023127855A1 publication Critical patent/WO2023127855A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C315/00Preparation of sulfones; Preparation of sulfoxides
    • C07C315/04Preparation of sulfones; Preparation of sulfoxides by reactions not involving the formation of sulfone or sulfoxide groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C317/00Sulfones; Sulfoxides
    • C07C317/16Sulfones; Sulfoxides having sulfone or sulfoxide groups and singly-bound oxygen atoms bound to the same carbon skeleton
    • C07C317/18Sulfones; Sulfoxides having sulfone or sulfoxide groups and singly-bound oxygen atoms bound to the same carbon skeleton with sulfone or sulfoxide groups bound to acyclic carbon atoms of the carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C405/00Compounds containing a five-membered ring having two side-chains in ortho position to each other, and having oxygen atoms directly attached to the ring in ortho position to one of the side-chains, one side-chain containing, not directly attached to the ring, a carbon atom having three bonds to hetero atoms with at the most one bond to halogen, and the other side-chain having oxygen atoms attached in gamma-position to the ring, e.g. prostaglandins ; Analogues or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/61Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups
    • C07C45/64Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by introduction of functional groups containing oxygen only in singly bound form
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C49/00Ketones; Ketenes; Dimeric ketenes; Ketonic chelates
    • C07C49/587Unsaturated compounds containing a keto groups being part of a ring
    • C07C49/703Unsaturated compounds containing a keto groups being part of a ring containing hydroxy groups
    • C07C49/707Unsaturated compounds containing a keto groups being part of a ring containing hydroxy groups a keto group being part of a three- to five-membered ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/14Preparation of carboxylic acid esters from carboxylic acid halides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/62Halogen-containing esters
    • C07C69/63Halogen-containing esters of saturated acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D295/00Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms
    • C07D295/22Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with hetero atoms directly attached to ring nitrogen atoms
    • C07D295/26Sulfur atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/18Compounds having one or more C—Si linkages as well as one or more C—O—Si linkages
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Definitions

  • the present disclosure relates to cyclopentenone derivatives and methods for producing the same.
  • a method using an optically active cyclopentenone derivative as a chiral building building block has been previously reported as a synthetic scheme for prostaglandins.
  • a synthetic scheme for prostaglandins For example, as in Scheme 1, to (4R)-4-hydroxy-2-(dialkylaminomethyl)-2-cyclopenten-1-one in which the 4-position hydroxyl group is protected, an ⁇ side chain linker is conjugated and added to the ⁇ side.
  • a method of synthesizing a prostaglandin by introducing a chain and then conjugating an ⁇ side chain linker to the resulting endoenone to introduce an ⁇ side chain is known as a two-component ligation method (Patent Document 1).
  • 4-silyloxy-2-(diethylaminomethyl)-2-cyclopenten-1-one which is the chiral building block in the two-component ligation method, can be prepared from 3-hydroxy-1,4-pentadiene as shown in Scheme 2. It is obtained through optical resolution by asymmetric epoxidation (Non-Patent Document 1). However, the manufacturing method requires multiple steps and cannot be said to be efficient.
  • 4-hydroxy-2-hydroxymethyl-2-cyclopentenone was synthesized by hydrothermal reaction of D-glucal, optically resolved by high-performance liquid chromatography, and treated with lipase derived from porcine pancreas.
  • a method is known for synthesizing optically active 4-silyloxy-2-diethylaminomethyl-2-cyclopentenone by acetylating the hydroxymethyl group at the 4-position, sequentially silyl-protecting the hydroxyl group at the 4-position, and reacting with diethylamine.
  • Patent Document 2 the racemic form of 4-hydroxy-2-hydroxymethyl-2-cyclopentenone must be optically resolved by high-performance liquid chromatography, which is extremely inefficient.
  • 4-hydroxy-2-hydroxymethyl-2-cyclopentenone which is a raw material for the production method of Scheme 3, can be obtained by solvolysis of 2-deoxy-D-glucose or triacetylglucal as shown in Scheme 4. It can be obtained by heating the resulting aqueous solution of D-glucal in a closed container (Patent Documents 3 and 4).
  • Furandiol has been isolated as a hydrothermal intermediate (Non-Patent Documents 2, 3), and it is known that this reaction involves a Piancatelli rearrangement reaction via furandiol (Non-Patent Documents 4, 5). Therefore, the optical activity derived from glucal is lost in the course of the reaction, and the chiral pool method cannot be applied.
  • Patent Document 1 discloses that an ⁇ side chain linker is conjugated to (4R)-4-hydroxy-2-(diethylaminomethyl)-2-cyclopenten-1-one.
  • a two-component ligation method is disclosed in which an ⁇ side chain is introduced and then an ⁇ side chain linker is conjugated to the resulting endoenone to introduce the ⁇ side chain and synthesize a prostaglandin.
  • a specific two-component ligation method shown in Patent Document 1 is as shown in Scheme 5.
  • the two-component ligation method requires high purity in the production of drug substances, but conventional chiral building blocks are liquid and cannot be purified by recrystallization, requiring purification by column chromatography, which is not efficient for industrial production. I can't say
  • the present inventors produced a specific raw material compound having a cyclopentenone skeleton, and further derivatized by enzymatic hydrolysis of the raw material compound, thereby efficiently producing prostaglandins. It has been found that a cyclopentenone derivative that can be used as a useful synthetic intermediate or chiral building block for the production of cyclopentenone can be efficiently produced.
  • the present disclosure is based on such findings.
  • one object of the present disclosure is to provide a synthetic intermediate useful for efficient production of prostaglandin and a production method using the same.
  • R 1 is an optionally substituted aliphatic hydrocarbon group, or an optionally substituted aliphatic hydrocarbon group and aromatic hydrocarbon ring group indicates a functional group formed by combining
  • a compound represented by the following general formula (II) or an optically active substance thereof is provided.
  • R 2 and R 3 are bonded to each other to form a ring structure together with the nitrogen atom to which they are bonded.
  • a compound represented by the following general formula (III) or an optically active substance thereof is provided.
  • R 2 and R 3 are bonded to each other to form a ring structure together with the nitrogen atom to which they are bonded
  • R 4 represents an optionally substituted aliphatic hydrocarbon group or an optionally substituted aromatic hydrocarbon ring group.
  • a compound represented by the following general formula (IV) or an optically active substance thereof is provided.
  • R 2 and R 3 form a ring structure together with the nitrogen atom to which they are attached, W represents a —SiR 5 R 6 R 7 group, an optionally substituted benzyl group or an acetal-type protecting group;
  • R 5, R 6 and R 7 each independently represent an optionally substituted aliphatic hydrocarbon group, an optionally substituted aromatic hydrocarbon cyclic group, or a substituent A functional group formed by combining an aliphatic hydrocarbon group and an aromatic hydrocarbon ring group, which may be present.
  • an intermediate for producing a prostaglandin or an optically active substance thereof which consists of a compound of any one of the above general formulas (I) to (IV).
  • a step of heating and refluxing the compound represented by general formula (b) in the presence of water to obtain the compound represented by general formula (I) comprises: Methods are provided for preparing compounds represented by general formula (I). (In the general formulas (b) and (I), R 1 is an optionally substituted aliphatic hydrocarbon group, or an optionally substituted aliphatic hydrocarbon group and an aromatic Indicates a functional group formed by combining hydrocarbon ring groups.)
  • the compound represented by the general formula (I) is heated under reflux in the presence of water to obtain the compound represented by the general formula (V).
  • a method for producing a compound represented by general formula (V) is provided.
  • R 1 is an optionally substituted aliphatic hydrocarbon group, or an optionally substituted aliphatic hydrocarbon group and aromatic hydrocarbon ring group indicates a functional group formed by combining
  • the compound represented by the general formula (I) is reacted with the compound represented by the general formula (c) to obtain the compound represented by the general formula (II)
  • the compound represented by the general formula (II) is reacted with the compound represented by the general formula (d) to obtain the compound represented by the general formula (III)
  • a method for preparing a compound represented by general formula (III) comprising the steps of: (In general formulas (II) and (III), R 2 and R 3 are bonded to each other to form a ring structure together with the nitrogen atom to which they are bonded,
  • R 4 is an optionally substituted aliphatic hydrocarbon group, an optionally substituted aromatic hydrocarbon cyclic group, or a substituent represents a functional group formed by combining an aliphatic hydrocarbon group and an aromatic hydrocarbon ring group, which may have X is F, Cl, Br or I in general formula (3c).
  • the compound represented by the formula (V) and the compound represented by the general formula (d) are reacted under basic conditions to obtain the compound represented by the general formula (VI).
  • a method of making a compound represented by general formula (VI) comprising the step of obtaining the compound (In general formulas (d) and (VI), R 4 is an optionally substituted aliphatic hydrocarbon group, an optionally substituted aromatic hydrocarbon ring group, or a substituent A functional group formed by combining an aliphatic hydrocarbon group and an aromatic hydrocarbon ring group, which may have X is F, Cl, Br or I in general formula (d). )
  • the compound represented by the formula (VI) and the compound represented by the general formula (c) are reacted under basic conditions to obtain the compound represented by the general formula (III).
  • a method of making a compound represented by general formula (III) comprising the step of obtaining a compound
  • R 2 and R 3 form a ring structure together with the nitrogen atom to which they are attached
  • R 4 is an optionally substituted aliphatic hydrocarbon group, an optionally substituted aromatic hydrocarbon cyclic group, or a substituent A functional group formed by combining an aliphatic hydrocarbon group and an aromatic hydrocarbon ring group, which may be present.
  • the compound represented by the general formula (III) is optically resolved using a hydrolase to obtain an optically active form of the compound represented by the general formula (II) (Manufacture of an optically active form (R form) of a compound represented by general formula (II), comprising a step of obtaining an optically active form (S form) of a compound represented by general formula (III). A method is provided.
  • R 2 and R 3 form a ring structure together with the nitrogen atom to which they are attached
  • R 4 is an optionally substituted aliphatic hydrocarbon group, an optionally substituted aromatic hydrocarbon ring group, or a substituted A functional group formed by combining an aliphatic hydrocarbon group and an aromatic hydrocarbon ring group.
  • the optically active form (S form) of the compound represented by general formula (III) is solvolyzed to obtain the optical activity of the compound represented by general formula (II).
  • R 2 and R 3 form a ring structure together with the nitrogen atom to which they are attached
  • R 4 is an optionally substituted aliphatic hydrocarbon group, an optionally substituted aromatic hydrocarbon ring group, or a substituted A functional group formed by combining an aliphatic hydrocarbon group and an aromatic hydrocarbon ring group.
  • the optically active form (S form) of the compound represented by general formula (II) is converted to the optically active form of the compound represented by general formula (II) through a Mitsunobu reaction.
  • R 2 and R 3 form a ring structure together with the nitrogen atom to which they are attached.
  • the optically active form (R form) of the compound represented by general formula (II) is reacted with a protective group-introducing agent to obtain the compound represented by general formula (IV).
  • a method for producing an optically active form (R form) of the compound represented by general formula (IV) comprising a step of obtaining an optically active form (R form) of the compound.
  • R 2 and R 3 form a ring structure together with the nitrogen atom to which they are attached,
  • W represents a —SiR 5 R 6 R 7 group, an optionally substituted benzyl group or an acetal-type protecting group;
  • R 5 , R 6 and R 7 each independently represent an optionally substituted aliphatic hydrocarbon group, an optionally substituted aromatic hydrocarbon cyclic group, or a substituent A functional group formed by combining an aliphatic hydrocarbon group and an aromatic hydrocarbon ring group, which may be present.
  • prostaglandin or an intermediate for producing an optically active substance thereof represented by the general formula (I), (II), (III) or (IV) A use of the compound or an optically active form thereof is provided.
  • the present disclosure it is possible to provide a cyclopentenone derivative that can be used as a useful synthetic intermediate or chiral building block for producing prostaglandins, and a method for producing the same.
  • the cyclopentenone derivative can efficiently produce prostaglandins by using synthetic intermediates, which is advantageous in terms of industrial production.
  • the cyclopentenone derivative can be produced from inexpensive raw materials such as furfural and dimethylsulfoxide, which is advantageous in reducing production costs.
  • the reaction of the sulfoxide compound can be carried out in the presence of water under heating and reflux conditions for a short period of time to consume the sulfoxide compound, which is advantageous for industrial production.
  • the method of the present disclosure there is no need to undergo a reaction step under closed conditions and pressurized conditions, which is advantageous in terms of reducing facility costs.
  • alkyl group also applies to functional groups that include “alkyl” or “alkyl groups” (eg, arylalkyl groups, etc.).
  • C 1 -C 6 means having 1 to 6 carbon atoms.
  • Aliphatic hydrocarbon group means a functional group (hydrocarbon group without aromaticity) generated by removing a hydrogen atom from an aliphatic hydrocarbon.
  • An "aliphatic hydrocarbon group” can mean a monovalent or divalent functional group, depending on the context, but is preferably a monovalent functional group.
  • the aliphatic hydrocarbon group may be linear, cyclic, or a combination thereof.
  • the chain may be linear or branched.
  • Aliphatic hydrocarbon groups are preferably linear or branched.
  • Aliphatic hydrocarbon groups may be saturated or unsaturated. The unsaturated bond may be a carbon-carbon double bond or a carbon-carbon triple bond.
  • aliphatic hydrocarbon groups examples include alkyl groups, alkenyl groups, and alkynyl groups.
  • Alkyl group means a monovalent functional group generated by removing one hydrogen atom from an alkane.
  • Alkyl groups may be linear, cyclic, or combinations thereof.
  • a cyclic alkyl group is synonymous with a "cycloalkyl group”.
  • the chain may be linear or branched.
  • Alkyl groups are preferably straight-chain or branched.
  • the linear alkyl group usually has 1 to 20 carbon atoms, preferably 1 to 10 carbon atoms, more preferably 1 to 8 carbon atoms, still more preferably 1 to 6 carbon atoms, still more preferably 1 to 4 carbon atoms, More preferably 1 to 3.
  • the branched-chain alkyl group usually has 3 to 20 carbon atoms, preferably 3 to 10 carbon atoms, more preferably 3 to 8 carbon atoms, still more preferably 3 to 6 carbon atoms, and still more preferably 3 to 4 carbon atoms. be.
  • the number of carbon atoms in the cyclic alkyl group is generally 3-20, preferably 3-10, more preferably 3-8, and still more preferably 3-6.
  • the number of carbon atoms in the alkyl group having a linear or branched chain portion and a cyclic portion is usually 4 to 20, preferably 4 to 10, more preferably 4 to 8, still more preferably 4 to 6. is.
  • alkyl groups include C 1 to C 6 alkyl groups such as methyl group, ethyl group, propyl group, isopropyl group, butyl group, sec-butyl group, isobutyl group, pentyl group and hexyl group; methylhexyl group, 5-methylhexyl group, 1,1-dimethylpentyl group, 2,2-dimethylpentyl group, 4,4-dimethylpentyl group, 1-ethylpentyl group, 2-ethylpentyl group, 1,1, 3-trimethylbutyl group, 1,2,2-trimethylbutyl group, 1,3,3-trimethylbutyl group, 2,2,3-trimethylbutyl group, 2,3,3-trimethylbutyl group, 1-propylbutyl group, 1,1,2,2-tetramethylpropyl group, octyl group, 1-methylheptyl group, 3-methylheptyl group, 6-methylheptyl group, 2-e
  • C 1 -C 6 alkyl groups are preferred.
  • Preferred examples of C 1 -C 6 alkyl groups are linear or branched moieties such as methyl, ethyl, propyl, isopropyl, butyl, sec-butyl, isobutyl, pentyl or hexyl groups. and an alkyl group having a cyclic moiety, preferably methyl group, ethyl group, propyl group, isopropyl group, butyl group, sec-butyl group, isobutyl group, pentyl group or hexyl group.
  • Alkenyl group means a monovalent functional group generated by removing one hydrogen atom from an alkene. Alkenyl groups have at least one carbon-carbon double bond. Alkenyl groups may be linear, cyclic, or combinations thereof. A cyclic alkenyl group is synonymous with a "cycloalkenyl group".
  • the chain may be linear or branched. Alkenyl groups are preferably straight-chain or branched. The straight-chain alkenyl group usually has 2 to 20 carbon atoms, preferably 2 to 10 carbon atoms, more preferably 2 to 8 carbon atoms, still more preferably 2 to 6 carbon atoms, and still more preferably 2 to 4 carbon atoms. be.
  • the branched alkenyl group usually has 3 to 20 carbon atoms, preferably 3 to 10 carbon atoms, more preferably 3 to 8 carbon atoms, still more preferably 3 to 6 carbon atoms, and still more preferably 3 to 4 carbon atoms.
  • the number of carbon atoms in the cyclic alkenyl group is generally 3-20, preferably 3-10, more preferably 3-8, and still more preferably 3-6.
  • the alkenyl group having a linear or branched chain portion and a cyclic portion usually has 4 to 20 carbon atoms, preferably 4 to 10 carbon atoms, more preferably 4 to 8 carbon atoms, and still more preferably 4 to 6 carbon atoms. is.
  • the number of double bonds in the alkenyl group is generally 1-9, preferably 1-7, more preferably 1-4, and still more preferably 1-3.
  • alkenyl groups include vinyl group, 2-propenyl group, 3-butenyl group, 2-butenyl group, 4-pentenyl group, 3-pentenyl group, 2-hexenyl group, 3-hexenyl group, 2-heptenyl group, Linear or branched alkenyl groups such as 3-heptenyl group, 4-heptenyl group, 3-octenyl group, 3-nonenyl group, 4-decenyl group; cyclopropenyl group, cyclobutenyl group, cyclopentenyl group, cyclohexenyl Cyclic alkenyl groups such as groups, cycloheptenyl groups, and cyclooctenyl groups; straight-chain or branched-chain moieties and cyclic Examples include alkenyl groups having moieties and the like.
  • Alkynyl group means a monovalent functional group generated by removing one hydrogen atom from alkyne. Alkynyl groups have at least one carbon-carbon triple bond. Alkynyl groups may be linear, cyclic, or combinations thereof. A cyclic alkynyl group is synonymous with a "cycloalkynyl group". The chain may be linear or branched. Alkynyl groups are preferably straight-chain or branched. The straight-chain alkynyl group usually has 2 to 20 carbon atoms, preferably 2 to 10 carbon atoms, more preferably 2 to 8 carbon atoms, still more preferably 2 to 6 carbon atoms, and still more preferably 2 to 4 carbon atoms. be.
  • the branched alkynyl group usually has 4 to 20 carbon atoms, preferably 4 to 10 carbon atoms, more preferably 4 to 8 carbon atoms, and still more preferably 3 to 6 carbon atoms.
  • the cyclic alkynyl group usually has 4 to 20 carbon atoms, preferably 4 to 10 carbon atoms, more preferably 4 to 8 carbon atoms, and still more preferably 4 to 6 carbon atoms.
  • the alkynyl group having a linear or branched chain portion and a cyclic portion usually has 5 to 20 carbon atoms, preferably 5 to 10 carbon atoms, more preferably 5 to 8 carbon atoms, and still more preferably 5 to 6 carbon atoms. is.
  • the number of triple bonds in the alkynyl group is generally 1-9, preferably 1-7, more preferably 1-4, and still more preferably 1-3.
  • alkynyl groups include 2-propynyl, 3-butynyl, 2-butynyl, 4-pentynyl, 3-pentynyl, 2-hexynyl, 3-hexynyl, 2-heptynyl and 3-heptynyl groups.
  • linear or branched alkynyl groups such as groups, 4-heptynyl groups, 3-octynyl groups, 3-nonynyl groups and 4-decynyl groups; cyclic groups such as cyclobutynyl groups, cyclopentynyl groups, cycloheptynyl groups and cyclooctynyl groups alkynyl group; cyclopentynylmethyl group, cyclopentenylethyl group, cyclopentynylpropyl group, cyclopentynylmethyl group, cyclopentynylethyl group, etc. Alkynyl group having a linear or branched chain portion and a cyclic portion etc.
  • Aromatic hydrocarbon ring group means a functional group generated by removing a hydrogen atom from an aromatic hydrocarbon ring.
  • An "aromatic hydrocarbon ring group” can mean a monovalent or divalent functional group, depending on the context, but is preferably a monovalent functional group.
  • aromatic hydrocarbon ring groups examples include aryl groups.
  • Aryl group means a monocyclic or polycyclic (eg, bicyclic or tricyclic) aromatic hydrocarbon ring group.
  • the aryl group is generally a 1- to 4-ring, preferably 1- to 3-ring, more preferably 1- or 2-ring aromatic hydrocarbon ring group.
  • the number of ring-constituting carbon atoms in the aryl group is generally 6-18, preferably 6-14, more preferably 6-10.
  • Examples of the monocyclic aromatic hydrocarbon ring group include a phenyl group.
  • Aryl groups also include condensed polycyclic aromatic hydrocarbon ring groups and partially saturated condensed polycyclic aromatic hydrocarbon ring groups.
  • a partially saturated condensed polycyclic aromatic hydrocarbon ring group is a condensed polycyclic aromatic hydrocarbon ring group in which some of the bonds constituting the ring are hydrogenated.
  • Examples of condensed polycyclic aromatic hydrocarbon ring groups include, for example, bi- to tetracyclic aromatic hydrocarbon ring groups such as naphthyl group, anthryl group, phenanthrenyl group, tetracenyl group, pyrenyl group, and fluorenyl group. , an indenyl group, acenaphthylenyl, etc., preferably.
  • Partially saturated condensed polycyclic aromatic hydrocarbon ring groups include, for example, a dihydronaphthyl group, an indanyl group, and an acenaphthenyl group.
  • the aryl group is preferably a monocyclic or bicyclic aromatic hydrocarbon group, more preferably an aryl group having 6 to 10 carbon atoms such as a phenyl group and a naphthyl group.
  • a phenyl group is more preferred.
  • “Functional group formed by combining an aliphatic hydrocarbon group and an aromatic hydrocarbon ring group” is represented by the formula: (*) - aliphatic hydrocarbon group - aromatic hydrocarbon ring group, or the formula: (*) - Aromatic hydrocarbon ring group - Aliphatic hydrocarbon group. (*) represents a bond of an organic group including a functional group formed by combining an aliphatic hydrocarbon group and an aromatic hydrocarbon ring group.
  • Examples of functional groups represented by the formula: (*)-aliphatic hydrocarbon group-aromatic hydrocarbon ring group include alkylaryl groups, alkenylaryl groups, and alkynylaryl groups.
  • alkylaryl groups alkenylaryl groups
  • alkynylaryl groups alkynylaryl groups
  • alkyl group, alkenyl group, alkynyl group and aryl group in the "alkylaryl group", “alkenylaryl group” and “alkynylaryl group” are the same as above.
  • the number of alkyl groups in an alkylaryl group, the number of alkenyl groups in an alkenylaryl group, and the number of alkynyl groups in an alkynylaryl group are generally 1 to 4, preferably 1 to 3, more preferably 1 to 2. .
  • alkylaryl groups include o-toluyl, m-toluyl, p-toluyl, 2,3-dimethylphenyl, 2,4-dimethylphenyl, 2,5-dimethylphenyl, 2,6-dimethylphenyl, 3, 4-dimethylphenyl, 3,5-dimethylphenyl, 2,4,6-trimethylphenyl, o-ethylphenyl, m-ethylphenyl, p-ethylphenyl and the like.
  • alkenylaryl groups include alkenylaryl groups such as o-styryl, m-styryl and p-styryl.
  • alkynylaryl groups include alkynylaryl groups such as 2-ethynyl-2-phenyl.
  • Examples of functional groups represented by the formula: (*)-aromatic hydrocarbon ring group-aliphatic hydrocarbon group include arylalkyl groups, arylalkenyl groups, and arylalkynyl groups.
  • the descriptions of the alkyl group, alkenyl group, alkynyl group and aryl group in the "arylalkyl group”, “arylalkenyl group” and “arylalkynyl group” are the same as above.
  • Arylalkyl groups include, for example, alkyl groups substituted with aryl groups such as phenyl, naphthyl, anthryl, phenanthryl and acenaphthylenyl, preferably benzyl, 2-phenylethyl, 3-phenylpropyl, 2 -phenylpropyl group, 1-phenylpropyl group, ⁇ -naphthylmethyl group, ⁇ -naphthylethyl group, ⁇ -naphthylmethyl group, ⁇ -naphthylethyl group, diphenylmethyl group, triphenylmethyl group and the like, more preferably It is a triphenylmethyl group.
  • the number of carbon atoms in the arylalkenyl group is usually 8-16, preferably 8-12.
  • the aralkenyl group includes, for example, 2-phenethenyl group, 2-nephthylethenyl group and the like.
  • the number of carbon atoms in the arylalkynyl group is usually 8-16, preferably 8-12.
  • the aralkynyl group includes, for example, a phenylethynyl group.
  • the number of substituents that the aliphatic hydrocarbon group can have can be appropriately determined according to the number of carbon atoms in the aliphatic hydrocarbon group.
  • the aliphatic hydrocarbon group can have, for example, 1 to 6, preferably 1 to 3, more preferably 1 or 2 substituents at substitutable positions.
  • the hydrocarbon group has two or more substituents, the two or more substituents may be the same or different.
  • the number of substituents that the alkyl group may have is usually 1 to 3, preferably 1 or 2, more preferably 1.
  • the number of substituents that the alkyl group may have is usually 1 to 6, preferably 1 to 5, more preferably 1 to 4, and still more preferably. is 1 or 2.
  • the number of carbon atoms in the alkyl group is 10 or more, the number of substituents that the alkyl group may have is usually 1 to 9, preferably 1 to 5, more preferably 1 to 4, still more preferably is 1 or 2.
  • the number of substituents that the alkynyl group may have is usually 1 to 3, preferably 1 or 2, more preferably 1.
  • the number of substituents that the alkynyl group may have is usually 1 to 5, preferably 1 to 4, more preferably 1 to 3, and more preferably 1 to 3.
  • One or two is preferred.
  • the number of substituents that the alkynyl group may have is usually 1 to 8, preferably 1 to 4, still more preferably 1 to 3, still more preferably is 1 or 2.
  • the number of substituents that the aromatic hydrocarbon ring group can have can be appropriately determined according to the number of carbon atoms, the number of members, etc. of the aromatic hydrocarbon ring group.
  • the aromatic hydrocarbon ring group can have, for example, 1 to 5, preferably 1 to 4, more preferably 1 to 3, still more preferably 1 or 2 substituents at substitutable positions. .
  • the aromatic hydrocarbon ring group has two or more substituents, the two or more substituents may be the same or different.
  • the number of substituents that the arylalkyl group or alkylaryl group may have is usually 1 to 5, preferably 1 to 4, more The number is preferably 1-2.
  • the number of substituents that the arylalkyl group or alkylaryl group may have is usually 1 to 6, preferably 1 to 4, more The number is preferably 1-2.
  • the number of substituents that the arylalkyl group or alkylaryl group may have is generally 1 to 8, preferably 1 to 6, more preferably is 1 to 4, and more preferably 1 to 2.
  • the number of substituents that the arylalkenyl group or alkenylaryl group may have is usually 1 to 5, preferably 1 to 4, more The number is preferably 1-2.
  • the number of substituents that the arylalkenyl group or alkenylaryl group may have is usually 1 to 6, preferably 1 to 4, more The number is preferably 1-2.
  • the number of substituents that the arylalkenyl group or alkenylaryl group may have is generally 1 to 8, preferably 1 to 6, more preferably. is 1 to 4, and more preferably 1 to 2.
  • substituents include alkoxy groups, halogen atoms, cyano groups, nitro groups, sulfonyl, sulfonyl groups , carboxyl groups and acyl groups. It is an atom (preferably a fluorine atom, a chlorine atom, or the like).
  • alkoxy groups include methoxy, ethoxy, propoxy, isopropoxy, butoxy, sec-butoxy, isobutoxy, tert-butoxy, pentyloxy, isopentyloxy, and hexyloxy groups. , an isohexyloxy group, and the like.
  • acyl groups include acetyl group, propionyl group, n-butyryl group, iso-butyryl group, n-valeryl group, caproyl group and benzoyl group.
  • Halogen atom means a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, or the like.
  • a “protecting group” is a protecting group known to those skilled in the art and is used in the sense given in Green's Protective Groups in Organic Synthesis (Wuts, Peter GM, John WIley & Sons Inc.). "Room temperature” means 10°C to 35°C.
  • the compounds described herein may contain asymmetric centers and therefore may exist as enantiomers. Where the compounds described herein possess two or more asymmetric centers, they may additionally exist as diastereomers. Enantiomers and diastereomers belong to the broader class of stereoisomers. All possible isomers, such as substantially pure resolved enantiomers, racemic mixtures thereof, as well as mixtures of diastereomers, are intended to be included. Unless specifically stated otherwise, references to one isomer apply to any possible isomer. Whenever the isomeric composition is not specified, all possible isomers are included.
  • optically active substance means an enantiomeric excess (ee) of 90% or more, preferably 95%, still more preferably 98%, and further It preferably means 99% or more of the compound or its isomer mixture.
  • Synthetic intermediates of prostaglandins According to one embodiment of the present disclosure, as synthetic intermediates applicable to the production of prostaglandins, compounds represented by general formulas (I) to (IV) described below or optical compounds thereof An active is provided. Moreover, according to a preferred embodiment of the present disclosure, a compound represented by general formula (I) or general formula (II) or an optically active substance thereof is provided. When synthetic intermediates including compounds represented by general formula (I) or general formula (II) are used for the production of prostaglandins, without going through multiple steps as described in Non-Patent Document 1, Prostaglandins can be produced efficiently.
  • R 1 represents an optionally substituted aliphatic hydrocarbon group or an optionally substituted aromatic hydrocarbon ring group.
  • R 1 is an optionally substituted alkyl group, an optionally substituted alkenyl group, an optionally substituted optionally substituted alkynyl group, optionally substituted aryl group, optionally substituted arylalkyl group, optionally substituted arylalkenyl group or substituted an arylakinyl group which may be substituted, an alkylaryl group which may have a substituent, an alkenylaryl group or an alkynylaryl group.
  • R 1 is an optionally substituted alkyl group or an optionally substituted alkylaryl group.
  • R 1 is an optionally substituted C 1 to C 6 alkyl group or an optionally substituted C 7 to represents a C14 alkylaryl group.
  • R 1 represents a C 1 -C 6 alkyl group, preferably methyl.
  • the substituents possessed by the functional group represented by R 1 are each independently preferably an alkoxy group, a halogen atom, a cyano group, a nitro group, a sulfonyl group, a carboxyl group or an acyl group, more preferably a C 1 -C 6 alkoxy group or a halogen atom, still more preferably a C 1 -C 3 alkoxy group or a halogen atom (preferably a fluorine atom, a chlorine atom, etc.) .
  • the ring structure formed with the nitrogen atom to which R 2 and R 3 are bonded preferably contains a heteroatom other than the nitrogen atom. It is a good C 2 -C 11 ring structure, and more preferably forms a C 4 -C 6 ring structure which may contain heteroatoms other than the above nitrogen atoms.
  • the heteroatom other than the nitrogen atom is preferably a nitrogen atom, an oxygen atom or a sulfur atom, more preferably a nitrogen atom.
  • the heteroatom other than the nitrogen atom may have a protecting group, and examples of the protecting group include a tosyl group and a Boc group. is preferred.
  • the ring structure formed with the nitrogen atom to which R 2 and R 3 are bound may be a 4-tosylpiperidine structure.
  • R 2 and R 3 together represent a 3-tosyl-3-azapentanediyl group.
  • R 4 is an optionally substituted alkyl group, an optionally substituted alkenyl group, or It is an optionally substituted alkynyl group or an optionally substituted aryl group.
  • R 4 is an optionally substituted C 1 to C 6 alkyl group or an optionally substituted phenyl group; be.
  • the substituent possessed by the functional group represented by R4 is preferably an alkoxy group, a halogen atom, a cyano group, a nitro group, a sulfonyl group, a carboxyl group or an acyl group. , more preferably a C 1 -C 6 alkoxy group or a halogen atom, still more preferably a C 1 -C 3 alkoxy group or a halogen atom (preferably a fluorine atom, a chlorine atom, or the like).
  • R 4 is CH (3-n) X n (where X is F, Cl or Br and n is an integer of 1 to 3), or CH 2 OY (where Y is an alkyl group, an aryl group, or an aralkyl group).
  • R 4 is CH (3-n) X n (where X is F, Cl or Br and n is an integer from 1 to 3), or CH 2 OY (where Y is C 1 -C 6 alkyl or phenyl).
  • R 4 is a C 1 to C 6 alkyl group optionally having a substituent with a halogen atom or a halogen atom having a substituent is a phenyl group which may be substituted, preferably CH 2 Cl.
  • a compound represented by the following general formula (IV) or an optically active substance thereof is provided.
  • R 2 and R 3 form a ring structure together with the nitrogen atom to which they are attached, W represents a —SiR 5 R 6 R 7 group, an optionally substituted benzyl group or an acetal-type protecting group;
  • R 5, R 6 and R 7 each independently represent an optionally substituted aliphatic hydrocarbon group, an optionally substituted aromatic hydrocarbon cyclic group, or a substituent A functional group formed by combining an aliphatic hydrocarbon group and an aromatic hydrocarbon ring group, which may be present.
  • W is preferably a -SiR 5 R 6 R 7 group.
  • R 5 , R 6 and R 7 are each independently an optionally substituted alkyl group and a substituted optionally substituted alkenyl group, optionally substituted aryl group, optionally substituted arylalkyl group, optionally substituted an arylalkenyl group which may have a substituent, an arylakinyl group which may have a substituent, an alkylaryl group which may have a substituent, an alkenylaryl group or an alkynylaryl group.
  • R 5 , R 6 and R 7 are each independently an optionally substituted alkyl group and a substituted is an aryl group which may be substituted or an arylalkyl group which may have a substituent.
  • R 5 , R 6 and R 7 are each independently a C 1 -C 6 alkyl group optionally having substituent(s), substituted represents a C 6 -C 10 aryl group optionally having a group or a C 7 -C 14 arylalkyl group optionally having a substituent.
  • R 5 , R 6 and R 7 are each independently a C 1 -C 4 alkyl group optionally having a substituent, a substituted represents a C 6 -C 10 aryl group optionally having a group or a C 7 -C 14 arylalkyl group optionally having a substituent.
  • R 5 , R 6 and R 7 are each independently a C 1 -C 6 alkyl group, a C 6 -C 10 aryl group or a C 7 represents a -C14 arylalkyl group.
  • R 5 , R 6 and R 7 each independently represent a C 1 -C 6 alkyl group.
  • the substituents possessed by the functional groups represented by R 5 , R 6 and R 7 are each independently preferably an alkoxy group, a halogen atom, a cyano group, a nitro group, a sulfonyl group, a carboxyl group or an acyl group, more preferably a C1 - C6 alkoxy group or a halogen atom, still more preferably a C1 - C3 alkoxy group or a halogen atom (preferably a fluorine atom or chlorine atom, etc.).
  • R 5 , R 6 and R 7 are preferably methyl group, ethyl group, propyl group, isopropyl group, butyl group, sec-butyl group, tert- A butyl group, a pentyl group, a hexyl group, a phenyl group, or a combination thereof, more preferably a combination of a t-butyl group and a methyl group.
  • preferred examples of the optionally substituted benzyl group represented by W in general formula (IV) include a methyl group, an ethyl group, a butyl group, a trifluoromethyl group, a trichloro Examples include, but are not limited to, benzyl groups optionally substituted with methyl groups, methoxy groups, and the like.
  • the acetal-type protecting group represented by W is a protecting group-introducing agent represented by -C(CHR 8 R 9 )R 10 (OR 11 ) may be used.
  • R 8 , R 9 , R 10 and R 11 are each independently a hydrogen atom, an optionally substituted alkyl group, an optionally substituted alkenyl group, a substituent
  • any one of R 8 and R 9 and R 11 may together form alkylene, alkenylene or alkynylene.
  • R 8 , R 9 , R 10 and R 11 each independently have a hydrogen atom, an optionally substituted alkyl group, or a aryl group, optionally substituted alkenyl group or optionally substituted alkynyl group, provided that any one of R 8 and R 9 and R 11 Together they may form an alkylene.
  • R 8 , R 9 and R 10 and R 11 are each independently a hydrogen atom, a C 1 -C 6 alkyl group, a C 6 -C 10 aryl group, a C 7 - may be a C 14 alkenyl group or a C 7 -C 14 alkynyl group, provided that either one of R 8 and R 9 and R 11 together form a C 3 -C 10 alkylene good.
  • R 8 , R 9 and R 10 and R 11 may each independently be a hydrogen atom or a C 1 -C 6 alkyl group, provided that R 8 and R Either one of 9 and R 11 may together form a C 3 -C 10 alkylene.
  • suitable examples of the acetal-type protecting group represented by W in general formula (IV) include a tetrahydropyranyl (THP) group, —CH(CH 3 )OCH 2 CH 3 , Examples include, but are not limited to, -C(CH 3 ) 2 OCH 2 CH 3 , -CH 2 OCH 2 Ph and the like.
  • THP tetrahydropyranyl
  • prostaglandins can be efficiently synthesized using the compounds represented by general formulas (I) to (IV) as synthetic intermediates.
  • the scheme below illustrates one embodiment of a method for preparing chiral building blocks (VI) for prostaglandin synthesis via compounds of general formula (I) or (II).
  • compound (b) is synthesized from furfural (a 1 ) and sulfoxide compound (a 2 ), and this is converted to compound (I) by Piancatelli rearrangement, and then reacted with a secondary amine to give a racemate.
  • a racemic compound (III) can be synthesized by acylating the hydroxyl group at the 4-position of the compound (II). Further, compound I can be converted to diol compound (V) by a decomposition reaction, and after acylation to form diester compound (VI), racemic compound (III) can be synthesized by reacting it with a secondary amine.
  • the racemic compound (III) can be optically resolved using a hydrolase to obtain a 4R-configured alcohol compound (II)-(R-isomer) and a 4S-configured ester compound (III)-(S-isomer). be done.
  • Ester compound (III)-(S-form) is converted to 4S-configured alcohol compound (II)-(S-form) by solvolysis, and then converted to 4R-configured ester compound (III)-(R-form) by Mitsunobu reaction,
  • the 4R configuration alcohol compound (II)-(R form) can be obtained by solvolysis.
  • compound (II)-(R form) can be converted to compound (VI), which is a key intermediate in prostaglandin synthesis.
  • Synthesis step of compound (b) Compound (b) can be synthesized by reacting sulfoxide compound (a 2 ) with a base to generate an anion and reacting it with furfural compound (a 1 ).
  • the amount of the sulfoxide compound (a 2 ) to be used is generally 0.2 to 10 equivalents, preferably 0.5 to 2 equivalents, more preferably 0.8 to 1.2 equivalents, per 1 mol of the furfural compound (a 1 ). is.
  • Specific embodiments and combinations of R 1 in sulfoxide compound (a 2 ) are the same as specific embodiments and combinations of functional group R 1 in compound (I) above.
  • the type of base is not particularly limited, and any base used in the art can be used.
  • Examples of the base include lithium hydride, sodium hydride, potassium hydride, sodium methoxide, sodium ethoxide, sodium-tert-butoxide, potassium-tert-butoxide, n-butyllithium, sec-butyllithium, tert. -Butyllithium can be used, but is not limited to these.
  • the amount of the base to be used is usually in the range of 0.2 to 10.0 mol, preferably in the range of 0.5 to 5.0 mol, more preferably 0.8 mol, per 1 mol of the raw material compound. ⁇ 1.2 mol range.
  • solvent The type of solvent is not particularly limited, and any one used in the technical field can be used.
  • the solvent include diethyl ether, tetrahydrofuran, 1,2-dimethoxyethane, 1,4-dioxane, N,N-dimethylformamide, and N,N-dimethylacetamide, but are not limited to these. do not have.
  • Dimethyl sulfoxide which is a reaction reagent, can also be used as a solvent. Any amount of the solvent may be used as long as the reaction proceeds. A person skilled in the art can appropriately adjust the amount of solvent used in the reaction.
  • reaction temperature is not particularly limited. In one embodiment, the reaction temperature is in the range of -80°C to 100°C, preferably -40°C to 50°C, from the viewpoints of yield improvement, suppression of by-products, and economic efficiency. range, more preferably -20°C to 30°C.
  • reaction time The reaction time is not particularly limited. In one embodiment, the reaction time is in the range of 0.5 hours to 48 hours, preferably 1 hour to 24 hours, from the viewpoints of yield improvement, suppression of by-products, and economic efficiency. range, more preferably 1 hour to 10 hours. However, the reaction time can be adjusted appropriately by those skilled in the art.
  • Synthesis step of compound (I) Compound (b) can be converted to compound (I) by a hydrothermal reaction.
  • solvent Water or a mixture of water and a water-soluble solvent can be used as solvent.
  • the type of water-soluble solvent is not particularly limited, and any one used in the technical field can be used.
  • Examples of the water-soluble solvent include tetrahydrofuran, 1,2-dimethoxyethane, 1,4-dioxane, N,N-dimethylformamide, N,N-dimethylacetamide, methanol, ethanol, n-propanol, 2-propanol, Non-limiting examples include n-butanol, 2-butanol, tert-butanol. Any amount of the solvent may be used as long as the reaction proceeds. A person skilled in the art can appropriately adjust the amount of solvent used in the reaction.
  • the reaction solution is acidic, preferably pH 2-7, more preferably pH 2-4.
  • reaction solution concentration is preferably 0.02 to 1.0 mol/L, more preferably 0.1 to 0.3 mol/L.
  • reaction temperature is 20 to 200°C, preferably 50 to 180°C, more preferably 80 to 130°C.
  • reaction time In the synthesis step of compound (I), the reaction time is 1 to 48 hours, preferably 2 to 36 hours, more preferably 3 to 24 hours.
  • the reaction time can be arbitrarily set depending on the temperature conditions.
  • the type of the secondary amine compound (c) used in the reaction is not particularly limited, and any one used in the technical field can be used.
  • Examples of the secondary amine compound (c) that can be used include pyrrolidine, piperidine, homopiperidine, morpholine, isoindoline, N-methylpiperazine, N-ethylpiperazine, N-phenylpiperazine and N-tosylpiperazine. is not limited to
  • the amount of the secondary amine compound (c) used in the reaction is usually in the range of 2.0 to 10.0 mol, preferably in the range of 2.0 to 5.0 mol, per 1 mol of the raw material compound. and more preferably in the range of 2.0 to 3.0 mol.
  • the type of solvent is not particularly limited, and any one used in the art can be used.
  • the solvent include diethyl ether, tetrahydrofuran, 1,2-dimethoxyethane, 1,4-dioxane, N,N-dimethylformamide and N,N-dimethylacetamide, but are not limited to these. do not have.
  • the reaction can also be carried out by adding water to these solvents at any ratio. Any amount of the solvent may be used as long as the reaction proceeds. A person skilled in the art can appropriately adjust the amount of solvent used in the reaction.
  • reaction temperature In the step of synthesizing compound (II), the reaction temperature is not particularly limited. In one embodiment, the reaction temperature is in the range of -80°C to 100°C, preferably -40°C to 50°C, from the viewpoints of yield improvement, suppression of by-products, and economic efficiency. and more preferably -20°C to 30°C.
  • reaction time In the step of synthesizing compound (II), the reaction time is not particularly limited. In one embodiment, the reaction time is in the range of 0.5 hours to 48 hours, preferably 1 hour to 24 hours, from the viewpoints of yield improvement, suppression of by-products, and economic efficiency. and more preferably a range of 1 hour to 10 hours. However, the reaction time can be adjusted appropriately by those skilled in the art.
  • an acid chloride or acid anhydride of a carboxylic acid having an electron-withdrawing substituent at the ⁇ -position can be used as an acylating agent for the reaction.
  • the type of carboxylic acid is not particularly limited, and any one used in the technical field can be used.
  • specific embodiments and combinations of R 4 in compound (d) are the same as specific embodiments and combinations of functional group R 4 in compound (III) above.
  • Examples of the carboxylic acid include fluoroacetic acid, difluoroacetic acid, trifluoroacetic acid, chloroacetic acid, dichloroacetic acid, trichloroacetic acid, bromoacetic acid, dibromoacetic acid, tribromoacetic acid, methoxyacetic acid, phenoxyacetic acid, and their asymmetric acid anhydrides. can be used, but are not limited to these.
  • the amount of the acylating agent to be used is usually in the range of 0.5 to 10.0 mol, preferably in the range of 0.8 to 5.0 mol, more preferably 1 mol, per 1 mol of the raw material compound. .0 to 2.0 moles.
  • the type of base used in the reaction is not particularly limited, and any base used in the art can be used.
  • the base include, but are not limited to, triethylamine, diisopropylethylamine, N-methylmorpholine, imidazole, pyridine, 4-dimethylaminopyridine, and lutidine.
  • a person skilled in the art can appropriately adjust the amount of the base used in the reaction.
  • solvent In the step of synthesizing compound (III), the type of solvent is not particularly limited, and any one used in the art can be used. Examples of the solvent include diethyl ether, tetrahydrofuran, 1,2-dimethoxyethane, 1,4-dioxane, N,N-dimethylformamide, and N,N-dimethylacetamide, but are not limited to these. do not have. Bases can also be used as solvents. Any amount of the solvent may be used as long as the reaction proceeds. A person skilled in the art can appropriately adjust the amount of solvent used in the reaction.
  • reaction temperature In the step of synthesizing compound (III), the reaction temperature is not particularly limited. In one embodiment, the reaction temperature is in the range of -80°C to 100°C, preferably -40°C to 50°C, from the viewpoints of yield improvement, suppression of by-products, and economic efficiency. range, more preferably -20°C to 30°C.
  • reaction time In the step of synthesizing compound (III), the reaction time is not particularly limited. In one embodiment, the reaction time is in the range of 0.5 hours to 48 hours, preferably 1 hour to 24 hours, from the viewpoints of yield improvement, suppression of by-products, and economic efficiency. range, more preferably 1 hour to 10 hours. However, the reaction time can be adjusted appropriately by those skilled in the art.
  • Synthesis step 1 of compound (V) Compound (I) can be converted to compound (V) by thermal decomposition.
  • Water or a mixture of water and a water-soluble solvent can be used as a solvent in the step of synthesizing compound (V).
  • the type of water-soluble solvent is not particularly limited, and any one used in the technical field can be used.
  • Examples of the water-soluble solvent include tetrahydrofuran, 1,2-dimethoxyethane, 1,4-dioxane, N,N-dimethylformamide, N,N-dimethylacetamide, methanol, ethanol, n-propanol, 2-propanol, Non-limiting examples include n-butanol, 2-butanol, tert-butanol. Any amount of the solvent may be used as long as the reaction proceeds. A person skilled in the art can appropriately adjust the amount of solvent used in the reaction.
  • the reaction solution is neutral to acidic, preferably pH 2-7, more preferably pH 5-7.
  • reaction temperature In the step of synthesizing compound (V), the reaction temperature is 20 to 200°C, preferably 50 to 180°C, more preferably 80 to 130°C.
  • reaction time In the step of synthesizing compound (V), the reaction time is 1 to 48 hours, preferably 2 to 36 hours, more preferably 3 to 24 hours.
  • the reaction time can be arbitrarily set depending on the temperature conditions.
  • Synthesis step 2 of compound (V) Compound (V) can also be produced in one pot from compound (b).
  • Water or a mixture of water and a water-soluble solvent can be used as a solvent in the step of synthesizing compound (V).
  • the type of water-soluble solvent is not particularly limited, and any one used in the technical field can be used.
  • Examples of the water-soluble solvent include tetrahydrofuran, 1,2-dimethoxyethane, 1,4-dioxane, N,N-dimethylformamide, N,N-dimethylacetamide, methanol, ethanol, n-propanol, 2-propanol, Non-limiting examples include n-butanol, 2-butanol, tert-butanol. Any amount of the solvent may be used as long as the reaction proceeds. A person skilled in the art can appropriately adjust the amount of solvent used in the reaction.
  • the reaction solution is acidic, preferably pH 2-7, more preferably pH 2-4.
  • reaction solution concentration is preferably 0.02 to 1.0 mol/L, more preferably 0.1 to 0.3 mol/L.
  • reaction temperature In the step of synthesizing compound (V), the reaction temperature is 20 to 200°C, preferably 50 to 180°C, more preferably 80 to 130°C.
  • reaction time In the step of synthesizing compound (V), the reaction time is 1 to 48 hours, preferably 2 to 36 hours, more preferably 3 to 24 hours.
  • the reaction time can be arbitrarily set depending on the temperature conditions.
  • Synthesis step of compound (VI) Compound (VI) can be converted to compound (VI) by reacting compound (V) with acylating agent compound (d) and a base.
  • an acid chloride or acid anhydride of a carboxylic acid having an electron-withdrawing substituent at the ⁇ -position can be used as the acylating agent compound (d) used in the reaction.
  • the type of carboxylic acid is not particularly limited, and any one used in the technical field can be used.
  • Examples of the carboxylic acid include fluoroacetic acid, difluoroacetic acid, trifluoroacetic acid, chloroacetic acid, dichloroacetic acid, trichloroacetic acid, bromoacetic acid, dibromoacetic acid, tribromoacetic acid, methoxyacetic acid, phenoxyacetic acid, and their asymmetric acid anhydrides. It can be, but is not limited to.
  • the amount of the acylating agent to be used is usually in the range of 0.5 to 10.0 mol, preferably in the range of 0.8 to 5.0 mol, more preferably 1 mol, per 1 mol of the raw material compound. .0 to 2.0 moles.
  • the type of base used in the reaction is not particularly limited, and any base used in the art can be used.
  • the base include, but are not limited to, triethylamine, diisopropylethylamine, N-methylmorpholine, imidazole, pyridine, 4-dimethylaminopyridine, and lutidine.
  • a person skilled in the art can appropriately adjust the amount of the base used in the reaction.
  • solvent In the step of synthesizing compound (VI), the type of solvent is not particularly limited, and any one used in the art can be used. Examples of the solvent include diethyl ether, tetrahydrofuran, 1,2-dimethoxyethane, 1,4-dioxane, N,N-dimethylformamide and N,N-dimethylacetamide, but are not limited to these. do not have. Bases can also be used as solvents. Any amount of the solvent may be used as long as the reaction proceeds. A person skilled in the art can appropriately adjust the amount of solvent used in the reaction.
  • reaction temperature In the step of synthesizing compound (VI), the reaction temperature is not particularly limited. In one embodiment, the reaction temperature is in the range of -80°C to 100°C, preferably -40°C to 50°C, from the viewpoints of yield improvement, suppression of by-products, and economic efficiency. and more preferably -20°C to 30°C.
  • reaction time In the step of synthesizing compound (VI), the reaction time is not particularly limited. In one embodiment, the reaction time is in the range of 0.5 hours to 48 hours, preferably 1 hour to 24 hours, from the viewpoints of yield improvement, suppression of by-products, and economic efficiency. and more preferably a range of 1 hour to 10 hours. However, the reaction time can be adjusted appropriately by those skilled in the art.
  • the type of secondary amine compound (c) used in the reaction is not particularly limited, and any one used in the art can be used.
  • the secondary amine include pyrrolidine, piperidine, homopiperidine, morpholine, isoindoline, N-methylpiperazine, N-ethylpiperazine, N-phenylpiperazine, and N-tosylpiperazine, but are limited to these.
  • the amount of the secondary amine used in the reaction is usually in the range of 1.0 to 10.0 mol, preferably in the range of 1.0 to 5.0 mol, more preferably in the range of 1.0 to 5.0 mol, per 1 mol of the raw material compound. is in the range of 1.0 to 3.0 mol.
  • the type of medium is not particularly limited, and any medium used in the art can be used.
  • the solvent include diethyl ether, tetrahydrofuran, 1,2-dimethoxyethane, 1,4-dioxane, N,N-dimethylformamide and N,N-dimethylacetamide, but are not limited to these. do not have.
  • the reaction can also be carried out by adding water to these solvents at any ratio. Any amount of the solvent may be used as long as the reaction proceeds. A person skilled in the art can appropriately adjust the amount of solvent used in the reaction.
  • reaction temperature In the step of synthesizing compound (III), the reaction temperature is not particularly limited. In one embodiment, the reaction temperature is in the range of -80°C to 100°C, preferably -40°C to 50°C, from the viewpoints of yield improvement, suppression of by-products, and economic efficiency. and more preferably -20°C to 30°C.
  • reaction time In the step of synthesizing compound (III), the reaction time is not particularly limited. In one embodiment, the reaction time is in the range of 0.5 hours to 48 hours, preferably 1 hour to 24 hours, from the viewpoints of yield improvement, suppression of by-products, and economic efficiency. range, more preferably 1 hour to 10 hours. However, the reaction time can be adjusted appropriately by those skilled in the art.
  • Compound (II)-(R-form) and/or compound (III)-(S-form) synthesis step Compound (III) is dissolved in a phosphate buffer and a hydratable solvent and reacted with a hydrolase, Compound (II)-(R form) and compound (III)-(S form) are obtained. These can be separated by column chromatography.
  • the hydrolase (lipase) used includes, for example, a commercially available hydrolase lipase AK (Amano ), Lipase PS (manufactured by Amano), Lipase PS Amano SD (manufactured by Amano), Lipase AYS (manufactured by Amano), Lipase G Amano 50 (manufactured by Amano), Lipase PSIM (manufactured by Amano), Lipase F- AP15 (manufactured by Amano), CHIRAZYME L-6 (manufactured by Roche), Lipase-OML (manufactured by Meito Sangyo), Lipase TL (manufactured by Meito Sangyo), Lipase-MY-30 (manufactured by Me
  • the step of synthesizing compound (II)-(R form) and/or compound (III)-(S form) can be suitably carried out in a phosphate buffer.
  • a phosphate buffer for example, a phosphate buffer having a concentration of 0.1 M and a pH of about 7 can be used, but the present invention is not limited to this.
  • the reaction may be carried out by adding an organic solvent in addition to the buffer, and the solvent may be acetone. , dimethyl sulfoxide, dibutyl ethers and the like, either singly or as a mixture. The amount used can be appropriately adjusted by those skilled in the art.
  • reaction temperature and reaction time In the step of synthesizing compound (II)-(R form) and/or compound (III)-(S form), the reaction temperature is usually 10 to 50° C., and the reaction time is usually 0.5 to 50 hours. is.
  • the reaction transition can be determined using, for example, liquid chromatography equipped with a packing material for optically active compounds. It can be monitored by measuring the optical purities of (II)-(R-isomer) and compound (III)-(S-isomer), and the reaction endpoint can be determined by this.
  • the ratio of compound (II)-(R form) and compound (III)-(S form) is measured by conventional (not necessarily for optically active compounds) liquid chromatography or the like, and the ratio is The reaction end point can also be set when the ratio becomes approximately 1:1.
  • reaction substrate (4S)-4-acyloxy-2-aminomethyl-2-cyclopenten-1-one having an electron-withdrawing substituent at the ⁇ -position
  • the acetyl group having an electron-withdrawing substituent at the ⁇ -position includes a fluoroacetyl group, a difluoroacetyl group, a trifluoroacetyl group, a chloroacetyl group, a dichloroacetyl group, a trichloroacetyl group, a bromoacetyl group, a dibromoacetyl group, and a tribromo Acetyl, methoxyacetyl, and phenoxyacetyl groups can be used, but are not limited to these.
  • the type of base used in the reaction is not particularly limited, and any base used in the art can be used.
  • the base include, but are not limited to, triethylamine, diisopropylethylamine, N-methylmorpholine, imidazole, pyridine, 4-dimethylaminopyridine, and lutidine.
  • a person skilled in the art can appropriately adjust the amount of the base used in the reaction.
  • solvent In the step of synthesizing compound (II)-(S form), the type of solvent is not particularly limited, and any alcohol used in the art can be used. Examples of the solvent include, but are not limited to, methanol, ethanol, n-propanol, 2-propanol, and n-butanol. Any amount of the solvent may be used as long as the reaction proceeds. A person skilled in the art can appropriately adjust the amount of solvent used in the reaction.
  • reaction temperature In the step of synthesizing compound (II)-(S form), the reaction temperature is not particularly limited. In one embodiment, the reaction temperature is in the range of -80°C to 100°C, preferably -40°C to 50°C, from the viewpoints of yield improvement, suppression of by-products, and economic efficiency. range, more preferably -20°C to 30°C.
  • reaction time In the step of synthesizing compound (II)-(S form), the reaction time is not particularly limited. In one embodiment, the reaction time is in the range of 0.5 hours to 48 hours, preferably 1 hour to 24 hours, from the viewpoints of yield improvement, suppression of by-products, and economic efficiency. range, more preferably 1 hour to 10 hours. However, the reaction time can be adjusted appropriately by those skilled in the art.
  • carboxylic acid A carboxylic acid having an electron-withdrawing substituent at the ⁇ -position can be used in the step of synthesizing compound (III)-(R form).
  • carboxylic acid examples include fluoroacetic acid, difluoroacetic acid, trifluoroacetic acid, chloroacetic acid, dichloroacetic acid, trichloroacetic acid, bromoacetic acid, dibromoacetic acid, tribromoacetic acid, methoxyacetic acid, phenoxyacetic acid, and the like, but are limited to these.
  • the amount of carboxylic acid to be used is usually in the range of 0.5 to 10.0 mol, preferably in the range of 0.8 to 5.0 mol, more preferably 1.0 mol, per 1 mol of the raw material compound. It ranges from 0 to 2.0 mol.
  • the type of azodicarboxylic acid diester used in the Mitsunobu reaction is not particularly limited, and any one used in the art can be used.
  • the azodicarboxylic acid diester include dimethyl azodicarboxylate (DMAD), diethyl azodicarboxylate (DEAD), diisopropyl azodicarboxylate (DIAD), dibenzyl azodicarboxylate, di-tert-butyl azodicarboxylate, and azodicarboxylic acid.
  • Bis(2-methoxyethyl), bis(2,2,2-trichloroethyl) azodicarboxylate or 1,1-azobis(N,N-dimethylformamide) diamide can be used, but are not limited to these.
  • the amount of the azodicarboxylic acid diester used is usually in the range of 1.0 to 10.0 mol, preferably in the range of 1.0 to 5.0 mol, more preferably in the range of 1.0 to 10.0 mol, per 1 mol of the raw material compound. It ranges from 1.0 to 2.0 mol.
  • phosphine In the step of synthesizing compound (III)-(R form), the type of phosphine used in the Mitsunobu reaction is not particularly limited, and any one used in the art can be used.
  • Phosphines include, for example, triphenylphosphine, trihexylphosphine, tricyclohexylphosphine, isopropyldiphenylphosphine, diethylphenylphosphine, diphenyl-2-pyridylphosphine, 4-(dimethylamino)phenyldiphenylphosphine, tributylphosphine, dicyclohexylphenylphosphine, Phenoxydiphenylphosphine, tri-tert-butylphosphine, tri-n-octylphosphine can be used, but are not limited to these.
  • the amount of phosphine used is usually in the range of 1.0
  • the type of solvent used in the Mitsunobu reaction is not particularly limited, and any solvent used in the art can be used.
  • the solvent include toluene, benzene, tetrahydrofuran, dichloromethane, diethyl ether, and acetonitrile, but are not limited to these. Any amount of the solvent may be used as long as the reaction proceeds. A person skilled in the art can appropriately adjust the amount of solvent used in the Mitsunobu reaction.
  • reaction temperature In the step of synthesizing compound (III)-(R form), the reaction temperature of the Mitsunobu reaction is not particularly limited. In one embodiment, the reaction temperature is in the range of -20°C to 200°C, preferably -10°C to 150°C, from the viewpoints of yield improvement, suppression of by-products, and economic efficiency. range, more preferably from -5°C to 120°C.
  • reaction time of the Mitsunobu reaction is not particularly limited.
  • the reaction time is in the range of 0.5 hours to 48 hours, preferably 1 hour to 24 hours, from the viewpoints of yield improvement, suppression of by-products, and economic efficiency. range, more preferably 1 hour to 10 hours.
  • the reaction time of the Mitsunobu reaction can be appropriately adjusted by those skilled in the art.
  • post-treatment of the Mitsunobu reaction may be a general treatment for obtaining a product from the reaction solution.
  • a general treatment for obtaining a product from the reaction solution.
  • water is added to the reaction solution after the reaction is completed to neutralize it, and an extraction operation is performed using a common extraction solvent such as ethyl acetate, diethyl ether, methylene chloride, toluene, hexane, or the like.
  • the desired product is obtained by distilling off the reaction solvent and extraction solvent from the resulting extract under reduced pressure.
  • the desired product thus obtained may, if necessary, be subjected to general purification such as silica gel column chromatography, recrystallization and the like to further increase the purity.
  • the protecting group-introducing agent includes a silylating agent, a benzyl-type protecting group-introducing agent, or an acetal-type protecting group-introducing agent for introducing a protecting group for hydroxyl groups, and is preferably a silylating agent.
  • the protecting group-introducing agent has the general formula (e) WX (W is an optionally substituted benzyl group, silyl group or acetal-type protecting group, X is F, Cl , Br or I).
  • silylating agent When the silylating agent is represented by general formula (e) WX, a suitable example of the optionally substituted silyl group represented by W is -SiR 5 R 6 R 7 group.
  • R 5 , R 6 and R 7 are each independently an optionally substituted alkyl group, an optionally substituted alkenyl group, an optionally substituted alkynyl group , an aryl group optionally having substituents, an arylalkyl group optionally having substituents, an arylalkenyl group optionally having substituents or an arylalkyl group optionally having substituents It is a nyl group, an optionally substituted alkylaryl group, an alkenylaryl group or an alkynylaryl group.
  • the type of silylating agent is not particularly limited, and any one used in the art can be used in the method of the present invention.
  • trialkylsilyl halide compounds, monoalkyldiarylsilyl halide compounds, triarylsilyl halide compounds, and the like can be used.
  • the silyl halide compound has an alkyl group
  • the alkyl group may be, for example, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec-butyl group, isobutyl group, or tert-butyl group. etc. can be used.
  • a methyl group or an ethyl group is preferred.
  • a phenyl group or the like can be used.
  • a halogen atom constituting the silyl halide compound a chlorine atom, a bromine atom, an iodine atom, or the like can be used, and a chlorine atom is preferably used.
  • the silyl halide compound includes trimethylsilyl chloride (sometimes referred to as trimethylchlorosilane; the same applies to the following compounds), triethylsilyl chloride, tert-butyldimethylsilyl chloride, and tert-butyldiphenylsilyl chloride. , triphenylsilyl chloride and the like.
  • Benzyl-type protective group-introducing agent When the benzyl-type protecting group-introducing agent is represented by the general formula (e) WX, preferred examples of the optionally substituted benzyl group represented by W include a methyl group, an ethyl group, a butyl group, and a trifluoromethyl group. , a trichloromethyl group, a benzyl group optionally substituted with a methoxy group and the like, but are not limited thereto.
  • acetal-type protective group-introducing agent When the acetal-type protecting group-introducing agent is represented by the general formula (e) WX, preferred examples of the acetal-type protecting group represented by W include a tetrahydropyranyl (THP) group, —CH(CH 3 )OCH 2 CH 3 , -C(CH 3 ) 2 OCH 2 CH 3 , -CH 2 OCH 2 Ph and the like, but are not limited thereto.
  • THP tetrahydropyranyl
  • R 8 , R 9 , R 10 and R 11 are each independently a hydrogen atom, an optionally substituted alkyl group, an optionally substituted alkenyl group, a substituent An alkynyl group optionally having a substituent, an aryl group optionally having a substituent, an arylalkyl group optionally having a substituent, an arylalkenyl group optionally having a substituent or a substituent , an optionally substituted alkylaryl group, an alkenylaryl group or an alkynylaryl group, any one of R 8 and R 9 and R 11 may together form alkylene, alkenylene or alkynylene.
  • R 8 , R 9 , R 10 and R 11 each independently have a hydrogen atom, an optionally substituted alkyl group, or a aryl group, optionally substituted alkenyl group or optionally substituted alkynyl group, provided that any one of R 8 and R 9 and R 11 Together they may form an alkylene.
  • R 8 , R 9 and R 10 and R 11 are each independently a hydrogen atom, a C 1 -C 6 alkyl group, a C 6 -C 10 aryl group, a C 7 - may be a C 14 alkenyl group or a C 7 -C 14 alkynyl group, provided that either one of R 8 and R 9 and R 11 together form a C 3 -C 10 alkylene good.
  • R 8 , R 9 and R 10 and R 11 may each independently be a hydrogen atom or a C 1 -C 6 alkyl group, provided that R 8 and R Either one of 9 and R 11 may together form a C 3 -C 10 alkylene.
  • base in the step of synthesizing compound (IV)-(R form), protective group introduction is carried out in the presence of a base.
  • the type of base used in the reaction is not particularly limited, and any base used in the art can be used.
  • Examples of the base include, but are not limited to, triethylamine, diisopropylethylamine, N-methylmorpholine, imidazole, pyridine, 4-dimethylaminopyridine, and 2,6-lutidine.
  • a person skilled in the art can appropriately adjust the amount of the base used in the reaction.
  • the type of solvent is not particularly limited, and any aprotic polar solvent used in the art can be used.
  • the solvent include ethers (e.g., tetrahydrofuran (THF), diisopropyl ether, dibutyl ether, cyclopentyl methyl ether (CPME), methyl-tert-butyl ether, more preferably tetrahydrofuran (THF)), amides (e.g., N,N-dimethylformamide (DMF), N,N-dimethylacetamide (DMAC), N,N-diethylacetamide, N-methylpyrrolidone (NMP) and the like, preferably N,N-dimethylformamide (DMF), N, N-dimethylacetamide (DMAC), N-methylpyrrolidone (NMP), more preferably N,N-dimethylformamide (DMF)), sulfate, aprotic polar solvent used in the art can be used.
  • reaction temperature In the step of synthesizing compound (IV)-(R form), the reaction temperature is not particularly limited. In one embodiment, the reaction temperature is in the range of -80°C to 100°C, preferably -40°C to 50°C, from the viewpoints of yield improvement, suppression of by-products, and economic efficiency. range, more preferably -20°C to 30°C.
  • reaction time In the step of synthesizing compound (IV)-(R form), the reaction time is not particularly limited. In one embodiment, the reaction time is in the range of 0.5 hours to 48 hours, preferably 1 hour to 24 hours, from the viewpoints of yield improvement, suppression of by-products, and economic efficiency. range, more preferably 1 hour to 10 hours. However, the reaction time can be adjusted appropriately by those skilled in the art.
  • a prostaglandin represented by any one of general formulas (I) to (VI) or comprising an optically active substance thereof, for producing a prostaglandin or an optically active substance thereof Reagents are provided.
  • a compound represented by any one of general formulas (I) to (VI) or an optically active substance thereof as a reagent for producing a prostaglandin or an optically active substance thereof is provided for use.
  • the prostaglandin is represented by formula (A).
  • R 1 is an optionally substituted aliphatic hydrocarbon group, or an optionally substituted aliphatic hydrocarbon group and aromatic hydrocarbon ring group indicates a functional group formed by combining
  • R 1 is a C 1 -C 6 alkyl group.
  • R 2 and R 3 form a ring structure together with the nitrogen atom to which they are attached.
  • R 2 and R 3 form a ring structure together with the nitrogen atom to which they are attached, R 4 represents an optionally substituted aliphatic hydrocarbon group or an optionally substituted aromatic hydrocarbon ring group.
  • R4 is CH (3-n) X n (where X is F, Cl or Br and n is an integer of 1 to 3), or CH 2 OY (where Y is an alkyl group, an aryl group, or an aralkyl group).
  • R 4 is CH 2 Cl.
  • R 2 and R 3 form a ring structure together with the nitrogen atom to which they are attached, W represents a —SiR 5 R 6 R 7 group, an optionally substituted benzyl group or an acetal-type protecting group;
  • R 5, R 6 and R 7 each independently represent an optionally substituted aliphatic hydrocarbon group, an optionally substituted aromatic hydrocarbon cyclic group, or a substituent A functional group formed by combining an aliphatic hydrocarbon group and an aromatic hydrocarbon ring group, which may be present.
  • R 1 is an optionally substituted aliphatic hydrocarbon group, or an optionally substituted aliphatic hydrocarbon group and aromatic hydrocarbon ring group indicates a functional group formed by combining [14] of general formula (II), comprising a step of reacting a compound of general formula (I) with a compound of general formula (c) to obtain a compound of general formula (II); Methods of making the represented compounds.
  • R 1 is an optionally substituted aliphatic hydrocarbon group, or an optionally substituted aliphatic hydrocarbon group and aromatic hydrocarbon ring group represents a functional group formed by combining In general formulas (c) and (II), R2 and R3 form a ring structure together with the nitrogen atom to which they are attached.
  • R2 and R3 form a ring structure together with the nitrogen atom to which they are attached.
  • R 2 and R 3 are bonded to each other to form a ring structure together with the nitrogen atom to which they are bonded
  • R 4 is an optionally substituted aliphatic hydrocarbon group, an optionally substituted aromatic hydrocarbon cyclic group, or a substituent represents a functional group formed by combining an aliphatic hydrocarbon group and an aromatic hydrocarbon ring group, which may have X is F, Cl, Br or I in general formula (d).
  • R 4 is an optionally substituted aliphatic hydrocarbon group, an optionally substituted aromatic hydrocarbon ring group, or a substituent A functional group formed by combining an aliphatic hydrocarbon group and an aromatic hydrocarbon ring group, which may have X is F, Cl, Br or I in general formula (d).
  • a compound of formula (VI) with a compound of general formula (c) under basic conditions to obtain a compound of general formula (III); A method for producing a compound represented by (III).
  • R 2 and R 3 form a ring structure together with the nitrogen atom to which they are attached
  • R 4 is an optionally substituted aliphatic hydrocarbon group, an optionally substituted aromatic hydrocarbon cyclic group, or a substituent A functional group formed by combining an aliphatic hydrocarbon group and an aromatic hydrocarbon ring group, which may be present.
  • the compound represented by the general formula (III) is optically resolved using a hydrolase to obtain the optically active form (R form) of the compound represented by the general formula (II) and the compound represented by the general formula (III).
  • R 2 and R 3 form a ring structure together with the nitrogen atom to which they are attached
  • R 4 is an optionally substituted aliphatic hydrocarbon group, an optionally substituted aromatic hydrocarbon ring group, or a substituted A functional group formed by combining an aliphatic hydrocarbon group and an aromatic hydrocarbon ring group.
  • a step of solvolyzing an optically active form (S form) of the compound represented by general formula (III) to obtain an optically active form (S form) of the compound represented by general formula (II). a method for producing an optically active form (S form) of a compound represented by general formula (II).
  • R 2 and R 3 form a ring structure together with the nitrogen atom to which they are attached
  • R 4 is an optionally substituted aliphatic hydrocarbon group, an optionally substituted aromatic hydrocarbon ring group, or a substituted A functional group formed by combining an aliphatic hydrocarbon group and an aromatic hydrocarbon ring group.
  • W represents a —SiR 5 R 6 R 7 group, an optionally substituted benzyl group or an acetal-type protecting group;
  • R 5 , R 6 and R 7 each independently represent an optionally substituted aliphatic hydrocarbon group, an optionally substituted aromatic hydrocarbon cyclic group, or a substituent represents a functional group formed by combining an optically active form (R form) of a compound represented by general formula (II) with a protecting group-introducing agent to obtain an optically active form (R form) of a
  • a prostaglandin synthetic intermediate was produced according to the following scheme. Each step will be described below.
  • a Kiriyama funnel was covered with silica gel for column chromatography, and the ethyl acetate solution of the reaction mixture was filtered by suction to obtain a mixture of the desired product and dimethyl sulfoxide (molar ratio 2:3). After concentrating with a rotary evaporator, the aspirator was replaced with a vacuum pump to distill off dimethylsulfoxide to obtain 73.2 g (81%) of compound 2 as a diastereomeric mixture.
  • Example 7 Conversion of 4-hydroxy-2-methylsulphenylmethyl-2-cyclopenten-1-one (compound 4) to 4-hydroxy-2-hydroxymethyl-2-cyclopenten-1-one (compound 6)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

