WO2023127815A1 - Toner for electrostatic image development - Google Patents

Toner for electrostatic image development Download PDF

Info

Publication number
WO2023127815A1
WO2023127815A1 PCT/JP2022/047963 JP2022047963W WO2023127815A1 WO 2023127815 A1 WO2023127815 A1 WO 2023127815A1 JP 2022047963 W JP2022047963 W JP 2022047963W WO 2023127815 A1 WO2023127815 A1 WO 2023127815A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin particles
toner
colored resin
crystalline material
electrostatic charge
Prior art date
Application number
PCT/JP2022/047963
Other languages
French (fr)
Japanese (ja)
Inventor
尊 千葉
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Publication of WO2023127815A1 publication Critical patent/WO2023127815A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/087Binders for toner particles
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/097Plasticisers; Charge controlling agents

Definitions

  • the present invention relates to an electrostatic charge image developing toner used for developing electrostatic latent images in electrophotography, electrostatic recording, electrostatic printing, and the like.
  • An image forming apparatus such as an electrophotographic apparatus, an electrostatic recording apparatus, and an electrostatic printing apparatus forms a desired image by developing an electrostatic latent image formed on a photoreceptor with a toner for developing an electrostatic image. This method is widely practiced and applied to copiers, printers, facsimiles, and multi-function machines.
  • the surface of a photoreceptor made of a photoconductive material is generally uniformly charged by various means, and then an electrostatic latent image is formed on the photoreceptor.
  • the electrostatic latent image is developed using toner (development process), and if necessary, the toner image is transferred to a recording material such as paper (transfer process), after which the toner is fixed to the recording material by heating or the like. (fixing step) to obtain a printed matter.
  • Patent Document 1 discloses a toner containing toner particles containing a binder resin and a crystalline material as a technique for achieving excellent low-temperature fixability and simultaneously suppressing gloss unevenness and edge high-temperature offset.
  • the onset temperature T (A) of the storage elastic modulus E′ obtained when the temperature is raised at 20 ° C./min and when the temperature is raised at 5 ° C./min and the onset temperature T (B) of the storage modulus E' obtained in satisfies the relationship T (A) - T (B) ⁇ 3.0 ° C., and the peak of the maximum endothermic peak by differential scanning calorimetry
  • a toner is proposed in which the temperature is 50.0 to 90.0° C. and the content of tetrahydrofuran-insoluble matter in the binder resin is in the range of 15 to 60 mass %.
  • the present invention has been made in view of such actual circumstances, and an object of the present invention is to provide excellent low-temperature fixability, excellent hot-offset resistance, fine-line reproducibility and blade cleaning performance in a well-balanced manner, and to provide a toner after standing at a high temperature. It is an object of the present invention to provide a method for producing a toner for developing an electrostatic charge image in which the occurrence of toner ejection is suppressed.
  • the inventors of the present invention conducted investigations and found that a toner for developing an electrostatic charge image containing colored resin particles containing a binder resin, a coloring agent, a charge control agent, and a crystalline material has an electrostatic charge image developing toner.
  • the colored resin particles constituting the toner for developing a charge image have a specific fine structure. found that the above object can be achieved by setting the total area ratio of the domains of the crystalline material and the number of domains of the crystalline material in the cross section of the colored resin particles to specific ranges, and completed the present invention. I came to let you.
  • a toner for electrostatic charge image development containing colored resin particles containing a binder resin, a coloring agent, a charge control agent, and a crystalline material,
  • the total area ratio of the domains of the crystalline material in the cross section of the colored resin particles is 10 to 30%
  • the colored resin Provided is an electrostatic charge image developing toner in which the average number of domains of the crystalline material present in the cross section of the particles is in the range of 10 to 40 per particle.
  • the average circularity of the domains of the crystalline material in the cross section of the colored resin particles when the cross section of the colored resin particles is observed with a backscattered electron image of a scanning electron microscope. is preferably 0.50 or less.
  • the length of the domains of the crystalline material in the cross section of the colored resin particles is equal to the length of the domains of the crystalline material.
  • the average diameter ratio is preferably 0.60 or less.
  • the content of the crystalline material is preferably 5.0 to 40.0 parts by mass with respect to 100 parts by mass of the binder resin.
  • the crystalline material is preferably an ester wax having a number average molecular weight (Mn) of 500-1550.
  • the colored resin particles further contain an additive having a polydiene structure.
  • the content of the additive having a polydiene structure is 0.5 to 20 parts by mass with respect to 100 parts by mass of the binder resin.
  • the binder resin is preferably a styrene-(meth)acrylate copolymer.
  • the electrostatic charge image developing toner of the present invention is preferably a positively charged toner.
  • the electrostatic charge image developing toner of the present invention is preferably prepared by a pulverization method or a suspension polymerization method.
  • an electrostatic charge image developing toner having excellent low-temperature fixability, excellent hot offset resistance, fine line reproducibility, and blade cleaning performance in a well-balanced manner, and suppressing the occurrence of toner ejection after being left at high temperature. Toner can be manufactured.
  • FIG. 1 is a cross-sectional photograph of colored resin particles obtained by a backscattered electron image of a scanning electron microscope (FE-SEM) in Example 6.
  • FIG. 1 is a cross-sectional photograph of colored resin particles obtained by a backscattered electron image of a scanning electron microscope (FE-SEM) in Example 6.
  • FE-SEM scanning electron microscope
  • the toner for electrostatic charge image development of the present invention (hereinafter sometimes simply referred to as "toner”) is an electrostatic charge containing colored resin particles containing a binder resin, a colorant, a charge control agent, and a crystalline material.
  • a toner for developing a charge image When the cross section of the colored resin particles is observed with a backscattered electron image of a scanning electron microscope, the total area ratio of the domains of the crystalline material in the cross section of the colored resin particles is 10 to 30%, and the colored resin The average number of domains of the crystalline material present in the cross section of the grain is in the range of 10 to 40 per grain.
  • the colored resin particles constituting the toner of the present invention can be produced, for example, by a dry method such as a pulverization method, or a wet method such as an emulsion polymerization aggregation method, a dispersion polymerization method, a suspension polymerization method, and a dissolution suspension method.
  • a dry method such as a pulverization method
  • a wet method such as an emulsion polymerization aggregation method, a dispersion polymerization method, a suspension polymerization method, and a dissolution suspension method.
  • a pulverization method which is an example of a dry method
  • a method for producing colored resin particles constituting the toner of the present invention by a pulverization method, which is an example of a dry method will be described below.
  • a binder resin, a coloring agent, a charge control agent, a crystalline material, and other additives added as necessary are kneaded while being heated using a mixer to obtain a powder.
  • the pulverized material of the colored resin particles is obtained by classifying the kneaded material into a desired particle size with a classifier.
  • the binder resin is not particularly limited. styrene-acrylonitrile copolymer, styrene-butadiene copolymer, styrene-maleic anhydride copolymer, polyethylene resin, polypropylene resin, and the like.
  • the binder resin may be used singly or in combination of two or more. Among these, styrene-(meth)acrylic acid ester copolymers and polyester resins are preferred, and styrene-(meth)acrylic acid ester copolymers are more preferred, from the viewpoint of being able to further improve low-temperature fixability. Styrene-acrylate copolymers are more preferred.
  • the (meth)acrylic acid ester constituting the styrene-(meth)acrylic acid ester copolymer includes methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, and dimethylamino acrylate.
  • These (meth)acrylic acid esters may be used alone or in combination of two or more. Among these, ethyl acrylate, propyl acrylate, and butyl acrylate are preferred, and n-butyl acrylate is more preferred.
  • the content of styrene units in the styrene-(meth)acrylic acid ester copolymer is preferably 60 to 90% by mass, more preferably 70 to 90% by mass, and still more preferably 80 to 90% by mass.
  • the content of the (meth)acrylic acid ester monomer units is preferably 10 to 40% by mass, more preferably 10 to 30% by mass, and still more preferably 10 to 20% by mass.
  • the glass transition temperature of the binder resin is preferably 40 to 80°C, more preferably 45 to 70°C, and even more preferably 50 to 60°C. By setting the glass transition temperature within the above range, the low-temperature fixability can be enhanced more appropriately.
  • the glass transition temperature of the binder resin can be determined according to ASTM D3418-82, for example.
  • the colorant for example, in the case of producing a color toner (usually, four kinds of toners of black toner, cyan toner, yellow toner, and magenta toner are used), a black colorant, a cyan colorant, a yellow colorant, Each magenta colorant can be used.
  • black colorant for example, pigments and dyes such as carbon black, titanium black, and magnetic powders such as zinc iron oxide and nickel iron oxide can be used.
  • cyan colorants for example, copper phthalocyanine pigments, derivatives thereof, and compounds such as anthraquinone pigments and dyes are used. Specifically, C.I. I. Pigment Blue 2, 3, 6, 15, 15:1, 15:2, 15:3, 15:4, 16, 17:1, 60 and the like.
  • yellow colorants include azo pigments such as monoazo pigments and disazo pigments, compounds such as condensed polycyclic pigments and dyes. Specifically, C.I. I. Pigment Yellow 3, 12, 13, 14, 15, 17, 62, 65, 73, 74, 83, 93, 97, 120, 138, 151, 155, 180, 181, 185, 186, 214, 219, C.I. I. Solvent Yellow 98, 162 and the like.
  • magenta colorants include azo pigments such as monoazo pigments and disazo pigments, compounds such as condensed polycyclic pigments and dyes. Specifically, C.I. I. Pigment Red 31, 48, 57: 1, 58, 60, 63, 64, 68, 81, 83, 87, 88, 89, 90, 112, 114, 122, 123, 144, 146, 149, 150, 163, 170 , 184, 185, 187, 202, 206, 207, 209, 238, 269, 251, C.I. I. Solvent Violet 31, 47, 59 and C.I. I. Pigment Violet 19 and the like.
  • the colorants may be used alone or in combination of two or more.
  • the amount of the colorant used is preferably 1 to 15 parts by mass, more preferably 1 to 15 parts by mass, based on 100 parts by mass of the binder resin. is 1 to 10 parts by mass, more preferably 2 to 8 parts by mass.
  • the charge control agent is not particularly limited as long as it is generally used as a charge control agent for toner. stability) can be imparted to the toner particles, thereby improving the dispersibility of the colorant. is more preferred. That is, the toner of the present invention is more preferably positively charged toner.
  • positive charge control agents include nigrosine dyes, quaternary ammonium salts, triaminotriphenylmethane compounds and imidazole compounds, and polyamine resins and copolymers containing quaternary ammonium groups as charge control resins preferably used. , and quaternary ammonium base-containing copolymers.
  • negative charge control agents examples include azo dyes containing metals such as Cr, Co, Al, and Fe, metal salicylate compounds and metal alkylsalicylate compounds, and preferably used charge control resins containing sulfonic acid groups.
  • examples thereof include copolymers, sulfonic acid group-containing copolymers, carboxylic acid group-containing copolymers, and carboxylic acid group-containing copolymers.
  • the weight-average molecular weight (Mw) of the charge control resin is within the range of 5,000 to 30,000, preferably 8,000, as a polystyrene conversion value measured by gel permeation chromatography (GPC) using tetrahydrofuran. 000 to 25,000, more preferably 10,000 to 20,000.
  • the copolymerization ratio (functional group amount) of the monomer having a functional group such as a quaternary ammonium base or a sulfonate base in the charge control resin is preferably in the range of 0.5 to 12% by mass, and more It is preferably within the range of 1.0 to 6% by mass, more preferably within the range of 1.5 to 5% by mass.
  • the content of the charge control agent is preferably 0.01 to 20 parts by mass, more preferably 0.03 to 10 parts by mass, and still more preferably 0.03 to 8 parts by mass with respect to 100 parts by mass of the binder resin. be.
  • crystalline materials include materials that act as release agents for toners and materials that impart an effect of improving fixability, such as crystalline polyester resins and ester waxes.
  • the crystalline material exists in a state in which at least a portion thereof forms a domain structure in the colored resin particles. A domain structure formed of a crystalline material will be described later.
  • Examples of crystalline polyester resins include condensation polymerization products of aliphatic diols and aliphatic dicarboxylic acids.
  • Examples of crystalline polyester resins include aliphatic diols having 2 to 12 carbon atoms and aliphatic It is preferably a polycondensation product with group dicarboxylic acid.
  • Examples of aliphatic diols having 2 to 12 carbon atoms include 1,2-ethanediol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 1 ,7-heptanediol, 1,8-octanediol, 1,9-nonanediol, 1,10-decanediol, 1,11-undecanediol, 1,12-dodecanediol and the like. These may be used alone, or two or more of them may be mixed and used.
  • aliphatic dicarboxylic acids having 2 to 12 carbon atoms include oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, 1,9-nonanedicarboxylic acid, 1,10-decanedicarboxylic acid, 1,11-undecanedicarboxylic acid, 1,12-dodecanedicarboxylic acid, and lower alkyl esters and acid anhydrides of these aliphatic dicarboxylic acids. These may be used alone, or two or more of them may be mixed and used.
  • aromatic dicarboxylic acid can also be used together with an aliphatic dicarboxylic acid having 2 to 12 carbon atoms or in place of an aliphatic dicarboxylic acid having 2 to 12 carbon atoms.
  • aromatic dicarboxylic acids include terephthalic acid, isophthalic acid, 2,6-naphthalenedicarboxylic acid and 4,4'-biphenyldicarboxylic acid.
  • a crystalline polyester resin can be produced, for example, by a general polyester polymerization method in which a dicarboxylic acid component and a diol component are reacted.
  • Polymerization methods include, for example, a direct polycondensation method and a transesterification method.
  • ester wax is not particularly limited, ester waxes having a number average molecular weight (Mn) of 500 to 1,550 are preferable, and fatty acid ester compounds having a number average molecular weight (Mn) of 500 to 1,550 are preferable.
  • the fatty acid ester compound is preferably a product obtained by an ester reaction between a monohydric alcohol and/or polyhydric alcohol and a saturated fatty acid and/or unsaturated fatty acid.
  • monohydric alcohols include methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, 1-pentanol, 1-hexanol, octanol, 2-ethyl-1-hexanol, nonyl alcohol.
  • lauryl alcohol cetyl alcohol, stearyl alcohol, and behenyl alcohol
  • monovalent unsaturated aliphatic alcohols such as allyl alcohol, methallyl alcohol, crotyl alcohol, and oleyl alcohol
  • monohydric aromatic alcohols such as phenol, phenylmethanol (benzyl alcohol), methylphenol (cresol), p-ethylphenol, dimethylphenol (xylenol), nonylphenol, dodecylphenol, phenylphenol, and naphthol ; and the like.
  • polyhydric alcohols include divalent saturated aliphatic alcohols such as ethylene glycol and propylene glycol; divalent aromatic alcohols such as catechol and hydroquinone; valence or higher saturated fatty alcohols; and the like.
  • monohydric to tetrahydric saturated aliphatic alcohols are preferred, behenyl alcohol and pentaerythritol are more preferred, and behenyl alcohol is particularly preferred.
  • the fatty acid used as the raw material for the fatty acid ester compound preferably has 12 to 22 carbon atoms, more preferably saturated and/or unsaturated fatty acids having 14 to 18 carbon atoms.
  • saturated fatty acids having the above-mentioned number of carbon atoms are particularly preferred, since a fatty acid ester compound having a number average molecular weight (Mn) of 500 to 1,550 can be easily obtained.
  • saturated fatty acids having the above carbon number are not particularly limited, but lauric acid (12 carbon atoms), myristic acid (14 carbon atoms), pentadecylic acid (15 carbon atoms), palmitic acid (16 carbon atoms), margarine acid (17 carbon atoms), stearic acid (18 carbon atoms), arachidic acid (20 carbon atoms), behenic acid (22 carbon atoms), and the like.
  • stearic acid (18 carbon atoms) arachidic acid (20 carbon atoms), and behenic acid (22 carbon atoms) are preferred, and stearic acid (18 carbon atoms) is more preferred.
  • the above saturated fatty acid and/or unsaturated fatty acid may be used singly or in combination of two or more.
  • a fatty acid ester compound as described above can be produced according to a conventional method.
  • a method for producing such a fatty acid ester compound includes, for example, a method of performing an ester reaction using a monohydric alcohol and/or polyhydric alcohol and a saturated fatty acid and/or unsaturated fatty acid.
  • the fatty acid ester compound it is possible to use a commercially available fatty acid ester compound. Examples of commercially available fatty acid ester compounds include "WEP2", “WEP3", “WEP4", “WEP5", and “WE6” manufactured by NOF Corporation. "WE11" (these are trade names) and the like.
  • the number average molecular weight (Mn) of the fatty acid ester compound is preferably 500-1550, more preferably 550-1200, still more preferably 550-1100.
  • the number average molecular weight (Mn) of the fatty acid ester compound can be measured, for example, by gel permeation chromatography (GPC) using tetrahydrofuran in terms of polystyrene.
  • crystalline material other crystalline materials may be used instead of the crystalline polyester resin and ester wax described above, or together with the crystalline polyester resin or ester wax.
  • Materials include, for example, low molecular weight polyolefin waxes and modified waxes thereof; natural plant waxes such as jojoba; petroleum waxes such as paraffin; mineral waxes such as ozokerite; synthetic waxes such as Fischer-Tropsch wax; polyhydric alcohol ester; These may be used alone or in combination of two or more.
  • the melting point of the crystalline material is preferably 50 to 90° C., more preferably 60 to 90° C., still more preferably 65 to 80° C., particularly preferably 68 to 80° C., from the viewpoint of further enhancing the low-temperature fixability of the resulting toner. °C, most preferably 70-80 °C.
  • the content of the crystalline material is preferably 5.0 to 40.0 parts by mass, more preferably 10 to 35 parts by mass, still more preferably 15 to 30 parts by mass, with respect to 100 parts by mass of the binder resin. be.
  • the colored resin particles may further contain an additive having a polydiene structure.
  • an additive having a polydiene structure it is possible to increase the dispersibility of the crystalline material in the colored resin particles due to the compatibility with the crystalline material possessed by the additive having a polydiene structure.
  • the domain structure of the crystalline material which will be described later, can be more preferably formed in the colored resin particles.
  • the additive having a polydiene structure is not particularly limited, but for example, a conjugated diene-aromatic vinyl-based polymer, which is a polymer having a structural unit derived from a conjugated diene compound and a structural unit derived from an aromatic vinyl compound Thermoplastic elastomers; conjugated diene elastomers such as polybutadiene rubber and polyisoprene rubber; Unhydrogenated conjugated diene-aromatic vinyl thermoplastic elastomers are particularly preferred.
  • a conjugated diene-aromatic vinyl-based polymer which is a polymer having a structural unit derived from a conjugated diene compound and a structural unit derived from an aromatic vinyl compound Thermoplastic elastomers; conjugated diene elastomers such as polybutadiene rubber and polyisoprene rubber; Unhydrogenated conjugated diene-aromatic vinyl thermoplastic elastomers are particularly preferred.
  • Conjugated diene-aromatic vinyl thermoplastic elastomers include random, block, and graft copolymers of conjugated diene monomers, aromatic vinyl monomers, and optionally other monomers that can be copolymerized therewith. and the like, and hydrogenated products of such copolymers.
  • Such a conjugated diene-aromatic vinyl thermoplastic elastomer is not particularly limited, but from the viewpoint of further improving the low-temperature fixability of the toner, it contains at least one aromatic vinyl polymer block and at least one conjugated diene polymer. Block copolymers containing blocks can be suitably used.
  • block copolymers containing at least one aromatic vinyl polymer block and at least one conjugated diene polymer block (hereinafter simply referred to as “block copolymer (sometimes referred to as “union”) will be described.
  • the block copolymer used in the present invention comprises an aromatic vinyl polymer block obtained by polymerizing an aromatic vinyl monomer and a conjugated diene polymer block obtained by polymerizing a conjugated diene monomer. It contains at least one.
  • the aromatic vinyl monomer is not particularly limited as long as it is an aromatic vinyl compound.
  • Styrene 4-ethylstyrene, 2,4-diisopropylstyrene, 2,4-dimethylstyrene, 4-t-butylstyrene, 5-t-butyl-2-methylstyrene, 2-chlorostyrene, 3-chlorostyrene, 4 -chlorostyrene, 4-bromostyrene, 2-methyl-4,6-dichlorostyrene, 2,4-dibromostyrene, vinylnaphthalene and the like.
  • each aromatic vinyl polymer block may be composed of the same aromatic vinyl monomer units, or may be composed of different aromatic vinyl monomer units. It may be composed of vinyl monomer units.
  • the aromatic vinyl polymer block may contain other monomer units as long as the aromatic vinyl monomer unit is the main repeating unit.
  • Other monomers that can be used in the aromatic vinyl polymer block include conjugated diene monomers such as 1,3-butadiene, isoprene (2-methyl-1,3-butadiene), ⁇ , ⁇ -unsaturated Examples include nitrile monomers, unsaturated carboxylic acid or acid anhydride monomers, unsaturated carboxylic acid ester monomers, non-conjugated diene monomers, and the like.
  • the content of monomer units other than aromatic vinyl monomer units in the aromatic vinyl polymer block is preferably 20% by mass or less, more preferably 10% by mass or less, and is substantially zero. % by weight is particularly preferred.
  • the conjugated diene monomer is not particularly limited as long as it is a conjugated diene compound. 3-pentadiene, 1,3-hexadiene, and the like. Among these, 1,3-butadiene and/or isoprene are preferably used, and isoprene is particularly preferably used, from the viewpoint of a high effect of improving low-temperature fixability.
  • These conjugated diene monomers may be used alone or in combination of two or more in each conjugated diene polymer block. Further, when the block copolymer has a plurality of conjugated diene polymer blocks, each conjugated diene polymer block may be composed of the same conjugated diene monomer units, or may be composed of different conjugated diene monomer units. It may be composed of units. Furthermore, a hydrogenation reaction may be performed on a part of the unsaturated bonds of each conjugated diene polymer block.
  • the conjugated diene polymer block may contain other monomer units as long as the conjugated diene monomer unit is the main repeating unit.
  • Other monomers that can be used in the conjugated diene polymer block include aromatic vinyl monomers such as styrene, ⁇ -methylstyrene, ⁇ , ⁇ -unsaturated nitrile monomers, unsaturated carboxylic acid monomers. , unsaturated carboxylic acid anhydride monomers, unsaturated carboxylic acid ester monomers, and non-conjugated diene monomers.
  • the content of monomer units other than conjugated diene monomer units in the conjugated diene polymer block is preferably 20% by mass or less, more preferably 10% by mass or less, and substantially 0% by mass. is particularly preferred.
  • the vinyl bond content of the conjugated diene polymer block (ratio of 1,2-vinyl bond units and 3,4-vinyl bond units to all conjugated diene monomer units in the conjugated diene polymer block) is not particularly limited. However, it is preferably 1 to 20 mol %, more preferably 2 to 15 mol %, and particularly preferably 3 to 10 mol %.
  • block copolymer contains at least one aromatic vinyl polymer block and at least one conjugated diene polymer block
  • the number of each polymer block and the form of bonding thereof are not particularly limited.
  • block copolymers include the following.
  • Ar represents an aromatic vinyl polymer block
  • D represents a conjugated diene polymer block
  • X represents a residue of a coupling agent
  • n represents an integer of 2 or greater.
  • the block copolymer it is preferable to use one containing at least the aromatic vinyl-conjugated diene block copolymer represented by (a) Ar-D, and the aromatic copolymer represented by (a) Ar-D at least a vinyl-conjugated diene block copolymer and (b) an aromatic vinyl-conjugated diene-aromatic vinyl block copolymer represented as Ar—D—Ar and/or (Ar—D)n—X It is more preferable to use those containing.
  • the aromatic vinyl-conjugated diene block copolymer represented by Ar-D in the conjugated diene-aromatic vinyl thermoplastic elastomer (that is, the aromatic vinyl polymer block and the aromatic vinyl polymer can be copolymerized
  • the content of the diblock copolymer consisting of a block of a polymer) is preferably 40% by mass (% by weight) or more, preferably 50% by mass or more, and more preferably 55% by mass or more. , more preferably 60% by mass or more.
  • the upper limit is not particularly limited, but is preferably 98% by mass or less, more preferably 95% by mass or less, and still more preferably 90% by mass or less.
  • the aromatic vinyl-conjugated diene block copolymer represented by Ar-D in the conjugated diene-aromatic vinyl thermoplastic elastomer that is, the aromatic vinyl polymer block and the aromatic vinyl polymer can be copolymerized
  • the content of the diblock copolymer is set to 40% by mass or more, the dispersibility in the colored resin particles and the compatibility with the crystalline material can be further enhanced.
  • the weight-average molecular weight (Mw (Ar)) of the aromatic vinyl polymer block Ar in the aromatic vinyl-conjugated diene block copolymer represented by Ar-D is not particularly limited, but is preferably 10,000 to 50,000, or more.
  • the weight average molecular weight (Mw(D)) of the conjugated diene polymer block D is not particularly limited, but is preferably 50000 to 200000, more preferably 60000 to 150000, and even more preferably 70000. ⁇ 100000.
  • the weight average molecular weight of the aromatic vinyl polymer block Ar is not particularly limited, but is preferably 20,000 to 70,000, more preferably 25,000 to 50,000.
  • the weight average molecular weight (Mw (D)) of the conjugated diene polymer block D is not particularly limited, It is preferably 100,000 to 300,000, more preferably 120,000 to 250,000, even more preferably 150,000 to 200,000. All of the above weight average molecular weights are polystyrene equivalent values measured by gel permeation chromatography (GPC) using tetrahydrofuran.
  • the content ratio of the aromatic vinyl monomer units to the total monomer units in the block copolymer is preferably 10 to 30% by mass, more preferably 12 to 25% by mass, and 15 to 25% by mass. % by mass is more preferred.
  • the content of aromatic vinyl monomer units in the block copolymer is such that all polymer components constituting the block copolymer are composed only of aromatic vinyl monomer units and conjugated diene monomer units. If Rubber Chem. Technol. , 45, 1295 (1972), the block copolymer is ozonolyzed and then reduced with lithium aluminum hydride to decompose the conjugated diene monomer unit portion and produce the aromatic vinyl monomer. Since only the unit portion can be taken out, the total aromatic vinyl monomer unit content can be easily measured.
  • the weight average molecular weight (Mw) of the aromatic vinyl monomer unit in the block copolymer is not particularly limited, but is a polystyrene equivalent value measured by gel permeation chromatography (GPC) using tetrahydrofuran, It is preferably 10,000 to 50,000, more preferably 20,000 to 40,000.
  • the weight average molecular weight (Mw) of the conjugated diene monomer unit in the block copolymer is not particularly limited, but is preferably 50,000 to 200,000, more preferably 60,000 to 180,000.
  • the melt index (MI) of the block copolymer is not particularly limited, but as a value measured according to ASTM D-1238 (G conditions, 200°C, 5 kg), for example, in the range of 1 to 1000 g/10 minutes and preferably 5 to 30 g/10 minutes.
  • the block copolymer used in the present invention can be produced by a conventional method.
  • a method for producing such a block copolymer for example, an aromatic vinyl monomer and a conjugated diene monomer are sequentially polymerized by an anionic living polymerization method to form a polymer block, and the necessary
  • a method of performing coupling by reacting a coupling agent may be mentioned.
  • the block copolymer used in the present invention (a) the aromatic vinyl-conjugated diene block copolymer represented by Ar-D, and (b) Ar-D-Ar and/or (Ar-D )
  • Ar-D-Ar and/or (Ar-D ) When using at least an aromatic vinyl-conjugated diene-aromatic vinyl block copolymer represented by nX, the following method can be employed.
  • an aromatic vinyl monomer is polymerized by an anionic living polymerization method, and then a conjugated diene monomer is added and polymerized to obtain a diblock copolymer having an active terminal. Then, by adding less than 1 molar equivalent of a coupling agent to the active terminal of the diblock copolymer having an active terminal, part of the diblock copolymer having an active terminal is subjected to a coupling reaction.
  • (Ar-D)nX After obtaining an aromatic vinyl-conjugated diene-aromatic vinyl block copolymer represented by A method of deactivating the polymer to obtain a diblock copolymer represented as Ar-D is included.
  • a bifunctional coupling agent such as dichlorosilane, monomethyldichlorosilane, dimethyldichlorosilane, diphenyldimethoxysilane, diphenyldiethoxysilane, dichloroethane, dibromoethane, methylene chloride, and dibromomethane is used as a coupling agent.
  • a bifunctional coupling agent such as dichlorosilane, monomethyldichlorosilane, dimethyldichlorosilane, diphenyldimethoxysilane, diphenyldiethoxysilane, dichloroethane, dibromoethane, methylene chloride, and dibromomethane.
  • the content ratio of the diene-aromatic vinyl block copolymer is not particularly limited, but the content ratio of (a) the aromatic vinyl-conjugated diene block copolymer represented by Ar-D is preferably 10 to 90. % by mass, more preferably 20 to 80% by mass.
  • the content of the aromatic vinyl-conjugated diene-aromatic vinyl block copolymer represented by (b) Ar-D-Ar and/or (Ar-D)nX is preferably 10 to 90 mass. %, more preferably 20 to 80% by mass.
  • conjugated diene-aromatic vinyl thermoplastic elastomer a random copolymer of an aromatic vinyl monomer and a conjugated diene monomer can be used instead of the block copolymer described above.
  • a random copolymer of an aromatic vinyl monomer and a conjugated diene monomer can be produced, for example, by living anionic polymerization using an organic alkali metal compound as a polymerization initiator.
  • organic alkali metal compounds include organic lithium compounds, organic sodium compounds, organic potassium compounds, etc. Specific examples include n-butyllithium, sec-butyllithium, t-butyllithium, hexyllithium, and phenyllithium.
  • organic monolithium compounds such as stilbene lithium
  • organic polyvalent lithium compounds such as sodium naphthalene
  • organic sodium compounds such as sodium naphthalene
  • organic potassium compounds such as potassium naphthalene
  • organometallic compounds n-butyllithium is preferably used.
  • the content ratio of the aromatic vinyl monomer unit to the total monomer units is preferably 50% by mass or less, and 45% by mass. % or less, more preferably 40% by mass or less.
  • conjugated diene elastomers such as polybutadiene rubber and polyisoprene rubber can be suitably used as additives having a polydiene structure.
  • Conjugated diene elastomers such as polybutadiene rubber and polyisoprene rubber can be produced, for example, by living anionic polymerization using an organic alkali metal compound as a polymerization initiator.
  • organic alkali metal compound for example, those mentioned above can be used.
  • the weight average molecular weight (Mw) of the additive having a polydiene structure is not particularly limited, but is a polystyrene conversion value measured by gel permeation chromatography (GPC) using tetrahydrofuran, preferably 60,000 to 350,000. and more preferably 80,000 to 250,000.
  • GPC gel permeation chromatography
  • the content of the additive having a polydiene structure is preferably 0.5 to 20 parts by mass, more preferably 1.0 to 15 parts by mass, still more preferably 3 to 20 parts by mass, with respect to 100 parts by mass of the binder resin. 7 parts by mass.
  • the content of the additive having a polydiene structure with respect to the content of the crystalline material is the weight ratio of "content of the additive having a polydiene structure/content of the crystalline material", and is preferably from 0.02 to 0.75, more preferably 0.10 to 0.55, still more preferably 0.20 to 0.50.
  • the colored resin particles may further contain a polar resin.
  • the polar resin is not particularly limited, but an acrylic resin can be preferably used.
  • the acrylic resin is a copolymer (acrylate-based copolymer) whose main component is at least one of acrylic acid ester and methacrylic acid ester and at least one of acrylic acid and methacrylic acid. Acrylic acid is preferred as the acid monomer.
  • Acrylic resins include, for example, copolymers of acrylic acid ester and acrylic acid, copolymers of acrylic acid ester and methacrylic acid, copolymers of methacrylic acid ester and acrylic acid, and copolymers of methacrylic acid ester and methacrylic acid.
  • Copolymers, copolymers of acrylic acid esters, methacrylic acid esters and acrylic acid, copolymers of acrylic acid esters, methacrylic acid esters and methacrylic acid, and acrylic acid esters, methacrylic acid esters, acrylic acid and methacrylic acid A copolymer of Among these, it is preferable to use a copolymer of acrylic acid ester, methacrylic acid ester and acrylic acid.
  • the weight average molecular weight (Mw) of the acrylic resin is usually 6,000 to 50,000, preferably 8,000 to 25,000, more preferably 10,000 to 20,000. When the weight average molecular weight (Mw) of the acrylic resin is within the above range, the low-temperature fixability can be further improved.
  • the ratio of acrylic acid ester monomer units, methacrylic acid ester monomer units, acrylic acid monomer units, and methacrylic acid monomer units in the acrylic resin varies depending on the acrylic acid ester and methacrylic acid monomer units during copolymer synthesis. It can be adjusted by the mass ratio of the amounts of acid ester, acrylic acid, and methacrylic acid added.
  • Acrylic esters used to form acrylic resins include, for example, methyl acrylate, ethyl acrylate, n-propyl acrylate, isopropyl acrylate, n-butyl acrylate, isobutyl acrylate, sec- Butyl, tert-butyl acrylate, n-pentyl acrylate, sec-pentyl acrylate, isopentyl acrylate, neopentyl acrylate, n-hexyl acrylate, isohexyl acrylate, neohexyl acrylate, sec-hexyl acrylate, and acrylic acid tert-hexyl and the like, among which ethyl acrylate, n-propyl acrylate, isopropyl acrylate and n-butyl acrylate are preferred, and n-butyl acrylate is more preferred.
  • Methacrylate esters used to form acrylic resins include, for example, methyl methacrylate, ethyl methacrylate, n-propyl methacrylate, isopropyl methacrylate, n-butyl methacrylate, isobutyl methacrylate, sec- Butyl, tert-butyl methacrylate, n-pentyl methacrylate, sec-pentyl methacrylate, isopentyl methacrylate, neopentyl methacrylate, n-hexyl methacrylate, isohexyl methacrylate, neohexyl methacrylate, sec-hexyl methacrylate, and methacryl acid tert-hexyl and the like, among which methyl methacrylate, n-propyl methacrylate, isopropyl methacrylate, and n-butyl methacrylate are preferred, and methyl methacrylate
  • acrylic resins can be used, they can be produced by known methods such as solution polymerization, aqueous solution polymerization, ion polymerization, high-temperature and high-pressure polymerization, and suspension polymerization.
  • the amount of the polar resin added is preferably 0.3 to 4 parts by mass, more preferably 0.5 to 3 parts by mass, more preferably 0.6 to 2.5 parts by mass, based on 100 parts by mass of the binder resin. It is more preferably 0.7 to 2 parts by mass, and particularly preferably 0.7 to 2 parts by mass.
  • pulverizing process In the pulverization method, the binder resin, colorant, charge control agent, and crystalline material described above, as well as other additives such as additives having a polydiene structure and polar resins, which are added as necessary, are used. Mixing is performed using a mixer such as a ball mill, a V-type mixer, a Henschel mixer (trade name), a high-speed dissolver, an internal mixer, or a Fallberg.
  • a mixer such as a ball mill, a V-type mixer, a Henschel mixer (trade name), a high-speed dissolver, an internal mixer, or a Fallberg.
  • the mixture obtained above is melt-kneaded while being heated using a pressure kneader, a twin-screw extruder kneader, rollers, or the like, and then the resulting kneaded product is subjected to a hammer mill, a cutter mill, a roller mill, or the like.
  • Coarsely pulverize using a pulverizer Furthermore, after fine pulverization using a pulverizer such as a jet mill or a high-speed rotary pulverizer, the colored resin particles are classified into desired particle sizes by a classifier such as an air classifier or an air classifier. Get a grind.
  • the heating temperature at the time of melt-kneading may be a temperature at which melt-kneading is possible. is 110-160°C.
  • the time for melt-kneading is preferably 1 to 60 minutes, more preferably 5 to 20 minutes.
  • the aqueous dispersion medium used in the dispersion step is obtained by dissolving or dispersing the dispersion stabilizer in the aqueous medium.
  • aqueous medium water may be used alone, but a water-soluble solvent may also be used in combination.
  • water-soluble solvents include lower ketones such as dimethylformamide, tetrahydrofuran, acetone, and methyl ethyl ketone.
  • the dispersion stabilizer is not particularly limited as long as it is a compound capable of imparting dispersibility for dispersing the pulverized colored resin particles in an aqueous medium.
  • the organic dispersion stabilizer include polyvinyl water-soluble polymers such as alcohol, methylcellulose, gelatin; surfactants such as anionic surfactants, nonionic surfactants and amphoteric surfactants;
  • Inorganic dispersion stabilizers include metal oxides such as aluminum oxide and titanium oxide; sulfates such as barium sulfate and calcium sulfate; carbonates such as barium carbonate, calcium carbonate and magnesium carbonate; calcium phosphate; phosphates such as aluminum phosphate; metal hydroxides such as aluminum hydroxide, magnesium hydroxide and ferric hydroxide; inorganic particles such as silica, titanium dioxide and aluminum oxide; Among these, inorganic dispersion stabilizers are preferred, phosphates or metal hydroxides are more preferred, and metal hydroxides are even more
  • the poorly water-soluble inorganic dispersion stabilizer is dispersed in an aqueous medium in the form of colloid particles That is, it is preferably used in the form of a colloidal dispersion containing colloidal particles of a water-insoluble inorganic dispersion stabilizer.
  • the poorly water-soluble inorganic dispersion stabilizer in the form of a colloidal dispersion containing colloidal particles of the poorly water-soluble inorganic dispersion stabilizer, the particle size distribution of the colored resin particles can be narrowed. By washing, the residual amount in the obtained toner can be easily suppressed to a low level, so that fine line reproducibility can be further improved, and furthermore, environmental stability is also contributed.
  • Colloidal dispersions containing sparingly water-soluble inorganic dispersion stabilizer colloidal particles include, for example, alkali metal hydroxides and/or alkaline earth metal hydroxides and water-soluble polyvalent metal salts (alkaline earth hydroxides). Metal salts are excluded.) can be prepared by reacting them in an aqueous medium.
  • alkali metal hydroxide salts include lithium hydroxide, sodium hydroxide, and potassium hydroxide.
  • Alkaline earth metal hydroxides include barium hydroxide and calcium hydroxide.
  • the water-soluble polyvalent metal salt may be any water-soluble polyvalent metal salt other than the compounds corresponding to the alkaline earth metal hydroxides.
  • examples include magnesium chloride, magnesium phosphate, magnesium sulfate, and the like.
  • magnesium metal salts such as calcium chloride, calcium nitrate, calcium acetate and calcium sulfate; aluminum metal salts such as aluminum chloride and aluminum sulfate; barium salts such as barium chloride, barium nitrate and barium acetate; zinc chloride and zinc nitrate , zinc salts such as zinc acetate;
  • magnesium metal salt, calcium metal salt, and aluminum metal salt are preferred, magnesium metal salt is more preferred, and magnesium chloride is particularly preferred.
  • the water-soluble polyvalent metal salts can be used either singly or in combination of two or more.
  • the method for reacting the above alkali metal hydroxide salt and/or alkaline earth metal hydroxide salt with the above water-soluble polyvalent metal salt in an aqueous medium is not particularly limited, but the alkali metal hydroxide salt and / Or a method of mixing an aqueous solution of an alkaline earth metal hydroxide and an aqueous solution of a water-soluble polyvalent metal salt.
  • a method of mixing by gradually adding an aqueous solution of an alkali metal salt and/or an alkaline earth metal hydroxide salt is preferred.
  • the ratio of the alkali metal hydroxide salt and/or alkaline earth metal hydroxide to the water-soluble polyvalent metal salt is not particularly limited, the amount of alkali metal hydroxide and/or alkaline earth metal hydroxide used is The chemical equivalent ratio b/a of the chemical equivalent b of the alkali metal hydroxide salt and/or the alkaline earth metal hydroxide salt to the chemical equivalent a of the water-soluble polyvalent metal salt is 0.3 ⁇ b/ The amount preferably satisfies the relationship a ⁇ 1.0, and more preferably the amount satisfies the relationship 0.4 ⁇ b/a ⁇ 1.0.
  • the amount of the dispersion stabilizer used is preferably 1 part by mass or more, more preferably 10 to 500 parts by mass with respect to 100 parts by mass of the ground material of the colored resin particles, from the viewpoint of good dispersion of the ground material of the colored resin particles. parts, more preferably 20 to 300 parts by mass.
  • the method of dispersing the colored resin particles in the aqueous dispersion medium is not particularly limited, but a method of adding the colored resin particles to the aqueous dispersion medium and stirring with a stirring device is suitable.
  • the stirring temperature is not particularly limited, but is preferably 10 to 40° C., more preferably 20 to 30° C.
  • the stirring time is not particularly limited, but is preferably 1 minute to 2 hours. It is preferably 3 minutes to 1 hour.
  • the colored resin particles are dispersed in the aqueous dispersion medium by performing a dispersion treatment to obtain a cavitation effect.
  • a mode in which a liquid is obtained may be employed.
  • Dispersion treatment that produces a cavitation effect is a dispersion method that uses shock waves that are generated when high energy is applied to a liquid and the vacuum bubbles in the liquid burst.
  • the treatment time of the dispersion treatment for obtaining the cavitation effect is preferably 1 to 300 minutes, more preferably 5 to 100 minutes.
  • the treatment temperature at this time is preferably 10 to 50°C, more preferably 20 to 40°C.
  • the dispersion liquid of the colored resin particles prepared in the dispersion step is heated at a temperature between the glass transition temperature Tg of the colored resin particles and 95° C. or less for a heating time of 5 minutes or more and 10 hours or less.
  • a dispersion liquid of colored resin particles is prepared, and the prepared dispersion liquid of colored resin particles is heated under the above conditions, so that the sphericity of the colored resin particles is adjusted to a suitable level.
  • This can further increase the average circularity of the obtained colored resin particles, and furthermore, the domain structure of the crystalline material described later can be more preferably formed in the colored resin particles. becomes possible.
  • the heating temperature in the heating step is preferably at least the glass transition temperature Tg of the colored resin particles and at most 95° C., more preferably at least 10° C. higher than the glass transition temperature Tg of the colored resin particles (i.e., Tg+10° C. or higher). ), 94° C. or lower, more preferably a temperature higher than the glass transition temperature of the colored resin particles by 15° C. (that is, Tg+20° C. or higher), and 93° C. or lower.
  • the specific heating temperature in the heating step is not particularly limited, it is preferably 40 to 90°C, more preferably 45 to 85°C, even more preferably 50 to 80°C, and particularly preferably 55 to 75°C.
  • the heating time in the heating step is preferably 5 minutes or longer and 10 hours or shorter, more preferably 10 minutes or longer and 10 hours or shorter, and still more preferably 30 minutes or longer and 8 hours or shorter.
  • the dispersion liquid of the colored resin particles that has been heat-treated under the above conditions in the heating step can be subjected to a series of operations of washing, filtration, dehydration, and drying according to a conventional method, and repeated several times as necessary. preferable.
  • the dispersion stabilizer used is an acid-soluble compound, it is preferable to add an acid to the dispersion of the colored resin particles for washing. In the case of a soluble compound, it is preferable to wash by adding an alkali to the dispersion liquid of the colored resin particles after the heat treatment.
  • an acid-soluble compound is used as the dispersion stabilizer
  • an acid is added to the aqueous dispersion of the colored resin particles after the heat treatment, and the pH is adjusted to preferably 6.5 or less, more preferably 6.0. It is preferable to adjust as follows.
  • the acid to be added inorganic acids such as sulfuric acid, hydrochloric acid and nitric acid, and organic acids such as formic acid and acetic acid can be used. sulfuric acid is particularly preferred.
  • dehydration and filtration Various known methods can be used for dehydration and filtration, and are not particularly limited. Examples thereof include centrifugal filtration, vacuum filtration, and pressure filtration. Also, the drying method is not particularly limited, and various methods can be used.
  • the present invention it is preferable to include a preheating step of preheating the dispersion liquid of the colored resin particles obtained in the dispersing step before the heating step.
  • a preheating step of preheating the dispersion liquid of the colored resin particles obtained in the dispersing step before the heating step it is preferable that the dispersion liquid of the colored resin particles that has undergone the preheating step is subjected to heat treatment in the above heating step.
  • the preheating temperature in the preheating step is preferably 10 to 1°C lower than the glass transition temperature Tg of the colored resin particles (Tg-10 to Tg-1°C) and higher than the melting point mp of the crystalline material. is also 10° C. or more lower temperature (mp-10° C. or less), more preferably 8 to 2° C. lower than the glass transition temperature Tg of the colored resin particles (Tg-8 to Tg-2° C.), and , mp-8 to mp-5° C., which is 8 to 5° C. lower than the melting point mp of the crystalline material.
  • the preheating time is preferably 30 minutes or more and 10 hours or less, more preferably 60 minutes or more and 5 hours or less.
  • the colored resin particles constituting the toner of the present invention can be produced.
  • the method for producing the colored resin particles constituting the toner of the present invention is exemplified using the pulverization method, which is an example of a dry method.
  • the pulverization method which is an example of a dry method.
  • it may be produced by a suspension polymerization method, which is an example of a wet method.
  • colored resin particles constituting the toner of the present invention are produced as follows. First, a polymerizable monomer composition is prepared by mixing and dissolving a polymerizable monomer, a colorant, a charge control agent, a crystalline material, and other additives added as necessary. Then, the polymerizable monomer composition is dispersed in an aqueous dispersion medium, a polymerization initiator is added, and droplets of the polymerizable monomer composition are formed to form a polymerizable monomer. A suspension of the composition is obtained.
  • the obtained suspension of the polymerizable monomer composition is heated to initiate polymerization, whereby the water of the colored resin particles containing the binder resin, the colorant, the charge control agent, and the crystalline material is dissolved.
  • a series of operations of washing, filtering, dehydrating, and drying after obtaining a dispersion are repeated several times as necessary to produce the colored resin particles constituting the toner of the present invention.
  • the colored resin particles constituting the toner of the present invention are crystals in the cross section of the colored resin particles observed in the backscattered electron image of the scanning electron microscope when the cross section is observed in the backscattered electron image of the scanning electron microscope.
  • the total area ratio of the domains of the crystalline material is 10 to 30%, and the number of domains of the crystalline material in the cross section of the colored resin particle observed by a backscattered electron image of a scanning electron microscope is one particle.
  • the average number of particles present per unit is in the range of 10 to 40.
  • the toner obtained by setting the total area ratio of the domains of the crystalline material and the number of domains of the crystalline material contained in the colored resin particles constituting the toner as described above, It has excellent low-temperature fixability, excellent hot-offset resistance, fine-line reproducibility and blade cleanability in a well-balanced manner, and can appropriately suppress toner ejection after being left at a high temperature. .
  • FIG. 1 shows a cross-sectional photograph of a backscattered electron image of a scanning electron microscope (FE-SEM) of the colored resin particles obtained in Example 6, which will be described later.
  • the colored resin particles of the present invention have a structure in which domains of a crystalline material (dark colored portions in FIG. 1) are dispersed in the colored resin particles.
  • the total area ratio of the domains of the crystalline material in the cross section of the colored resin particles observed by a backscattered electron image of a scanning electron microscope i.e., the ratio of the crystalline material to the area of the cross section of the colored resin particles The ratio of the area indicated by the domain
  • the ratio of the area indicated by the domain is set in the range of 10 to 30%.
  • the total area fraction of the domains of crystalline material is preferably 15-28%, more preferably 18-26%.
  • the number of domains of the crystalline material present in the cross section of the colored resin particles observed by a backscattered electron image of a scanning electron microscope is 5 to 40 on average per particle. range.
  • the number of domains of crystalline material present is preferably 10-35, more preferably 15-30.
  • the total area ratio of domains of the crystalline material and the number of domains of the crystalline material in the cross section of the colored resin particles observed by a backscattered electron image of a scanning electron microscope can be measured, for example, by the following method. . That is, first, the colored resin particles are mixed with, for example, a curable material such as a two-liquid condensation type epoxy adhesive and cured to prepare a cured product, and the prepared cured product is cut using a microtome or the like. and prepare a sample for cross-sectional observation. Next, the cross section of the colored resin particles is observed by measuring the backscattered electron image of the prepared sample for cross section observation using a scanning electron microscope. In this case, it is desirable to adjust the measurement conditions so that the domain of the crystalline material can be easily observed.
  • a curable material such as a two-liquid condensation type epoxy adhesive and cured to prepare a cured product
  • the prepared cured product is cut using a microtome or the like.
  • the cross section of the colored resin particles
  • a cross-sectional photograph of the colored resin particles obtained by measurement using a backscattered electron image of a scanning electron microscope is analyzed using image analysis software (for example, "DNP particle image analysis software" (manufactured by Dai Nippon Printing Co., Ltd.)).
  • image analysis software for example, "DNP particle image analysis software” (manufactured by Dai Nippon Printing Co., Ltd.)
  • the image analysis can determine the total area ratio of the domains of the crystalline material and the number of existing domains of the crystalline material.
  • the total area ratio of the domains of the crystalline material is obtained by measuring 100 or more colored resin particles, and by image analysis, the total area of the colored resin particles and the total area of the domain portion of the crystalline material. can be calculated using these.
  • the number of existing domains of the crystalline material is obtained by measuring 100 or more colored resin particles, obtaining the number of the colored resin particles to be measured and the total number of domain portions of the crystalline material, and using them. can be calculated.
  • the colored resin particles having a particle diameter within ⁇ 3 ⁇ m of the volume average particle diameter (Dv) of the colored resin particles measured by a particle size analyzer using a Coulter counter were measured. (That is, colored resin particles whose particle diameter deviates from the volume average particle diameter (Dv) by more than ⁇ 3 ⁇ m are excluded from measurement.).
  • the method for adjusting the total area ratio of the domains of the crystalline material and the number of domains of the crystalline material in the cross section of the colored resin particles observed by the backscattered electron image of the scanning electron microscope to the above range is particularly limited.
  • a method of adjusting the type and amount of the crystalline material used, a method of adding an additive having a polydiene structure to the colored resin particles, a method of producing the colored resin particles, the above dispersion step and A method including a heating step, a method including a preheating step, and the like are appropriately combined.
  • the total area ratio of the domains of the crystalline material and the number of domains of the crystalline material are within the above ranges, and the shape of the domains of the crystalline material is as follows. is preferred. That is, in the colored resin particles of the present invention, the average circularity of the domains of the crystalline material in the cross section of the colored resin particles observed by a backscattered electron image of a scanning electron microscope is preferably 0.50 or less, and more It is preferably 0.10 to 0.47, more preferably 0.20 to 0.45.
  • the average value of the ratio of the minor axis to the major axis of the domain of the crystalline material in the cross section of the colored resin particle observed by a backscattered electron image of a scanning electron microscope is 0.60 or less. is preferably 0.15 to 0.50, more preferably 0.25 to 0.40.
  • the effects of the present invention can be further enhanced.
  • the average circularity of the domains of the crystalline material and the average ratio of the short diameter to the long diameter of the domains of the crystalline material in the cross section of the colored resin particles observed by the backscattered electron image of the scanning electron microscope are, for example,
  • a sample for cross-sectional observation is prepared, and the prepared sample for cross-sectional observation is subjected to a scanning electron microscope. It can be measured by observing the cross section of the colored resin particles by performing measurement using a backscattered electron image.
  • the cross-sectional photograph of the colored resin particles obtained by the measurement of the backscattered electron image of the scanning electron microscope can be obtained by image analysis using image analysis software in the same manner as described above.
  • the average circularity of the domains of the crystalline material is obtained by measuring 100 or more colored resin particles, specifying the shape of the domain portion of the crystalline material for each domain portion, and determining the shape of the domain portion of the specified domain portion. It can be obtained by calculating the degree of circularity from the shape and averaging the obtained results.
  • colored resin particles having a particle diameter within ⁇ 3 ⁇ m of the volume average particle diameter (Dv) of the colored resin particles measured with a Coulter counter are measured. conduct.
  • the average circularity of the domains of the crystalline material and the average ratio of the short diameter to the long diameter of the domains of the crystalline material in the cross section of the colored resin particles observed by the backscattered electron image of the scanning electron microscope are within the above ranges.
  • the method is not particularly limited, for example, a method of adjusting the type and amount of the crystalline material used, a method of adding an additive having a polydiene structure to the colored resin particles, and a method of manufacturing the colored resin particles In this case, a method in which the above-described dispersing step and heating step, a preheating step, and the like are appropriately combined may be used.
  • the average circularity of the colored resin particles constituting the toner of the present invention is not particularly limited, but is preferably 0.950 to 1.000, more preferably 0.955 to 0.995, and still more preferably 0. 0.960 to 0.995.
  • the volume average particle diameter (Dv) of the colored resin particles is preferably 5.0 to 12 ⁇ m, more preferably 5.5 to 10 ⁇ m, still more preferably 6.0 to 9.0 ⁇ m, from the viewpoint of image reproducibility. 0 ⁇ m.
  • the particle size distribution (Dv/Dp), which is the ratio of the volume average particle size (Dv) to the number average particle size (Dp) of the spherical colored resin particles, is preferably 1.00 to 1.40. It is more preferably 1.10 to 1.30, still more preferably 1.11 to 1.25, and particularly preferably 1.13 to 1.20.
  • the volume-average particle diameter (Dv) and number-average particle diameter (Dp) of the spherical colored resin particles can be determined by, for example, a particle size analyzer using a Coulter counter (manufactured by Beckman Coulter, trade name: Multisizer). can be measured using
  • the colored resin particles may be used as a toner as they are or by mixing carrier particles (ferrite, iron powder, etc.) with the colored resin particles.
  • a one-component toner may be obtained by adding and mixing an external additive to the colored resin particles using a high-speed stirrer (for example, FM mixer (trade name, manufactured by Nippon Coke Kogyo Co., Ltd.)).
  • a two-component toner may be prepared by mixing colored resin particles, an external additive, and carrier particles.
  • the stirrer for performing the external addition treatment is not particularly limited as long as it is a stirrer capable of adhering the external additive to the surface of the colored resin particles.
  • Super Mixer (trade name, manufactured by Kawada Seisakusho Co., Ltd.), Q Mixer (trade name, manufactured by Nippon Coke Industry Co., Ltd.), Mechano Fusion System (trade name, manufactured by Hosokawa Micron Corporation), Mechanomill (trade name, manufactured by Okada Seiko Co., Ltd.), etc.
  • the external addition treatment can be performed using a stirrer capable of mixing and stirring.
  • External additives include inorganic fine particles made of silica, titanium oxide, aluminum oxide, zinc oxide, tin oxide, calcium carbonate, calcium phosphate, barium titanate, strontium titanate, zinc stearate, magnesium stearate and cerium oxide; (Meth)acrylic acid ester resins such as polystyrene resins and polymethyl methacrylate resins, styrene-(meth)acrylate copolymers, silicone resins, melamine resins, zinc stearate, and organic fine particles made of calcium stearate. be done.
  • the organic fine particles may be, for example, core-shell type particles in which the core contains a (meth)acrylic acid ester resin and the shell contains a polystyrene resin.
  • inorganic fine particles are preferred, silica and titanium oxide are more preferred, and silica is particularly preferred.
  • the external additive preferably contains hydrophobic fine particles, and more preferably contains hydrophobic inorganic fine particles.
  • the external additive is preferably used in a proportion of 0.3 to 6 parts by mass, more preferably in a proportion of 1.2 to 3 parts by mass, relative to 100 parts by mass of the colored resin particles.
  • the total area ratio of the domains of the crystalline material and the number of existing domains of the crystalline material in the cross section of the colored resin particles observed with a backscattered electron image of a scanning electron microscope are as described above. Since it is within the range, it is excellent in offset resistance, fine line reproducibility and blade cleanability in a well-balanced manner, and the occurrence of toner ejection after being left at a high temperature is suppressed.
  • volume average particle diameter Dv of colored resin particles The volume-average particle diameter Dv of the colored resin particles was measured by a particle size analyzer (manufactured by Beckman Coulter, trade name: Multisizer) using a Coulter counter. The measurement with this Multisizer was carried out under the conditions of aperture diameter: 100 ⁇ m, dispersion medium: Isoton II (trade name), concentration: 10%, and number of measured particles: 100,000. Specifically, 0.2 g of the colored resin particles was placed in a beaker, and an aqueous surfactant solution (manufactured by Fuji Film Co., Ltd., trade name: Drywell) was added therein as a dispersant.
  • image analysis software DNP particle image analysis software, manufactured by Dai Nippon Printing Co., Ltd.
  • image analysis is performed on a cross-sectional photograph of the colored resin particles obtained by measurement using a backscattered electron image of a scanning electron microscope.
  • the total area ratio of the domains of the crystalline material, the number of existing domains of the crystalline material (average number of existing domains per particle), the average circularity of the domains of the crystalline material, and the minor axis to the major axis of the domains of the crystalline material were measured respectively.
  • 100 or more colored resin particles having a particle diameter within ⁇ 3 ⁇ m with respect to the volume average particle diameter (Dv) of the colored resin particles were measured.
  • the total area ratio of the domains of the crystalline material is obtained by obtaining the total area of the colored resin particles and the total area of the domain portion of the crystalline material, and from these results, the number of domains of the crystalline material in the cross section of the colored resin particles. It was obtained by calculating the area ratio.
  • the number of existing domains of the crystalline material (average number of existing domains per particle) is obtained by obtaining the number of colored resin particles to be measured and the total number of domain parts of the crystalline material. was obtained by dividing by the number of colored resin particles.
  • the average circularity of the domains of the crystalline material is obtained by specifying the shape of the domain portion of the crystalline material for each domain portion, calculating the circularity from the shape of the specified domain portion, and averaging the obtained results.
  • the fixing rate can be calculated by the following formula.
  • Fixing rate (%) (ID (after)/ID (before)) ⁇ 100
  • the tape peeling operation means that an adhesive tape (manufactured by Sumitomo 3M, trade name: Scotch Mending Tape 810-3-18) is attached to the measurement part of the test paper, pressed with a constant pressure to adhere, and then It is a series of operations to peel off the adhesive tape in the direction along the paper at a constant speed.
  • the image density was measured using a reflective image densitometer (manufactured by Macbeth, trade name: RD914).
  • the lowest fixing roll temperature at which the fixing rate exceeded 80% was defined as the lowest fixing temperature of the toner.
  • a commercial non-magnetic one-component developing toner cartridge was filled with toner and left in an environment at 50° C. for 120 hours (5 days). After standing, continuous printing was performed for 2 hours using a commercially available non-magnetic one-component developing printer, and the toner was visually checked for ejection, and evaluated according to the following criteria. (double-circle): There was no blowout at all. Good: There was a slight ejection from a part of the developing machine. ⁇ : There was a slight ejection from the entire surface of the developing machine. x: There were many blowouts from the entire surface of the developing machine.
  • the first line image is reproduced. Investigate the number of sheets that can maintain the line width difference of 10 ⁇ m or less. ⁇ '' for those that are still fine, ⁇ '' for those that maintain the thin line on 5,000 or more and less than 7,000 sheets, and ⁇ X'' for those that maintain the thin line only on less than 5,000 sheets. divided into levels.
  • Blade Cleaning Property A cleaning blade sample for testing was attached to the printer of (8) above, toner was put in the cartridge, and printing paper was set, and then left under N/N environment for a whole day and night. Thereafter, continuous printing was performed from the initial stage at a density of 5%, and the photoreceptor and charging roll were visually observed every 500 sheets printed to test whether streaks (filming) due to poor cleaning occurred. The presence or absence of the ink was tested until 10,000 sheets were printed. The test results indicated the number of printed sheets at which cleaning failure occurred.
  • A indicates that no cleaning failure occurred even after printing 10,000 sheets or more continuously; “O” indicates that 5,000 or more sheets could be printed continuously, but “ ⁇ ” indicates that cleaning failure occurred up to 7,000 sheets, and “X” indicates that cleaning failure occurred up to 5,000 sheets. Divided into 4 levels.
  • the resulting suspension was cooled to 30° C., dehydrated with a centrifugal dehydrator, and dried at 50° C. for 24 hours to obtain a styrene-butyl acrylate copolymer ( ⁇ -1).
  • the obtained styrene-butyl acrylate copolymer ( ⁇ -1) contained 86% styrene units and 14% butyl acrylate units, and had a glass transition temperature Tg of 54°C.
  • Example 1 (Production of colored resin particles) 100 parts of the styrene-butyl acrylate copolymer ( ⁇ -1) obtained in Production Example 1 as the binder resin, 5 parts of carbon black (manufactured by Mitsubishi Chemical Corporation, trade name: MA-100) as the colorant, crystal 20 parts of behenyl stearate (melting point: 69.2° C., number average molecular weight of 592) as an ester wax, and the block copolymer composition ( ⁇ -1) obtained in Production Example 2 (having a polydiene structure Additive) 5 parts, and as a charge control agent, 5 parts of a charge control resin (Fujikura Kasei Co., Ltd., styrene acrylic resin containing quaternary ammonium base, functional group content 4%), Henschel mixer (manufactured by Nippon Coke Kogyo Co., Ltd., Trade name: FM20B).
  • a charge control resin Ferjikura Kasei
  • the resulting mixture was melt-kneaded at 145° C. for 10 minutes using a twin-screw extruder, and the resulting kneaded product was cooled.
  • the cooled kneaded material is pulverized with a mechanical pulverizer (manufactured by Turbo Kogyo Co., Ltd., trade name: Turbo Mill), and classified with an elbow jet classifier (manufactured by Nittetsu Mining Co., Ltd., trade name: EJ-LABO).
  • pulverized irregular colored resin particles having a number volume average particle diameter of 7.1 ⁇ m were obtained (heat kneading step, pulverizing step).
  • a sample tube containing a stirrer is placed in a constant temperature water bath set at 70°C, and the preheated colored resin particle dispersion obtained above is added to the sample tube and slowly stirred.
  • the dispersion of the colored resin particles after preheating was heat-treated by allowing the dispersion liquid of the colored resin particles to be spheroidized (heating step).
  • Toner manufacturing To 100 parts of the colored resin particles obtained above, 0.5 parts of silica fine particles having a volume average particle diameter of 12 nm (manufactured by Nippon Aerosil Co., Ltd., trade name: RX-200) hydrophobized with hexamethyldisilazane. 2.0 parts of silica fine particles (manufactured by Nippon Aerosil Co., Ltd., trade name: RX-50) hydrophobized with hexamethyldisilazane and having a volume average particle diameter of 40 nm, and a specific resistance of 40 ⁇ cm.
  • Example 2 Colored resin particles and toner were obtained and evaluated in the same manner as in Example 1, except that the amount of behenyl stearate used as the ester wax was changed to 30 parts. Table 2 shows the results.
  • Example 3 Colored resin particles and toner were obtained and evaluated in the same manner as in Example 1, except that the amount of behenyl stearate used as the ester wax was changed to 40 parts. Table 2 shows the results.
  • Example 4 Colored resin particles and toner were obtained and evaluated in the same manner as in Example 1, except that the amount of behenyl stearate used as the ester wax was changed to 10 parts. Table 2 shows the results.
  • Example 5 Coloring was carried out in the same manner as in Example 1, except that 30 parts of pentaerythritol tetrapalmitate (melting point: 71.0°C, number average molecular weight: 1088) was used as the ester wax instead of behenyl stearate as the ester wax. Resin particles and toner were obtained and evaluated in the same manner. Table 2 shows the results.
  • Example 6 Coloring was carried out in the same manner as in Example 1, except that 30 parts of pentaerythritol tetrastearate (melting point: 76.0°C, number average molecular weight: 1200) was used as the ester wax instead of behenyl stearate as the ester wax. Resin particles and toner were obtained and evaluated in the same manner. Table 2 shows the results.
  • Example 7 Colored resin particles and toner were obtained in the same manner as in Example 2, except that the amount of the block copolymer composition ( ⁇ -1) obtained in Production Example 2 was changed to 15 parts, and evaluated in the same manner. did Table 2 shows the results.
  • Example 8 Colored resin particles and toner were obtained in the same manner as in Example 2, except that the amount of the block copolymer composition ( ⁇ -1) obtained in Production Example 2 was changed to 1 part, and evaluated in the same manner. did Table 2 shows the results.
  • a charge control resin (quaternary ammonium group-containing styrene acrylic resin) as a charge control agent, 30 parts of behenyl stearate as an ester wax, and 1 part of the resulting block copolymer composition ( ⁇ -1) (additive having a polydiene structure), 0.6 parts of divinylbenzene as a crosslinkable polymerizable monomer, and t-dodecylmercaptan as a molecular weight modifier 1.6 parts were added, mixed and dissolved to prepare a suspension in which the polymerizable monomer composition was dispersed (polymerizable monomer composition dispersion).
  • a charge control resin quaternary ammonium group-containing styrene acrylic resin
  • the polymerizable monomer composition dispersion liquid prepared above was put into a reactor equipped with a stirring blade, and the temperature was raised to 90°C to initiate the polymerization reaction.
  • 1 part of methyl methacrylate as a polymerizable monomer for the shell and 2,2'-azobis (2,2'-azobis ( 2-Methyl-N-(2-hydroxyethyl)-propionamide) (trade name: VA-086, manufactured by Wako Pure Chemical Industries, Ltd., water-soluble) was added (0.3 parts), and the reaction was continued at 90° C. for 4 hours. Thereafter, the reaction was terminated by water cooling to obtain an aqueous medium dispersion containing colored resin particles having a core-shell structure.
  • the total area ratio of the domains of the crystalline material in the cross section of the colored resin particles observed by the backscattered electron image of the scanning electron microscope is 10 to 30%, and the domains of the crystalline material are In Examples 1 to 8, in which the average number of particles present per particle is in the range of 10 to 40, the obtained toner has excellent low-temperature fixability, hot offset resistance, and fine line reproduction. It was excellent in well-balanced properties and blade cleanability, and the occurrence of toner ejection after being left at a high temperature was suppressed.
  • FIG. 1 shows a cross-sectional photograph of the colored resin particles obtained by a backscattered electron image of a scanning electron microscope in Example 6. As shown in FIG.
  • the total area ratio of the domains of the crystalline material or the number of domains of the crystalline material in the cross section of the colored resin particles observed by the backscattered electron image of the scanning electron microscope is outside the scope of the present invention.
  • results were inferior in hot offset resistance, fine line reproducibility, or blade cleaning performance, and toner ejection occurred after being left at high temperatures.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Developing Agents For Electrophotography (AREA)

