WO2023127329A1 - Abnormality detection device, method, and program - Google Patents
Abnormality detection device, method, and program Download PDFInfo
- Publication number
- WO2023127329A1 WO2023127329A1 PCT/JP2022/042183 JP2022042183W WO2023127329A1 WO 2023127329 A1 WO2023127329 A1 WO 2023127329A1 JP 2022042183 W JP2022042183 W JP 2022042183W WO 2023127329 A1 WO2023127329 A1 WO 2023127329A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- time
- series data
- normal
- region
- abnormal
- Prior art date
Links
- 238000001514 detection method Methods 0.000 title claims abstract description 151
- 230000005856 abnormality Effects 0.000 title claims abstract description 124
- 238000000034 method Methods 0.000 title claims description 12
- 230000002159 abnormal effect Effects 0.000 claims abstract description 110
- 238000009826 distribution Methods 0.000 claims abstract description 24
- 239000003507 refrigerant Substances 0.000 claims description 43
- 238000013507 mapping Methods 0.000 claims description 11
- 238000010801 machine learning Methods 0.000 claims description 7
- 238000010586 diagram Methods 0.000 description 20
- 238000004781 supercooling Methods 0.000 description 13
- 238000010438 heat treatment Methods 0.000 description 12
- 238000001816 cooling Methods 0.000 description 11
- 230000006870 function Effects 0.000 description 6
- 230000002547 anomalous effect Effects 0.000 description 3
- 230000005484 gravity Effects 0.000 description 3
- 238000004378 air conditioning Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/30—Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
- F24F11/32—Responding to malfunctions or emergencies
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/30—Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
- F24F11/32—Responding to malfunctions or emergencies
- F24F11/36—Responding to malfunctions or emergencies to leakage of heat-exchange fluid
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/30—Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
- F24F11/32—Responding to malfunctions or emergencies
- F24F11/38—Failure diagnosis
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/62—Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
- F24F11/63—Electronic processing
- F24F11/64—Electronic processing using pre-stored data
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B49/00—Arrangement or mounting of control or safety devices
- F25B49/02—Arrangement or mounting of control or safety devices for compression type machines, plants or systems
Definitions
- the present disclosure relates to an anomaly detection device, method, and program.
- the two distributions have a clearly normal range (a range that does not overlap with abnormality), a clearly abnormal range (range that does not overlap with normal), and a range that is difficult to distinguish between normal and abnormal (normal and abnormal).
- the left side of FIG. 1 shows the probability density (or frequency) of the failure index (for example, the refrigerant amount index).
- “Normal distribution” is the probability density calculated by collecting the values of the refrigerant quantity index during normal times
- “Distribution at the time of leakage” collects the values of the refrigerant quantity index at abnormal times (at the time of refrigerant leakage).
- a threshold value (broken line in FIG. 1) is determined based on the normal distribution and the leakage distribution.
- Range where it can be correctly judged as normal is a clearly normal range (range where it is not abnormal (leakage)), and “range where leakage can be correctly judged” is a clearly abnormal (leakage) range (normal) range), and there are few misjudgments.
- range of many misjudgments is a range in which it is difficult to distinguish between normality and abnormality (leakage) (range where normality and abnormality (leakage) overlap), and there are many misjudgments.
- the right side of FIG. 1 shows the value of the failure index (for example, refrigerant amount index) at each time (t). If the noise removal of the refrigerant amount index is insufficient, for example, even though the equipment is normal, the threshold value is exceeded due to noise, and an abnormality is erroneously detected.
- the failure index for example, refrigerant amount index
- the purpose of this disclosure is to improve the accuracy of device anomaly detection.
- An abnormality detection device includes: An anomaly detection device comprising a control unit, The control unit An N+1 dimensional phase space is created from the value of the time series data that is the abnormality detection target of the air conditioner and N values past the arbitrary time, and the normal time series data and the abnormality are created on the phase space. Create a normal region and an abnormal region on the phase space according to the distribution when the time series data of is mapped, Acquiring at least N+1 values from the time-series data that is the abnormality detection target of the air conditioner, and specifying whether the at least N+1 values are mapped to the normal region or the abnormal region. , it is determined whether the time-series data is normal or abnormal, and output.
- An abnormality detection device is the abnormality detection device according to the first aspect,
- the normal region and the abnormal region on the phase space are learned models created by machine learning.
- normal regions and abnormal regions can be easily created.
- An abnormality detection device is the abnormality detection device according to the first aspect or the second aspect,
- the phase space is two-dimensional.
- An abnormality detection device is the abnormality detection device according to any one of the first to third aspects,
- the phase space is created from at least one of a value of time-series data as an abnormality detection target for the air conditioner and a difference between time-series data as an abnormality detection target for the air conditioner.
- the normal region and the abnormal region can be created in consideration of at least one of the time-series data that is the target of anomaly detection and the difference between the data that is the target of anomaly detection.
- An abnormality detection device is the abnormality detection device according to any one of the first to fourth aspects,
- the control unit Abnormality of the time-series data is determined based on at least one of a degree of deviation from normal and a degree of change.
- the fifth aspect of the present disclosure it is possible to detect an anomaly in consideration of at least one of the degree of deviation of data, which is the target of anomaly detection, from normal and the degree of change of the data, which is the target of anomaly detection. can.
- An abnormality detection device is the abnormality detection device according to any one of the first to fifth aspects, The control unit When the normal region and the abnormal region overlap, the region where the normal region and the abnormal region overlap is defined as the normal region.
- An abnormality detection device is the abnormality detection device according to any one of the first to sixth aspects,
- the control unit A relationship between the number of data mapped to the normal region and the number of data mapped to the abnormal region among the at least N + 1 values, and the normal center of the distribution of the at least N + 1 values after mapping Whether the time-series data is normal or abnormal is determined and output by calculating at least one of specifying whether it is in the region or in the abnormal region.
- an abnormality can be detected according to the state of distribution on the phase space after mapping.
- An abnormality detection device is the abnormality detection device according to any one of the first to seventh aspects,
- the control unit Create multiple different topological spaces.
- anomalies can be detected based on a plurality of different phase spaces.
- An abnormality detection device is the abnormality detection device according to the eighth aspect,
- the control unit By specifying whether the time-series data is mapped to a normal region or an abnormal region on each phase space of the plurality of different phase spaces, the time-series data is normal or abnormal. Determine whether or not there is, and output.
- anomalies can be detected based on a plurality of different phase spaces.
- An abnormality detection device is the abnormality detection device according to any one of the first to ninth aspects,
- the control unit When creating the normal region and the abnormal region on the phase space, and when determining whether the time series data is normal or abnormal, The value of the time-series data at the arbitrary time and past N consecutive values from the arbitrary time, or the value of the time-series data at the arbitrary time and past N values from the arbitrary time every M times get the value.
- An abnormality detection device is the abnormality detection device according to any one of the first to tenth aspects,
- the time-series data which is the object of abnormality detection of the air conditioner, is data related to the amount of refrigerant contained in the air conditioner.
- refrigerant leakage can be detected.
- a method comprises: A method executed by a control unit of an anomaly detection device, An N+1 dimensional phase space is created from the value of the time series data that is the abnormality detection target of the air conditioner and N values past the arbitrary time, and the normal time series data and the abnormality are created on the phase space.
- a program comprises: In the control unit of the anomaly detection device, An N+1 dimensional phase space is created from the value of the time series data that is the abnormality detection target of the air conditioner and N values past the arbitrary time, and the normal time series data and the abnormality are created on the phase space.
- FIG. 4 is a diagram for explaining mapping of time-series data, which is an anomaly detection target of the present disclosure, to a phase space;
- FIG. 4 is a diagram for explaining creation of a normal region and an abnormal region according to an embodiment of the present disclosure;
- FIG. 4 is a diagram for explaining overlap of a normal region and an abnormal region according to the present disclosure;
- FIG. 4 is a diagram for explaining abnormality detection according to an embodiment of the present disclosure;
- FIG. FIG. 4 is a diagram for explaining the number of dimensions of a phase space according to an embodiment of the present disclosure;
- FIG. 4 is a diagram for explaining mapping of time-series data, which is an anomaly detection target of the present disclosure, to a phase space;
- FIG. 4 is a diagram for explaining creation of a normal region and an abnormal region according to an embodiment of the present disclosure;
- FIG. 4 is a diagram for explaining overlap of a normal region and an abnormal region according to the present disclosure;
- FIG. FIG. 4 is a diagram for explaining abnormal
- FIG. 4 is an example of a phase space according to an embodiment of the present disclosure
- 4 is an example of a phase space according to an embodiment of the present disclosure
- FIG. 4 is a diagram for explaining creation of multiple phase spaces and anomaly detection using multiple phase spaces according to an embodiment of the present disclosure
- 4 is a flowchart of normal region and abnormal region creation processing according to an embodiment of the present disclosure
- 6 is a flowchart of normality/abnormality determination processing according to an embodiment of the present disclosure.
- 1 is a hardware configuration diagram of an abnormality detection device according to an embodiment of the present disclosure
- FIG. 1 is a hardware configuration diagram of an air conditioner (for cooling operation) according to an embodiment of the present disclosure
- FIG. 1 is a hardware configuration diagram of an air conditioner (for heating operation) according to an embodiment of the present disclosure
- FIG. 1 is a hardware configuration diagram of an air conditioner (for simultaneous cooling and heating operation) according to an embodiment of the present disclosure
- FIG. 2 is an example of the overall configuration of the present disclosure.
- An abnormality detection device 10 is a device that detects an abnormality in a device 100 such as an air conditioner.
- the abnormality detection device 10 includes a control section (control section 1001 in FIG. 13).
- the abnormality detection device 10 is a device different from the air conditioner 100 .
- the abnormality detection device 10 and the air conditioner 100 are communicably connected via an arbitrary network.
- the abnormality detection device 10 may be a cloud server remote from the air conditioner 100, or may be a computer installed in the same building as the air conditioner.
- One abnormality detection device 10 may detect an abnormality in one air conditioner 100 or may detect an abnormality in a plurality of air conditioners 100 .
- the abnormality detection device 10 is part of the air conditioner 100 .
- One abnormality detection device 10 may detect an abnormality in one air conditioner 100 or may detect an abnormality in a plurality of air conditioners 100 .
- Example 3 The processing of the abnormality detection device described in this specification is distributed and executed by the abnormality detection device 10 that is a device separate from the air conditioner 100 and the abnormality detection device 10 that is a part of the air conditioner 100. may be
- the control unit 1001 of the abnormality detection device 10 creates a normal region and an abnormality region on the phase space used for detecting abnormality of the air conditioner 100 .
- the control unit 1001 of the anomaly detection device 10 controls the time-series data of an index (hereinafter referred to as an anomaly detection target) for detecting an anomaly of the air conditioner 100, the value of an arbitrary time and the arbitrary time Create an N+1 dimensional topological space from the N older values.
- the control unit 1001 of the abnormality detection device 10 puts normal time-series data (time-series data of an index when the air conditioner 100 is normal) and abnormality time-series data (the air conditioner 100 A normal region and an abnormal region are created on the phase space according to the distribution when the time-series data of the index when is abnormal) is mapped.
- control unit 1001 of the anomaly detection device 10 inputs a plurality of (for example, of a plurality of properties) normal time-series data (time-series data of indicators when the air conditioner 100 is normal) and a plurality of ( For example, using teacher data that is abnormal time-series data (time-series data of indicators when the air conditioner 100 is abnormal) of a plurality of properties and whose output is a normal region or an abnormal region on the phase space It is possible to create a normal region and an abnormal region on the phase space by machine learning with
- control unit 1001 of the anomaly detection device 10 detects an anomaly of the air conditioner 100 using the created normal region and anomalous region in the phase space.
- control unit 1001 of the abnormality detection device 10 acquires at least N+1 values from the time-series data that is the abnormality detection target of the air conditioner 100, and at least N+1 values are mapped to the normal region. It is determined whether the time-series data is normal or abnormal by specifying whether it is mapped to an abnormal area or not, and output.
- the abnormality detection target is the refrigerant amount index (data related to the amount of refrigerant contained in the air conditioner 100)
- the present disclosure can be applied to any failure index. can do.
- FIG. 3 is a diagram for explaining mapping of time-series data, which is an anomaly detection target of the present disclosure, onto a phase space.
- the control unit 1001 of the anomaly detection device 10 creates an N+1-dimensional phase space from an arbitrary time value of the time-series data, which is an anomaly detection target of the air conditioner 100, and N values past the arbitrary time.
- the controller 1001 of the anomaly detection device 10 detects an anomaly detection target of the air conditioner 100 from the arbitrary time value (refrigerant amount index value at time t) of the time-series data and the arbitrary time An N+1-dimensional phase space (two-dimensional plane) is created from past N values (refrigerant amount index values at time t ⁇ 1). Then, the control unit 1001 of the abnormality detection device 10 puts normal time-series data (time-series data of the refrigerant amount index when the air conditioner 100 is normal) and abnormal time-series data (air conditioner Time-series data of the refrigerant amount index when 100 is abnormal (refrigerant leakage) is mapped.
- normal time-series data time-series data of the refrigerant amount index when the air conditioner 100 is normal
- abnormal time-series data air conditioner Time-series data of the refrigerant amount index when 100 is abnormal (refrigerant leakage) is mapped.
- FIG. 4 is a diagram for explaining creation of normal regions and abnormal regions according to an embodiment of the present disclosure.
- the control unit 1001 of the anomaly detection device 10 creates a normal region and an anomaly region on the phase space according to the distribution when the normal time-series data and the abnormal time-series data are mapped on the phase space. If the index (t-1) ⁇ reference value (approximation) and index (t) ⁇ reference value (approximation), then it is considered normal, and either index (t-1) or index (t) is greater than the reference value. If it is below (or above), it is determined to be normal (deemed to be noise), and if the index (t-1) ⁇ (or >) reference value and index (t) ⁇ (or >) reference value, it is determined to be abnormal. can be done.
- the control unit 1001 of the abnormality detection device 10 maps the normal region on the phase space according to the distribution when the normal time-series data and the abnormal time-series data are mapped on the phase space. and creating (eg, demarcating) anomalous regions. For example, if the index (t-1) to 0 (approximate) and the index (t) to 0 (approximate), it is determined to be normal, and if either the index (t-1) or the index (t) is negative, it is normal (assumed to be noise), and if index (t-1) ⁇ 0 and index (t) ⁇ 0, it can be determined as abnormal.
- FIG. 5 is a diagram for explaining the overlap of the normal region and the abnormal region of the present disclosure.
- the normal region and the abnormal region may overlap on the topological space.
- the control unit 1001 of the abnormality detection device 10 detects the region where the normal region and the abnormal region overlap (for example, the “normal region” and the “leakage region” in FIG. The area indicated by the “overlap”) can be taken as the normal area.
- FIG. 6 is a diagram for explaining abnormality detection according to an embodiment of the present disclosure.
- the control unit 1001 of the abnormality detection device 10 acquires at least N+1 values from the time-series data that is the abnormality detection target of the air conditioner 100, and at least N+1 values are mapped to the normal region or mapped to the abnormal region. It is determined whether the time-series data is normal or abnormal by specifying whether the time-series data is normal or abnormal (at least N+1 values within the dashed frame on the left side of FIG. 6 are mapped (moving the frame )).