The present disclosure provides a novel synthetic intermediate of prostaglandin or an optically active substance thereof, and a production method that uses the same. More specifically, in the method according to the present disclosure for producing prostaglandin or an optically active substance thereof, a compound represented by any of general formulas (I) through (IV) or an optically active substance thereof is used as the synthetic intermediate.

Description

シクロペンテノン誘導体およびその製造方法Cyclopentenone derivative and method for producing the same 関連出願の参照Reference to Related Applications
 本特許出願は、2021年12月28日に出願された日本国特許出願2021-215326号に基づく優先権の主張を伴うものであり、かかる先の特許出願における全開示内容は、引用することにより本明細書の一部とされる。 This patent application claims priority based on Japanese Patent Application No. 2021-215326 filed on December 28, 2021, and the entire disclosure content in such earlier patent application is incorporated by reference. incorporated herein.
 本開示は、シクロペンテノン誘導体およびその製造方法に関する。 The present disclosure relates to cyclopentenone derivatives and methods for producing the same.
 プロスタグランジンの合成スキームとして、光学活性なシクロペンテノン誘導体をキラルビルビルディングブロックとして用いた方法が従前報告されている。例えば、スキーム1のように、4位水酸基を保護した(4R)-4-ヒドロキシ-2-(ジアルキルアミノメチル)-2-シクロペンテン-1-オンに対し、α側鎖リンカーを共役付加させα側鎖を導入し、次いで得られたendoエノンにω側鎖リンカーを共役付加させω側鎖を導入しプロスタグランジンを合成する方法が2成分連結法として知られている(特許文献1)。 A method using an optically active cyclopentenone derivative as a chiral building building block has been previously reported as a synthetic scheme for prostaglandins. For example, as in Scheme 1, to (4R)-4-hydroxy-2-(dialkylaminomethyl)-2-cyclopenten-1-one in which the 4-position hydroxyl group is protected, an α side chain linker is conjugated and added to the α side. A method of synthesizing a prostaglandin by introducing a chain and then conjugating an ω side chain linker to the resulting endoenone to introduce an ω side chain is known as a two-component ligation method (Patent Document 1).
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
 2成分連結法におけるキラルビルディングブロックとなる4-シリルオキシ-2-(ジエチルアミノメチル)-2-シクロペンテン-1-オンは、スキーム2のように、3-ヒドロキシ-1,4-ペンタジエンを原料としたSharpless不斉エポキシ化による光学分割を経て得られる(非特許文献1)。しかしながらその製造方法は多段階を要し効率的とは言えない。 4-silyloxy-2-(diethylaminomethyl)-2-cyclopenten-1-one, which is the chiral building block in the two-component ligation method, can be prepared from 3-hydroxy-1,4-pentadiene as shown in Scheme 2. It is obtained through optical resolution by asymmetric epoxidation (Non-Patent Document 1). However, the manufacturing method requires multiple steps and cannot be said to be efficient.
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
 また、スキーム3のように、D-グルカールの水熱反応により4-ヒドロキシ-2-ヒドロキシメチル-2-シクロペンテノンを合成し、高速液体クロマトグラフィーにより光学分割し、ブタ膵臓由来のリパーゼにより2位のヒドロキシメチル基をアセチル化4位の水酸基のシリル保護を順次行いジエチルアミンを作用させることで、光学活性な4-シリルオキシ-2-ジエチルアミノメチル-2-シクロペンテノンを合成する方法が知られている(特許文献2)。しかしながら、4-ヒドロキシ-2-ヒドロキシメチル-2-シクロペンテノンのラセミ体を、高速液体クロマトグラフィーによって光学分割を行う必要があり極めて非効率的である。また4-ヒドロキシ-2-ヒドロキシメチル-2-シクロペンテノンの1級水酸基のアセチル化の選択性が36%であり、ウイルスの混入が懸念される生物由来原料のブタ膵臓由来のリパーゼを使用する点でも原薬の製造手段として問題がある(特許文献2)。 In addition, as in Scheme 3, 4-hydroxy-2-hydroxymethyl-2-cyclopentenone was synthesized by hydrothermal reaction of D-glucal, optically resolved by high-performance liquid chromatography, and treated with lipase derived from porcine pancreas. A method is known for synthesizing optically active 4-silyloxy-2-diethylaminomethyl-2-cyclopentenone by acetylating the hydroxymethyl group at the 4-position, sequentially silyl-protecting the hydroxyl group at the 4-position, and reacting with diethylamine. (Patent Document 2). However, the racemic form of 4-hydroxy-2-hydroxymethyl-2-cyclopentenone must be optically resolved by high-performance liquid chromatography, which is extremely inefficient. In addition, the acetylation selectivity of the primary hydroxyl group of 4-hydroxy-2-hydroxymethyl-2-cyclopentenone is 36%, and lipase derived from porcine pancreas, which is a biological raw material that is concerned about virus contamination, is used. There is also a problem as a manufacturing means of the drug substance (Patent Document 2).
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
 また、スキーム3の製造方法の原料となる4-ヒドロキシ-2-ヒドロキシメチル-2-シクロペンテノンは、スキーム4のように、2-デオキシ-D-グルコースまたはトリアセチルグルカールの加溶媒分解で得られるD-グルカールの水溶液を密閉容器中で加熱することで得られる(特許文献3、4)。水熱反応の中間体としてフランジオールが単離されており(非特許文献2,3)、本反応がフランジオール経由のPiancatelli転位反応(非特許文献4,5)を含むことが判っている。したがって、反応の過程でグルカール由来の光学活性は失われキラルプール法が適用できない。また、水熱反応の生成物は目的物以外に速度論的異性体の混合物として得られるため、含水中性アルミナに吸着させ加熱することで異性化により熱力学的に安定な目的物に収束させる必要がある(特許文献5)。さらに、スキーム4の製造方法において、4-ヒドロキシ-2-ヒドロキシメチル-2-シクロペンテノンの原料となる2-デオキシ-D-グルコースおよびトリ-O-アセチル-D-グルカールは高価であり安価な原料を用いた製造方法が求められる。 Further, 4-hydroxy-2-hydroxymethyl-2-cyclopentenone, which is a raw material for the production method of Scheme 3, can be obtained by solvolysis of 2-deoxy-D-glucose or triacetylglucal as shown in Scheme 4. It can be obtained by heating the resulting aqueous solution of D-glucal in a closed container (Patent Documents 3 and 4). Furandiol has been isolated as a hydrothermal intermediate (Non-Patent Documents 2, 3), and it is known that this reaction involves a Piancatelli rearrangement reaction via furandiol (Non-Patent Documents 4, 5). Therefore, the optical activity derived from glucal is lost in the course of the reaction, and the chiral pool method cannot be applied. In addition, since the product of the hydrothermal reaction is obtained as a mixture of kinetic isomers in addition to the target product, it is adsorbed on hydrous aqueous alumina and heated to isomerize to converge into a thermodynamically stable target product. There is a need (Patent Document 5). Furthermore, in the production method of Scheme 4, 2-deoxy-D-glucose and tri-O-acetyl-D-glucal, which are raw materials for 4-hydroxy-2-hydroxymethyl-2-cyclopentenone, are expensive and inexpensive. A manufacturing method using raw materials is required.
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
 また、上述のスキーム1で説明したとおり、特許文献1には、(4R)-4-ヒドロキシ-2-(ジエチルアミノメチル)-2-シクロペンテン-1-オンに対し、α側鎖リンカーを共役付加させα側鎖を導入し、次いで得られたendoエノンにω側鎖リンカーを共役付加させω側鎖を導入しプロスタグランジンを合成する2成分連結法が開示されている。特許文献1に示される具体的な2成分連結法は、スキーム5に示されるとおりである。しかしながら、2成分連結法では原薬の製造においては高純度が要求されるが、従来のキラルビルディングブロックは液体であり再結晶精製ができずカラムクロマトグラフィーによる精製が必要となり工業生産上効率的とは言えない。 Further, as explained in Scheme 1 above, Patent Document 1 discloses that an α side chain linker is conjugated to (4R)-4-hydroxy-2-(diethylaminomethyl)-2-cyclopenten-1-one. A two-component ligation method is disclosed in which an α side chain is introduced and then an ω side chain linker is conjugated to the resulting endoenone to introduce the ω side chain and synthesize a prostaglandin. A specific two-component ligation method shown in Patent Document 1 is as shown in Scheme 5. However, the two-component ligation method requires high purity in the production of drug substances, but conventional chiral building blocks are liquid and cannot be purified by recrystallization, requiring purification by column chromatography, which is not efficient for industrial production. I can't say
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
特開1988-140943号公報JP-A-1988-140943 特開2018-220888号公報JP 2018-220888 A 特開2014-73987号公報JP 2014-73987 A 特開2019-159871号公報JP 2019-159871 A 特開2019-150578号公報JP 2019-150578 A
 本開示者らは、今般、鋭意検討した結果、シクロペンテノン骨格を有する特定の原料化合物を製造し、さらに当該原料化合物を酵素加水分解処理して誘導化することにより、プロスタグランジンの効率的な製造に有用な合成中間体ないしキラルビルディングブロックとして使用し得るシクロペンテノン誘導体を効率的に製造し得ることを見出した。本開示はかかる知見に基づくものである。 As a result of intensive studies, the present inventors produced a specific raw material compound having a cyclopentenone skeleton, and further derivatized by enzymatic hydrolysis of the raw material compound, thereby efficiently producing prostaglandins. It has been found that a cyclopentenone derivative that can be used as a useful synthetic intermediate or chiral building block for the production of cyclopentenone can be efficiently produced. The present disclosure is based on such findings.
 したがって、本開示は、プロスタグランジンの効率的な製造に有用な合成中間体およびそれを用いた製造方法を提供することを一つの目的としている。 Accordingly, one object of the present disclosure is to provide a synthetic intermediate useful for efficient production of prostaglandin and a production method using the same.
 本開示の一実施様態によれば、下記一般式(I)で表される化合物が提供される。
Figure JPOXMLDOC01-appb-C000023
(一般式(I)中、Rは、置換基を有していてもよい脂肪族炭化水素基、または置換基を有していてもよい、脂肪族炭化水素基および芳香族炭化水素環基を組み合わせて形成される官能基を示す。)
According to one embodiment of the present disclosure, compounds represented by the following general formula (I) are provided.
Figure JPOXMLDOC01-appb-C000023
(In general formula (I), R 1 is an optionally substituted aliphatic hydrocarbon group, or an optionally substituted aliphatic hydrocarbon group and aromatic hydrocarbon ring group indicates a functional group formed by combining
 また、本開示の一実施様態によれば、下記一般式(II)で表される化合物またはその光学活性体が提供される。
Figure JPOXMLDOC01-appb-C000024
(一般式(II)中、RおよびRは、互いに結合してそれらが結合している窒素原子とともに環構造を形成する。)
Moreover, according to one embodiment of the present disclosure, a compound represented by the following general formula (II) or an optically active substance thereof is provided.
Figure JPOXMLDOC01-appb-C000024
(In general formula (II), R 2 and R 3 are bonded to each other to form a ring structure together with the nitrogen atom to which they are bonded.)
 また、本開示の一実施様態によれば、下記一般式(III)で表される化合物またはその光学活性体が提供される。
Figure JPOXMLDOC01-appb-C000025
(一般式(III)中、RおよびRは、互いに結合してそれらが結合している窒素原子とともに環構造を形成し、
 Rは、置換基を有していてもよい脂肪族炭化水素基、または置換基を有していてもよい芳香族炭化水素環基を示す。)
Moreover, according to one embodiment of the present disclosure, a compound represented by the following general formula (III) or an optically active substance thereof is provided.
Figure JPOXMLDOC01-appb-C000025
(In general formula (III), R 2 and R 3 are bonded to each other to form a ring structure together with the nitrogen atom to which they are bonded,
R 4 represents an optionally substituted aliphatic hydrocarbon group or an optionally substituted aromatic hydrocarbon ring group. )
 また、本開示の一実施様態によれば、下記一般式(IV)で表される化合物またはその光学活性体が提供される。
Figure JPOXMLDOC01-appb-C000026
(一般式(IV)中、RおよびRは、それらが結合している窒素原子とともに環構造を形成し、
 Wは、-SiR基、置換されていてもよいベンジル基またはアセタール型保護基を表し、
 R5、およびRは、それぞれ独立して、置換基を有していてもよい脂肪族炭化水素基、置換基を有していてもよい芳香族炭化水素環基、または置換基を有していてもよい、脂肪族炭化水素基および芳香族炭化水素環基を組み合わせて形成される官能基を示す。
Moreover, according to one embodiment of the present disclosure, a compound represented by the following general formula (IV) or an optically active substance thereof is provided.
Figure JPOXMLDOC01-appb-C000026
(In general formula (IV), R 2 and R 3 form a ring structure together with the nitrogen atom to which they are attached,
W represents a —SiR 5 R 6 R 7 group, an optionally substituted benzyl group or an acetal-type protecting group;
R 5, R 6 and R 7 each independently represent an optionally substituted aliphatic hydrocarbon group, an optionally substituted aromatic hydrocarbon cyclic group, or a substituent A functional group formed by combining an aliphatic hydrocarbon group and an aromatic hydrocarbon ring group, which may be present.
 また、本開示の一実施様態によれば、上記一般式(I)~(IV)のいずれかの化合物からなる、プロスタグランジンまたはその光学活性体を製造するための中間体が提供される。 Further, according to one embodiment of the present disclosure, there is provided an intermediate for producing a prostaglandin or an optically active substance thereof, which consists of a compound of any one of the above general formulas (I) to (IV).
 また、本開示の一実施様態によれば、水存在下、一般式(b)で表される化合物を加熱還流して、一般式(I)で表される化合物を得る工程を含んでなる、一般式(I)で表される化合物を製造する方法が提供される。
Figure JPOXMLDOC01-appb-C000027
(一般式(b)および(I)中、Rは、置換基を有していてもよい脂肪族炭化水素基、または置換基を有していてもよい、脂肪族炭化水素基および芳香族炭化水素環基を組み合わせて形成される官能基を示す。)
Further, according to one embodiment of the present disclosure, a step of heating and refluxing the compound represented by general formula (b) in the presence of water to obtain the compound represented by general formula (I) comprises: Methods are provided for preparing compounds represented by general formula (I).
Figure JPOXMLDOC01-appb-C000027
(In the general formulas (b) and (I), R 1 is an optionally substituted aliphatic hydrocarbon group, or an optionally substituted aliphatic hydrocarbon group and an aromatic Indicates a functional group formed by combining hydrocarbon ring groups.)
 また、本開示の一実施様態によれば、水存在下、一般式(I)で表される化合物を加熱還流して、一般式(V)で表される化合物を得る工程を含んでなる、一般式(V)で表される化合物を製造する方法が提供される。
Figure JPOXMLDOC01-appb-C000028
(一般式(I)中、Rは、置換基を有していてもよい脂肪族炭化水素基、または置換基を有していてもよい、脂肪族炭化水素基および芳香族炭化水素環基を組み合わせて形成される官能基を示す。)
Further, according to one embodiment of the present disclosure, the compound represented by the general formula (I) is heated under reflux in the presence of water to obtain the compound represented by the general formula (V). A method for producing a compound represented by general formula (V) is provided.
Figure JPOXMLDOC01-appb-C000028
(In general formula (I), R 1 is an optionally substituted aliphatic hydrocarbon group, or an optionally substituted aliphatic hydrocarbon group and aromatic hydrocarbon ring group indicates a functional group formed by combining
 また、本開示の一実施様態によれば、一般式(I)で表される化合物と一般式(c)で表される化合物を反応させて、一般式(II)で表される化合物を得る工程を含んでなる、一般式(II)で表される化合物を製造する方法が提供される。
Figure JPOXMLDOC01-appb-C000029
(一般式(I)中、Rは、置換基を有していてもよい脂肪族炭化水素基、または置換基を有していてもよい、脂肪族炭化水素基および芳香族炭化水素環基を組み合わせて形成される官能基を示し、
 一般式(c)および(II)中、RおよびRは、それらが結合している窒素原子とともに環構造を形成する。)
Further, according to one embodiment of the present disclosure, the compound represented by the general formula (I) is reacted with the compound represented by the general formula (c) to obtain the compound represented by the general formula (II) A method is provided for preparing compounds represented by general formula (II), comprising the steps of:
Figure JPOXMLDOC01-appb-C000029
(In general formula (I), R 1 is an optionally substituted aliphatic hydrocarbon group, or an optionally substituted aliphatic hydrocarbon group and aromatic hydrocarbon ring group represents a functional group formed by combining
In general formulas (c) and (II), R2 and R3 form a ring structure together with the nitrogen atom to which they are attached. )
 また、本開示の一実施様態によれば、一般式(II)で表される化合物と一般式(d)で表される化合物を反応させて、一般式(III)で表される化合物を得る工程を含んでなる、一般式(III)で表される化合物を製造する方法が提供される。
Figure JPOXMLDOC01-appb-C000030
(一般式(II)および(III)中、RおよびRは、互いに結合してそれらが結合している窒素原子とともに環構造を形成し、
 一般式(d)および(III)中、Rは、置換基を有していてもよい脂肪族炭化水素基、置換基を有していてもよい芳香族炭化水素環基、または置換基を有していてもよい、脂肪族炭化水素基および芳香族炭化水素環基を組み合わせて形成される官能基を示し、
 一般式(3c)中、Xは、F、Cl、BrまたはIである。)
Further, according to one embodiment of the present disclosure, the compound represented by the general formula (II) is reacted with the compound represented by the general formula (d) to obtain the compound represented by the general formula (III) There is provided a method for preparing a compound represented by general formula (III), comprising the steps of:
Figure JPOXMLDOC01-appb-C000030
(In general formulas (II) and (III), R 2 and R 3 are bonded to each other to form a ring structure together with the nitrogen atom to which they are bonded,
In general formulas (d) and (III), R 4 is an optionally substituted aliphatic hydrocarbon group, an optionally substituted aromatic hydrocarbon cyclic group, or a substituent represents a functional group formed by combining an aliphatic hydrocarbon group and an aromatic hydrocarbon ring group, which may have
X is F, Cl, Br or I in general formula (3c). )
 また、本開示の一実施様態によれば、塩基性条件下、式(V)で表される化合物と一般式(d)で表される化合物を反応させて、一般式(VI)で表される化合物を得る工程を含んでなる、一般式(VI)で表される化合物を製造する方法が提供される。
Figure JPOXMLDOC01-appb-C000031
(一般式(d)および(VI)中、Rは、置換基を有していてもよい脂肪族炭化水素基、置換基を有していてもよい芳香族炭化水素環基、または置換基を有していてもよい、脂肪族炭化水素基および芳香族炭化水素環基を組み合わせて形成される官能基を示し、
 一般式(d)中、Xは、F、Cl、BrまたはIである。)
Further, according to one embodiment of the present disclosure, the compound represented by the formula (V) and the compound represented by the general formula (d) are reacted under basic conditions to obtain the compound represented by the general formula (VI). There is provided a method of making a compound represented by general formula (VI) comprising the step of obtaining the compound
Figure JPOXMLDOC01-appb-C000031
(In general formulas (d) and (VI), R 4 is an optionally substituted aliphatic hydrocarbon group, an optionally substituted aromatic hydrocarbon ring group, or a substituent A functional group formed by combining an aliphatic hydrocarbon group and an aromatic hydrocarbon ring group, which may have
X is F, Cl, Br or I in general formula (d). )
 また、本開示の一実施様態によれば、塩基性条件下、式(VI)で表される化合物と一般式(c)で表される化合物を反応させて、一般式(III)で表される化合物を得る工程を含んでなる、一般式(III)で表される化合物を製造する方法が提供される。 Further, according to one embodiment of the present disclosure, the compound represented by the formula (VI) and the compound represented by the general formula (c) are reacted under basic conditions to obtain the compound represented by the general formula (III). There is provided a method of making a compound represented by general formula (III) comprising the step of obtaining a compound
Figure JPOXMLDOC01-appb-C000032
(一般式(c)および(III)中、RおよびRは、それらが結合している窒素原子とともに環構造を形成し、
 一般式(VI)および(III)中、Rは、置換基を有していてもよい脂肪族炭化水素基、置換基を有していてもよい芳香族炭化水素環基、または置換基を有していてもよい、脂肪族炭化水素基および芳香族炭化水素環基を組み合わせて形成される官能基を示す。)
Figure JPOXMLDOC01-appb-C000032
(In general formulas (c) and (III), R 2 and R 3 form a ring structure together with the nitrogen atom to which they are attached,
In general formulas (VI) and (III), R 4 is an optionally substituted aliphatic hydrocarbon group, an optionally substituted aromatic hydrocarbon cyclic group, or a substituent A functional group formed by combining an aliphatic hydrocarbon group and an aromatic hydrocarbon ring group, which may be present. )
 また、本開示の一実施様態によれば、一般式(III)で表される化合物を、加水分解酵素を用いて光学分割して、一般式(II)で表される化合物の光学活性体(R体)および一般式(III)で表される化合物の光学活性体(S体)を得る工程を含んでなる、一般式(II)で表される化合物の光学活性体(R体)を製造する方法が提供される。
Figure JPOXMLDOC01-appb-C000033
(一般式(II)および(III)中、RおよびRは、それらが結合している窒素原子とともに環構造を形成し、
 一般式(III)中、Rは、置換基を有していてもよい脂肪族炭化水素基、置換基を有していてもよい芳香族炭化水素環基、または置換基を有していてもよい、脂肪族炭化水素基および芳香族炭化水素環基を組み合わせて形成される官能基を示す。)
Further, according to one embodiment of the present disclosure, the compound represented by the general formula (III) is optically resolved using a hydrolase to obtain an optically active form of the compound represented by the general formula (II) ( Manufacture of an optically active form (R form) of a compound represented by general formula (II), comprising a step of obtaining an optically active form (S form) of a compound represented by general formula (III). A method is provided.
Figure JPOXMLDOC01-appb-C000033
(In general formulas (II) and (III), R 2 and R 3 form a ring structure together with the nitrogen atom to which they are attached,
In general formula (III), R 4 is an optionally substituted aliphatic hydrocarbon group, an optionally substituted aromatic hydrocarbon ring group, or a substituted A functional group formed by combining an aliphatic hydrocarbon group and an aromatic hydrocarbon ring group. )
 また、本開示の一実施様態によれば、一般式(III)で表される化合物の光学活性体(S体)を加溶媒分解して、一般式(II)で表される化合物の光学活性体(S体)を得る工程を含んでなる、一般式(II)で表される化合物の光学活性体(S体)を製造する方法が提供される。 Further, according to one embodiment of the present disclosure, the optically active form (S form) of the compound represented by general formula (III) is solvolyzed to obtain the optical activity of the compound represented by general formula (II). Provided is a method for producing an optically active form (S form) of the compound represented by general formula (II), comprising a step of obtaining the form (S form).
Figure JPOXMLDOC01-appb-C000034
(一般式(II)および(III)中、RおよびRは、それらが結合している窒素原子とともに環構造を形成し、
 一般式(III)中、Rは、置換基を有していてもよい脂肪族炭化水素基、置換基を有していてもよい芳香族炭化水素環基、または置換基を有していてもよい、脂肪族炭化水素基および芳香族炭化水素環基を組み合わせて形成される官能基を示す。)
Figure JPOXMLDOC01-appb-C000034
(In general formulas (II) and (III), R 2 and R 3 form a ring structure together with the nitrogen atom to which they are attached,
In general formula (III), R 4 is an optionally substituted aliphatic hydrocarbon group, an optionally substituted aromatic hydrocarbon ring group, or a substituted A functional group formed by combining an aliphatic hydrocarbon group and an aromatic hydrocarbon ring group. )
 また、本開示の一実施様態によれば、一般式(II)で表される化合物の光学活性体(S体)を、光延反応を介して一般式(II)で表される化合物の光学活性体(R体)に変換する工程を含んでなる、一般式(II)で表される化合物の光学活性体(R体)を製造する方法が提供される。 Further, according to one embodiment of the present disclosure, the optically active form (S form) of the compound represented by general formula (II) is converted to the optically active form of the compound represented by general formula (II) through a Mitsunobu reaction. Provided is a method for producing an optically active form (R-form) of a compound represented by general formula (II), comprising a step of converting to the form (R-form).
Figure JPOXMLDOC01-appb-C000035
(一般式(II)中、RおよびRは、それらが結合している窒素原子とともに環構造を形成する。)
Figure JPOXMLDOC01-appb-C000035
(In general formula (II), R 2 and R 3 form a ring structure together with the nitrogen atom to which they are attached.)
 また、本開示の一実施様態によれば、一般式(II)で表される化合物の光学活性体(R体)と保護基導入剤とを反応させて、一般式(IV)で表される化合物の光学活性体(R体)を得る工程を含んでなる、一般式(IV)で表される化合物の光学活性体(R体)を製造する方法が提供される。
Figure JPOXMLDOC01-appb-C000036
(一般式(II)および(IV)中、RおよびRは、それらが結合している窒素原子とともに環構造を形成し、
 一般式(IV)中、Wは、-SiR基、置換されていてもよいベンジル基またはアセタール型保護基を表し、
 R、RおよびRは、それぞれ独立して、置換基を有していてもよい脂肪族炭化水素基、置換基を有していてもよい芳香族炭化水素環基、または置換基を有していてもよい、脂肪族炭化水素基および芳香族炭化水素環基を組み合わせて形成される官能基を示す。)
Further, according to one embodiment of the present disclosure, the optically active form (R form) of the compound represented by general formula (II) is reacted with a protective group-introducing agent to obtain the compound represented by general formula (IV). Provided is a method for producing an optically active form (R form) of the compound represented by general formula (IV), comprising a step of obtaining an optically active form (R form) of the compound.
Figure JPOXMLDOC01-appb-C000036
(In general formulas (II) and (IV), R 2 and R 3 form a ring structure together with the nitrogen atom to which they are attached,
In general formula (IV), W represents a —SiR 5 R 6 R 7 group, an optionally substituted benzyl group or an acetal-type protecting group;
R 5 , R 6 and R 7 each independently represent an optionally substituted aliphatic hydrocarbon group, an optionally substituted aromatic hydrocarbon cyclic group, or a substituent A functional group formed by combining an aliphatic hydrocarbon group and an aromatic hydrocarbon ring group, which may be present. )
 また、本開示の一実施様態によれば、プロスタグランジンまたはその光学活性体を製造するための中間体としての、上記一般式(I)、(II)、(III)または(IV)で表される化合物またはその光学活性体の使用が提供される。 Further, according to one embodiment of the present disclosure, prostaglandin or an intermediate for producing an optically active substance thereof represented by the general formula (I), (II), (III) or (IV) A use of the compound or an optically active form thereof is provided.
 本開示によれば、プロスタグランジンの製造に有用な合成中間体ないしキラルビルディングブロックとして使用し得るシクロペンテノン誘導体およびその製造方法を提供することができる。本開示によれば、上記シクロペンテノン誘導体は合成中間体を用いることにより、プロスタグランジンを効率的に製造することができ、工業生産上有利である。また、本開示の方法によれば、フルフラールやジメチルスルホキシドのような安価な原料から上記シクロペンテノン誘導体を製造することができ、製造コスト削減の上で有利である。また、本開示によれば、上記製造方法において、スルホキシド化合物の反応を水存在下の加熱還流条件で短期間にて実施し、スルホキシド化合物を消費することができ、工業生産上有利である。また、本開示の方法によれば、密閉条件下、加圧条件下の反応工程を経る必要がなく、設備コストを低減する上で有利である。 According to the present disclosure, it is possible to provide a cyclopentenone derivative that can be used as a useful synthetic intermediate or chiral building block for producing prostaglandins, and a method for producing the same. According to the present disclosure, the cyclopentenone derivative can efficiently produce prostaglandins by using synthetic intermediates, which is advantageous in terms of industrial production. In addition, according to the method of the present disclosure, the cyclopentenone derivative can be produced from inexpensive raw materials such as furfural and dimethylsulfoxide, which is advantageous in reducing production costs. In addition, according to the present disclosure, in the above production method, the reaction of the sulfoxide compound can be carried out in the presence of water under heating and reflux conditions for a short period of time to consume the sulfoxide compound, which is advantageous for industrial production. Moreover, according to the method of the present disclosure, there is no need to undergo a reaction step under closed conditions and pressurized conditions, which is advantageous in terms of reducing facility costs.
発明の具体的説明Specific description of the invention
<定義>
 以下、本明細書で用いられる用語および表現について説明する。以下の定義は、別段規定される場合を除き、本明細書を通じて適用される。例えば、「アルキル基」の定義は、「アルキル」または「アルキル基」を含む官能基(例えば、アリールアルキル基等)に関しても適用される。
<Definition>
The terms and expressions used in this specification are explained below. The following definitions apply throughout this specification unless otherwise specified. For example, the definition of "alkyl group" also applies to functional groups that include "alkyl" or "alkyl groups" (eg, arylalkyl groups, etc.).
 本明細書において、例えば、「C~C」とは炭素数1~6個を有することを意味する。 In this specification, for example, "C 1 -C 6 " means having 1 to 6 carbon atoms.
 「脂肪族炭化水素基」は、脂肪族炭化水素から水素原子を除去することにより生成される官能基(芳香族性を有しない炭化水素基)を意味する。「脂肪族炭化水素基」は、文脈に応じて、1価または2価の官能基を意味し得るが、好ましくは1価の官能基である。脂肪族炭化水素基は、鎖状、環状およびこれらの組み合わせのいずれであってもよい。鎖状は、直鎖状であってもよいし、分岐鎖状であってもよい。脂肪族炭化水素基は、好ましくは、直鎖状または分岐鎖状である。脂肪族炭化水素基は、飽和であってもよいし、不飽和であってもよい。不飽和結合は、炭素-炭素二重結合であってもよいし、炭素-炭素三重結合であってもよい。 "Aliphatic hydrocarbon group" means a functional group (hydrocarbon group without aromaticity) generated by removing a hydrogen atom from an aliphatic hydrocarbon. An "aliphatic hydrocarbon group" can mean a monovalent or divalent functional group, depending on the context, but is preferably a monovalent functional group. The aliphatic hydrocarbon group may be linear, cyclic, or a combination thereof. The chain may be linear or branched. Aliphatic hydrocarbon groups are preferably linear or branched. Aliphatic hydrocarbon groups may be saturated or unsaturated. The unsaturated bond may be a carbon-carbon double bond or a carbon-carbon triple bond.
 脂肪族炭化水素基としては、例えば、アルキル基、アルケニル基、アルキニル基等が挙げられる。 Examples of aliphatic hydrocarbon groups include alkyl groups, alkenyl groups, and alkynyl groups.
 「アルキル基」は、アルカンから1個の水素原子を除去することにより生成される1価の官能基を意味する。アルキル基は、鎖状、環状およびこれらの組み合わせのいずれであってもよい。なお、環状のアルキル基は「シクロアルキル基」と同義である。鎖状は、直鎖状であってもよいし、分岐鎖状であってもよい。アルキル基は、好ましくは、直鎖状または分岐鎖状である。直鎖状のアルキル基の炭素数は、通常1~20個、好ましくは1~10個、より好ましくは1~8個、より一層好ましくは1~6個、より一層好ましくは1~4個、より一層好ましくは1~3個である。分岐鎖状のアルキル基の炭素数は、通常3~20個、好ましくは3~10個、より好ましくは3~8個、より一層好ましくは3~6個、より一層好ましくは3~4個である。環状のアルキル基の炭素数は、通常3~20個、好ましくは3~10個、より好ましくは3~8個、より一層好ましくは3~6個である。直鎖状または分岐鎖状部分と環状部分とを有するアルキル基の炭素数は、通常4~20個、好ましくは4~10個、より好ましくは4~8個、より一層好ましくは4~6個である。 "Alkyl group" means a monovalent functional group generated by removing one hydrogen atom from an alkane. Alkyl groups may be linear, cyclic, or combinations thereof. A cyclic alkyl group is synonymous with a "cycloalkyl group". The chain may be linear or branched. Alkyl groups are preferably straight-chain or branched. The linear alkyl group usually has 1 to 20 carbon atoms, preferably 1 to 10 carbon atoms, more preferably 1 to 8 carbon atoms, still more preferably 1 to 6 carbon atoms, still more preferably 1 to 4 carbon atoms, More preferably 1 to 3. The branched-chain alkyl group usually has 3 to 20 carbon atoms, preferably 3 to 10 carbon atoms, more preferably 3 to 8 carbon atoms, still more preferably 3 to 6 carbon atoms, and still more preferably 3 to 4 carbon atoms. be. The number of carbon atoms in the cyclic alkyl group is generally 3-20, preferably 3-10, more preferably 3-8, and still more preferably 3-6. The number of carbon atoms in the alkyl group having a linear or branched chain portion and a cyclic portion is usually 4 to 20, preferably 4 to 10, more preferably 4 to 8, still more preferably 4 to 6. is.
 アルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、sec-ブチル基、イソブチル基、ペンチル基、ヘキシル基等のC~Cアルキル基;ヘプチル基、1-メチルヘキシル基、5-メチルヘキシル基、1,1-ジメチルペンチル基、2,2-ジメチルペンチル基、4,4-ジメチルペンチル基、1-エチルペンチル基、2-エチルペンチル基、1,1,3-トリメチルブチル基、1,2,2-トリメチルブチル基、1,3,3-トリメチルブチル基、2,2,3-トリメチルブチル基、2,3,3-トリメチルブチル基、1-プロピルブチル基、1,1,2,2-テトラメチルプロピル基、オクチル基、1-メチルヘプチル基、3-メチルヘプチル基、6-メチルヘプチル基、2-エチルヘキシル基、5,5-ジメチルヘキシル基、2,4,4-トリメチルペンチル基、1-エチル-1-メチルペンチル基、ノニル基、1-メチルオクチル基、2-メチルオクチル基、3-メチルオクチル基、7-メチルオクチル基、1-エチルヘプチル基、1,1-ジメチルヘプチル基、6,6-ジメチルヘプチル基、デシル基、1-メチルノニル基、2-メチルノニル基、6-メチルノニル基、1-エチルオクチル基、1-プロピルヘプチル基等の基を挙げることができるが、C~Cアルキル基が好ましい。C~Cアルキル基の好ましい例は、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、sec-ブチル基、イソブチル基、ペンチル基またはヘキシル基等の直鎖状または分岐鎖状部分と環状部分とを有するアルキル基等が挙げられるが、好ましくはメチル基、エチル基、プロピル基、イソプロピル基、ブチル基、sec-ブチル基、イソブチル基、ペンチル基またはヘキシル基である。 Examples of alkyl groups include C 1 to C 6 alkyl groups such as methyl group, ethyl group, propyl group, isopropyl group, butyl group, sec-butyl group, isobutyl group, pentyl group and hexyl group; methylhexyl group, 5-methylhexyl group, 1,1-dimethylpentyl group, 2,2-dimethylpentyl group, 4,4-dimethylpentyl group, 1-ethylpentyl group, 2-ethylpentyl group, 1,1, 3-trimethylbutyl group, 1,2,2-trimethylbutyl group, 1,3,3-trimethylbutyl group, 2,2,3-trimethylbutyl group, 2,3,3-trimethylbutyl group, 1-propylbutyl group, 1,1,2,2-tetramethylpropyl group, octyl group, 1-methylheptyl group, 3-methylheptyl group, 6-methylheptyl group, 2-ethylhexyl group, 5,5-dimethylhexyl group, 2 , 4,4-trimethylpentyl group, 1-ethyl-1-methylpentyl group, nonyl group, 1-methyloctyl group, 2-methyloctyl group, 3-methyloctyl group, 7-methyloctyl group, 1-ethylheptyl 1,1-dimethylheptyl group, 6,6-dimethylheptyl group, decyl group, 1-methylnonyl group, 2-methylnonyl group, 6-methylnonyl group, 1-ethyloctyl group, 1-propylheptyl group, etc. are preferred, but C 1 -C 6 alkyl groups are preferred. Preferred examples of C 1 -C 6 alkyl groups are linear or branched moieties such as methyl, ethyl, propyl, isopropyl, butyl, sec-butyl, isobutyl, pentyl or hexyl groups. and an alkyl group having a cyclic moiety, preferably methyl group, ethyl group, propyl group, isopropyl group, butyl group, sec-butyl group, isobutyl group, pentyl group or hexyl group.
 「アルケニル基」は、アルケンから1個の水素原子を除去することにより生成される1価の官能基を意味する。アルケニル基は、少なくとも1個の炭素-炭素二重結合を有する。アルケニル基は、鎖状、環状およびこれらの組み合わせのいずれであってもよい。なお、環状のアルケニル基は「シクロアルケニル基」と同義である。鎖状は、直鎖状であってもよいし、分岐鎖状であってもよい。アルケニル基は、好ましくは、直鎖状または分岐鎖状である。直鎖状のアルケニル基の炭素数は、通常2~20個、好ましくは2~10個、より好ましくは2~8個、より一層好ましくは2~6個、より一層好ましくは2~4個である。分岐鎖状のアルケニル基の炭素数は、通常3~20個、好ましくは3~10個、より好ましくは3~8個、より一層好ましくは3~6個、より一層好ましくは3~4個である。環状のアルケニル基の炭素数は、通常3~20個、好ましくは3~10個、より好ましくは3~8個、より一層好ましくは3~6個である。直鎖状または分岐鎖状部分と環状部分とを有するアルケニル基の炭素数は、通常4~20個、好ましくは4~10個、より好ましくは4~8個、より一層好ましくは4~6個である。アルケニル基における二重結合の数は、通常1~9個、好ましくは1~7個、より好ましくは1~4個、より一層好ましくは1~3個である。 "Alkenyl group" means a monovalent functional group generated by removing one hydrogen atom from an alkene. Alkenyl groups have at least one carbon-carbon double bond. Alkenyl groups may be linear, cyclic, or combinations thereof. A cyclic alkenyl group is synonymous with a "cycloalkenyl group". The chain may be linear or branched. Alkenyl groups are preferably straight-chain or branched. The straight-chain alkenyl group usually has 2 to 20 carbon atoms, preferably 2 to 10 carbon atoms, more preferably 2 to 8 carbon atoms, still more preferably 2 to 6 carbon atoms, and still more preferably 2 to 4 carbon atoms. be. The branched alkenyl group usually has 3 to 20 carbon atoms, preferably 3 to 10 carbon atoms, more preferably 3 to 8 carbon atoms, still more preferably 3 to 6 carbon atoms, and still more preferably 3 to 4 carbon atoms. be. The number of carbon atoms in the cyclic alkenyl group is generally 3-20, preferably 3-10, more preferably 3-8, and still more preferably 3-6. The alkenyl group having a linear or branched chain portion and a cyclic portion usually has 4 to 20 carbon atoms, preferably 4 to 10 carbon atoms, more preferably 4 to 8 carbon atoms, and still more preferably 4 to 6 carbon atoms. is. The number of double bonds in the alkenyl group is generally 1-9, preferably 1-7, more preferably 1-4, and still more preferably 1-3.
 アルケニル基としては、例えば、ビニル基、2-プロペニル基、3-ブテニル基、2-ブテニル基、4-ペンテニル基、3-ペンテニル基、2-ヘキセニル基、3-ヘキセニル基、2-ヘプテニル基、3-ヘプテニル基、4-ヘプテニル基、3-オクテニル基、3-ノネニル基、4-デセニル基等の直鎖状または分岐鎖状のアルケニル基;シクロプロペニル基、シクロブテニル基、シクロペンテニル基、シクロヘキセニル基、シクロヘプテニル基、シクロオクテニル基等の環状のアルケニル基;シクロペンテニルメチル基、シクロペンテニルエチル基、シクロペンテニルプロピル基、シクロヘキセニルメチル基、シクロヘキセニルエチル基等の直鎖状または分岐鎖状部分と環状部分とを有するアルケニル基等が挙げられる。 Examples of alkenyl groups include vinyl group, 2-propenyl group, 3-butenyl group, 2-butenyl group, 4-pentenyl group, 3-pentenyl group, 2-hexenyl group, 3-hexenyl group, 2-heptenyl group, Linear or branched alkenyl groups such as 3-heptenyl group, 4-heptenyl group, 3-octenyl group, 3-nonenyl group, 4-decenyl group; cyclopropenyl group, cyclobutenyl group, cyclopentenyl group, cyclohexenyl Cyclic alkenyl groups such as groups, cycloheptenyl groups, and cyclooctenyl groups; straight-chain or branched-chain moieties and cyclic Examples include alkenyl groups having moieties and the like.