Abstract

Provided is a toner for electrostatic image development that contains coloring resin particles containing a binder resin, a coloring agent, an electrostatic charge control agent, and a crystalline material. When reflection electron images of cross sections of the coloring resin particles are observed using a scanning electron microscope, the total area ratio of domains of the crystalline material on the cross sections of the coloring resin particle is 10-30%, and the average number of the domains of the crystalline material that are present on the cross sections of the coloring resin particles is 5-40 per particle.

Description

静電荷像現像用トナーToner for electrostatic charge image development
 本発明は、電子写真法、静電記録法、および静電印刷法等において静電潜像を現像するために用いられる静電荷像現像用トナーに関する。 The present invention relates to an electrostatic charge image developing toner used for developing electrostatic latent images in electrophotography, electrostatic recording, electrostatic printing, and the like.
 電子写真装置、静電記録装置、および静電印刷装置等の画像形成装置は、感光体上に形成される静電潜像を、静電荷像現像用トナーで現像することで所望の画像を形成する方法が広く実施され、複写機、プリンター、ファクシミリ、およびこれら複合機等に適用されている。 An image forming apparatus such as an electrophotographic apparatus, an electrostatic recording apparatus, and an electrostatic printing apparatus forms a desired image by developing an electrostatic latent image formed on a photoreceptor with a toner for developing an electrostatic image. This method is widely practiced and applied to copiers, printers, facsimiles, and multi-function machines.
 たとえば、電子写真法を用いた電子写真装置では、一般には光導電性物質からなる感光体の表面を種々の手段で一様に帯電させた後、当該感光体上に静電潜像を形成し、次いで当該静電潜像を、トナーを用いて現像し(現像工程)、必要に応じて用紙等の記録材にトナー画像を転写した(転写工程)後、加熱等によりトナーを記録材に定着させて(定着工程)、印刷物を得るものである。 For example, in an electrophotographic apparatus using electrophotography, the surface of a photoreceptor made of a photoconductive material is generally uniformly charged by various means, and then an electrostatic latent image is formed on the photoreceptor. Next, the electrostatic latent image is developed using toner (development process), and if necessary, the toner image is transferred to a recording material such as paper (transfer process), after which the toner is fixed to the recording material by heating or the like. (fixing step) to obtain a printed matter.
 上記画像形成の工程の中でも、定着工程では、通常、定着時に定着ロールの温度を150℃以上に加熱する必要があり、エネルギー源として多くの電力が消費される。これに対し、近年、上記画像形成装置に対する、消費エネルギーの低減化、および印刷の高速化の要請の高まりに伴い、低い定着温度でも高い定着率を維持できるトナー(低温定着性に優れたトナー)の設計が求められている。 Among the above image forming processes, in the fixing process, it is usually necessary to heat the fixing roll to 150°C or higher during fixing, and a large amount of electric power is consumed as an energy source. On the other hand, in recent years, with the increasing demand for the image forming apparatus to reduce energy consumption and increase printing speed, toners capable of maintaining a high fixing rate even at low fixing temperatures (toners with excellent low-temperature fixing properties) have been developed. design is required.
 たとえば、低温定着性に優れ、かつ、光沢ムラおよび端部高温オフセットを同時に抑制することを目的とした技術として、特許文献1では、結着樹脂および結晶性材料を含有するトナー粒子を含有するトナーであって、粉体動的粘弾性測定において、20℃/minで昇温した際に得られる、貯蔵弾性率E’のオンセット温度T(A)と、5℃/minで昇温した際に得られる、貯蔵弾性率E’のオンセット温度T(B)とが、T(A)-T(B)≦3.0℃の関係を満たし、示差走査熱量測定による、最大吸熱ピークのピーク温度が50.0~90.0℃であり、結着樹脂中のテトラヒドロフラン不溶分の含有量が、15~60質量%の範囲であるトナーが提案されている。 For example, Patent Document 1 discloses a toner containing toner particles containing a binder resin and a crystalline material as a technique for achieving excellent low-temperature fixability and simultaneously suppressing gloss unevenness and edge high-temperature offset. In the powder dynamic viscoelasticity measurement, the onset temperature T (A) of the storage elastic modulus E′ obtained when the temperature is raised at 20 ° C./min and when the temperature is raised at 5 ° C./min and the onset temperature T (B) of the storage modulus E' obtained in , satisfies the relationship T (A) - T (B) ≤ 3.0 ° C., and the peak of the maximum endothermic peak by differential scanning calorimetry A toner is proposed in which the temperature is 50.0 to 90.0° C. and the content of tetrahydrofuran-insoluble matter in the binder resin is in the range of 15 to 60 mass %.
特開2021-5050号公報Japanese Patent Application Laid-Open No. 2021-5050
 近年においては、消費エネルギーのさらなる低減化、および印刷のさらなる高速化の要請が高まっており、これらを実現するために、細線再現性およびブレードクリーニング性を十分なものとしながら、低温定着性のさらなる向上が求められている。本発明者の検討によれば、特許文献1に記載のトナーではさらなる改良が必要であることがわかった。
 本発明は、このような実状に鑑みてなされたものであり、その目的は、優れた低温定着性を有し、耐ホットオフセット性、細線再現性およびブレードクリーニング性にバランス良く優れ、高温放置後のトナー噴出しの発生が抑制された静電荷像現像用トナーの製造方法を提供することを目的とする。
In recent years, there has been an increasing demand for further reductions in energy consumption and further speeding up of printing. Needs improvement. According to the study of the present inventors, it was found that the toner described in Patent Document 1 requires further improvement.
The present invention has been made in view of such actual circumstances, and an object of the present invention is to provide excellent low-temperature fixability, excellent hot-offset resistance, fine-line reproducibility and blade cleaning performance in a well-balanced manner, and to provide a toner after standing at a high temperature. It is an object of the present invention to provide a method for producing a toner for developing an electrostatic charge image in which the occurrence of toner ejection is suppressed.
 本発明者は、上記目的を達成すべく検討を行ったところ、結着樹脂、着色剤、帯電制御剤、および結晶性材料を含有する着色樹脂粒子を含有する静電荷像現像用トナーにおいて、静電荷像現像用トナーを構成する着色樹脂粒子を、特定の微細構造を有するものとすること、具体的には、走査型電子顕微鏡の反射電子像により着色樹脂粒子の断面を観察することにより得られる、着色樹脂粒子の断面における、結晶性材料のドメインの総面積割合および結晶性材料のドメインの存在個数を特定の範囲とすることにより、上記目的を達成することができることを見出し、本発明を完成させるに至った。 In order to achieve the above objects, the inventors of the present invention conducted investigations and found that a toner for developing an electrostatic charge image containing colored resin particles containing a binder resin, a coloring agent, a charge control agent, and a crystalline material has an electrostatic charge image developing toner. The colored resin particles constituting the toner for developing a charge image have a specific fine structure. found that the above object can be achieved by setting the total area ratio of the domains of the crystalline material and the number of domains of the crystalline material in the cross section of the colored resin particles to specific ranges, and completed the present invention. I came to let you.
 すなわち、本発明によれば、結着樹脂、着色剤、帯電制御剤、および結晶性材料を含有する着色樹脂粒子を含有する静電荷像現像用トナーであって、
 走査型電子顕微鏡の反射電子像により前記着色樹脂粒子の断面を観察した場合に、前記着色樹脂粒子の断面における、前記結晶性材料のドメインの総面積割合が10~30%であり、前記着色樹脂粒子の断面における、前記結晶性材料のドメインの存在個数が、一粒子当たりの平均存在個数で10~40個の範囲である、静電荷像現像用トナーが提供される。
That is, according to the present invention, there is provided a toner for electrostatic charge image development containing colored resin particles containing a binder resin, a coloring agent, a charge control agent, and a crystalline material,
When the cross section of the colored resin particles is observed with a backscattered electron image of a scanning electron microscope, the total area ratio of the domains of the crystalline material in the cross section of the colored resin particles is 10 to 30%, and the colored resin Provided is an electrostatic charge image developing toner in which the average number of domains of the crystalline material present in the cross section of the particles is in the range of 10 to 40 per particle.
 本発明の静電荷像現像用トナーにおいて、走査型電子顕微鏡の反射電子像により前記着色樹脂粒子の断面を観察した場合に、前記着色樹脂粒子の断面における、前記結晶性材料のドメインの平均円形度が0.50以下であることが好ましい。
 本発明の静電荷像現像用トナーにおいて、走査型電子顕微鏡の反射電子像により前記着色樹脂粒子の断面を観察した場合に、前記着色樹脂粒子の断面における、前記結晶性材料のドメインの長径に対する短径の比の平均値が0.60以下であることが好ましい。
 本発明の静電荷像現像用トナーにおいて、前記結着樹脂100質量部に対する、前記結晶性材料の含有量が5.0~40.0質量部であることが好ましい。
 本発明の静電荷像現像用トナーにおいて、前記結晶性材料が、数平均分子量(Mn)が500~1550であるエステルワックスであることが好ましい。
In the electrostatic charge image developing toner of the present invention, the average circularity of the domains of the crystalline material in the cross section of the colored resin particles when the cross section of the colored resin particles is observed with a backscattered electron image of a scanning electron microscope. is preferably 0.50 or less.
In the toner for developing an electrostatic charge image of the present invention, when the cross section of the colored resin particles is observed with a backscattered electron image of a scanning electron microscope, the length of the domains of the crystalline material in the cross section of the colored resin particles is equal to the length of the domains of the crystalline material. The average diameter ratio is preferably 0.60 or less.
In the electrostatic charge image developing toner of the present invention, the content of the crystalline material is preferably 5.0 to 40.0 parts by mass with respect to 100 parts by mass of the binder resin.
In the electrostatic charge image developing toner of the present invention, the crystalline material is preferably an ester wax having a number average molecular weight (Mn) of 500-1550.
 本発明の静電荷像現像用トナーにおいて、前記着色樹脂粒子が、ポリジエン構造を有する添加剤をさらに含有することが好ましい。
 本発明の静電荷像現像用トナーにおいて、前記結着樹脂100質量部に対する前記ポリジエン構造を有する添加剤の含有量が0.5~20質量部であることが好ましい。
 本発明の静電荷像現像用トナーにおいて、前記結着樹脂が、スチレン-(メタ)アクリル酸エステル共重合体であることが好ましい。
 本発明の静電荷像現像用トナーは、正帯電トナーであることが好ましい。
 本発明の静電荷像現像用トナーは、粉砕法、または懸濁重合法で作製されたものであることが好ましい。
In the electrostatic charge image developing toner of the present invention, it is preferable that the colored resin particles further contain an additive having a polydiene structure.
In the toner for electrostatic charge image development of the present invention, it is preferable that the content of the additive having a polydiene structure is 0.5 to 20 parts by mass with respect to 100 parts by mass of the binder resin.
In the electrostatic charge image developing toner of the present invention, the binder resin is preferably a styrene-(meth)acrylate copolymer.
The electrostatic charge image developing toner of the present invention is preferably a positively charged toner.
The electrostatic charge image developing toner of the present invention is preferably prepared by a pulverization method or a suspension polymerization method.
 本発明によれば、優れた低温定着性を有し、耐ホットオフセット性、細線再現性およびブレードクリーニング性にバランス良く優れ、高温放置後のトナー噴出しの発生が抑制された静電荷像現像用トナーを製造することができる。 According to the present invention, an electrostatic charge image developing toner having excellent low-temperature fixability, excellent hot offset resistance, fine line reproducibility, and blade cleaning performance in a well-balanced manner, and suppressing the occurrence of toner ejection after being left at high temperature. Toner can be manufactured.
図1は、実施例6における、走査型電子顕微鏡(FE-SEM)の反射電子像による着色樹脂粒子の断面写真である。FIG. 1 is a cross-sectional photograph of colored resin particles obtained by a backscattered electron image of a scanning electron microscope (FE-SEM) in Example 6. FIG.
 本発明の静電荷像現像用トナー(以下、単に「トナー」と称することがある。)は、結着樹脂、着色剤、帯電制御剤、および結晶性材料を含有する着色樹脂粒子を含有する静電荷像現像用トナーであって、
 走査型電子顕微鏡の反射電子像により前記着色樹脂粒子の断面を観察した場合に、前記着色樹脂粒子の断面における、前記結晶性材料のドメインの総面積割合が10~30%であり、前記着色樹脂粒子の断面における、前記結晶性材料のドメインの存在個数が、一粒子当たりの平均存在個数で10~40個の範囲にあるものである。
The toner for electrostatic charge image development of the present invention (hereinafter sometimes simply referred to as "toner") is an electrostatic charge containing colored resin particles containing a binder resin, a colorant, a charge control agent, and a crystalline material. A toner for developing a charge image,
When the cross section of the colored resin particles is observed with a backscattered electron image of a scanning electron microscope, the total area ratio of the domains of the crystalline material in the cross section of the colored resin particles is 10 to 30%, and the colored resin The average number of domains of the crystalline material present in the cross section of the grain is in the range of 10 to 40 per grain.
 まず、本発明のトナーを構成する着色樹脂粒子について説明する。
 本発明のトナーを構成する着色樹脂粒子は、たとえば、粉砕法等の乾式法や、乳化重合凝集法、分散重合法、懸濁重合法および溶解懸濁法等の湿式法により製造することができる。本発明のトナーを構成する着色樹脂粒子としては、乾式法の一例である粉砕法により得られるものを好適に用いることができる。
 以下、乾式法の一例である粉砕法により、本発明のトナーを構成する着色樹脂粒子を製造する方法について説明する。
First, the colored resin particles constituting the toner of the present invention will be described.
The colored resin particles constituting the toner of the present invention can be produced, for example, by a dry method such as a pulverization method, or a wet method such as an emulsion polymerization aggregation method, a dispersion polymerization method, a suspension polymerization method, and a dissolution suspension method. . As the colored resin particles constituting the toner of the present invention, those obtained by a pulverization method, which is an example of a dry method, can be preferably used.
A method for producing colored resin particles constituting the toner of the present invention by a pulverization method, which is an example of a dry method, will be described below.
 粉砕法においては、まず、結着樹脂、着色剤、帯電制御剤、および結晶性材料、ならびに、必要に応じて添加されるその他の添加物を、混合機を用いて加熱しながら混練し、得られた混練物を、粗粉砕および微粉砕した後、分級機により、所望の粒径に分級することで、着色樹脂粒子の粉砕物を得る。 In the pulverization method, first, a binder resin, a coloring agent, a charge control agent, a crystalline material, and other additives added as necessary are kneaded while being heated using a mixer to obtain a powder. After coarsely pulverizing and finely pulverizing the resulting kneaded material, the pulverized material of the colored resin particles is obtained by classifying the kneaded material into a desired particle size with a classifier.
 結着樹脂としては、特に限定されないが、たとえば、ポリスチレン樹脂、ポリエステル樹脂、スチレン-(メタ)アクリル酸エステル共重合体(「スチレン-アクリル酸エステル共重合体および/またはスチレン-メタクリル酸エステル共重合体」の意味。)、スチレン-アクリロニトリル共重合体、スチレン-ブタジエン共重合体、スチレン-無水マレイン酸共重合体、ポリエチレン樹脂、ポリプロピレン樹脂などが挙げられる。結着樹脂は、1種のみを単独で用いてもよく、あるいは2種以上を組み合わせて用いてもよい。これらの中でも、低温定着性をより高めることができるという観点より、スチレン-(メタ)アクリル酸エステル共重合体、およびポリエステル樹脂が好ましく、スチレン-(メタ)アクリル酸エステル共重合体がより好ましく、スチレン-アクリル酸エステル共重合体がさらに好ましい。 The binder resin is not particularly limited. styrene-acrylonitrile copolymer, styrene-butadiene copolymer, styrene-maleic anhydride copolymer, polyethylene resin, polypropylene resin, and the like. The binder resin may be used singly or in combination of two or more. Among these, styrene-(meth)acrylic acid ester copolymers and polyester resins are preferred, and styrene-(meth)acrylic acid ester copolymers are more preferred, from the viewpoint of being able to further improve low-temperature fixability. Styrene-acrylate copolymers are more preferred.
 スチレン-(メタ)アクリル酸エステル共重合体を構成する、(メタ)アクリル酸エステルとしては、アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、アクリル酸ブチル、アクリル酸2-エチルヘキシル、アクリル酸ジメチルアミノエチル、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸ブチル、メタクリル酸2-エチルヘキシル、およびメタクリル酸ジメチルアミノエチルなどが挙げられる。これらの(メタ)アクリル酸エステルは、1種類のみ使用してもよいし、2種類以上を組み合わせて使用してもよい。これらの中でも、アクリル酸エチル、アクリル酸プロピル、およびアクリル酸ブチルが好ましく、アクリル酸n-ブチルがより好ましい。 The (meth)acrylic acid ester constituting the styrene-(meth)acrylic acid ester copolymer includes methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, and dimethylamino acrylate. Ethyl, methyl methacrylate, ethyl methacrylate, propyl methacrylate, butyl methacrylate, 2-ethylhexyl methacrylate, dimethylaminoethyl methacrylate, and the like. These (meth)acrylic acid esters may be used alone or in combination of two or more. Among these, ethyl acrylate, propyl acrylate, and butyl acrylate are preferred, and n-butyl acrylate is more preferred.
 スチレン-(メタ)アクリル酸エステル共重合体中における、スチレン単位の含有割合は、好ましくは60~90質量%、より好ましくは70~90質量%、さらに好ましくは80~90質量%である。また、(メタ)アクリル酸エステル単量体単位の含有割合は、好ましくは10~40質量%、より好ましくは10~30質量%、さらに好ましくは10~20質量%である。 The content of styrene units in the styrene-(meth)acrylic acid ester copolymer is preferably 60 to 90% by mass, more preferably 70 to 90% by mass, and still more preferably 80 to 90% by mass. The content of the (meth)acrylic acid ester monomer units is preferably 10 to 40% by mass, more preferably 10 to 30% by mass, and still more preferably 10 to 20% by mass.
 また、結着樹脂のガラス転移温度は、好ましくは40~80℃、より好ましくは45~70℃、さらに好ましくは50~60℃である。ガラス転移温度を上記範囲とすることにより、低温定着性をより適切に高めることができる。結着樹脂のガラス転移温度は、たとえば、ASTM D3418-82に準拠して求めることができる。 Also, the glass transition temperature of the binder resin is preferably 40 to 80°C, more preferably 45 to 70°C, and even more preferably 50 to 60°C. By setting the glass transition temperature within the above range, the low-temperature fixability can be enhanced more appropriately. The glass transition temperature of the binder resin can be determined according to ASTM D3418-82, for example.
 着色剤としては、たとえば、カラートナー(通常、ブラックトナー、シアントナー、イエロートナー、マゼンタトナーの4種類のトナーが用いられる。)を製造する場合、ブラック着色剤、シアン着色剤、イエロー着色剤、マゼンタ着色剤をそれぞれ用いることができる。 As the colorant, for example, in the case of producing a color toner (usually, four kinds of toners of black toner, cyan toner, yellow toner, and magenta toner are used), a black colorant, a cyan colorant, a yellow colorant, Each magenta colorant can be used.
 ブラック着色剤としては、たとえば、カーボンブラック、チタンブラック、ならびに酸化鉄亜鉛、および酸化鉄ニッケル等の磁性粉等の顔料や染料を用いることができる。 As the black colorant, for example, pigments and dyes such as carbon black, titanium black, and magnetic powders such as zinc iron oxide and nickel iron oxide can be used.
 シアン着色剤としては、たとえば、銅フタロシアニン顔料、その誘導体、およびアントラキノン顔料や染料等の化合物が用いられる。具体的には、C.I.Pigment Blue2、3、6、15、15:1、15:2、15:3、15:4、16、17:1、60等が挙げられる。 As cyan colorants, for example, copper phthalocyanine pigments, derivatives thereof, and compounds such as anthraquinone pigments and dyes are used. Specifically, C.I. I. Pigment Blue 2, 3, 6, 15, 15:1, 15:2, 15:3, 15:4, 16, 17:1, 60 and the like.
 イエロー着色剤としては、たとえば、モノアゾ顔料、およびジスアゾ顔料等のアゾ顔料、縮合多環顔料や染料等の化合物が用いられる。具体的には、C.I.Pigment Yellow3、12、13、14、15、17、62、65、73、74、83、93、97、120、138、151、155、180、181、185、186、214、219、C.I.Solvent Yellow98、162等が挙げられる。 Examples of yellow colorants include azo pigments such as monoazo pigments and disazo pigments, compounds such as condensed polycyclic pigments and dyes. Specifically, C.I. I. Pigment Yellow 3, 12, 13, 14, 15, 17, 62, 65, 73, 74, 83, 93, 97, 120, 138, 151, 155, 180, 181, 185, 186, 214, 219, C.I. I. Solvent Yellow 98, 162 and the like.
 マゼンタ着色剤としては、たとえば、モノアゾ顔料、およびジスアゾ顔料等のアゾ顔料、縮合多環顔料や染料等の化合物が用いられる。具体的には、C.I.Pigment Red31、48、57:1、58、60、63、64、68、81、83、87、88、89、90、112、114、122、123、144、146、149、150、163、170、184、185、187、202、206、207、209、238、269、251、C.I.Solvent Violet31、47、59およびC.I.Pigment Violet19等が挙げられる。 Examples of magenta colorants include azo pigments such as monoazo pigments and disazo pigments, compounds such as condensed polycyclic pigments and dyes. Specifically, C.I. I. Pigment Red 31, 48, 57: 1, 58, 60, 63, 64, 68, 81, 83, 87, 88, 89, 90, 112, 114, 122, 123, 144, 146, 149, 150, 163, 170 , 184, 185, 187, 202, 206, 207, 209, 238, 269, 251, C.I. I. Solvent Violet 31, 47, 59 and C.I. I. Pigment Violet 19 and the like.
 着色剤は、それぞれ単独で、あるいは2種以上を組み合わせて使用してもよく、着色剤の使用量は、結着樹脂100質量部に対して、好ましくは1~15質量部であり、より好ましくは1~10質量部であり、さらに好ましくは2~8質量部である。 The colorants may be used alone or in combination of two or more. The amount of the colorant used is preferably 1 to 15 parts by mass, more preferably 1 to 15 parts by mass, based on 100 parts by mass of the binder resin. is 1 to 10 parts by mass, more preferably 2 to 8 parts by mass.
 帯電制御剤としては、一般にトナー用の帯電制御剤として用いられているものであれば、特に限定されないが、帯電制御剤の中でも、結着樹脂との相溶性が高く、安定した帯電性(帯電安定性)をトナー粒子に付与させることができ、これにより着色剤の分散性を向上させることができるという観点から、正帯電性または負帯電性の帯電制御樹脂が好ましく、正帯電性であることがより好ましい。すなわち、本発明のトナーは、正帯電トナーであることがより好ましい。 The charge control agent is not particularly limited as long as it is generally used as a charge control agent for toner. stability) can be imparted to the toner particles, thereby improving the dispersibility of the colorant. is more preferred. That is, the toner of the present invention is more preferably positively charged toner.
 正帯電性の帯電制御剤としては、ニグロシン染料、4級アンモニウム塩、トリアミノトリフェニルメタン化合物およびイミダゾール化合物、ならびに、好ましく用いられる帯電制御樹脂としてのポリアミン樹脂、ならびに4級アンモニウム基含有共重合体、および4級アンモニウム塩基含有共重合体等が挙げられる。 Examples of positive charge control agents include nigrosine dyes, quaternary ammonium salts, triaminotriphenylmethane compounds and imidazole compounds, and polyamine resins and copolymers containing quaternary ammonium groups as charge control resins preferably used. , and quaternary ammonium base-containing copolymers.
 負帯電性の帯電制御剤としては、Cr、Co、Al、およびFe等の金属を含有するアゾ染料、サリチル酸金属化合物およびアルキルサリチル酸金属化合物、ならびに、好ましく用いられる帯電制御樹脂としてのスルホン酸基含有共重合体、スルホン酸塩基含有共重合体、カルボン酸基含有共重合体およびカルボン酸塩基含有共重合体等が挙げられる。 Examples of negative charge control agents include azo dyes containing metals such as Cr, Co, Al, and Fe, metal salicylate compounds and metal alkylsalicylate compounds, and preferably used charge control resins containing sulfonic acid groups. Examples thereof include copolymers, sulfonic acid group-containing copolymers, carboxylic acid group-containing copolymers, and carboxylic acid group-containing copolymers.
 帯電制御樹脂の重量平均分子量(Mw)は、テトラヒドロフランを用いたゲルパーミエーションクロマトグラフィー(GPC)によって測定されるポリスチレン換算値で、5,000~30,000の範囲内であり、好ましくは8,000~25,000の範囲内であり、より好ましくは10,000~20,000の範囲内である。 The weight-average molecular weight (Mw) of the charge control resin is within the range of 5,000 to 30,000, preferably 8,000, as a polystyrene conversion value measured by gel permeation chromatography (GPC) using tetrahydrofuran. 000 to 25,000, more preferably 10,000 to 20,000.
 また、帯電制御樹脂における4級アンモニウム塩基やスルホン酸塩基などの官能基を有する単量体の共重合割合(官能基量)は、好ましくは0.5~12質量%の範囲内であり、より好ましくは1.0~6質量%の範囲内であり、さらに好ましくは1.5~5質量%の範囲内である。 Further, the copolymerization ratio (functional group amount) of the monomer having a functional group such as a quaternary ammonium base or a sulfonate base in the charge control resin is preferably in the range of 0.5 to 12% by mass, and more It is preferably within the range of 1.0 to 6% by mass, more preferably within the range of 1.5 to 5% by mass.
 帯電制御剤の含有量は、結着樹脂100質量部に対して、好ましくは0.01~20質量部、より好ましくは0.03~10質量部、さらに好ましくは0.03~8質量部である。帯電制御剤の添加量を上記範囲とすることにより、カブリの発生および印字汚れの発生を有効に抑制しながら、着色剤の分散性を適切に高めることできる。 The content of the charge control agent is preferably 0.01 to 20 parts by mass, more preferably 0.03 to 10 parts by mass, and still more preferably 0.03 to 8 parts by mass with respect to 100 parts by mass of the binder resin. be. By setting the amount of the charge control agent to be added within the above range, the dispersibility of the colorant can be increased appropriately while effectively suppressing the occurrence of fogging and the occurrence of printing stains.
 結晶性材料としては、たとえば、トナーの離型剤として作用する材料や、定着性の向上効果を付与する材料が挙げられるが、たとえば、結晶性ポリエステル樹脂や、エステルワックスなどが挙げられる。本発明のトナーにおいて、結晶性材料は、着色樹脂粒子中において、その少なくとも一部がドメイン構造を形成した状態にて存在する。結晶性材料により形成されるドメイン構造については、後述する。 Examples of crystalline materials include materials that act as release agents for toners and materials that impart an effect of improving fixability, such as crystalline polyester resins and ester waxes. In the toner of the present invention, the crystalline material exists in a state in which at least a portion thereof forms a domain structure in the colored resin particles. A domain structure formed of a crystalline material will be described later.
 結晶性ポリエステル樹脂は、たとえば、脂肪族ジオールと脂肪族ジカルボン酸との縮重合物が挙げられ、結晶性ポリエステル樹脂としては、炭素数2~12の脂肪族ジオールと、炭素数2~12の脂肪族ジカルボン酸との縮重合物であることが好ましい。 Examples of crystalline polyester resins include condensation polymerization products of aliphatic diols and aliphatic dicarboxylic acids. Examples of crystalline polyester resins include aliphatic diols having 2 to 12 carbon atoms and aliphatic It is preferably a polycondensation product with group dicarboxylic acid.
 炭素数2~12の脂肪族ジオールとしては、たとえば、1,2-エタンジオール、1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,7-ヘプタンジオール、1,8-オクタンジオール、1,9-ノナンジオール、1,10-デカンジオール、1,11-ウンデカンジオール、1,12-ドデカンジオールなどが挙げられる。これらは単独で用いてもよく、2種類以上を混合して用いることも可能である。 Examples of aliphatic diols having 2 to 12 carbon atoms include 1,2-ethanediol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 1 ,7-heptanediol, 1,8-octanediol, 1,9-nonanediol, 1,10-decanediol, 1,11-undecanediol, 1,12-dodecanediol and the like. These may be used alone, or two or more of them may be mixed and used.
 炭素数2~12の脂肪族ジカルボン酸としては、たとえば、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、1,9-ノナンジカルボン酸、1,10-デカンジカルボン酸、1,11-ウンデカンジカルボン酸、1,12-ドデカンジカルボン酸、ならびに、これら脂肪族ジカルボン酸の低級アルキルエステルおよび酸無水物などが挙げられる。これらは単独で用いてもよく、2種類以上を混合して用いることも可能である。 Examples of aliphatic dicarboxylic acids having 2 to 12 carbon atoms include oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, 1,9-nonanedicarboxylic acid, 1,10-decanedicarboxylic acid, 1,11-undecanedicarboxylic acid, 1,12-dodecanedicarboxylic acid, and lower alkyl esters and acid anhydrides of these aliphatic dicarboxylic acids. These may be used alone, or two or more of them may be mixed and used.
 また、炭素数2~12の脂肪族ジカルボン酸とともに、あるいは、炭素数2~12の脂肪族ジカルボン酸に代えて、芳香族ジカルボン酸を用いることもできる。芳香族ジカルボン酸としては、たとえば、テレフタル酸、イソフタル酸、2,6-ナフタレンジカルボン酸及び4,4’-ビフェニルジカルボン酸などが挙げられる。 An aromatic dicarboxylic acid can also be used together with an aliphatic dicarboxylic acid having 2 to 12 carbon atoms or in place of an aliphatic dicarboxylic acid having 2 to 12 carbon atoms. Examples of aromatic dicarboxylic acids include terephthalic acid, isophthalic acid, 2,6-naphthalenedicarboxylic acid and 4,4'-biphenyldicarboxylic acid.
  結晶性ポリエステル樹脂は、たとえば、ジカルボン酸成分とジオール成分とを反応させる一般的なポリエステルの重合法によって製造することができる。重合法としては、たとえば、直接重縮合法およびエステル交換法などが挙げられる。 A crystalline polyester resin can be produced, for example, by a general polyester polymerization method in which a dicarboxylic acid component and a diol component are reacted. Polymerization methods include, for example, a direct polycondensation method and a transesterification method.
 また、エステルワックスとしては、特に限定されないが、数平均分子量(Mn)が500~1550であるエステルワックスが好ましく、数平均分子量(Mn)が500~1550である脂肪酸エステル化合物が好適に挙げられる。脂肪酸エステル化合物としては、1価アルコールおよび/または多価アルコールと、飽和脂肪酸および/または不飽和脂肪酸とのエステル反応による生成物であることが好ましい。 Although the ester wax is not particularly limited, ester waxes having a number average molecular weight (Mn) of 500 to 1,550 are preferable, and fatty acid ester compounds having a number average molecular weight (Mn) of 500 to 1,550 are preferable. The fatty acid ester compound is preferably a product obtained by an ester reaction between a monohydric alcohol and/or polyhydric alcohol and a saturated fatty acid and/or unsaturated fatty acid.
 1価アルコールの具体例としては、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、2-ブタノール、1-ペンタノール、1-ヘキサノール、オクタノール、2-エチル-1-ヘキサノール、ノニルアルコール、ラウリルアルコール、セチルアルコール、ステアリルアルコール、ベヘニルアルコール等の1価の飽和脂肪族アルコール;アリルアルコール、メタリルアルコール、クロチルアルコール、オレイルアルコール等の1価の不飽和脂肪族アルコール;シクロヘキサノール等の1価の脂環式アルコール;フェノール、フェニルメタノール(ベンジルアルコール)、メチルフェノール(クレゾール)、p-エチルフェノール、ジメチルフェノール(キシレノール)、ノニルフェノール、ドデシルフェノール、フェニルフェノール、ナフトール等の1価の芳香族アルコール;等が挙げられる。 Specific examples of monohydric alcohols include methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, 1-pentanol, 1-hexanol, octanol, 2-ethyl-1-hexanol, nonyl alcohol. , lauryl alcohol, cetyl alcohol, stearyl alcohol, and behenyl alcohol; monovalent unsaturated aliphatic alcohols such as allyl alcohol, methallyl alcohol, crotyl alcohol, and oleyl alcohol; monohydric aromatic alcohols such as phenol, phenylmethanol (benzyl alcohol), methylphenol (cresol), p-ethylphenol, dimethylphenol (xylenol), nonylphenol, dodecylphenol, phenylphenol, and naphthol ; and the like.
 多価アルコールの具体例としては、エチレングリコール、プロピレングリコール等の2価の飽和脂肪族アルコール;カテコール、ヒドロキノン等の2価の芳香族アルコール;グリセリン、ペンタエリスリトール、ジペンタエリスリトール、ポリグリセリン等の3価以上の飽和脂肪族アルコール;等が挙げられる。 Specific examples of polyhydric alcohols include divalent saturated aliphatic alcohols such as ethylene glycol and propylene glycol; divalent aromatic alcohols such as catechol and hydroquinone; valence or higher saturated fatty alcohols; and the like.
 これらの1価アルコールおよび多価アルコールの中でも、1~4価の飽和脂肪族アルコールが好ましく、ベヘニルアルコールおよびペンタエリスリトールがより好ましく、ベヘニルアルコールが特に好ましい。 Among these monohydric alcohols and polyhydric alcohols, monohydric to tetrahydric saturated aliphatic alcohols are preferred, behenyl alcohol and pentaerythritol are more preferred, and behenyl alcohol is particularly preferred.