- control unit 1001 of the anomaly detection device 10 calculates the relationship between the number of data mapped to the normal region and the number of data mapped to the abnormal region among at least N+1 values, so that time-series data is normal or abnormal (for example, if the number of data mapped to the normal region is greater can be determined).
- control unit 1001 of the abnormality detection device 10 determines whether the time-series data is normal by calculating whether the center of gravity of the distribution after mapping of at least N+1 values is in the normal region or in the abnormal region. or abnormal (for example, if the center of gravity of the distribution after mapping is in the normal region, it is determined to be normal, and if the center of gravity of the distribution after mapping is in the abnormal region, it is determined to be abnormal) can be done.
- FIG. 7 is a diagram for explaining the number of dimensions of the phase space according to one embodiment of the present disclosure.
- the topological space may be a topological space of any number of dimensions.
- the topological space may be two-dimensional, three-dimensional or more.
- the phase space can be represented by the value of the failure indicator (eg, refrigerant quantity indicator) at time t and the value of the failure indicator (eg, refrigerant quantity indicator) at time t ⁇ 1 and the failure It is a phase space whose axis is the value at time t ⁇ 2 of the index (eg, refrigerant amount index).
- the index eg, refrigerant amount index
- FIG. 8 is an example of a phase space according to one embodiment of the present disclosure.
- the axes of the phase space may be computed fault indices.
- the phase space may include the difference between the value of the failure index (eg, refrigerant quantity index) at time t and the value at time t ⁇ 1, and the failure index (eg, refrigerant quantity index) is a phase space whose axis is the difference between the value at time t ⁇ 1 and the value at time t ⁇ 2.
- the failure index eg, refrigerant quantity index
- the time-series data of a rapid leak (a large amount of refrigerant leaks in a short time and causes a lack of oxygen or ignition of a flammable refrigerant) Leakage leading to deterioration of function due to leakage of refrigerant) is mapped to the lower left of the time-series data.
- the change is significant, it will be mapped to the lower left (in the case of the refrigerant amount index), and it is possible to determine the degree of progress, such as whether the abnormality is a fast-changing abnormality or a slow-changing abnormality.
- an index whose value increases when there is an abnormality if the change is significant, it will be mapped to the upper right.
- FIG. 9 is an example of a phase space according to an embodiment of the present disclosure.
- the axes of the phase space may be computed fault indices.
- the phase space may include the value of the failure indicator (eg, refrigerant quantity indicator) at time t, the value of the failure indicator (eg, refrigerant quantity indicator) at time t, and the value at time t ⁇ 1 is the topological space whose axes are the difference of the values in .
- FIG. 10 is a diagram for explaining creation of multiple phase spaces and anomaly detection using multiple phase spaces according to an embodiment of the present disclosure.
- the control unit 1001 of the anomaly detection device 10 can create multiple different phase spaces.
- the control unit 1001 of the abnormality detection device 10 controls the value of the failure indicator (eg, refrigerant amount indicator) at time t and the value of the failure indicator (eg, refrigerant amount indicator) at time t ⁇ 1 and the difference between the value at time t and the value at time t-1 of the index of failure (e.g. refrigerant amount index) and the time t of the index of failure (e.g. refrigerant amount index)
- a phase space can be created whose axis is the difference between the value at ⁇ 1 and the value at time t ⁇ 2.
- the control unit 1001 of the anomaly detection device 10 determines whether the time-series data is mapped to a normal region or an abnormal region on each phase space of a plurality of different phase spaces. By specifying it, it is possible to determine whether the time-series data is normal or abnormal and output it. For example, as shown in FIG. 10, the control unit 1001 of the abnormality detection device 10 causes the time-series data of the failure index (for example, the refrigerant amount index) to fall into the normal region on each phase space of the two phase spaces.
- the degree of deviation from normal and the degree of change can be determined by specifying whether it is mapped or mapped to an abnormal region.
- the control unit 1001 of the anomaly detection device 10 creates a normal region and an anomaly region in the phase space, and determines whether the time-series data is normal or abnormal. 2, N values in the past that are continuous with an arbitrary time value of the time series data, or an arbitrary time value of the time series data and the past N values that are obtained every M times from an arbitrary time. be able to.
- FIG. 11 is a flowchart of normal region and abnormal region creation processing according to an embodiment of the present disclosure.
- the control unit 1001 of the anomaly detection device 10 creates a phase space. Specifically, the control unit 1001 of the anomaly detection device 10 extracts an N+1-dimensional phase space from an arbitrary time value of the time-series data that is an anomaly detection target of the air conditioner 100 and N values past the arbitrary time. create.
- the control unit 1001 of the anomaly detection device 10 maps the time-series data, which is an anomaly detection target, onto the phase space. Specifically, the control unit 1001 of the abnormality detection device 10 maps the normal time-series data and the abnormal time-series data on the phase space created in S11.
- the control unit 1001 of the abnormality detection device 10 creates a normal region and an abnormal region on the phase space. Specifically, the control unit 1001 of the anomaly detection device 10 maps the normal region and the Create anomalous regions.
- FIG. 12 is a flowchart of normality/abnormality determination processing according to an embodiment of the present disclosure.
- the control unit 1001 of the anomaly detection device 10 acquires time-series data that is an anomaly detection target. Specifically, the control unit 1001 of the abnormality detection device 10 acquires at least N+1 values from the time-series data that is the abnormality detection target of the air conditioner 100 .
- the control unit 1001 of the anomaly detection device 10 maps the time-series data, which is an anomaly detection target, onto the phase space. Specifically, the control unit 1001 of the abnormality detection device 10 maps at least N+1 values acquired in S21 onto the phase space created in FIG.
- the control unit 1001 of the anomaly detection device 10 determines whether the time series data to be anomaly detected is normal or abnormal. Specifically, the control unit 1001 of the abnormality detection device 10 determines whether the time-series data is normal by specifying whether at least N+1 values are mapped to the normal region or the abnormal region in S22. or abnormal.
- step 24 (S24) the control unit 1001 of the abnormality detection device 10 outputs the determination result. Specifically, the control unit 1001 of the abnormality detection device 10 outputs the result determined in S23 (for example, an abnormality of the air conditioner 100 is reported).
- a normal region and an abnormal region are created by mapping the failure index data onto a topological space centered on past data and current data of the failure index (for example, a boundary line or draw a boundary surface), it is possible to reduce false detections due to noise.
- Normal regions and abnormal regions eg, boundary lines or boundary surfaces
- FIG. 13 is a hardware configuration diagram of the abnormality detection device 10 according to an embodiment of the present disclosure.
- the anomaly detection device 10 has a CPU (Central Processing Unit) 1001, a ROM (Read Only Memory) 1002, and a RAM (Random Access Memory) 1003.
- the CPU 1001, ROM 1002, and RAM 1003 form a so-called computer.
- the abnormality detection device 10 also has an auxiliary storage device 1004 , a display device 1005 , an operation device 1006 , an I/F (Interface) device 1007 and a drive device 1008 .
- Each piece of hardware of the abnormality detection device 10 is connected to each other via a bus B. As shown in FIG.
- the CPU 1001 is a computing device that executes various programs installed in the auxiliary storage device 1004 .
- the ROM 1002 is a non-volatile memory.
- the ROM 1002 functions as a main storage device that stores various programs, data, etc. necessary for the CPU 1001 to execute various programs installed in the auxiliary storage device 1004 .
- the ROM 1002 functions as a main storage device that stores boot programs such as BIOS (Basic Input/Output System) and EFI (Extensible Firmware Interface).
- BIOS Basic Input/Output System
- EFI Extensible Firmware Interface
- the RAM 1003 is a volatile memory such as DRAM (Dynamic Random Access Memory) or SRAM (Static Random Access Memory).
- the RAM 1003 functions as a main storage device that provides a work area that is developed when various programs installed in the auxiliary storage device 1004 are executed by the CPU 1001 .
- the auxiliary storage device 1004 is an auxiliary storage device that stores various programs and information used when various programs are executed.
- the display device 1005 is a display device that displays the internal state of the abnormality detection device 10 and the like.
- the operation device 1006 is an input device through which the administrator of the anomaly detection device 10 inputs various instructions to the anomaly detection device 10 .
- the I/F device 1007 is a communication device for connecting to a network and communicating with other devices.
- a drive device 1008 is a device for setting a storage medium 1009 .
- the storage medium 1009 here includes media for optically, electrically, or magnetically recording information such as CD-ROMs, flexible disks, and magneto-optical disks. Also, the storage medium 1009 may include a semiconductor memory or the like that electrically records information such as a ROM or a flash memory.
- auxiliary storage device 1004 Various programs to be installed in the auxiliary storage device 1004 are installed by, for example, setting the distributed storage medium 1009 in the drive device 1008 and reading the various programs recorded in the storage medium 1009 by the drive device 1008. be done. Alternatively, various programs installed in the auxiliary storage device 1004 may be installed by being downloaded from the network via the I/F device 1007 .
- the air conditioner 100 may be an arbitrary air conditioning system such as a multi-air conditioner such as a multi-air conditioner for buildings, a central air-conditioning system using a chiller as a heat source, an air conditioner for stores and offices, and a room air conditioner. Besides, it may be a refrigerating/freezing system.
- the air conditioner 100 can have multiple indoor units 300 .
- the plurality of indoor units 300 may include indoor units with different performance, may include indoor units with the same performance, or may include indoor units that are not in operation.
- FIG. 14 is a hardware configuration diagram of the air conditioner 100 according to an embodiment of the present disclosure.
- Air conditioner 100 has outdoor unit 200 and one or more indoor units 300 .
- the outdoor heat exchanger 201, the outdoor unit main expansion valve 205, the supercooling heat exchanger 203, the indoor heat exchanger expansion valve 302, the four-way switching valve 206, and the indoor heat exchanger 301 , and the compressor 202 are connected by a refrigerant pipe to form a main refrigerant circuit.
- the four-way switching valve 206 has a flow path set so as to supply the discharge gas of the compressor 202 to the outdoor heat exchanger 201 .
- the supercooling heat exchanger expansion valve 204 is further connected to the bypass pipe connected from the pipe between the outdoor heat exchanger 201 and the supercooling heat exchanger 203 to the suction side pipe of the compressor 202. is provided.
- the supercooling heat exchanger 203 includes a supercooling heat exchanger expansion valve 204 provided in a bypass pipe connected between the outdoor heat exchanger 201 and the supercooling heat exchanger 203 to the suction side pipe of the compressor 202. is a heat exchanger that exchanges heat between the refrigerant that has passed through and the refrigerant in the main refrigerant circuit. Note that the bypass example in FIG. 14 is an example.
- the outdoor unit 200 has various sensors (temperature sensors (eg, thermistors) (1), (3), (4), (6), (7), pressure sensors (2), (5), etc.).
- the indoor unit 300 On the indoor unit 300 side, an indoor heat exchanger 301 and an indoor heat exchanger expansion valve 302 are connected to pipes.
- the indoor unit 300 has various sensors (temperature sensors (eg, thermistors) (8), (9), etc.).
- FIG. 15 is a hardware configuration diagram of an air conditioner (for heating operation) 100 according to an embodiment of the present disclosure.
- Air conditioner 100 has outdoor unit 200 and one or more indoor units 300 .
- the machine main expansion valve 205 is connected by a refrigerant pipe to form a main refrigerant circuit.
- the four-way switching valve 206 has a flow path set so as to supply the discharge gas of the compressor 202 to the indoor heat exchanger 301 .
- the outdoor unit 200 has various sensors (temperature sensors (eg, thermistors) (1), (3), (4), (6), (7), pressure sensors (2), (5), etc.).
- the indoor unit 300 On the indoor unit 300 side, an indoor heat exchanger 301 and an indoor heat exchanger expansion valve 302 are connected to pipes.
- the indoor unit 300 has various sensors (temperature sensors (eg, thermistors) (8), (9), etc.).
- FIG. 16 is a hardware configuration diagram of an air conditioner (in the case of simultaneous cooling and heating operation) 100 according to an embodiment of the present disclosure.
- the air conditioner 100 has an outdoor heat exchanger 201-1 and an outdoor heat exchanger 201-2 with a two-part structure, and a plurality of indoor units, which are connected by three connecting pipes, and simultaneous cooling and heating operation is possible.
- FIG. 16 shows an example of cooling-dominant operation, in which indoor unit 300-1 is operated in heating mode and indoor unit 300-2 is operated in cooling mode.
- the outdoor heat exchanger 201-1 functions as a condenser
- the outdoor heat exchanger 201-2 functions as an evaporator.
- Air conditioner 200 Outdoor unit 201 Outdoor heat exchanger 201-1 Outdoor heat exchanger (condenser) 201-2 Outdoor heat exchanger (evaporator) 202 Compressor 203 Supercooling heat exchanger 204 Supercooling heat exchanger expansion valve 205 Outdoor unit main expansion valve 206 Four-way switching valve 300 Indoor unit 300-1 Heating indoor unit 300-2 Cooling indoor unit 301 Indoor heat exchanger 302 Indoor Heat exchanger expansion valve 1001 Control unit 1002 ROM 1003 RAM 1004 auxiliary storage device 1005 display device 1006 operation device 1007 I/F device 1008 drive device 1009 storage medium
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Signal Processing (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Fuzzy Systems (AREA)
- Mathematical Physics (AREA)
- Air Conditioning Control Device (AREA)
- Testing And Monitoring For Control Systems (AREA)
Abstract
The present invention improves the accuracy of abnormality detection for an apparatus. An abnormality detection device according to one embodiment of the present disclosure comprises a control unit, and is characterized in that the control unit: creates a N+1-dimensional topological space using a value at an arbitrary time and N values prior to the arbitrary time from time series data that is a target of abnormality detection in an air conditioner; creates a normal region and an abnormal region in the topological space according to a distribution when normal time series data and abnormal time series data have been mapped in the topological space; acquires at least N+1 values from the time series data that is the target of abnormality detection in the air conditioner; and specifies whether the at least N+1 values are mapped in the normal region or are mapped in the abnormal region, thereby determining and outputting whether the time series data is normal or abnormal.
Description
本開示は、異常検知装置、方法、およびプログラムに関する。
The present disclosure relates to an anomaly detection device, method, and program.