 「アルキニル基」は、アルキンから1個の水素原子を除去することにより生成される1価の官能基を意味する。アルキニル基は、少なくとも1個の炭素-炭素三重結合を有する。アルキニル基は、鎖状、環状およびこれらの組み合わせのいずれであってもよい。なお、環状のアルキニル基は「シクロアルキニル基」と同義である。鎖状は、直鎖状であってもよいし、分岐鎖状であってもよい。アルキニル基は、好ましくは、直鎖状または分岐鎖状である。直鎖状のアルキニル基の炭素数は、通常2~20個、好ましくは2~10個、より好ましくは2~8個、より一層好ましくは2~6個、より一層好ましくは2~4個である。分岐鎖状のアルキニル基の炭素数は、通常4~20個、好ましくは4~10個、より好ましくは4~8個、より一層好ましくは3~6個である。環状のアルキニル基の炭素数は、通常4~20個、好ましくは4~10個、より好ましくは4~8個、より一層好ましくは4~6個である。直鎖状または分岐鎖状部分と環状部分とを有するアルキニル基の炭素数は、通常5~20個、好ましくは5~10個、より好ましくは5~8個、より一層好ましくは5~6個である。アルキニル基における三重結合の数は、通常1~9個、好ましくは1~7個、より好ましくは1~4個、より一層好ましくは1~3個である。 "Alkynyl group" means a monovalent functional group generated by removing one hydrogen atom from alkyne. Alkynyl groups have at least one carbon-carbon triple bond. Alkynyl groups may be linear, cyclic, or combinations thereof. A cyclic alkynyl group is synonymous with a "cycloalkynyl group". The chain may be linear or branched. Alkynyl groups are preferably straight-chain or branched. The straight-chain alkynyl group usually has 2 to 20 carbon atoms, preferably 2 to 10 carbon atoms, more preferably 2 to 8 carbon atoms, still more preferably 2 to 6 carbon atoms, and still more preferably 2 to 4 carbon atoms. be. The branched alkynyl group usually has 4 to 20 carbon atoms, preferably 4 to 10 carbon atoms, more preferably 4 to 8 carbon atoms, and still more preferably 3 to 6 carbon atoms. The cyclic alkynyl group usually has 4 to 20 carbon atoms, preferably 4 to 10 carbon atoms, more preferably 4 to 8 carbon atoms, and still more preferably 4 to 6 carbon atoms. The alkynyl group having a linear or branched chain portion and a cyclic portion usually has 5 to 20 carbon atoms, preferably 5 to 10 carbon atoms, more preferably 5 to 8 carbon atoms, and still more preferably 5 to 6 carbon atoms. is. The number of triple bonds in the alkynyl group is generally 1-9, preferably 1-7, more preferably 1-4, and still more preferably 1-3.
 アルキニル基としては、例えば、2-プロピニル基、3-ブチニル基、2-ブチニル基、4-ペンチニル基、3-ペンチニル基、2-ヘキシニル基、3-ヘキシニル基、2-ヘプチニル基、3-ヘプチニル基、4-ヘプチニル基、3-オクチニル基、3-ノニニル基、4-デシニル基等の直鎖状または分岐鎖状のアルキニル基;シクロブチニル基、シクロペンチニル基、シクロヘプチニル基、シクロオクチニル基等の環状のアルキニル基;シクロペンチニルメチル基、シクロペンテニルエチル基、シクロペンチニルプロピル基、シクロペンチニルメチル基、シクロペンチニルエチル基等の直鎖状または分岐鎖状部分と環状部分とを有するアルキニル基等が挙げられる。 Examples of alkynyl groups include 2-propynyl, 3-butynyl, 2-butynyl, 4-pentynyl, 3-pentynyl, 2-hexynyl, 3-hexynyl, 2-heptynyl and 3-heptynyl groups. linear or branched alkynyl groups such as groups, 4-heptynyl groups, 3-octynyl groups, 3-nonynyl groups and 4-decynyl groups; cyclic groups such as cyclobutynyl groups, cyclopentynyl groups, cycloheptynyl groups and cyclooctynyl groups alkynyl group; cyclopentynylmethyl group, cyclopentenylethyl group, cyclopentynylpropyl group, cyclopentynylmethyl group, cyclopentynylethyl group, etc. Alkynyl group having a linear or branched chain portion and a cyclic portion etc.
 「芳香族炭化水素環基」は、芳香族炭化水素環から水素原子を除去することにより生成される官能基を意味する。「芳香族炭化水素環基」は、文脈に応じて、1価または2価の官能基を意味し得るが、好ましくは1価の官能基である。 "Aromatic hydrocarbon ring group" means a functional group generated by removing a hydrogen atom from an aromatic hydrocarbon ring. An "aromatic hydrocarbon ring group" can mean a monovalent or divalent functional group, depending on the context, but is preferably a monovalent functional group.
 芳香族炭化水素環基としては、例えば、アリール基等が挙げられる。 Examples of aromatic hydrocarbon ring groups include aryl groups.
 「アリール基」は、単環式または多環式(例えば、2環式または3環式)の芳香族炭素水素環基を意味する。アリール基は、通常1~4環式、好ましくは1~3環式、より好ましくは1または2環式の芳香族炭素水素環基である。アリール基における環構成炭素原子の数は、通常6~18個、好ましくは6~14個、より好ましくは6~10個である。 "Aryl group" means a monocyclic or polycyclic (eg, bicyclic or tricyclic) aromatic hydrocarbon ring group. The aryl group is generally a 1- to 4-ring, preferably 1- to 3-ring, more preferably 1- or 2-ring aromatic hydrocarbon ring group. The number of ring-constituting carbon atoms in the aryl group is generally 6-18, preferably 6-14, more preferably 6-10.
 単環式の芳香族炭素水素環基としては、例えば、フェニル基が挙げられる。 Examples of the monocyclic aromatic hydrocarbon ring group include a phenyl group.
 アリール基には、縮合多環式の芳香族炭化水素環基および部分的に飽和された縮合多環式の芳香族炭化水素環基も包含される。部分的に飽和された縮合多環式の芳香族炭化水素環基は、環を構成する結合の一部が水素化された縮合多環式の芳香族炭化水素環基である。縮合多環式の芳香族炭化水素環基としては、例えば、ナフチル基、アントリル基、フェナントレニル基、テトラセニル基、ピレニル基等の2~4環式の芳香族炭素水素環基に加えて、フルオレニル基、インデニル基、アセナフチレニル等が挙げられるが好ましくは。部分的に飽和された縮合多環式の芳香族炭化水素環基としては、例えば、ジヒドロナフチル基、インダニル基、アセナフテニル基等が挙げられる。 Aryl groups also include condensed polycyclic aromatic hydrocarbon ring groups and partially saturated condensed polycyclic aromatic hydrocarbon ring groups. A partially saturated condensed polycyclic aromatic hydrocarbon ring group is a condensed polycyclic aromatic hydrocarbon ring group in which some of the bonds constituting the ring are hydrogenated. Examples of condensed polycyclic aromatic hydrocarbon ring groups include, for example, bi- to tetracyclic aromatic hydrocarbon ring groups such as naphthyl group, anthryl group, phenanthrenyl group, tetracenyl group, pyrenyl group, and fluorenyl group. , an indenyl group, acenaphthylenyl, etc., preferably. Partially saturated condensed polycyclic aromatic hydrocarbon ring groups include, for example, a dihydronaphthyl group, an indanyl group, and an acenaphthenyl group.
 より具体的には、アリール基は、好ましくは単環式または2環式芳香族性炭化水素基であり、より好ましくはフェニル基、ナフチル基等の炭素数6~10のアリール基であり、より一層好ましくはフェニル基である。 More specifically, the aryl group is preferably a monocyclic or bicyclic aromatic hydrocarbon group, more preferably an aryl group having 6 to 10 carbon atoms such as a phenyl group and a naphthyl group. A phenyl group is more preferred.
 「脂肪族炭化水素基および芳香族炭化水素環基を組み合わせて形成される官能基」は、式:(*)-脂肪族炭化水素基-芳香族炭化水素環基、または、式:(*)-芳香族炭化水素環基-脂肪族炭化水素基で表される。(*)は、脂肪族炭化水素基および芳香族炭化水素環基を組み合わせて形成される官能基を含む有機基の結合手を表す。 "Functional group formed by combining an aliphatic hydrocarbon group and an aromatic hydrocarbon ring group" is represented by the formula: (*) - aliphatic hydrocarbon group - aromatic hydrocarbon ring group, or the formula: (*) - Aromatic hydrocarbon ring group - Aliphatic hydrocarbon group. (*) represents a bond of an organic group including a functional group formed by combining an aliphatic hydrocarbon group and an aromatic hydrocarbon ring group.
 式:(*)-脂肪族炭化水素基-芳香族炭化水素環基で表される官能基としては、例えば、アルキルアリール基、アルケニルアリール基、アルキニルアリール基等が挙げられる。「アルキルアリール基」、「アルケニルアリール基」および「アルキニルアリール基」におけるアルキル基、アルケニル基、アルキニル基およびアリール基に関する説明は、上記と同様である。 Examples of functional groups represented by the formula: (*)-aliphatic hydrocarbon group-aromatic hydrocarbon ring group include alkylaryl groups, alkenylaryl groups, and alkynylaryl groups. The descriptions of the alkyl group, alkenyl group, alkynyl group and aryl group in the "alkylaryl group", "alkenylaryl group" and "alkynylaryl group" are the same as above.
 アルキルアリール基におけるアルキル基の数、アルケニルアリール基におけるアルケニル基の数およびアルキニルアリール基におけるアルキニル基の数は、通常1~4個、好ましくは1~3個、より好ましくは1~2個である。アルキルアリール基としては、例えば、o-トルイル、m-トルイル、p-トルイル、2,3-ジメチルフェニル、2,4-ジメチルフェニル、2,5-ジメチルフェニル、2,6-ジメチルフェニル、3,4-ジメチルフェニル、3,5-ジメチルフェニル、2,4,6-トリメチルフェニル、o-エチルフェニル、m-エチルフェニル、p-エチルフェニル等が挙げられる。アルケニルアリール基としては、例えば、o-スチリル,m-スチリル,p-スチリル等のアルケニルアリール基が挙げられる。アルキニルアリール基としては、例えば、2-エチニル-2-フェニル等のアルキニルアリール基等が挙げられる。 The number of alkyl groups in an alkylaryl group, the number of alkenyl groups in an alkenylaryl group, and the number of alkynyl groups in an alkynylaryl group are generally 1 to 4, preferably 1 to 3, more preferably 1 to 2. . Examples of alkylaryl groups include o-toluyl, m-toluyl, p-toluyl, 2,3-dimethylphenyl, 2,4-dimethylphenyl, 2,5-dimethylphenyl, 2,6-dimethylphenyl, 3, 4-dimethylphenyl, 3,5-dimethylphenyl, 2,4,6-trimethylphenyl, o-ethylphenyl, m-ethylphenyl, p-ethylphenyl and the like. Examples of alkenylaryl groups include alkenylaryl groups such as o-styryl, m-styryl and p-styryl. Examples of alkynylaryl groups include alkynylaryl groups such as 2-ethynyl-2-phenyl.
 式:(*)-芳香族炭化水素環基-脂肪族炭化水素基で表される官能基としては、例えば、アリールアルキル基、アリールアルケニル基、アリールアルキニル基等が挙げられる。「アリールアルキル基」、「アリールアルケニル基」および「アリールアルキニル基」におけるアルキル基、アルケニル基、アルキニル基およびアリール基に関する説明は、上記と同様である。 Examples of functional groups represented by the formula: (*)-aromatic hydrocarbon ring group-aliphatic hydrocarbon group include arylalkyl groups, arylalkenyl groups, and arylalkynyl groups. The descriptions of the alkyl group, alkenyl group, alkynyl group and aryl group in the "arylalkyl group", "arylalkenyl group" and "arylalkynyl group" are the same as above.
 アリールアルキル基の炭素数は、通常7~15個、好ましくは7~11個である。アリールアルキル基としては、例えば、フェニル、ナフチル、アントリル、フェナントリル、アセナフチレニルなどのアリール基で置換されたアルキル基が挙げられるが、好ましくはベンジル基、2-フェニルエチル基、3-フェニルプロピル基、2-フェニルプロピル基、1-フェニルプロピル基、α-ナフチルメチル基、α-ナフチルエチル基、β-ナフチルメチル基、β-ナフチルエチル基、ジフェニルメチル基、トリフェニルメチル基等であり、より好ましくはトリフェニルメチル基である。 The number of carbon atoms in the arylalkyl group is usually 7-15, preferably 7-11. Arylalkyl groups include, for example, alkyl groups substituted with aryl groups such as phenyl, naphthyl, anthryl, phenanthryl and acenaphthylenyl, preferably benzyl, 2-phenylethyl, 3-phenylpropyl, 2 -phenylpropyl group, 1-phenylpropyl group, α-naphthylmethyl group, α-naphthylethyl group, β-naphthylmethyl group, β-naphthylethyl group, diphenylmethyl group, triphenylmethyl group and the like, more preferably It is a triphenylmethyl group.
 アリールアルケニル基の炭素数は、通常8~16個、好ましくは8~12個である。アラルケニル基としては、例えば、2-フェネテニル基、2-ネフチルエテニル基等が挙げられる。 The number of carbon atoms in the arylalkenyl group is usually 8-16, preferably 8-12. The aralkenyl group includes, for example, 2-phenethenyl group, 2-nephthylethenyl group and the like.
 アリールアルキニル基の炭素数は、通常8~16個、好ましくは8~12個である。アラルキニル基としては、例えば、フェニルエチニル基等が挙げられる。 The number of carbon atoms in the arylalkynyl group is usually 8-16, preferably 8-12. The aralkynyl group includes, for example, a phenylethynyl group.
 ある官能基に関して「置換基を有していてもよい」という表現は、当該官能基の1個以上の水素原子が、それぞれ独立して、他の原子または原子団で置き換えられていてもよいことを意味し、置換基を有していてもまたは無置換であってもよいことと同義である。 The expression "optionally substituted" with respect to a functional group means that one or more hydrogen atoms of the functional group may be independently replaced with other atoms or atomic groups. is synonymous with the fact that it may have a substituent or may be unsubstituted.
 脂肪族炭化水素基が有し得る置換基の数は、脂肪族炭化水素基の炭素数等に応じて適宜決定することができる。脂肪族炭化水素基は、置換可能位置に、例えば1~6個、好ましくは1~3個、より好ましくは1または2個の置換基を有することができる。炭化水素基が2個以上の置換基を有する場合、2個以上の置換基は同一であってもよいし、異なっていてもよい。 The number of substituents that the aliphatic hydrocarbon group can have can be appropriately determined according to the number of carbon atoms in the aliphatic hydrocarbon group. The aliphatic hydrocarbon group can have, for example, 1 to 6, preferably 1 to 3, more preferably 1 or 2 substituents at substitutable positions. When the hydrocarbon group has two or more substituents, the two or more substituents may be the same or different.
 アルキル基の炭素数が1~4個である場合、アルキル基が有し得る置換基の数は、通常1~3個、好ましくは1または2個、より好ましくは1個である。アルキル基の炭素数が5~9個である場合、アルキル基が有し得る置換基の数は、通常1~6個、好ましくは1~5個、より好ましくは1~4個、より一層好ましくは1または2個である。アルキル基の炭素数が10個以上である場合、アルキル基が有し得る置換基の数は、通常1~9個、好ましくは1~5個、より一層好ましくは1~4個、より一層好ましくは1または2個である。 When the alkyl group has 1 to 4 carbon atoms, the number of substituents that the alkyl group may have is usually 1 to 3, preferably 1 or 2, more preferably 1. When the alkyl group has 5 to 9 carbon atoms, the number of substituents that the alkyl group may have is usually 1 to 6, preferably 1 to 5, more preferably 1 to 4, and still more preferably. is 1 or 2. When the number of carbon atoms in the alkyl group is 10 or more, the number of substituents that the alkyl group may have is usually 1 to 9, preferably 1 to 5, more preferably 1 to 4, still more preferably is 1 or 2.
 アルケニル基の炭素数が2~4個である場合、アルケニル基が有し得る置換基の数は、通常1~3個、好ましくは1または2個、より好ましくは1個である。また、アルケニル基の炭素数が5~9個である場合、アルケニル基が有し得る置換基の数は、通常1~5個、好ましくは1~4個、より好ましくは1~3個、より一層好ましくは1または2個である。また、アルケニル基の炭素数が10個以上である場合、アルケニル基が有し得る置換基の数は、通常1~8個、好ましくは1~4個、より一層好ましくは1~3個、より一層好ましくは1または2個である。 When the alkenyl group has 2 to 4 carbon atoms, the number of substituents that the alkenyl group may have is usually 1 to 3, preferably 1 or 2, more preferably 1. Further, when the alkenyl group has 5 to 9 carbon atoms, the number of substituents that the alkenyl group may have is usually 1 to 5, preferably 1 to 4, more preferably 1 to 3, more One or two is more preferable. Further, when the number of carbon atoms in the alkenyl group is 10 or more, the number of substituents that the alkenyl group may have is usually 1 to 8, preferably 1 to 4, still more preferably 1 to 3, more One or two is more preferable.
 アルキニル基の炭素数が2~4個である場合、アルキニル基が有し得る置換基の数は、通常1~3個、好ましくは1または2個、より好ましくは1個である。アルキニル基の炭素数が5~9個である場合は、アルキニル基が有し得る置換基の数は、通常1~5個、好ましくは1~4個、より好ましくは1~3個、より一層好ましくは1または2個である。アルキニル基の炭素数が10個以上である場合、アルキニル基が有し得る置換基の数は、通常1~8個、好ましくは1~4個、より一層好ましくは1~3個、より一層好ましくは1または2個である。 When the alkynyl group has 2 to 4 carbon atoms, the number of substituents that the alkynyl group may have is usually 1 to 3, preferably 1 or 2, more preferably 1. When the alkynyl group has 5 to 9 carbon atoms, the number of substituents that the alkynyl group may have is usually 1 to 5, preferably 1 to 4, more preferably 1 to 3, and more preferably 1 to 3. One or two is preferred. When the alkynyl group has 10 or more carbon atoms, the number of substituents that the alkynyl group may have is usually 1 to 8, preferably 1 to 4, still more preferably 1 to 3, still more preferably is 1 or 2.
 芳香族炭化水素環基が有し得る置換基の数は、芳香族炭化水素環基の炭素数、員数等に応じて適宜決定することができる。芳香族炭化水素環基は、置換可能位置に、例えば1~5個、好ましくは1~4個、より好ましくは1~3個、より一層好ましくは1または2個の置換基を有することができる。芳香族炭化水素環基が2個以上の置換基を有する場合、2個以上の置換基は同一であってもよいし、異なっていてもよい。 The number of substituents that the aromatic hydrocarbon ring group can have can be appropriately determined according to the number of carbon atoms, the number of members, etc. of the aromatic hydrocarbon ring group. The aromatic hydrocarbon ring group can have, for example, 1 to 5, preferably 1 to 4, more preferably 1 to 3, still more preferably 1 or 2 substituents at substitutable positions. . When the aromatic hydrocarbon ring group has two or more substituents, the two or more substituents may be the same or different.
 アリールアルキル基またはアルキルアリール基の炭素数が7~11個である場合、アリールアルキル基またはアルキルアリール基が有し得る置換基の数は、通常1~5個、好ましくは1~4個、より好ましくは1~2個である。アリールアルキル基またはアルキルアリール基の炭素数が12~15個である場合、アリールアルキル基またはアルキルアリール基が有し得る置換基の数は、通常1~6個、好ましくは1~4個、より好ましくは1~2個である。アリールアルキル基またはアルキルアリール基の炭素数が16個以上である場合、アリールアルキル基またはアルキルアリール基が有し得る置換基の数は、通常1~8個、好ましくは1~6個、より好ましくは1~4個であり、より一層好ましくは1~2個である。 When the arylalkyl group or alkylaryl group has 7 to 11 carbon atoms, the number of substituents that the arylalkyl group or alkylaryl group may have is usually 1 to 5, preferably 1 to 4, more The number is preferably 1-2. When the arylalkyl group or alkylaryl group has 12 to 15 carbon atoms, the number of substituents that the arylalkyl group or alkylaryl group may have is usually 1 to 6, preferably 1 to 4, more The number is preferably 1-2. When the arylalkyl group or alkylaryl group has 16 or more carbon atoms, the number of substituents that the arylalkyl group or alkylaryl group may have is generally 1 to 8, preferably 1 to 6, more preferably is 1 to 4, and more preferably 1 to 2.
 アリールアルケニル基またはアルケニルアリール基の炭素数が8~11個である場合、アリールアルケニル基またはアルケニルアリール基が有し得る置換基の数は、通常1~5個、好ましくは1~4個、より好ましくは1~2個である。アリールアルケニル基またはアルケニルアリール基の炭素数が12~15個である場合、アリールアルケニル基またはアルケニルアリール基が有し得る置換基の数は、通常1~6個、好ましくは1~4個、より好ましくは1~2個である。アリールアルケニル基またはアルケニルアリール基の炭素数が16個以上である場合、アリールアルケニル基またはアルケニルアリール基が有し得る置換基の数は、通常1~8個、好ましくは1~6個、より好ましくは1~4個であり、より一層好ましくは1~2個である。 When the arylalkenyl group or alkenylaryl group has 8 to 11 carbon atoms, the number of substituents that the arylalkenyl group or alkenylaryl group may have is usually 1 to 5, preferably 1 to 4, more The number is preferably 1-2. When the arylalkenyl group or alkenylaryl group has 12 to 15 carbon atoms, the number of substituents that the arylalkenyl group or alkenylaryl group may have is usually 1 to 6, preferably 1 to 4, more The number is preferably 1-2. When the arylalkenyl group or alkenylaryl group has 16 or more carbon atoms, the number of substituents that the arylalkenyl group or alkenylaryl group may have is generally 1 to 8, preferably 1 to 6, more preferably. is 1 to 4, and more preferably 1 to 2.
 置換基としては、アルコキシ基、ハロゲン原子、シアノ基、ニトロ基、スルホニル、スルホニル基、カルボキシル基またはアシル基等が挙げられるが、好ましい置換基の例としては、C~Cアルコキシ基またはハロゲン原子(好ましくはフッ素原子または塩素原子等)である。 Examples of substituents include alkoxy groups, halogen atoms, cyano groups, nitro groups, sulfonyl, sulfonyl groups , carboxyl groups and acyl groups. It is an atom (preferably a fluorine atom, a chlorine atom, or the like).
 アルコキシ基の例としては、例えば、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基、sec-ブトキシ基、イソブトキシ基、tert-ブトキシ基、ペンチルオキシ基、イソペンチルオキシ基、ヘキシルオキシ基、イソヘキシルオキシ基等が挙げられる。 Examples of alkoxy groups include methoxy, ethoxy, propoxy, isopropoxy, butoxy, sec-butoxy, isobutoxy, tert-butoxy, pentyloxy, isopentyloxy, and hexyloxy groups. , an isohexyloxy group, and the like.
 アシル基の例としては、アセチル基、プロピオニル基、n-ブチリル基、iso-ブチリル基、n-バレリル基、カプロイル基、ベンゾイル基等を挙げられる。 Examples of acyl groups include acetyl group, propionyl group, n-butyryl group, iso-butyryl group, n-valeryl group, caproyl group and benzoyl group.
 「ハロゲン原子」とは、フッ素原子、塩素原子、臭素原子、ヨウ素原子等を示す。 "Halogen atom" means a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, or the like.
 「保護基」とは、当業者に公知の保護基であり、Green’s Protective Groups in Organic Synthesis(Wuts, Peter G.M., John WIley & Sons Inc.)に示される意味で使用される。
 「室温」とは、10℃~35℃を示す。
A "protecting group" is a protecting group known to those skilled in the art and is used in the sense given in Green's Protective Groups in Organic Synthesis (Wuts, Peter GM, John WIley & Sons Inc.).
"Room temperature" means 10°C to 35°C.
 本明細書に記載の化合物は不斉中心を含んでいてもよく、したがって鏡像異性体として存在してもよい。本明細書に記載の化合物が2つ以上の不斉中心を有する場合、それらはさらにジアステレオマーとして存在してもよい。鏡像異性体およびジアステレオマーは、より広いクラスの立体異性体に属する。実質的に純粋な分割された鏡像異性体、そのラセミ混合物、ならびにジアステレオマーの混合物などの、すべての可能な異性体は、含まれることが意図される。特に、記載がない限り、1つの異性体への言及は任意の可能な異性体に適用される。異性体組成が明記されていない場合はいつも、すべての可能な異性体が含まれる。 The compounds described herein may contain asymmetric centers and therefore may exist as enantiomers. Where the compounds described herein possess two or more asymmetric centers, they may additionally exist as diastereomers. Enantiomers and diastereomers belong to the broader class of stereoisomers. All possible isomers, such as substantially pure resolved enantiomers, racemic mixtures thereof, as well as mixtures of diastereomers, are intended to be included. Unless specifically stated otherwise, references to one isomer apply to any possible isomer. Whenever the isomeric composition is not specified, all possible isomers are included.
 本明細書において、「光学活性体」とは、鏡像体過剰率比(Enantiomeric Excess(e.e.)90%以上であり、好ましくは95%であり、より一層好ましくは98%であり、さらに好ましくは99%以上の化合物またはその異性体混合物を意味する。 As used herein, the term "optically active substance" means an enantiomeric excess (ee) of 90% or more, preferably 95%, still more preferably 98%, and further It preferably means 99% or more of the compound or its isomer mixture.
プロスタグランジンの合成中間体
 本開示の一実施態様によれば、プロスタグランジンの製造に適用可能な合成中間体として、後述する一般式(I)~(IV)で表される化合物またはその光学活性体が提供される。また、本開示の好ましい実施態様によれば、一般式(I)または一般式(II)で表される化合物またはその光学活性体が提供される。一般式(I)または一般式(II)で表される化合物をはじめとする合成中間体をプロスタグランジンの製造に使用する場合、非特許文献1に記載のような多段階を経由せずにプロスタグランジンを効率的に製造しうる。また、一般式(I)または一般式(II)で表される化合物をはじめとする合成中間体をプロスタグランジンの製造に使用する場合、非特許文献2に記載のような高価な原料を使用せずにプロスタグランジンを製造しうることから、工業生産上有利である。
Synthetic intermediates of prostaglandins According to one embodiment of the present disclosure, as synthetic intermediates applicable to the production of prostaglandins, compounds represented by general formulas (I) to (IV) described below or optical compounds thereof An active is provided. Moreover, according to a preferred embodiment of the present disclosure, a compound represented by general formula (I) or general formula (II) or an optically active substance thereof is provided. When synthetic intermediates including compounds represented by general formula (I) or general formula (II) are used for the production of prostaglandins, without going through multiple steps as described in Non-Patent Document 1, Prostaglandins can be produced efficiently. In addition, when synthetic intermediates such as compounds represented by general formula (I) or general formula (II) are used for the production of prostaglandins, expensive raw materials as described in Non-Patent Document 2 are used. It is advantageous in terms of industrial production because prostaglandins can be produced without
一般式(I)で表される化合物
 本開示の一実施態様によれば、下記一般式(I)で表される化合物が提供される。
Figure JPOXMLDOC01-appb-C000037
(一般式(I)中、Rは、置換基を有していてもよい脂肪族炭化水素基、または置換基を有していてもよい芳香族炭化水素環基を示す。)
Compound Represented by General Formula (I) According to one embodiment of the present disclosure, there is provided a compound represented by the following general formula (I).
Figure JPOXMLDOC01-appb-C000037
(In general formula (I), R 1 represents an optionally substituted aliphatic hydrocarbon group or an optionally substituted aromatic hydrocarbon ring group.)
 本開示の一実施態様によれば、一般式(I)において、Rは、置換基を有していてもよいアルキル基、置換基を有していてもよいアルケニル基、置換基を有していてもよいアルキニル基、置換基を有していてもよいアリール基、置換基を有していてもよいアリールアルキル基、置換基を有していてもよいアリールアルケニル基または置換基を有していてもよいアリールアキニル基、置換基を有していてもよいアルキルアリール基、アルケニルアリール基またはアルキニルアリール基である。 According to one embodiment of the present disclosure, in general formula (I), R 1 is an optionally substituted alkyl group, an optionally substituted alkenyl group, an optionally substituted optionally substituted alkynyl group, optionally substituted aryl group, optionally substituted arylalkyl group, optionally substituted arylalkenyl group or substituted an arylakinyl group which may be substituted, an alkylaryl group which may have a substituent, an alkenylaryl group or an alkynylaryl group.
 本開示の一実施態様によれば、一般式(I)において、Rは、置換基を有していてもよいアルキル基または置換基を有していてもよいアルキルアリール基である。 According to one embodiment of the present disclosure, in general formula (I), R 1 is an optionally substituted alkyl group or an optionally substituted alkylaryl group.
 本開示の一実施態様によれば、一般式(I)において、Rは、置換基を有していてもよいC~Cアルキル基または置換基を有していてもよいC~C14アルキルアリール基を表す。 According to one embodiment of the present disclosure, in general formula (I), R 1 is an optionally substituted C 1 to C 6 alkyl group or an optionally substituted C 7 to represents a C14 alkylaryl group.
 本開示のより一層好ましい実施態様によれば、一般式(I)において、Rは、C~Cアルキル基を表し、好ましくはメチルを表す。 According to an even more preferred embodiment of the present disclosure, in general formula (I), R 1 represents a C 1 -C 6 alkyl group, preferably methyl.
 上記いずれかの実施態様における一般式(I)において、Rで表される官能基の有する置換基は、それぞれ独立して、好ましくはアルコキシ基、ハロゲン原子、シアノ基、ニトロ基、スルホニル基、カルボキシル基またはアシル基であり、より好ましくはC~Cアルコキシ基またはハロゲン原子であり、より一層好ましくはC~Cアルコキシ基またはハロゲン原子(好ましくはフッ素原子または塩素原子等)である。 In the general formula (I) in any of the above embodiments, the substituents possessed by the functional group represented by R 1 are each independently preferably an alkoxy group, a halogen atom, a cyano group, a nitro group, a sulfonyl group, a carboxyl group or an acyl group, more preferably a C 1 -C 6 alkoxy group or a halogen atom, still more preferably a C 1 -C 3 alkoxy group or a halogen atom (preferably a fluorine atom, a chlorine atom, etc.) .
一般式(II)で表される化合物またはその光学活性体
 本開示の一実施態様によれば、下記一般式(II)で表される化合物またはその光学活性体が提供される。
Figure JPOXMLDOC01-appb-C000038
(一般式(II)中、RおよびRは、それらが結合している窒素原子とともに環構造を形成する。)
Compound Represented by General Formula (II) or Optically Active Form Thereof According to one embodiment of the present disclosure, there is provided a compound represented by the following general formula (II) or an optically active form thereof.
Figure JPOXMLDOC01-appb-C000038
(In general formula (II), R 2 and R 3 form a ring structure together with the nitrogen atom to which they are attached.)
 本開示の一実施態様によれば、一般式(II)において、RおよびRが結合している窒素原子とともに形成する環構造は、好ましくは上記窒素原子以外のヘテロ原子を含んでいてもよいC~C11環構造であり、より好ましくは上記窒素原子以外のヘテロ原子を含んでいてもよいC~C環構造を形成する。また、本開示の好ましい実施態様によれば、上記窒素原子以外のヘテロ原子は、好ましくは窒素原子、酸素原子または硫黄原子であり、より好ましくは窒素原子である。 According to one embodiment of the present disclosure, in general formula (II), the ring structure formed with the nitrogen atom to which R 2 and R 3 are bonded preferably contains a heteroatom other than the nitrogen atom. It is a good C 2 -C 11 ring structure, and more preferably forms a C 4 -C 6 ring structure which may contain heteroatoms other than the above nitrogen atoms. Also, according to a preferred embodiment of the present disclosure, the heteroatom other than the nitrogen atom is preferably a nitrogen atom, an oxygen atom or a sulfur atom, more preferably a nitrogen atom.
 また、本開示のより好ましい実施態様によれば、上記窒素原子以外のヘテロ原子は保護基を有していてもよく、当該保護基としては、トシル基、Boc基等が挙げられるが、トシル基が好ましい。 Further, according to a more preferred embodiment of the present disclosure, the heteroatom other than the nitrogen atom may have a protecting group, and examples of the protecting group include a tosyl group and a Boc group. is preferred.
 また、本開示のより一層好ましい実施態様によれば、一般式(II)において、RおよびRが結合している窒素原子とともに形成する環構造は、4-トシルピペリジン構造であってもよい。したがって、本開示のより一層好ましい実施態様によれば、RおよびRが一緒になって3-トシル-3-アザペンタンジイル基を表す。 Further, according to an even more preferred embodiment of the present disclosure, in general formula (II), the ring structure formed with the nitrogen atom to which R 2 and R 3 are bound may be a 4-tosylpiperidine structure. . Thus, according to an even more preferred embodiment of the present disclosure, R 2 and R 3 together represent a 3-tosyl-3-azapentanediyl group.
一般式(III)で表される化合物またはその光学活性体
 本開示の一実施態様によれば、下記一般式(III)で表される化合物またはその光学活性体が提供される。
Figure JPOXMLDOC01-appb-C000039
(一般式(III)中、RおよびRは、それらが結合している窒素原子とともに環構造を形成し、
 Rは、置換基を有していてもよい脂肪族炭化水素基、または置換基を有していてもよい芳香族炭化水素環基を示す。)
Compound Represented by General Formula (III) or Optically Active Form Thereof According to one embodiment of the present disclosure, there is provided a compound represented by the following general formula (III) or an optically active form thereof.
Figure JPOXMLDOC01-appb-C000039
(In general formula (III), R 2 and R 3 form a ring structure together with the nitrogen atom to which they are attached,
R 4 represents an optionally substituted aliphatic hydrocarbon group or an optionally substituted aromatic hydrocarbon ring group. )
 また、本開示の一実施態様によれば、一般式(III)において、RおよびRが結合している窒素原子とともに形成する環構造は、一般式(II)と同様とされる。 Further, according to one embodiment of the present disclosure, in general formula (III), the ring structure formed with the nitrogen atom to which R 2 and R 3 are bonded is the same as in general formula (II).
 また、本開示の一実施態様によれば、一般式(III)において、Rは、置換基を有していてもよいアルキル基、置換基を有していてもよいアルケニル基、置換基を有していてもよいアルキニル基、または置換基を有していてもよいアリール基である。 Further, according to one embodiment of the present disclosure, in general formula (III), R 4 is an optionally substituted alkyl group, an optionally substituted alkenyl group, or It is an optionally substituted alkynyl group or an optionally substituted aryl group.
 本開示の一実施態様によれば、一般式(III)において、Rは、置換基を有していてもよいC~Cアルキル基または置換基を有していてもよいフェニル基である。 According to one embodiment of the present disclosure, in general formula (III), R 4 is an optionally substituted C 1 to C 6 alkyl group or an optionally substituted phenyl group; be.
 上記いずれかの実施態様における一般式(III)において、Rで表される官能基の有する置換基は、好ましくはアルコキシ基、ハロゲン原子、シアノ基、ニトロ基、スルホニル基、カルボキシル基またはアシル基であり、より好ましくはC~Cアルコキシ基またはハロゲン原子であり、より一層好ましくはC~Cアルコキシ基またはハロゲン原子(好ましくはフッ素原子または塩素原子等)である。 In the general formula (III) in any of the above embodiments, the substituent possessed by the functional group represented by R4 is preferably an alkoxy group, a halogen atom, a cyano group, a nitro group, a sulfonyl group, a carboxyl group or an acyl group. , more preferably a C 1 -C 6 alkoxy group or a halogen atom, still more preferably a C 1 -C 3 alkoxy group or a halogen atom (preferably a fluorine atom, a chlorine atom, or the like).
 また、本開示の一実施態様によれば、一般式(III)において、Rは、
 CH(3-n)(ただし、Xは、F、ClまたはBrであり、nは、1~3の整数である)、または
 CHOY(ただし、Yは、アルキル基、アリール基、またはアラルキル基である)である。
Further, according to one embodiment of the present disclosure, in general formula (III), R 4 is
CH (3-n) X n (where X is F, Cl or Br and n is an integer of 1 to 3), or CH 2 OY (where Y is an alkyl group, an aryl group, or an aralkyl group).
 また、本開示の一実施態様によれば、一般式(III)において、Rは、
 CH(3-n)(ただし、Xは、F、ClまたはBrであり、nは、1~3の整数である)、または
 CHOY(ただし、Yは、C~Cアルキル基またはフェニルである)である。
Further, according to one embodiment of the present disclosure, in general formula (III), R 4 is
CH (3-n) X n (where X is F, Cl or Br and n is an integer from 1 to 3), or CH 2 OY (where Y is C 1 -C 6 alkyl or phenyl).
 また、本開示の一実施態様によれば、一般式(III)において、Rは、ハロゲン原子で置換基を有していてもよいC~Cアルキル基またはハロゲン原子で置換基を有していてもよいフェニル基であり、好ましくはCHClである。 Further, according to one embodiment of the present disclosure, in general formula (III), R 4 is a C 1 to C 6 alkyl group optionally having a substituent with a halogen atom or a halogen atom having a substituent is a phenyl group which may be substituted, preferably CH 2 Cl.
 また、本開示の一実施態様によれば、下記一般式(IV)で表される化合物またはその光学活性体が提供される。
Figure JPOXMLDOC01-appb-C000040
(一般式(IV)中、RおよびRは、それらが結合している窒素原子とともに環構造を形成し、
 Wは、-SiR基、置換されていてもよいベンジル基またはアセタール型保護基を表し、
 R5、およびRは、それぞれ独立して、置換基を有していてもよい脂肪族炭化水素基、置換基を有していてもよい芳香族炭化水素環基、または置換基を有していてもよい、脂肪族炭化水素基および芳香族炭化水素環基を組み合わせて形成される官能基を示す。)
Moreover, according to one embodiment of the present disclosure, a compound represented by the following general formula (IV) or an optically active substance thereof is provided.
Figure JPOXMLDOC01-appb-C000040
(In general formula (IV), R 2 and R 3 form a ring structure together with the nitrogen atom to which they are attached,
W represents a —SiR 5 R 6 R 7 group, an optionally substituted benzyl group or an acetal-type protecting group;
R 5, R 6 and R 7 each independently represent an optionally substituted aliphatic hydrocarbon group, an optionally substituted aromatic hydrocarbon cyclic group, or a substituent A functional group formed by combining an aliphatic hydrocarbon group and an aromatic hydrocarbon ring group, which may be present. )
 本開示の一実施態様によれば、一般式(IV)において、Wは好ましくは-SiR基である。 According to one embodiment of the present disclosure, in general formula (IV), W is preferably a -SiR 5 R 6 R 7 group.
 本開示の一実施態様によれば、一般式(IV)において、R、RおよびRは、それぞれ独立して、置換基を有していてもよいアルキル基、置換基を有していてもよいアルケニル基、置換基を有していてもよいアルキニル基、置換基を有していてもよいアリール基、置換基を有していてもよいアリールアルキル基、置換基を有していてもよいアリールアルケニル基または置換基を有していてもよいアリールアキニル基、置換基を有していてもよいアルキルアリール基、アルケニルアリール基またはアルキニルアリール基である。 According to one embodiment of the present disclosure, in general formula (IV), R 5 , R 6 and R 7 are each independently an optionally substituted alkyl group and a substituted optionally substituted alkenyl group, optionally substituted aryl group, optionally substituted arylalkyl group, optionally substituted an arylalkenyl group which may have a substituent, an arylakinyl group which may have a substituent, an alkylaryl group which may have a substituent, an alkenylaryl group or an alkynylaryl group.
 本開示の一実施態様によれば、一般式(IV)において、R、RおよびRは、それぞれ独立して、置換基を有していてもよいアルキル基、置換基を有していてもよいアリール基または置換基を有していてもよいアリールアルキル基である。 According to one embodiment of the present disclosure, in general formula (IV), R 5 , R 6 and R 7 are each independently an optionally substituted alkyl group and a substituted is an aryl group which may be substituted or an arylalkyl group which may have a substituent.
 本開示の一実施態様によれば、一般式(IV)において、R、RおよびRは、それぞれ独立して、置換基を有していてもよいC~Cアルキル基、置換基を有していてもよいC~C10アリール基または置換基を有していてもよいC~C14アリールアルキル基を表す。 According to one embodiment of the present disclosure, in general formula (IV), R 5 , R 6 and R 7 are each independently a C 1 -C 6 alkyl group optionally having substituent(s), substituted represents a C 6 -C 10 aryl group optionally having a group or a C 7 -C 14 arylalkyl group optionally having a substituent.
 本開示の一実施態様によれば、一般式(IV)において、R、RおよびRは、それぞれ独立して、置換基を有していてもよいC~Cアルキル基、置換基を有していてもよいC~C10アリール基または置換基を有していてもよいC~C14アリールアルキル基を表す。 According to one embodiment of the present disclosure, in general formula (IV), R 5 , R 6 and R 7 are each independently a C 1 -C 4 alkyl group optionally having a substituent, a substituted represents a C 6 -C 10 aryl group optionally having a group or a C 7 -C 14 arylalkyl group optionally having a substituent.
 本開示の一実施態様によれば、一般式(IV)において、R、RおよびRは、それぞれ独立して、C~Cアルキル基、C~C10アリール基またはC~C14アリールアルキル基を表す。 According to one embodiment of the present disclosure, in general formula (IV), R 5 , R 6 and R 7 are each independently a C 1 -C 6 alkyl group, a C 6 -C 10 aryl group or a C 7 represents a -C14 arylalkyl group.
 本開示のより一層好ましい実施態様によれば、一般式(IV)において、R、RおよびRは、それぞれ独立して、C~Cアルキル基を表す。 According to an even more preferred embodiment of the present disclosure, in general formula (IV), R 5 , R 6 and R 7 each independently represent a C 1 -C 6 alkyl group.
 上記いずれかの実施態様における一般式(IV)において、R、RおよびRで表される官能基の有する置換基は、それぞれ独立して、好ましくはアルコキシ基、ハロゲン原子、シアノ基、ニトロ基、スルホニル基、カルボキシル基またはアシル基であり、より好ましくはC~Cアルコキシ基またはハロゲン原子であり、より一層好ましくはC~Cアルコキシ基またはハロゲン原子(好ましくはフッ素原子または塩素原子等)である。 In general formula (IV) in any of the above embodiments, the substituents possessed by the functional groups represented by R 5 , R 6 and R 7 are each independently preferably an alkoxy group, a halogen atom, a cyano group, a nitro group, a sulfonyl group, a carboxyl group or an acyl group, more preferably a C1 - C6 alkoxy group or a halogen atom, still more preferably a C1 - C3 alkoxy group or a halogen atom (preferably a fluorine atom or chlorine atom, etc.).
 また、上記いずれかの実施態様における一般式(IV)において、R、RおよびRは、好ましくはメチル基、エチル基、プロピル基、イソプロピル基、ブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基、フェニル基またはこれらの組合せであり、より好ましくはt-ブチル基およびメチル基の組合せである。 In general formula (IV) in any of the above embodiments, R 5 , R 6 and R 7 are preferably methyl group, ethyl group, propyl group, isopropyl group, butyl group, sec-butyl group, tert- A butyl group, a pentyl group, a hexyl group, a phenyl group, or a combination thereof, more preferably a combination of a t-butyl group and a methyl group.
 本開示の一実施態様によれば、一般式(IV)において、Wが表す置換されていてもよいベンジル基の好適な例としては、メチル基、エチル基、ブチル基、トリフルオロメチル基、トリクロロメチル基、メトキシ基等で置換されていてもよいベンジル基が挙げられるが、それらに限定されない。 According to one embodiment of the present disclosure, preferred examples of the optionally substituted benzyl group represented by W in general formula (IV) include a methyl group, an ethyl group, a butyl group, a trifluoromethyl group, a trichloro Examples include, but are not limited to, benzyl groups optionally substituted with methyl groups, methoxy groups, and the like.