 脂肪酸エステル化合物の原料となる脂肪酸は、好ましくは炭素数が12~22、より好ましくは炭素数が14~18の飽和脂肪酸および/または不飽和脂肪酸が採用される。なかでも、数平均分子量(Mn)が500~1550である脂肪酸エステル化合物が得られ易いことから、上記炭素数を有する飽和脂肪酸が特に好ましい。 The fatty acid used as the raw material for the fatty acid ester compound preferably has 12 to 22 carbon atoms, more preferably saturated and/or unsaturated fatty acids having 14 to 18 carbon atoms. Among these, saturated fatty acids having the above-mentioned number of carbon atoms are particularly preferred, since a fatty acid ester compound having a number average molecular weight (Mn) of 500 to 1,550 can be easily obtained.
 上記炭素数を有する飽和脂肪酸の具体例として、特に限定されないが、ラウリン酸(炭素数12)、ミリスチン酸(炭素数14)、ペンタデシル酸(炭素数15)、パルミチン酸(炭素数16)、マルガリン酸(炭素数17)、ステアリン酸(炭素数18)、アラキジン酸(炭素数20)、およびベヘン酸(炭素数22)などが挙げられる。これらの飽和脂肪酸の中でも、ステアリン酸(炭素数18)、アラキジン酸(炭素数20)、およびベヘン酸(炭素数22)が好ましく、ステアリン酸(炭素数18)がより好ましい。 Specific examples of saturated fatty acids having the above carbon number are not particularly limited, but lauric acid (12 carbon atoms), myristic acid (14 carbon atoms), pentadecylic acid (15 carbon atoms), palmitic acid (16 carbon atoms), margarine acid (17 carbon atoms), stearic acid (18 carbon atoms), arachidic acid (20 carbon atoms), behenic acid (22 carbon atoms), and the like. Among these saturated fatty acids, stearic acid (18 carbon atoms), arachidic acid (20 carbon atoms), and behenic acid (22 carbon atoms) are preferred, and stearic acid (18 carbon atoms) is more preferred.
 不飽和脂肪酸の具体例としては、特に限定されないが、以下の化合物が挙げられる。
 パルミトレイン酸(CH(CHCH=CH(CHCOOH)
 オレイン酸(CH(CHCH=CH(CHCOOH)
 バクセン酸(CH(CHCH=CH(CHCOOH)
 リノール酸(CH(CH(CHCH=CH)(CHCOOH)
 (9,12,15)-リノレン酸(CH(CHCH=CH)(CHCOOH)
 (6,9,12)-リノレン酸(CH(CH(CHCH=CH)(CHCOOH)
 エレオステアリン酸(CH(CH(CH=CH)(CHCOOH)
 アラキドン酸(CH(CH(CHCH=CH)(CHCOOH)
Specific examples of unsaturated fatty acids include, but are not limited to, the following compounds.
Palmitoleic acid ( CH3 ( CH2 ) 5CH =CH( CH2 ) 7COOH )
Oleic acid ( CH3 ( CH2 ) 7CH =CH( CH2 ) 7COOH )
vaccenic acid ( CH3 ( CH2 ) 5CH =CH( CH2 ) 9COOH )
Linoleic acid ( CH3 ( CH2 ) 3 ( CH2CH =CH) 2 ( CH2 ) 7COOH )
(9,12,15)-linolenic acid (CH 3 (CH 2 CH═CH) 3 (CH 2 ) 7 COOH)
(6,9,12)-linolenic acid (CH 3 (CH 2 ) 3 (CH 2 CH═CH) 3 (CH 2 ) 4 COOH)
Eleostearic acid ( CH3 ( CH2 ) 3 (CH=CH) 3 ( CH2 ) 7COOH )
Arachidonic acid ( CH3 ( CH2 ) 3 ( CH2CH =CH) 4 ( CH2 ) 3COOH )
 なお、上記飽和脂肪酸および/または不飽和脂肪酸は、1種のみを単独で用いてもよく、あるいは2種以上を組み合わせて用いてもよい。 The above saturated fatty acid and/or unsaturated fatty acid may be used singly or in combination of two or more.
 以上述べたような脂肪酸エステル化合物は、常法にしたがって製造することが可能である。このような脂肪酸エステル化合物の製造方法としては、たとえば、1価アルコールおよび/または多価アルコールと、飽和脂肪酸および/または不飽和脂肪酸とを用いたエステル反応を行う方法が挙げられる。また、脂肪酸エステル化合物として、市販の脂肪酸エステル化合物を用いることも可能であり、市販の脂肪酸エステル化合物としては、たとえば、日油社製の「WEP2」「WEP3」「WEP4」「WEP5」「WE6」「WE11」(以上、商品名)等が挙げられる。 A fatty acid ester compound as described above can be produced according to a conventional method. A method for producing such a fatty acid ester compound includes, for example, a method of performing an ester reaction using a monohydric alcohol and/or polyhydric alcohol and a saturated fatty acid and/or unsaturated fatty acid. In addition, as the fatty acid ester compound, it is possible to use a commercially available fatty acid ester compound. Examples of commercially available fatty acid ester compounds include "WEP2", "WEP3", "WEP4", "WEP5", and "WE6" manufactured by NOF Corporation. "WE11" (these are trade names) and the like.
 脂肪酸エステル化合物の数平均分子量(Mn)は、好ましくは500~1550であり、より好ましくは550~1200、さらに好ましくは550~1100である。なお、脂肪酸エステル化合物の数平均分子量(Mn)は、たとえば、テトラヒドロフランを用いたゲルパーミエーションクロマトグラフィー(GPC)によって測定されるポリスチレン換算値にて測定することができる。 The number average molecular weight (Mn) of the fatty acid ester compound is preferably 500-1550, more preferably 550-1200, still more preferably 550-1100. The number average molecular weight (Mn) of the fatty acid ester compound can be measured, for example, by gel permeation chromatography (GPC) using tetrahydrofuran in terms of polystyrene.
 また、結晶性材料としては、上述した結晶性ポリエステル樹脂およびエステルワックスに代えて、あるいは、結晶性ポリエステル樹脂またはエステルワックスとともに、他の結晶性材料を用いてもよく、このような他の結晶性材料としては、たとえば、低分子量ポリオレフィンワックスや、その変性ワックス;ホホバ等の植物系天然ワックス;パラフィン等の石油ワックス;オゾケライト等の鉱物系ワックス;フィッシャートロプシュワックス等の合成ワックス;ジペンタエリスリトールエステル等の多価アルコールエステル;等が挙げられる。これらは、1種のみを用いてもよく、2種以上を組み合わせて用いてもよい。 In addition, as the crystalline material, other crystalline materials may be used instead of the crystalline polyester resin and ester wax described above, or together with the crystalline polyester resin or ester wax. Materials include, for example, low molecular weight polyolefin waxes and modified waxes thereof; natural plant waxes such as jojoba; petroleum waxes such as paraffin; mineral waxes such as ozokerite; synthetic waxes such as Fischer-Tropsch wax; polyhydric alcohol ester; These may be used alone or in combination of two or more.
 結晶性材料の融点は、得られるトナーの低温定着性をより高めるという観点より、好ましくは50~90℃、より好ましくは60~90℃、さらに好ましくは65~80℃、特に好ましくは68~80℃、最も好ましくは70~80℃である。 The melting point of the crystalline material is preferably 50 to 90° C., more preferably 60 to 90° C., still more preferably 65 to 80° C., particularly preferably 68 to 80° C., from the viewpoint of further enhancing the low-temperature fixability of the resulting toner. °C, most preferably 70-80 °C.
 結晶性材料の含有量は、結着樹脂100質量部に対して、好ましくは5.0~40.0質量部であり、より好ましくは10~35質量部、さらに好ましくは15~30質量部である。結晶性材料の含有量を上記範囲とすることにより、得られるトナーの粒径分布を比較的均一なものとしながら、低温定着性をより高めることができる。 The content of the crystalline material is preferably 5.0 to 40.0 parts by mass, more preferably 10 to 35 parts by mass, still more preferably 15 to 30 parts by mass, with respect to 100 parts by mass of the binder resin. be. By setting the content of the crystalline material within the above range, it is possible to improve the low-temperature fixability while making the particle size distribution of the obtained toner relatively uniform.
 また、着色樹脂粒子には、ポリジエン構造を有する添加剤をさらに含有させてもよい。このようなポリジエン構造を有する添加剤を用いることにより、ポリジエン構造を有する添加剤が備える結晶性材料に対する相溶性によって、着色樹脂粒子中において、結晶性材料の分散性を高めることができ、これにより、着色樹脂粒子中に、後述する結晶性材料のドメイン構造をより好適に形成させることが可能となる。 In addition, the colored resin particles may further contain an additive having a polydiene structure. By using such an additive having a polydiene structure, it is possible to increase the dispersibility of the crystalline material in the colored resin particles due to the compatibility with the crystalline material possessed by the additive having a polydiene structure. , the domain structure of the crystalline material, which will be described later, can be more preferably formed in the colored resin particles.
 ポリジエン構造を有する添加剤としては、特に限定されないが、たとえば、共役ジエン化合物に由来の構造単位と、芳香族ビニル化合物に由来の構造単位とを有する重合体である、共役ジエン-芳香族ビニル系熱可塑性エラストマー;ポリブタジエンゴムやポリイソプレンゴムなどの共役ジエン系エラストマー;などが挙げられるが、共役ジエン-芳香族ビニル系熱可塑性エラストマーが好適であり、共役ジエン-芳香族ビニル系熱可塑性エラストマーの中でも未水添の共役ジエン-芳香族ビニル系熱可塑性エラストマーが特に好適である。 The additive having a polydiene structure is not particularly limited, but for example, a conjugated diene-aromatic vinyl-based polymer, which is a polymer having a structural unit derived from a conjugated diene compound and a structural unit derived from an aromatic vinyl compound Thermoplastic elastomers; conjugated diene elastomers such as polybutadiene rubber and polyisoprene rubber; Unhydrogenated conjugated diene-aromatic vinyl thermoplastic elastomers are particularly preferred.
 共役ジエン-芳香族ビニル系熱可塑性エラストマーとしては、共役ジエン単量体と、芳香族ビニル単量体と、必要に応じて用いられるこれらと共重合し得る他のモノマーとのランダム、ブロック、グラフト等の共重合体、およびこのような共重合体の水添物などが挙げられる。 Conjugated diene-aromatic vinyl thermoplastic elastomers include random, block, and graft copolymers of conjugated diene monomers, aromatic vinyl monomers, and optionally other monomers that can be copolymerized therewith. and the like, and hydrogenated products of such copolymers.
 このような共役ジエン-芳香族ビニル系熱可塑性エラストマーとしては、特に限定されないが、トナーの低温定着性をより高めるという観点より、少なくとも1つの芳香族ビニル重合体ブロックおよび少なくとも1つの共役ジエン重合体ブロックを含むブロック共重合体を好適に用いることができる。 Such a conjugated diene-aromatic vinyl thermoplastic elastomer is not particularly limited, but from the viewpoint of further improving the low-temperature fixability of the toner, it contains at least one aromatic vinyl polymer block and at least one conjugated diene polymer. Block copolymers containing blocks can be suitably used.
 以下、共役ジエン-芳香族ビニル系熱可塑性エラストマーの代表例である、少なくとも1つの芳香族ビニル重合体ブロックおよび少なくとも1つの共役ジエン重合体ブロックを含むブロック共重合体(以下、単に「ブロック共重合体」と称することがある。)について説明する。本発明で用いるブロック共重合体は、芳香族ビニル単量体を重合して得られる芳香族ビニル重合体ブロックと、共役ジエン単量体を重合して得られる共役ジエン重合体ブロックとを、それぞれ少なくとも1つ含むものである。 Hereinafter, block copolymers containing at least one aromatic vinyl polymer block and at least one conjugated diene polymer block (hereinafter simply referred to as "block copolymer (sometimes referred to as “union”) will be described. The block copolymer used in the present invention comprises an aromatic vinyl polymer block obtained by polymerizing an aromatic vinyl monomer and a conjugated diene polymer block obtained by polymerizing a conjugated diene monomer. It contains at least one.
 芳香族ビニル単量体は、芳香族ビニル化合物であれば特に限定されないが、スチレン、α-メチルスチレン、2-メチルスチレン、3-メチルスチレン、4-メチルスチレン、2-エチルスチレン、3-エチルスチレン、4-エチルスチレン、2,4-ジイソプロピルスチレン、2,4-ジメチルスチレン、4-t-ブチルスチレン、5-t-ブチル-2-メチルスチレン、2-クロロスチレン、3-クロロスチレン、4-クロロスチレン、4-ブロモスチレン、2-メチル-4,6-ジクロロスチレン、2,4-ジブロモスチレン、ビニルナフタレン等が挙げられる。これらのなかでも、スチレンを用いることが好ましい。これらの芳香族ビニル単量体は、各芳香族ビニル重合体ブロックにおいて、それぞれ単独で、あるいは2種以上を組み合わせて用いることができる。また、ブロック共重合体が複数の芳香族ビニル重合体ブロックを有する場合において、各々の芳香族ビニル重合体ブロックは、同じ芳香族ビニル単量体単位により構成されていてもよいし、異なる芳香族ビニル単量体単位により構成されていてもよい。 The aromatic vinyl monomer is not particularly limited as long as it is an aromatic vinyl compound. Styrene, 4-ethylstyrene, 2,4-diisopropylstyrene, 2,4-dimethylstyrene, 4-t-butylstyrene, 5-t-butyl-2-methylstyrene, 2-chlorostyrene, 3-chlorostyrene, 4 -chlorostyrene, 4-bromostyrene, 2-methyl-4,6-dichlorostyrene, 2,4-dibromostyrene, vinylnaphthalene and the like. Among these, it is preferable to use styrene. These aromatic vinyl monomers may be used alone or in combination of two or more in each aromatic vinyl polymer block. Further, when the block copolymer has a plurality of aromatic vinyl polymer blocks, each aromatic vinyl polymer block may be composed of the same aromatic vinyl monomer units, or may be composed of different aromatic vinyl monomer units. It may be composed of vinyl monomer units.
 芳香族ビニル重合体ブロックは、芳香族ビニル単量体単位が主たる繰り返し単位となる限りにおいて、それ以外の単量体単位を含んでいてもよい。芳香族ビニル重合体ブロックに使用可能な他の単量体としては、1,3-ブタジエン、イソプレン(2-メチル-1,3-ブタジエン)等の共役ジエン単量体、α,β-不飽和ニトリル単量体、不飽和カルボン酸または酸無水物単量体、不飽和カルボン酸エステル単量体、非共役ジエン単量体などが挙げられる。芳香族ビニル重合体ブロックにおける芳香族ビニル単量体単位以外の単量体単位の含有量は、20質量%以下であることが好ましく、10質量%以下であることがより好ましく、実質的に0質量%であることが特に好ましい。 The aromatic vinyl polymer block may contain other monomer units as long as the aromatic vinyl monomer unit is the main repeating unit. Other monomers that can be used in the aromatic vinyl polymer block include conjugated diene monomers such as 1,3-butadiene, isoprene (2-methyl-1,3-butadiene), α,β-unsaturated Examples include nitrile monomers, unsaturated carboxylic acid or acid anhydride monomers, unsaturated carboxylic acid ester monomers, non-conjugated diene monomers, and the like. The content of monomer units other than aromatic vinyl monomer units in the aromatic vinyl polymer block is preferably 20% by mass or less, more preferably 10% by mass or less, and is substantially zero. % by weight is particularly preferred.
 共役ジエン単量体は、共役ジエン化合物であれば特に限定されないが、1,3-ブタジエン、イソプレン、2,3-ジメチル-1,3-ブタジエン、2-クロロ-1,3-ブタジエン、1,3-ペンタジエン、1,3-ヘキサジエンなどが挙げられる。これらのなかでも、低温定着性の向上効果が高いという観点から、1,3-ブタジエンおよび/またはイソプレンを用いることが好ましく、イソプレンを用いることが特に好ましい。これらの共役ジエン単量体は、各共役ジエン重合体ブロックにおいて、それぞれ単独で、あるいは2種以上を組み合わせて用いることができる。また、ブロック共重合体が複数の共役ジエン重合体ブロックを有する場合において、各々の共役ジエン重合体ブロックは、同じ共役ジエン単量体単位により構成されていてもよいし、異なる共役ジエン単量体単位により構成されていてもよい。さらに、各共役ジエン重合体ブロックの不飽和結合の一部に対し、水素添加反応が行われていてもよい。 The conjugated diene monomer is not particularly limited as long as it is a conjugated diene compound. 3-pentadiene, 1,3-hexadiene, and the like. Among these, 1,3-butadiene and/or isoprene are preferably used, and isoprene is particularly preferably used, from the viewpoint of a high effect of improving low-temperature fixability. These conjugated diene monomers may be used alone or in combination of two or more in each conjugated diene polymer block. Further, when the block copolymer has a plurality of conjugated diene polymer blocks, each conjugated diene polymer block may be composed of the same conjugated diene monomer units, or may be composed of different conjugated diene monomer units. It may be composed of units. Furthermore, a hydrogenation reaction may be performed on a part of the unsaturated bonds of each conjugated diene polymer block.
 共役ジエン重合体ブロックは、共役ジエン単量体単位が主たる繰り返し単位となる限りにおいて、それ以外の単量体単位を含んでいてもよい。共役ジエン重合体ブロックに使用可能な他の単量体としては、スチレン、α-メチルスチレンなどの芳香族ビニル単量体、α,β-不飽和ニトリル単量体、不飽和カルボン酸単量体、不飽和カルボン酸無水物単量体、不飽和カルボン酸エステル単量体、非共役ジエン単量体などが挙げられる。共役ジエン重合体ブロックにおける共役ジエン単量体単位以外の単量体単位の含有量は、20質量%以下であることが好ましく、10質量%以下であることがより好ましく、実質的に0質量%であることが特に好ましい。 The conjugated diene polymer block may contain other monomer units as long as the conjugated diene monomer unit is the main repeating unit. Other monomers that can be used in the conjugated diene polymer block include aromatic vinyl monomers such as styrene, α-methylstyrene, α,β-unsaturated nitrile monomers, unsaturated carboxylic acid monomers. , unsaturated carboxylic acid anhydride monomers, unsaturated carboxylic acid ester monomers, and non-conjugated diene monomers. The content of monomer units other than conjugated diene monomer units in the conjugated diene polymer block is preferably 20% by mass or less, more preferably 10% by mass or less, and substantially 0% by mass. is particularly preferred.
 共役ジエン重合体ブロックのビニル結合含有量(共役ジエン重合体ブロック中の全共役ジエン単量体単位において、1,2-ビニル結合単位と3,4-ビニル結合単位が占める割合)は、特に限定されないが、1~20mol%であることが好ましく、2~15mol%であることがより好ましく、3~10mol%であることが特に好ましい。 The vinyl bond content of the conjugated diene polymer block (ratio of 1,2-vinyl bond units and 3,4-vinyl bond units to all conjugated diene monomer units in the conjugated diene polymer block) is not particularly limited. However, it is preferably 1 to 20 mol %, more preferably 2 to 15 mol %, and particularly preferably 3 to 10 mol %.
 ブロック共重合体は、芳香族ビニル重合体ブロックおよび共役ジエン重合体ブロックをそれぞれ少なくとも1つ含むものであれば、それぞれの重合体ブロックの数やそれらの結合形態は特に限定されない。ブロック共重合体の具体例としては、以下のものが挙げられる。以下の具体例において、Arは芳香族ビニル重合体ブロックを表し、Dは共役ジエン重合体ブロックを表し、Xはカップリング剤の残基を表し、nは2以上の整数を表す。
 (a)Ar-Dとして表される芳香族ビニル-共役ジエンブロック共重合体
 (b)Ar-D-Arおよび/または(Ar-D)n-Xとして表される芳香族ビニル-共役ジエン-芳香族ビニルブロック共重合体
 (c)D-Ar-Dおよび/または(D-Ar)n-Xとして表される共役ジエン-芳香族ビニル-共役ジエンブロック共重合体
 (d)Ar-D-Ar-Dとして表される芳香族ビニル-共役ジエン-芳香族ビニル-共役ジエンブロック共重合体、
 (e)上記(a)~(d)のうち2種以上を任意に組み合わせてなるブロック共重合体の組成物
As long as the block copolymer contains at least one aromatic vinyl polymer block and at least one conjugated diene polymer block, the number of each polymer block and the form of bonding thereof are not particularly limited. Specific examples of block copolymers include the following. In the following specific examples, Ar represents an aromatic vinyl polymer block, D represents a conjugated diene polymer block, X represents a residue of a coupling agent, and n represents an integer of 2 or greater.
(a) an aromatic vinyl-conjugated diene block copolymer represented as Ar-D; (b) an aromatic vinyl-conjugated diene- represented as Ar-D-Ar and/or (Ar-D)nX- Aromatic vinyl block copolymers (c) conjugated diene-aromatic vinyl-conjugated diene block copolymers represented as D-Ar-D and/or (D-Ar)nX (d) Ar-D- an aromatic vinyl-conjugated diene-aromatic vinyl-conjugated diene block copolymer represented as Ar-D;
(e) A composition of a block copolymer obtained by arbitrarily combining two or more of the above (a) to (d)
 ブロック共重合体として、上記(a)Ar-Dとして表される芳香族ビニル-共役ジエンブロック共重合体を少なくとも含むものを用いることが好ましく、上記(a)Ar-Dとして表される芳香族ビニル-共役ジエンブロック共重合体と、(b)Ar-D-Arおよび/または(Ar-D)n-Xとして表される芳香族ビニル-共役ジエン-芳香族ビニルブロック共重合体とを少なくとも含むものを用いることがより好ましい。共役ジエン-芳香族ビニル系熱可塑性エラストマー中における、Ar-Dで表される芳香族ビニル-共役ジエンブロック共重合体(すなわち、芳香族ビニル重合体ブロックと、芳香族ビニル重合体と共重合可能な重合体のブロックとからなるジブロック共重合体)の含有量は、好ましくは40質量%(重量%)以上であり、好ましくは50質量%以上であり、より好ましくは55質量%以上であり、さらに好ましくは60質量%以上である。また、その上限は、特に限定されないが、好ましくは98質量%以下であり、より好ましくは95質量%以下であり、さらに好ましくは90質量%以下である。共役ジエン-芳香族ビニル系熱可塑性エラストマー中における、Ar-Dで表される芳香族ビニル-共役ジエンブロック共重合体(すなわち、芳香族ビニル重合体ブロックと、芳香族ビニル重合体と共重合可能な重合体のブロックとからなるジブロック共重合体)の含有量を、40質量%以上とすることにより、着色樹脂粒子中における分散性、および結晶性材料に対する相溶性をより高めることができる。 As the block copolymer, it is preferable to use one containing at least the aromatic vinyl-conjugated diene block copolymer represented by (a) Ar-D, and the aromatic copolymer represented by (a) Ar-D at least a vinyl-conjugated diene block copolymer and (b) an aromatic vinyl-conjugated diene-aromatic vinyl block copolymer represented as Ar—D—Ar and/or (Ar—D)n—X It is more preferable to use those containing. The aromatic vinyl-conjugated diene block copolymer represented by Ar-D in the conjugated diene-aromatic vinyl thermoplastic elastomer (that is, the aromatic vinyl polymer block and the aromatic vinyl polymer can be copolymerized The content of the diblock copolymer consisting of a block of a polymer) is preferably 40% by mass (% by weight) or more, preferably 50% by mass or more, and more preferably 55% by mass or more. , more preferably 60% by mass or more. The upper limit is not particularly limited, but is preferably 98% by mass or less, more preferably 95% by mass or less, and still more preferably 90% by mass or less. The aromatic vinyl-conjugated diene block copolymer represented by Ar-D in the conjugated diene-aromatic vinyl thermoplastic elastomer (that is, the aromatic vinyl polymer block and the aromatic vinyl polymer can be copolymerized By setting the content of the diblock copolymer to 40% by mass or more, the dispersibility in the colored resin particles and the compatibility with the crystalline material can be further enhanced.
 Ar-Dで表される芳香族ビニル-共役ジエンブロック共重合体における、芳香族ビニル重合体ブロックArの重量平均分子量(Mw(Ar))は、特に限定されないが、好ましくは10000~50000、より好ましくは15000~30000であり、共役ジエン重合体ブロックDの重量平均分子量(Mw(D))は、特に限定されないが、好ましくは50000~200000、より好ましくは60000~150000であり、さらに好ましくは70000~100000である。 The weight-average molecular weight (Mw (Ar)) of the aromatic vinyl polymer block Ar in the aromatic vinyl-conjugated diene block copolymer represented by Ar-D is not particularly limited, but is preferably 10,000 to 50,000, or more. The weight average molecular weight (Mw(D)) of the conjugated diene polymer block D is not particularly limited, but is preferably 50000 to 200000, more preferably 60000 to 150000, and even more preferably 70000. ~100000.
 また、Ar-D-Arおよび/または(Ar-D)n-Xとして表される芳香族ビニル-共役ジエン-芳香族ビニルブロック共重合体における、芳香族ビニル重合体ブロックArの重量平均分子量(Mw(Ar))は、特に限定されないが、好ましくは20000~70000、より好ましくは25000~50000であり、共役ジエン重合体ブロックDの重量平均分子量(Mw(D))は、特に限定されないが、好ましくは100000~300000、より好ましくは120000~250000であり、さらに好ましくは150000~200000である。
 なお、上記重量平均分子量は、いずれも、テトラヒドロフランを用いたゲルパーミエーションクロマトグラフィー(GPC)によって測定されるポリスチレン換算値である。
Also, in the aromatic vinyl-conjugated diene-aromatic vinyl block copolymer represented as Ar-D-Ar and/or (Ar-D)nX, the weight average molecular weight of the aromatic vinyl polymer block Ar ( Mw (Ar)) is not particularly limited, but is preferably 20,000 to 70,000, more preferably 25,000 to 50,000. The weight average molecular weight (Mw (D)) of the conjugated diene polymer block D is not particularly limited, It is preferably 100,000 to 300,000, more preferably 120,000 to 250,000, even more preferably 150,000 to 200,000.
All of the above weight average molecular weights are polystyrene equivalent values measured by gel permeation chromatography (GPC) using tetrahydrofuran.
 ブロック共重合体における、全単量体単位に対する芳香族ビニル単量体単位の含有割合は、10~30質量%であることが好ましく、12~25質量%であることがより好ましく、15~25質量%であることがさらに好ましい。芳香族ビニル単量体単位の含有割合を上記範囲とすることにより、着色樹脂粒子中における分散性、および結晶性材料に対する相溶性をより高めることができる。 The content ratio of the aromatic vinyl monomer units to the total monomer units in the block copolymer is preferably 10 to 30% by mass, more preferably 12 to 25% by mass, and 15 to 25% by mass. % by mass is more preferred. By setting the content of the aromatic vinyl monomer unit within the above range, the dispersibility in the colored resin particles and the compatibility with the crystalline material can be further enhanced.
 ブロック共重合体における、芳香族ビニル単量体単位の含有量は、ブロック共重合体を構成する全ての重合体成分が、芳香族ビニル単量体単位および共役ジエン単量体単位のみにより構成されている場合であれば、Rubber  Chem. Technol.,45,1295(1972)に記載された方法に従って、ブロック共重合体をオゾン分解し、次いで水素化リチウムアルミニウムにより還元すれば、共役ジエン単量体単位部分が分解され、芳香族ビニル単量体単位部分のみを取り出せるので、容易に全体の芳香族ビニル単量体単位含有量を測定することができる。 The content of aromatic vinyl monomer units in the block copolymer is such that all polymer components constituting the block copolymer are composed only of aromatic vinyl monomer units and conjugated diene monomer units. If Rubber Chem. Technol. , 45, 1295 (1972), the block copolymer is ozonolyzed and then reduced with lithium aluminum hydride to decompose the conjugated diene monomer unit portion and produce the aromatic vinyl monomer. Since only the unit portion can be taken out, the total aromatic vinyl monomer unit content can be easily measured.
 また、ブロック共重合体における、芳香族ビニル単量体単位の重量平均分子量(Mw)は、特に限定されないが、テトラヒドロフランを用いたゲルパーミエーションクロマトグラフィー(GPC)によって測定されるポリスチレン換算値で、好ましくは10000~50000であり、より好ましくは20000~40000である。また、ブロック共重合体における、共役ジエン単量体単位の重量平均分子量(Mw)は、特に限定されないが、好ましくは50000~200000であり、より好ましくは60000~180000である。 Further, the weight average molecular weight (Mw) of the aromatic vinyl monomer unit in the block copolymer is not particularly limited, but is a polystyrene equivalent value measured by gel permeation chromatography (GPC) using tetrahydrofuran, It is preferably 10,000 to 50,000, more preferably 20,000 to 40,000. The weight average molecular weight (Mw) of the conjugated diene monomer unit in the block copolymer is not particularly limited, but is preferably 50,000 to 200,000, more preferably 60,000 to 180,000.
 ブロック共重合体のメルトインデックス(MI)は、特に限定されないが、ASTM D-1238(G条件、200℃、5kg)に準拠して測定される値として、たとえば、1~1000g/10分の範囲で選択され、好ましくは5~30g/10分である。 The melt index (MI) of the block copolymer is not particularly limited, but as a value measured according to ASTM D-1238 (G conditions, 200°C, 5 kg), for example, in the range of 1 to 1000 g/10 minutes and preferably 5 to 30 g/10 minutes.
 本発明で用いるブロック共重合体は、常法に従い製造することが可能である。このようなブロック共重合体の製造方法としては、たとえば、アニオンリビング重合法により、芳香族ビニル単量体と共役ジエン単量体とをそれぞれ逐次的に重合して重合体ブロックを形成し、必要に応じて、カップリング剤を反応させてカップリングを行う方法が挙げられる。 The block copolymer used in the present invention can be produced by a conventional method. As a method for producing such a block copolymer, for example, an aromatic vinyl monomer and a conjugated diene monomer are sequentially polymerized by an anionic living polymerization method to form a polymer block, and the necessary Depending on the method, a method of performing coupling by reacting a coupling agent may be mentioned.
 また、本発明で用いるブロック共重合体として、上記(a)Ar-Dとして表される芳香族ビニル-共役ジエンブロック共重合体と、(b)Ar-D-Arおよび/または(Ar-D)n-Xとして表される芳香族ビニル-共役ジエン-芳香族ビニルブロック共重合体とを少なくとも含むものを用いる場合には、次の方法を採用することができる。 Further, as the block copolymer used in the present invention, (a) the aromatic vinyl-conjugated diene block copolymer represented by Ar-D, and (b) Ar-D-Ar and/or (Ar-D ) When using at least an aromatic vinyl-conjugated diene-aromatic vinyl block copolymer represented by nX, the following method can be employed.
 すなわち、まず、アニオンリビング重合法により、芳香族ビニル単量体を重合し、これに続いて、共役ジエン単量体を添加し重合することで、活性末端を有するジブロック共重合体を得る。次いで、活性末端を有するジブロック共重合体の活性末端に対して1モル当量未満のカップリング剤を添加することで、活性末端を有するジブロック共重合体のうち一部についてカップリング反応させて、(Ar-D)n-Xとして表される芳香族ビニル-共役ジエン-芳香族ビニルブロック共重合体を得た後、重合停止剤を添加することで、残存する活性末端を有するジブロック共重合体を不活性化し、Ar-Dとして表されるジブロック共重合体を得る方法が挙げられる。なお、この際に、カップリング剤として、ジクロロシラン、モノメチルジクロロシラン、ジメチルジクロロシラン、ジフェニルジメトキシシラン、ジフェニルジエトキシシラン、ジクロロエタン、ジブロモエタン、メチレンクロライド、ジブロモメタンなどの2官能のカップリング剤を用いることで、Ar-D-Arで表される芳香族ビニル-共役ジエン-芳香族ビニルブロック共重合体(Dには、カップリング剤の残基が含まれる)を得ることができる。 That is, first, an aromatic vinyl monomer is polymerized by an anionic living polymerization method, and then a conjugated diene monomer is added and polymerized to obtain a diblock copolymer having an active terminal. Then, by adding less than 1 molar equivalent of a coupling agent to the active terminal of the diblock copolymer having an active terminal, part of the diblock copolymer having an active terminal is subjected to a coupling reaction. , (Ar-D)nX After obtaining an aromatic vinyl-conjugated diene-aromatic vinyl block copolymer represented by A method of deactivating the polymer to obtain a diblock copolymer represented as Ar-D is included. At this time, a bifunctional coupling agent such as dichlorosilane, monomethyldichlorosilane, dimethyldichlorosilane, diphenyldimethoxysilane, diphenyldiethoxysilane, dichloroethane, dibromoethane, methylene chloride, and dibromomethane is used as a coupling agent. By using it, an aromatic vinyl-conjugated diene-aromatic vinyl block copolymer represented by Ar-D-Ar (D contains the residue of the coupling agent) can be obtained.
 (a)Ar-Dとして表される芳香族ビニル-共役ジエンブロック共重合体と、(b)Ar-D-Arおよび/または(Ar-D)n-Xとして表される芳香族ビニル-共役ジエン-芳香族ビニルブロック共重合体との含有割合は、特に限定されないが、(a)Ar-Dとして表される芳香族ビニル-共役ジエンブロック共重合体の含有割合は、好ましくは10~90質量%、より好ましくは20~80質量%である。また、(b)Ar-D-Arおよび/または(Ar-D)n-Xとして表される芳香族ビニル-共役ジエン-芳香族ビニルブロック共重合体の含有割合は、好ましくは10~90質量%、より好ましくは20~80質量%である。 (a) an aromatic vinyl-conjugated diene block copolymer represented as Ar-D and (b) an aromatic vinyl-conjugate represented as Ar-D-Ar and/or (Ar-D)nX The content ratio of the diene-aromatic vinyl block copolymer is not particularly limited, but the content ratio of (a) the aromatic vinyl-conjugated diene block copolymer represented by Ar-D is preferably 10 to 90. % by mass, more preferably 20 to 80% by mass. In addition, the content of the aromatic vinyl-conjugated diene-aromatic vinyl block copolymer represented by (b) Ar-D-Ar and/or (Ar-D)nX is preferably 10 to 90 mass. %, more preferably 20 to 80% by mass.
 また、共役ジエン-芳香族ビニル系熱可塑性エラストマーとしては、上述したブロック共重合体に代えて、芳香族ビニル単量体と共役ジエン単量体とのランダム共重合体を用いることもできる。芳香族ビニル単量体と共役ジエン単量体とのランダム共重合体は、たとえば、有機アルカリ金属化合物を重合開始剤として用いた、リビングアニオン重合により製造することができる。有機アルカリ金属化合物としては、たとえば、有機リチウム化合物、有機ナトリウム化合物、有機カリウム化合物などが挙げられ、具体的には、n-ブチルリチウム、sec-ブチルリチウム、t-ブチルリチウム、ヘキシルリチウム、フェニルリチウム、スチルベンリチウムなどの有機モノリチウム化合物;ジリチオメタン、1,4-ジリチオブタン、1,4-ジリチオ-2-エチルシクロヘキサン、1,3,5-トリリチオベンゼン、1,3,5-トリス(リチオメチル)ベンゼンなどの有機多価リチウム化合物;ナトリウムナフタレンなどの有機ナトリウム化合物;カリウムナフタレンなどの有機カリウム化合物;などが挙げられる。これらの有機金属化合物の中でも、n-ブチルリチウムが好ましく用いられる。 As the conjugated diene-aromatic vinyl thermoplastic elastomer, a random copolymer of an aromatic vinyl monomer and a conjugated diene monomer can be used instead of the block copolymer described above. A random copolymer of an aromatic vinyl monomer and a conjugated diene monomer can be produced, for example, by living anionic polymerization using an organic alkali metal compound as a polymerization initiator. Examples of organic alkali metal compounds include organic lithium compounds, organic sodium compounds, organic potassium compounds, etc. Specific examples include n-butyllithium, sec-butyllithium, t-butyllithium, hexyllithium, and phenyllithium. , organic monolithium compounds such as stilbene lithium; organic polyvalent lithium compounds such as sodium naphthalene; organic sodium compounds such as sodium naphthalene; organic potassium compounds such as potassium naphthalene; Among these organometallic compounds, n-butyllithium is preferably used.
 芳香族ビニル単量体と共役ジエン単量体とのランダム共重合体における、全単量体単位に対する芳香族ビニル単量体単位の含有割合は、50質量%以下であることが好ましく、45質量%以下であることがより好ましく、40質量%以下であることがさらに好ましい。芳香族ビニル単量体単位の含有割合を上記範囲とすることにより、ランダム共重合体の結晶性材料に対する親和性と、ブロック共重合体の結着樹脂に対する親和性とを高度にバランスさせることができ、得られるトナーを低温定着性により優れたものとすることができる。 In the random copolymer of the aromatic vinyl monomer and the conjugated diene monomer, the content ratio of the aromatic vinyl monomer unit to the total monomer units is preferably 50% by mass or less, and 45% by mass. % or less, more preferably 40% by mass or less. By setting the content ratio of the aromatic vinyl monomer unit within the above range, it is possible to achieve a high balance between the affinity of the random copolymer for the crystalline material and the affinity of the block copolymer for the binder resin. It is possible to make the obtained toner more excellent in low-temperature fixability.