従来、空気調和機等の機器の異常検知では、故障の指標が所定の閾値を超えたときに異常と判定する手法が知られている。この閾値は、該指標の正常時のデータと異常時のデータの確率密度を算出し、2つの分布(正常時のデータの確率分布と異常時のデータの確率分布)をもとに決定されている。
Conventionally, in the anomaly detection of equipment such as air conditioners, there is a known method of judging an anomaly when a failure index exceeds a predetermined threshold. This threshold value is determined based on two distributions (probability distribution of normal data and probability distribution of abnormal data) by calculating the probability density of normal data and abnormal data of the indicator. there is
しかしながら、2つの分布には、明らかに正常な範囲(異常と被らない範囲)と、明らかに異常な範囲(正常と被らない範囲)と、正常か異常かわかりづらい範囲(正常と異常が被る範囲)と、の3つがある。そのため、故障の指標の時系列データがノイズで上下して正常か異常かわかりづらい範囲に達すると閾値を超えて誤判定されてしまうことがある。以下、図1を参照しながら説明する。図1の左側は閾値の決定について説明し、図1の右側は該閾値を用いた異常の検知について説明する。
However, the two distributions have a clearly normal range (a range that does not overlap with abnormality), a clearly abnormal range (range that does not overlap with normal), and a range that is difficult to distinguish between normal and abnormal (normal and abnormal). There are three types: the range covered) and . Therefore, if the time-series data of the failure index fluctuates due to noise and reaches a range where it is difficult to determine whether the failure is normal or abnormal, the threshold may be exceeded and an erroneous determination may occur. Description will be made below with reference to FIG. The left side of FIG. 1 explains the determination of the threshold, and the right side of FIG. 1 explains the detection of abnormality using the threshold.
図1の左側では、故障の指標(例えば、冷媒量指標とする)の確率密度(あるいは頻度)を示す。“正常時の分布”は、正常時の冷媒量指標の値を収集して算出した確率密度であり、“漏洩時の分布”は、異常時(冷媒漏洩時)の冷媒量指標の値を収集して算出した確率密度である。正常時の分布と漏洩時の分布をもとに、閾値(図1の破線)が決定される。“正常と正しく判定できる範囲”は、明らかに正常な範囲(異常(漏洩)と被らない範囲)であり、“漏洩と正しく判定できる範囲”は、明らかに異常(漏洩)な範囲(正常と被らない範囲)であり、誤判定が少ない。一方、“誤判定が多い範囲”は、正常か異常(漏洩)かわかりづらい範囲(正常と異常(漏洩)が被る範囲)であり、誤判定が多くなる。
The left side of FIG. 1 shows the probability density (or frequency) of the failure index (for example, the refrigerant amount index). “Normal distribution” is the probability density calculated by collecting the values of the refrigerant quantity index during normal times, and “Distribution at the time of leakage” collects the values of the refrigerant quantity index at abnormal times (at the time of refrigerant leakage). is the probability density calculated by A threshold value (broken line in FIG. 1) is determined based on the normal distribution and the leakage distribution. “Range where it can be correctly judged as normal” is a clearly normal range (range where it is not abnormal (leakage)), and “range where leakage can be correctly judged” is a clearly abnormal (leakage) range (normal) range), and there are few misjudgments. On the other hand, the “range of many misjudgments” is a range in which it is difficult to distinguish between normality and abnormality (leakage) (range where normality and abnormality (leakage) overlap), and there are many misjudgments.
図1の右側では、各時間(t)における故障の指標(例えば、冷媒量指標とする)の値を示す。この冷媒量指標のノイズ除去が不十分であると、例えば、機器が正常であるのに、ノイズにより閾値を超えてしまい異常と誤検知されてしまう。
The right side of FIG. 1 shows the value of the failure index (for example, refrigerant amount index) at each time (t). If the noise removal of the refrigerant amount index is insufficient, for example, even though the equipment is normal, the threshold value is exceeded due to noise, and an abnormality is erroneously detected.
本開示では、機器の異常検知の精度を向上させることを目的とする。
The purpose of this disclosure is to improve the accuracy of device anomaly detection.
本開示の第1の態様による異常検知装置は、
制御部を備えた異常検知装置であって、
前記制御部は、
空気調和機の異常検知対象である時系列データの任意時間の値と前記任意時間より過去のN個の値からN+1次元の位相空間を作成し、前記位相空間上に正常の時系列データと異常の時系列データが写像されたときの分布に応じて、前記位相空間上に正常領域および異常領域を作成し、
前記空気調和機の異常検知対象である時系列データから少なくともN+1個の値を取得し、前記少なくともN+1個の値が前記正常領域に写像されるか前記異常領域に写像されるかを特定することで、前記時系列データが正常であるか異常であるかを判定して出力する。 An abnormality detection device according to a first aspect of the present disclosure includes:
An anomaly detection device comprising a control unit,
The control unit
An N+1 dimensional phase space is created from the value of the time series data that is the abnormality detection target of the air conditioner and N values past the arbitrary time, and the normal time series data and the abnormality are created on the phase space. Create a normal region and an abnormal region on the phase space according to the distribution when the time series data of is mapped,
Acquiring at least N+1 values from the time-series data that is the abnormality detection target of the air conditioner, and specifying whether the at least N+1 values are mapped to the normal region or the abnormal region. , it is determined whether the time-series data is normal or abnormal, and output.
制御部を備えた異常検知装置であって、
前記制御部は、
空気調和機の異常検知対象である時系列データの任意時間の値と前記任意時間より過去のN個の値からN+1次元の位相空間を作成し、前記位相空間上に正常の時系列データと異常の時系列データが写像されたときの分布に応じて、前記位相空間上に正常領域および異常領域を作成し、
前記空気調和機の異常検知対象である時系列データから少なくともN+1個の値を取得し、前記少なくともN+1個の値が前記正常領域に写像されるか前記異常領域に写像されるかを特定することで、前記時系列データが正常であるか異常であるかを判定して出力する。 An abnormality detection device according to a first aspect of the present disclosure includes:
An anomaly detection device comprising a control unit,
The control unit
An N+1 dimensional phase space is created from the value of the time series data that is the abnormality detection target of the air conditioner and N values past the arbitrary time, and the normal time series data and the abnormality are created on the phase space. Create a normal region and an abnormal region on the phase space according to the distribution when the time series data of is mapped,
Acquiring at least N+1 values from the time-series data that is the abnormality detection target of the air conditioner, and specifying whether the at least N+1 values are mapped to the normal region or the abnormal region. , it is determined whether the time-series data is normal or abnormal, and output.
本開示の第1の態様によれば、ノイズによる誤検知を減らすことができる。
According to the first aspect of the present disclosure, erroneous detection due to noise can be reduced.
本開示の第2の態様による異常検知装置は、第1の態様に記載の異常検知装置であって、
前記位相空間上の前記正常領域および前記異常領域は、機械学習により作成された学習済みモデルである。 An abnormality detection device according to a second aspect of the present disclosure is the abnormality detection device according to the first aspect,
The normal region and the abnormal region on the phase space are learned models created by machine learning.
前記位相空間上の前記正常領域および前記異常領域は、機械学習により作成された学習済みモデルである。 An abnormality detection device according to a second aspect of the present disclosure is the abnormality detection device according to the first aspect,
The normal region and the abnormal region on the phase space are learned models created by machine learning.
本開示の第2の態様によれば、正常領域および異常領域を容易に作成することができる。
According to the second aspect of the present disclosure, normal regions and abnormal regions can be easily created.
本開示の第3の態様による異常検知装置は、第1の態様または第2の態様に記載の異常検知装置であって、
前記位相空間は、二次元である。 An abnormality detection device according to a third aspect of the present disclosure is the abnormality detection device according to the first aspect or the second aspect,
The phase space is two-dimensional.
前記位相空間は、二次元である。 An abnormality detection device according to a third aspect of the present disclosure is the abnormality detection device according to the first aspect or the second aspect,
The phase space is two-dimensional.
本開示の第3の態様によれば、異常を検知する精度を向上させることができる。
According to the third aspect of the present disclosure, it is possible to improve the accuracy of detecting an abnormality.
本開示の第4の態様による異常検知装置は、第1の態様から第3の態様のいずれかに記載の異常検知装置であって、
前記位相空間は、前記空気調和機の異常検知対象である時系列データの値と、前記空気調和機の異常検知対象である時系列データの差分と、の少なくとも一方から作成される。 An abnormality detection device according to a fourth aspect of the present disclosure is the abnormality detection device according to any one of the first to third aspects,
The phase space is created from at least one of a value of time-series data as an abnormality detection target for the air conditioner and a difference between time-series data as an abnormality detection target for the air conditioner.
前記位相空間は、前記空気調和機の異常検知対象である時系列データの値と、前記空気調和機の異常検知対象である時系列データの差分と、の少なくとも一方から作成される。 An abnormality detection device according to a fourth aspect of the present disclosure is the abnormality detection device according to any one of the first to third aspects,
The phase space is created from at least one of a value of time-series data as an abnormality detection target for the air conditioner and a difference between time-series data as an abnormality detection target for the air conditioner.
本開示の第4の態様によれば、異常検知対象である時系列データと、異常検知対象であるデータの差分と、の少なくとも一方を考慮して正常領域および異常領域を作成することができる。
According to the fourth aspect of the present disclosure, the normal region and the abnormal region can be created in consideration of at least one of the time-series data that is the target of anomaly detection and the difference between the data that is the target of anomaly detection.
本開示の第5の態様による異常検知装置は、第1の態様から第4の態様のいずれかに記載の異常検知装置であって、
前記制御部は、
前記時系列データの異常を、正常からの外れ度合いと、変化の度合いと、の少なくとも一方から判定する。 An abnormality detection device according to a fifth aspect of the present disclosure is the abnormality detection device according to any one of the first to fourth aspects,
The control unit
Abnormality of the time-series data is determined based on at least one of a degree of deviation from normal and a degree of change.
前記制御部は、
前記時系列データの異常を、正常からの外れ度合いと、変化の度合いと、の少なくとも一方から判定する。 An abnormality detection device according to a fifth aspect of the present disclosure is the abnormality detection device according to any one of the first to fourth aspects,
The control unit
Abnormality of the time-series data is determined based on at least one of a degree of deviation from normal and a degree of change.
本開示の第5の態様によれば、異常検知対象であるデータの正常からの外れ度合いと、異常検知対象であるデータの変化の度合いと、の少なくとも一方を考慮して異常を検知することができる。
According to the fifth aspect of the present disclosure, it is possible to detect an anomaly in consideration of at least one of the degree of deviation of data, which is the target of anomaly detection, from normal and the degree of change of the data, which is the target of anomaly detection. can.
本開示の第6の態様による異常検知装置は、第1の態様から第5の態様のいずれかに記載の異常検知装置であって、
前記制御部は、
前記正常領域と前記異常領域とが重なる場合には、前記正常領域と前記異常領域とが重なる領域を前記正常領域とする。 An abnormality detection device according to a sixth aspect of the present disclosure is the abnormality detection device according to any one of the first to fifth aspects,
The control unit
When the normal region and the abnormal region overlap, the region where the normal region and the abnormal region overlap is defined as the normal region.
前記制御部は、
前記正常領域と前記異常領域とが重なる場合には、前記正常領域と前記異常領域とが重なる領域を前記正常領域とする。 An abnormality detection device according to a sixth aspect of the present disclosure is the abnormality detection device according to any one of the first to fifth aspects,
The control unit
When the normal region and the abnormal region overlap, the region where the normal region and the abnormal region overlap is defined as the normal region.
本開示の第6の態様によれば、正常であるのに異常であると誤検知されてしまうことを減らすことができる。
According to the sixth aspect of the present disclosure, it is possible to reduce erroneous detection as abnormal even though it is normal.
本開示の第7の態様による異常検知装置は、第1の態様から第6の態様のいずれかに記載の異常検知装置であって、
前記制御部は、
前記少なくともN+1個の値のうち前記正常領域に写像されるデータの個数と前記異常領域に写像されるデータの個数との関係と、前記少なくともN+1個の値の写像後の分布の重心が前記正常領域にあるか前記異常領域にあるかの特定と、の少なくとも1つを計算することで、前記時系列データが正常であるか異常であるかを判定して出力する。 An abnormality detection device according to a seventh aspect of the present disclosure is the abnormality detection device according to any one of the first to sixth aspects,
The control unit
A relationship between the number of data mapped to the normal region and the number of data mapped to the abnormal region among the at least N + 1 values, and the normal center of the distribution of the at least N + 1 values after mapping Whether the time-series data is normal or abnormal is determined and output by calculating at least one of specifying whether it is in the region or in the abnormal region.
前記制御部は、
前記少なくともN+1個の値のうち前記正常領域に写像されるデータの個数と前記異常領域に写像されるデータの個数との関係と、前記少なくともN+1個の値の写像後の分布の重心が前記正常領域にあるか前記異常領域にあるかの特定と、の少なくとも1つを計算することで、前記時系列データが正常であるか異常であるかを判定して出力する。 An abnormality detection device according to a seventh aspect of the present disclosure is the abnormality detection device according to any one of the first to sixth aspects,
The control unit
A relationship between the number of data mapped to the normal region and the number of data mapped to the abnormal region among the at least N + 1 values, and the normal center of the distribution of the at least N + 1 values after mapping Whether the time-series data is normal or abnormal is determined and output by calculating at least one of specifying whether it is in the region or in the abnormal region.
本開示の第7の態様によれば、写像後の位相空間上での分布の状態に応じて異常を検知することができる。
According to the seventh aspect of the present disclosure, an abnormality can be detected according to the state of distribution on the phase space after mapping.
本開示の第8の態様による異常検知装置は、第1の態様から第7の態様のいずれかに記載の異常検知装置であって、
前記制御部は、
複数の異なる位相空間を作成する。 An abnormality detection device according to an eighth aspect of the present disclosure is the abnormality detection device according to any one of the first to seventh aspects,
The control unit
Create multiple different topological spaces.
前記制御部は、
複数の異なる位相空間を作成する。 An abnormality detection device according to an eighth aspect of the present disclosure is the abnormality detection device according to any one of the first to seventh aspects,
The control unit
Create multiple different topological spaces.
本開示の第8の態様によれば、複数の異なる位相空間に基づいて異常を検知することができる。
According to the eighth aspect of the present disclosure, anomalies can be detected based on a plurality of different phase spaces.
本開示の第9の態様による異常検知装置は、第8の態様に記載の異常検知装置であって、
前記制御部は、
前記時系列データが、前記複数の異なる位相空間の各位相空間上での正常領域に写像されるか異常領域に写像されるかを特定することで、前記時系列データが正常であるか異常であるかを判定して出力する。 An abnormality detection device according to a ninth aspect of the present disclosure is the abnormality detection device according to the eighth aspect,
The control unit
By specifying whether the time-series data is mapped to a normal region or an abnormal region on each phase space of the plurality of different phase spaces, the time-series data is normal or abnormal. Determine whether or not there is, and output.
前記制御部は、
前記時系列データが、前記複数の異なる位相空間の各位相空間上での正常領域に写像されるか異常領域に写像されるかを特定することで、前記時系列データが正常であるか異常であるかを判定して出力する。 An abnormality detection device according to a ninth aspect of the present disclosure is the abnormality detection device according to the eighth aspect,
The control unit
By specifying whether the time-series data is mapped to a normal region or an abnormal region on each phase space of the plurality of different phase spaces, the time-series data is normal or abnormal. Determine whether or not there is, and output.
本開示の第9の態様によれば、複数の異なる位相空間に基づいて異常を検知することができる。
According to the ninth aspect of the present disclosure, anomalies can be detected based on a plurality of different phase spaces.