 また、本開示の別の実施態様によれば、一般式(IV)において、Wが表すアセタール型保護基は-C(CHR)R10(OR11)で表される保護基導入剤を使用してもよい。ここで、R、RおよびR10およびR11は、それぞれ独立して、水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいアルケニル基、置換基を有していてもよいアルキニル基、置換基を有していてもよいアリール基、置換基を有していてもよいアリールアルキル基、置換基を有していてもよいアリールアルケニル基または置換基を有していてもよいアリールアキニル基、置換基を有していてもよいアルキルアリール基、アルケニルアリール基またはアルキニルアリール基であってもよく、RおよびRのいずれか一方と、R11とは一緒になってアルキレン、アルケニレンまたはアルキニレンを形成していてもよい。 Further, according to another embodiment of the present disclosure, in general formula (IV), the acetal-type protecting group represented by W is a protecting group-introducing agent represented by -C(CHR 8 R 9 )R 10 (OR 11 ) may be used. Here, R 8 , R 9 , R 10 and R 11 are each independently a hydrogen atom, an optionally substituted alkyl group, an optionally substituted alkenyl group, a substituent An alkynyl group optionally having a substituent, an aryl group optionally having a substituent, an arylalkyl group optionally having a substituent, an arylalkenyl group optionally having a substituent or a substituent , an optionally substituted alkylaryl group, an alkenylaryl group or an alkynylaryl group, any one of R 8 and R 9 and R 11 may together form alkylene, alkenylene or alkynylene.
 本開示の一実施態様によれば、R、RおよびR10およびR11は、それぞれ独立して、水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいアリール基、置換基を有していてもよいアルケニル基または置換基を有していてもよいアルキニル基であってよく、ただし、RおよびRのいずれか一方と、R11とは一緒になってアルキレンを形成していてもよい。 According to one embodiment of the present disclosure, R 8 , R 9 , R 10 and R 11 each independently have a hydrogen atom, an optionally substituted alkyl group, or a aryl group, optionally substituted alkenyl group or optionally substituted alkynyl group, provided that any one of R 8 and R 9 and R 11 Together they may form an alkylene.
 本開示の一実施態様によれば、R、RおよびR10およびR11は、それぞれ独立して、水素原子、C~Cアルキル基、C~C10アリール基、C~C14アルケニル基またはC~C14アルキニル基であってよく、ただし、RおよびRのいずれか一方と、R11とは一緒になってC~C10アルキレンを形成していてもよい。 According to one embodiment of the present disclosure, R 8 , R 9 and R 10 and R 11 are each independently a hydrogen atom, a C 1 -C 6 alkyl group, a C 6 -C 10 aryl group, a C 7 - may be a C 14 alkenyl group or a C 7 -C 14 alkynyl group, provided that either one of R 8 and R 9 and R 11 together form a C 3 -C 10 alkylene good.
 本開示の一実施態様によれば、R、RおよびR10およびR11は、それぞれ独立して、水素原子またはC~Cアルキル基、であってよく、ただし、RおよびRのいずれか一方と、R11とは一緒になってC~C10アルキレンを形成していてもよい。 According to one embodiment of the present disclosure, R 8 , R 9 and R 10 and R 11 may each independently be a hydrogen atom or a C 1 -C 6 alkyl group, provided that R 8 and R Either one of 9 and R 11 may together form a C 3 -C 10 alkylene.
 本開示の一実施態様によれば、一般式(IV)において、Wが表すアセタール型保護基の好適な例としては、テトラヒドロピラニル(THP)基、-CH(CH)OCHCH、-C(CHOCHCH、-CHOCHPh等が挙げられるが、それらに限定されない。 According to one embodiment of the present disclosure, suitable examples of the acetal-type protecting group represented by W in general formula (IV) include a tetrahydropyranyl (THP) group, —CH(CH 3 )OCH 2 CH 3 , Examples include, but are not limited to, -C(CH 3 ) 2 OCH 2 CH 3 , -CH 2 OCH 2 Ph and the like.
 製造方法
 本開示の一実施態様によれば、上述の通り、一般式(I)~(IV)で表される化合物を合成中間体として、プロスタグランジンを効率的に合成することができる。以下のスキームでは、一般式(I)または(II)で表される化合物を経由したプロスタグランジン合成用キラルビルディングブロック(VI)の製造方法の一実施態様を示す。
Production Method According to one embodiment of the present disclosure, as described above, prostaglandins can be efficiently synthesized using the compounds represented by general formulas (I) to (IV) as synthetic intermediates. The scheme below illustrates one embodiment of a method for preparing chiral building blocks (VI) for prostaglandin synthesis via compounds of general formula (I) or (II).
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000041
 スキーム6では、フルフラール(a)とスルホキシド化合物(a)とから化合物(b)を合成し、これをPiancatelli転位により化合物(I)とした後、2級アミンと反応させることでラセミ体の化合物(II)とし、4位水酸基をアシル化してラセミ体の化合物(III)が合成できる。また、化合物Iは分解反応によりジオール化合物(V)に変換でき、アシル化してジエステル化合物(VI)とした後、2級アミンと反応させることでラセミ体の化合物(III)が合成できる。ラセミ体の化合物(III)は加水分解酵素を用いて光学分割することができ、4R配置のアルコール化合物(II)-(R体)および4S配置のエステル化合物(III)-(S体)が得られる。エステル化合物(III)-(S体)は加溶媒分解により4S配置のアルコール化合物(II)-(S体)とした後、光延反応で4R配置のエステル化合物(III)-(R体)とし、加溶媒分解により4R配置のアルコール化合物(II)-(R体)とすることができる。化合物(II)-(R体)は4位水酸基をシリル基で保護することでプロスタグランジン合成の鍵中間体である化合物(VI)とすることができる。 In Scheme 6, compound (b) is synthesized from furfural (a 1 ) and sulfoxide compound (a 2 ), and this is converted to compound (I) by Piancatelli rearrangement, and then reacted with a secondary amine to give a racemate. A racemic compound (III) can be synthesized by acylating the hydroxyl group at the 4-position of the compound (II). Further, compound I can be converted to diol compound (V) by a decomposition reaction, and after acylation to form diester compound (VI), racemic compound (III) can be synthesized by reacting it with a secondary amine. The racemic compound (III) can be optically resolved using a hydrolase to obtain a 4R-configured alcohol compound (II)-(R-isomer) and a 4S-configured ester compound (III)-(S-isomer). be done. Ester compound (III)-(S-form) is converted to 4S-configured alcohol compound (II)-(S-form) by solvolysis, and then converted to 4R-configured ester compound (III)-(R-form) by Mitsunobu reaction, The 4R configuration alcohol compound (II)-(R form) can be obtained by solvolysis. By protecting the hydroxyl group at the 4-position with a silyl group, compound (II)-(R form) can be converted to compound (VI), which is a key intermediate in prostaglandin synthesis.
 以下、スキーム6に示されるプロスタグランジンの製造方法の一実施様態について、工程ごとに、より詳細に説明する。なお、以下に示される一連のスキームにおいて、各化合物における官能基R~Rの具体例および組合せは、上記各実施態様における官能基R~Rの具体例および組合せと同様とされる。 One embodiment of the method for producing prostaglandin shown in Scheme 6 will be described below in more detail for each step. In the series of schemes shown below, specific examples and combinations of functional groups R 1 to R 7 in each compound are the same as specific examples and combinations of functional groups R 1 to R 7 in each embodiment above. .
化合物(b)の合成工程
 スルホキシド化合物(a)に塩基を作用させアニオンを発生させ、これとフルフラール化合物(a)を反応させることにより化合物(b)を合成することができる。
Synthesis step of compound (b) Compound (b) can be synthesized by reacting sulfoxide compound (a 2 ) with a base to generate an anion and reacting it with furfural compound (a 1 ).
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000042
 スルホキシド化合物(a)の使用量は、フルフラール化合物(a)1モル対して、通常0.2~10当量、好ましくは0.5~2当量、より好ましくは0.8~1.2当量である。スルホキシド化合物(a)におけるRの具体的態様および組合せは、上記化合物(I)における官能基Rの具体的態様および組合せと同様とされる。 The amount of the sulfoxide compound (a 2 ) to be used is generally 0.2 to 10 equivalents, preferably 0.5 to 2 equivalents, more preferably 0.8 to 1.2 equivalents, per 1 mol of the furfural compound (a 1 ). is. Specific embodiments and combinations of R 1 in sulfoxide compound (a 2 ) are the same as specific embodiments and combinations of functional group R 1 in compound (I) above.
(塩基)
 塩基の種類は特に限定されず、当該技術分野で用いられるものはいずれも使用できる。上記塩基としては、例えば、水素化リチウム、水素化ナトリウム、水素化カリウム、ナトリウムメトキシド、ナトリウムエトキシド、ナトリウム-tert-ブトキシド、カリウム-tert-ブトキシド、n-ブチルリチウム、sec-ブチルリチウム、tert-ブチルリチウムが使用できるが、これらに限定されるものではない。
 塩基の使用量としては、原料化合物1モルに対して、通常0.2~10.0モルの範囲であり、好ましくは0.5~5.0モルの範囲であり、より好ましくは0.8~1.2モルの範囲である。
(base)
The type of base is not particularly limited, and any base used in the art can be used. Examples of the base include lithium hydride, sodium hydride, potassium hydride, sodium methoxide, sodium ethoxide, sodium-tert-butoxide, potassium-tert-butoxide, n-butyllithium, sec-butyllithium, tert. -Butyllithium can be used, but is not limited to these.
The amount of the base to be used is usually in the range of 0.2 to 10.0 mol, preferably in the range of 0.5 to 5.0 mol, more preferably 0.8 mol, per 1 mol of the raw material compound. ~1.2 mol range.
(溶媒)
 溶媒の種類は特に限定されず、当該技術分野で用いられるものはいずれも使用できる。上記溶媒としては、例えば、ジエチルエーテル、テトラヒドロフラン、1,2-ジメトキシエタン、1,4-ジオキサン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミドが使用できるが、これらに限定されるものではない。また反応試剤であるジメチルスルホキシドを溶媒としても使用できる。溶媒の使用量は、反応が進行する限りは、いずれの量でもよい。反応における溶媒の使用量は、当業者であれば適切に調整できる。
(solvent)
The type of solvent is not particularly limited, and any one used in the technical field can be used. Examples of the solvent include diethyl ether, tetrahydrofuran, 1,2-dimethoxyethane, 1,4-dioxane, N,N-dimethylformamide, and N,N-dimethylacetamide, but are not limited to these. do not have. Dimethyl sulfoxide, which is a reaction reagent, can also be used as a solvent. Any amount of the solvent may be used as long as the reaction proceeds. A person skilled in the art can appropriately adjust the amount of solvent used in the reaction.
(反応温度)
 反応温度は、特に限定されない。一つの様態においては、収率の向上、副生成物の抑制、および経済効率等の観点から、上記反応温度は、-80℃~100℃の範囲であり、好ましくは-40℃~50℃の範囲であり、より好ましくは-20℃~30℃の範囲を例示できる。
(reaction temperature)
The reaction temperature is not particularly limited. In one embodiment, the reaction temperature is in the range of -80°C to 100°C, preferably -40°C to 50°C, from the viewpoints of yield improvement, suppression of by-products, and economic efficiency. range, more preferably -20°C to 30°C.
(反応時間)
 反応時間は、特に限定されない。一つの様態においては、収率の向上、副生成物の抑制、および経済効率等の観点から、上記反応時間は、0.5時間~48時間の範囲であり、好ましくは1時間~24時間の範囲であり、より好ましくは1時間~10時間の範囲を例示できる。しかしながら、反応時間は、当業者であれば適切に調整できる。
(reaction time)
The reaction time is not particularly limited. In one embodiment, the reaction time is in the range of 0.5 hours to 48 hours, preferably 1 hour to 24 hours, from the viewpoints of yield improvement, suppression of by-products, and economic efficiency. range, more preferably 1 hour to 10 hours. However, the reaction time can be adjusted appropriately by those skilled in the art.
化合物(I)の合成工程
 化合物(b)は、水熱反応により化合物(I)に変換することができる。
Synthesis step of compound (I) Compound (b) can be converted to compound (I) by a hydrothermal reaction.
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000043
(溶媒)
 溶媒として水または水および水溶性溶媒の混合物が使用できる。水溶性溶媒の種類は特に限定されず、当該技術分野で用いられるものはいずれも使用できる。上記水溶性溶媒としては、例えば、テトラヒドロフラン、1,2-ジメトキシエタン、1,4-ジオキサン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、メタノール、エタノール、n-プロパノール、2-プロパノール、n-ブタノール、2-ブタノール、tert-ブタノールが使用できるが、これらに限定されるものではない。溶媒の使用量は、反応が進行する限りは、いずれの量でもよい。反応における溶媒の使用量は、当業者であれば適切に調整できる。
(solvent)
Water or a mixture of water and a water-soluble solvent can be used as solvent. The type of water-soluble solvent is not particularly limited, and any one used in the technical field can be used. Examples of the water-soluble solvent include tetrahydrofuran, 1,2-dimethoxyethane, 1,4-dioxane, N,N-dimethylformamide, N,N-dimethylacetamide, methanol, ethanol, n-propanol, 2-propanol, Non-limiting examples include n-butanol, 2-butanol, tert-butanol. Any amount of the solvent may be used as long as the reaction proceeds. A person skilled in the art can appropriately adjust the amount of solvent used in the reaction.
(pH)
 上記化合物(I)の合成工程において、反応液は酸性であり、pH2~7が好ましく、pH2~4がより好ましい。
(pH)
In the step of synthesizing compound (I), the reaction solution is acidic, preferably pH 2-7, more preferably pH 2-4.
(反応液濃度)
 上記化合物(I)の合成工程において、反応液濃度は、0.02~1.0mol/Lが好ましく、0.1~0.3mol/Lがより好ましい。
(Reaction solution concentration)
In the step of synthesizing compound (I), the reaction solution concentration is preferably 0.02 to 1.0 mol/L, more preferably 0.1 to 0.3 mol/L.
(反応温度)
 上記化合物(I)の合成工程において、反応温度は20~200℃であり、50~180℃が好ましく、80~130℃がより好ましい。
(reaction temperature)
In the step of synthesizing compound (I), the reaction temperature is 20 to 200°C, preferably 50 to 180°C, more preferably 80 to 130°C.
(反応時間)
 上記化合物(I)の合成工程において、反応時間は1~48時間であり、2~36時間が好ましく、3~24時間がより好ましい。温度条件により反応時間は任意に設定できる。
(reaction time)
In the synthesis step of compound (I), the reaction time is 1 to 48 hours, preferably 2 to 36 hours, more preferably 3 to 24 hours. The reaction time can be arbitrarily set depending on the temperature conditions.
化合物(II)の合成工程
 化合物(I)に2級アミン化合物(c)を作用させることにより1級のエステルがアミノ基に変換され、化合物(II)を得ることができる。ここで、化合物(c)におけるRおよびRの具体的態様および組合せは、上記化合物(II)における官能基RおよびRの具体的態様および組合せと同様とされる。
Synthetic Step of Compound (II) By reacting compound (I) with secondary amine compound (c), the primary ester is converted to an amino group to give compound (II). Here, specific embodiments and combinations of R 2 and R 3 in compound (c) are the same as specific embodiments and combinations of functional groups R 2 and R 3 in compound (II) above.
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000044
(2級アミン化合物(c))
 反応に用いる2級アミン化合物(c)の種類は特に限定されず、当該技術分野で用いられるものはいずれも使用できる。上記2級アミン化合物(c)としては、例えば、ピロリジン、ピペリジン、ホモピペリジン、モルホリン、イソインドリン、N-メチルピペラジン、N-エチルピペラジン、N-フェニルピペラジン、N-トシルピペラジンを使用できるが、これらに限定されるものではない。反応における2級アミン化合物(c)の使用量としては、原料化合物1モルに対して、通常2.0~10.0モルの範囲であり、好ましくは2.0~5.0モルの範囲であり、より好ましくは2.0~3.0モルの範囲である。
(Secondary amine compound (c))
The type of the secondary amine compound (c) used in the reaction is not particularly limited, and any one used in the technical field can be used. Examples of the secondary amine compound (c) that can be used include pyrrolidine, piperidine, homopiperidine, morpholine, isoindoline, N-methylpiperazine, N-ethylpiperazine, N-phenylpiperazine and N-tosylpiperazine. is not limited to The amount of the secondary amine compound (c) used in the reaction is usually in the range of 2.0 to 10.0 mol, preferably in the range of 2.0 to 5.0 mol, per 1 mol of the raw material compound. and more preferably in the range of 2.0 to 3.0 mol.
(溶媒)
 化合物(II)の合成工程において、溶媒の種類は特に限定されず、当該技術分野で用いられるものはいずれも使用できる。上記溶媒としては、例えば、ジエチルエーテル、テトラヒドロフラン、1,2-ジメトキシエタン、1,4-ジオキサン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミドが使用できるが、これらに限定されるものではない。またこれらの溶媒に任意の比率で水を加えて反応を行うこともできる。溶媒の使用量は、反応が進行する限りは、いずれの量でもよい。反応における溶媒の使用量は、当業者であれば適切に調整できる。
(solvent)
In the step of synthesizing compound (II), the type of solvent is not particularly limited, and any one used in the art can be used. Examples of the solvent include diethyl ether, tetrahydrofuran, 1,2-dimethoxyethane, 1,4-dioxane, N,N-dimethylformamide and N,N-dimethylacetamide, but are not limited to these. do not have. The reaction can also be carried out by adding water to these solvents at any ratio. Any amount of the solvent may be used as long as the reaction proceeds. A person skilled in the art can appropriately adjust the amount of solvent used in the reaction.
(反応温度)
 化合物(II)の合成工程において、反応温度は、特に限定されない。一つの実施様態においては、収率の向上、副生成物の抑制、および経済効率等の観点から、上記反応温度は、-80℃~100℃の範囲であり、好ましくは-40℃~50℃の範囲であり、より好ましくは-20℃~30℃の範囲を例示できる。
(reaction temperature)
In the step of synthesizing compound (II), the reaction temperature is not particularly limited. In one embodiment, the reaction temperature is in the range of -80°C to 100°C, preferably -40°C to 50°C, from the viewpoints of yield improvement, suppression of by-products, and economic efficiency. and more preferably -20°C to 30°C.
(反応時間)
 化合物(II)の合成工程において、反応時間は、特に限定されない。一つの実施様態においては、収率の向上、副生成物の抑制、および経済効率等の観点から、上記反応時間は、0.5時間~48時間の範囲であり、好ましくは1時間~24時間の範囲であり、より好ましくは1時間~10時間の範囲を例示できる。しかしながら、反応時間は、当業者であれば適切に調整できる。
(reaction time)
In the step of synthesizing compound (II), the reaction time is not particularly limited. In one embodiment, the reaction time is in the range of 0.5 hours to 48 hours, preferably 1 hour to 24 hours, from the viewpoints of yield improvement, suppression of by-products, and economic efficiency. and more preferably a range of 1 hour to 10 hours. However, the reaction time can be adjusted appropriately by those skilled in the art.
化合物(III)の合成工程
 化合物(II)の4位水酸基をエステル化することによっても化合物(III)を合成することができる。
Synthetic Step of Compound (III) Compound (III) can also be synthesized by esterifying the 4-position hydroxyl group of compound (II).
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000045
(アシル化剤)
 化合物(III)の合成工程において、化合物(d)としては、反応に用いるアシル化剤としてα位に電子吸引性置換基を有するカルボン酸の酸クロリドまたは酸無水物が使用できる。カルボン酸の種類は特に限定されず、当該技術分野で用いられるものはいずれも使用できる。ここで、化合物(d)におけるRの具体的態様および組合せは、上記化合物(III)における官能基Rの具体的態様および組合せと同様とされる。
(Acylating agent)
In the step of synthesizing compound (III), as compound (d), an acid chloride or acid anhydride of a carboxylic acid having an electron-withdrawing substituent at the α-position can be used as an acylating agent for the reaction. The type of carboxylic acid is not particularly limited, and any one used in the technical field can be used. Here, specific embodiments and combinations of R 4 in compound (d) are the same as specific embodiments and combinations of functional group R 4 in compound (III) above.
 また、上記カルボン酸としては、例えば、フルオロ酢酸、ジフルオロ酢酸、トリフルオロ酢酸、クロロ酢酸、ジクロロ酢酸、トリクロロ酢酸、ブロモ酢酸、ジブロモ酢酸、トリブロモ酢酸、メトキシ酢酸、フェノキシ酢酸およびこれらの非対称酸無水物が使用できるが、これらに限定されるものではない。アシル化剤の使用量としては、原料化合物1モルに対して、通常0.5~10.0モルの範囲であり、好ましくは0.8~5.0モルの範囲であり、より好ましくは1.0~2.0モルの範囲である。 Examples of the carboxylic acid include fluoroacetic acid, difluoroacetic acid, trifluoroacetic acid, chloroacetic acid, dichloroacetic acid, trichloroacetic acid, bromoacetic acid, dibromoacetic acid, tribromoacetic acid, methoxyacetic acid, phenoxyacetic acid, and their asymmetric acid anhydrides. can be used, but are not limited to these. The amount of the acylating agent to be used is usually in the range of 0.5 to 10.0 mol, preferably in the range of 0.8 to 5.0 mol, more preferably 1 mol, per 1 mol of the raw material compound. .0 to 2.0 moles.
(塩基)
 化合物(III)の合成工程において、反応に用いる塩基の種類は特に限定されず、当該技術分野で用いられるものはいずれも使用できる。上記塩基としては、例えば、トリエチルアミン、ジイソプロピルエチルアミン、N-メチルモルホリン、イミダゾール、ピリジン、4-ジメチルアミノピリジン、ルチジンを使用できるが、これらに限定されるものではない。反応における塩基の使用量は、当業者であれば適切に調整できる。
(base)
In the step of synthesizing compound (III), the type of base used in the reaction is not particularly limited, and any base used in the art can be used. Examples of the base include, but are not limited to, triethylamine, diisopropylethylamine, N-methylmorpholine, imidazole, pyridine, 4-dimethylaminopyridine, and lutidine. A person skilled in the art can appropriately adjust the amount of the base used in the reaction.
(溶媒)
 化合物(III)の合成工程において、溶媒の種類は特に限定されず、当該技術分野で用いられるものはいずれも使用できる。上記溶媒としては、例えば、ジエチルエーテル、テトラヒドロフラン、1,2-ジメトキシエタン、1,4-ジオキサン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミドが使用できるが、これらに限定されるものではない。塩基を溶媒として使用することもできる。溶媒の使用量は、反応が進行する限りは、いずれの量でもよい。反応における溶媒の使用量は、当業者であれば適切に調整できる。
(solvent)
In the step of synthesizing compound (III), the type of solvent is not particularly limited, and any one used in the art can be used. Examples of the solvent include diethyl ether, tetrahydrofuran, 1,2-dimethoxyethane, 1,4-dioxane, N,N-dimethylformamide, and N,N-dimethylacetamide, but are not limited to these. do not have. Bases can also be used as solvents. Any amount of the solvent may be used as long as the reaction proceeds. A person skilled in the art can appropriately adjust the amount of solvent used in the reaction.
(反応温度)
 化合物(III)の合成工程において、反応温度は、特に限定されない。一つの様態においては、収率の向上、副生成物の抑制、および経済効率等の観点から、上記反応温度は、-80℃~100℃の範囲であり、好ましくは-40℃~50℃の範囲であり、より好ましくは-20℃~30℃の範囲を例示できる。
(reaction temperature)
In the step of synthesizing compound (III), the reaction temperature is not particularly limited. In one embodiment, the reaction temperature is in the range of -80°C to 100°C, preferably -40°C to 50°C, from the viewpoints of yield improvement, suppression of by-products, and economic efficiency. range, more preferably -20°C to 30°C.
(反応時間)
 化合物(III)の合成工程において、反応時間は、特に限定されない。一つの様態においては、収率の向上、副生成物の抑制、および経済効率等の観点から、上記反応時間は、0.5時間~48時間の範囲であり、好ましくは1時間~24時間の範囲であり、より好ましくは1時間~10時間の範囲を例示できる。しかしながら、反応時間は、当業者であれば適切に調整できる。
(reaction time)
In the step of synthesizing compound (III), the reaction time is not particularly limited. In one embodiment, the reaction time is in the range of 0.5 hours to 48 hours, preferably 1 hour to 24 hours, from the viewpoints of yield improvement, suppression of by-products, and economic efficiency. range, more preferably 1 hour to 10 hours. However, the reaction time can be adjusted appropriately by those skilled in the art.
化合物(V)の合成工程1
 化合物(I)は熱分解により化合物(V)に変換することができる。
Synthesis step 1 of compound (V)
Compound (I) can be converted to compound (V) by thermal decomposition.
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000046
(溶媒)
 化合物(V)の合成工程において、溶媒として水または水および水溶性溶媒の混合物が使用できる。水溶性溶媒の種類は特に限定されず、当該技術分野で用いられるものはいずれも使用できる。上記水溶性溶媒としては、例えば、テトラヒドロフラン、1,2-ジメトキシエタン、1,4-ジオキサン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、メタノール、エタノール、n-プロパノール、2-プロパノール、n-ブタノール、2-ブタノール、tert-ブタノールが使用できるが、これらに限定されるものではない。溶媒の使用量は、反応が進行する限りは、いずれの量でもよい。反応における溶媒の使用量は、当業者であれば適切に調整できる。
(solvent)
Water or a mixture of water and a water-soluble solvent can be used as a solvent in the step of synthesizing compound (V). The type of water-soluble solvent is not particularly limited, and any one used in the technical field can be used. Examples of the water-soluble solvent include tetrahydrofuran, 1,2-dimethoxyethane, 1,4-dioxane, N,N-dimethylformamide, N,N-dimethylacetamide, methanol, ethanol, n-propanol, 2-propanol, Non-limiting examples include n-butanol, 2-butanol, tert-butanol. Any amount of the solvent may be used as long as the reaction proceeds. A person skilled in the art can appropriately adjust the amount of solvent used in the reaction.
(pH)
 化合物(V)の合成工程において、反応液は中性から酸性であり、pH2~7が好ましく、pH5~7がより好ましい。
(pH)
In the step of synthesizing compound (V), the reaction solution is neutral to acidic, preferably pH 2-7, more preferably pH 5-7.
(反応温度)
 化合物(V)の合成工程において、反応温度は20~200℃であり、50~180℃が好ましく、80~130℃がより好ましい。
(reaction temperature)
In the step of synthesizing compound (V), the reaction temperature is 20 to 200°C, preferably 50 to 180°C, more preferably 80 to 130°C.
(反応時間)
 化合物(V)の合成工程において、反応時間は1~48時間であり、2~36時間が好ましく、3~24時間がより好ましい。温度条件により反応時間は任意に設定できる。
(reaction time)
In the step of synthesizing compound (V), the reaction time is 1 to 48 hours, preferably 2 to 36 hours, more preferably 3 to 24 hours. The reaction time can be arbitrarily set depending on the temperature conditions.
化合物(V)の合成工程2
 化合物(V)は化合物(b)からワンポットで製造することもできる。
Synthesis step 2 of compound (V)
Compound (V) can also be produced in one pot from compound (b).
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000047
(溶媒)
 化合物(V)の合成工程において、溶媒として水または水および水溶性溶媒の混合物が使用できる。水溶性溶媒の種類は特に限定されず、当該技術分野で用いられるものはいずれも使用できる。上記水溶性溶媒としては、例えば、テトラヒドロフラン、1,2-ジメトキシエタン、1,4-ジオキサン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、メタノール、エタノール、n-プロパノール、2-プロパノール、n-ブタノール、2-ブタノール、tert-ブタノールが使用できるが、これらに限定されるものではない。溶媒の使用量は、反応が進行する限りは、いずれの量でもよい。反応における溶媒の使用量は、当業者であれば適切に調整できる。
(solvent)
Water or a mixture of water and a water-soluble solvent can be used as a solvent in the step of synthesizing compound (V). The type of water-soluble solvent is not particularly limited, and any one used in the technical field can be used. Examples of the water-soluble solvent include tetrahydrofuran, 1,2-dimethoxyethane, 1,4-dioxane, N,N-dimethylformamide, N,N-dimethylacetamide, methanol, ethanol, n-propanol, 2-propanol, Non-limiting examples include n-butanol, 2-butanol, tert-butanol. Any amount of the solvent may be used as long as the reaction proceeds. A person skilled in the art can appropriately adjust the amount of solvent used in the reaction.
(pH)
 化合物(V)の合成工程において、反応液は酸性であり、pH2~7が好ましく、pH2~4がより好ましい。
(pH)
In the step of synthesizing compound (V), the reaction solution is acidic, preferably pH 2-7, more preferably pH 2-4.
(反応液濃度)
 化合物(V)の合成工程において、反応液濃度は、0.02~1.0mol/Lが好ましく、0.1~0.3mol/Lがより好ましい。
(Reaction solution concentration)
In the step of synthesizing compound (V), the reaction solution concentration is preferably 0.02 to 1.0 mol/L, more preferably 0.1 to 0.3 mol/L.
(反応温度)
 化合物(V)の合成工程において、反応温度は20~200℃であり、50~180℃が好ましく、80~130℃がより好ましい。
(reaction temperature)
In the step of synthesizing compound (V), the reaction temperature is 20 to 200°C, preferably 50 to 180°C, more preferably 80 to 130°C.
(反応時間)
 化合物(V)の合成工程において、反応時間は1~48時間であり、2~36時間が好ましく、3~24時間がより好ましい。温度条件により反応時間は任意に設定できる。
(reaction time)
In the step of synthesizing compound (V), the reaction time is 1 to 48 hours, preferably 2 to 36 hours, more preferably 3 to 24 hours. The reaction time can be arbitrarily set depending on the temperature conditions.
化合物(VI)の合成工程
 化合物(V)にアシル化剤化合物(d)および塩基を作用させて化合物(VI)に導くことができる。
Synthesis step of compound (VI) Compound (VI) can be converted to compound (VI) by reacting compound (V) with acylating agent compound (d) and a base.
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000048
(アシル化剤化合物(d))
 化合物(VI)の合成工程において、反応に用いるアシル化剤化合物(d)としてα位に電子吸引性置換基を有するカルボン酸の酸クロリドまたは酸無水物が使用できる。カルボン酸の種類は特に限定されず、当該技術分野で用いられるものはいずれも使用できる。上記カルボン酸としては、例えば、フルオロ酢酸、ジフルオロ酢酸、トリフルオロ酢酸、クロロ酢酸、ジクロロ酢酸、トリクロロ酢酸、ブロモ酢酸、ジブロモ酢酸、トリブロモ酢酸、メトキシ酢酸、フェノキシ酢酸およびこれらの非対称酸無水物が使用できるが、これらに限定されるものではない。アシル化剤の使用量としては、原料化合物1モルに対して、通常0.5~10.0モルの範囲であり、好ましくは0.8~5.0モルの範囲であり、より好ましくは1.0~2.0モルの範囲である。
(Acylating agent compound (d))
In the step of synthesizing compound (VI), an acid chloride or acid anhydride of a carboxylic acid having an electron-withdrawing substituent at the α-position can be used as the acylating agent compound (d) used in the reaction. The type of carboxylic acid is not particularly limited, and any one used in the technical field can be used. Examples of the carboxylic acid include fluoroacetic acid, difluoroacetic acid, trifluoroacetic acid, chloroacetic acid, dichloroacetic acid, trichloroacetic acid, bromoacetic acid, dibromoacetic acid, tribromoacetic acid, methoxyacetic acid, phenoxyacetic acid, and their asymmetric acid anhydrides. It can be, but is not limited to. The amount of the acylating agent to be used is usually in the range of 0.5 to 10.0 mol, preferably in the range of 0.8 to 5.0 mol, more preferably 1 mol, per 1 mol of the raw material compound. .0 to 2.0 moles.
(塩基)
 化合物(VI)の合成工程において、反応に用いる塩基の種類は特に限定されず、当該技術分野で用いられるものはいずれも使用できる。上記塩基としては、例えば、トリエチルアミン、ジイソプロピルエチルアミン、N-メチルモルホリン、イミダゾール、ピリジン、4-ジメチルアミノピリジン、ルチジンを使用できるが、これらに限定されるものではない。反応における塩基の使用量は、当業者であれば適切に調整できる。
(base)
In the step of synthesizing compound (VI), the type of base used in the reaction is not particularly limited, and any base used in the art can be used. Examples of the base include, but are not limited to, triethylamine, diisopropylethylamine, N-methylmorpholine, imidazole, pyridine, 4-dimethylaminopyridine, and lutidine. A person skilled in the art can appropriately adjust the amount of the base used in the reaction.
(溶媒)
 化合物(VI)の合成工程において、溶媒の種類は特に限定されず、当該技術分野で用いられるものはいずれも使用できる。上記溶媒としては、例えば、ジエチルエーテル、テトラヒドロフラン、1,2-ジメトキシエタン、1,4-ジオキサン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミドが使用できるが、これらに限定されるものではない。塩基を溶媒として使用することもできる。溶媒の使用量は、反応が進行する限りは、いずれの量でもよい。反応における溶媒の使用量は、当業者であれば適切に調整できる。
(solvent)
In the step of synthesizing compound (VI), the type of solvent is not particularly limited, and any one used in the art can be used. Examples of the solvent include diethyl ether, tetrahydrofuran, 1,2-dimethoxyethane, 1,4-dioxane, N,N-dimethylformamide and N,N-dimethylacetamide, but are not limited to these. do not have. Bases can also be used as solvents. Any amount of the solvent may be used as long as the reaction proceeds. A person skilled in the art can appropriately adjust the amount of solvent used in the reaction.
(反応温度)
 化合物(VI)の合成工程において、反応温度は、特に限定されない。一つの実施様態においては、収率の向上、副生成物の抑制、および経済効率等の観点から、上記反応温度は、-80℃~100℃の範囲であり、好ましくは-40℃~50℃の範囲であり、より好ましくは-20℃~30℃の範囲を例示できる。
(reaction temperature)
In the step of synthesizing compound (VI), the reaction temperature is not particularly limited. In one embodiment, the reaction temperature is in the range of -80°C to 100°C, preferably -40°C to 50°C, from the viewpoints of yield improvement, suppression of by-products, and economic efficiency. and more preferably -20°C to 30°C.
(反応時間)
 化合物(VI)の合成工程において、反応時間は、特に限定されない。一つの実施様態においては、収率の向上、副生成物の抑制、および経済効率等の観点から、上記反応時間は、0.5時間~48時間の範囲であり、好ましくは1時間~24時間の範囲であり、より好ましくは1時間~10時間の範囲を例示できる。しかしながら、反応時間は、当業者であれば適切に調整できる。
(reaction time)
In the step of synthesizing compound (VI), the reaction time is not particularly limited. In one embodiment, the reaction time is in the range of 0.5 hours to 48 hours, preferably 1 hour to 24 hours, from the viewpoints of yield improvement, suppression of by-products, and economic efficiency. and more preferably a range of 1 hour to 10 hours. However, the reaction time can be adjusted appropriately by those skilled in the art.
化合物(III)の合成工程
 化合物(VI)に2級アミン化合物(c)を作用させることにより1級のエステルがアミノ基に変換され、化合物(III)を得ることができる。
Synthetic Step of Compound (III) By reacting compound (VI) with secondary amine compound (c), the primary ester is converted to an amino group to give compound (III).
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000049
(2級アミン)
 化合物(III)の合成工程において、反応に用いる2級アミン化合物(c)の種類は特に限定されず、当該技術分野で用いられるものはいずれも使用できる。上記2級アミンとしては、例えば、ピロリジン、ピペリジン、ホモピペリジン、モルホリン、イソインドリン、N-メチルピペラジン、N-エチルピペラジン、N-フェニルピペラジン、N-トシルピペラジンを使用できるが、これらに限定されるものではない。反応における2級アミンの使用量としては、原料化合物1モルに対して、通常1.0~10.0モルの範囲であり、好ましくは1.0~5.0モルの範囲であり、より好ましくは1.0~3.0モルの範囲である。
(Secondary amine)
In the step of synthesizing compound (III), the type of secondary amine compound (c) used in the reaction is not particularly limited, and any one used in the art can be used. Examples of the secondary amine include pyrrolidine, piperidine, homopiperidine, morpholine, isoindoline, N-methylpiperazine, N-ethylpiperazine, N-phenylpiperazine, and N-tosylpiperazine, but are limited to these. not a thing The amount of the secondary amine used in the reaction is usually in the range of 1.0 to 10.0 mol, preferably in the range of 1.0 to 5.0 mol, more preferably in the range of 1.0 to 5.0 mol, per 1 mol of the raw material compound. is in the range of 1.0 to 3.0 mol.
(溶媒)
 溶 化合物(III)の合成工程において、媒の種類は特に限定されず、当該技術分野で用いられるものはいずれも使用できる。上記溶媒としては、例えば、ジエチルエーテル、テトラヒドロフラン、1,2-ジメトキシエタン、1,4-ジオキサン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミドが使用できるが、これらに限定されるものではない。またこれらの溶媒に任意の比率で水を加えて反応を行うこともできる。溶媒の使用量は、反応が進行する限りは、いずれの量でもよい。反応における溶媒の使用量は、当業者であれば適切に調整できる。
(solvent)
In the step of synthesizing the solvent compound (III), the type of medium is not particularly limited, and any medium used in the art can be used. Examples of the solvent include diethyl ether, tetrahydrofuran, 1,2-dimethoxyethane, 1,4-dioxane, N,N-dimethylformamide and N,N-dimethylacetamide, but are not limited to these. do not have. The reaction can also be carried out by adding water to these solvents at any ratio. Any amount of the solvent may be used as long as the reaction proceeds. A person skilled in the art can appropriately adjust the amount of solvent used in the reaction.
(反応温度)
 化合物(III)の合成工程において、反応温度は、特に限定されない。一つの実施様態においては、収率の向上、副生成物の抑制、および経済効率等の観点から、上記反応温度は、-80℃~100℃の範囲であり、好ましくは-40℃~50℃の範囲であり、より好ましくは-20℃~30℃の範囲を例示できる。
(reaction temperature)
In the step of synthesizing compound (III), the reaction temperature is not particularly limited. In one embodiment, the reaction temperature is in the range of -80°C to 100°C, preferably -40°C to 50°C, from the viewpoints of yield improvement, suppression of by-products, and economic efficiency. and more preferably -20°C to 30°C.
(反応時間)
 化合物(III)の合成工程において、反応時間は、特に限定されない。一つの様態においては、収率の向上、副生成物の抑制、および経済効率等の観点から、上記反応時間は、0.5時間~48時間の範囲であり、好ましくは1時間~24時間の範囲であり、より好ましくは1時間~10時間の範囲を例示できる。しかしながら、反応時間は、当業者であれば適切に調整できる。
(reaction time)
In the step of synthesizing compound (III), the reaction time is not particularly limited. In one embodiment, the reaction time is in the range of 0.5 hours to 48 hours, preferably 1 hour to 24 hours, from the viewpoints of yield improvement, suppression of by-products, and economic efficiency. range, more preferably 1 hour to 10 hours. However, the reaction time can be adjusted appropriately by those skilled in the art.
化合物(II)-(R体)および/または化合物(III)-(S体)の合成工程 化合物(III)をリン酸緩衝液および水和性の溶媒に溶解し加水分解酵素を作用させると、化合物(II)-(R体)および化合物(III)-(S体)が得られる。これらはカラムクロマトグラフィーにより分離することができる。 Compound (II)-(R-form) and/or compound (III)-(S-form) synthesis step Compound (III) is dissolved in a phosphate buffer and a hydratable solvent and reacted with a hydrolase, Compound (II)-(R form) and compound (III)-(S form) are obtained. These can be separated by column chromatography.
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000050
(加水分解酵素)
 化合物(II)-(R体)および/または化合物(III)-(S体)の合成工程において、使用する加水分解酵素(リパーゼ)としては、例えば市販されている加水分解酵素リパーゼAK(アマノ社製)、リパーゼ PS(アマノ社製)、リパーゼ PSアマノSD(アマノ社製)、リパーゼAYS(アマノ社製)、リパーゼ G アマノ 50(アマノ社製)、リパーゼ PSIM(アマノ社製)、リパーゼ F-AP15(アマノ社製)、CHIRAZYME L-6(ロシュ社製)、リパーゼ-OML(名糖産業社製)、リパーゼTL(名糖産業社製)、リパーゼ-MY-30(名糖産業社製)、リパーゼ-SL(名糖産業社製)、リリパーゼA-10D(ナガセケムテックス社製)、KM-109(ナガセケムテックス社製)、Immobilizedlipase(東洋紡社製)が使用でき、好ましくは、リパーゼ PSアマノSD(アマノ社製)が挙げられるが、これらに限定されるものではない。加水分解酵素の形態としては、精製酵素、ケイソウ土等に吸着させたもの、ビーズガラス等に固定化したもの等、種々のものを使用することができる。
(hydrolase)
In the step of synthesizing compound (II)-(R form) and/or compound (III)-(S form), the hydrolase (lipase) used includes, for example, a commercially available hydrolase lipase AK (Amano ), Lipase PS (manufactured by Amano), Lipase PS Amano SD (manufactured by Amano), Lipase AYS (manufactured by Amano), Lipase G Amano 50 (manufactured by Amano), Lipase PSIM (manufactured by Amano), Lipase F- AP15 (manufactured by Amano), CHIRAZYME L-6 (manufactured by Roche), Lipase-OML (manufactured by Meito Sangyo), Lipase TL (manufactured by Meito Sangyo), Lipase-MY-30 (manufactured by Meito Sangyo) , Lipase-SL (manufactured by Meito Sangyo Co., Ltd.), Lipase A-10D (manufactured by Nagase ChemteX Corporation), KM-109 (manufactured by Nagase ChemteX Corporation), Immobilizedlipase (manufactured by Toyobo Co., Ltd.) can be used, preferably Lipase PS Amano SD (manufactured by Amano Corporation) may be mentioned, but is not limited to these. Various forms of hydrolase can be used, such as purified enzymes, those adsorbed on diatomaceous earth and the like, and those immobilized on bead glass and the like.