 さらに、本発明においては、ポリジエン構造を有する添加剤として、ポリブタジエンゴムやポリイソプレンゴムなどの共役ジエン系エラストマーも好適に用いることができる。ポリブタジエンゴムやポリイソプレンゴムなどの共役ジエン系エラストマーは、たとえば、有機アルカリ金属化合物を重合開始剤として用いた、リビングアニオン重合により製造することができる。有機アルカリ金属化合物としては、たとえば、上述したものを用いることができる。 Furthermore, in the present invention, conjugated diene elastomers such as polybutadiene rubber and polyisoprene rubber can be suitably used as additives having a polydiene structure. Conjugated diene elastomers such as polybutadiene rubber and polyisoprene rubber can be produced, for example, by living anionic polymerization using an organic alkali metal compound as a polymerization initiator. As the organic alkali metal compound, for example, those mentioned above can be used.
 ポリジエン構造を有する添加剤の重量平均分子量(Mw)は、特に限定されないが、テトラヒドロフランを用いたゲルパーミエーションクロマトグラフィー(GPC)によって測定されるポリスチレン換算値で、好ましくは60,000~350,000であり、より好ましくは80,000~250,000である。重量平均分子量(Mw)を上記範囲とすることにより、得られるトナーの低温定着性をより高めることができる。 The weight average molecular weight (Mw) of the additive having a polydiene structure is not particularly limited, but is a polystyrene conversion value measured by gel permeation chromatography (GPC) using tetrahydrofuran, preferably 60,000 to 350,000. and more preferably 80,000 to 250,000. By setting the weight average molecular weight (Mw) within the above range, the low-temperature fixability of the resulting toner can be further enhanced.
 ポリジエン構造を有する添加剤の含有量は、結着樹脂100質量部に対して、好ましくは0.5~20質量部であり、より好ましは1.0~15質量部、さらに好ましくは3~7質量部である。ポリジエン構造を有する添加剤の含有量を上記範囲とすることにより、得られるトナーの低温定着性をより高めることができる。 The content of the additive having a polydiene structure is preferably 0.5 to 20 parts by mass, more preferably 1.0 to 15 parts by mass, still more preferably 3 to 20 parts by mass, with respect to 100 parts by mass of the binder resin. 7 parts by mass. By setting the content of the additive having a polydiene structure within the above range, the low-temperature fixability of the resulting toner can be further enhanced.
 また、結晶性材料の含有量に対する、ポリジエン構造を有する添加剤の含有量は、「ポリジエン構造を有する添加剤の含有量/結晶性材料の含有量」の重量比率で、好ましくは0.02~0.75であり、より好ましくは0.10~0.55、さらに好ましくは0.20~0.50である。ポリジエン構造を有する添加剤の含有量を上記範囲とすることにより、得られるトナーの低温定着性をより高めることができる。 Further, the content of the additive having a polydiene structure with respect to the content of the crystalline material is the weight ratio of "content of the additive having a polydiene structure/content of the crystalline material", and is preferably from 0.02 to 0.75, more preferably 0.10 to 0.55, still more preferably 0.20 to 0.50. By setting the content of the additive having a polydiene structure within the above range, the low-temperature fixability of the resulting toner can be further enhanced.
 また、着色樹脂粒子は、極性樹脂をさらに含有していてもよい。極性樹脂としては、特に限定されないが、アクリル樹脂を好適に用いることができる。アクリル樹脂は、アクリル酸エステルおよびメタクリル酸エステルのうちの少なくともいずれか一方とアクリル酸およびメタクリル酸のうち少なくともいずれか一方を主成分とする共重合体(アクリレート系共重合体)である。酸モノマーとしては、アクリル酸が好ましい。 In addition, the colored resin particles may further contain a polar resin. The polar resin is not particularly limited, but an acrylic resin can be preferably used. The acrylic resin is a copolymer (acrylate-based copolymer) whose main component is at least one of acrylic acid ester and methacrylic acid ester and at least one of acrylic acid and methacrylic acid. Acrylic acid is preferred as the acid monomer.
 アクリル樹脂は、たとえば、アクリル酸エステルとアクリル酸との共重合体、アクリル酸エステルとメタクリル酸との共重合体、メタクリル酸エステルとアクリル酸との共重合体、メタクリル酸エステルとメタクリル酸との共重合体、アクリル酸エステルとメタクリル酸エステルとアクリル酸との共重合体、アクリル酸エステルとメタクリル酸エステルとメタクリル酸との共重合体およびアクリル酸エステルとメタクリル酸エステルとアクリル酸とメタクリル酸との共重合体が挙げられる。これらのうち、アクリル酸エステルとメタクリル酸エステルとアクリル酸との共重合体を用いることが好ましい。 Acrylic resins include, for example, copolymers of acrylic acid ester and acrylic acid, copolymers of acrylic acid ester and methacrylic acid, copolymers of methacrylic acid ester and acrylic acid, and copolymers of methacrylic acid ester and methacrylic acid. Copolymers, copolymers of acrylic acid esters, methacrylic acid esters and acrylic acid, copolymers of acrylic acid esters, methacrylic acid esters and methacrylic acid, and acrylic acid esters, methacrylic acid esters, acrylic acid and methacrylic acid A copolymer of Among these, it is preferable to use a copolymer of acrylic acid ester, methacrylic acid ester and acrylic acid.
 アクリル樹脂の重量平均分子量(Mw)は、通常6,000~50,000であり、8,000~25,000が好ましく、10,000~20,000がより好ましい。
 アクリル樹脂の重量平均分子量(Mw)が上記範囲にあると、低温定着性をより良好なものとすることができる。
The weight average molecular weight (Mw) of the acrylic resin is usually 6,000 to 50,000, preferably 8,000 to 25,000, more preferably 10,000 to 20,000.
When the weight average molecular weight (Mw) of the acrylic resin is within the above range, the low-temperature fixability can be further improved.
 アクリル樹脂中における、アクリル酸エステル単量体単位、メタクリル酸エステル単量体単位、アクリル酸単量体単位、およびメタクリル酸単量体単位の比は、共重合体合成時のアクリル酸エステル、メタクリル酸エステル、アクリル酸、およびメタクリル酸の添加量の質量比により調節することができる。当該添加量の質量比としては、たとえば、(アクリル酸エステルおよび/またはメタクリル酸エステル):(アクリル酸および/またはメタクリル酸)=(99~99.95):(0.05~1)であってもよく、(アクリル酸エステルおよび/またはメタクリル酸エステル):(アクリル酸および/またはメタクリル酸)=(99.4~99.9):(0.1~0.6)であることが好ましく、(アクリル酸エステルおよび/またはメタクリル酸エステル):(アクリル酸および/またはメタクリル酸)=(99.5~99.7):(0.3~0.5)であることがさらに好ましい。 The ratio of acrylic acid ester monomer units, methacrylic acid ester monomer units, acrylic acid monomer units, and methacrylic acid monomer units in the acrylic resin varies depending on the acrylic acid ester and methacrylic acid monomer units during copolymer synthesis. It can be adjusted by the mass ratio of the amounts of acid ester, acrylic acid, and methacrylic acid added. The mass ratio of the amount added is, for example, (acrylic acid ester and/or methacrylic acid ester): (acrylic acid and/or methacrylic acid) = (99 to 99.95): (0.05 to 1). (Acrylic acid ester and / or methacrylic acid ester): (acrylic acid and / or methacrylic acid) = (99.4 to 99.9): (0.1 to 0.6) is preferable , (acrylic acid ester and/or methacrylic acid ester):(acrylic acid and/or methacrylic acid)=(99.5 to 99.7):(0.3 to 0.5).
 アクリル樹脂を形成するために使用されるアクリル酸エステルとしては、たとえば、アクリル酸メチル、アクリル酸エチル、アクリル酸n-プロピル、アクリル酸イソプロピル、アクリル酸n-ブチル、アクリル酸イソブチル、アクリル酸sec-ブチル、アクリル酸tert-ブチル、アクリル酸n-ペンチル、アクリル酸sec-ペンチル、アクリル酸イソペンチル、アクリル酸ネオペンチル、アクリル酸n-ヘキシル、アクリル酸イソヘキシル、アクリル酸ネオヘキシル、アクリル酸sec-ヘキシル、およびアクリル酸tert-ヘキシル等が挙げられ、なかでも、アクリル酸エチル、アクリル酸n-プロピル、アクリル酸イソプロピル、およびアクリル酸n-ブチルが好ましく、アクリル酸n-ブチルがより好ましい。 Acrylic esters used to form acrylic resins include, for example, methyl acrylate, ethyl acrylate, n-propyl acrylate, isopropyl acrylate, n-butyl acrylate, isobutyl acrylate, sec- Butyl, tert-butyl acrylate, n-pentyl acrylate, sec-pentyl acrylate, isopentyl acrylate, neopentyl acrylate, n-hexyl acrylate, isohexyl acrylate, neohexyl acrylate, sec-hexyl acrylate, and acrylic acid tert-hexyl and the like, among which ethyl acrylate, n-propyl acrylate, isopropyl acrylate and n-butyl acrylate are preferred, and n-butyl acrylate is more preferred.
 アクリル樹脂を形成するために使用されるメタクリル酸エステルとしては、たとえば、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸n-プロピル、メタクリル酸イソプロピル、メタクリル酸n-ブチル、メタクリル酸イソブチル、メタクリル酸sec-ブチル、メタクリル酸tert-ブチル、メタクリル酸n-ペンチル、メタクリル酸sec-ペンチル、メタクリル酸イソペンチル、メタクリル酸ネオペンチル、メタクリル酸n-ヘキシル、メタクリル酸イソヘキシル、メタクリル酸ネオヘキシル、メタクリル酸sec-ヘキシル、およびメタクリル酸tert-ヘキシル等が挙げられ、なかでも、メタクリル酸メチル、メタクリル酸n-プロピル、メタクリル酸イソプロピル、およびメタクリル酸n-ブチルが好ましく、メタクリル酸メチルがより好ましい。 Methacrylate esters used to form acrylic resins include, for example, methyl methacrylate, ethyl methacrylate, n-propyl methacrylate, isopropyl methacrylate, n-butyl methacrylate, isobutyl methacrylate, sec- Butyl, tert-butyl methacrylate, n-pentyl methacrylate, sec-pentyl methacrylate, isopentyl methacrylate, neopentyl methacrylate, n-hexyl methacrylate, isohexyl methacrylate, neohexyl methacrylate, sec-hexyl methacrylate, and methacryl acid tert-hexyl and the like, among which methyl methacrylate, n-propyl methacrylate, isopropyl methacrylate, and n-butyl methacrylate are preferred, and methyl methacrylate is more preferred.
 アクリル樹脂は、市販のものを用いることもできるが、溶液重合法、水溶液重合法、イオン重合法、高温高圧重合法、懸濁重合法等の公知の方法により製造することができる。 Although commercially available acrylic resins can be used, they can be produced by known methods such as solution polymerization, aqueous solution polymerization, ion polymerization, high-temperature and high-pressure polymerization, and suspension polymerization.
 極性樹脂の添加量は、結着樹脂100質量部に対して0.3~4質量部であることが好ましく、0.5~3質量部であることがより好ましく、0.6~2.5質量部であることがさらに好ましく、0.7~2質量部であることが特に好ましい。極性樹脂の添加量を上記範囲とすることで、環境安定性を良好なものとしながら、その添加効果を十分なものとすることができる。 The amount of the polar resin added is preferably 0.3 to 4 parts by mass, more preferably 0.5 to 3 parts by mass, more preferably 0.6 to 2.5 parts by mass, based on 100 parts by mass of the binder resin. It is more preferably 0.7 to 2 parts by mass, and particularly preferably 0.7 to 2 parts by mass. By setting the amount of the polar resin to be added within the above range, the effect of the addition can be made sufficient while improving the environmental stability.
<加熱混練工程、粉砕工程>
 そして、粉砕法においては、上記した結着樹脂、着色剤、帯電制御剤、および結晶性材料、ならびに、ポリジエン構造を有する添加剤や極性樹脂などの必要に応じて添加されるその他の添加物を混合機、たとえば、ボールミル、V型混合機、ヘンシェルミキサー(商品名)、高速ディゾルバ、インターナルミキサー、フォールバーグ等を用いて混合する。次に、上記により得られた混合物を、加圧ニーダー、二軸押出混練機、ローラ等を用いて加熱しながら溶融混練し、次いで、得られた混練物を、ハンマーミル、カッターミル、ローラミル等の粉砕機を用いて、粗粉砕する。さらに、ジェットミル、高速回転式粉砕機等の粉砕機を用いて微粉砕した後、風力分級機、気流式分級機等の分級機により、所望の粒径に分級することで、着色樹脂粒子の粉砕物を得る。溶融混練の際の加熱温度は、溶融混練が可能となる温度とすればよく、たとえば、結着樹脂および結晶性材料が溶融する温度以上とすることができ、好ましくは100~200℃、より好ましくは110~160℃である。溶融混練を行う時間は、好ましくは1~60分であり、より好ましくは5~20分である。
<Heating and kneading process, pulverizing process>
In the pulverization method, the binder resin, colorant, charge control agent, and crystalline material described above, as well as other additives such as additives having a polydiene structure and polar resins, which are added as necessary, are used. Mixing is performed using a mixer such as a ball mill, a V-type mixer, a Henschel mixer (trade name), a high-speed dissolver, an internal mixer, or a Fallberg. Next, the mixture obtained above is melt-kneaded while being heated using a pressure kneader, a twin-screw extruder kneader, rollers, or the like, and then the resulting kneaded product is subjected to a hammer mill, a cutter mill, a roller mill, or the like. Coarsely pulverize using a pulverizer. Furthermore, after fine pulverization using a pulverizer such as a jet mill or a high-speed rotary pulverizer, the colored resin particles are classified into desired particle sizes by a classifier such as an air classifier or an air classifier. Get a grind. The heating temperature at the time of melt-kneading may be a temperature at which melt-kneading is possible. is 110-160°C. The time for melt-kneading is preferably 1 to 60 minutes, more preferably 5 to 20 minutes.
<分散工程>
 次いで、上記にて得られた着色樹脂粒子の粉砕物を、水系分散媒体中で分散させることで、着色樹脂粒子の分散液を得る。
<Dispersion process>
Next, the pulverized product of the colored resin particles obtained above is dispersed in an aqueous dispersion medium to obtain a dispersion liquid of the colored resin particles.
 分散工程において用いる水系分散媒体は、水系媒体中に、分散安定化剤を溶解または分散させてなるものである。水系媒体としては、水を単独で用いてもよいが、水に溶解可能な溶剤を併用することもできる。水に溶解可能な溶剤としては、たとえば、ジメチルホルムアミド、テトラヒドロフラン、アセトン、メチルエチルケトン等の低級ケトン類等が挙げられる。 The aqueous dispersion medium used in the dispersion step is obtained by dissolving or dispersing the dispersion stabilizer in the aqueous medium. As the aqueous medium, water may be used alone, but a water-soluble solvent may also be used in combination. Examples of water-soluble solvents include lower ketones such as dimethylformamide, tetrahydrofuran, acetone, and methyl ethyl ketone.
 分散安定化剤としては、着色樹脂粒子の粉砕物を、水系媒体中に分散させるための分散性を付与できる化合物であればよく、特に限定されないが、有機分散安定化剤としては、たとえば、ポリビニルアルコール、メチルセルロース、ゼラチンなどの水溶性高分子;アニオン性界面活性剤、ノニオン性界面活性剤、両性界面活性剤などの界面活性剤;等が挙げられる。また、無機分散安定化剤としては、酸化アルミニウム、酸化チタン等の金属酸化物;硫酸バリウム、硫酸カルシウム等の硫酸塩、炭酸バリウム、炭酸カルシウム、炭酸マグネシウム等の炭酸塩、リン酸カルシウム、リン酸マグネシウム、リン酸アルミニウム等のリン酸塩、水酸化アルミニウム、水酸化マグネシウム、水酸化第二鉄等の金属水酸化物;シリカ、二酸化チタン、酸化アルミニウムなどの無機粒子;シリコーン、金属石鹸などが挙げられるが、これらの中でも、無機分散安定剤が好ましく、リン酸塩または金属水酸化物がより好ましく、金属水酸化物がさらに好ましい。 The dispersion stabilizer is not particularly limited as long as it is a compound capable of imparting dispersibility for dispersing the pulverized colored resin particles in an aqueous medium. Examples of the organic dispersion stabilizer include polyvinyl water-soluble polymers such as alcohol, methylcellulose, gelatin; surfactants such as anionic surfactants, nonionic surfactants and amphoteric surfactants; Inorganic dispersion stabilizers include metal oxides such as aluminum oxide and titanium oxide; sulfates such as barium sulfate and calcium sulfate; carbonates such as barium carbonate, calcium carbonate and magnesium carbonate; calcium phosphate; phosphates such as aluminum phosphate; metal hydroxides such as aluminum hydroxide, magnesium hydroxide and ferric hydroxide; inorganic particles such as silica, titanium dioxide and aluminum oxide; Among these, inorganic dispersion stabilizers are preferred, phosphates or metal hydroxides are more preferred, and metal hydroxides are even more preferred.
 また、無機分散安定化剤の中でも、難水溶性の無機分散安定化剤が好ましく、特に、難水溶性の無機分散安定化剤を、コロイド粒子の形態にて、水系媒体に分散させた状態、すなわち、難水溶性の無機分散安定化剤コロイド粒子を含有するコロイド分散液の状態で用いることが好ましい。難水溶性の無機分散安定化剤を、難水溶性の無機分散安定剤コロイド粒子を含有するコロイド分散液の状態で用いることにより、着色樹脂粒子の粒径分布を狭くすることができることに加え、洗浄により、得られるトナー中における残留量を容易に低く抑えることができるため、これにより、細線再現性をより高めることができ、さらには、環境安定性にも資するものである。 Among the inorganic dispersion stabilizers, a poorly water-soluble inorganic dispersion stabilizer is preferable. In particular, the poorly water-soluble inorganic dispersion stabilizer is dispersed in an aqueous medium in the form of colloid particles That is, it is preferably used in the form of a colloidal dispersion containing colloidal particles of a water-insoluble inorganic dispersion stabilizer. By using the poorly water-soluble inorganic dispersion stabilizer in the form of a colloidal dispersion containing colloidal particles of the poorly water-soluble inorganic dispersion stabilizer, the particle size distribution of the colored resin particles can be narrowed. By washing, the residual amount in the obtained toner can be easily suppressed to a low level, so that fine line reproducibility can be further improved, and furthermore, environmental stability is also contributed.
 難水溶性の無機分散安定化剤コロイド粒子を含有するコロイド分散液は、たとえば、水酸化アルカリ金属塩および/または水酸化アルカリ土類金属塩と、水溶性多価金属塩(水酸化アルカリ土類金属塩を除く。)を水系媒体中で反応させることで調製することができる。 Colloidal dispersions containing sparingly water-soluble inorganic dispersion stabilizer colloidal particles include, for example, alkali metal hydroxides and/or alkaline earth metal hydroxides and water-soluble polyvalent metal salts (alkaline earth hydroxides). Metal salts are excluded.) can be prepared by reacting them in an aqueous medium.
 水酸化アルカリ金属塩としては、水酸化リチウム、水酸化ナトリウム、水酸化カリウムなどが挙げられる。水酸化アルカリ土類金属塩としては、水酸化バリウム、水酸化カルシウムなどが挙げられる。 Examples of alkali metal hydroxide salts include lithium hydroxide, sodium hydroxide, and potassium hydroxide. Alkaline earth metal hydroxides include barium hydroxide and calcium hydroxide.
 水溶性多価金属塩としては、上記水酸化アルカリ土類金属塩に該当する化合物以外の水溶性を示す多価金属塩であればよいが、たとえば、塩化マグネシウム、リン酸マグネシウム、硫酸マグネシウムなどのマグネシウム金属塩;塩化カルシウム、硝酸カルシウム、酢酸カルシウム、硫酸カルシウムなどのカルシウム金属塩;塩化アルミニウム、硫酸アルミニウムなどのアルミニウム金属塩;塩化バリウム、硝酸バリウム、酢酸バリウムなどのバリウム塩;塩化亜鉛、硝酸亜鉛、酢酸亜鉛などの亜鉛塩;などが挙げられる。これらの中でも、マグネシウム金属塩、カルシウム金属塩、およびアルミニウム金属塩が好ましく、マグネシウム金属塩がより好ましく、塩化マグネシウムが特に好ましい。なお、水溶性多価金属塩は、それぞれ単独で、あるいは2種以上を組み合わせて使用することができる。 The water-soluble polyvalent metal salt may be any water-soluble polyvalent metal salt other than the compounds corresponding to the alkaline earth metal hydroxides. Examples include magnesium chloride, magnesium phosphate, magnesium sulfate, and the like. magnesium metal salts; calcium metal salts such as calcium chloride, calcium nitrate, calcium acetate and calcium sulfate; aluminum metal salts such as aluminum chloride and aluminum sulfate; barium salts such as barium chloride, barium nitrate and barium acetate; zinc chloride and zinc nitrate , zinc salts such as zinc acetate; Among these, magnesium metal salt, calcium metal salt, and aluminum metal salt are preferred, magnesium metal salt is more preferred, and magnesium chloride is particularly preferred. The water-soluble polyvalent metal salts can be used either singly or in combination of two or more.
 上記した水酸化アルカリ金属塩および/または水酸化アルカリ土類金属塩と、上記した水溶性多価金属塩とを水系媒体中で反応させる方法としては、特に限定されないが、水酸化アルカリ金属塩および/または水酸化アルカリ土類金属塩の水溶液と、水溶性多価金属塩の水溶液とを混合する方法が挙げられる。この際においては、難水溶性の金属水酸化物コロイド粒子の粒子径を好適に制御することができるという観点より、水溶性多価金属塩の水溶液を撹拌しつつ、該水溶液中に、水酸化アルカリ金属塩および/または水酸化アルカリ土類金属塩の水溶液を徐々に添加することで、混合する方法が好ましい。 The method for reacting the above alkali metal hydroxide salt and/or alkaline earth metal hydroxide salt with the above water-soluble polyvalent metal salt in an aqueous medium is not particularly limited, but the alkali metal hydroxide salt and / Or a method of mixing an aqueous solution of an alkaline earth metal hydroxide and an aqueous solution of a water-soluble polyvalent metal salt. In this case, from the viewpoint that the particle size of the sparingly water-soluble metal hydroxide colloidal particles can be suitably controlled, while stirring the aqueous solution of the water-soluble polyvalent metal salt, hydroxide is added to the aqueous solution. A method of mixing by gradually adding an aqueous solution of an alkali metal salt and/or an alkaline earth metal hydroxide salt is preferred.
 水酸化アルカリ金属塩および/または水酸化アルカリ土類金属塩と、水溶性多価金属塩との比率は特に限定されないが、水酸化アルカリ金属塩および/または水酸化アルカリ土類金属塩の使用量を、水溶性多価金属塩の化学当量aに対する、前記水酸化アルカリ金属塩および/または前記水酸化アルカリ土類金属塩の化学当量bの化学当量比b/aが、0.3≦b/a≦1.0の関係を満たす量とすることが好ましく、0.4≦b/a≦1.0の関係を満たす量とすることがより好ましい。 Although the ratio of the alkali metal hydroxide salt and/or alkaline earth metal hydroxide to the water-soluble polyvalent metal salt is not particularly limited, the amount of alkali metal hydroxide and/or alkaline earth metal hydroxide used is The chemical equivalent ratio b/a of the chemical equivalent b of the alkali metal hydroxide salt and/or the alkaline earth metal hydroxide salt to the chemical equivalent a of the water-soluble polyvalent metal salt is 0.3 ≤ b/ The amount preferably satisfies the relationship a≦1.0, and more preferably the amount satisfies the relationship 0.4≦b/a≦1.0.
 分散安定剤の使用量は、着色樹脂粒子の粉砕物を良好に分散させるという観点より、着色樹脂粒子の粉砕物100質量部に対して、好ましくは1質量部以上、より好ましくは10~500質量部、さらに好ましくは20~300質量部である。 The amount of the dispersion stabilizer used is preferably 1 part by mass or more, more preferably 10 to 500 parts by mass with respect to 100 parts by mass of the ground material of the colored resin particles, from the viewpoint of good dispersion of the ground material of the colored resin particles. parts, more preferably 20 to 300 parts by mass.
 分散工程において、着色樹脂粒子を、水系分散媒体中で分散させる方法としては、特に限定されないが、水系分散媒体中に、着色樹脂粒子を添加し、攪拌装置により攪拌する方法が好適である。この際における、攪拌温度は、特に限定されないが、好ましくは10~40℃、より好ましくは20~30℃であり、また、攪拌時間は、特に限定されないが、好ましくは1分~2時間、より好ましくは3分~1時間である。 In the dispersion step, the method of dispersing the colored resin particles in the aqueous dispersion medium is not particularly limited, but a method of adding the colored resin particles to the aqueous dispersion medium and stirring with a stirring device is suitable. At this time, the stirring temperature is not particularly limited, but is preferably 10 to 40° C., more preferably 20 to 30° C., and the stirring time is not particularly limited, but is preferably 1 minute to 2 hours. It is preferably 3 minutes to 1 hour.
 あるいは、分散工程においては、水系分散媒体中に、着色樹脂粒子を添加した後、着色樹脂粒子に対し、水系分散媒体中で、キャビテーション効果が得られる分散処理を行うことで、着色樹脂粒子の分散液を得るような態様としてもよい。 Alternatively, in the dispersing step, after adding the colored resin particles to the aqueous dispersion medium, the colored resin particles are dispersed in the aqueous dispersion medium by performing a dispersion treatment to obtain a cavitation effect. A mode in which a liquid is obtained may be employed.
 キャビテーション効果が得られる分散処理は、液体に高エネルギーを付与した際、液体に生じた真空の気泡が破裂することにより生じる衝撃波を利用した分散方法である。 Dispersion treatment that produces a cavitation effect is a dispersion method that uses shock waves that are generated when high energy is applied to a liquid and the vacuum bubbles in the liquid burst.
 キャビテーション効果が得られる分散処理の具体例としては、超音波による分散処理、インライン型乳化分散機などを用いた高剪断撹拌装置による分散処理、ジェットミルによる分散処理などが挙げられる。これらの分散処理は一つのみを行なってもよく、複数の分散処理を組み合わせて行なってもよい。より具体的には、キャビテーション効果が得られる分散処理としては、超音波ホモジナイザーを用いた分散処理、高剪断撹拌装置を用いた分散処理、およびジェットミルを用いた分散処理が好適に用いられる。なお、これらの装置は従来公知のものを使用すればよい。 Specific examples of dispersion processing that can obtain a cavitation effect include dispersion processing using ultrasonic waves, dispersion processing using a high-shear stirring device using an in-line emulsifying disperser, and dispersion processing using a jet mill. Only one of these distributed processes may be performed, or a plurality of distributed processes may be combined. More specifically, dispersion treatment using an ultrasonic homogenizer, dispersion treatment using a high-shear stirring device, and dispersion treatment using a jet mill are preferably used as the dispersion treatment for obtaining the cavitation effect. Note that conventionally known devices may be used as these devices.
 キャビテーション効果が得られる分散処理の処理時間は、好ましくは1~300分間、より好ましくは5~100分間である。また、この際の処理温度は、好ましくは10~50℃、より好ましくは20~40℃である。 The treatment time of the dispersion treatment for obtaining the cavitation effect is preferably 1 to 300 minutes, more preferably 5 to 100 minutes. The treatment temperature at this time is preferably 10 to 50°C, more preferably 20 to 40°C.
<加熱工程>
 次いで、上記分散工程において調製した着色樹脂粒子の分散液を、着色樹脂粒子のガラス転移温度Tg以上、95℃以下の温度で、5分以上、10時間以下の加熱時間にて加熱する。
<Heating process>
Next, the dispersion liquid of the colored resin particles prepared in the dispersion step is heated at a temperature between the glass transition temperature Tg of the colored resin particles and 95° C. or less for a heating time of 5 minutes or more and 10 hours or less.
 本発明においては、分散工程において、着色樹脂粒子の分散液を調製し、かつ、調製した着色樹脂粒子の分散液、上記条件で加熱することで、加熱処理により、着色樹脂粒子の球形度を好適に向上させることができ、これにより、得られる着色樹脂粒子の平均円形度をより高めることができ、さらには、着色樹脂粒子中に、後述する結晶性材料のドメイン構造をより好適に形成させることが可能となる。 In the present invention, in the dispersing step, a dispersion liquid of colored resin particles is prepared, and the prepared dispersion liquid of colored resin particles is heated under the above conditions, so that the sphericity of the colored resin particles is adjusted to a suitable level. This can further increase the average circularity of the obtained colored resin particles, and furthermore, the domain structure of the crystalline material described later can be more preferably formed in the colored resin particles. becomes possible.
 加熱工程における加熱温度は、着色樹脂粒子のガラス転移温度Tg以上、95℃以下であることが好ましく、より好ましくは着色樹脂粒子のガラス転移温度Tgよりも10℃高い温度以上(すなわち、Tg+10℃以上)、94℃以下であり、さらに好ましくは着色樹脂粒子のガラス転移温度よりも15℃高い温度以上(すなわち、Tg+20℃以上)、93℃以下である。なお、加熱工程における具体的な加熱温度は、特に限定されないが、好ましくは40~90℃、より好ましくは45~85℃、さらに好ましくは50~80℃、特に好ましくは55~75℃である。また、加熱工程における加熱時間は、好ましくは5分以上、10時間以下であり、より好ましくは10分以上、10時間以下、さらに好ましくは30分以上、8時間以下である。 The heating temperature in the heating step is preferably at least the glass transition temperature Tg of the colored resin particles and at most 95° C., more preferably at least 10° C. higher than the glass transition temperature Tg of the colored resin particles (i.e., Tg+10° C. or higher). ), 94° C. or lower, more preferably a temperature higher than the glass transition temperature of the colored resin particles by 15° C. (that is, Tg+20° C. or higher), and 93° C. or lower. Although the specific heating temperature in the heating step is not particularly limited, it is preferably 40 to 90°C, more preferably 45 to 85°C, even more preferably 50 to 80°C, and particularly preferably 55 to 75°C. The heating time in the heating step is preferably 5 minutes or longer and 10 hours or shorter, more preferably 10 minutes or longer and 10 hours or shorter, and still more preferably 30 minutes or longer and 8 hours or shorter.
 そして、加熱工程において上記条件にて加熱処理を行った着色樹脂粒子の分散液について、常法に従い、洗浄、ろ過、脱水、および乾燥の一連の操作を、必要に応じて数回繰り返し行なうことが好ましい。 Then, the dispersion liquid of the colored resin particles that has been heat-treated under the above conditions in the heating step can be subjected to a series of operations of washing, filtration, dehydration, and drying according to a conventional method, and repeated several times as necessary. preferable.
 まず、加熱処理後の着色樹脂粒子の分散液中に残存する分散安定化剤を除去するために、加熱処理後の着色樹脂粒子の分散液について、酸またはアルカリを添加し洗浄を行なうことが好ましい。使用した分散安定化剤が、酸に可溶な化合物である場合、着色樹脂粒子の分散液へ酸を添加して、洗浄を行うことが好ましく、一方、使用した分散安定化剤が、アルカリに可溶な化合物である場合、加熱処理後の着色樹脂粒子の分散液へアルカリを添加して、洗浄を行うことが好ましい。 First, in order to remove the dispersion stabilizer remaining in the dispersion of the colored resin particles after the heat treatment, it is preferable to wash the dispersion of the colored resin particles after the heat treatment by adding an acid or an alkali. . When the dispersion stabilizer used is an acid-soluble compound, it is preferable to add an acid to the dispersion of the colored resin particles for washing. In the case of a soluble compound, it is preferable to wash by adding an alkali to the dispersion liquid of the colored resin particles after the heat treatment.
 また、分散安定化剤として、酸に可溶な化合物を使用した場合、加熱処理後の着色樹脂粒子の水分散液へ酸を添加し、pHを、好ましくは6.5以下、より好ましくは6以下に調整することが好ましい。添加する酸としては、硫酸、塩酸、硝酸等の無機酸、および蟻酸、酢酸等の有機酸を用いることができるが、分散安定化剤の除去効率が大きいことや製造設備への負担が小さいことから、特に硫酸が好適である。 When an acid-soluble compound is used as the dispersion stabilizer, an acid is added to the aqueous dispersion of the colored resin particles after the heat treatment, and the pH is adjusted to preferably 6.5 or less, more preferably 6.0. It is preferable to adjust as follows. As the acid to be added, inorganic acids such as sulfuric acid, hydrochloric acid and nitric acid, and organic acids such as formic acid and acetic acid can be used. sulfuric acid is particularly preferred.
 脱水、ろ過の方法は、種々の公知の方法等を用いることができ、特に限定されない。たとえば、遠心ろ過法、真空ろ過法、加圧ろ過法等を挙げることができる。また、乾燥の方法も、特に限定されず、種々の方法が使用できる。 Various known methods can be used for dehydration and filtration, and are not particularly limited. Examples thereof include centrifugal filtration, vacuum filtration, and pressure filtration. Also, the drying method is not particularly limited, and various methods can be used.
 また、本発明においては、加熱工程の前に、分散工程で得られた着色樹脂粒子の分散液に対して、予備加熱を行う予備加熱工程を備えることが好ましい。この場合には、予備加熱工程を経た着色樹脂粒子の分散液について、上記加熱工程による加熱処理を行うことが好ましい。 In addition, in the present invention, it is preferable to include a preheating step of preheating the dispersion liquid of the colored resin particles obtained in the dispersing step before the heating step. In this case, it is preferable that the dispersion liquid of the colored resin particles that has undergone the preheating step is subjected to heat treatment in the above heating step.
 予備加熱工程における予備加熱温度は、好ましくは、着色樹脂粒子のガラス転移温度Tgよりも10~1℃低い温度(Tg-10~Tg-1℃)であり、かつ、結晶性材料の融点mpよりも10℃以上低い温度(mp-10℃以下)であり、より好ましくは、着色樹脂粒子のガラス転移温度Tgよりも8~2℃低い温度(Tg-8~Tg-2℃)であり、かつ、結晶性材料の融点mpよりも8~5℃低い温度(mp-8~mp-5℃)である。また、予備加熱時間は、好ましくは30分以上、10時間以下であり、より好ましくは60分以上、5時間以下である。予備加熱温度および予備加熱時間を上記範囲とすることにより、着色樹脂粒子中に、後述する結晶性材料のドメイン構造をより好適に形成させることが可能となる。 The preheating temperature in the preheating step is preferably 10 to 1°C lower than the glass transition temperature Tg of the colored resin particles (Tg-10 to Tg-1°C) and higher than the melting point mp of the crystalline material. is also 10° C. or more lower temperature (mp-10° C. or less), more preferably 8 to 2° C. lower than the glass transition temperature Tg of the colored resin particles (Tg-8 to Tg-2° C.), and , mp-8 to mp-5° C., which is 8 to 5° C. lower than the melting point mp of the crystalline material. The preheating time is preferably 30 minutes or more and 10 hours or less, more preferably 60 minutes or more and 5 hours or less. By setting the preheating temperature and the preheating time within the above ranges, it is possible to more preferably form the domain structure of the crystalline material, which will be described later, in the colored resin particles.
 以上のようにして、本発明のトナーを構成する着色樹脂粒子を製造することができる。 As described above, the colored resin particles constituting the toner of the present invention can be produced.
 なお、上記においては、乾式法の一例である粉砕法を用いて、本発明のトナーを構成する着色樹脂粒子を製造する方法を例示したが、本発明のトナーを構成する着色樹脂粒子は、湿式法により製造されたものであってもよく、たとえば、湿式法の一例である懸濁重合法により製造されたものであってもよい。 In the above description, the method for producing the colored resin particles constituting the toner of the present invention is exemplified using the pulverization method, which is an example of a dry method. For example, it may be produced by a suspension polymerization method, which is an example of a wet method.