本開示の第10の態様による異常検知装置は、第1の態様から第9の態様のいずれかに記載の異常検知装置であって、
前記制御部は、
前記位相空間上に前記正常領域および前記異常領域を作成する際、および、前記時系列データが正常であるか異常であるかを判定する際に、
前記時系列データの前記任意時間の値と前記任意時間と連続した過去のN個の値、もしくは、前記時系列データの前記任意時間の値と前記任意時間からM個おきに過去のN個の値を取得する。 An abnormality detection device according to a tenth aspect of the present disclosure is the abnormality detection device according to any one of the first to ninth aspects,
The control unit
When creating the normal region and the abnormal region on the phase space, and when determining whether the time series data is normal or abnormal,
The value of the time-series data at the arbitrary time and past N consecutive values from the arbitrary time, or the value of the time-series data at the arbitrary time and past N values from the arbitrary time every M times get the value.
前記制御部は、
前記位相空間上に前記正常領域および前記異常領域を作成する際、および、前記時系列データが正常であるか異常であるかを判定する際に、
前記時系列データの前記任意時間の値と前記任意時間と連続した過去のN個の値、もしくは、前記時系列データの前記任意時間の値と前記任意時間からM個おきに過去のN個の値を取得する。 An abnormality detection device according to a tenth aspect of the present disclosure is the abnormality detection device according to any one of the first to ninth aspects,
The control unit
When creating the normal region and the abnormal region on the phase space, and when determining whether the time series data is normal or abnormal,
The value of the time-series data at the arbitrary time and past N consecutive values from the arbitrary time, or the value of the time-series data at the arbitrary time and past N values from the arbitrary time every M times get the value.
本開示の第10の態様によれば、異常検知対象であるデータを間引いて用いることもできる。
According to the tenth aspect of the present disclosure, it is also possible to thin out and use the data that is the target of anomaly detection.
本開示の第11の態様による異常検知装置は、第1の態様から第10の態様のいずれかに記載の異常検知装置であって、
前記空気調和機の異常検知対象である時系列データは、前記空気調和機に含まれる冷媒量と関係のあるデータである。 An abnormality detection device according to an eleventh aspect of the present disclosure is the abnormality detection device according to any one of the first to tenth aspects,
The time-series data, which is the object of abnormality detection of the air conditioner, is data related to the amount of refrigerant contained in the air conditioner.
前記空気調和機の異常検知対象である時系列データは、前記空気調和機に含まれる冷媒量と関係のあるデータである。 An abnormality detection device according to an eleventh aspect of the present disclosure is the abnormality detection device according to any one of the first to tenth aspects,
The time-series data, which is the object of abnormality detection of the air conditioner, is data related to the amount of refrigerant contained in the air conditioner.
本開示の第11の態様によれば、冷媒の漏洩を検知することができる。
According to the eleventh aspect of the present disclosure, refrigerant leakage can be detected.
本開示の第12の態様による方法は、
異常検知装置の制御部が実行する方法であって、
空気調和機の異常検知対象である時系列データの任意時間の値と前記任意時間より過去のN個の値からN+1次元の位相空間を作成し、前記位相空間上に正常の時系列データと異常の時系列データが写像されたときの分布に応じて、前記位相空間上に正常領域および異常領域を作成するステップと、
前記空気調和機の異常検知対象である時系列データから少なくともN+1個の値を取得し、前記少なくともN+1個の値が前記正常領域に写像されるか前記異常領域に写像されるかを特定することで、前記時系列データが正常であるか異常であるかを判定して出力するステップと
を含む。 A method according to a twelfth aspect of the present disclosure comprises:
A method executed by a control unit of an anomaly detection device,
An N+1 dimensional phase space is created from the value of the time series data that is the abnormality detection target of the air conditioner and N values past the arbitrary time, and the normal time series data and the abnormality are created on the phase space. A step of creating a normal region and an abnormal region on the phase space according to the distribution when the time series data of is mapped;
Acquiring at least N+1 values from the time-series data that is the abnormality detection target of the air conditioner, and specifying whether the at least N+1 values are mapped to the normal region or the abnormal region. and determining whether the time-series data is normal or abnormal and outputting the data.
異常検知装置の制御部が実行する方法であって、
空気調和機の異常検知対象である時系列データの任意時間の値と前記任意時間より過去のN個の値からN+1次元の位相空間を作成し、前記位相空間上に正常の時系列データと異常の時系列データが写像されたときの分布に応じて、前記位相空間上に正常領域および異常領域を作成するステップと、
前記空気調和機の異常検知対象である時系列データから少なくともN+1個の値を取得し、前記少なくともN+1個の値が前記正常領域に写像されるか前記異常領域に写像されるかを特定することで、前記時系列データが正常であるか異常であるかを判定して出力するステップと
を含む。 A method according to a twelfth aspect of the present disclosure comprises:
A method executed by a control unit of an anomaly detection device,
An N+1 dimensional phase space is created from the value of the time series data that is the abnormality detection target of the air conditioner and N values past the arbitrary time, and the normal time series data and the abnormality are created on the phase space. A step of creating a normal region and an abnormal region on the phase space according to the distribution when the time series data of is mapped;
Acquiring at least N+1 values from the time-series data that is the abnormality detection target of the air conditioner, and specifying whether the at least N+1 values are mapped to the normal region or the abnormal region. and determining whether the time-series data is normal or abnormal and outputting the data.
本開示の第13の態様によるプログラムは、
異常検知装置の制御部に、
空気調和機の異常検知対象である時系列データの任意時間の値と前記任意時間より過去のN個の値からN+1次元の位相空間を作成し、前記位相空間上に正常の時系列データと異常の時系列データが写像された分布に応じて、前記位相空間上に正常領域および異常領域を作成する手順、
前記空気調和機の異常検知対象である時系列データから少なくともN+1個の値を取得し、前記少なくともN+1個の値が前記正常領域に写像されるか前記異常領域に写像されるかを特定することで、前記時系列データが正常であるか異常であるかを判定して出力する手順
を実行させる。 A program according to the thirteenth aspect of the present disclosure comprises:
In the control unit of the anomaly detection device,
An N+1 dimensional phase space is created from the value of the time series data that is the abnormality detection target of the air conditioner and N values past the arbitrary time, and the normal time series data and the abnormality are created on the phase space. A procedure for creating a normal region and an abnormal region on the phase space according to the distribution to which the time series data of is mapped,
Acquiring at least N+1 values from the time-series data that is the abnormality detection target of the air conditioner, and specifying whether the at least N+1 values are mapped to the normal region or the abnormal region. Then, a procedure for judging whether the time-series data is normal or abnormal and outputting the data is executed.
異常検知装置の制御部に、
空気調和機の異常検知対象である時系列データの任意時間の値と前記任意時間より過去のN個の値からN+1次元の位相空間を作成し、前記位相空間上に正常の時系列データと異常の時系列データが写像された分布に応じて、前記位相空間上に正常領域および異常領域を作成する手順、
前記空気調和機の異常検知対象である時系列データから少なくともN+1個の値を取得し、前記少なくともN+1個の値が前記正常領域に写像されるか前記異常領域に写像されるかを特定することで、前記時系列データが正常であるか異常であるかを判定して出力する手順
を実行させる。 A program according to the thirteenth aspect of the present disclosure comprises:
In the control unit of the anomaly detection device,
An N+1 dimensional phase space is created from the value of the time series data that is the abnormality detection target of the air conditioner and N values past the arbitrary time, and the normal time series data and the abnormality are created on the phase space. A procedure for creating a normal region and an abnormal region on the phase space according to the distribution to which the time series data of is mapped,
Acquiring at least N+1 values from the time-series data that is the abnormality detection target of the air conditioner, and specifying whether the at least N+1 values are mapped to the normal region or the abnormal region. Then, a procedure for judging whether the time-series data is normal or abnormal and outputting the data is executed.
以下、図面に基づいて本開示の実施の形態を説明する。
Embodiments of the present disclosure will be described below based on the drawings.
<全体の構成例>
図2は、本開示の全体の構成例である。異常検知装置10は、空気調和機等の機器100の異常を検知する装置である。異常検知装置10は、制御部(図13の制御部1001)を備える。 <Overall configuration example>
FIG. 2 is an example of the overall configuration of the present disclosure. Anabnormality detection device 10 is a device that detects an abnormality in a device 100 such as an air conditioner. The abnormality detection device 10 includes a control section (control section 1001 in FIG. 13).
図2は、本開示の全体の構成例である。異常検知装置10は、空気調和機等の機器100の異常を検知する装置である。異常検知装置10は、制御部(図13の制御部1001)を備える。 <Overall configuration example>
FIG. 2 is an example of the overall configuration of the present disclosure. An
<実施例1>
例えば、異常検知装置10は、空気調和機100とは別の装置である。異常検知装置10と空気調和機100は、任意のネットワークを介して通信可能に接続されている。例えば、異常検知装置10は、空気調和機100から離れたクラウドサーバであってもよいし、空気調和機と同一の建物等内に設置されたコンピュータであってもよい。なお、1つの異常検知装置10が、1つの空気調和機100の異常を検知してもよいし、複数の空気調和機100の異常を検知してもよい。 <Example 1>
For example, theabnormality detection device 10 is a device different from the air conditioner 100 . The abnormality detection device 10 and the air conditioner 100 are communicably connected via an arbitrary network. For example, the abnormality detection device 10 may be a cloud server remote from the air conditioner 100, or may be a computer installed in the same building as the air conditioner. One abnormality detection device 10 may detect an abnormality in one air conditioner 100 or may detect an abnormality in a plurality of air conditioners 100 .
例えば、異常検知装置10は、空気調和機100とは別の装置である。異常検知装置10と空気調和機100は、任意のネットワークを介して通信可能に接続されている。例えば、異常検知装置10は、空気調和機100から離れたクラウドサーバであってもよいし、空気調和機と同一の建物等内に設置されたコンピュータであってもよい。なお、1つの異常検知装置10が、1つの空気調和機100の異常を検知してもよいし、複数の空気調和機100の異常を検知してもよい。 <Example 1>
For example, the
<実施例2>
例えば、異常検知装置10は、空気調和機100の一部である。なお、1つの異常検知装置10が、1つの空気調和機100の異常を検知してもよいし、複数の空気調和機100の異常を検知してもよい。 <Example 2>
For example, theabnormality detection device 10 is part of the air conditioner 100 . One abnormality detection device 10 may detect an abnormality in one air conditioner 100 or may detect an abnormality in a plurality of air conditioners 100 .
例えば、異常検知装置10は、空気調和機100の一部である。なお、1つの異常検知装置10が、1つの空気調和機100の異常を検知してもよいし、複数の空気調和機100の異常を検知してもよい。 <Example 2>
For example, the
<実施例3>
本明細書で説明する異常検知装置の処理が、空気調和機100とは別の装置である異常検知装置10と、空気調和機100の一部である異常検知装置10と、で分散して実行されてもよい。 <Example 3>
The processing of the abnormality detection device described in this specification is distributed and executed by theabnormality detection device 10 that is a device separate from the air conditioner 100 and the abnormality detection device 10 that is a part of the air conditioner 100. may be
本明細書で説明する異常検知装置の処理が、空気調和機100とは別の装置である異常検知装置10と、空気調和機100の一部である異常検知装置10と、で分散して実行されてもよい。 <Example 3>
The processing of the abnormality detection device described in this specification is distributed and executed by the
<概要>
異常検知装置10が実行する空気調和機100の異常の検知の処理について説明する。なお、本明細書では、機械学習により作成した学習済みモデル(後述する、機械学習により作成された正常領域および異常領域)を用いる場合を主に説明するが、本開示は、機械学習によらず作成された正常領域および異常領域を用いることもできる。 <Overview>
Processing for detecting an abnormality in theair conditioner 100 executed by the abnormality detection device 10 will be described. In the present specification, the case of using a trained model created by machine learning (normal regions and abnormal regions created by machine learning, which will be described later) will be mainly described, but the present disclosure is not based on machine learning. Generated normal and abnormal regions can also be used.
異常検知装置10が実行する空気調和機100の異常の検知の処理について説明する。なお、本明細書では、機械学習により作成した学習済みモデル(後述する、機械学習により作成された正常領域および異常領域)を用いる場合を主に説明するが、本開示は、機械学習によらず作成された正常領域および異常領域を用いることもできる。 <Overview>
Processing for detecting an abnormality in the
<学習>
まず、異常検知装置10の制御部1001は、空気調和機100の異常を検知するために用いる位相空間上の正常領域および異常領域を作成する。 <Learning>
First, thecontrol unit 1001 of the abnormality detection device 10 creates a normal region and an abnormality region on the phase space used for detecting abnormality of the air conditioner 100 .
まず、異常検知装置10の制御部1001は、空気調和機100の異常を検知するために用いる位相空間上の正常領域および異常領域を作成する。 <Learning>
First, the
具体的には、異常検知装置10の制御部1001は、空気調和機100の異常を検知するための対象となる指標(以下、異常検知対象という)の時系列データの任意時間の値と任意時間より過去のN個の値からN+1次元の位相空間を作成する。次に、異常検知装置10の制御部1001は、位相空間上に正常の時系列データ(空気調和機100が正常であるときの指標の時系列データ)と異常の時系列データ(空気調和機100が異常であるときの指標の時系列データ)が写像されたときの分布に応じて、位相空間上に正常領域および異常領域を作成する。例えば、異常検知装置10の制御部1001は、入力が複数の(例えば、複数の物件の)正常の時系列データ(空気調和機100が正常であるときの指標の時系列データ)および複数の(例えば、複数の物件の)異常の時系列データ(空気調和機100が異常であるときの指標の時系列データ)であり、出力が位相空間上での正常領域または異常領域である教師データを用いて機械学習することにより、位相空間上に正常領域および異常領域を作成することができる。
Specifically, the control unit 1001 of the anomaly detection device 10 controls the time-series data of an index (hereinafter referred to as an anomaly detection target) for detecting an anomaly of the air conditioner 100, the value of an arbitrary time and the arbitrary time Create an N+1 dimensional topological space from the N older values. Next, the control unit 1001 of the abnormality detection device 10 puts normal time-series data (time-series data of an index when the air conditioner 100 is normal) and abnormality time-series data (the air conditioner 100 A normal region and an abnormal region are created on the phase space according to the distribution when the time-series data of the index when is abnormal) is mapped. For example, the control unit 1001 of the anomaly detection device 10 inputs a plurality of (for example, of a plurality of properties) normal time-series data (time-series data of indicators when the air conditioner 100 is normal) and a plurality of ( For example, using teacher data that is abnormal time-series data (time-series data of indicators when the air conditioner 100 is abnormal) of a plurality of properties and whose output is a normal region or an abnormal region on the phase space It is possible to create a normal region and an abnormal region on the phase space by machine learning with
<推論>
次に、異常検知装置10の制御部1001は、作成した位相空間上の正常領域および異常領域を用いて、空気調和機100の異常を検知する。 <Inference>
Next, thecontrol unit 1001 of the anomaly detection device 10 detects an anomaly of the air conditioner 100 using the created normal region and anomalous region in the phase space.