(緩衝液)
 化合物(II)-(R体)および/または化合物(III)-(S体)の合成工程はリン酸緩衝液中で好適に実施することができる。リン酸緩衝液としては、例えば、濃度0.1M、pH7程度のリン酸緩衝液を使用することができるがこれに限定されるものではない。
(buffer)
The step of synthesizing compound (II)-(R form) and/or compound (III)-(S form) can be suitably carried out in a phosphate buffer. As the phosphate buffer, for example, a phosphate buffer having a concentration of 0.1 M and a pH of about 7 can be used, but the present invention is not limited to this.
(溶媒)
 化合物(II)-(R体)および/または化合物(III)-(S体)の合成工程において、緩衝液に加えて有機溶媒を添加して反応を行うこともでき、その溶媒としては、アセトン、ジメチルスルホキシド、ジブチルエーテル類等の単独または混合物を挙げることができる。その使用量は、当業者であれば適切に調整できる。
(solvent)
In the step of synthesizing compound (II)-(R-form) and/or compound (III)-(S-form), the reaction may be carried out by adding an organic solvent in addition to the buffer, and the solvent may be acetone. , dimethyl sulfoxide, dibutyl ethers and the like, either singly or as a mixture. The amount used can be appropriately adjusted by those skilled in the art.
(反応温度と反応時間)
 化合物(II)-(R体)および/または化合物(III)-(S体)の合成工程において、反応温度は通常10~50℃であり、反応時間は、通常0.5~50時間で充分である。
(reaction temperature and reaction time)
In the step of synthesizing compound (II)-(R form) and/or compound (III)-(S form), the reaction temperature is usually 10 to 50° C., and the reaction time is usually 0.5 to 50 hours. is.
 化合物(II)-(R体)および/または化合物(III)-(S体)の合成工程において、反応の推移は、例えば光学活性化合物用の充填剤を備えた液体クロマトグラフィー等を用いて化合物(II)-(R体)と化合物(III)-(S体)の光学純度を測定することにより追跡することができ、またこれにより反応終点を決めることもできる。また、通常の(特に光学活性化合物用でなくともよい)液体クロマトグラフィー等により、化合物(II)-(R体)と化合物(III)-(S体)との割合を測定し、その比がほぼ1:1となるときを反応終点とすることもできる。反応終了後、必要により、反応マスにクロロホルム、酢酸エチル、エチルエーテル等の溶媒を加え、例えば酵素を濾別した後、濾液を濃縮することにより、化合物(II)-(R体)と化合物(III)-(S体)の混合物を得ることができる。また、さらに例えば通常のクロマトグラフィー処理を付すことにより、化合物(II)-(R体)と化合物(III)-(S体)に分離することもできる。 In the step of synthesizing compound (II)-(R-form) and/or compound (III)-(S-form), the reaction transition can be determined using, for example, liquid chromatography equipped with a packing material for optically active compounds. It can be monitored by measuring the optical purities of (II)-(R-isomer) and compound (III)-(S-isomer), and the reaction endpoint can be determined by this. In addition, the ratio of compound (II)-(R form) and compound (III)-(S form) is measured by conventional (not necessarily for optically active compounds) liquid chromatography or the like, and the ratio is The reaction end point can also be set when the ratio becomes approximately 1:1. After completion of the reaction, if necessary, a solvent such as chloroform, ethyl acetate, or ethyl ether is added to the reaction mass, for example, the enzyme is filtered off, and the filtrate is concentrated to obtain compound (II)-(R form) and compound ( A mixture of III)-(S forms) can be obtained. Furthermore, it can be separated into compound (II)-(R-form) and compound (III)-(S-form) by subjecting it to, for example, normal chromatography.
化合物(II)-(S体)の合成工程
 化合物(III)-(S体)の4位のエステルを適切に選択することにより、化合物(III)-(S体)を加溶媒分解し化合物(II)-(S体)を得ることができる。
Synthetic step of compound (II)-(S-isomer) By appropriately selecting the 4-position ester of compound (III)-(S-isomer), compound (III)-(S-isomer) is solvolyzed to give compound ( II)-(S form) can be obtained.
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000051
(反応基質)
 化合物(II)-(S体)の合成工程において、α位に電子吸引性置換基を有する(4S)-4-アシロキシ-2-アミノメチル-2-シクロペンテン-1-オンを使用できる。α位に電子吸引性置換基を有するアセチル基としては、フルオロアセチル基、ジフルオロアセチル基、トリフルオロアセチル基、クロロアセチル基、ジクロロアセチル基、トリクロロアセチル基、ブロモアセチル基、ジブロモアセチル基、トリブロモアセチル基、メトキシアセチル基、フェノキシアセチル基が使用できるが、これらに限定されるものではない。
(reaction substrate)
(4S)-4-acyloxy-2-aminomethyl-2-cyclopenten-1-one having an electron-withdrawing substituent at the α-position can be used in the step of synthesizing compound (II)-(S form). The acetyl group having an electron-withdrawing substituent at the α-position includes a fluoroacetyl group, a difluoroacetyl group, a trifluoroacetyl group, a chloroacetyl group, a dichloroacetyl group, a trichloroacetyl group, a bromoacetyl group, a dibromoacetyl group, and a tribromo Acetyl, methoxyacetyl, and phenoxyacetyl groups can be used, but are not limited to these.
(塩基)
 化合物(II)-(S体)の合成工程において、反応に用いる塩基の種類は特に限定されず、当該技術分野で用いられるものはいずれも使用できる。上記塩基としては、例えば、トリエチルアミン、ジイソプロピルエチルアミン、N-メチルモルホリン、イミダゾール、ピリジン、4-ジメチルアミノピリジン、ルチジンを使用できるが、これらに限定されるものではない。反応における塩基の使用量は、当業者であれば適切に調整できる。
(base)
In the step of synthesizing compound (II)-(S form), the type of base used in the reaction is not particularly limited, and any base used in the art can be used. Examples of the base include, but are not limited to, triethylamine, diisopropylethylamine, N-methylmorpholine, imidazole, pyridine, 4-dimethylaminopyridine, and lutidine. A person skilled in the art can appropriately adjust the amount of the base used in the reaction.
(溶媒)
 化合物(II)-(S体)の合成工程において、溶媒の種類は特に限定されず、当該技術分野で用いられるアルコールはいずれも使用できる。上記溶媒としては、例えば、メタノール、エタノール、n-プロパノール、2-プロパノール、n-ブタノールを使用できるが、これらに限定されるものではない。溶媒の使用量は、反応が進行する限りは、いずれの量でもよい。反応における溶媒の使用量は、当業者であれば適切に調整できる。
(solvent)
In the step of synthesizing compound (II)-(S form), the type of solvent is not particularly limited, and any alcohol used in the art can be used. Examples of the solvent include, but are not limited to, methanol, ethanol, n-propanol, 2-propanol, and n-butanol. Any amount of the solvent may be used as long as the reaction proceeds. A person skilled in the art can appropriately adjust the amount of solvent used in the reaction.
(反応温度)
 化合物(II)-(S体)の合成工程において、反応温度は、特に限定されない。一つの様態においては、収率の向上、副生成物の抑制、および経済効率等の観点から、上記反応温度は、-80℃~100℃の範囲であり、好ましくは-40℃~50℃の範囲であり、より好ましくは-20℃~30℃の範囲を例示できる。
(reaction temperature)
In the step of synthesizing compound (II)-(S form), the reaction temperature is not particularly limited. In one embodiment, the reaction temperature is in the range of -80°C to 100°C, preferably -40°C to 50°C, from the viewpoints of yield improvement, suppression of by-products, and economic efficiency. range, more preferably -20°C to 30°C.
(反応時間)
 化合物(II)-(S体)の合成工程において、反応時間は、特に限定されない。一つの様態においては、収率の向上、副生成物の抑制、および経済効率等の観点から、上記反応時間は、0.5時間~48時間の範囲であり、好ましくは1時間~24時間の範囲であり、より好ましくは1時間~10時間の範囲を例示できる。しかしながら、反応時間は、当業者であれば適切に調整できる。
(reaction time)
In the step of synthesizing compound (II)-(S form), the reaction time is not particularly limited. In one embodiment, the reaction time is in the range of 0.5 hours to 48 hours, preferably 1 hour to 24 hours, from the viewpoints of yield improvement, suppression of by-products, and economic efficiency. range, more preferably 1 hour to 10 hours. However, the reaction time can be adjusted appropriately by those skilled in the art.
化合物(III)-(R体)の合成工程
 化合物(II)-(S体)は光延反応により化合物(III)-(R体)に変換することができる。
Synthesis step of compound (III)-(R form) Compound (II)-(S form) can be converted to compound (III)-(R form) by Mitsunobu reaction.
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000052
(カルボン酸)
 化合物(III)-(R体)の合成工程において、α位に電子吸引性置換基を有するカルボン酸が使用できる。上記カルボン酸としては、例えば、フルオロ酢酸、ジフルオロ酢酸、トリフルオロ酢酸、クロロ酢酸、ジクロロ酢酸、トリクロロ酢酸、ブロモ酢酸、ジブロモ酢酸、トリブロモ酢酸、メトキシ酢酸、フェノキシ酢酸等が使用できるが、これらに限定されるものではない。カルボン酸の使用量としては、原料化合物1モルに対して、通常0.5~10.0モルの範囲であり、好ましくは0.8~5.0モルの範囲であり、より好ましくは1.0~2.0モルの範囲である。
(carboxylic acid)
A carboxylic acid having an electron-withdrawing substituent at the α-position can be used in the step of synthesizing compound (III)-(R form). Examples of the carboxylic acid that can be used include fluoroacetic acid, difluoroacetic acid, trifluoroacetic acid, chloroacetic acid, dichloroacetic acid, trichloroacetic acid, bromoacetic acid, dibromoacetic acid, tribromoacetic acid, methoxyacetic acid, phenoxyacetic acid, and the like, but are limited to these. not to be The amount of carboxylic acid to be used is usually in the range of 0.5 to 10.0 mol, preferably in the range of 0.8 to 5.0 mol, more preferably 1.0 mol, per 1 mol of the raw material compound. It ranges from 0 to 2.0 mol.
(アゾジカルボン酸ジエステル)
 化合物(III)-(R体)の合成工程において、光延反応に用いるアゾジカルボン酸ジエステルの種類は特に限定されず、当該技術分野で用いられるものはいずれも使用できる。アゾジカルボン酸ジエステルとしては、例えば、アゾジカルボン酸ジメチル(DMAD)、アゾジカルボン酸ジエチル(DEAD)、アゾジカルボン酸ジイソプロピル(DIAD)、アゾジカルボン酸ジベンジル、アゾジカルボン酸ジ-tert-ブチル、アゾジカルボン酸ビス(2-メトキシエチル)、アゾジカルボン酸ビス(2,2,2-トリクロロエチル)または1,1-アゾビス(N,N-ジメチルホルムアミド)ジアミドを使用できるが、これらに限定されるものではない。アゾジカルボン酸ジエステルの使用量としては、原料化合物1モルに対して、通常1.0~10.0モルの範囲であり、好ましくは1.0~5.0モルの範囲であり、より好ましくは1.0~2.0モルの範囲である。
(Azodicarboxylic acid diester)
In the step of synthesizing compound (III)-(R form), the type of azodicarboxylic acid diester used in the Mitsunobu reaction is not particularly limited, and any one used in the art can be used. Examples of the azodicarboxylic acid diester include dimethyl azodicarboxylate (DMAD), diethyl azodicarboxylate (DEAD), diisopropyl azodicarboxylate (DIAD), dibenzyl azodicarboxylate, di-tert-butyl azodicarboxylate, and azodicarboxylic acid. Bis(2-methoxyethyl), bis(2,2,2-trichloroethyl) azodicarboxylate or 1,1-azobis(N,N-dimethylformamide) diamide can be used, but are not limited to these. . The amount of the azodicarboxylic acid diester used is usually in the range of 1.0 to 10.0 mol, preferably in the range of 1.0 to 5.0 mol, more preferably in the range of 1.0 to 10.0 mol, per 1 mol of the raw material compound. It ranges from 1.0 to 2.0 mol.
(ホスフィン)
 化合物(III)-(R体)の合成工程において、光延反応に用いるホスフィンの種類は特に限定されず、当該技術分野で用いられるものはいずれも使用できる。ホスフィンとしては、例えば、トリフェニルホスフィン、トリヘキシルホスフィン、トリシクロヘキシルホスフィン、イソプロピルジフェニルホスフィン、ジエチルフェニルホスフィン、ジフェニル-2-ピリジルホスフィン、4-(ジメチルアミノ)フェニルジフェニルホスフィン、トリブチルホスフィン、ジシクロヘキシルフェニルホスフィン、フェノキシジフェニルホスフィン、トリ-tert-ブチルホスフィン、トリ-n-オクチルホスフィンを使用できるが、これらに限定されるものではない。ホスフィンの使用量としては、原料化合物1モルに対して、通常1.0~10.0モルの範囲であり、好ましくは1.0~5.0モルの範囲であり、より好ましくは1.0~2.0モルの範囲である。
(phosphine)
In the step of synthesizing compound (III)-(R form), the type of phosphine used in the Mitsunobu reaction is not particularly limited, and any one used in the art can be used. Phosphines include, for example, triphenylphosphine, trihexylphosphine, tricyclohexylphosphine, isopropyldiphenylphosphine, diethylphenylphosphine, diphenyl-2-pyridylphosphine, 4-(dimethylamino)phenyldiphenylphosphine, tributylphosphine, dicyclohexylphenylphosphine, Phenoxydiphenylphosphine, tri-tert-butylphosphine, tri-n-octylphosphine can be used, but are not limited to these. The amount of phosphine used is usually in the range of 1.0 to 10.0 mol, preferably in the range of 1.0 to 5.0 mol, more preferably 1.0 mol, per 1 mol of the raw material compound. ~2.0 molar range.
(溶媒)
 化合物(III)-(R体)の合成工程において、光延反応に用いる溶媒の種類は特に限定されず、当該技術分野で用いられるものはいずれも使用できる。上記溶媒としては、例えば、トルエン、ベンゼン、テトラヒドロフラン、ジクロロメタン、ジエチルエーテル、アセトニトリルを使用できるが、これらに限定されるものではない。溶媒の使用量は、反応が進行する限りは、いずれの量でもよい。光延反応における溶媒の使用量は、当業者であれば適切に調整できる。
(solvent)
In the step of synthesizing compound (III)-(R form), the type of solvent used in the Mitsunobu reaction is not particularly limited, and any solvent used in the art can be used. Examples of the solvent include toluene, benzene, tetrahydrofuran, dichloromethane, diethyl ether, and acetonitrile, but are not limited to these. Any amount of the solvent may be used as long as the reaction proceeds. A person skilled in the art can appropriately adjust the amount of solvent used in the Mitsunobu reaction.
(反応温度)
 化合物(III)-(R体)の合成工程において、光延反応の反応温度は、特に限定されない。一つの様態においては、収率の向上、副生成物の抑制、および経済効率等の観点から、上記反応温度は、-20℃~200℃の範囲であり、好ましくは-10℃~150℃の範囲であり、より好ましくは-5℃~120℃の範囲を例示できる。
(reaction temperature)
In the step of synthesizing compound (III)-(R form), the reaction temperature of the Mitsunobu reaction is not particularly limited. In one embodiment, the reaction temperature is in the range of -20°C to 200°C, preferably -10°C to 150°C, from the viewpoints of yield improvement, suppression of by-products, and economic efficiency. range, more preferably from -5°C to 120°C.
(反応時間)
 化合物(III)-(R体)の合成工程において、光延反応の反応時間は、特に限定されない。一つの様態においては、収率の向上、副生成物の抑制、および経済効率等の観点から、上記反応時間は、0.5時間~48時間の範囲であり、好ましくは1時間~24時間の範囲であり、より好ましくは1時間~10時間の範囲を例示できる。しかしながら、光延反応の反応時間は、当業者であれば適切に調整できる。
(reaction time)
In the step of synthesizing compound (III)-(R form), the reaction time of the Mitsunobu reaction is not particularly limited. In one embodiment, the reaction time is in the range of 0.5 hours to 48 hours, preferably 1 hour to 24 hours, from the viewpoints of yield improvement, suppression of by-products, and economic efficiency. range, more preferably 1 hour to 10 hours. However, the reaction time of the Mitsunobu reaction can be appropriately adjusted by those skilled in the art.
(後処理)
 化合物(III)-(R体)の合成工程において、光延反応の後処理としては、反応液からの生成物を取得するための一般的な処理を行えばよい。例えば、反応終了後の反応液に水を添加して中和し、一般的な抽出溶媒、例えば、酢酸エチル、ジエチルエーテル、塩化メチレン、トルエン、ヘキサン等を用いて抽出操作を行う。得られた抽出液から反応溶媒および抽出溶媒を減圧留去すると、目的物が得られる。このようにして得られる目的物は、必要であれば、シリカゲルカラムクロマトグラフィーや再結晶等の一般的精製を行い、さらに純度を高めてもよい。
(post-processing)
In the step of synthesizing compound (III)-(R form), post-treatment of the Mitsunobu reaction may be a general treatment for obtaining a product from the reaction solution. For example, water is added to the reaction solution after the reaction is completed to neutralize it, and an extraction operation is performed using a common extraction solvent such as ethyl acetate, diethyl ether, methylene chloride, toluene, hexane, or the like. The desired product is obtained by distilling off the reaction solvent and extraction solvent from the resulting extract under reduced pressure. The desired product thus obtained may, if necessary, be subjected to general purification such as silica gel column chromatography, recrystallization and the like to further increase the purity.
化合物(IV)-(R体)の合成工程
 化合物(II)-(R体)と保護基導入剤とを反応させて、化合物(II)-(R体)の4位水酸基に保護基を導入することにより、化合物(IV)-(R体)を得ることができる。
Synthetic step of compound (IV)-(R-form) Compound (II)-(R-form) is reacted with a protecting group-introducing agent to introduce a protecting group to the 4-position hydroxyl group of compound (II)-(R-form). By doing so, compound (IV)-(R form) can be obtained.
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000053
 保護基導入剤としては、シリル化剤、ベンジル型保護基導入剤、またはアセタール型保護基導入剤等の水酸基に対する保護基導入剤が挙げられるが、好ましくはシリル化剤である。 The protecting group-introducing agent includes a silylating agent, a benzyl-type protecting group-introducing agent, or an acetal-type protecting group-introducing agent for introducing a protecting group for hydroxyl groups, and is preferably a silylating agent.
 本開示の一実施態様によれば、保護基導入剤は一般式(e) WX(Wは、置換されていてもよいベンジル基、シリル基またはアセタール型保護基であり、Xは、F、Cl、BrまたはIである)で表される。 According to one embodiment of the present disclosure, the protecting group-introducing agent has the general formula (e) WX (W is an optionally substituted benzyl group, silyl group or acetal-type protecting group, X is F, Cl , Br or I).
(シリル化剤)
 シリル化剤が一般式(e) WXで表される場合、Wが表す置換されていてもよいシリル基の好適な例としては、-SiR基である。R、RおよびRは、それぞれ独立して、置換基を有していてもよいアルキル基、置換基を有していてもよいアルケニル基、置換基を有していてもよいアルキニル基、置換基を有していてもよいアリール基、置換基を有していてもよいアリールアルキル基、置換基を有していてもよいアリールアルケニル基または置換基を有していてもよいアリールアキニル基、置換基を有していてもよいアルキルアリール基、アルケニルアリール基またはアルキニルアリール基である。
(silylating agent)
When the silylating agent is represented by general formula (e) WX, a suitable example of the optionally substituted silyl group represented by W is -SiR 5 R 6 R 7 group. R 5 , R 6 and R 7 are each independently an optionally substituted alkyl group, an optionally substituted alkenyl group, an optionally substituted alkynyl group , an aryl group optionally having substituents, an arylalkyl group optionally having substituents, an arylalkenyl group optionally having substituents or an arylalkyl group optionally having substituents It is a nyl group, an optionally substituted alkylaryl group, an alkenylaryl group or an alkynylaryl group.
 より具体的には、化合物(IV)-(R体)の合成工程において、シリル化剤の種類は特に限定されず、当該技術分野で用いられるものはいずれも本発明の方法に使用できる。例えば、トリアルキルシリルハライド化合物、モノアルキルジアリールシリルハライド化合物、トリアリールシリルハライド化合物等を用いることができる。シリルハライド化合物がアルキル基を有する場合には、アルキル基として、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、イソブチル基、またはtert-ブチル基等を用いることができる。これらのうち、メチル基またはエチル基が好ましい。シリルハライド化合物がアリール基を有する場合にはフェニル基等を用いることができる。シリルハライド化合物を構成するハロゲン原子としては、塩素原子、臭素原子、またはヨウ素原子等を用いることができ、塩素原子を用いることが好ましい。シリルハライド化合物として、より具体的には、トリメチルシリルクロライド(トリメチルクロロシランと呼ばれる場合もある。以下の化合物についても同様である。)、トリエチルシリルクロライド、tert-ブチルジメチルシリルクロライド、tert-ブチルジフェニルシリルクロライド、トリフェニルシリルクロライド等を挙げることができる。 More specifically, in the step of synthesizing compound (IV)-(R form), the type of silylating agent is not particularly limited, and any one used in the art can be used in the method of the present invention. For example, trialkylsilyl halide compounds, monoalkyldiarylsilyl halide compounds, triarylsilyl halide compounds, and the like can be used. When the silyl halide compound has an alkyl group, the alkyl group may be, for example, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec-butyl group, isobutyl group, or tert-butyl group. etc. can be used. Among these, a methyl group or an ethyl group is preferred. When the silyl halide compound has an aryl group, a phenyl group or the like can be used. As the halogen atom constituting the silyl halide compound, a chlorine atom, a bromine atom, an iodine atom, or the like can be used, and a chlorine atom is preferably used. More specifically, the silyl halide compound includes trimethylsilyl chloride (sometimes referred to as trimethylchlorosilane; the same applies to the following compounds), triethylsilyl chloride, tert-butyldimethylsilyl chloride, and tert-butyldiphenylsilyl chloride. , triphenylsilyl chloride and the like.
(ベンジル型保護基導入剤)
 ベンジル型保護基導入剤が一般式(e) WXで表される場合、Wが表す置換されていてもよいベンジル基の好適な例としては、メチル基、エチル基、ブチル基、トリフルオロメチル基、トリクロロメチル基、メトキシ基等で置換されていてもよいベンジル基が挙げられるが、それらに限定されない。
(Benzyl-type protective group-introducing agent)
When the benzyl-type protecting group-introducing agent is represented by the general formula (e) WX, preferred examples of the optionally substituted benzyl group represented by W include a methyl group, an ethyl group, a butyl group, and a trifluoromethyl group. , a trichloromethyl group, a benzyl group optionally substituted with a methoxy group and the like, but are not limited thereto.
(アセタール型保護基導入剤)
 アセタール型保護基導入剤が一般式(e) WXで表される場合、Wが表すアセタール型保護基の好適な例としては、テトラヒドロピラニル(THP)基、-CH(CH)OCHCH、-C(CHOCHCH、-CHOCHPh等が挙げられるが、それらに限定されない。
(Acetal-type protective group-introducing agent)
When the acetal-type protecting group-introducing agent is represented by the general formula (e) WX, preferred examples of the acetal-type protecting group represented by W include a tetrahydropyranyl (THP) group, —CH(CH 3 )OCH 2 CH 3 , -C(CH 3 ) 2 OCH 2 CH 3 , -CH 2 OCH 2 Ph and the like, but are not limited thereto.
 また、本開示の別の実施態様によれば、アセタール型保護基導入剤としては、一般式(f) RC=CR10OR11で表される保護基導入剤を使用してもよい。ここで、R、RおよびR10およびR11は、それぞれ独立して、水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいアルケニル基、置換基を有していてもよいアルキニル基、置換基を有していてもよいアリール基、置換基を有していてもよいアリールアルキル基、置換基を有していてもよいアリールアルケニル基または置換基を有していてもよいアリールアキニル基、置換基を有していてもよいアルキルアリール基、アルケニルアリール基またはアルキニルアリール基であってもよく、RおよびRのいずれか一方と、R11とは一緒になってアルキレン、アルケニレンまたはアルキニレンを形成していてもよい。 Further, according to another embodiment of the present disclosure, as the acetal-type protecting group-introducing agent, a protecting group-introducing agent represented by the general formula (f) R 8 R 9 C=CR 10 OR 11 may be used. good. Here, R 8 , R 9 , R 10 and R 11 are each independently a hydrogen atom, an optionally substituted alkyl group, an optionally substituted alkenyl group, a substituent An alkynyl group optionally having a substituent, an aryl group optionally having a substituent, an arylalkyl group optionally having a substituent, an arylalkenyl group optionally having a substituent or a substituent , an optionally substituted alkylaryl group, an alkenylaryl group or an alkynylaryl group, any one of R 8 and R 9 and R 11 may together form alkylene, alkenylene or alkynylene.
 本開示の一実施態様によれば、R、RおよびR10およびR11は、それぞれ独立して、水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいアリール基、置換基を有していてもよいアルケニル基または置換基を有していてもよいアルキニル基であってよく、ただし、RおよびRのいずれか一方と、R11とは一緒になってアルキレンを形成していてもよい。 According to one embodiment of the present disclosure, R 8 , R 9 , R 10 and R 11 each independently have a hydrogen atom, an optionally substituted alkyl group, or a aryl group, optionally substituted alkenyl group or optionally substituted alkynyl group, provided that any one of R 8 and R 9 and R 11 Together they may form an alkylene.
 本開示の一実施態様によれば、R、RおよびR10およびR11は、それぞれ独立して、水素原子、C~Cアルキル基、C~C10アリール基、C~C14アルケニル基またはC~C14アルキニル基であってよく、ただし、RおよびRのいずれか一方と、R11とは一緒になってC~C10アルキレンを形成していてもよい。 According to one embodiment of the present disclosure, R 8 , R 9 and R 10 and R 11 are each independently a hydrogen atom, a C 1 -C 6 alkyl group, a C 6 -C 10 aryl group, a C 7 - may be a C 14 alkenyl group or a C 7 -C 14 alkynyl group, provided that either one of R 8 and R 9 and R 11 together form a C 3 -C 10 alkylene good.
 本開示の一実施態様によれば、R、RおよびR10およびR11は、それぞれ独立して、水素原子またはC~Cアルキル基、であってよく、ただし、RおよびRのいずれか一方と、R11とは一緒になってC~C10アルキレンを形成していてもよい。 According to one embodiment of the present disclosure, R 8 , R 9 and R 10 and R 11 may each independently be a hydrogen atom or a C 1 -C 6 alkyl group, provided that R 8 and R Either one of 9 and R 11 may together form a C 3 -C 10 alkylene.
(塩基)
 本開示の一実施態様によれば、化合物(IV)-(R体)の合成工程において、保護基導入は、塩基存在下で実施される。反応に用いる塩基の種類は特に限定されず、当該技術分野で用いられるものはいずれも使用できる。上記塩基としては、例えば、トリエチルアミン、ジイソプロピルエチルアミン、N-メチルモルホリン、イミダゾール、ピリジン、4-ジメチルアミノピリジン、2、6-ルチジンを使用できるが、これらに限定されるものではない。反応における塩基の使用量は、当業者であれば適切に調整できる。
(base)
According to one embodiment of the present disclosure, in the step of synthesizing compound (IV)-(R form), protective group introduction is carried out in the presence of a base. The type of base used in the reaction is not particularly limited, and any base used in the art can be used. Examples of the base include, but are not limited to, triethylamine, diisopropylethylamine, N-methylmorpholine, imidazole, pyridine, 4-dimethylaminopyridine, and 2,6-lutidine. A person skilled in the art can appropriately adjust the amount of the base used in the reaction.
(溶媒)
 化合物(IV)-(R体)の合成工程において、溶媒の種類は特に限定されず、当該技術分野で用いられる非プロトン性極性溶媒はいずれも使用できる。上記溶媒としては、例えば、エーテル類(例えば、テトラヒドロフラン(THF)、ジイソプロピルエーテル、ジブチルエーテル、シクロペンチルメチルエーテル(CPME)、メチル-tert-ブチルエーテル、より好ましくはテトラヒドロフラン(THF))、アミド類(例えば、N,N-ジメチルホルムアミド(DMF)、N,N-ジメチルアセトアミド(DMAC)、N,N-ジエチルアセトアミド、N-メチルピロリドン(NMP)等、好ましくはN,N-ジメチルホルムアミド(DMF)、N,N-ジメチルアセトアミド(DMAC)、N-メチルピロリドン(NMP)、より好ましくはN,N-ジメチルホルムアミド(DMF))、スルホキシド類(例えば、ジメチルスルホキシド(DMSO)等を使用できるが、これらに限定されるものではない。溶媒の使用量は、反応が進行する限りは、いずれの量でもよい。反応における溶媒の使用量は、当業者であれば適切に調整できる。
(solvent)
In the step of synthesizing compound (IV)-(R form), the type of solvent is not particularly limited, and any aprotic polar solvent used in the art can be used. Examples of the solvent include ethers (e.g., tetrahydrofuran (THF), diisopropyl ether, dibutyl ether, cyclopentyl methyl ether (CPME), methyl-tert-butyl ether, more preferably tetrahydrofuran (THF)), amides (e.g., N,N-dimethylformamide (DMF), N,N-dimethylacetamide (DMAC), N,N-diethylacetamide, N-methylpyrrolidone (NMP) and the like, preferably N,N-dimethylformamide (DMF), N, N-dimethylacetamide (DMAC), N-methylpyrrolidone (NMP), more preferably N,N-dimethylformamide (DMF)), sulfoxides (eg, dimethylsulfoxide (DMSO), etc. can be used, but are limited to these. The amount of solvent used may be any amount as long as the reaction proceeds, and the amount of solvent used in the reaction can be appropriately adjusted by those skilled in the art.
(反応温度)
 化合物(IV)-(R体)の合成工程において、反応温度は、特に限定されない。一つの様態においては、収率の向上、副生成物の抑制、および経済効率等の観点から、上記反応温度は、-80℃~100℃の範囲であり、好ましくは-40℃~50℃の範囲であり、より好ましくは-20℃~30℃の範囲を例示できる。
(reaction temperature)
In the step of synthesizing compound (IV)-(R form), the reaction temperature is not particularly limited. In one embodiment, the reaction temperature is in the range of -80°C to 100°C, preferably -40°C to 50°C, from the viewpoints of yield improvement, suppression of by-products, and economic efficiency. range, more preferably -20°C to 30°C.
(反応時間)
 化合物(IV)-(R体)の合成工程において、反応時間は、特に限定されない。一つの様態においては、収率の向上、副生成物の抑制、および経済効率等の観点から、上記反応時間は、0.5時間~48時間の範囲であり、好ましくは1時間~24時間の範囲であり、より好ましくは1時間~10時間の範囲を例示できる。しかしながら、反応時間は、当業者であれば適切に調整できる。
(reaction time)
In the step of synthesizing compound (IV)-(R form), the reaction time is not particularly limited. In one embodiment, the reaction time is in the range of 0.5 hours to 48 hours, preferably 1 hour to 24 hours, from the viewpoints of yield improvement, suppression of by-products, and economic efficiency. range, more preferably 1 hour to 10 hours. However, the reaction time can be adjusted appropriately by those skilled in the art.
プロスタグランジンの合成工程
 特許文献1によれば、スキーム19に示されるように、化合物(IV)-(R体)に対応する(4R)-(4-tert-ブチルジメチルシリル)ヒドロキシ-2-アミノメチル-2-シクロペンテン-1-オンを用いて、プロスタグランジンを効率的に製造することができる。かかる特許文献1に記載の方法を化合物(IV)-(R体)に適用し、プロスタグランジンを取得することができる。
Synthetic process of prostaglandin According to Patent Document 1, as shown in Scheme 19, (4R)-(4-tert-butyldimethylsilyl)hydroxy-2- corresponding to compound (IV)-(R form) Aminomethyl-2-cyclopenten-1-one can be used to efficiently produce prostaglandins. A prostaglandin can be obtained by applying the method described in Patent Document 1 to compound (IV)-(R form).
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000054
 合成中間体/使用
一般式(III)で表される化合物またはその光学活性体からのプロスタグランジンまたはその光学活性体の製造
 上述の通り、一般式(I)~(VI)のいずれかで表される化合物またはその光学活性体は、プロスタグランジンを製造における合成中間体として有利に利用することができる。
Synthetic intermediate/use
Production of a prostaglandin or an optically active substance thereof from a compound represented by general formula (III) or an optically active substance thereof As described above , a compound represented by any one of general formulas (I) to (VI) or its optically active substance An optically active form can advantageously utilize a prostaglandin as a synthetic intermediate in its production.
 したがって、本発明の好ましい態様によれば、一般式(I)~(VI)のいずれかで表されるまたはその光学活性体を含んでなる、プロスタグランジンまたはその光学活性体を製造するための試薬が提供される。 Therefore, according to a preferred embodiment of the present invention, a prostaglandin represented by any one of general formulas (I) to (VI) or comprising an optically active substance thereof, for producing a prostaglandin or an optically active substance thereof Reagents are provided.
 また、本発明の好ましい態様によれば、プロスタグランジンまたはその光学活性体を製造するための試薬としての、一般式(I)~(VI)のいずれかで表される化合物またはその光学活性体の使用が提供される。 Further, according to a preferred embodiment of the present invention, a compound represented by any one of general formulas (I) to (VI) or an optically active substance thereof as a reagent for producing a prostaglandin or an optically active substance thereof is provided for use.
 また、本発明の好ましい態様によれば、上記プロスタグランジンは、式(A)で表されるものである。
Figure JPOXMLDOC01-appb-C000055
Also, according to a preferred aspect of the present invention, the prostaglandin is represented by formula (A).
Figure JPOXMLDOC01-appb-C000055
 また、本発明の一実施態様によれば、以下が提供される。
[1]
 下記一般式(I)で表される化合物。
Figure JPOXMLDOC01-appb-C000056
(一般式(I)中、Rは、置換基を有していてもよい脂肪族炭化水素基、または置換基を有していてもよい、脂肪族炭化水素基および芳香族炭化水素環基を組み合わせて形成される官能基を示す。)
[2]
 Rが、C~Cアルキル基である、請求項1に記載の化合物。
[3]
 下記一般式(II)で表される化合物またはその光学活性体。
Figure JPOXMLDOC01-appb-C000057
(一般式(II)中、RおよびRは、それらが結合している窒素原子とともに環構造を形成する。)
[4]
 下記一般式(III)で表される化合物またはその光学活性体。
Figure JPOXMLDOC01-appb-C000058
(一般式(III)中、RおよびRは、それらが結合している窒素原子とともに環構造を形成し、
 Rは、置換基を有していてもよい脂肪族炭化水素基、または置換基を有していてもよい芳香族炭化水素環基を示す。)
[5]
 Rが、
 CH(3-n)(ただし、Xは、F、ClまたはBrであり、nは、1~3の整数である)、または
 CHOY(ただし、Yは、アルキル基、アリール基、またはアラルキル基である)である、請求項4に記載の化合物。
[6]
 Rが、CHClである、[5]に記載の化合物。
[7]
 下記一般式(IV)で表される化合物またはその光学活性体。
Figure JPOXMLDOC01-appb-C000059
一般式(IV)中、RおよびRは、それらが結合している窒素原子とともに環構造を形成し、
 Wは、-SiR基、置換されていてもよいベンジル基またはアセタール型保護基を表し、
 R5、およびRは、それぞれ独立して、置換基を有していてもよい脂肪族炭化水素基、置換基を有していてもよい芳香族炭化水素環基、または置換基を有していてもよい、脂肪族炭化水素基および芳香族炭化水素環基を組み合わせて形成される官能基を示す。)
[8]
 R5、およびRが、それぞれ独立して、C~Cアルキル基、C~C10アリール基またはC~C14アリールアルキル基を表す、[7]に記載の化合物。
[9]
 RおよびRが一緒になって3-トシル-3-アザペンタンジイル基を表す、[8]に記載の化合物。
[10]
 [1]~[9]のいずれかに記載の化合物からなる、プロスタグランジンまたはその光学活性体を製造するための中間体。
[11]
 上記プロスタグランジンまたはその光学活性体が、下記式(A)で表されるものである、[10]に記載の中間体。
Figure JPOXMLDOC01-appb-C000060
[12]
 水存在下、一般式(b)で表される化合物を加熱還流して、一般式(I)で表される化合物を得る工程を含んでなる、一般式(I)で表される化合物を製造する方法。
Figure JPOXMLDOC01-appb-C000061
(一般式(b)および(I)中、Rは、置換基を有していてもよい脂肪族炭化水素基、または置換基を有していてもよい、脂肪族炭化水素基および芳香族炭化水素環基を組み合わせて形成される官能基を示す。)
[13]
 水存在下、一般式(I)で表される化合物を加熱還流して、一般式(V)で表される化合物を得る工程を含んでなる、一般式(V)で表される化合物を製造する方法。
Figure JPOXMLDOC01-appb-C000062
(一般式(I)中、Rは、置換基を有していてもよい脂肪族炭化水素基、または置換基を有していてもよい、脂肪族炭化水素基および芳香族炭化水素環基を組み合わせて形成される官能基を示す。)
[14]
 一般式(I)で表される化合物と一般式(c)で表される化合物を反応させて、一般式(II)で表される化合物を得る工程を含んでなる、一般式(II)で表される化合物を製造する方法。
Figure JPOXMLDOC01-appb-C000063
(一般式(I)中、Rは、置換基を有していてもよい脂肪族炭化水素基、または置換基を有していてもよい、脂肪族炭化水素基および芳香族炭化水素環基を組み合わせて形成される官能基を示し、
 一般式(c)および(II)中、RおよびRは、それらが結合している窒素原子とともに環構造を形成する。)
[15]
 一般式(II)で表される化合物と一般式(d)で表される化合物を反応させて、一般式(III)で表される化合物を得る工程を含んでなる、一般式(III)で表される化合物を製造する方法。
Figure JPOXMLDOC01-appb-C000064
(一般式(II)および(III)中、RおよびRは、互いに結合してそれらが結合している窒素原子とともに環構造を形成し、
 一般式(d)および(III)中、Rは、置換基を有していてもよい脂肪族炭化水素基、置換基を有していてもよい芳香族炭化水素環基、または置換基を有していてもよい、脂肪族炭化水素基および芳香族炭化水素環基を組み合わせて形成される官能基を示し、
 一般式(d)中、Xは、F、Cl、BrまたはIである。)
[16]
 塩基性条件下、式(V)で表される化合物と一般式(d)で表される化合物を反応させて、一般式(VI)で表される化合物を得る工程を含んでなる、一般式(VI)で表される化合物を製造する方法。
Figure JPOXMLDOC01-appb-C000065
(一般式(d)および(VI)中、Rは、置換基を有していてもよい脂肪族炭化水素基、置換基を有していてもよい芳香族炭化水素環基、または置換基を有していてもよい、脂肪族炭化水素基および芳香族炭化水素環基を組み合わせて形成される官能基を示し、
 一般式(d)中、Xは、F、Cl、BrまたはIである。)
[17]
 塩基性条件下、式(VI)で表される化合物と一般式(c)で表される化合物を反応させて、一般式(III)で表される化合物を得る工程を含んでなる、一般式(III)で表される化合物を製造する方法。
Figure JPOXMLDOC01-appb-C000066
(一般式(c)および(III)中、RおよびRは、それらが結合している窒素原子とともに環構造を形成し、
 一般式(VI)および(III)中、Rは、置換基を有していてもよい脂肪族炭化水素基、置換基を有していてもよい芳香族炭化水素環基、または置換基を有していてもよい、脂肪族炭化水素基および芳香族炭化水素環基を組み合わせて形成される官能基を示す。)
[18]
 一般式(III)で表される化合物を、加水分解酵素を用いて光学分割して、一般式(II)で表される化合物の光学活性体(R体)および一般式(III)で表される化合物の光学活性体(S体)を得る工程を含んでなる、一般式(II)で表される化合物の光学活性体(R体)を製造する方法。
Figure JPOXMLDOC01-appb-C000067
(一般式(II)および(III)中、RおよびRは、それらが結合している窒素原子とともに環構造を形成し、
 一般式(III)中、Rは、置換基を有していてもよい脂肪族炭化水素基、置換基を有していてもよい芳香族炭化水素環基、または置換基を有していてもよい、脂肪族炭化水素基および芳香族炭化水素環基を組み合わせて形成される官能基を示す。)
[19]
 上記加水分解酵素が、リパーゼである、[18]に記載の方法。
[20]
 一般式(III)で表される化合物の光学活性体(S体)を加溶媒分解して、一般式(II)で表される化合物の光学活性体(S体)を得る工程を含んでなる、一般式(II)で表される化合物の光学活性体(S体)を製造する方法。
Figure JPOXMLDOC01-appb-C000068
(一般式(II)および(III)中、RおよびRは、それらが結合している窒素原子とともに環構造を形成し、
 一般式(III)中、Rは、置換基を有していてもよい脂肪族炭化水素基、置換基を有していてもよい芳香族炭化水素環基、または置換基を有していてもよい、脂肪族炭化水素基および芳香族炭化水素環基を組み合わせて形成される官能基を示す。)
[21]
 上記加溶媒分解が、メタノールおよび3級アミンを用いた加溶媒分解である、[20]に記載の方法。
[22]
 一般式(II)で表される化合物の光学活性体(S体)を、光延反応により一般式(II)で表される化合物の光学活性体(R体)に変換する工程を含んでなる、一般式(II)で表される化合物の光学活性体(R体)を製造する方法。
Figure JPOXMLDOC01-appb-C000069
(一般式(II)中、RおよびRは、それらが結合している窒素原子とともに環構造を形成する。)
[23]
 一般式(II)で表される化合物の光学活性体(R体)と保護基導入剤とを反応させて、一般式(IV)で表される化合物の光学活性体(R体)を得る工程を含んでなる、一般式(IV)で表される化合物の光学活性体(R体)を製造する方法。
Figure JPOXMLDOC01-appb-C000070
(一般式(II)および(IV)中、RおよびRは、それらが結合している窒素原子とともに環構造を形成し、
 一般式(e)および(IV)中、Wは、-SiR基、置換されていてもよいベンジル基またはアセタール型保護基を表し、
 R、RおよびRは、それぞれ独立して、置換基を有していてもよい脂肪族炭化水素基、置換基を有していてもよい芳香族炭化水素環基、または置換基を有していてもよい、脂肪族炭化水素基および芳香族炭化水素環基を組み合わせて形成される官能基を示し、
 一般式(e)中、Xは、F、Cl、BrまたはIである。)
[24]
 プロスタグランジンまたはその光学活性体を製造するための、[12]~[23]のいずれかに記載の方法。
[25]
 上記プロスタグランジンの光学活性体が、式(A)で表されるものである、[24]に記載の方法。
Figure JPOXMLDOC01-appb-C000071
[26]
 プロスタグランジンまたはその光学活性体を製造するための中間体としての、[1]~[9]のいずれかに記載の、一般式(I)、(II)、(III)または(IV)で表される化合物またはその光学活性体の使用。
[27]
 上記プロスタグランジンの光学活性体が、式(A)で表されるものである、[26]に記載の使用。
Figure JPOXMLDOC01-appb-C000072
Also, according to one embodiment of the present invention, the following are provided.
[1]
A compound represented by the following general formula (I).
Figure JPOXMLDOC01-appb-C000056
(In general formula (I), R 1 is an optionally substituted aliphatic hydrocarbon group, or an optionally substituted aliphatic hydrocarbon group and aromatic hydrocarbon ring group indicates a functional group formed by combining
[2]
A compound according to claim 1, wherein R 1 is a C 1 -C 6 alkyl group.
[3]
A compound represented by the following general formula (II) or an optically active form thereof.
Figure JPOXMLDOC01-appb-C000057
(In general formula (II), R 2 and R 3 form a ring structure together with the nitrogen atom to which they are attached.)
[4]
A compound represented by the following general formula (III) or an optically active form thereof.
Figure JPOXMLDOC01-appb-C000058
(In general formula (III), R 2 and R 3 form a ring structure together with the nitrogen atom to which they are attached,
R 4 represents an optionally substituted aliphatic hydrocarbon group or an optionally substituted aromatic hydrocarbon ring group. )
[5]
R4 is
CH (3-n) X n (where X is F, Cl or Br and n is an integer of 1 to 3), or CH 2 OY (where Y is an alkyl group, an aryl group, or an aralkyl group).
[6]
The compound of [5], wherein R 4 is CH 2 Cl.
[7]
A compound represented by the following general formula (IV) or an optically active substance thereof.
Figure JPOXMLDOC01-appb-C000059
In general formula (IV), R 2 and R 3 form a ring structure together with the nitrogen atom to which they are attached,
W represents a —SiR 5 R 6 R 7 group, an optionally substituted benzyl group or an acetal-type protecting group;
R 5, R 6 and R 7 each independently represent an optionally substituted aliphatic hydrocarbon group, an optionally substituted aromatic hydrocarbon cyclic group, or a substituent A functional group formed by combining an aliphatic hydrocarbon group and an aromatic hydrocarbon ring group, which may be present. )
[8]
The compound according to [7], wherein R 5 , R 6 and R 7 each independently represent a C 1 -C 6 alkyl group, a C 6 -C 10 aryl group or a C 7 -C 14 arylalkyl group.