 懸濁重合法においては、次のようにして、本発明のトナーを構成する着色樹脂粒子が製造される。まず、重合性単量体、着色剤、帯電制御剤、および結晶性材料、ならびに、必要に応じて添加されるその他の添加物を、混合、溶解して重合性単量体組成物の調製を行ない、次いで、重合性単量体組成物を、水系分散媒体中に分散させ、重合開始剤を添加した後、重合性単量体組成物の液滴形成を行うことで、重合性単量体組成物の懸濁液を得る。続いて、得られた重合性単量体組成物の懸濁液を加熱し、重合を開始させることで、結着樹脂、着色剤、帯電制御剤、および結晶性材料を含む着色樹脂粒子の水分散液が得て、洗浄、ろ過、脱水、および乾燥の一連の操作を、必要に応じて数回繰り返し行なうことで、本発明のトナーを構成する着色樹脂粒子を製造することができる。 In the suspension polymerization method, colored resin particles constituting the toner of the present invention are produced as follows. First, a polymerizable monomer composition is prepared by mixing and dissolving a polymerizable monomer, a colorant, a charge control agent, a crystalline material, and other additives added as necessary. Then, the polymerizable monomer composition is dispersed in an aqueous dispersion medium, a polymerization initiator is added, and droplets of the polymerizable monomer composition are formed to form a polymerizable monomer. A suspension of the composition is obtained. Subsequently, the obtained suspension of the polymerizable monomer composition is heated to initiate polymerization, whereby the water of the colored resin particles containing the binder resin, the colorant, the charge control agent, and the crystalline material is dissolved. A series of operations of washing, filtering, dehydrating, and drying after obtaining a dispersion are repeated several times as necessary to produce the colored resin particles constituting the toner of the present invention.
 本発明のトナーを構成する着色樹脂粒子は、走査型電子顕微鏡の反射電子像によりその断面を観察した場合に、走査型電子顕微鏡の反射電子像により観察される、着色樹脂粒子の断面における、結晶性材料のドメインの総面積割合が10~30%であり、かつ、走査型電子顕微鏡の反射電子像により観察される、着色樹脂粒子の断面における、結晶性材料のドメインの存在個数が、一粒子当たりの平均存在個数で10~40個の範囲であるものである。本発明によれば、トナーを構成する着色樹脂粒子中に含まれる、結晶性材料のドメインの総面積割合および結晶性材料のドメインの存在個数を上記の通りとすることにより、得られるトナーを、優れた低温定着性を有し、耐ホットオフセット性、細線再現性およびブレードクリーニング性にバランス良く優れ、しかも、高温放置後のトナー噴出しが適切に抑制されたものとすることができるものである。 The colored resin particles constituting the toner of the present invention are crystals in the cross section of the colored resin particles observed in the backscattered electron image of the scanning electron microscope when the cross section is observed in the backscattered electron image of the scanning electron microscope. The total area ratio of the domains of the crystalline material is 10 to 30%, and the number of domains of the crystalline material in the cross section of the colored resin particle observed by a backscattered electron image of a scanning electron microscope is one particle. The average number of particles present per unit is in the range of 10 to 40. According to the present invention, the toner obtained by setting the total area ratio of the domains of the crystalline material and the number of domains of the crystalline material contained in the colored resin particles constituting the toner as described above, It has excellent low-temperature fixability, excellent hot-offset resistance, fine-line reproducibility and blade cleanability in a well-balanced manner, and can appropriately suppress toner ejection after being left at a high temperature. .
 図1に、後述する実施例6において得られた着色樹脂粒子の、走査型電子顕微鏡(FE-SEM)の反射電子像による断面写真を示す。図1に示すように、本発明の着色樹脂粒子は、着色樹脂粒子中に、結晶性材料のドメイン(図1中において、色の濃い部分)が分散した構造を有するものである。そして、本発明においては、走査型電子顕微鏡の反射電子像により観察される着色樹脂粒子の断面における、結晶性材料のドメインの総面積割合(すなわち、着色樹脂粒子の断面の面積に対する、結晶性材料のドメインが示す面積の割合)を、10~30%の範囲とするものである。結晶性材料のドメインの総面積割合は、好ましくは15~28%、より好ましくは18~26%である。 FIG. 1 shows a cross-sectional photograph of a backscattered electron image of a scanning electron microscope (FE-SEM) of the colored resin particles obtained in Example 6, which will be described later. As shown in FIG. 1, the colored resin particles of the present invention have a structure in which domains of a crystalline material (dark colored portions in FIG. 1) are dispersed in the colored resin particles. In the present invention, the total area ratio of the domains of the crystalline material in the cross section of the colored resin particles observed by a backscattered electron image of a scanning electron microscope (i.e., the ratio of the crystalline material to the area of the cross section of the colored resin particles The ratio of the area indicated by the domain) is set in the range of 10 to 30%. The total area fraction of the domains of crystalline material is preferably 15-28%, more preferably 18-26%.
 加えて、本発明においては、走査型電子顕微鏡の反射電子像により観察される着色樹脂粒子の断面における、結晶性材料のドメインの存在個数を、一粒子当たりの平均存在個数で5~40個の範囲とするものである。結晶性材料のドメインの存在個数は、好ましくは10~35個、より好ましくは15~30個である。 In addition, in the present invention, the number of domains of the crystalline material present in the cross section of the colored resin particles observed by a backscattered electron image of a scanning electron microscope is 5 to 40 on average per particle. range. The number of domains of crystalline material present is preferably 10-35, more preferably 15-30.
 走査型電子顕微鏡の反射電子像により観察される着色樹脂粒子の断面における、結晶性材料のドメインの総面積割合および結晶性材料のドメインの存在個数は、たとえば、次の方法により測定することができる。すなわち、まず、着色樹脂粒子を、たとえば、2液縮合型のエポキシ接着剤などの硬化性材料に混合し、硬化させることによって硬化物を作製し、作製した硬化物を、ミクロトーム等を用いて切削し、断面観察用試料を作製する。次いで、作製した断面観察用試料について、走査型電子顕微鏡を用いて反射電子像による測定を行うことで、着色樹脂粒子の断面を観察する。なお、この際には、結晶性材料のドメインが観察しやすい条件となるように測定条件を調整することが望ましい。 The total area ratio of domains of the crystalline material and the number of domains of the crystalline material in the cross section of the colored resin particles observed by a backscattered electron image of a scanning electron microscope can be measured, for example, by the following method. . That is, first, the colored resin particles are mixed with, for example, a curable material such as a two-liquid condensation type epoxy adhesive and cured to prepare a cured product, and the prepared cured product is cut using a microtome or the like. and prepare a sample for cross-sectional observation. Next, the cross section of the colored resin particles is observed by measuring the backscattered electron image of the prepared sample for cross section observation using a scanning electron microscope. In this case, it is desirable to adjust the measurement conditions so that the domain of the crystalline material can be easily observed.
 そして、走査型電子顕微鏡の反射電子像による測定によって得られた着色樹脂粒子の断面写真を、画像解析ソフト(たとえば、「DNP粒子画像解析ソフト」(大日本印刷社製)など)を使用して、画像解析することで、結晶性材料のドメインの総面積割合および結晶性材料のドメインの存在個数を求めることができる。具体的には、結晶性材料のドメインの総面積割合は、100個以上の着色樹脂粒子を測定対象とし、画像解析により、着色樹脂粒子の総面積と、結晶性材料のドメイン部分の総面積とを求め、これらを用いて、算出することができる。また、結晶性材料のドメインの存在個数は、100個以上の着色樹脂粒子を測定対象とし、測定対象とした着色樹脂粒子の数と、結晶性材料のドメイン部分の総数とを求め、これらを用いて、算出することができる。なお、測定に際しては、コールターカウンターを用いた粒度分析計で測定された着色樹脂粒子の体積平均粒径(Dv)に対し、粒子径が±3μm以内である着色樹脂粒子を測定対象とし、上記測定を行う(すなわち、体積平均粒径(Dv)に対し、粒子径が±3μmを超えて外れる着色樹脂粒子については、測定対象外とする。)。 Then, a cross-sectional photograph of the colored resin particles obtained by measurement using a backscattered electron image of a scanning electron microscope is analyzed using image analysis software (for example, "DNP particle image analysis software" (manufactured by Dai Nippon Printing Co., Ltd.)). , the image analysis can determine the total area ratio of the domains of the crystalline material and the number of existing domains of the crystalline material. Specifically, the total area ratio of the domains of the crystalline material is obtained by measuring 100 or more colored resin particles, and by image analysis, the total area of the colored resin particles and the total area of the domain portion of the crystalline material. can be calculated using these. In addition, the number of existing domains of the crystalline material is obtained by measuring 100 or more colored resin particles, obtaining the number of the colored resin particles to be measured and the total number of domain portions of the crystalline material, and using them. can be calculated. In the measurement, the colored resin particles having a particle diameter within ±3 μm of the volume average particle diameter (Dv) of the colored resin particles measured by a particle size analyzer using a Coulter counter were measured. (That is, colored resin particles whose particle diameter deviates from the volume average particle diameter (Dv) by more than ±3 μm are excluded from measurement.).
 なお、走査型電子顕微鏡の反射電子像により観察される着色樹脂粒子の断面における、結晶性材料のドメインの総面積割合および結晶性材料のドメインの存在個数を上記範囲とする方法としては、特に限定されないが、たとえば、用いる結晶性材料の種類や量を調整する方法や、着色樹脂粒子中に、ポリジエン構造を有する添加剤を添加する方法、着色樹脂粒子を製造する際に、上記した分散工程および加熱工程を経る方法や、さらには、予備加熱工程を経る方法などを、適宜、組み合わせる方法などが挙げられる。 The method for adjusting the total area ratio of the domains of the crystalline material and the number of domains of the crystalline material in the cross section of the colored resin particles observed by the backscattered electron image of the scanning electron microscope to the above range is particularly limited. However, for example, a method of adjusting the type and amount of the crystalline material used, a method of adding an additive having a polydiene structure to the colored resin particles, a method of producing the colored resin particles, the above dispersion step and A method including a heating step, a method including a preheating step, and the like are appropriately combined.
 また、本発明の着色樹脂粒子においては、結晶性材料のドメインの総面積割合および結晶性材料のドメインの存在個数が上記範囲にあること加え、結晶性材料のドメインの形状が次のようなものであることが好ましい。すなわち、本発明の着色樹脂粒子は、走査型電子顕微鏡の反射電子像により観察される着色樹脂粒子の断面における、結晶性材料のドメインの平均円形度が0.50以下であることが好ましく、より好ましくは0.10~0.47、さらに好ましくは0.20~0.45である。また、本発明の着色樹脂粒子は、走査型電子顕微鏡の反射電子像により観察される着色樹脂粒子の断面における、結晶性材料のドメインの長径に対する短径の比の平均値が0.60以下であることが好ましく、より好ましくは0.15~0.50、さらに好ましくは0.25~0.40である。結晶性材料のドメインの平均円形度および長径に対する短径の比の平均値のいずれか一方、あるいは、両方が上記範囲であることにより、本発明の作用効果をより高めることができる。 In addition, in the colored resin particles of the present invention, the total area ratio of the domains of the crystalline material and the number of domains of the crystalline material are within the above ranges, and the shape of the domains of the crystalline material is as follows. is preferred. That is, in the colored resin particles of the present invention, the average circularity of the domains of the crystalline material in the cross section of the colored resin particles observed by a backscattered electron image of a scanning electron microscope is preferably 0.50 or less, and more It is preferably 0.10 to 0.47, more preferably 0.20 to 0.45. In the colored resin particles of the present invention, the average value of the ratio of the minor axis to the major axis of the domain of the crystalline material in the cross section of the colored resin particle observed by a backscattered electron image of a scanning electron microscope is 0.60 or less. is preferably 0.15 to 0.50, more preferably 0.25 to 0.40. When one or both of the average circularity of the domains of the crystalline material and the average value of the ratio of the short diameter to the long diameter are within the above ranges, the effects of the present invention can be further enhanced.
 なお、走査型電子顕微鏡の反射電子像により観察される着色樹脂粒子の断面における、結晶性材料のドメインの平均円形度、および結晶性材料のドメインの長径に対する短径の比の平均値は、たとえば、上記した結晶性材料のドメインの総面積割合および結晶性材料のドメインの存在個数の場合と同様に、断面観察用試料を作製し、作製した断面観察用試料に対し、走査型電子顕微鏡を用いて反射電子像による測定を行うことで、着色樹脂粒子の断面を観察することにより測定することができる。 The average circularity of the domains of the crystalline material and the average ratio of the short diameter to the long diameter of the domains of the crystalline material in the cross section of the colored resin particles observed by the backscattered electron image of the scanning electron microscope are, for example, In the same manner as in the case of the total area ratio of the domains of the crystalline material and the number of existing domains of the crystalline material, a sample for cross-sectional observation is prepared, and the prepared sample for cross-sectional observation is subjected to a scanning electron microscope. It can be measured by observing the cross section of the colored resin particles by performing measurement using a backscattered electron image.
 そして、走査型電子顕微鏡の反射電子像による測定によって得られた着色樹脂粒子の断面写真について、上記と同様にして、画像解析ソフトを使用して、画像解析することで、求めることができる。具体的には、結晶性材料のドメインの平均円形度は、100個以上の着色樹脂粒子を測定対象とし、結晶性材料のドメイン部分の形状を、ドメイン部分ごとに特定し、特定したドメイン部分の形状から円形度を算出し、得られた結果を平均することにより求めることができる。また、結晶性材料のドメインの長径に対する短径の比の平均値は、100個以上の着色樹脂粒子を測定対象とし、ドメイン部分ごとに、長径および短径を測定し、これに基づき長径に対する短径の比(=短径/長径)を算出し、得られた結果を平均することにより求めることができる。なお、測定に際しては、上記と同様に、コールターカウンターで測定された着色樹脂粒子の体積平均粒径(Dv)に対し、粒子径が±3μm以内である着色樹脂粒子を測定対象とし、上記測定を行う。 Then, the cross-sectional photograph of the colored resin particles obtained by the measurement of the backscattered electron image of the scanning electron microscope can be obtained by image analysis using image analysis software in the same manner as described above. Specifically, the average circularity of the domains of the crystalline material is obtained by measuring 100 or more colored resin particles, specifying the shape of the domain portion of the crystalline material for each domain portion, and determining the shape of the domain portion of the specified domain portion. It can be obtained by calculating the degree of circularity from the shape and averaging the obtained results. In addition, the average value of the ratio of the short diameter to the long diameter of the domain of the crystalline material is obtained by measuring the long diameter and the short diameter for each domain part with 100 or more colored resin particles as the measurement object, and based on this, the short diameter to the long diameter It can be obtained by calculating the diameter ratio (=minor diameter/major diameter) and averaging the obtained results. In the measurement, as described above, colored resin particles having a particle diameter within ±3 μm of the volume average particle diameter (Dv) of the colored resin particles measured with a Coulter counter are measured. conduct.
 なお、走査型電子顕微鏡の反射電子像により観察される着色樹脂粒子の断面における、結晶性材料のドメインの平均円形度、および結晶性材料のドメインの長径に対する短径の比の平均値を上記範囲とする方法としては、特に限定されないが、たとえば、用いる結晶性材料の種類や量を調整する方法や、着色樹脂粒子中に、ポリジエン構造を有する添加剤を添加する方法、着色樹脂粒子を製造する際に、上記した分散工程および加熱工程を経る方法や、さらには、予備加熱工程を経る方法などを、適宜、組み合わせる方法などが挙げられる。 The average circularity of the domains of the crystalline material and the average ratio of the short diameter to the long diameter of the domains of the crystalline material in the cross section of the colored resin particles observed by the backscattered electron image of the scanning electron microscope are within the above ranges. Although the method is not particularly limited, for example, a method of adjusting the type and amount of the crystalline material used, a method of adding an additive having a polydiene structure to the colored resin particles, and a method of manufacturing the colored resin particles In this case, a method in which the above-described dispersing step and heating step, a preheating step, and the like are appropriately combined may be used.
 本発明のトナーを構成する着色樹脂粒子の平均円形度は、特に限定されないが、好ましくは0.950~1.000であり、より好ましくは0.955~0.995であり、さらに好ましくは0.960~0.995である。 The average circularity of the colored resin particles constituting the toner of the present invention is not particularly limited, but is preferably 0.950 to 1.000, more preferably 0.955 to 0.995, and still more preferably 0. 0.960 to 0.995.
 また、着色樹脂粒子の体積平均粒径(Dv)は、画像再現性の観点から、好ましくは5.0~12μmであり、より好ましくは5.5~10μm、さらに好ましくは6.0~9.0μmである。着色樹脂粒子の体積平均粒径(Dv)を上記範囲とすることにより、トナーの流動性を良好なものとしながら、カブリ等による画質の劣化および画像の解像度の低下を適切に抑制することができる。 The volume average particle diameter (Dv) of the colored resin particles is preferably 5.0 to 12 μm, more preferably 5.5 to 10 μm, still more preferably 6.0 to 9.0 μm, from the viewpoint of image reproducibility. 0 μm. By setting the volume average particle diameter (Dv) of the colored resin particles within the above range, it is possible to appropriately suppress the deterioration of the image quality and the reduction of the resolution of the image due to fogging and the like while improving the fluidity of the toner. .
 また、球形化着色樹脂粒子の体積平均粒径(Dv)と個数平均粒径(Dp)との比である粒径分布(Dv/Dp)は、好ましくは1.00~1.40であり、より好ましくは1.10~1.30であり、さらに好ましくは1.11~1.25、特に好ましくは1.13~1.20である。なお、球形化着色樹脂粒子の体積平均粒径(Dv)、および個数平均粒径(Dp)は、たとえば、コールターカウンターを用いた粒度分析計(ベックマン・コールター製、商品名:マルチサイザー)等を用いて測定することができる。 In addition, the particle size distribution (Dv/Dp), which is the ratio of the volume average particle size (Dv) to the number average particle size (Dp) of the spherical colored resin particles, is preferably 1.00 to 1.40. It is more preferably 1.10 to 1.30, still more preferably 1.11 to 1.25, and particularly preferably 1.13 to 1.20. The volume-average particle diameter (Dv) and number-average particle diameter (Dp) of the spherical colored resin particles can be determined by, for example, a particle size analyzer using a Coulter counter (manufactured by Beckman Coulter, trade name: Multisizer). can be measured using
 着色樹脂粒子は、そのままで、あるいは着色樹脂粒子にキャリア粒子(フェライト、および鉄粉等)を混合することで、トナーとして使用してもよいが、トナーの帯電性、流動性、保存性等を調整するために、高速撹拌機(たとえば、FMミキサー(商品名、日本コークス工業社製)等)を用いて、着色樹脂粒子に外添剤を添加・混合し、1成分トナーとしてもよいし、さらには、着色樹脂粒子および外添剤、さらにはキャリア粒子を混合し、2成分トナーとしてもよい。 The colored resin particles may be used as a toner as they are or by mixing carrier particles (ferrite, iron powder, etc.) with the colored resin particles. For adjustment, a one-component toner may be obtained by adding and mixing an external additive to the colored resin particles using a high-speed stirrer (for example, FM mixer (trade name, manufactured by Nippon Coke Kogyo Co., Ltd.)). Further, a two-component toner may be prepared by mixing colored resin particles, an external additive, and carrier particles.
 外添処理を行うための攪拌機としては、着色樹脂粒子の表面に外添剤を付着させることができる攪拌装置であれば特に限定されず、たとえば、FMミキサー(商品名、日本コークス工業社製)、スーパーミキサー(商品名、川田製作所社製)、Qミキサー(商品名、日本コークス工業社製)、メカノフュージョンシステム(商品名、ホソカワミクロン社製)、メカノミル(商品名、岡田精工社製)等の混合攪拌が可能な攪拌機を用いて外添処理を行うことができる。 The stirrer for performing the external addition treatment is not particularly limited as long as it is a stirrer capable of adhering the external additive to the surface of the colored resin particles. , Super Mixer (trade name, manufactured by Kawada Seisakusho Co., Ltd.), Q Mixer (trade name, manufactured by Nippon Coke Industry Co., Ltd.), Mechano Fusion System (trade name, manufactured by Hosokawa Micron Corporation), Mechanomill (trade name, manufactured by Okada Seiko Co., Ltd.), etc. The external addition treatment can be performed using a stirrer capable of mixing and stirring.
 外添剤としては、シリカ、酸化チタン、酸化アルミニウム、酸化亜鉛、酸化錫、炭酸カルシウム、燐酸カルシウム、チタン酸バリウム、チタン酸ストロンチウム、ステアリン酸亜鉛、ステアリン酸マグネシウムおよび酸化セリウム等からなる無機微粒子;ポリスチレン樹脂、ポリメタクリル酸メチル樹脂等の(メタ)アクリル酸エステル樹脂、スチレン-(メタ)アクリレート共重合体、シリコーン樹脂、メラミン樹脂、ステアリン酸亜鉛、及びステアリン酸カルシム等からなる有機微粒子などが挙げられる。有機微粒子においては、例えば、コアが(メタ)アクリル酸エステル樹脂を含み、シェルがポリスチレン樹脂を含む等のコアシェル型の粒子であってもよい。この中でも、無機微粒子が好ましく、シリカおよび酸化チタンがより好ましく、シリカが特に好ましい。また、外添剤として、2種類以上の微粒子を併用することが好ましい。なお、これらの外添剤は、それぞれ単独で用いることもできるが、2種以上を併用して用いることが好ましい。また、前記外添剤としては、疎水化された微粒子を含むことが好ましく、疎水化処理された無機微粒子を含むことがより好ましい。 External additives include inorganic fine particles made of silica, titanium oxide, aluminum oxide, zinc oxide, tin oxide, calcium carbonate, calcium phosphate, barium titanate, strontium titanate, zinc stearate, magnesium stearate and cerium oxide; (Meth)acrylic acid ester resins such as polystyrene resins and polymethyl methacrylate resins, styrene-(meth)acrylate copolymers, silicone resins, melamine resins, zinc stearate, and organic fine particles made of calcium stearate. be done. The organic fine particles may be, for example, core-shell type particles in which the core contains a (meth)acrylic acid ester resin and the shell contains a polystyrene resin. Among these, inorganic fine particles are preferred, silica and titanium oxide are more preferred, and silica is particularly preferred. Moreover, it is preferable to use two or more kinds of fine particles in combination as an external additive. Although each of these external additives can be used alone, it is preferable to use two or more of them in combination. The external additive preferably contains hydrophobic fine particles, and more preferably contains hydrophobic inorganic fine particles.
 外添剤は、着色樹脂粒子100質量部に対して、好ましくは0.3~6質量部の割合、より好ましくは1.2~3質量部の割合で用いることが望ましい。 The external additive is preferably used in a proportion of 0.3 to 6 parts by mass, more preferably in a proportion of 1.2 to 3 parts by mass, relative to 100 parts by mass of the colored resin particles.
 本発明のトナーは、着色樹脂粒子として、走査型電子顕微鏡の反射電子像により観察した着色樹脂粒子の断面における、結晶性材料のドメインの総面積割合および結晶性材料のドメインの存在個数が、上記範囲にあるものを用いたものであるため、耐オフセット性、細線再現性およびブレードクリーニング性にバランス良く優れ、高温放置後のトナー噴出しの発生が抑制されたものである。 In the toner of the present invention, as colored resin particles, the total area ratio of the domains of the crystalline material and the number of existing domains of the crystalline material in the cross section of the colored resin particles observed with a backscattered electron image of a scanning electron microscope are as described above. Since it is within the range, it is excellent in offset resistance, fine line reproducibility and blade cleanability in a well-balanced manner, and the occurrence of toner ejection after being left at a high temperature is suppressed.
 以下に、実施例および比較例を挙げて、本発明をさらに具体的に説明するが、本発明は、これらの実施例のみに限定されるものではない。なお、「部」および「%」は、特に断りのない限り質量基準である。
 本実施例および比較例において行った試験方法は以下の通りである。
EXAMPLES The present invention will be described in more detail below with reference to Examples and Comparative Examples, but the present invention is not limited only to these Examples. "Parts" and "%" are based on mass unless otherwise specified.
The test methods performed in the present examples and comparative examples are as follows.
(1)ガラス転移温度
 ガラス転移温度は、ASTM  D3418-82に準拠して測定した。
(1) Glass transition temperature The glass transition temperature was measured according to ASTM D3418-82.
(2)着色樹脂粒子の体積平均粒径Dv
 着色樹脂粒子の体積平均粒径Dvは、コールターカウンターを用いた粒径測定機(ベックマン・コールター社製、商品名:マルチサイザー)により測定した。このマルチサイザーによる測定は、アパーチャー径:100μm、分散媒体:アイソトンII(:商品名)、濃度10%、測定粒子個数:100,000個の条件で行った。
 具体的には、着色樹脂粒子0.2gをビーカーに取り、その中に分散剤として界面活性剤水溶液(富士フィルム社製、商品名:ドライウェル)を加えた。そこへ、さらに分散媒体を2ml加え、着色樹脂粒子を湿潤させた後、分散媒体を10ml加え、超音波分散器で1分間分散させてから上記の粒径測定器による測定を行なった。
(2) Volume average particle diameter Dv of colored resin particles
The volume-average particle diameter Dv of the colored resin particles was measured by a particle size analyzer (manufactured by Beckman Coulter, trade name: Multisizer) using a Coulter counter. The measurement with this Multisizer was carried out under the conditions of aperture diameter: 100 μm, dispersion medium: Isoton II (trade name), concentration: 10%, and number of measured particles: 100,000.
Specifically, 0.2 g of the colored resin particles was placed in a beaker, and an aqueous surfactant solution (manufactured by Fuji Film Co., Ltd., trade name: Drywell) was added therein as a dispersant. 2 ml of a dispersing medium was further added thereto to wet the colored resin particles, and then 10 ml of a dispersing medium was added, dispersed for 1 minute with an ultrasonic disperser, and then measured with the above particle size measuring instrument.
(3)着色樹脂粒子の平均円形度
 容器中に、予めイオン交換水10mlを入れ、その中に分散剤として界面活性剤水溶液(富士フィルム社製、商品名:ドライウェル)0.2gを加え、さらに着色樹脂粒子0.2gを加え、超音波分散機で60W、3分間分散処理を行った。測定時の着色樹脂粒子濃度を3,000~10,000個/μLとなるように調整し、0.4μm以上の円相当径の着色樹脂粒子1,000~10,000個についてフロー式粒子像分析装置(シスメックス社製、商品名:FPIA-2100)を用いて測定した。測定値から、平均円形度を求めた。
 円形度は下記式に示され、平均円形度は、その平均値である。
 (円形度)=(粒子の投影面積に等しい円の周囲長)/(粒子投影像の周囲長)
(3) Average Circularity of Colored Resin Particles 10 ml of ion-exchanged water was placed in advance in a container, and 0.2 g of a surfactant aqueous solution (manufactured by Fuji Film Co., Ltd., trade name: Drywell) was added thereto as a dispersant. Further, 0.2 g of colored resin particles were added, and dispersion treatment was performed with an ultrasonic disperser at 60 W for 3 minutes. The concentration of colored resin particles at the time of measurement was adjusted to 3,000 to 10,000 particles/μL, and the flow type particle image was obtained for 1,000 to 10,000 colored resin particles having an equivalent circle diameter of 0.4 μm or more. Measurement was performed using an analyzer (trade name: FPIA-2100, manufactured by Sysmex Corporation). The average circularity was obtained from the measured values.
The circularity is shown in the following formula, and the average circularity is the average value.
(Circularity) = (perimeter of circle equal to projected area of particle)/(perimeter of projected image of particle)
(4)走査型電子顕微鏡の反射電子像による着色樹脂粒子の断面における、結晶性材料のドメインの微細構造
 着色樹脂粒子を、2液縮合型のエポキシ接着剤と混合し、硬化させることによって硬化物を作製し、作製した硬化物を、ミクロトーム等を用いて切削することで、断面観察用試料を作製した。次いで、作製した断面観察用試料について、走査型電子顕微鏡(日本電子社製、製品名:JSM-7610F)を用いて反射電子像による測定を行うことで、着色樹脂粒子の断面を観察した。なお、この際には、結晶性材料のドメインが観察しやすい条件となるように測定条件を調整した。
 そして、走査型電子顕微鏡の反射電子像による測定によって得られた着色樹脂粒子の断面写真を、画像解析ソフト(DNP粒子画像解析ソフト、大日本印刷社製)を使用して、画像解析することで、結晶性材料のドメインの総面積割合、結晶性材料のドメインの存在個数(一粒子当たりの平均存在個数)、結晶性材料のドメインの平均円形度、および結晶性材料のドメインの長径に対する短径の比の平均値を、それぞれ測定した。なお、この際には、着色樹脂粒子の体積平均粒径(Dv)に対し、粒子径が±3μm以内である着色樹脂粒子100個以上を測定対象とした。
 結晶性材料のドメインの総面積割合は、着色樹脂粒子の総面積と、結晶性材料のドメイン部分の総面積とを求め、これらの結果から、着色樹脂粒子断面中の、結晶性材料のドメインの面積割合を算出することにより求めた。
 結晶性材料のドメインの存在個数(一粒子当たりの平均存在個数)は、測定対象とした着色樹脂粒子の数と、結晶性材料のドメイン部分の総数とを求め、結晶性材料のドメイン部分の総数を、着色樹脂粒子の数で除すことにより求めた。
 結晶性材料のドメインの平均円形度は、結晶性材料のドメイン部分の形状を、ドメイン部分ごとに特定し、特定したドメイン部分の形状から円形度を算出し、得られた結果を平均することにより求めた。
 結晶性材料のドメインの長径に対する短径の比の平均値は、ドメイン部分ごとに、長径および短径を測定し、これに基づき長径に対する短径の比(=短径/長径)を算出し、得られた結果を平均することにより求めた。
(4) Fine structure of domain of crystalline material in cross section of colored resin particles by backscattered electron image of scanning electron microscope Colored resin particles are mixed with a two-liquid condensation type epoxy adhesive and cured to obtain a cured product. was prepared, and the prepared cured product was cut using a microtome or the like to prepare a sample for cross-sectional observation. Next, the cross section of the colored resin particles was observed by measuring the backscattered electron image of the prepared sample for cross section observation using a scanning electron microscope (manufactured by JEOL Ltd., product name: JSM-7610F). At this time, the measurement conditions were adjusted so that the domains of the crystalline material could be easily observed.
Then, using image analysis software (DNP particle image analysis software, manufactured by Dai Nippon Printing Co., Ltd.), image analysis is performed on a cross-sectional photograph of the colored resin particles obtained by measurement using a backscattered electron image of a scanning electron microscope. , the total area ratio of the domains of the crystalline material, the number of existing domains of the crystalline material (average number of existing domains per particle), the average circularity of the domains of the crystalline material, and the minor axis to the major axis of the domains of the crystalline material were measured respectively. In this case, 100 or more colored resin particles having a particle diameter within ±3 μm with respect to the volume average particle diameter (Dv) of the colored resin particles were measured.
The total area ratio of the domains of the crystalline material is obtained by obtaining the total area of the colored resin particles and the total area of the domain portion of the crystalline material, and from these results, the number of domains of the crystalline material in the cross section of the colored resin particles. It was obtained by calculating the area ratio.
The number of existing domains of the crystalline material (average number of existing domains per particle) is obtained by obtaining the number of colored resin particles to be measured and the total number of domain parts of the crystalline material. was obtained by dividing by the number of colored resin particles.
The average circularity of the domains of the crystalline material is obtained by specifying the shape of the domain portion of the crystalline material for each domain portion, calculating the circularity from the shape of the specified domain portion, and averaging the obtained results. asked.