次に、異常検知装置10の制御部1001は、作成した位相空間上の正常領域および異常領域を用いて、空気調和機100の異常を検知する。 <Inference>
Next, the
具体的には、異常検知装置10の制御部1001は、空気調和機100の異常検知対象である時系列データから少なくともN+1個の値を取得し、少なくともN+1個の値が正常領域に写像されるか異常領域に写像されるかを特定することで、時系列データが正常であるか異常であるかを判定して出力する。
Specifically, the control unit 1001 of the abnormality detection device 10 acquires at least N+1 values from the time-series data that is the abnormality detection target of the air conditioner 100, and at least N+1 values are mapped to the normal region. It is determined whether the time-series data is normal or abnormal by specifying whether it is mapped to an abnormal area or not, and output.
なお、本明細書では、異常検知対象が冷媒量指標(空気調和機100に含まれる冷媒量と関係のあるデータ)の場合を主に説明するが、本開示は、任意の故障の指標に適用することができる。
In this specification, the case where the abnormality detection target is the refrigerant amount index (data related to the amount of refrigerant contained in the air conditioner 100) will be mainly described, but the present disclosure can be applied to any failure index. can do.
以下、正常領域と異常領域を作成する処理について、<位相空間への写像>、<正常領域と異常領域の作成>、<正常領域と異常領域の重なり>に分けて詳述する。
Below, the processing for creating the normal region and the abnormal region will be described in detail separately for <mapping to the topological space>, <creation of the normal region and the abnormal region>, and <overlapping of the normal region and the abnormal region>.
<位相空間への写像>
図3は、本開示の異常検知対象である時系列データの位相空間への写像について説明するための図である。異常検知装置10の制御部1001は、空気調和機100の異常検知対象である時系列データの任意時間の値と任意時間より過去のN個の値からN+1次元の位相空間を作成し、位相空間上に正常の時系列データと異常の時系列データを写像する。 <Mapping to topological space>
FIG. 3 is a diagram for explaining mapping of time-series data, which is an anomaly detection target of the present disclosure, onto a phase space. Thecontrol unit 1001 of the anomaly detection device 10 creates an N+1-dimensional phase space from an arbitrary time value of the time-series data, which is an anomaly detection target of the air conditioner 100, and N values past the arbitrary time. We map normal time-series data and abnormal time-series data onto it.
図3は、本開示の異常検知対象である時系列データの位相空間への写像について説明するための図である。異常検知装置10の制御部1001は、空気調和機100の異常検知対象である時系列データの任意時間の値と任意時間より過去のN個の値からN+1次元の位相空間を作成し、位相空間上に正常の時系列データと異常の時系列データを写像する。 <Mapping to topological space>
FIG. 3 is a diagram for explaining mapping of time-series data, which is an anomaly detection target of the present disclosure, onto a phase space. The
図3の例で説明すると、異常検知装置10の制御部1001は、空気調和機100の異常検知対象である時系列データの任意時間の値(冷媒量指標の時間tにおける値)と任意時間より過去のN個の値(冷媒量指標の時間t-1における値)からN+1次元の位相空間(2次元の平面)を作成する。そして、異常検知装置10の制御部1001は、位相空間上に正常の時系列データ(空気調和機100が正常であるときの冷媒量指標の時系列データ)と異常の時系列データ(空気調和機100が異常(冷媒漏洩)であるときの冷媒量指標の時系列データ)を写像する。
3, the controller 1001 of the anomaly detection device 10 detects an anomaly detection target of the air conditioner 100 from the arbitrary time value (refrigerant amount index value at time t) of the time-series data and the arbitrary time An N+1-dimensional phase space (two-dimensional plane) is created from past N values (refrigerant amount index values at time t−1). Then, the control unit 1001 of the abnormality detection device 10 puts normal time-series data (time-series data of the refrigerant amount index when the air conditioner 100 is normal) and abnormal time-series data (air conditioner Time-series data of the refrigerant amount index when 100 is abnormal (refrigerant leakage) is mapped.
<正常領域と異常領域の作成>
図4は、本開示の一実施形態に係る正常領域および異常領域の作成について説明するための図である。異常検知装置10の制御部1001は、位相空間上に正常の時系列データと異常の時系列データが写像されたときの分布に応じて、位相空間上に正常領域および異常領域を作成する。なお、指標(t-1)~基準値(近似)かつ指標(t)~基準値(近似)ならば正常とし、指標(t-1)と指標(t)とのどちらか一方が基準値より下(あるいは上)ならば正常とし(ノイズ分であったとみなす)、指標(t-1)<(あるいは>)基準値かつ指標(t)<(あるいは>)基準値ならば異常と判定することができる。 <Creation of normal area and abnormal area>
FIG. 4 is a diagram for explaining creation of normal regions and abnormal regions according to an embodiment of the present disclosure. Thecontrol unit 1001 of the anomaly detection device 10 creates a normal region and an anomaly region on the phase space according to the distribution when the normal time-series data and the abnormal time-series data are mapped on the phase space. If the index (t-1) ~ reference value (approximation) and index (t) ~ reference value (approximation), then it is considered normal, and either index (t-1) or index (t) is greater than the reference value. If it is below (or above), it is determined to be normal (deemed to be noise), and if the index (t-1) < (or >) reference value and index (t) < (or >) reference value, it is determined to be abnormal. can be done.
図4は、本開示の一実施形態に係る正常領域および異常領域の作成について説明するための図である。異常検知装置10の制御部1001は、位相空間上に正常の時系列データと異常の時系列データが写像されたときの分布に応じて、位相空間上に正常領域および異常領域を作成する。なお、指標(t-1)~基準値(近似)かつ指標(t)~基準値(近似)ならば正常とし、指標(t-1)と指標(t)とのどちらか一方が基準値より下(あるいは上)ならば正常とし(ノイズ分であったとみなす)、指標(t-1)<(あるいは>)基準値かつ指標(t)<(あるいは>)基準値ならば異常と判定することができる。 <Creation of normal area and abnormal area>
FIG. 4 is a diagram for explaining creation of normal regions and abnormal regions according to an embodiment of the present disclosure. The
図4の例で説明すると、異常検知装置10の制御部1001は、位相空間上に正常の時系列データと異常の時系列データが写像されたときの分布に応じて、位相空間上に正常領域および異常領域を作成する(例えば、境界線を引く)。例えば、指標(t-1)~0(近似)かつ指標(t)~0(近似)ならば正常と判定し、指標(t-1)と指標(t)のどちらか一方が負ならば正常とし(ノイズ分であったとみなす)、指標(t-1)<0かつ指標(t)<0ならば異常と判定することができる。
In the example of FIG. 4, the control unit 1001 of the abnormality detection device 10 maps the normal region on the phase space according to the distribution when the normal time-series data and the abnormal time-series data are mapped on the phase space. and creating (eg, demarcating) anomalous regions. For example, if the index (t-1) to 0 (approximate) and the index (t) to 0 (approximate), it is determined to be normal, and if either the index (t-1) or the index (t) is negative, it is normal (assumed to be noise), and if index (t-1)<0 and index (t)<0, it can be determined as abnormal.
このように、誤判定するようなデータを含まないように正常領域および異常領域(例えば、境界線)を作成することによって、1次元では異常と判定されていたデータも平面に写像されたことにより正常領域にプロットされる。
In this way, by creating a normal region and an abnormal region (for example, a boundary line) so as not to include data that would cause an erroneous judgment, even data judged to be abnormal in one dimension are mapped onto a plane. Plotted in the normal region.
<正常領域と異常領域の重なり>
図5は、本開示の正常領域と異常領域の重なりについて説明するための図である。異常検知対象である時系列データが写像されたときに位相空間上で正常領域と異常領域が重なる場合がある。異常検知装置10の制御部1001は、正常領域と異常領域とが重なる場合には、正常領域と異常領域とが重なる領域(例えば、図5の“正常領域”と“漏洩領域”が重なっている“重なり”が示す領域)を正常領域とすることができる。 <Overlap of normal and abnormal regions>
FIG. 5 is a diagram for explaining the overlap of the normal region and the abnormal region of the present disclosure. When the time-series data, which is the object of anomaly detection, is mapped, the normal region and the abnormal region may overlap on the topological space. When the normal region and the abnormal region overlap, thecontrol unit 1001 of the abnormality detection device 10 detects the region where the normal region and the abnormal region overlap (for example, the “normal region” and the “leakage region” in FIG. The area indicated by the “overlap”) can be taken as the normal area.
図5は、本開示の正常領域と異常領域の重なりについて説明するための図である。異常検知対象である時系列データが写像されたときに位相空間上で正常領域と異常領域が重なる場合がある。異常検知装置10の制御部1001は、正常領域と異常領域とが重なる場合には、正常領域と異常領域とが重なる領域(例えば、図5の“正常領域”と“漏洩領域”が重なっている“重なり”が示す領域)を正常領域とすることができる。 <Overlap of normal and abnormal regions>
FIG. 5 is a diagram for explaining the overlap of the normal region and the abnormal region of the present disclosure. When the time-series data, which is the object of anomaly detection, is mapped, the normal region and the abnormal region may overlap on the topological space. When the normal region and the abnormal region overlap, the
以下、空気調和機100の異常を検知する処理について詳述する。
The process of detecting an abnormality in the air conditioner 100 will be described in detail below.
<異常検知>
図6は、本開示の一実施形態に係る異常検知について説明するための図である。異常検知装置10の制御部1001は、空気調和機100の異常検知対象である時系列データから少なくともN+1個の値を取得し、少なくともN+1個の値が正常領域に写像されるか異常領域に写像されるかを特定することで、時系列データが正常であるか異常であるかを判定する(図6の左側の破線の枠内にある少なくともN+1個の値が写像されていく(枠を移動させて写像していく))。 <Anomaly detection>
FIG. 6 is a diagram for explaining abnormality detection according to an embodiment of the present disclosure. Thecontrol unit 1001 of the abnormality detection device 10 acquires at least N+1 values from the time-series data that is the abnormality detection target of the air conditioner 100, and at least N+1 values are mapped to the normal region or mapped to the abnormal region. It is determined whether the time-series data is normal or abnormal by specifying whether the time-series data is normal or abnormal (at least N+1 values within the dashed frame on the left side of FIG. 6 are mapped (moving the frame )).
図6は、本開示の一実施形態に係る異常検知について説明するための図である。異常検知装置10の制御部1001は、空気調和機100の異常検知対象である時系列データから少なくともN+1個の値を取得し、少なくともN+1個の値が正常領域に写像されるか異常領域に写像されるかを特定することで、時系列データが正常であるか異常であるかを判定する(図6の左側の破線の枠内にある少なくともN+1個の値が写像されていく(枠を移動させて写像していく))。 <Anomaly detection>
FIG. 6 is a diagram for explaining abnormality detection according to an embodiment of the present disclosure. The
例えば、異常検知装置10の制御部1001は、少なくともN+1個の値のうち正常領域に写像されるデータの個数と異常領域に写像されるデータの個数との関係を計算することで、時系列データが正常であるか異常であるかを判定する(例えば、正常領域に写像されるデータの個数のほうが多ければ正常であると判定する、異常領域に写像されるデータの個数のほうが多ければ異常であると判定する)ことができる。
For example, the control unit 1001 of the anomaly detection device 10 calculates the relationship between the number of data mapped to the normal region and the number of data mapped to the abnormal region among at least N+1 values, so that time-series data is normal or abnormal (for example, if the number of data mapped to the normal region is greater can be determined).
例えば、異常検知装置10の制御部1001は、少なくともN+1個の値の写像後の分布の重心が正常領域にあるか異常領域にあるかの特定を計算することで、時系列データが正常であるか異常であるかを判定する(例えば、写像後の分布の重心が正常領域にあれば正常であると判定する、写像後の分布の重心が異常領域にあれば異常であると判定する)ことができる。
For example, the control unit 1001 of the abnormality detection device 10 determines whether the time-series data is normal by calculating whether the center of gravity of the distribution after mapping of at least N+1 values is in the normal region or in the abnormal region. or abnormal (for example, if the center of gravity of the distribution after mapping is in the normal region, it is determined to be normal, and if the center of gravity of the distribution after mapping is in the abnormal region, it is determined to be abnormal) can be done.
<<位相空間の次元数>>
図7は、本開示の一実施形態に係る位相空間の次元数について説明するための図である。位相空間は、任意の次元数の位相空間であってよい。位相空間は、2次元であってもよいし、3次元以上であってもよい。例えば、図7に示されるように、位相空間は、故障の指標(例えば、冷媒量指標)の時間tにおける値と故障の指標(例えば、冷媒量指標)の時間t-1における値と故障の指標(例えば、冷媒量指標)の時間t-2における値を軸とする位相空間である。なお、多次元にすればするほど複雑な境界面となるのでノイズによる誤検知が無くなっていく。 <<Number of dimensions of topological space>>
FIG. 7 is a diagram for explaining the number of dimensions of the phase space according to one embodiment of the present disclosure. The topological space may be a topological space of any number of dimensions. The topological space may be two-dimensional, three-dimensional or more. For example, as shown in FIG. 7, the phase space can be represented by the value of the failure indicator (eg, refrigerant quantity indicator) at time t and the value of the failure indicator (eg, refrigerant quantity indicator) at time t−1 and the failure It is a phase space whose axis is the value at time t−2 of the index (eg, refrigerant amount index). As the number of dimensions increases, the boundary surface becomes more complicated, and false detection due to noise disappears.
図7は、本開示の一実施形態に係る位相空間の次元数について説明するための図である。位相空間は、任意の次元数の位相空間であってよい。位相空間は、2次元であってもよいし、3次元以上であってもよい。例えば、図7に示されるように、位相空間は、故障の指標(例えば、冷媒量指標)の時間tにおける値と故障の指標(例えば、冷媒量指標)の時間t-1における値と故障の指標(例えば、冷媒量指標)の時間t-2における値を軸とする位相空間である。なお、多次元にすればするほど複雑な境界面となるのでノイズによる誤検知が無くなっていく。 <<Number of dimensions of topological space>>
FIG. 7 is a diagram for explaining the number of dimensions of the phase space according to one embodiment of the present disclosure. The topological space may be a topological space of any number of dimensions. The topological space may be two-dimensional, three-dimensional or more. For example, as shown in FIG. 7, the phase space can be represented by the value of the failure indicator (eg, refrigerant quantity indicator) at time t and the value of the failure indicator (eg, refrigerant quantity indicator) at time t−1 and the failure It is a phase space whose axis is the value at time t−2 of the index (eg, refrigerant amount index). As the number of dimensions increases, the boundary surface becomes more complicated, and false detection due to noise disappears.