[9]
A compound according to [8], wherein R 2 and R 3 together represent a 3-tosyl-3-azapentanediyl group.
[10]
An intermediate for producing a prostaglandin or an optically active substance thereof, comprising the compound according to any one of [1] to [9].
[11]
The intermediate according to [10], wherein the prostaglandin or its optically active substance is represented by the following formula (A).
Figure JPOXMLDOC01-appb-C000060
[12]
Manufacture of a compound represented by general formula (I), comprising a step of obtaining a compound represented by general formula (I) by heating under reflux a compound represented by general formula (b) in the presence of water how to.
Figure JPOXMLDOC01-appb-C000061
(In the general formulas (b) and (I), R 1 is an optionally substituted aliphatic hydrocarbon group, or an optionally substituted aliphatic hydrocarbon group and an aromatic Indicates a functional group formed by combining hydrocarbon ring groups.)
[13]
Manufacture of a compound represented by general formula (V), comprising a step of obtaining a compound represented by general formula (V) by heating under reflux a compound represented by general formula (I) in the presence of water how to.
Figure JPOXMLDOC01-appb-C000062
(In general formula (I), R 1 is an optionally substituted aliphatic hydrocarbon group, or an optionally substituted aliphatic hydrocarbon group and aromatic hydrocarbon ring group indicates a functional group formed by combining
[14]
of general formula (II), comprising a step of reacting a compound of general formula (I) with a compound of general formula (c) to obtain a compound of general formula (II); Methods of making the represented compounds.
Figure JPOXMLDOC01-appb-C000063
(In general formula (I), R 1 is an optionally substituted aliphatic hydrocarbon group, or an optionally substituted aliphatic hydrocarbon group and aromatic hydrocarbon ring group represents a functional group formed by combining
In general formulas (c) and (II), R2 and R3 form a ring structure together with the nitrogen atom to which they are attached. )
[15]
In general formula (III), comprising a step of reacting a compound represented by general formula (II) with a compound represented by general formula (d) to obtain a compound represented by general formula (III) Methods of making the represented compounds.
Figure JPOXMLDOC01-appb-C000064
(In general formulas (II) and (III), R 2 and R 3 are bonded to each other to form a ring structure together with the nitrogen atom to which they are bonded,
In general formulas (d) and (III), R 4 is an optionally substituted aliphatic hydrocarbon group, an optionally substituted aromatic hydrocarbon cyclic group, or a substituent represents a functional group formed by combining an aliphatic hydrocarbon group and an aromatic hydrocarbon ring group, which may have
X is F, Cl, Br or I in general formula (d). )
[16]
reacting a compound represented by formula (V) with a compound represented by general formula (d) under basic conditions to obtain a compound represented by general formula (VI); A method for producing a compound represented by (VI).
Figure JPOXMLDOC01-appb-C000065
(In general formulas (d) and (VI), R 4 is an optionally substituted aliphatic hydrocarbon group, an optionally substituted aromatic hydrocarbon ring group, or a substituent A functional group formed by combining an aliphatic hydrocarbon group and an aromatic hydrocarbon ring group, which may have
X is F, Cl, Br or I in general formula (d). )
[17]
reacting a compound of formula (VI) with a compound of general formula (c) under basic conditions to obtain a compound of general formula (III); A method for producing a compound represented by (III).
Figure JPOXMLDOC01-appb-C000066
(In general formulas (c) and (III), R 2 and R 3 form a ring structure together with the nitrogen atom to which they are attached,
In general formulas (VI) and (III), R 4 is an optionally substituted aliphatic hydrocarbon group, an optionally substituted aromatic hydrocarbon cyclic group, or a substituent A functional group formed by combining an aliphatic hydrocarbon group and an aromatic hydrocarbon ring group, which may be present. )
[18]
The compound represented by the general formula (III) is optically resolved using a hydrolase to obtain the optically active form (R form) of the compound represented by the general formula (II) and the compound represented by the general formula (III). A method for producing an optically active form (R form) of a compound represented by general formula (II), comprising a step of obtaining an optically active form (S form) of the compound represented by formula (II).
Figure JPOXMLDOC01-appb-C000067
(In general formulas (II) and (III), R 2 and R 3 form a ring structure together with the nitrogen atom to which they are attached,
In general formula (III), R 4 is an optionally substituted aliphatic hydrocarbon group, an optionally substituted aromatic hydrocarbon ring group, or a substituted A functional group formed by combining an aliphatic hydrocarbon group and an aromatic hydrocarbon ring group. )
[19]
The method of [18], wherein the hydrolase is lipase.
[20]
A step of solvolyzing an optically active form (S form) of the compound represented by general formula (III) to obtain an optically active form (S form) of the compound represented by general formula (II). , a method for producing an optically active form (S form) of a compound represented by general formula (II).
Figure JPOXMLDOC01-appb-C000068
(In general formulas (II) and (III), R 2 and R 3 form a ring structure together with the nitrogen atom to which they are attached,
In general formula (III), R 4 is an optionally substituted aliphatic hydrocarbon group, an optionally substituted aromatic hydrocarbon ring group, or a substituted A functional group formed by combining an aliphatic hydrocarbon group and an aromatic hydrocarbon ring group. )
[21]
The method of [20], wherein the solvolysis is solvolysis with methanol and a tertiary amine.
[22]
a step of converting an optically active form (S form) of the compound represented by general formula (II) into an optically active form (R form) of the compound represented by general formula (II) by Mitsunobu reaction; A method for producing an optically active form (R form) of a compound represented by general formula (II).
Figure JPOXMLDOC01-appb-C000069
(In general formula (II), R 2 and R 3 form a ring structure together with the nitrogen atom to which they are attached.)
[23]
A step of reacting an optically active form (R form) of a compound represented by general formula (II) with a protecting group-introducing agent to obtain an optically active form (R form) of a compound represented by general formula (IV) A method for producing an optically active form (R form) of a compound represented by general formula (IV), comprising:
Figure JPOXMLDOC01-appb-C000070
(In general formulas (II) and (IV), R 2 and R 3 form a ring structure together with the nitrogen atom to which they are attached,
In general formulas (e) and (IV), W represents a —SiR 5 R 6 R 7 group, an optionally substituted benzyl group or an acetal-type protecting group;
R 5 , R 6 and R 7 each independently represent an optionally substituted aliphatic hydrocarbon group, an optionally substituted aromatic hydrocarbon cyclic group, or a substituent represents a functional group formed by combining an aliphatic hydrocarbon group and an aromatic hydrocarbon ring group, which may have
X is F, Cl, Br or I in general formula (e). )
[24]
The method according to any one of [12] to [23] for producing prostaglandin or its optically active form.
[25]
The method of [24], wherein the optically active form of prostaglandin is represented by formula (A).
Figure JPOXMLDOC01-appb-C000071
[26]
General formula (I), (II), (III) or (IV) according to any one of [1] to [9] as an intermediate for producing a prostaglandin or an optically active substance thereof Use of the represented compound or its optically active form.
[27]
The use according to [26], wherein the optically active form of prostaglandin is represented by formula (A).
Figure JPOXMLDOC01-appb-C000072
 以下に実施例を挙げて、本開示をさらに詳細に説明するが、本開示はこれらの実施例に限定されない。なお、実施例および参考例の各物性の測定には以下の機器を用いた。
 H核磁気共鳴スペクトル(H NMR)および13C核磁気共鳴スペクトル(13C NMR):JNM-ECZ400S(JEOL製)
 内部標準物質:テトラメチルシラン。
EXAMPLES The present disclosure will be described in more detail with examples below, but the present disclosure is not limited to these examples. The following instruments were used to measure physical properties in Examples and Reference Examples.
1 H nuclear magnetic resonance spectrum ( 1 H NMR) and 13 C nuclear magnetic resonance spectrum ( 13 C NMR): JNM-ECZ400S (manufactured by JEOL)
Internal standard substance: tetramethylsilane.
プロスタグランジンの合成中間体の製造
 以下のスキームに準じて、プロスタグランジンの合成中間体の製造を行った。以下、各工程について説明する。
Figure JPOXMLDOC01-appb-C000073
Production of Prostaglandin Synthetic Intermediate A prostaglandin synthetic intermediate was produced according to the following scheme. Each step will be described below.
Figure JPOXMLDOC01-appb-C000073
例1:2-((2-メチルスルフェニル‐1-ヒドロキシ)エチル)フラン(化合物2)の合成Example 1: Synthesis of 2-((2-methylsulfenyl-1-hydroxy)ethyl)furan (compound 2)
Figure JPOXMLDOC01-appb-C000074
Figure JPOXMLDOC01-appb-C000074
 窒素置換した100mL四つ口フラスコに60%水素化ナトリウムオイル分散2.0gをはかり取りヘキサン40mLを加えて撹拌した。デカンテーションによりヘキサンを除去し、ジメチルスルホキシド200mLを加えて撹拌した。徐々に加熱すると50℃付近で発泡が激しくなるのでこの温度を1時間維持した。水素化ナトリウムが溶液に分散し泡が細かくなったら徐々に昇温し1時間、55℃付近を維持した。65から70℃で1時間撹拌すると水素化ナトリウムが消費され発泡が止まり均一な溶液が得られた。20℃まで冷却した後、フルフラール4.3g(45mmol)を30℃以下で加え、室温で1時間撹拌した。次に、冷却しながら水29mLを加え、1M塩酸(約44mL)で中和した。次に、ロータリーエバポレータで水を除去した後、アスピレータを真空ポンプに替えてジメチルスルホキシドを留去すると目的物を含む反応混合物が得られた。次に、カラムクロマトグラフィー(酢酸エチル)により目的物とジメチルスルホキシドの混合物(モル比2:3)が得られた。クーゲルロア蒸留機でジメチルスルホキシドを留去すると化合物2 4.2g(54%)がジアステレオマー混合物として得られた。 2.0 g of 60% sodium hydride oil dispersion was weighed into a 100 mL four-necked flask purged with nitrogen, and 40 mL of hexane was added and stirred. Hexane was removed by decantation, and 200 mL of dimethylsulfoxide was added and stirred. If the mixture is gradually heated, foaming becomes vigorous at around 50°C, so this temperature was maintained for 1 hour. When the sodium hydride was dispersed in the solution and the bubbles became fine, the temperature was gradually raised and maintained at around 55°C for 1 hour. After stirring at 65 to 70° C. for 1 hour, sodium hydride was consumed and foaming ceased to obtain a uniform solution. After cooling to 20° C., 4.3 g (45 mmol) of furfural was added at 30° C. or lower and stirred at room temperature for 1 hour. Then, 29 mL of water was added with cooling and neutralized with 1M hydrochloric acid (approximately 44 mL). Next, after removing water with a rotary evaporator, the aspirator was replaced with a vacuum pump to distill off dimethyl sulfoxide to obtain a reaction mixture containing the desired product. Next, a mixture of the desired product and dimethylsulfoxide (molar ratio 2:3) was obtained by column chromatography (ethyl acetate). Distillation of dimethyl sulfoxide with a Kugelrohr distillation gave 4.2 g (54%) of compound 2 as a diastereomeric mixture.
H NMR(CDCl)δ2.69(1.5H,s),2.72(1.5H,s),3.02(0.5H,dd,J=13.2,2.4Hz),3.16(0.5H,dd,J=13.2,4.4Hz),3.22(0.5H,dd,J=13.2,8.8Hz),3.29(0.5H,dd,J=13.2,10.0Hz),3.82(0.5H,brs),3.94(0.5H,brs),5.36-5.42(1H,m),7.40(1H,m) 1 H NMR (CDCl 3 ) δ 2.69 (1.5 H, s), 2.72 (1.5 H, s), 3.02 (0.5 H, dd, J = 13.2, 2.4 Hz), 3.16 (0.5H, dd, J = 13.2, 4.4Hz), 3.22 (0.5H, dd, J = 13.2, 8.8Hz), 3.29 (0.5H, dd, J = 13.2, 10.0Hz), 3.82 (0.5H, brs), 3.94 (0.5H, brs), 5.36-5.42 (1H, m), 7. 40 (1H, m)
13C NMR(CDCl)δ38.8,39.3,57.3,58.9,62.1,63.5,106.5,107.0,110.4(overlap),142.36,142.42,154.0,154.3. 13 C NMR (CDCl 3 ) δ 38.8, 39.3, 57.3, 58.9, 62.1, 63.5, 106.5, 107.0, 110.4 (overlap), 142.36, 142.42, 154.0, 154.3.
例2:2-((2-メチルスルフェニル‐1-ヒドロキシ)エチル)フラン(化合物2)の合成Example 2: Synthesis of 2-((2-methylsulfenyl-1-hydroxy)ethyl)furan (compound 2)
Figure JPOXMLDOC01-appb-C000075
Figure JPOXMLDOC01-appb-C000075
 窒素置換した1L四つ口フラスコにカリウム‐tert-ブトキシド40g(360mmol)をはかり取りジメチルスルホキシド600mLを加え撹拌し溶解させた。30℃以下でフルフラール50g(520mmol)を徐々に加えたのち室温で3時間撹拌した。冷却しながら2M塩酸で中和した後、ロータリーエバポレータで水を除去し、アスピレータを真空ポンプに替えてジメチルスルホキシドを留去すると目的物を含む反応混合物が得られた。桐山ロートにカラムクロマトグラフィー用シリカゲルを敷き、反応混合物の酢酸エチル溶液を吸引濾過することにより目的物とジメチルスルホキシドの混合物(モル比2:3)が得られた。ロータリーエバポレータで濃縮した後、アスピレータを真空ポンプに替えてジメチルスルホキシドを留去すると化合物2 73.2g(81%)がジアステレオマー混合物として得られた。 40 g (360 mmol) of potassium-tert-butoxide was weighed into a 1 L four-necked flask purged with nitrogen, and 600 mL of dimethylsulfoxide was added and stirred to dissolve. After gradually adding 50 g (520 mmol) of furfural at 30° C. or lower, the mixture was stirred at room temperature for 3 hours. After neutralizing with 2M hydrochloric acid while cooling, water was removed with a rotary evaporator, and the aspirator was replaced with a vacuum pump to distill off dimethylsulfoxide to obtain a reaction mixture containing the desired product. A Kiriyama funnel was covered with silica gel for column chromatography, and the ethyl acetate solution of the reaction mixture was filtered by suction to obtain a mixture of the desired product and dimethyl sulfoxide (molar ratio 2:3). After concentrating with a rotary evaporator, the aspirator was replaced with a vacuum pump to distill off dimethylsulfoxide to obtain 73.2 g (81%) of compound 2 as a diastereomeric mixture.
例3:4-ヒドロキシ-2-メチルスルフェニルメチル-2-シクロペンテン-1-オン(化合物3)および4-ヒドロキシ-2-ヒドロキシメチル-2-シクロペンテン-1-オン(化合物6)の合成Example 3: Synthesis of 4-hydroxy-2-methylsulphenylmethyl-2-cyclopenten-1-one (compound 3) and 4-hydroxy-2-hydroxymethyl-2-cyclopenten-1-one (compound 6)
Figure JPOXMLDOC01-appb-C000076
Figure JPOXMLDOC01-appb-C000076
 水1Lにリン酸水素二カリウム1.0gを溶解しリン酸を加えてpH3に調整した。化合物2 20.0g(115mmol)を調製したリン酸水溶液に溶解し24時間還流した。室温まで冷却した後、ロータリーエバポレータで水を除去した。残留物に2-プロパノール100mLを加えて還流した後室温まで冷却し、セライトを用いて吸引濾過で不溶物を取り除いた。濾液をロータリーエバポレータで濃縮し、シリカゲルカラムクロマトグラフィーを行い、化合物3のジアステレオマー混合物(酢酸エチル:メタノール=10:1)を6.1g(42%)、化合物6(酢酸エチル:メタノール=4:1)を6.4g(32%)得た。 1.0 g of dipotassium hydrogen phosphate was dissolved in 1 L of water, and phosphoric acid was added to adjust the pH to 3. 20.0 g (115 mmol) of compound 2 was dissolved in the prepared phosphoric acid aqueous solution and refluxed for 24 hours. After cooling to room temperature, water was removed with a rotary evaporator. 100 mL of 2-propanol was added to the residue and the mixture was refluxed, cooled to room temperature, and insoluble matter was removed by suction filtration using celite. The filtrate was concentrated with a rotary evaporator and subjected to silica gel column chromatography to give 6.1 g (42%) of a diastereomer mixture of compound 3 (ethyl acetate:methanol=10:1) and compound 6 (ethyl acetate:methanol=4 : 6.4 g (32%) of 1) were obtained.
化合物3(極性の低いジアステレオマー)
1H NMR(CDCl)δ2.42(1H,dd,J=18.8,2.0Hz),2.92(1H,dd,J=18.8,6.4Hz),2.91(3H,s),3.96(2H,s),5.08(1H,brs),7.79(1H,s).
Compound 3 (less polar diastereomer)
1H NMR ( CDCl3 ) δ 2.42 (1H, dd, J = 18.8, 2.0 Hz), 2.92 (1H, dd, J = 18.8, 6.4 Hz), 2.91 (3H, s), 3.96 (2H, s), 5.08 (1H, brs), 7.79 (1H, s).
化合物3(極性の高いジアステレオマー)
H NMR(CDCl)δ2.38(1H,dd,J=18.8,2.2Hz),2.80(1H,dd,J=18.8,6.4Hz),3.49(3H,s),4.41(2H,s),5.03(1H,s),7.38(1H,s).
13CNMR(CDCl)d45.1,50.8,57.0,68.5,146.3,157.0,206.0.
Compound 3 (highly polar diastereomer)
1 H NMR (CDCl 3 ) δ 2.38 (1H, dd, J = 18.8, 2.2 Hz), 2.80 (1H, dd, J = 18.8, 6.4 Hz), 3.49 (3H , s), 4.41 (2H, s), 5.03 (1 H, s), 7.38 (1 H, s).
13C NMR ( CDCl3 ) d 45.1, 50.8, 57.0, 68.5, 146.3, 157.0, 206.0.
化合物6
H NMR(DMSO-d)δ2.10(1H,dd,J=18.4,1.6Hz),2.69(1H,dd,J=18.4,6.0Hz),4.05(2H,d,J=4.8Hz),4.75(1H,br),5.01-5.04(1H,m),5.35-5.37(1H,m),7.29-7.30(1H,m).
13C NMR(DMSO-d)δ45.3,55.2,67.1,146.4,158.1,205.3
compound 6
1 H NMR (DMSO-d 6 ) δ 2.10 (1H, dd, J = 18.4, 1.6 Hz), 2.69 (1H, dd, J = 18.4, 6.0 Hz), 4.05 (2H, d, J = 4.8Hz), 4.75 (1H, br), 5.01-5.04 (1H, m), 5.35-5.37 (1H, m), 7.29 -7.30 (1H, m).
13 C NMR (DMSO-d 6 ) δ 45.3, 55.2, 67.1, 146.4, 158.1, 205.3
例4:4-ヒドロキシ-2-(3-トシル-3-アザペンタンジイル)アミノメチル-2-シクロペンテン-1-オン(化合物rac-4)の合成Example 4: Synthesis of 4-hydroxy-2-(3-tosyl-3-azapentanediyl)aminomethyl-2-cyclopenten-1-one (compound rac-4)
Figure JPOXMLDOC01-appb-C000077
Figure JPOXMLDOC01-appb-C000077
 化合物3 1.0g(5.7mmol)をTHF20mLに溶解し氷冷する。ここへN-トシルピペラジン2.8g(11.6mmpl)を加えたのち室温で5時間撹拌する。濾液をロータリーエバポレータで減圧濃縮した後、シリカゲルカラムクロマトグラフィー(酢酸エチル:メタノール=10:1)で精製すると化合物rac-4 1.5g(75%)が粉末として得られる。 1.0 g (5.7 mmol) of compound 3 is dissolved in 20 mL of THF and cooled with ice. After adding 2.8 g (11.6 mmpl) of N-tosylpiperazine, the mixture is stirred at room temperature for 5 hours. The filtrate is concentrated under reduced pressure using a rotary evaporator and purified by silica gel column chromatography (ethyl acetate:methanol=10:1) to obtain 1.5 g (75%) of compound rac-4 as a powder.
化合物rac-4
mp:182℃
H NMR(CDCl)δ2.32(dd,1H,J=18.4,2.0Hz),2.44(s,3H),2.53-2.55(m,brm),2.82(dd,1H,J=18.4,6.0Hz),3.02(brs,4H),3.26(s,2H),4.96-4.98(m,1H),7.26(s,1H),7.33(d,2H,J=8.0Hz),7.62(d,2H,J=8.0Hz).
13C NMR(CDCl)δ21.5,44.9,45.9,51.5,52.2,68.4,127.8,129.7,132.3,143.2,143.8,158.9,205.2.
Compound rac-4
mp: 182°C
1 H NMR (CDCl 3 ) δ 2.32 (dd, 1H, J=18.4, 2.0 Hz), 2.44 (s, 3H), 2.53-2.55 (m, brm), 2. 82 (dd, 1H, J=18.4, 6.0Hz), 3.02 (brs, 4H), 3.26 (s, 2H), 4.96-4.98 (m, 1H), 7. 26 (s, 1H), 7.33 (d, 2H, J=8.0Hz), 7.62 (d, 2H, J=8.0Hz).
13C NMR ( CDCl3 ) δ 21.5, 44.9, 45.9, 51.5, 52.2, 68.4, 127.8, 129.7, 132.3, 143.2, 143.8 , 158.9, 205.2.
例5:4-クロロアセトキシ-2-(3-トシル-3-アザペンタンジイル)アミノメチル-2-シクロペンテン-1-オン(化合物rac-5)の合成Example 5: Synthesis of 4-chloroacetoxy-2-(3-tosyl-3-azapentanediyl)aminomethyl-2-cyclopenten-1-one (compound rac-5)
Figure JPOXMLDOC01-appb-C000078
Figure JPOXMLDOC01-appb-C000078
 化合物rac-4 3.0g(8.6mmol)をTHF200mLに溶解し、クロロ酢酸無水物3.0g(18mmol)を加え氷冷した。ここへピリジン1mLを加え、室温で14時間撹拌した後水を加えて反応を停止した。酢酸エチルで抽出し食塩水で洗浄した後無水硫酸マグネシウムを加えて乾燥した。次に、乾燥剤を濾過で除去し濾液をロータリーエバポレータで減圧濃縮すると目的物を含む混合物を得た。次に、シリカゲルカラムクロマトグラフィー(酢酸エチル)で精製すると化合物rac-5 3.5g(96%)が淡黄色油状物質として得られた。 3.0 g (8.6 mmol) of the compound rac-4 was dissolved in 200 mL of THF, 3.0 g (18 mmol) of chloroacetic anhydride was added, and the mixture was ice-cooled. 1 mL of pyridine was added thereto, and after stirring at room temperature for 14 hours, water was added to terminate the reaction. The extract was extracted with ethyl acetate, washed with brine, and dried over anhydrous magnesium sulfate. Next, the drying agent was removed by filtration, and the filtrate was concentrated under reduced pressure using a rotary evaporator to obtain a mixture containing the desired product. Then, purification by silica gel column chromatography (ethyl acetate) gave 3.5 g (96%) of compound rac-5 as a pale yellow oily substance.
例6:4-ヒドロキシ-2-ヒドロキシメチル-2-シクロペンテン-1-オン(化合物6)の合成Example 6: Synthesis of 4-hydroxy-2-hydroxymethyl-2-cyclopenten-1-one (compound 6)
Figure JPOXMLDOC01-appb-C000079
Figure JPOXMLDOC01-appb-C000079
 水1Lにリン酸水素二カリウム1.0gを溶解しリン酸を加えてpH3に調整した。化合物3 20.0g(115mmol)を調製したリン酸水溶液に溶解しSUS製の円筒型反応容器に入れ密閉し120℃で24時間加熱した。室温まで冷却した後、ロータリーエバポレータで水を除去した。残留物に2-プロパノール100mLを加えて還流した後室温まで冷却し、セライトを用いて吸引濾過で不溶物を取り除いた。濾液をロータリーエバポレータで濃縮し、シリカゲルカラムクロマトグラフィー(酢酸エチル:メタノール=10:1)を行ったところ、化合物6 7.1g(48%)が得られた。 1.0 g of dipotassium hydrogen phosphate was dissolved in 1 L of water, and phosphoric acid was added to adjust the pH to 3. 20.0 g (115 mmol) of compound 3 was dissolved in the prepared phosphoric acid aqueous solution, placed in a SUS cylindrical reaction vessel, sealed, and heated at 120° C. for 24 hours. After cooling to room temperature, water was removed with a rotary evaporator. 100 mL of 2-propanol was added to the residue and the mixture was refluxed, cooled to room temperature, and insoluble matter was removed by suction filtration using celite. The filtrate was concentrated with a rotary evaporator and subjected to silica gel column chromatography (ethyl acetate:methanol=10:1) to obtain 7.1 g (48%) of compound 6.
例7:4-ヒドロキシ-2-メチルスルフェニルメチル-2-シクロペンテン-1-オン(化合物4)の4-ヒドロキシ-2-ヒドロキシメチル-2-シクロペンテン-1-オン(化合物6)への変換Example 7: Conversion of 4-hydroxy-2-methylsulphenylmethyl-2-cyclopenten-1-one (compound 4) to 4-hydroxy-2-hydroxymethyl-2-cyclopenten-1-one (compound 6)
Figure JPOXMLDOC01-appb-C000080
Figure JPOXMLDOC01-appb-C000080
 化合物3 500mg(2.87mmol)をフラスコに量り取り、水20mLを加えて溶解し48時間還流した。室温まで冷却した後、ロータリーエバポレータで水を除去する。残留物をシリカゲルカラムクロマトグラフィー(酢酸エチル:メタノール=10:1)で精製する化合物6 210mg(57%)が得られた。 500 mg (2.87 mmol) of compound 3 was weighed into a flask, dissolved by adding 20 mL of water, and refluxed for 48 hours. After cooling to room temperature, water is removed on a rotary evaporator. The residue was purified by silica gel column chromatography (ethyl acetate:methanol=10:1) to obtain 210 mg (57%) of compound 6.
例8:4-クロロアセトキシ-2-クロロアセトキシメチル-2-シクロペンテン-1-オン(化合物7)の合成Example 8: Synthesis of 4-chloroacetoxy-2-chloroacetoxymethyl-2-cyclopenten-1-one (compound 7)
Figure JPOXMLDOC01-appb-C000081
Figure JPOXMLDOC01-appb-C000081
 化合物6 7.1g(55mmol)をTHF80mLに溶解しピリジン9mL(112mmol)を加え氷冷した。ここへクロロアセチルクロリド9mL(113mmol)9mLのTHF20mL溶液を1時間かけて滴下した。次に、室温で1時間撹拌した後水を加えて反応を停止した。酢酸エチルで抽出し食塩水で洗浄した後無水硫酸マグネシウムを加えて乾燥した。次に、乾燥剤を濾過で除去し、濾液をロータリーエバポレータで減圧濃縮して、目的物を含む混合物を得た。次に、シリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=2:1~1:1)で精製し、化合物7 10.6g(69%)が淡黄色油状物質として得られた。また、ヘキサンおよび酢酸エチルから再結晶すると淡黄色結晶として得られた。 7.1 g (55 mmol) of compound 6 was dissolved in 80 mL of THF, 9 mL (112 mmol) of pyridine was added, and the solution was ice-cooled. A solution of 9 mL (113 mmol) of chloroacetyl chloride in 20 mL of THF was added dropwise thereto over 1 hour. Next, after stirring at room temperature for 1 hour, water was added to stop the reaction. The extract was extracted with ethyl acetate, washed with brine, and dried over anhydrous magnesium sulfate. Next, the drying agent was removed by filtration, and the filtrate was concentrated under reduced pressure using a rotary evaporator to obtain a mixture containing the desired product. Then, it was purified by silica gel column chromatography (hexane:ethyl acetate=2:1-1:1) to obtain 10.6 g (69%) of compound 7 as a pale yellow oil. It was also recrystallized from hexane and ethyl acetate to give pale yellow crystals.
化合物7
mp:63°C
H NMR(CDCl)δ2.50(dd,1H,J=18.6,2.2Hz),2.98(dd,1H,J=18.6,5.8Hz),4.10(s,2H),4.13(s,2H),4.94(t,2H,J=1.6Hz),5.90-5.93(m,1H),7.44-7.46(m,1H).
13C NMR(CDCl)δ40.7,40.5,41.1,59.0,71.8,144.1,152.9,166.7,166.9,201.5.
compound 7
mp: 63°C
1 H NMR (CDCl 3 ) δ 2.50 (dd, 1H, J = 18.6, 2.2 Hz), 2.98 (dd, 1H, J = 18.6, 5.8 Hz), 4.10 (s , 2H), 4.13 (s, 2H), 4.94 (t, 2H, J = 1.6Hz), 5.90-5.93 (m, 1H), 7.44-7.46 (m , 1H).
13 C NMR (CDCl 3 ) δ 40.7, 40.5, 41.1, 59.0, 71.8, 144.1, 152.9, 166.7, 166.9, 201.5.
例9:4-クロロアセトキシ-2-(3-トシル-3-アザペンタンジイル)アミノメチル-2-シクロペンテン-1-オン(化合物rac-5)の合成Example 9: Synthesis of 4-chloroacetoxy-2-(3-tosyl-3-azapentanediyl)aminomethyl-2-cyclopenten-1-one (compound rac-5)
Figure JPOXMLDOC01-appb-C000082
Figure JPOXMLDOC01-appb-C000082
 化合物7 1.7g(6.0mmol)1.7gをTHF10mLに溶解し氷冷した。ここへN-トシルピペラジン1.5g(6.2mmol)を加えたのち室温で5時間撹拌した。次に、濾液をロータリーエバポレータで減圧濃縮した後、シリカゲルカラムクロマトグラフィー(酢酸エチル)で精製したところ、化合物rac-5 1.8g(70%)が淡黄色油状物質として得られた。 1.7 g (6.0 mmol) of compound 7 was dissolved in 10 mL of THF and cooled with ice. After adding 1.5 g (6.2 mmol) of N-tosylpiperazine thereto, the mixture was stirred at room temperature for 5 hours. Next, the filtrate was concentrated under reduced pressure using a rotary evaporator and purified by silica gel column chromatography (ethyl acetate) to obtain 1.8 g (70%) of compound rac-5 as a pale yellow oil.
化合物rac-5
H NMR(CDCl)δ2.43(1H,dd,J=18.8,2.6Hz),2.44(3H,s),2.64(4H,br.t,J=5.0Hz),2.90(1H,dd,J=48.8,6.4Hz),3.02(4H,br),3.18(2H,s),4.07(2H,s),5.84-5.85(1H,m),7.27(s,1H),7.34(2H,d,J=8.0Hz),7.63(2H,d,J=8.0Hz).
13C NMR(CDCl)δ21.0,40.4,40.8,45.5,51.2,51.7,71.6,127.3,129.3,131.6,143.4,145.4,153.0,166.5,202.9.
Compound rac-5
1 H NMR (CDCl 3 ) δ 2.43 (1H, dd, J = 18.8, 2.6 Hz), 2.44 (3H, s), 2.64 (4H, br.t, J = 5.0 Hz ), 2.90 (1H, dd, J=48.8, 6.4 Hz), 3.02 (4H, br), 3.18 (2H, s), 4.07 (2H, s), 5. 84-5.85 (1H, m), 7.27 (s, 1H), 7.34 (2H, d, J=8.0 Hz), 7.63 (2H, d, J=8.0 Hz).
13C NMR ( CDCl3 ) δ 21.0, 40.4, 40.8, 45.5, 51.2, 51.7, 71.6, 127.3, 129.3, 131.6, 143.4 , 145.4, 153.0, 166.5, 202.9.
例10:(4R)-4-ヒドロキシ-2-(3-トシル-3-アザペンタンジイル)アミノメチル-2-シクロペンテン-1-オン(化合物(4R)-4)および(4S)-4-クロロアセトキシ-2-(3-トシル-3-アザペンタンジイル)アミノメチル-2-シクロペンテン-1-オン(化合物(4S)-5)の合成Example 10: (4R)-4-hydroxy-2-(3-tosyl-3-azapentanediyl)aminomethyl-2-cyclopenten-1-one (compound (4R)-4) and (4S)-4-chloro Synthesis of acetoxy-2-(3-tosyl-3-azapentanediyl)aminomethyl-2-cyclopenten-1-one (compound (4S)-5)
Figure JPOXMLDOC01-appb-C000083
Figure JPOXMLDOC01-appb-C000083
 化合物rac-5 2.7g(6.3mmol)をアセトン80mLに溶解した。ここへ0.1Mリン酸緩衝液(pH7)80mLおよびリパーゼPS(アマノ製)800mgを加え室温で12時間撹拌した。反応後の懸濁液を、セライトを濾過助剤として減圧濾過しアセトンで洗い込んだ。濾液をロータリーエバポレータで減圧濃縮した後、残留物を酢酸エチルで抽出し無水硫酸マグネシウムを加えて乾燥した。乾燥剤を濾過で除去し、濾液をロータリーエバポレータで減圧濃縮したところ、目的物を含む混合物を得た。シリカゲルカラムクロマトグラフィーで精製すると化合物(4S)-5(酢酸エチル)0.9g(収率34%)が淡黄色油状物質として、化合物(4R)-4(酢酸エチル:メタノール=10:1)1.0g(収率40%、鏡像異性体過剰率87.4%ee)が無色結晶(mp:204℃)として得られた。 2.7 g (6.3 mmol) of compound rac-5 was dissolved in 80 mL of acetone. 80 mL of 0.1 M phosphate buffer (pH 7) and 800 mg of lipase PS (manufactured by Amano) were added thereto and stirred at room temperature for 12 hours. The suspension after the reaction was filtered under reduced pressure using celite as a filter aid and washed with acetone. After the filtrate was concentrated under reduced pressure using a rotary evaporator, the residue was extracted with ethyl acetate and dried over anhydrous magnesium sulfate. The drying agent was removed by filtration, and the filtrate was concentrated under reduced pressure using a rotary evaporator to obtain a mixture containing the desired product. When purified by silica gel column chromatography, compound (4S)-5 (ethyl acetate) 0.9 g (yield 34%) was obtained as a pale yellow oily substance, compound (4R)-4 (ethyl acetate:methanol=10:1)1 0 g (40% yield, enantiomeric excess 87.4% ee) was obtained as colorless crystals (mp: 204° C.).
例11:(4S)-4-クロロアセトキシ-2-(3-トシル-3-アザペンタンジイル)アミノメチル-2-シクロペンテン-1-オン(化合物(4S)-5)の加溶媒分解  
Figure JPOXMLDOC01-appb-C000084
Example 11: Solvolysis of (4S)-4-chloroacetoxy-2-(3-tosyl-3-azapentanediyl)aminomethyl-2-cyclopenten-1-one (compound (4S)-5)
Figure JPOXMLDOC01-appb-C000084
 例10で得られた化合物(4S)-5 900mg(2.1mmol)をメタノール20mLに溶解しトリエチルアミン2mLを加え室温で5時間撹拌した。懸濁液を吸引濾過しメタノールで洗浄すると化合物(4S)-4 423mg(収率57%、鏡像異性体過剰率88.6%ee)が無色結晶(mp:204℃)として得られた。 900 mg (2.1 mmol) of compound (4S)-5 obtained in Example 10 was dissolved in 20 mL of methanol, 2 mL of triethylamine was added, and the mixture was stirred at room temperature for 5 hours. The suspension was suction filtered and washed with methanol to give 423 mg of compound (4S)-4 (yield 57%, enantiomeric excess 88.6% ee) as colorless crystals (mp: 204°C).
参考例1:(4S)-4-ヒドロキシ-2-(3-トシル-3-アザペンタンジイル)アミノメチル-2-シクロペンテン-1-オン(化合物(4S)-4)の合成Reference Example 1: Synthesis of (4S)-4-hydroxy-2-(3-tosyl-3-azapentanediyl)aminomethyl-2-cyclopenten-1-one (compound (4S)-4)
Figure JPOXMLDOC01-appb-C000085
Figure JPOXMLDOC01-appb-C000085
 文献(Tetrahedron Letters,60,1375-1378(2019))に従い、合成した、絶対配置の確定した化合物9(99.9%ee)500mg(2.1mmol)をメタノール5mLに溶解しAmberlyst15 10mgを加えて室温で14時間撹拌した。吸引濾過によりイオン交換樹脂を除去し、濾液をロータリーエバポレータで濃縮し化合物(4S)-6とした。これをTHF10mLに溶解しピリジン500mL(6.4mmol)を加え氷冷した。ここへクロロアセチルクロリド500L(6.3mmol)を加え室温で1時間撹拌した後水を加えて反応を停止した。酢酸エチルで抽出し食塩水で洗浄した後無水硫酸マグネシウムを加えて乾燥した。乾燥剤を濾過で除去し濾液をロータリーエバポレータで減圧濃縮したところ目的物を含む混合物を得た。シリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=2:1~1:1)で精製すると化合物(4S)-7 318mgが淡黄色油状物質として得られた。これをTHF10mLに溶解しピペラジン550mg(2.3mmol)を加え室温で撹拌した後、メタノール10mLおよびトリエチルアミン2mLを加え室温で14時間撹拌した。反応液をロータリーエバポレータで濃縮し、残留物をシリカゲルカラムクロマトグラフィー(酢酸エチル:メタノール=10:1)で精製すると化合物(4S)-4 235mg(33%)が結晶として得られた。メタノールから再結晶すると無色結晶176mgが得られた。HPLCで鏡像異性体のピークは検出されず、例11で得られた化合物と保持時間が一致した。
mp:204℃
According to the literature (Tetrahedron Letters, 60, 1375-1378 (2019)), 500 mg (2.1 mmol) of compound 9 (99.9% ee) with a defined absolute configuration synthesized according to the literature was dissolved in 5 mL of methanol, and 10 mg of Amberlyst 15 was added. Stir at room temperature for 14 hours. The ion exchange resin was removed by suction filtration, and the filtrate was concentrated by a rotary evaporator to obtain compound (4S)-6. This was dissolved in 10 mL of THF, 500 mL (6.4 mmol) of pyridine was added, and the solution was ice-cooled. 500 L (6.3 mmol) of chloroacetyl chloride was added thereto, and the mixture was stirred at room temperature for 1 hour, and then water was added to terminate the reaction. The extract was extracted with ethyl acetate, washed with brine, and dried over anhydrous magnesium sulfate. The drying agent was removed by filtration, and the filtrate was concentrated under reduced pressure using a rotary evaporator to obtain a mixture containing the desired product. Purification by silica gel column chromatography (hexane:ethyl acetate=2:1-1:1) gave 318 mg of compound (4S)-7 as a pale yellow oil. After dissolving this in 10 mL of THF and adding 550 mg (2.3 mmol) of piperazine and stirring at room temperature, 10 mL of methanol and 2 mL of triethylamine were added and the mixture was stirred at room temperature for 14 hours. The reaction solution was concentrated by a rotary evaporator, and the residue was purified by silica gel column chromatography (ethyl acetate:methanol=10:1) to obtain 235 mg (33%) of compound (4S)-4 as crystals. Recrystallization from methanol gave 176 mg of colorless crystals. No enantiomeric peak was detected by HPLC and the retention time was consistent with the compound obtained in Example 11.
mp: 204°C
例12(4R)-4-クロロアセトキシ-2-(3-トシル-3-アザペンタンジイル)アミノメチル-2-シクロペンテン-1-オン(化合物(4R)-5)の合成Example 12 Synthesis of (4R)-4-chloroacetoxy-2-(3-tosyl-3-azapentanediyl)aminomethyl-2-cyclopenten-1-one (compound (4R)-5)
Figure JPOXMLDOC01-appb-C000086
Figure JPOXMLDOC01-appb-C000086
 例11で得た化合物(4S)-4(鏡像異性体過剰率88.6%ee)423mg(1.21mmol)、トリフェニルホスフィン479mg(1.83mmol) およびクロロ酢酸173mg(1.83mmol)をTHF20mLに溶解し氷冷した。アゾジカルボン酸ジエチルのトルエン溶液(2.2M、830μL)を0℃で加え30分撹拌した後室温で3時間撹拌した。反応液をロータリーエバポレータで濃縮し、残留物をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=2:1)で精製すると化合物(4R)-5 510mg(収率99%)が褐色粘性物質として得られた。 423 mg (1.21 mmol) of compound (4S)-4 (enantiomeric excess 88.6% ee) obtained in Example 11, 479 mg (1.83 mmol) of triphenylphosphine and 173 mg (1.83 mmol) of chloroacetic acid were dissolved in 20 mL of THF. and cooled with ice. A toluene solution (2.2 M, 830 μL) of diethyl azodicarboxylate was added at 0° C., stirred for 30 minutes, and then stirred at room temperature for 3 hours. The reaction solution was concentrated with a rotary evaporator, and the residue was purified by silica gel column chromatography (hexane:ethyl acetate=2:1) to give 510 mg (yield 99%) of compound (4R)-5 as a brown viscous substance. .
例13:(4R)-4-ヒドロキシ-2-(3-トシル-3-アザペンタンジイル)アミノメチル-2-シクロペンテン-1-オン(化合物(4R)-4)の合成Example 13: Synthesis of (4R)-4-hydroxy-2-(3-tosyl-3-azapentanediyl)aminomethyl-2-cyclopenten-1-one (Compound (4R)-4)
Figure JPOXMLDOC01-appb-C000087
Figure JPOXMLDOC01-appb-C000087
 例12で得た化合物(4R)-5 510mg(1.19mmol)をアセトン18mLに溶解した。ここへ0.1Mリン酸緩衝液(pH7)18mLおよびリパーゼPS(アマノ製)180mgを加え室温で8時間撹拌した。反応後の懸濁液を、セライトを濾過助剤として減圧濾過しアセトンで洗い込んだ。濾液をロータリーエバポレータで減圧濃縮した後、残留物を酢酸エチルで抽出し無水硫酸マグネシウムを加えて乾燥した。乾燥剤を濾過で除去し濾液をロータリーエバポレータで減圧濃縮したところ目的物を含む混合物を得た。シリカゲルカラムクロマトグラフィーで精製すると化合物(4R)-5(酢酸エチル)66mg(収率13%)が淡黄色油状物質として、化合物(4R)-4(酢酸エチル:メタノール=10:1)252mg(収率60%、鏡像異性体過剰率99.6%ee)が無色結晶(mp:204℃)として得られた。 510 mg (1.19 mmol) of compound (4R)-5 obtained in Example 12 was dissolved in 18 mL of acetone. 18 mL of 0.1 M phosphate buffer (pH 7) and 180 mg of lipase PS (manufactured by Amano) were added thereto and stirred at room temperature for 8 hours. The suspension after the reaction was filtered under reduced pressure using celite as a filter aid and washed with acetone. After the filtrate was concentrated under reduced pressure using a rotary evaporator, the residue was extracted with ethyl acetate and dried over anhydrous magnesium sulfate. The drying agent was removed by filtration, and the filtrate was concentrated under reduced pressure using a rotary evaporator to obtain a mixture containing the desired product. Purification by silica gel column chromatography yielded 66 mg (yield 13%) of compound (4R)-5 (ethyl acetate) as a pale yellow oily substance, and 252 mg (yield) of compound (4R)-4 (ethyl acetate:methanol=10:1). yield 60%, enantiomeric excess 99.6% ee) were obtained as colorless crystals (mp: 204°C).
例14:(4R)-4-(tert-ブチルジメチルシリル)オキシ-2-(3-トシル-3-アザペンタンジイル)アミノメチル-2-シクロペンテノン(化合物(4R)-8)の合成Example 14: Synthesis of (4R)-4-(tert-butyldimethylsilyl)oxy-2-(3-tosyl-3-azapentanediyl)aminomethyl-2-cyclopentenone (compound (4R)-8)
Figure JPOXMLDOC01-appb-C000088
Figure JPOXMLDOC01-appb-C000088
 化合物(4R)-4(鏡像異性体過剰率88.6%ee)340mg(0.97mmol)をDMF5mLに溶解し氷冷した。ここへトリエチルアミン300μLおよびtert-ブチルジメチルシリルクロリド200mg(1.33mmol)を加えて室温で5時間撹拌した。水を加えて反応を停止し酢酸エチルで抽出し食塩水で洗浄した後無水硫酸マグネシウムを加えて乾燥した。乾燥剤を濾過で除去し濾液をロータリーエバポレータで減圧濃縮すると目的物を含む混合物を得た。シリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=2:1)で精製すると目的物(鏡像異性体過剰率88.6%ee)330mg(74%)が淡黄色結晶として得られた。結晶全量にヘキサン20mLおよび酢酸エチル2mLを加え還流し溶解する。室温まで冷却した後、析出した結晶を吸引濾過すると(4R)-8 240mg(収率73%)が得られた。HPLCで鏡像異性体は検出されなかった。
 