The average value of the ratio of the minor axis to the major axis of the domain of the crystalline material is obtained by measuring the major axis and the minor axis for each domain part, and calculating the ratio of the minor axis to the major axis (=minor axis/major axis) based on this, It was determined by averaging the obtained results.
(5)トナーの最低定着温度
 市販の非磁性一成分現像方式のプリンター(印刷速度20ppm)の定着ロール部の温度を変化できるように改造したプリンターを用いて、定着試験を行った。定着試験は、黒ベタ(印字濃度100%)を印字して、改造プリンターの定着ロールの温度を5℃ずつ変化させて、それぞれの温度でのトナーの定着率を測定し、温度-定着率の関係を求めて行った。定着率は、黒ベタ(印字濃度100%)の印字領域においてテープ剥離を行い、テープ剥離前後の画像濃度の比率から計算した。すなわち、テープ剥離前の画像濃度をID(前)、テープ剥離後の画像濃度をID(後)とすると、定着率は、下記計算式により算出できる。
  定着率(%)=(ID(後)/ID(前))×100
 ここで、テープ剥離操作とは、試験用紙の測定部分に粘着テープ(住友スリーエム社製、商品名:スコッチメンディングテープ810-3-18)を貼り、一定圧力で押圧して付着させ、その後、一定速度で紙に沿った方向に粘着テープを剥離する一連の操作である。また、画像濃度は、反射式画像濃度計(マクベス社製、商品名:RD914)を用いて測定した。
 この定着試験において、定着率が80%を超える最低の定着ロールの温度をトナーの最低定着温度とした。
(5) Minimum Fixing Temperature of Toner A fixing test was performed using a commercially available non-magnetic one-component developing printer (printing speed: 20 ppm) modified so that the temperature of the fixing roll section can be changed. In the fixing test, a solid black print (100% print density) is printed, the temperature of the fixing roll of the modified printer is changed by 5°C, and the fixing rate of the toner at each temperature is measured. I went looking for a relationship. The fixing rate was calculated from the ratio of the image densities before and after the tape was peeled off after the tape was peeled off in the solid black print area (print density 100%). That is, if the image density before tape peeling is ID (before) and the image density after tape peeling is ID (after), the fixing rate can be calculated by the following formula.
Fixing rate (%)=(ID (after)/ID (before))×100
Here, the tape peeling operation means that an adhesive tape (manufactured by Sumitomo 3M, trade name: Scotch Mending Tape 810-3-18) is attached to the measurement part of the test paper, pressed with a constant pressure to adhere, and then It is a series of operations to peel off the adhesive tape in the direction along the paper at a constant speed. The image density was measured using a reflective image densitometer (manufactured by Macbeth, trade name: RD914).
In this fixing test, the lowest fixing roll temperature at which the fixing rate exceeded 80% was defined as the lowest fixing temperature of the toner.
(6)耐ホットオフセット性
 市販の非磁性一成分現像方式のプリンター(24枚機;印字速度=24枚/分)の定着ロール部の温度を変化できるように改造したプリンターを用いて、ホットオフセット試験を行った。ホットオフセット試験は、定着ロール部の温度を150℃から5℃ずつ100℃まで変化させて、5cm四方のベタ画像を用紙(Xerox社製、商品名:Vitality)に印字し、定着ロールにトナーの融着が発生していないかホットオフセット現象の有無を目視にて観察した。
 このホットオフセット試験においては、定着ロールにトナーの融着が発生したか否かを確認し、200℃まで昇温させても、定着ロールにトナーの融着が発生しなかった場合を「〇」とし、定着ロールにトナーの融着が発生した場合を「×」とした。
(6) Hot offset resistance Using a commercially available non-magnetic one-component development printer (24-sheet printer; printing speed = 24 sheets/min) modified so that the temperature of the fixing roll section can be changed, hot offset resistance was measured. did the test. In the hot offset test, the temperature of the fixing roll was changed from 150°C to 100°C by 5°C, and a 5 cm square solid image was printed on paper (trade name: Vitality, manufactured by Xerox). The presence or absence of the hot offset phenomenon was visually observed to determine whether fusion had occurred.
In this hot offset test, it was confirmed whether or not toner fusion occurred on the fixing roll. , and the case where the toner was fused to the fixing roll was evaluated as "x".
(7)高温保管後の噴出し
 市販の非磁性一成分現像方式のトナーカートリッジに、トナーを充填した後、50℃の環境に120時間(5日間)放置した。放置後、市販の非磁性一成分現像方式プリンターにて連続印字を2時間行い、トナーの噴出しがないかを目視で確認し、以下の基準で評価を行った。
  ◎:噴出しが全くなかった。
  〇:現像機の一部から僅かに噴出しが有った。
  △:現像機の全面から僅かに噴出しが有った。
  ×:現像機の全面から多くの噴き出しが有った。
(7) Blowout after Storage at High Temperature A commercial non-magnetic one-component developing toner cartridge was filled with toner and left in an environment at 50° C. for 120 hours (5 days). After standing, continuous printing was performed for 2 hours using a commercially available non-magnetic one-component developing printer, and the toner was visually checked for ejection, and evaluated according to the following criteria.
(double-circle): There was no blowout at all.
Good: There was a slight ejection from a part of the developing machine.
Δ: There was a slight ejection from the entire surface of the developing machine.
x: There were many blowouts from the entire surface of the developing machine.
(8)細線再現性
 トナーを、市販の非磁性一成分現像方式のプリンターに入れ、N/N環境下、1日放置した後、2×2ドットライン(幅約85μm)で連続して線画像を形成し、10,000枚まで印字を行った。クリーニングブレードと当接する位置における感光体表面の移動速度は12cm/secとした。
 印字500枚毎に、印字評価システム(YA-MA社製、商品名:RT2000)によって測定し、線画像の濃度分布データを採取した。この時、その濃度の最大値の半値における全幅を線幅として、一枚目の線画像の線幅を基準として、その線幅の差が10μm以下のものは1枚目の線画像を再現しているとして、線画像の線幅の差が10μm以下を維持できる枚数を調べ、10,000枚以上細線維持しているものを「◎」、7,000枚以上、10,000枚未満細線維持しているものを「○」、5,000枚以上、7,000枚未満細線維持しているものを「△」、5000枚未満でのみ細線維持しているものを「×」の4段階にレベル分けした。
(8) Reproducibility of Fine Lines Toner was placed in a commercially available non-magnetic one-component development printer, left for one day in an N/N environment, and then a continuous line image of 2×2 dot lines (approximately 85 μm in width) was obtained. was formed, and printing was performed up to 10,000 sheets. The moving speed of the photoreceptor surface at the position contacting the cleaning blade was set to 12 cm/sec.
Every 500 printed sheets, measurement was performed using a printing evaluation system (trade name: RT2000 manufactured by YA-MA), and density distribution data of the line image was collected. At this time, the line width is the full width at half the maximum value of the density, and the line width of the first line image is used as a reference. If the line width difference is 10 μm or less, the first line image is reproduced. Investigate the number of sheets that can maintain the line width difference of 10 μm or less. ``○'' for those that are still fine, ``△'' for those that maintain the thin line on 5,000 or more and less than 7,000 sheets, and ``X'' for those that maintain the thin line only on less than 5,000 sheets. divided into levels.
(9)ブレードクリーニング性
 上記(8)のプリンターに試験用のクリーニングブレードサンプルを取り付け、カートリッジにトナーを入れ、印字用紙をセットした後に、N/N環境下で一昼夜放置した。その後、初期から5%濃度で連続印字を行ない、500枚印字ごとに感光体及び帯電ロールを、目視により観察してクリーニング不良による筋(フィルミング)が発生しているかを試験し、クリーニング不良発生の有無を10,000枚印字まで試験した。試験結果は、クリーニング不良が発生した印字枚数を示した。10,000枚以上連続で印字しても、クリーニング不良が発生しなかったものを「◎」、7,000枚以上は連続で印字できたが、10,000枚までにクリーニング不良が発生したものを「〇」、5,000枚以上は連続で印字できたが、7,000枚までにクリーニング不良が発生したものを「△」、5000枚までにクリーニング不良が発生したものを「×」の4段階にレベル分けした。
(9) Blade Cleaning Property A cleaning blade sample for testing was attached to the printer of (8) above, toner was put in the cartridge, and printing paper was set, and then left under N/N environment for a whole day and night. Thereafter, continuous printing was performed from the initial stage at a density of 5%, and the photoreceptor and charging roll were visually observed every 500 sheets printed to test whether streaks (filming) due to poor cleaning occurred. The presence or absence of the ink was tested until 10,000 sheets were printed. The test results indicated the number of printed sheets at which cleaning failure occurred. "A" indicates that no cleaning failure occurred even after printing 10,000 sheets or more continuously; "O" indicates that 5,000 or more sheets could be printed continuously, but "△" indicates that cleaning failure occurred up to 7,000 sheets, and "X" indicates that cleaning failure occurred up to 5,000 sheets. Divided into 4 levels.
[製造例1、スチレン-ブチルアクリレート共重合体(α-1)(結着樹脂)の製造]
 イオン交換水200部にノニオン系分散剤(株式会社クラレ製、「PVA235」)0.2部を加えた後、スチレン86部、ブチルアクリレート14部からなる単量体混合物と、重合開始剤(過酸化ベンゾイル)とを加え、撹拌しながら130℃で2時間保持して懸濁重合を行い、共重合体の懸濁液を得た。
  得られた懸濁液を30℃まで冷却し、遠心脱水機で脱水し、50℃、24時間の条件で乾燥させて、スチレン-ブチルアクリレート共重合体(α-1)を得た。得られたスチレン-ブチルアクリレート共重合体(α-1)は、スチレン単位86%、ブチルアクリレート単位14%であり、ガラス転移温度Tgは54℃であった。
[Production Example 1, production of styrene-butyl acrylate copolymer (α-1) (binder resin)]
After adding 0.2 parts of a nonionic dispersant (manufactured by Kuraray Co., Ltd., "PVA235") to 200 parts of ion-exchanged water, a monomer mixture consisting of 86 parts of styrene and 14 parts of butyl acrylate, and a polymerization initiator (permeable Benzoyl oxide) was added thereto, and the mixture was maintained at 130° C. for 2 hours with stirring to carry out suspension polymerization to obtain a suspension of a copolymer.
The resulting suspension was cooled to 30° C., dehydrated with a centrifugal dehydrator, and dried at 50° C. for 24 hours to obtain a styrene-butyl acrylate copolymer (α-1). The obtained styrene-butyl acrylate copolymer (α-1) contained 86% styrene units and 14% butyl acrylate units, and had a glass transition temperature Tg of 54°C.
[製造例2、ブロック共重合体組成物(β-1)(ポリジエン構造を有する添加剤)の製造]
 耐圧反応器に、シクロヘキサン23.2kg、N,N,N',N'-テトラメチルエチレンジアミン(以下、TMEDAと称する)1.5ミリモルおよびスチレン1.70kgを添加し、40℃で攪拌しているところに、n-ブチルリチウム99.1ミリモルを添加し、50℃に昇温しながら1時間重合した。スチレンの重合転化率は100質量%であった。引き続き、50~60℃を保つように温度制御しながら、反応器にイソプレン6.03kgを1時間にわたり連続的に添加した。イソプレンの添加を完了した後、さらに1時間重合し、スチレン-イソプレンジブロック共重合体B(Ar-Dで表される共重合体B)を形成させた。イソプレンの重合転化率は100%であった。次いで、カップリング剤としてジメチルジクロロシラン15.0ミリモルを添加して2時間カップリング反応を行い、スチレン-イソプレン-スチレントリブロック共重合体(Ar-D-Arで表される共重合体A)を形成させた。この後、重合停止剤としてメタノール198ミリモルを添加してよく混合し反応を停止することで、ブロック共重合体組成物(β-1)を含有する反応液を得た。得られた反応液の一部を取り出し、各ブロック共重合体、ブロック共重合体組成物全体の重量平均分子量、含有割合、ビニル結合含有量を求めた。得られた結果を表1に示す。そして、このようにして得られた反応液100部(重合体成分を30部含有)に、酸化防止剤として、2,6-ジ-tert-ブチル-p-クレゾール0.3部を加えて混合し、混合溶液を少量ずつ85~95℃に加熱された温水中に滴下して溶媒を揮発させて析出物を得て、この析出物を粉砕し、85℃で熱風乾燥することにより、ブロック共重合体組成物(β-1)を回収した。得られたブロック共重合体組成物(β-1)について、メルトインデックスを測定し、得られた結果を表1に示した。
[Production Example 2, production of block copolymer composition (β-1) (additive having polydiene structure)]
23.2 kg of cyclohexane, 1.5 mmol of N,N,N',N'-tetramethylethylenediamine (hereinafter referred to as TMEDA) and 1.70 kg of styrene were added to a pressure-resistant reactor and stirred at 40°C. 99.1 millimoles of n-butyllithium was added thereto and polymerized for 1 hour while the temperature was raised to 50°C. The polymerization conversion rate of styrene was 100% by mass. Subsequently, 6.03 kg of isoprene was continuously added to the reactor over 1 hour while controlling the temperature to maintain 50-60°C. After the addition of isoprene was completed, polymerization was continued for an additional hour to form styrene-isoprene diblock copolymer B (Copolymer B represented by Ar-D). The polymerization conversion rate of isoprene was 100%. Then, 15.0 millimoles of dimethyldichlorosilane was added as a coupling agent, and the coupling reaction was carried out for 2 hours to obtain a styrene-isoprene-styrene triblock copolymer (copolymer A represented by Ar-D-Ar). was formed. Thereafter, 198 millimoles of methanol as a polymerization terminator was added and mixed well to terminate the reaction, thereby obtaining a reaction solution containing block copolymer composition (β-1). A portion of the obtained reaction solution was taken out, and the weight average molecular weight, content ratio, and vinyl bond content of each block copolymer and the entire block copolymer composition were determined. Table 1 shows the results obtained. Then, 0.3 parts of 2,6-di-tert-butyl-p-cresol was added as an antioxidant to 100 parts of the reaction solution thus obtained (containing 30 parts of the polymer component) and mixed. Then, the mixed solution was dropped little by little into hot water heated to 85 to 95°C to volatilize the solvent to obtain a precipitate, which was pulverized and dried with hot air at 85°C to obtain a block together. A polymer composition (β-1) was recovered. The obtained block copolymer composition (β-1) was measured for melt index, and Table 1 shows the obtained results.
[製造例3、水酸化マグネシウムコロイド粒子を含有するコロイド分散液の製造]
 イオン交換水280部に塩化マグネシウム10.4部を溶解した水溶液に、イオン交換水50部に水酸化ナトリウム7.3部を溶解した水溶液を、攪拌下で10分間掛けて徐々に添加することで、水酸化マグネシウムコロイド粒子を含有するコロイド分散液を調製した。
[Production Example 3, Production of Colloidal Dispersion Containing Colloidal Magnesium Hydroxide Particles]
An aqueous solution obtained by dissolving 7.3 parts of sodium hydroxide in 50 parts of ion-exchanged water was gradually added to an aqueous solution obtained by dissolving 10.4 parts of magnesium chloride in 280 parts of ion-exchanged water under stirring for 10 minutes. , a colloidal dispersion containing colloidal magnesium hydroxide particles was prepared.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
[実施例1]
(着色樹脂粒子の製造)
 結着樹脂として、製造例1で得られたスチレン-ブチルアクリレート共重合体(α-1)100部、着色剤として、カーボンブラック(三菱ケミカル社製、商品名:MA-100)5部、結晶性材料として、エステルワックスとしてのステアリン酸ベヘニル(融点:69.2℃、数平均分子量592)20部、製造例2で得られたブロック共重合体組成物(β-1)(ポリジエン構造を有する添加剤)5部、および、帯電制御剤として、帯電制御樹脂(藤倉化成社製、4級アンモニウム塩基含有スチレンアクリル樹脂、官能基量4%)5部を、ヘンシェルミキサー(日本コークス工業社製、商品名:FM20B)で混合した。次いで、得られた混合物を、2軸押出機を用いて145℃で10分間溶融混練し、得られた混練物を冷却させた。次いで、冷却後の混練物を、機械式粉砕機(ターボ工業社製、商品名:ターボミル)で粉砕し、エルボージェット分級機(日鉄鉱業社製、商品名:EJ-LABO)で分級処理することで、個数体積平均粒子径7.1μmの不定形の着色樹脂粒子の粉砕物を得た(加熱混練工程、粉砕工程)。
[Example 1]
(Production of colored resin particles)
100 parts of the styrene-butyl acrylate copolymer (α-1) obtained in Production Example 1 as the binder resin, 5 parts of carbon black (manufactured by Mitsubishi Chemical Corporation, trade name: MA-100) as the colorant, crystal 20 parts of behenyl stearate (melting point: 69.2° C., number average molecular weight of 592) as an ester wax, and the block copolymer composition (β-1) obtained in Production Example 2 (having a polydiene structure Additive) 5 parts, and as a charge control agent, 5 parts of a charge control resin (Fujikura Kasei Co., Ltd., styrene acrylic resin containing quaternary ammonium base, functional group content 4%), Henschel mixer (manufactured by Nippon Coke Kogyo Co., Ltd., Trade name: FM20B). Then, the resulting mixture was melt-kneaded at 145° C. for 10 minutes using a twin-screw extruder, and the resulting kneaded product was cooled. Next, the cooled kneaded material is pulverized with a mechanical pulverizer (manufactured by Turbo Kogyo Co., Ltd., trade name: Turbo Mill), and classified with an elbow jet classifier (manufactured by Nittetsu Mining Co., Ltd., trade name: EJ-LABO). Thus, pulverized irregular colored resin particles having a number volume average particle diameter of 7.1 μm were obtained (heat kneading step, pulverizing step).
 次いで、上記にて得られた着色樹脂粒子の粉砕物10部に対して、製造例3で得られた水酸化マグネシウムコロイド粒子を含有するコロイド分散液4.0部、およびイオン交換水400.0部の混合溶液を添加し、攪拌することで、着色樹脂粒子の分散液を得た(分散工程)。次いで、温度50℃に設定された恒温水槽に、撹拌子を入れたサンプル管を設置し、該サンプル管内に、上記にて得られた着色樹脂粒子の分散液を入れ、ゆっくりと撹拌しながら120分間静置することで、予備加熱を行い、予備加熱後の着色樹脂粒子の分散液を得た(予備加熱工程)。次いで、70℃に設定された恒温水槽に、撹拌子を入れたサンプル管を設置し、該サンプル管内に、上記にて得られた予備加熱後の着色樹脂粒子の分散液を入れ、ゆっくりと撹拌しながら30分間静置することで、予備加熱後の着色樹脂粒子の分散液の加熱処理を行うことで、着色樹脂粒子を球形化させた(加熱工程)。 Next, 4.0 parts of the colloidal dispersion containing the magnesium hydroxide colloidal particles obtained in Production Example 3 and 400.0 parts of ion-exchanged water are added to 10 parts of the pulverized colored resin particles obtained above. Part of the mixed solution was added and stirred to obtain a dispersion of colored resin particles (dispersion step). Next, a sample tube containing a stirrer was placed in a constant temperature water bath set at a temperature of 50°C, and the dispersion liquid of the colored resin particles obtained above was placed in the sample tube and slowly stirred for 120 minutes. Preheating was performed by allowing the mixture to stand still for a minute to obtain a dispersion liquid of colored resin particles after preheating (preheating step). Next, a sample tube containing a stirrer is placed in a constant temperature water bath set at 70°C, and the preheated colored resin particle dispersion obtained above is added to the sample tube and slowly stirred. The dispersion of the colored resin particles after preheating was heat-treated by allowing the dispersion liquid of the colored resin particles to be spheroidized (heating step).
 次いで、加熱処理後の着色樹脂粒子の分散液を撹拌しながら、pHが4.5となるまで硫酸を添加して、温度25℃、10分間の条件で酸洗浄を行った後、濾過により、着色樹脂粒子を濾別し、水で洗浄した後、洗浄水を濾過した。この際の濾液の電気伝導度は、11μS/cmであった。さらに洗浄・濾過後の着色樹脂粒子について脱水・乾燥を行うことで、乾燥状態の着色樹脂粒子を得た。そして、得られた着色樹脂粒子を用いて、体積平均粒径Dv、平均円形度、および、走査型電子顕微鏡の反射電子像による着色樹脂粒子の断面における、結晶性材料のドメインの微細構造の各測定を行った。結果を表2に示す。なお、着色樹脂粒子のガラス転移温度は、結着樹脂のガラス転移温度とほぼ等しいものであった(後述する実施例2~8、比較例1~3においても同様。)。 Next, while stirring the dispersion of the colored resin particles after the heat treatment, sulfuric acid is added until the pH reaches 4.5, and acid washing is performed at a temperature of 25° C. for 10 minutes. After the colored resin particles were separated by filtration and washed with water, the washing water was filtered. The electrical conductivity of the filtrate at this time was 11 μS/cm. Further, the colored resin particles after washing and filtering were dehydrated and dried to obtain dried colored resin particles. Then, using the obtained colored resin particles, the volume average particle diameter Dv, the average circularity, and the fine structure of the domain of the crystalline material in the cross section of the colored resin particles in the backscattered electron image of the scanning electron microscope. I made a measurement. Table 2 shows the results. The glass transition temperature of the colored resin particles was substantially the same as the glass transition temperature of the binder resin (the same applies to Examples 2 to 8 and Comparative Examples 1 to 3, which will be described later).
(トナーの製造)
 上記にて得られた着色樹脂粒子100部に、ヘキサメチルジシラザンで疎水化処理された、体積平均粒径が12nmのシリカ微粒子(日本エアロジル社製、商品名:RX-200)0.5部、ヘキサメチルジシラザンで疎水化処理された、体積平均粒径が40nmのシリカ微粒子(日本エアロジル社製、商品名:RX-50)2.0部、および、比抵抗が40Ω・cmである、アンチモンがドープされた酸化スズで表面処理された酸化チタン微粒子(チタン工業社製、商品名:EC-300、体積平均粒径:0.3μm)0.5部を添加して、ヘンシェルミキサーを用いて3000rpmの回転数で10分間混合することで、トナーを得た。そして、得られたトナーを用いて、最低定着温度、耐ホットオフセット性、高温保管後の噴出し、細線再現性、およびブレードクリーニング性の評価を行った。結果を表2に示す。
(Toner manufacturing)
To 100 parts of the colored resin particles obtained above, 0.5 parts of silica fine particles having a volume average particle diameter of 12 nm (manufactured by Nippon Aerosil Co., Ltd., trade name: RX-200) hydrophobized with hexamethyldisilazane. 2.0 parts of silica fine particles (manufactured by Nippon Aerosil Co., Ltd., trade name: RX-50) hydrophobized with hexamethyldisilazane and having a volume average particle diameter of 40 nm, and a specific resistance of 40 Ω cm. 0.5 parts of titanium oxide fine particles surface-treated with antimony-doped tin oxide (manufactured by Titan Kogyo Co., Ltd., trade name: EC-300, volume average particle diameter: 0.3 μm) was added, and a Henschel mixer was used. A toner was obtained by mixing for 10 minutes at a rotational speed of 3000 rpm. Then, using the obtained toner, the minimum fixing temperature, hot offset resistance, ejection after high temperature storage, fine line reproducibility, and blade cleaning performance were evaluated. Table 2 shows the results.
[実施例2]
 エステルワックスとしてのステアリン酸ベヘニルの使用量を30部に変更した以外は、実施例1と同様にして、着色樹脂粒子およびトナーを得て、同様に評価を行った。結果を表2に示す。
[Example 2]
Colored resin particles and toner were obtained and evaluated in the same manner as in Example 1, except that the amount of behenyl stearate used as the ester wax was changed to 30 parts. Table 2 shows the results.
[実施例3]
 エステルワックスとしてのステアリン酸ベヘニルの使用量を40部に変更した以外は、実施例1と同様にして、着色樹脂粒子およびトナーを得て、同様に評価を行った。結果を表2に示す。
[Example 3]
Colored resin particles and toner were obtained and evaluated in the same manner as in Example 1, except that the amount of behenyl stearate used as the ester wax was changed to 40 parts. Table 2 shows the results.
[実施例4]
 エステルワックスとしてのステアリン酸ベヘニルの使用量を10部に変更した以外は、実施例1と同様にして、着色樹脂粒子およびトナーを得て、同様に評価を行った。結果を表2に示す。
[Example 4]
Colored resin particles and toner were obtained and evaluated in the same manner as in Example 1, except that the amount of behenyl stearate used as the ester wax was changed to 10 parts. Table 2 shows the results.
[実施例5]
 エステルワックスとしてのステアリン酸ベヘニルに代えて、エステルワックスとしてのペンタエリスリトールテトラパルミテート(融点:71.0℃、数平均分子量1088)30部を使用した以外は、実施例1と同様にして、着色樹脂粒子およびトナーを得て、同様に評価を行った。結果を表2に示す。
[Example 5]
Coloring was carried out in the same manner as in Example 1, except that 30 parts of pentaerythritol tetrapalmitate (melting point: 71.0°C, number average molecular weight: 1088) was used as the ester wax instead of behenyl stearate as the ester wax. Resin particles and toner were obtained and evaluated in the same manner. Table 2 shows the results.
[実施例6]
 エステルワックスとしてのステアリン酸ベヘニルに代えて、エステルワックスとしてのペンタエリスリトールテトラステアレート(融点:76.0℃、数平均分子量1200)30部を使用した以外は、実施例1と同様にして、着色樹脂粒子およびトナーを得て、同様に評価を行った。結果を表2に示す。
[Example 6]
Coloring was carried out in the same manner as in Example 1, except that 30 parts of pentaerythritol tetrastearate (melting point: 76.0°C, number average molecular weight: 1200) was used as the ester wax instead of behenyl stearate as the ester wax. Resin particles and toner were obtained and evaluated in the same manner. Table 2 shows the results.
[実施例7]
 製造例2で得られたブロック共重合体組成物(β-1)の使用量を15部に変更した以外は、実施例2と同様にして、着色樹脂粒子およびトナーを得て、同様に評価を行った。結果を表2に示す。
[Example 7]
Colored resin particles and toner were obtained in the same manner as in Example 2, except that the amount of the block copolymer composition (β-1) obtained in Production Example 2 was changed to 15 parts, and evaluated in the same manner. did Table 2 shows the results.
[実施例8]
 製造例2で得られたブロック共重合体組成物(β-1)の使用量を1部に変更した以外は、実施例2と同様にして、着色樹脂粒子およびトナーを得て、同様に評価を行った。結果を表2に示す。
[Example 8]
Colored resin particles and toner were obtained in the same manner as in Example 2, except that the amount of the block copolymer composition (β-1) obtained in Production Example 2 was changed to 1 part, and evaluated in the same manner. did Table 2 shows the results.
[比較例1]
 製造例2で得られたブロック共重合体組成物(β-1)を使用しなかった以外は、実施例2と同様にして、着色樹脂粒子およびトナーを得て、同様に評価を行った。結果を表2に示す。
[Comparative Example 1]
Colored resin particles and toner were obtained in the same manner as in Example 2, except that the block copolymer composition (β-1) obtained in Production Example 2 was not used, and evaluated in the same manner. Table 2 shows the results.
[比較例2]
 エステルワックスとしてのステアリン酸ベヘニルの使用量を5部に変更した以外は、実施例1と同様にして、着色樹脂粒子およびトナーを得て、同様に評価を行った。結果を表2に示す。
[Comparative Example 2]
Colored resin particles and toner were obtained in the same manner as in Example 1, except that the amount of behenyl stearate used as the ester wax was changed to 5 parts, and evaluated in the same manner. Table 2 shows the results.
[比較例3]
 重合性単量体としてスチレン78部およびn-ブチルアクリレート22部、ブラック着色剤としてカーボンブラック(三菱ケミカル社製、商品名:#25B)5部を、インライン型乳化分散機(大平洋機工社製、商品名:マイルダー)を用いて分散させて、重合性単量体混合物を得た。
[Comparative Example 3]
78 parts of styrene and 22 parts of n-butyl acrylate as polymerizable monomers, 5 parts of carbon black (manufactured by Mitsubishi Chemical Corporation, trade name: #25B) as a black colorant, and an in-line emulsifying disperser (manufactured by Pacific Machinery Co., Ltd.) , trade name: Milder) to obtain a polymerizable monomer mixture.
 上記にて得られた重合性単量体混合物に、帯電制御剤として帯電制御樹脂(4級アンモニウム基含有スチレンアクリル樹脂)1.0部、エステルワックスとしてのステアリン酸ベヘニル30部、製造例2で得られたブロック共重合体組成物(β-1)(ポリジエン構造を有する添加剤)1部、架橋性の重合性単量体としてジビニルベンゼン0.6部、および分子量調整剤としてt-ドデシルメルカプタン1.6部を添加し、混合、溶解して、重合性単量体組成物が分散した懸濁液(重合性単量体組成物分散液)を調製した。 To the polymerizable monomer mixture obtained above, 1.0 parts of a charge control resin (quaternary ammonium group-containing styrene acrylic resin) as a charge control agent, 30 parts of behenyl stearate as an ester wax, and 1 part of the resulting block copolymer composition (β-1) (additive having a polydiene structure), 0.6 parts of divinylbenzene as a crosslinkable polymerizable monomer, and t-dodecylmercaptan as a molecular weight modifier 1.6 parts were added, mixed and dissolved to prepare a suspension in which the polymerizable monomer composition was dispersed (polymerizable monomer composition dispersion).
 上記にて調製した重合性単量体組成物分散液を、攪拌翼を装着した反応器内に投入し、90℃に昇温し、重合反応を開始させた。重合転化率が、ほぼ100%に達したときに、シェル用重合性単量体としてメチルメタクリレート1部、及びイオン交換水10部に溶解したシェル用重合開始剤である2,2’-アゾビス(2-メチル-N-(2-ヒドロキシエチル)-プロピオンアミド)(商品名:VA-086、和光純薬社製、水溶性)0.3部を添加し、90℃で4時間反応を継続した後、水冷して反応を停止し、コアシェル型構造を有する着色樹脂粒子を含む水系媒体分散液を得た。 The polymerizable monomer composition dispersion liquid prepared above was put into a reactor equipped with a stirring blade, and the temperature was raised to 90°C to initiate the polymerization reaction. When the polymerization conversion reached almost 100%, 1 part of methyl methacrylate as a polymerizable monomer for the shell and 2,2'-azobis (2,2'-azobis ( 2-Methyl-N-(2-hydroxyethyl)-propionamide) (trade name: VA-086, manufactured by Wako Pure Chemical Industries, Ltd., water-soluble) was added (0.3 parts), and the reaction was continued at 90° C. for 4 hours. Thereafter, the reaction was terminated by water cooling to obtain an aqueous medium dispersion containing colored resin particles having a core-shell structure.
 上記にて得られた着色樹脂粒子の水分散液に、室温下で攪拌しながら、硫酸を滴下し、pHが6.5以下となるまで酸洗浄を行った。次いで、濾過分離を行い、得られた固形分にイオン交換水500部を加えて再スラリー化させて、水洗浄処理(洗浄・濾過・脱水)を数回繰り返し行った。次いで、濾過分離を行い、得られた固形分を乾燥機の容器内に入れ、45℃で48時間乾燥を行い、乾燥した着色樹脂粒子を得た。そして、得られた着色樹脂粒子を用いて、実施例1と同様に評価を行った。結果を表2に示す。 Sulfuric acid was added dropwise to the aqueous dispersion of the colored resin particles obtained above while stirring at room temperature, and acid washing was performed until the pH reached 6.5 or less. Subsequently, filtration separation was performed, 500 parts of ion-exchanged water was added to the obtained solid content to reslurry, and water washing treatment (washing, filtration, and dehydration) was repeated several times. Next, filtration separation was performed, and the obtained solid content was placed in a container of a dryer and dried at 45° C. for 48 hours to obtain dried colored resin particles. Then, evaluation was performed in the same manner as in Example 1 using the obtained colored resin particles. Table 2 shows the results.
 また、上記にて得られた着色樹脂粒子を用いて、実施例1と同様にして、トナーを得て、実施例1と同様に評価を行った。結果を表2に示す。 Also, using the colored resin particles obtained above, a toner was obtained in the same manner as in Example 1 and evaluated in the same manner as in Example 1. Table 2 shows the results.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、走査型電子顕微鏡の反射電子像により観察される着色樹脂粒子の断面における、結晶性材料のドメインの総面積割合が10~30%であり、かつ、結晶性材料のドメインの存在個数が、一粒子当たりの平均存在個数で10~40個の範囲である実施例1~8においては、得られるトナーは、優れた低温定着性を有し、耐ホットオフセット性、細線再現性およびブレードクリーニング性にバランス良く優れ、高温放置後のトナー噴出しの発生が抑制されたものであった。図1に、実施例6の走査型電子顕微鏡の反射電子像による着色樹脂粒子の断面写真を示す。 As shown in Table 2, the total area ratio of the domains of the crystalline material in the cross section of the colored resin particles observed by the backscattered electron image of the scanning electron microscope is 10 to 30%, and the domains of the crystalline material are In Examples 1 to 8, in which the average number of particles present per particle is in the range of 10 to 40, the obtained toner has excellent low-temperature fixability, hot offset resistance, and fine line reproduction. It was excellent in well-balanced properties and blade cleanability, and the occurrence of toner ejection after being left at a high temperature was suppressed. FIG. 1 shows a cross-sectional photograph of the colored resin particles obtained by a backscattered electron image of a scanning electron microscope in Example 6. As shown in FIG.
 一方、走査型電子顕微鏡の反射電子像により観察される着色樹脂粒子の断面における、結晶性材料のドメインの総面積割合、または、結晶性材料のドメインの存在個数が、本発明書の範囲外である比較例1~3においては、耐ホットオフセット性や、細線再現性、あるいは、ブレードクリーニング性に劣る結果となったり、高温放置後のトナー噴出しが発生する結果となった。 On the other hand, the total area ratio of the domains of the crystalline material or the number of domains of the crystalline material in the cross section of the colored resin particles observed by the backscattered electron image of the scanning electron microscope is outside the scope of the present invention. In certain Comparative Examples 1 to 3, results were inferior in hot offset resistance, fine line reproducibility, or blade cleaning performance, and toner ejection occurred after being left at high temperatures.