<<変化の度合い>>
図8は、本開示の一実施形態に係る位相空間の一例である。位相空間の軸は、故障の指標を演算したものでもよい。例えば、図8に示されるように、位相空間は、故障の指標(例えば、冷媒量指標)の時間tにおける値と時間t-1における値の差分と、故障の指標(例えば、冷媒量指標)の時間t-1における値と時間t-2における値の差分と、を軸とする位相空間である。図8に示されるように、急速リーク(短時間に大量の冷媒が漏れて酸欠や可燃性冷媒の発火の原因となる急速な漏洩)の時系列データは、スローリーク(長期的に徐々に冷媒が漏れて機能の低下に至る漏洩)の場合の時系列データよりも左下に写像される。このように、変化が著しいと左下(冷媒量指標の場合)に写像されることとなり、変化が速い異常であるか変化が遅い異常であるかといった進捗度を判定することができる。なお、異常時に値が大きくなる指標の場合には、変化が著しいと右上に写像されることとなる。 <<Degree of change>>
FIG. 8 is an example of a phase space according to one embodiment of the present disclosure. The axes of the phase space may be computed fault indices. For example, as shown in FIG. 8, the phase space may include the difference between the value of the failure index (eg, refrigerant quantity index) at time t and the value at time t−1, and the failure index (eg, refrigerant quantity index) is a phase space whose axis is the difference between the value at time t−1 and the value at time t−2. As shown in Figure 8, the time-series data of a rapid leak (a large amount of refrigerant leaks in a short time and causes a lack of oxygen or ignition of a flammable refrigerant) Leakage leading to deterioration of function due to leakage of refrigerant) is mapped to the lower left of the time-series data. In this way, if the change is significant, it will be mapped to the lower left (in the case of the refrigerant amount index), and it is possible to determine the degree of progress, such as whether the abnormality is a fast-changing abnormality or a slow-changing abnormality. In addition, in the case of an index whose value increases when there is an abnormality, if the change is significant, it will be mapped to the upper right.
図8は、本開示の一実施形態に係る位相空間の一例である。位相空間の軸は、故障の指標を演算したものでもよい。例えば、図8に示されるように、位相空間は、故障の指標(例えば、冷媒量指標)の時間tにおける値と時間t-1における値の差分と、故障の指標(例えば、冷媒量指標)の時間t-1における値と時間t-2における値の差分と、を軸とする位相空間である。図8に示されるように、急速リーク(短時間に大量の冷媒が漏れて酸欠や可燃性冷媒の発火の原因となる急速な漏洩)の時系列データは、スローリーク(長期的に徐々に冷媒が漏れて機能の低下に至る漏洩)の場合の時系列データよりも左下に写像される。このように、変化が著しいと左下(冷媒量指標の場合)に写像されることとなり、変化が速い異常であるか変化が遅い異常であるかといった進捗度を判定することができる。なお、異常時に値が大きくなる指標の場合には、変化が著しいと右上に写像されることとなる。 <<Degree of change>>
FIG. 8 is an example of a phase space according to one embodiment of the present disclosure. The axes of the phase space may be computed fault indices. For example, as shown in FIG. 8, the phase space may include the difference between the value of the failure index (eg, refrigerant quantity index) at time t and the value at time t−1, and the failure index (eg, refrigerant quantity index) is a phase space whose axis is the difference between the value at time t−1 and the value at time t−2. As shown in Figure 8, the time-series data of a rapid leak (a large amount of refrigerant leaks in a short time and causes a lack of oxygen or ignition of a flammable refrigerant) Leakage leading to deterioration of function due to leakage of refrigerant) is mapped to the lower left of the time-series data. In this way, if the change is significant, it will be mapped to the lower left (in the case of the refrigerant amount index), and it is possible to determine the degree of progress, such as whether the abnormality is a fast-changing abnormality or a slow-changing abnormality. In addition, in the case of an index whose value increases when there is an abnormality, if the change is significant, it will be mapped to the upper right.
図9は、本開示の一実施形態に係る位相空間の一例である。位相空間の軸は、故障の指標を演算したものでもよい。例えば、図9に示されるように、位相空間は、故障の指標(例えば、冷媒量指標)の時間tにおける値と、故障の指標(例えば、冷媒量指標)の時間tにおける値と時間t-1における値の差分と、を軸とする位相空間である。
FIG. 9 is an example of a phase space according to an embodiment of the present disclosure. The axes of the phase space may be computed fault indices. For example, as shown in FIG. 9, the phase space may include the value of the failure indicator (eg, refrigerant quantity indicator) at time t, the value of the failure indicator (eg, refrigerant quantity indicator) at time t, and the value at time t− 1 is the topological space whose axes are the difference of the values in .
<<複数の位相空間>>
図10は、本開示の一実施形態に係る複数の位相空間の作成および複数の位相空間を用いた異常検知について説明するための図である。 <<Multiple Topological Spaces>>
FIG. 10 is a diagram for explaining creation of multiple phase spaces and anomaly detection using multiple phase spaces according to an embodiment of the present disclosure.
図10は、本開示の一実施形態に係る複数の位相空間の作成および複数の位相空間を用いた異常検知について説明するための図である。 <<Multiple Topological Spaces>>
FIG. 10 is a diagram for explaining creation of multiple phase spaces and anomaly detection using multiple phase spaces according to an embodiment of the present disclosure.
本開示の一実施形態では、異常検知装置10の制御部1001は、複数の異なる位相空間を作成することができる。例えば、図10に示されるように、異常検知装置10の制御部1001は、故障の指標(例えば、冷媒量指標)の時間tにおける値と故障の指標(例えば、冷媒量指標)の時間t-1における値を軸とする位相空間、および、故障の指標(例えば、冷媒量指標)の時間tにおける値と時間t-1における値の差分と故障の指標(例えば、冷媒量指標)の時間t-1における値と時間t-2における値の差分を軸とする位相空間を作成することができる。
In one embodiment of the present disclosure, the control unit 1001 of the anomaly detection device 10 can create multiple different phase spaces. For example, as shown in FIG. 10, the control unit 1001 of the abnormality detection device 10 controls the value of the failure indicator (eg, refrigerant amount indicator) at time t and the value of the failure indicator (eg, refrigerant amount indicator) at time t− 1 and the difference between the value at time t and the value at time t-1 of the index of failure (e.g. refrigerant amount index) and the time t of the index of failure (e.g. refrigerant amount index) A phase space can be created whose axis is the difference between the value at −1 and the value at time t−2.
本開示の一実施形態では、異常検知装置10の制御部1001は、時系列データが、複数の異なる位相空間の各位相空間上での正常領域に写像されるか異常領域に写像されるかを特定することで、時系列データが正常であるか異常であるかを判定して出力することができる。例えば、図10に示されるように、異常検知装置10の制御部1001は、故障の指標(例えば、冷媒量指標)の時系列データが、2つの位相空間の各位相空間上での正常領域に写像されるか異常領域に写像されるかを特定し、正常からの外れ度合いかつ変化の度合いを判定することができる。そのため、正常であるか異常であるかの判定(正常からの外れ度合いによる判定)に加え、変化が速い異常であるか変化が遅い異常であるかといった進捗度を判定(変化の度合いによる判定)することができる。
In one embodiment of the present disclosure, the control unit 1001 of the anomaly detection device 10 determines whether the time-series data is mapped to a normal region or an abnormal region on each phase space of a plurality of different phase spaces. By specifying it, it is possible to determine whether the time-series data is normal or abnormal and output it. For example, as shown in FIG. 10, the control unit 1001 of the abnormality detection device 10 causes the time-series data of the failure index (for example, the refrigerant amount index) to fall into the normal region on each phase space of the two phase spaces. The degree of deviation from normal and the degree of change can be determined by specifying whether it is mapped or mapped to an abnormal region. Therefore, in addition to judging whether it is normal or abnormal (judging by the degree of deviation from normal), it is possible to judge the degree of progress, such as whether the abnormality is a fast-changing or slow-changing abnormality (judgment by the degree of change). can do.
<<時系列データの間隔>>
本開示の一実施形態では、異常検知装置10の制御部1001は、位相空間上に正常領域および異常領域を作成する際、および、時系列データが正常であるか異常であるかを判定する際に、時系列データの任意時間の値と任意時間と連続した過去のN個の値、もしくは、時系列データの任意時間の値と任意時間からM個おきに過去のN個の値を取得することができる。 <<Interval of time-series data>>
In an embodiment of the present disclosure, thecontrol unit 1001 of the anomaly detection device 10 creates a normal region and an anomaly region in the phase space, and determines whether the time-series data is normal or abnormal. 2, N values in the past that are continuous with an arbitrary time value of the time series data, or an arbitrary time value of the time series data and the past N values that are obtained every M times from an arbitrary time. be able to.
本開示の一実施形態では、異常検知装置10の制御部1001は、位相空間上に正常領域および異常領域を作成する際、および、時系列データが正常であるか異常であるかを判定する際に、時系列データの任意時間の値と任意時間と連続した過去のN個の値、もしくは、時系列データの任意時間の値と任意時間からM個おきに過去のN個の値を取得することができる。 <<Interval of time-series data>>
In an embodiment of the present disclosure, the
<方法>
図11は、本開示の一実施形態に係る正常領域と異常領域の作成処理のフローチャートである。 <Method>
FIG. 11 is a flowchart of normal region and abnormal region creation processing according to an embodiment of the present disclosure.
図11は、本開示の一実施形態に係る正常領域と異常領域の作成処理のフローチャートである。 <Method>
FIG. 11 is a flowchart of normal region and abnormal region creation processing according to an embodiment of the present disclosure.
ステップ11(S11)において、異常検知装置10の制御部1001は、位相空間を作成する。具体的には、異常検知装置10の制御部1001は、空気調和機100の異常検知対象である時系列データの任意時間の値と任意時間より過去のN個の値からN+1次元の位相空間を作成する。
At step 11 (S11), the control unit 1001 of the anomaly detection device 10 creates a phase space. Specifically, the control unit 1001 of the anomaly detection device 10 extracts an N+1-dimensional phase space from an arbitrary time value of the time-series data that is an anomaly detection target of the air conditioner 100 and N values past the arbitrary time. create.
ステップ12(S12)において、異常検知装置10の制御部1001は、異常検知対象である時系列データを位相空間上に写像する。具体的には、異常検知装置10の制御部1001は、S11で作成された位相空間上に正常の時系列データと異常の時系列データを写像する。
At step 12 (S12), the control unit 1001 of the anomaly detection device 10 maps the time-series data, which is an anomaly detection target, onto the phase space. Specifically, the control unit 1001 of the abnormality detection device 10 maps the normal time-series data and the abnormal time-series data on the phase space created in S11.
ステップ13(S13)において、異常検知装置10の制御部1001は、位相空間上に正常領域と異常領域を作成する。具体的には、異常検知装置10の制御部1001は、S12で位相空間上に正常の時系列データと異常の時系列データが写像されたときの分布に応じて、位相空間上に正常領域および異常領域を作成する。
At step 13 (S13), the control unit 1001 of the abnormality detection device 10 creates a normal region and an abnormal region on the phase space. Specifically, the control unit 1001 of the anomaly detection device 10 maps the normal region and the Create anomalous regions.
図12は、本開示の一実施形態に係る正常と異常の判定処理のフローチャートである。
FIG. 12 is a flowchart of normality/abnormality determination processing according to an embodiment of the present disclosure.
ステップ21(S21)において、異常検知装置10の制御部1001は、異常検知対象である時系列データを取得する。具体的には、異常検知装置10の制御部1001は、空気調和機100の異常検知対象である時系列データから少なくともN+1個の値を取得する。
At step 21 (S21), the control unit 1001 of the anomaly detection device 10 acquires time-series data that is an anomaly detection target. Specifically, the control unit 1001 of the abnormality detection device 10 acquires at least N+1 values from the time-series data that is the abnormality detection target of the air conditioner 100 .
ステップ22(S22)において、異常検知装置10の制御部1001は、異常検知対象である時系列データを位相空間上に写像する。具体的には、異常検知装置10の制御部1001は、S21で取得された少なくともN+1個の値を、図11で作成された位相空間上に写像する。
At step 22 (S22), the control unit 1001 of the anomaly detection device 10 maps the time-series data, which is an anomaly detection target, onto the phase space. Specifically, the control unit 1001 of the abnormality detection device 10 maps at least N+1 values acquired in S21 onto the phase space created in FIG.
ステップ23(S23)において、異常検知装置10の制御部1001は、異常検知対象である時系列データが正常であるか異常であるかを判定する。具体的には、異常検知装置10の制御部1001は、S22で少なくともN+1個の値が正常領域に写像されるか異常領域に写像されるかを特定することで、時系列データが正常であるか異常であるかを判定する。
At step 23 (S23), the control unit 1001 of the anomaly detection device 10 determines whether the time series data to be anomaly detected is normal or abnormal. Specifically, the control unit 1001 of the abnormality detection device 10 determines whether the time-series data is normal by specifying whether at least N+1 values are mapped to the normal region or the abnormal region in S22. or abnormal.
ステップ24(S24)において、異常検知装置10の制御部1001は、判定の結果を出力する。具体的には、異常検知装置10の制御部1001は、S23で判定された結果を出力(例えば、空気調和機100の異常を発報)する。
At step 24 (S24), the control unit 1001 of the abnormality detection device 10 outputs the determination result. Specifically, the control unit 1001 of the abnormality detection device 10 outputs the result determined in S23 (for example, an abnormality of the air conditioner 100 is reported).
このように、従来は閾値を決定する際に前後の時間における故障の指標の値を考慮していなかったためにノイズにより生じていた誤判定が改善される(例えば、図1で過去の冷媒量指標の情報があれば、冷媒量指標の値が偶然低くなっただけであることが分かる)。本開示の一実施形態では、故障の指標の過去のデータと現在のデータを軸とした位相空間上に故障の指標のデータを写像して、正常領域と異常領域を作成する(例えば、境界線または境界面を引く)ことで、ノイズによる誤検知を減らすことができる。正常領域および異常領域(例えば、境界線または境界面)は、正常データと異常データで機械学習することにより容易に作成することができる。異常検知時には、時系列的に連続する故障の指標のデータを位相空間上に写像して、正常領域に写像されるか異常領域に写像されるかで正常異常を判定することができる。
In this way, conventionally, erroneous judgments caused by noise due to failure index values before and after were not taken into consideration when determining the threshold value (for example, the past refrigerant amount index in FIG. 1 information, it can be understood that the value of the refrigerant quantity index has just become low by chance). In one embodiment of the present disclosure, a normal region and an abnormal region are created by mapping the failure index data onto a topological space centered on past data and current data of the failure index (for example, a boundary line or draw a boundary surface), it is possible to reduce false detections due to noise. Normal regions and abnormal regions (eg, boundary lines or boundary surfaces) can be easily created by machine learning with normal data and abnormal data. At the time of abnormality detection, it is possible to map chronologically continuous failure index data onto the phase space, and determine normality/abnormality based on whether it is mapped to the normal region or the abnormal region.
<異常検知装置のハードウェア構成>
図13は、本開示の一実施形態に係る異常検知装置10のハードウェア構成図である。 <Hardware configuration of anomaly detection device>
FIG. 13 is a hardware configuration diagram of theabnormality detection device 10 according to an embodiment of the present disclosure.
図13は、本開示の一実施形態に係る異常検知装置10のハードウェア構成図である。 <Hardware configuration of anomaly detection device>
FIG. 13 is a hardware configuration diagram of the
異常検知装置10は、CPU(Central Processing Unit)1001、ROM(Read Only Memory)1002、RAM(Random Access Memory)1003を有する。CPU1001、ROM1002、RAM1003は、いわゆるコンピュータを形成する。また、異常検知装置10は、補助記憶装置1004、表示装置1005、操作装置1006、I/F(Interface)装置1007、ドライブ装置1008を有する。なお、異常検知装置10の各ハードウェアは、バスBを介して相互に接続されている。
The anomaly detection device 10 has a CPU (Central Processing Unit) 1001, a ROM (Read Only Memory) 1002, and a RAM (Random Access Memory) 1003. The CPU 1001, ROM 1002, and RAM 1003 form a so-called computer. The abnormality detection device 10 also has an auxiliary storage device 1004 , a display device 1005 , an operation device 1006 , an I/F (Interface) device 1007 and a drive device 1008 . Each piece of hardware of the abnormality detection device 10 is connected to each other via a bus B. As shown in FIG.