mp:108℃
H NMR(CDCl)δ0.10(s,3H),0.11(s,3H),0.89(s,9H),2.27(dd,1H,J=18.2,2.2Hz),2.44(s,3H),2.52-2.54(br,m,4H),2.74(dd,1H,J=18.2,6.0Hz),3.03(brs,4H),3.14(s,2H),4.88-4.89(m,1H),7.16(s,1H),7.32(d,2H,J=8.4Hz),7.63(d,2H,J=8.4Hz).
13C NMR(CDCl)δ4.7,18.1,21.5,25.7,43.5,45.9,51.6,52.2,68.9,127.9,129.6,132.4,142.3,143.7,159.8,205.4.
340 mg (0.97 mmol) of compound (4R)-4 (enantiomeric excess 88.6% ee) was dissolved in 5 mL of DMF and cooled with ice. 300 μL of triethylamine and 200 mg (1.33 mmol) of tert-butyldimethylsilyl chloride were added thereto and stirred at room temperature for 5 hours. Water was added to stop the reaction, and the mixture was extracted with ethyl acetate, washed with brine, and dried over anhydrous magnesium sulfate. The drying agent was removed by filtration, and the filtrate was concentrated under reduced pressure using a rotary evaporator to obtain a mixture containing the desired product. Purification by silica gel column chromatography (hexane:ethyl acetate=2:1) gave 330 mg (74%) of the desired product (enantiomeric excess 88.6% ee) as pale yellow crystals. 20 mL of hexane and 2 mL of ethyl acetate are added to the total amount of crystals and dissolved by refluxing. After cooling to room temperature, the precipitated crystals were filtered by suction to obtain 240 mg of (4R)-8 (yield 73%). No enantiomer was detected by HPLC.