Claims (10)

  1.  結着樹脂、着色剤、帯電制御剤、および結晶性材料を含有する着色樹脂粒子を含有する静電荷像現像用トナーであって、
     走査型電子顕微鏡の反射電子像により前記着色樹脂粒子の断面を観察した場合に、前記着色樹脂粒子の断面における、前記結晶性材料のドメインの総面積割合が10~30%であり、前記着色樹脂粒子の断面における、前記結晶性材料のドメインの存在個数が、一粒子当たりの平均存在個数で5~40個の範囲である、静電荷像現像用トナー。
    A toner for electrostatic charge image development containing colored resin particles containing a binder resin, a colorant, a charge control agent, and a crystalline material,
    When the cross section of the colored resin particles is observed with a backscattered electron image of a scanning electron microscope, the total area ratio of the domains of the crystalline material in the cross section of the colored resin particles is 10 to 30%, and the colored resin A toner for electrostatic charge image development, wherein the average number of domains of the crystalline material present in the cross section of the particle is in the range of 5 to 40 per particle.
  2.  走査型電子顕微鏡の反射電子像により前記着色樹脂粒子の断面を観察した場合に、前記着色樹脂粒子の断面における、前記結晶性材料のドメインの平均円形度が0.50以下である請求項1に記載の静電荷像現像用トナー。 2. The method according to claim 1, wherein an average circularity of domains of the crystalline material in the cross section of the colored resin particles is 0.50 or less when the cross section of the colored resin particles is observed with a backscattered electron image of a scanning electron microscope. A toner for developing an electrostatic charge image as described above.
  3.  走査型電子顕微鏡の反射電子像により前記着色樹脂粒子の断面を観察した場合に、前記着色樹脂粒子の断面における、前記結晶性材料のドメインの長径に対する短径の比の平均値が0.60以下である請求項1または2に記載の静電荷像現像用トナー。 When the cross section of the colored resin particles is observed with a backscattered electron image of a scanning electron microscope, the average value of the ratio of the short diameter to the long diameter of the domains of the crystalline material in the cross section of the colored resin particles is 0.60 or less. 3. The toner for electrostatic charge image development according to claim 1 or 2, wherein:
  4.  前記結着樹脂100質量部に対する、前記結晶性材料の含有量が5.0~40.0質量部である請求項1~3のいずれかに記載の静電荷像現像用トナー。 The toner for electrostatic charge image development according to any one of claims 1 to 3, wherein the content of the crystalline material is 5.0 to 40.0 parts by mass with respect to 100 parts by mass of the binder resin.
  5.  前記結晶性材料が、数平均分子量(Mn)が500~1550であるエステルワックスである請求項1~4のいずれかに記載の静電荷像現像用トナー。 The toner for electrostatic charge image development according to any one of claims 1 to 4, wherein the crystalline material is an ester wax having a number average molecular weight (Mn) of 500 to 1,550.
  6.  前記着色樹脂粒子が、ポリジエン構造を有する添加剤をさらに含有する請求項1~5のいずれかに記載の静電荷像現像用トナー。 The toner for electrostatic charge image development according to any one of claims 1 to 5, wherein the colored resin particles further contain an additive having a polydiene structure.
  7.  前記結着樹脂100質量部に対する前記ポリジエン構造を有する添加剤の含有量が0.5~20質量部である請求項6に記載の静電荷像現像用トナー。 The toner for electrostatic charge image development according to claim 6, wherein the content of the additive having a polydiene structure is 0.5 to 20 parts by mass with respect to 100 parts by mass of the binder resin.
  8.  前記結着樹脂が、スチレン-(メタ)アクリル酸エステル共重合体である請求項1~7のいずれかに記載の静電荷像現像用トナー。 The toner for electrostatic charge image development according to any one of claims 1 to 7, wherein the binder resin is a styrene-(meth)acrylic acid ester copolymer.
  9.  正帯電トナーである請求項1~8のいずれかに記載の静電荷像現像用トナー。 The toner for electrostatic charge image development according to any one of claims 1 to 8, which is a positively charged toner.
  10.  粉砕法、または懸濁重合法で作製されたものである請求項1~9のいずれかに記載の静電荷像現像用トナー。 The toner for electrostatic charge image development according to any one of claims 1 to 9, which is produced by a pulverization method or a suspension polymerization method.
PCT/JP2022/047963 2021-12-28 2022-12-26 Toner for electrostatic image development WO2023127815A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-215216 2021-12-28
JP2021215216 2021-12-28