CPU1001は、補助記憶装置1004にインストールされている各種プログラムを実行する演算デバイスである。
The CPU 1001 is a computing device that executes various programs installed in the auxiliary storage device 1004 .
ROM1002は、不揮発性メモリである。ROM1002は、補助記憶装置1004にインストールされている各種プログラムをCPU1001が実行するために必要な各種プログラム、データ等を格納する主記憶デバイスとして機能する。具体的には、ROM1002は、BIOS(Basic Input/Output System)やEFI(Extensible Firmware Interface)等のブートプログラム等を格納する、主記憶デバイスとして機能する。
The ROM 1002 is a non-volatile memory. The ROM 1002 functions as a main storage device that stores various programs, data, etc. necessary for the CPU 1001 to execute various programs installed in the auxiliary storage device 1004 . Specifically, the ROM 1002 functions as a main storage device that stores boot programs such as BIOS (Basic Input/Output System) and EFI (Extensible Firmware Interface).
RAM1003は、DRAM(Dynamic Random Access Memory)やSRAM(Static Random Access Memory)等の揮発性メモリである。RAM1003は、補助記憶装置1004にインストールされている各種プログラムがCPU1001によって実行される際に展開される作業領域を提供する、主記憶デバイスとして機能する。
The RAM 1003 is a volatile memory such as DRAM (Dynamic Random Access Memory) or SRAM (Static Random Access Memory). The RAM 1003 functions as a main storage device that provides a work area that is developed when various programs installed in the auxiliary storage device 1004 are executed by the CPU 1001 .
補助記憶装置1004は、各種プログラムや、各種プログラムが実行される際に用いられる情報を格納する補助記憶デバイスである。
The auxiliary storage device 1004 is an auxiliary storage device that stores various programs and information used when various programs are executed.
表示装置1005は、異常検知装置10の内部状態等を表示する表示デバイスである。
The display device 1005 is a display device that displays the internal state of the abnormality detection device 10 and the like.
操作装置1006は、異常検知装置10の管理者が異常検知装置10に対して各種指示を入力する入力デバイスである。
The operation device 1006 is an input device through which the administrator of the anomaly detection device 10 inputs various instructions to the anomaly detection device 10 .
I/F装置1007は、ネットワークに接続し、他の装置と通信を行うための通信デバイスである。
The I/F device 1007 is a communication device for connecting to a network and communicating with other devices.
ドライブ装置1008は記憶媒体1009をセットするためのデバイスである。ここでいう記憶媒体1009には、CD-ROM、フレキシブルディスク、光磁気ディスク等のように情報を光学的、電気的あるいは磁気的に記録する媒体が含まれる。また、記憶媒体1009には、ROM、フラッシュメモリ等のように情報を電気的に記録する半導体メモリ等が含まれていてもよい。
A drive device 1008 is a device for setting a storage medium 1009 . The storage medium 1009 here includes media for optically, electrically, or magnetically recording information such as CD-ROMs, flexible disks, and magneto-optical disks. Also, the storage medium 1009 may include a semiconductor memory or the like that electrically records information such as a ROM or a flash memory.
なお、補助記憶装置1004にインストールされる各種プログラムは、例えば、配布された記憶媒体1009がドライブ装置1008にセットされ、該記憶媒体1009に記録された各種プログラムがドライブ装置1008により読み出されることでインストールされる。あるいは、補助記憶装置1004にインストールされる各種プログラムは、I/F装置1007を介して、ネットワークよりダウンロードされることでインストールされてもよい。
Various programs to be installed in the auxiliary storage device 1004 are installed by, for example, setting the distributed storage medium 1009 in the drive device 1008 and reading the various programs recorded in the storage medium 1009 by the drive device 1008. be done. Alternatively, various programs installed in the auxiliary storage device 1004 may be installed by being downloaded from the network via the I/F device 1007 .
以下、図14~図16を参照しながら、空気調和機100のハードウェア構成例を説明する。なお、空気調和機100は、ビル用マルチエアコン等のマルチエアコン、チラーを熱源とするセントラル空調システム、店舗・オフィス用エアコン、ルームエアコン等の任意の空気調和システムであってもよいし、冷暖房用途以外のみならず冷蔵・冷凍システムであってもよい。空気調和機100は、複数の室内機300を有することができる。複数の室内機300は、異なる性能の室内機を含んでいてもよいし、同一の性能の室内機を含んでいてもよいし、停止中の室内機を含んでいてもよい。
A hardware configuration example of the air conditioner 100 will be described below with reference to FIGS. 14 to 16. FIG. The air conditioner 100 may be an arbitrary air conditioning system such as a multi-air conditioner such as a multi-air conditioner for buildings, a central air-conditioning system using a chiller as a heat source, an air conditioner for stores and offices, and a room air conditioner. Besides, it may be a refrigerating/freezing system. The air conditioner 100 can have multiple indoor units 300 . The plurality of indoor units 300 may include indoor units with different performance, may include indoor units with the same performance, or may include indoor units that are not in operation.
<空気調和機のハードウェア構成例(冷房運転の場合)>
図14は、本開示の一実施形態に係る空気調和機100のハードウェア構成図である。空気調和機100は、室外機200および1または複数の室内機300を有する。 <Hardware configuration example of air conditioner (for cooling operation)>
FIG. 14 is a hardware configuration diagram of theair conditioner 100 according to an embodiment of the present disclosure. Air conditioner 100 has outdoor unit 200 and one or more indoor units 300 .
図14は、本開示の一実施形態に係る空気調和機100のハードウェア構成図である。空気調和機100は、室外機200および1または複数の室内機300を有する。 <Hardware configuration example of air conditioner (for cooling operation)>
FIG. 14 is a hardware configuration diagram of the
図14の例では、室外熱交換器201と、室外機主膨張弁205と、過冷却熱交換器203と、室内熱交換器膨張弁302と、四路切替弁206と、室内熱交換器301と、圧縮機202とが、冷媒配管で接続され主冷媒回路を構成している。四路切替弁206は、圧縮機202の吐出ガスを室外熱交換器201に供給するように流路が設定される。図14の例では、さらに、室外熱交換器201と過冷却熱交換器203との間の配管から圧縮機202の吸入側の配管に接続されたバイパス配管に、過冷却熱交換器膨張弁204が設けられている。過冷却熱交換器203は、室外熱交換器201と過冷却熱交換器203との間から圧縮機202の吸入側の配管に接続されたバイパス配管に設けられた過冷却熱交換器膨張弁204を通過した冷媒と主冷媒回路内の冷媒とを熱交換させる熱交換器である。なお、図14のバイパス例は一例である。
In the example of FIG. 14, the outdoor heat exchanger 201, the outdoor unit main expansion valve 205, the supercooling heat exchanger 203, the indoor heat exchanger expansion valve 302, the four-way switching valve 206, and the indoor heat exchanger 301 , and the compressor 202 are connected by a refrigerant pipe to form a main refrigerant circuit. The four-way switching valve 206 has a flow path set so as to supply the discharge gas of the compressor 202 to the outdoor heat exchanger 201 . In the example of FIG. 14, the supercooling heat exchanger expansion valve 204 is further connected to the bypass pipe connected from the pipe between the outdoor heat exchanger 201 and the supercooling heat exchanger 203 to the suction side pipe of the compressor 202. is provided. The supercooling heat exchanger 203 includes a supercooling heat exchanger expansion valve 204 provided in a bypass pipe connected between the outdoor heat exchanger 201 and the supercooling heat exchanger 203 to the suction side pipe of the compressor 202. is a heat exchanger that exchanges heat between the refrigerant that has passed through and the refrigerant in the main refrigerant circuit. Note that the bypass example in FIG. 14 is an example.
<<室外機>>
室外機200側では、室外熱交換器201と、圧縮機202と、過冷却熱交換器203と、過冷却熱交換器膨張弁(バイパス回路)204と、室外機主膨張弁(主冷媒回路)205とが配管に接続されている。室外機200は、各種センサ(温度センサ(例えば、サーミスタ)(1)、(3)、(4)、(6)、(7)および圧力センサ(2)、(5)など)を有する。 <<Outdoor unit>>
On theoutdoor unit 200 side, an outdoor heat exchanger 201, a compressor 202, a supercooling heat exchanger 203, a supercooling heat exchanger expansion valve (bypass circuit) 204, and an outdoor unit main expansion valve (main refrigerant circuit) 205 are connected to the piping. The outdoor unit 200 has various sensors (temperature sensors (eg, thermistors) (1), (3), (4), (6), (7), pressure sensors (2), (5), etc.).
室外機200側では、室外熱交換器201と、圧縮機202と、過冷却熱交換器203と、過冷却熱交換器膨張弁(バイパス回路)204と、室外機主膨張弁(主冷媒回路)205とが配管に接続されている。室外機200は、各種センサ(温度センサ(例えば、サーミスタ)(1)、(3)、(4)、(6)、(7)および圧力センサ(2)、(5)など)を有する。 <<Outdoor unit>>
On the
<<室内機>>
室内機300側では、室内熱交換器301と、室内熱交換器膨張弁302とが配管に接続されている。室内機300は、各種センサ(温度センサ(例えば、サーミスタ)(8)、(9)など)を有する。 <<Indoor unit>>
On theindoor unit 300 side, an indoor heat exchanger 301 and an indoor heat exchanger expansion valve 302 are connected to pipes. The indoor unit 300 has various sensors (temperature sensors (eg, thermistors) (8), (9), etc.).
室内機300側では、室内熱交換器301と、室内熱交換器膨張弁302とが配管に接続されている。室内機300は、各種センサ(温度センサ(例えば、サーミスタ)(8)、(9)など)を有する。 <<Indoor unit>>
On the
<空気調和機のハードウェア構成例(暖房運転の場合)>
図15は、本開示の一実施形態に係る空気調和機(暖房運転の場合)100のハードウェア構成図である。空気調和機100は、室外機200および1または複数の室内機300を有する。 <Hardware configuration example of air conditioner (for heating operation)>
FIG. 15 is a hardware configuration diagram of an air conditioner (for heating operation) 100 according to an embodiment of the present disclosure.Air conditioner 100 has outdoor unit 200 and one or more indoor units 300 .
図15は、本開示の一実施形態に係る空気調和機(暖房運転の場合)100のハードウェア構成図である。空気調和機100は、室外機200および1または複数の室内機300を有する。 <Hardware configuration example of air conditioner (for heating operation)>
FIG. 15 is a hardware configuration diagram of an air conditioner (for heating operation) 100 according to an embodiment of the present disclosure.
図15の例では、室外熱交換器201と、圧縮機202と、四路切替弁206と、室内熱交換器301と、室内熱交換器膨張弁302と、過冷却熱交換器203と、室外機主膨張弁205とが、冷媒配管で接続され主冷媒回路を構成している。四路切替弁206は、圧縮機202の吐出ガスを室内熱交換器301に供給するように流路が設定される。
In the example of FIG. 15, an outdoor heat exchanger 201, a compressor 202, a four-way switching valve 206, an indoor heat exchanger 301, an indoor heat exchanger expansion valve 302, a supercooling heat exchanger 203, and an outdoor The machine main expansion valve 205 is connected by a refrigerant pipe to form a main refrigerant circuit. The four-way switching valve 206 has a flow path set so as to supply the discharge gas of the compressor 202 to the indoor heat exchanger 301 .
<<室外機>>
室外機200側では、室外熱交換器201と、圧縮機202と、過冷却熱交換器203と、過冷却熱交換器膨張弁(バイパス回路)204と、室外機主膨張弁(主冷媒回路)205とが配管に接続されている。室外機200は、各種センサ(温度センサ(例えば、サーミスタ)(1)、(3)、(4)、(6)、(7)および圧力センサ(2)、(5)など)を有する。 <<Outdoor unit>>
On theoutdoor unit 200 side, an outdoor heat exchanger 201, a compressor 202, a supercooling heat exchanger 203, a supercooling heat exchanger expansion valve (bypass circuit) 204, and an outdoor unit main expansion valve (main refrigerant circuit) 205 are connected to the piping. The outdoor unit 200 has various sensors (temperature sensors (eg, thermistors) (1), (3), (4), (6), (7), pressure sensors (2), (5), etc.).
室外機200側では、室外熱交換器201と、圧縮機202と、過冷却熱交換器203と、過冷却熱交換器膨張弁(バイパス回路)204と、室外機主膨張弁(主冷媒回路)205とが配管に接続されている。室外機200は、各種センサ(温度センサ(例えば、サーミスタ)(1)、(3)、(4)、(6)、(7)および圧力センサ(2)、(5)など)を有する。 <<Outdoor unit>>
On the
<<室内機>>
室内機300側では、室内熱交換器301と、室内熱交換器膨張弁302とが配管に接続されている。室内機300は、各種センサ(温度センサ(例えば、サーミスタ)(8)、(9)など)を有する。 <<Indoor unit>>
On theindoor unit 300 side, an indoor heat exchanger 301 and an indoor heat exchanger expansion valve 302 are connected to pipes. The indoor unit 300 has various sensors (temperature sensors (eg, thermistors) (8), (9), etc.).
室内機300側では、室内熱交換器301と、室内熱交換器膨張弁302とが配管に接続されている。室内機300は、各種センサ(温度センサ(例えば、サーミスタ)(8)、(9)など)を有する。 <<Indoor unit>>
On the
<空気調和機のハードウェア構成例(冷暖同時運転の場合)>
本開示は、冷房運転、暖房運転に限らず、冷暖同時運転にも適用することができる。以下、図16を参照しながら、冷暖同時運転について説明する。 <Hardware configuration example of air conditioner (for simultaneous cooling and heating operation)>
The present disclosure can be applied not only to cooling operation and heating operation, but also to simultaneous cooling and heating operation. The simultaneous cooling and heating operation will be described below with reference to FIG. 16 .
本開示は、冷房運転、暖房運転に限らず、冷暖同時運転にも適用することができる。以下、図16を参照しながら、冷暖同時運転について説明する。 <Hardware configuration example of air conditioner (for simultaneous cooling and heating operation)>
The present disclosure can be applied not only to cooling operation and heating operation, but also to simultaneous cooling and heating operation. The simultaneous cooling and heating operation will be described below with reference to FIG. 16 .