mp: 108°C
1 H NMR (CDCl 3 ) δ 0.10 (s, 3H), 0.11 (s, 3H), 0.89 (s, 9H), 2.27 (dd, 1H, J = 18.2, 2. 2Hz), 2.44 (s, 3H), 2.52-2.54 (br, m, 4H), 2.74 (dd, 1H, J = 18.2, 6.0Hz), 3.03 ( brs, 4H), 3.14 (s, 2H), 4.88-4.89 (m, 1H), 7.16 (s, 1H), 7.32 (d, 2H, J=8.4Hz) , 7.63(d,2H,J=8.4Hz).
13C NMR ( CDCl3 ) δ 4.7, 18.1, 21.5, 25.7, 43.5, 45.9, 51.6, 52.2, 68.9, 127.9, 129.6 , 132.4, 142.3, 143.7, 159.8, 205.4.

Claims (27)

  1.  下記一般式(I)で表される化合物。
    Figure JPOXMLDOC01-appb-C000001
    (一般式(I)中、Rは、置換基を有していてもよい脂肪族炭化水素基、または置換基を有していてもよい、脂肪族炭化水素基および芳香族炭化水素環基を組み合わせて形成される官能基を示す。)
    A compound represented by the following general formula (I).
    Figure JPOXMLDOC01-appb-C000001
    (In general formula (I), R 1 is an optionally substituted aliphatic hydrocarbon group, or an optionally substituted aliphatic hydrocarbon group and aromatic hydrocarbon ring group indicates a functional group formed by combining
  2.  Rが、C~Cアルキル基である、請求項1に記載の化合物。 A compound according to claim 1, wherein R 1 is a C 1 -C 6 alkyl group.
  3.  下記一般式(II)で表される化合物またはその光学活性体。
    Figure JPOXMLDOC01-appb-C000002
    (一般式(II)中、RおよびRは、それらが結合している窒素原子とともに環構造を形成する。)
    A compound represented by the following general formula (II) or an optically active form thereof.
    Figure JPOXMLDOC01-appb-C000002
    (In general formula (II), R 2 and R 3 form a ring structure together with the nitrogen atom to which they are attached.)
  4.  下記一般式(III)で表される化合物またはその光学活性体。
    Figure JPOXMLDOC01-appb-C000003
    (一般式(III)中、RおよびRは、それらが結合している窒素原子とともに環構造を形成し、
     Rは、置換基を有していてもよい脂肪族炭化水素基、または置換基を有していてもよい芳香族炭化水素環基を示す。)
    A compound represented by the following general formula (III) or an optically active form thereof.
    Figure JPOXMLDOC01-appb-C000003
    (In general formula (III), R 2 and R 3 form a ring structure together with the nitrogen atom to which they are attached,
    R 4 represents an optionally substituted aliphatic hydrocarbon group or an optionally substituted aromatic hydrocarbon ring group. )
  5.  Rが、
     CH(3-n)(ただし、Xは、F、ClまたはBrであり、nは、1~3の整数である)、または
     CHOY(ただし、Yは、アルキル基、アリール基、またはアラルキル基である)である、請求項4に記載の化合物。
    R4 is
    CH (3-n) X n (where X is F, Cl or Br and n is an integer of 1 to 3), or CH 2 OY (where Y is an alkyl group, an aryl group, or an aralkyl group).
  6.  Rが、CHClである、請求項5に記載の化合物。 6. The compound of claim 5, wherein R4 is CH2Cl .
  7.  下記一般式(IV)で表される化合物またはその光学活性体。
    Figure JPOXMLDOC01-appb-C000004
    (一般式(IV)中、RおよびRは、それらが結合している窒素原子とともに環構造を形成し、
     Wは、-SiR基、置換されていてもよいベンジル基またはアセタール型保護基を表し、
     R5、およびRは、それぞれ独立して、置換基を有していてもよい脂肪族炭化水素基、置換基を有していてもよい芳香族炭化水素環基、または置換基を有していてもよい、脂肪族炭化水素基および芳香族炭化水素環基を組み合わせて形成される官能基を示す。)
    A compound represented by the following general formula (IV) or an optically active substance thereof.
    Figure JPOXMLDOC01-appb-C000004
    (In general formula (IV), R 2 and R 3 form a ring structure together with the nitrogen atom to which they are attached,
    W represents a —SiR 5 R 6 R 7 group, an optionally substituted benzyl group or an acetal-type protecting group;
    R 5, R 6 and R 7 each independently represent an optionally substituted aliphatic hydrocarbon group, an optionally substituted aromatic hydrocarbon cyclic group, or a substituent A functional group formed by combining an aliphatic hydrocarbon group and an aromatic hydrocarbon ring group, which may be present. )
  8.  R5、およびRが、それぞれ独立して、C~Cアルキル基、C~C10アリール基またはC~C14アリールアルキル基を表す、請求項7に記載の化合物。 A compound according to claim 7, wherein R 5 , R 6 and R 7 each independently represent a C 1 -C 6 alkyl group, a C 6 -C 10 aryl group or a C 7 -C 14 arylalkyl group.
  9.  RおよびRが一緒になって3-トシル-3-アザペンタンジイル基を表す、請求項8に記載の化合物。 9. A compound according to claim 8, wherein R 2 and R 3 together represent a 3-tosyl-3-azapentanediyl group.
  10.  請求項1~9のいずれか一項に記載の化合物からなる、プロスタグランジンまたはその光学活性体を製造するための中間体。 An intermediate for producing a prostaglandin or an optically active substance thereof, comprising the compound according to any one of claims 1 to 9.
  11.  前記プロスタグランジンまたはその光学活性体が、下記式(A)で表されるものである、請求項10に記載の中間体。
    Figure JPOXMLDOC01-appb-C000005
    11. The intermediate according to claim 10, wherein said prostaglandin or its optically active substance is represented by the following formula (A).
    Figure JPOXMLDOC01-appb-C000005
  12.  水存在下、一般式(b)で表される化合物を加熱還流して、一般式(I)で表される化合物を得る工程を含んでなる、一般式(I)で表される化合物を製造する方法。
    Figure JPOXMLDOC01-appb-C000006
    (一般式(b)および(I)中、Rは、置換基を有していてもよい脂肪族炭化水素基、または置換基を有していてもよい、脂肪族炭化水素基および芳香族炭化水素環基を組み合わせて形成される官能基を示す。)
    Manufacture of a compound represented by general formula (I), comprising a step of obtaining a compound represented by general formula (I) by heating under reflux a compound represented by general formula (b) in the presence of water how to.
    Figure JPOXMLDOC01-appb-C000006
    (In the general formulas (b) and (I), R 1 is an optionally substituted aliphatic hydrocarbon group, or an optionally substituted aliphatic hydrocarbon group and an aromatic Indicates a functional group formed by combining hydrocarbon ring groups.)
  13.  水存在下、一般式(I)で表される化合物を加熱還流して、一般式(V)で表される化合物を得る工程を含んでなる、一般式(V)で表される化合物を製造する方法。
    Figure JPOXMLDOC01-appb-C000007
    (一般式(I)中、Rは、置換基を有していてもよい脂肪族炭化水素基、または置換基を有していてもよい、脂肪族炭化水素基および芳香族炭化水素環基を組み合わせて形成される官能基を示す。)
    Manufacture of a compound represented by general formula (V), comprising a step of obtaining a compound represented by general formula (V) by heating under reflux a compound represented by general formula (I) in the presence of water how to.
    Figure JPOXMLDOC01-appb-C000007
    (In general formula (I), R 1 is an optionally substituted aliphatic hydrocarbon group, or an optionally substituted aliphatic hydrocarbon group and aromatic hydrocarbon ring group indicates a functional group formed by combining
  14.  一般式(I)で表される化合物と一般式(c)で表される化合物を反応させて、一般式(II)で表される化合物を得る工程を含んでなる、一般式(II)で表される化合物を製造する方法。
    Figure JPOXMLDOC01-appb-C000008
    (一般式(I)中、Rは、置換基を有していてもよい脂肪族炭化水素基、または置換基を有していてもよい、脂肪族炭化水素基および芳香族炭化水素環基を組み合わせて形成される官能基を示し、
     一般式(c)および(II)中、RおよびRは、それらが結合している窒素原子とともに環構造を形成する。)
    of general formula (II), comprising a step of reacting a compound of general formula (I) with a compound of general formula (c) to obtain a compound of general formula (II); Methods of making the represented compounds.
    Figure JPOXMLDOC01-appb-C000008
    (In general formula (I), R 1 is an optionally substituted aliphatic hydrocarbon group, or an optionally substituted aliphatic hydrocarbon group and aromatic hydrocarbon ring group represents a functional group formed by combining
    In general formulas (c) and (II), R2 and R3 form a ring structure together with the nitrogen atom to which they are attached. )
  15.  一般式(II)で表される化合物と一般式(d)で表される化合物を反応させて、一般式(III)で表される化合物を得る工程を含んでなる、一般式(III)で表される化合物を製造する方法。
    Figure JPOXMLDOC01-appb-C000009
    (一般式(II)および(III)中、RおよびRは、互いに結合してそれらが結合している窒素原子とともに環構造を形成し、
     一般式(d)および(III)中、Rは、置換基を有していてもよい脂肪族炭化水素基、置換基を有していてもよい芳香族炭化水素環基、または置換基を有していてもよい、脂肪族炭化水素基および芳香族炭化水素環基を組み合わせて形成される官能基を示し、
     一般式(d)中、Xは、F、Cl、BrまたはIである。)
    In general formula (III), comprising a step of reacting a compound represented by general formula (II) with a compound represented by general formula (d) to obtain a compound represented by general formula (III) Methods of making the represented compounds.
    Figure JPOXMLDOC01-appb-C000009
    (In general formulas (II) and (III), R 2 and R 3 are bonded to each other to form a ring structure together with the nitrogen atom to which they are bonded,
    In general formulas (d) and (III), R 4 is an optionally substituted aliphatic hydrocarbon group, an optionally substituted aromatic hydrocarbon cyclic group, or a substituent represents a functional group formed by combining an aliphatic hydrocarbon group and an aromatic hydrocarbon ring group, which may have
    X is F, Cl, Br or I in general formula (d). )
  16.  塩基性条件下、式(V)で表される化合物と一般式(d)で表される化合物を反応させて、一般式(VI)で表される化合物を得る工程を含んでなる、一般式(VI)で表される化合物を製造する方法。
    Figure JPOXMLDOC01-appb-C000010
    (一般式(d)および(VI)中、Rは、置換基を有していてもよい脂肪族炭化水素基、置換基を有していてもよい芳香族炭化水素環基、または置換基を有していてもよい、脂肪族炭化水素基および芳香族炭化水素環基を組み合わせて形成される官能基を示し、
     一般式(d)中、Xは、F、Cl、BrまたはIである。)
    reacting a compound represented by formula (V) with a compound represented by general formula (d) under basic conditions to obtain a compound represented by general formula (VI); A method for producing a compound represented by (VI).
    Figure JPOXMLDOC01-appb-C000010
    (In general formulas (d) and (VI), R 4 is an optionally substituted aliphatic hydrocarbon group, an optionally substituted aromatic hydrocarbon ring group, or a substituent A functional group formed by combining an aliphatic hydrocarbon group and an aromatic hydrocarbon ring group, which may have
    X is F, Cl, Br or I in general formula (d). )
  17.  塩基性条件下、式(VI)で表される化合物と一般式(c)で表される化合物を反応させて、一般式(III)で表される化合物を得る工程を含んでなる、一般式(III)で表される化合物を製造する方法。
    Figure JPOXMLDOC01-appb-C000011
    (一般式(c)および(III)中、RおよびRは、それらが結合している窒素原子とともに環構造を形成し、
     一般式(VI)および(III)中、Rは、置換基を有していてもよい脂肪族炭化水素基、置換基を有していてもよい芳香族炭化水素環基、または置換基を有していてもよい、脂肪族炭化水素基および芳香族炭化水素環基を組み合わせて形成される官能基を示す。)
    reacting a compound of formula (VI) with a compound of general formula (c) under basic conditions to obtain a compound of general formula (III); A method for producing a compound represented by (III).
    Figure JPOXMLDOC01-appb-C000011
    (In general formulas (c) and (III), R 2 and R 3 form a ring structure together with the nitrogen atom to which they are attached,
    In general formulas (VI) and (III), R 4 is an optionally substituted aliphatic hydrocarbon group, an optionally substituted aromatic hydrocarbon cyclic group, or a substituent A functional group formed by combining an aliphatic hydrocarbon group and an aromatic hydrocarbon ring group, which may be present. )
  18.  一般式(III)で表される化合物を、加水分解酵素を用いて光学分割して、一般式(II)で表される化合物の光学活性体(R体)および一般式(III)で表される化合物の光学活性体(S体)を得る工程を含んでなる、一般式(II)で表される化合物の光学活性体(R体)を製造する方法。
    Figure JPOXMLDOC01-appb-C000012
    (一般式(II)および(III)中、RおよびRは、それらが結合している窒素原子とともに環構造を形成し、
     一般式(III)中、Rは、置換基を有していてもよい脂肪族炭化水素基、置換基を有していてもよい芳香族炭化水素環基、または置換基を有していてもよい、脂肪族炭化水素基および芳香族炭化水素環基を組み合わせて形成される官能基を示す。)
    The compound represented by the general formula (III) is optically resolved using a hydrolase to obtain the optically active form (R form) of the compound represented by the general formula (II) and the compound represented by the general formula (III). A method for producing an optically active form (R form) of a compound represented by general formula (II), comprising a step of obtaining an optically active form (S form) of the compound represented by formula (II).
    Figure JPOXMLDOC01-appb-C000012
    (In general formulas (II) and (III), R 2 and R 3 form a ring structure together with the nitrogen atom to which they are attached,
    In general formula (III), R 4 is an optionally substituted aliphatic hydrocarbon group, an optionally substituted aromatic hydrocarbon ring group, or a substituted A functional group formed by combining an aliphatic hydrocarbon group and an aromatic hydrocarbon ring group. )
  19.  前記加水分解酵素が、リパーゼである請求項18に記載の方法。 The method according to claim 18, wherein the hydrolase is lipase.
  20.  一般式(III)で表される化合物の光学活性体(S体)を加溶媒分解して、一般式(II)で表される化合物の光学活性体(S体)を得る工程を含んでなる、一般式(II)で表される化合物の光学活性体(S体)を製造する方法。
    Figure JPOXMLDOC01-appb-C000013
    (一般式(II)および(III)中、RおよびRは、それらが結合している窒素原子とともに環構造を形成し、
     一般式(III)中、Rは、置換基を有していてもよい脂肪族炭化水素基、置換基を有していてもよい芳香族炭化水素環基、または置換基を有していてもよい、脂肪族炭化水素基および芳香族炭化水素環基を組み合わせて形成される官能基を示す。)
    A step of solvolyzing an optically active form (S form) of the compound represented by general formula (III) to obtain an optically active form (S form) of the compound represented by general formula (II). , a method for producing an optically active form (S form) of a compound represented by general formula (II).
    Figure JPOXMLDOC01-appb-C000013
    (In general formulas (II) and (III), R 2 and R 3 form a ring structure together with the nitrogen atom to which they are attached,
    In general formula (III), R 4 is an optionally substituted aliphatic hydrocarbon group, an optionally substituted aromatic hydrocarbon ring group, or a substituted A functional group formed by combining an aliphatic hydrocarbon group and an aromatic hydrocarbon ring group. )
  21.  前記加溶媒分解が、メタノールおよび3級アミンを用いた加溶媒分解である、請求項20に記載の方法。 The method according to claim 20, wherein the solvolysis is solvolysis using methanol and a tertiary amine.
  22.  一般式(II)で表される化合物の光学活性体(S体)を、光延反応を介して一般式(II)で表される化合物の光学活性体(R体)に変換する工程を含んでなる、一般式(II)で表される化合物の光学活性体(R体)を製造する方法。
    Figure JPOXMLDOC01-appb-C000014
    (一般式(II)中、RおよびRは、それらが結合している窒素原子とともに環構造を形成する。)
    A step of converting an optically active form (S form) of the compound represented by general formula (II) into an optically active form (R form) of the compound represented by general formula (II) via a Mitsunobu reaction. A method for producing an optically active form (R form) of a compound represented by general formula (II).
    Figure JPOXMLDOC01-appb-C000014
    (In general formula (II), R 2 and R 3 form a ring structure together with the nitrogen atom to which they are attached.)
  23.  一般式(II)で表される化合物の光学活性体(R体)と保護基導入剤とを反応させて、一般式(IV)で表される化合物の光学活性体(R体)を得る工程を含んでなる、一般式(IV)で表される化合物の光学活性体(R体)を製造する方法。
    Figure JPOXMLDOC01-appb-C000015
    (一般式(II)および(IV)中、RおよびRは、それらが結合している窒素原子とともに環構造を形成し、
     一般式(IV)中、Wは、-SiR基、置換されていてもよいベンジル基またはアセタール型保護基を表し、
     R、RおよびRは、それぞれ独立して、置換基を有していてもよい脂肪族炭化水素基、置換基を有していてもよい芳香族炭化水素環基、または置換基を有していてもよい、脂肪族炭化水素基および芳香族炭化水素環基を組み合わせて形成される官能基を示す。)
    A step of reacting an optically active form (R form) of a compound represented by general formula (II) with a protecting group-introducing agent to obtain an optically active form (R form) of a compound represented by general formula (IV) A method for producing an optically active form (R form) of a compound represented by general formula (IV), comprising:
    Figure JPOXMLDOC01-appb-C000015
    (In general formulas (II) and (IV), R 2 and R 3 form a ring structure together with the nitrogen atom to which they are attached,
    In general formula (IV), W represents a —SiR 5 R 6 R 7 group, an optionally substituted benzyl group or an acetal-type protecting group;
    R 5 , R 6 and R 7 each independently represent an optionally substituted aliphatic hydrocarbon group, an optionally substituted aromatic hydrocarbon cyclic group, or a substituent A functional group formed by combining an aliphatic hydrocarbon group and an aromatic hydrocarbon ring group, which may be present. )
  24.  プロスタグランジンまたはその光学活性体を製造するための、請求項12~23のいずれか一項に記載の方法。 The method according to any one of claims 12 to 23, for producing prostaglandin or its optically active form.
  25.  前記プロスタグランジンの光学活性体が、式(A)で表されるものである、請求項24に記載の方法。
    Figure JPOXMLDOC01-appb-C000016
    25. The method according to claim 24, wherein the optically active form of prostaglandin is represented by formula (A).
    Figure JPOXMLDOC01-appb-C000016
  26.  プロスタグランジンまたはその光学活性体を製造するための中間体としての、請求項1~9のいずれか一項に記載の、一般式(I)、(II)、(III)または(IV)で表される化合物またはその光学活性体の使用。 In the general formula (I), (II), (III) or (IV) according to any one of claims 1 to 9, as an intermediate for producing a prostaglandin or an optically active substance thereof Use of the represented compound or its optically active form.
  27.  前記プロスタグランジンの光学活性体が、式(A)で表されるものである、請求項26に記載の使用。
    Figure JPOXMLDOC01-appb-C000017
    The use according to claim 26, wherein the optically active form of prostaglandin is represented by formula (A).
    Figure JPOXMLDOC01-appb-C000017
PCT/JP2022/048119 2021-12-28 2022-12-27 Cyclopentenone derivative and method for producing same WO2023127855A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-215326 2021-12-28
JP2021215326 2021-12-28

Publications (1)

Publication Number Publication Date
WO2023127855A1 true WO2023127855A1 (en) 2023-07-06

Family

ID=86999015

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/048119 WO2023127855A1 (en) 2021-12-28 2022-12-27 Cyclopentenone derivative and method for producing same

Country Status (1)

Country Link
WO (1) WO2023127855A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999005091A1 (en) * 1997-07-25 1999-02-04 Nippon Kayaku Kabushiki Kaisha Novel compound having effect of promoting neuron differentiation
WO1999033794A1 (en) * 1997-12-25 1999-07-08 Ono Pharmaceutical Co., Ltd. φ-CYCLOALKYL-PROSTAGLANDIN E2 DERIVATIVES
WO2018220888A1 (en) * 2017-05-31 2018-12-06 国立大学法人東北大学 Pge1 core block derivative and production method therefor
WO2020059646A1 (en) * 2018-09-18 2020-03-26 国立大学法人東北大学 Optically-active cyclopentenone derivatives

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999005091A1 (en) * 1997-07-25 1999-02-04 Nippon Kayaku Kabushiki Kaisha Novel compound having effect of promoting neuron differentiation
WO1999033794A1 (en) * 1997-12-25 1999-07-08 Ono Pharmaceutical Co., Ltd. φ-CYCLOALKYL-PROSTAGLANDIN E2 DERIVATIVES
WO2018220888A1 (en) * 2017-05-31 2018-12-06 国立大学法人東北大学 Pge1 core block derivative and production method therefor
WO2018220730A1 (en) * 2017-05-31 2018-12-06 国立大学法人東北大学 Pge1 core block derivative and production method therefor
WO2020059646A1 (en) * 2018-09-18 2020-03-26 国立大学法人東北大学 Optically-active cyclopentenone derivatives

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
BARROS M TERESA, SANTOS ANTONIO G, GODINHO LICIO S, MAYCOCK CHRISTOPHER D: "A Flexible Synthesis of Some Polysubstituted Cyclopentanes From Quinic Acid", TETRAHEDRON LETTERS, vol. 35, no. 23, 1 January 1994 (1994-01-01), pages 3999 - 4002, XP093075295 *

Similar Documents

Publication Publication Date Title
US7884128B2 (en) Process for total synthesis of pladienolide B and pladienolide D
BR112014028969B1 (en) Improved production process for treprostinil and its derivatives
US4946999A (en) Novel intermediates for synthesis of trichostatic acid or trichostatin A, and processes for preparing trichostatic acid and trichostatin A
KR101641696B1 (en) Process for the preparation of naphthalen-2-yl-pyrazol-3-one intermediates useful in the synthesis of sigma receptor inhibitors
WO2023127855A1 (en) Cyclopentenone derivative and method for producing same
JP7325729B2 (en) optically active cyclopentenone derivatives
JP7109029B2 (en) PGE1 core block derivative and method for producing same
CN1204133C (en) 3-(1-hydroxy-amylene)-5-nitro-3H-benzfuran-2-one, its prepn. method and use
WO2023276983A1 (en) Synthesis intermediate for beraprost or optically active form thereof, and method for producing same
US8927237B2 (en) Method for producing acyloxypyranone compound, method for producing alkyne compound, and method for producing dihydrofuran compound
KR101529963B1 (en) Method for preparing everolimus and its intermediates
US20110275838A1 (en) Method for obtaining cinatrins c3 and c1
US20090281301A1 (en) Manufacturing Process of 2&#39; ,2&#39; - Difluoronucleoside and Intermediate
KR100457732B1 (en) The preparation of asymmetric furofuranelignan compound
EP1990334B1 (en) Usage of poly-3-hydroxyalkanoates in preparation of beta-lactam compounds
JP4391503B2 (en) Diene compound and method for producing the same
US5099033A (en) Process of making 2,5-diaryl tetrahydrofurans and analogs thereof useful as PAF antagonists
JP3655311B2 (en) Method for producing phthalide compound
CA2796240C (en) A process for the preparation of isoserine derivatives
FI78075B (en) FOERFARANDE OCH MELLANPRODUKT FOER FRAMSTAELLNING AV 2-HYDROXIMETYL-3-HYDROXI-6- (1-HYDROXI-2-TERT.-BUTYLAMINOETHYL) PYRIDIN ELLER PIRBUTEROL.
WO2018109872A1 (en) Cyclopentenone derivative and method for producing same
Gungarova et al. Synthesis of 2′-deoxynucleoside analogs from thioglycosides
AU2004200948A1 (en) Epothilon derivatives, method for the production and the use thereof as pharmaceuticals
PL164954B1 (en) Method of obtaining novel derivatives of 2-tetrahydrofurane
JP2001247584A (en) Sphingomyelin analog and method of producing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22916078

Country of ref document: EP

Kind code of ref document: A1