Publications (1)

Publication Number Publication Date
WO2023127815A1 true WO2023127815A1 (en) 2023-07-06

Family

ID=86999004

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/047963 WO2023127815A1 (en) 2021-12-28 2022-12-26 Toner for electrostatic image development

Country Status (1)

Country Link
WO (1) WO2023127815A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017179357A1 (en) * 2016-04-14 2017-10-19 京セラドキュメントソリューションズ株式会社 Toner for developing electrostatic latent image and manufacturing method therefor
JP2019012188A (en) * 2017-06-30 2019-01-24 キヤノン株式会社 Black toner
WO2019065868A1 (en) * 2017-09-29 2019-04-04 日本ゼオン株式会社 Toner for developing electrostatic images
WO2020045664A1 (en) * 2018-08-31 2020-03-05 日本ゼオン株式会社 Electrostatic charge image development toner

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017179357A1 (en) * 2016-04-14 2017-10-19 京セラドキュメントソリューションズ株式会社 Toner for developing electrostatic latent image and manufacturing method therefor
JP2019012188A (en) * 2017-06-30 2019-01-24 キヤノン株式会社 Black toner
WO2019065868A1 (en) * 2017-09-29 2019-04-04 日本ゼオン株式会社 Toner for developing electrostatic images
WO2020045664A1 (en) * 2018-08-31 2020-03-05 日本ゼオン株式会社 Electrostatic charge image development toner

Similar Documents

Publication Publication Date Title
JP7131562B2 (en) Toner for electrostatic charge image development
US20090087765A1 (en) Toner for developing electrostatic latent image
JP4560462B2 (en) toner
US10175594B2 (en) Toner set
JP2023159359A (en) Electrostatic charge image development toner
JP3546925B2 (en) Polymerized color toner
JP5087996B2 (en) Method for producing toner for developing electrostatic image
JP2008197288A (en) Electrophotographic toner, and method for producing the same
JP5359752B2 (en) Method for producing polymerized toner
JP2012118271A (en) Toner for electrostatic charge image development and manufacturing method thereof
JP2010282146A (en) Toner
JP2006113616A (en) Toner
WO2023127815A1 (en) Toner for electrostatic image development
WO2021060408A1 (en) Electrostatic image development toner
JP2004279771A (en) Electrostatic charge image developing toner
JP2012073468A (en) Toner for developing electrostatic charge image
JP2000098662A (en) Electrostatic charge image developing toner
JP4298614B2 (en) Magnetic toner
JP2011022218A (en) Toner and method of manufacturing the same
JP7392661B2 (en) Method for manufacturing toner for developing electrostatic images
JP2018025828A (en) Method for manufacturing toner for electrostatic charge image development
JP5418178B2 (en) Method for producing polymerized toner
JP2015075601A (en) Toner for electrostatic charge image development
JP2019179256A (en) Toner for electrostatic charge image development
JP2011034013A (en) Toner and toner production method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22916038

Country of ref document: EP

Kind code of ref document: A1