図16は、本開示の一実施形態に係る空気調和機(冷暖同時運転の場合)100のハードウェア構成図である。空気調和機100は、2分割構造の室外熱交換器201-1と室外熱交換器201-2と、複数の室内機と、が3本の連絡配管で接続されており、冷暖同時運転が可能である。図16では、冷房主体運転の例を示しており、室内機300-1が暖房モード、室内機300-2が冷房モードで運転されている。この時、室外熱交換器201-1は凝縮器、室外熱交換器201-2は蒸発器として機能している。
FIG. 16 is a hardware configuration diagram of an air conditioner (in the case of simultaneous cooling and heating operation) 100 according to an embodiment of the present disclosure. The air conditioner 100 has an outdoor heat exchanger 201-1 and an outdoor heat exchanger 201-2 with a two-part structure, and a plurality of indoor units, which are connected by three connecting pipes, and simultaneous cooling and heating operation is possible. is. FIG. 16 shows an example of cooling-dominant operation, in which indoor unit 300-1 is operated in heating mode and indoor unit 300-2 is operated in cooling mode. At this time, the outdoor heat exchanger 201-1 functions as a condenser, and the outdoor heat exchanger 201-2 functions as an evaporator.
以上、実施形態を説明したが、特許請求の範囲の趣旨及び範囲から逸脱することなく、形態や詳細の多様な変更が可能なことが理解されるであろう。
Although the embodiments have been described above, it will be understood that various changes in form and detail are possible without departing from the spirit and scope of the claims.
本国際出願は2021年12月28日に出願された日本国特許出願2021-213979号に基づく優先権を主張するものであり、2021-213979号の全内容をここに本国際出願に援用する。
This international application claims priority based on Japanese Patent Application No. 2021-213979 filed on December 28, 2021, and the entire contents of No. 2021-213979 are hereby incorporated into this international application.
10 異常検知装置
100 空気調和機
200 室外機
201 室外熱交換器
201-1 室外熱交換器(凝縮器)
201-2 室外熱交換器(蒸発器)
202 圧縮機
203 過冷却熱交換器
204 過冷却熱交換器膨張弁
205 室外機主膨張弁
206 四路切替弁
300 室内機
300-1 暖房室内機
300-2 冷房室内機
301 室内熱交換器
302 室内熱交換器膨張弁
1001 制御部
1002 ROM
1003 RAM
1004 補助記憶装置
1005 表示装置
1006 操作装置
1007 I/F装置
1008 ドライブ装置
1009 記憶媒体 10Abnormality detection device 100 Air conditioner 200 Outdoor unit 201 Outdoor heat exchanger 201-1 Outdoor heat exchanger (condenser)
201-2 Outdoor heat exchanger (evaporator)
202Compressor 203 Supercooling heat exchanger 204 Supercooling heat exchanger expansion valve 205 Outdoor unit main expansion valve 206 Four-way switching valve 300 Indoor unit 300-1 Heating indoor unit 300-2 Cooling indoor unit 301 Indoor heat exchanger 302 Indoor Heat exchanger expansion valve 1001 Control unit 1002 ROM
1003 RAM
1004auxiliary storage device 1005 display device 1006 operation device 1007 I/F device 1008 drive device 1009 storage medium
100 空気調和機
200 室外機
201 室外熱交換器
201-1 室外熱交換器(凝縮器)
201-2 室外熱交換器(蒸発器)
202 圧縮機
203 過冷却熱交換器
204 過冷却熱交換器膨張弁
205 室外機主膨張弁
206 四路切替弁
300 室内機
300-1 暖房室内機
300-2 冷房室内機
301 室内熱交換器
302 室内熱交換器膨張弁
1001 制御部
1002 ROM
1003 RAM
1004 補助記憶装置
1005 表示装置
1006 操作装置
1007 I/F装置
1008 ドライブ装置
1009 記憶媒体 10
201-2 Outdoor heat exchanger (evaporator)
202
1003 RAM
1004
Claims (13)
- 制御部を備えた異常検知装置であって、
前記制御部は、
空気調和機の異常検知対象である時系列データの任意時間の値と前記任意時間より過去のN個の値からN+1次元の位相空間を作成し、前記位相空間上に正常の時系列データと異常の時系列データが写像されたときの分布に応じて、前記位相空間上に正常領域および異常領域を作成し、
前記空気調和機の異常検知対象である時系列データから少なくともN+1個の値を取得し、前記少なくともN+1個の値が前記正常領域に写像されるか前記異常領域に写像されるかを特定することで、前記時系列データが正常であるか異常であるかを判定して出力する、異常検知装置。 An anomaly detection device comprising a control unit,
The control unit
An N+1 dimensional phase space is created from the value of the time series data that is the abnormality detection target of the air conditioner and N values past the arbitrary time, and the normal time series data and the abnormality are created on the phase space. Create a normal region and an abnormal region on the phase space according to the distribution when the time series data of is mapped,
Acquiring at least N+1 values from the time-series data that is the abnormality detection target of the air conditioner, and specifying whether the at least N+1 values are mapped to the normal region or the abnormal region. and an anomaly detection device that determines whether the time-series data is normal or abnormal and outputs the result. - 前記位相空間上の前記正常領域および前記異常領域は、機械学習により作成された学習済みモデルである、請求項1に記載の異常検知装置。 The abnormality detection device according to claim 1, wherein the normal region and the abnormal region on the phase space are learned models created by machine learning.
- 前記位相空間は、二次元である、請求項1または2に記載の異常検知装置。 The anomaly detection device according to claim 1 or 2, wherein the phase space is two-dimensional.
- 前記位相空間は、前記空気調和機の異常検知対象である時系列データの値と、前記空気調和機の異常検知対象である時系列データの差分と、の少なくとも一方から作成される、請求項1から3のいずれか一項に記載の異常検知装置。 2. The phase space is created from at least one of a value of time-series data as an abnormality detection target for the air conditioner and a difference between time-series data as an abnormality detection target for the air conditioner. 4. The abnormality detection device according to any one of 3.
- 前記制御部は、
前記時系列データの異常を、正常からの外れ度合いと、変化の度合いと、の少なくとも一方から判定する、請求項1から4のいずれか一項に記載の異常検知装置。 The control unit
5. The anomaly detection device according to claim 1, wherein the anomaly of the time-series data is determined based on at least one of a degree of deviation from normal and a degree of change. - 前記制御部は、
前記正常領域と前記異常領域とが重なる場合には、前記正常領域と前記異常領域とが重なる領域を前記正常領域とする、請求項1から5のいずれか一項に記載の異常検知装置。 The control unit
The abnormality detection device according to any one of claims 1 to 5, wherein when the normal region and the abnormal region overlap, the region where the normal region and the abnormal region overlap is defined as the normal region. - 前記制御部は、
前記少なくともN+1個の値のうち前記正常領域に写像されるデータの個数と前記異常領域に写像されるデータの個数との関係と、前記少なくともN+1個の値の写像後の分布の重心が前記正常領域にあるか前記異常領域にあるかの特定と、の少なくとも1つを計算することで、前記時系列データが正常であるか異常であるかを判定して出力する、請求項1から6のいずれか一項に記載の異常検知装置。 The control unit
A relationship between the number of data mapped to the normal region and the number of data mapped to the abnormal region among the at least N + 1 values, and the normal center of the distribution of the at least N + 1 values after mapping Specifying whether it is in the region or in the abnormal region, and determining and outputting whether the time-series data is normal or abnormal by calculating at least one of The anomaly detection device according to any one of the items. - 前記制御部は、
複数の異なる位相空間を作成する、請求項1から7のいずれか一項に記載の異常検知装置。 The control unit
8. The anomaly detection device according to any one of claims 1 to 7, which creates a plurality of different phase spaces. - 前記制御部は、
前記時系列データが、前記複数の異なる位相空間の各位相空間上での正常領域に写像されるか異常領域に写像されるかを特定することで、前記時系列データが正常であるか異常であるかを判定して出力する、請求項8に記載の異常検知装置。 The control unit
By specifying whether the time-series data is mapped to a normal region or an abnormal region on each phase space of the plurality of different phase spaces, the time-series data is normal or abnormal. 9. The anomaly detection device according to claim 8, which determines whether or not there is an abnormality and outputs the result. - 前記制御部は、
前記位相空間上に前記正常領域および前記異常領域を作成する際、および、前記時系列データが正常であるか異常であるかを判定する際に、
前記時系列データの前記任意時間の値と前記任意時間と連続した過去のN個の値、もしくは、前記時系列データの前記任意時間の値と前記任意時間からM個おきに過去のN個の値を取得する、請求項1から9のいずれか一項に記載の異常検知装置。 The control unit
When creating the normal region and the abnormal region on the phase space, and when determining whether the time series data is normal or abnormal,
The value of the time-series data at the arbitrary time and past N consecutive values from the arbitrary time, or the value of the time-series data at the arbitrary time and past N values from the arbitrary time every M times 10. The anomaly detection device according to any one of claims 1 to 9, which acquires a value. - 前記空気調和機の異常検知対象である時系列データは、前記空気調和機に含まれる冷媒量と関係のあるデータである、請求項1から10のいずれか一項に記載の異常検知装置。 The anomaly detection device according to any one of claims 1 to 10, wherein the time-series data, which is an anomaly detection target for the air conditioner, is data related to the amount of refrigerant contained in the air conditioner.
- 異常検知装置の制御部が実行する方法であって、
空気調和機の異常検知対象である時系列データの任意時間の値と前記任意時間より過去のN個の値からN+1次元の位相空間を作成し、前記位相空間上に正常の時系列データと異常の時系列データが写像されたときの分布に応じて、前記位相空間上に正常領域および異常領域を作成するステップと、
前記空気調和機の異常検知対象である時系列データから少なくともN+1個の値を取得し、前記少なくともN+1個の値が前記正常領域に写像されるか前記異常領域に写像されるかを特定することで、前記時系列データが正常であるか異常であるかを判定して出力するステップと
を含む方法。 A method executed by a control unit of an anomaly detection device,
An N+1 dimensional phase space is created from the value of the time series data that is the abnormality detection target of the air conditioner and N values past the arbitrary time, and the normal time series data and the abnormality are created on the phase space. A step of creating a normal region and an abnormal region on the phase space according to the distribution when the time series data of is mapped;
Acquiring at least N+1 values from the time-series data that is the abnormality detection target of the air conditioner, and specifying whether the at least N+1 values are mapped to the normal region or the abnormal region. and determining whether the time-series data is normal or abnormal and outputting the result. - 異常検知装置の制御部に、
空気調和機の異常検知対象である時系列データの任意時間の値と前記任意時間より過去のN個の値からN+1次元の位相空間を作成し、前記位相空間上に正常の時系列データと異常の時系列データが写像された分布に応じて、前記位相空間上に正常領域および異常領域を作成する手順、
前記空気調和機の異常検知対象である時系列データから少なくともN+1個の値を取得し、前記少なくともN+1個の値が前記正常領域に写像されるか前記異常領域に写像されるかを特定することで、前記時系列データが正常であるか異常であるかを判定して出力する手順
を実行させるためのプログラム。 In the control unit of the anomaly detection device,
An N+1 dimensional phase space is created from the value of the time series data that is the abnormality detection target of the air conditioner and N values past the arbitrary time, and the normal time series data and the abnormality are created on the phase space. A procedure for creating a normal region and an abnormal region on the phase space according to the distribution to which the time series data of is mapped,
Acquiring at least N+1 values from the time-series data that is the abnormality detection target of the air conditioner, and specifying whether the at least N+1 values are mapped to the normal region or the abnormal region. A program for executing a procedure for judging whether the time-series data is normal or abnormal and outputting it.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021-213979 | 2021-12-28 | ||
JP2021213979A JP7231866B1 (en) | 2021-12-28 | 2021-12-28 | Anomaly detection device, method and program |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023127329A1 true WO2023127329A1 (en) | 2023-07-06 |
Family
ID=85382472
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/042183 WO2023127329A1 (en) | 2021-12-28 | 2022-11-14 | Abnormality detection device, method, and program |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7231866B1 (en) |
WO (1) | WO2023127329A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11927377B2 (en) | 2014-09-26 | 2024-03-12 | Waterfurnace International, Inc. | Air conditioning system with vapor injection compressor |
US11953239B2 (en) | 2018-08-29 | 2024-04-09 | Waterfurnace International, Inc. | Integrated demand water heating using a capacity modulated heat pump with desuperheater |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020197347A (en) * | 2019-06-03 | 2020-12-10 | ダイキン工業株式会社 | Apparatus management device and heat source system |
-
2021
- 2021-12-28 JP JP2021213979A patent/JP7231866B1/en active Active
-
2022
- 2022-11-14 WO PCT/JP2022/042183 patent/WO2023127329A1/en unknown
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020197347A (en) * | 2019-06-03 | 2020-12-10 | ダイキン工業株式会社 | Apparatus management device and heat source system |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11927377B2 (en) | 2014-09-26 | 2024-03-12 | Waterfurnace International, Inc. | Air conditioning system with vapor injection compressor |
US11953239B2 (en) | 2018-08-29 | 2024-04-09 | Waterfurnace International, Inc. | Integrated demand water heating using a capacity modulated heat pump with desuperheater |
Also Published As
Publication number | Publication date |
---|---|
JP2023097730A (en) | 2023-07-10 |
JP7231866B1 (en) | 2023-03-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2023127329A1 (en) | Abnormality detection device, method, and program | |
CN105091215B (en) | Method and device for detecting fluorine deficiency of multi-split air conditioner during starting | |
US10941956B2 (en) | Data processing method, refrigerant leakage detection method, system failure detection method and system performance detection method | |
JP2021042949A (en) | Refrigerant quantity determination device, method, and program | |
CN114353854B (en) | Method, apparatus, and medium for online locating of anomaly sensors | |
CN111023429B (en) | Control method and system and air conditioner | |
CN103884480A (en) | Refrigerant leak detection method, refrigerant leak detection system and air conditioner | |
WO2022196813A1 (en) | Correction device, prediction device, method, program, and correction model | |
CN111140990A (en) | Filth blockage detection method for air conditioner heat exchanger and air conditioner | |
CN110553343A (en) | Refrigerant leakage detection method and system of air conditioner and air conditioner | |
CN114992776A (en) | Refrigerant leakage detection method and device for air conditioning system, air conditioner and storage medium | |
CN104807146A (en) | Anti-freezing protection detection method and device | |
CN105466093A (en) | Virtual detection method and device for discharge pressure and back pressure of compressor | |
CN112097364B (en) | Air conditioner and electronic expansion valve fault detection method thereof | |
CN113557397B (en) | Refrigerant amount estimation device, method, and program | |
CN110715397B (en) | Refrigerant leakage detection method and system of air conditioner and air conditioner | |
WO2023174395A1 (en) | Refrigerant leakage control method and apparatus, and multi-split air conditioner | |
CN114459119B (en) | Air conditioner blockage detection method, device, equipment and storage medium | |
Kimura et al. | Development of a Remote Refrigerant Leakage Detection System for VRFs and Chillers | |
JP2022156625A (en) | Refrigerant leakage detection system, method program | |
WO2024135664A1 (en) | Apparatus performance prediction method, apparatus performance prediction device, and program | |
WO2024202103A1 (en) | Refrigerant leakage detection system | |
WO2023175941A1 (en) | Failure determination system and failure determination method | |
Behfar et al. | Numerical Simulation of Fault Impacts for Commercial Walk-in Freezers | |
Kimura et al. | Development of a remote refrigerant leakage detection system for chillers and VRFs |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22915560 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |