WO2023127182A1 - Automatic analysis device and automatic analysis method - Google Patents

Automatic analysis device and automatic analysis method Download PDF

Info

Publication number
WO2023127182A1
WO2023127182A1 PCT/JP2022/026174 JP2022026174W WO2023127182A1 WO 2023127182 A1 WO2023127182 A1 WO 2023127182A1 JP 2022026174 W JP2022026174 W JP 2022026174W WO 2023127182 A1 WO2023127182 A1 WO 2023127182A1
Authority
WO
WIPO (PCT)
Prior art keywords
reagent
reaction
sample
measurement sequence
chip
Prior art date
Application number
PCT/JP2022/026174
Other languages
French (fr)
Japanese (ja)
Inventor
純一 近藤
恭一 岩橋
智英 浅井
弘至 高橋
Original Assignee
積水メディカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水メディカル株式会社 filed Critical 積水メディカル株式会社
Publication of WO2023127182A1 publication Critical patent/WO2023127182A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/10Devices for withdrawing samples in the liquid or fluent state
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices

Definitions

  • the present invention relates to an automatic analyzer and an automatic analysis method that can obtain measurement information on various analysis items (test items) by treating and measuring samples (specimens) such as blood and urine with various reagents. .
  • Blood coagulation analyzers treat biological samples such as blood and urine with various reagents and measure various test items (measurement items).
  • ELIA electrochemiluminescence immunoassay
  • Various forms of automated analyzers capable of obtaining measurement information regarding are known. For example, a specimen as a biological sample is dispensed from a specimen container into a reaction container, and the dispensed specimen is mixed with reagents corresponding to test items to perform various measurements and analyses.
  • reaction containers such as a mechanism for dispensing specimens and reagents, a reaction container (cuvette) for reacting specimens and reagents, and a mechanism for stirring specimens and reagents, are shared in the measurement of a plurality of test items.
  • a mechanism for dispensing specimens and reagents such as a mechanism for dispensing specimens and reagents, a reaction container (cuvette) for reacting specimens and reagents, and a mechanism for stirring specimens and reagents
  • cuvette for reacting specimens and reagents
  • stirring specimens and reagents are shared in the measurement of a plurality of test items.
  • measurement results may be erroneous due to contamination occurring between the respective reaction solutions and reagents.
  • the reagent component of analysis item A contains a substance that participates in the reaction of analysis item B (reaction inhibition, promotion, etc.)
  • reaction inhibition, promotion, etc. when analysis item A and analysis item B are continuously measured, If the reagent for analysis item A contaminates the reagent for analysis item B, the reaction for analysis item A proceeds simultaneously with the reaction for analysis item B, which may cause an error in the measurement result. Therefore, in such multi-item analyzers, in order to avoid such contamination, instruments such as nozzle tips for aspirating specimens and reagents and reaction vessels (cuvettes) into which specimens are dispensed are usually , are exchanged each time a measurement (or reaction) is performed (see, for example, Patent Document 1).
  • ⁇ -D glucan is a component that exists as normal bacteria, in order to accurately measure its abundance in the blood, consumables such as nozzle tips and reaction vessels must contain ⁇ -D glucan. It is required to be uncontaminated, ie ⁇ -D glucan free. At present, many problems still remain and it is not easy to perform multiple analyzes including ⁇ -D glucan in the same apparatus while preventing such contamination.
  • the present invention has been made with a focus on the above-mentioned problems, and it is possible to select whether or not to attach a chip as needed, and to separate ⁇ -D glucan from other test objects while preventing contamination.
  • An object of the present invention is to provide an automatic analyzer and an automatic analysis method that enable batch measurement.
  • the present invention comprises a reaction section that holds a reaction container into which a specimen is dispensed, and a reagent supply section that supplies a reagent.
  • a test item selection unit for alternatively selecting the specific test item and the normal test item; a nozzle moving mechanism for moving a suction nozzle for suctioning a specimen and a reagent within the device;
  • a sample chip supply unit for supplying a disposable sample chip attached to the tip of a sample aspiration nozzle, the sample chip supply unit supplying a first sample chip used when a normal test item is selected by the test item selection unit.
  • a first sample chip supply unit and a second sample chip supply unit that supplies a ⁇ -D glucan-free second sample chip used when a specific test item is selected by the test item selection unit.
  • a reagent chip supply unit for supplying a ⁇ -D glucan-free disposable reagent chip attached to the tip of a reagent suction nozzle when a specific test item is selected by the test item selection unit.
  • a controller for controlling the operation of each part of the device and the nozzle moving mechanism, the controller using the reagent suction nozzle to dispense and agitate the plurality of types of reagents into the reaction vessel in several batches.
  • a first measurement sequence, and a second measurement sequence in which the number of steps is reduced compared to the first sequence by omitting B/F separation a predetermined number of times after reagent dispensing, and the control mode includes: Executed when the normal test item is selected by the test item selection unit, and controls the first measurement sequence or the second measurement sequence without attaching the reagent chip to the tip of the reagent suction nozzle. and a first control mode that is executed when the specific test item is selected by the test item selection unit, and controls the second measurement sequence with attachment of the reagent chip to the tip of the reagent suction nozzle. and a second control mode for
  • measurement information regarding specific test items for measuring ⁇ -D glucan and normal test items for measuring other test objects can be obtained with a single device.
  • All inspection items, including D-glucan measurement can be completed with a single device, there is no need to use a dedicated machine to measure ⁇ -D-glucan as in the past (need to use different devices) do not have). Therefore, continuous inspection becomes possible, and the overall inspection time until the measurement of all inspection items is completed can be shortened. Measurement accuracy can also be improved by minimizing the impact of time loss on measurement accuracy.
  • the control mode can be selected according to the inspection item (it is possible to select whether or not the reagent chip is attached and the measurement sequence can be selected), a measurement sequence suitable for the inspection object can be realized. That is, by adopting a second measurement sequence with a small number of steps in a specific test item for measuring ⁇ -D glucan and using a ⁇ -D glucan-free disposable reagent chip, the opportunity to be exposed to the risk of contamination is reduced as much as possible. can be less. Therefore, it is possible to reduce the contamination risk and improve the measurement accuracy.
  • the first measurement sequence includes: a first step of inducing a first reaction by dispensing and stirring a sample diluent and a sample as a first reagent into a reaction container; Antibody-bound magnetic beads are added as a second reagent to the reaction solution obtained in step 1 to cause a second reaction, and the magnetic beads after the reaction are captured with a magnet to draw out the liquid in the reaction vessel, followed by a washing solution.
  • a second step of performing a first B/F separation in which the magnetic beads are washed with to remove non-specific binding substances other than the antigen-antibody reaction, and a ruthenium complex as a third reagent in the liquid after the second step
  • a third reaction is caused by adding a labeled antibody, the magnetic beads after the reaction are captured with a magnet, the liquid in the reaction vessel is extracted, and the magnetic beads are washed with a washing solution to remove non-specific binding substances other than the antigen-antibody reaction.
  • a third step of removing a second B/F separation wherein said second measurement sequence preferably consists of said first measurement sequence omitting said first B/F separation.
  • the second sample chip supply unit and the reagent chip supply unit perform a first measurement sequence or a second measurement sequence executed when the inspection item selection unit selects a normal inspection item. It is preferably positioned so as not to interfere with the movement path of the nozzle movement mechanism in the measurement sequence.
  • ⁇ -D glucan is measured by providing the second sample chip supply unit and the reagent chip supply unit that supply ⁇ -D glucan-free chips at positions that do not interfere with the nozzle movement path during normal test item measurement. This avoids the risk of contamination between a measurement sequence for measuring an object to be inspected and a measurement sequence for measuring another object to be inspected. For example, specifically, it is possible to avoid the risk of contamination such as dripping or contamination of foreign matter that may occur during normal test item measurement without providing a complicated device mechanism. This leads to improved measurement accuracy.
  • a contamination check section for checking the ⁇ -D glucan-free state in the device is further provided.
  • the contamination check unit may be individually provided in each part of the apparatus. etc. are contaminated with ⁇ -D glucan.
  • a reaction container supply unit for supplying reaction containers is further provided.
  • FIG. 1 is a schematic overall external view of an automatic analyzer according to an embodiment of the present invention
  • FIG. 2 is a schematic plan view showing the internal configuration of the automatic analyzer of FIG. 1
  • FIG. 2 is a block diagram showing the main components of the autoanalyzer of FIG. 1
  • FIG. 2 is a flowchart showing an example of processing steps of the automatic analyzer of FIG. 1
  • FIG. A first measurement sequence that performs B/F separation in which multiple types of reagents are divided into several batches by a reagent aspirating nozzle and stirred into reaction containers, and labeled antibodies that do not form immune complexes are washed and discarded. It is a figure which shows an example typically.
  • FIG. 1 is a schematic overall external view of the automatic analyzer of this embodiment
  • FIG. 2 is a schematic plan view showing the internal configuration of the automatic analyzer of FIG. 1
  • FIG. 2 is a block diagram showing the components of the system
  • the automatic analyzer 1 of the present embodiment includes a reaction section 40 (see FIGS. 2 and 3) that holds reaction containers (cuvettes) C into which samples are dispensed. and a reagent supply unit 30 (see FIG. 2) that supplies a reagent. It is possible to obtain measurement information regarding specific test items for measuring ⁇ -D glucan and normal test items for measuring other test objects. Therefore, the automatic analyzer 1 has an inspection item selection unit 120 for alternatively selecting the specific inspection item and the normal inspection item (see FIG. 3).
  • the automatic analyzer 1 of the present embodiment includes a nozzle moving mechanism 130 (see FIG. 3) that moves a suction nozzle (not shown) for sucking a sample and a reagent within the device 1, and each part of the device (reaction part 40 (to be described later) and a control unit 110 for controlling the operation of the nozzle moving mechanism 130 .
  • the automatic analyzer 1 of this embodiment has a contamination check section 114 that checks the ⁇ -D glucan-free state in the device 1 .
  • the contamination check unit 114 may be provided in at least one of the processing units 10, 20, 30, 40, and 50 of the apparatus 1 or individually, and for example, the detection value detected by the component detection sensor and the like By comparing with a predetermined reference value, it is checked whether or not each processing section, instrument, etc. in the device 1 is contaminated with ⁇ -D glucan.
  • the control unit 110 constantly monitors the state of contamination by ⁇ -D glucan by constantly receiving the detection signal from the contamination check unit 114, and when the state of contamination is detected, notifies the operator to that effect. generate a signal or take some other action (for example, stop the device 1).
  • the automatic analyzer 1 of the present embodiment has a rack R loaded with a predetermined number of disposable instruments used in the automatic analyzer 1, and a predetermined instrument take-out device described later.
  • a reaction unit 40 for reacting a sample and a reagent; and a B/F separation/measurement unit 50 for processing and measuring the reacted sample.
  • 30, 40 and 50 are arranged in a housing 100 (see FIG. 1).
  • the rack R transported by the transport unit 10 includes a sample chip supply unit for supplying disposable sample chips T attached to the tip of a sample aspirating nozzle (not shown) moved by the nozzle moving mechanism 130, and a reaction container C. and a reaction vessel supply for supplying the
  • the rack R is a first sample chip supply section 300A that supplies the first sample chips T1 used when a normal test item is selected by the test item selection section 120 (FIG. 3). and a first reaction container supply unit 200A for supplying the first reaction container C1 used when the test item selection unit 120 selects a normal test item.
  • the first sample chips T1 are two-dimensionally arranged and held in the first sample chip supply unit 300A
  • the first reaction containers C1 are two-dimensionally arranged in the first reaction container supply unit 200A. are arranged and held.
  • the automatic analyzer 1 includes the above-described control unit 110 (FIG. 3) for controlling the operations of these processing units 10, 20, 30, 40, and 50, and a transfer mechanism (not shown) that moves in the XY directions.
  • the transfer mechanism includes a nozzle movement mechanism 130, and uses a holding part such as a grip arm to transfer various instruments (specimen chips, reaction containers, etc.), and moves in the XY direction to perform aspiration of specimens and reagents by the nozzles. can move.
  • the transfer mechanism can not only move in the XY directions within the housing 100 along, for example, extended rails, but can also move (lift) in the vertical direction (Z direction) at a predetermined position.
  • the transport unit 10 vertically stacks the plurality of racks R loaded with the first sample chips T1 and the first reaction containers C1, and lifts the racks R by an elevating mechanism.
  • the sample is transported toward the rack standby position (supply side position) I facing the upper sample processing space (hereinafter simply referred to as processing space) S in the housing 100 .
  • the rack R is moved to the take-out position (recovery side position) II where the sample chips T1 and the reaction containers C1 are taken out for analysis and measurement processing, and the sample chips T1 and the reaction containers C1 are all taken out and the rack R is empty. are sequentially lowered by an elevating mechanism to be collected.
  • the operator pulls out the conveying unit 10 to the outside of the apparatus 1 along the Y direction (the pulled out conveying unit is denoted by reference numeral 10' in FIG. 2). ), an empty rack R can be recovered from the transport section 10, and the transport section 10 can be replenished with unused racks R loaded with sample chips T and reaction containers C, respectively.
  • the automatic analyzer 1 has a ⁇ -D glucan-free ⁇ -D glucan-free sample used when a specific test item is selected by the test item selection unit 120, adjacent to the take-out position (recovery side position) II.
  • a second sample chip supply unit 300B (left half) that supplies a second sample chip T2, and a ⁇ -D glucan-free second sample chip used when a specific test item is selected by the test item selection unit 120.
  • a second reaction container supply section 200B (right half) for supplying the reaction container C2.
  • This temporary storage site becomes a tip/reaction container standby position III where the first sample chip T1 and the first reaction container C1 in the rack R located at the take-out position II are transferred by the transfer mechanism and temporarily placed.
  • the reaction container C1 may be transferred and set directly from the rack R to the reaction section 40 by the holding section of the instrument transfer section without going through the tip/reaction container standby position III.
  • the sample supply unit 20 is placed on a sample table 23 that is movable along the X direction in FIG.
  • the sample rack supply unit 20 has a configuration in which a plurality of box-shaped sample racks 22 are arranged along the moving direction of the sample table 23, for example.
  • Each sample rack 22 is loaded with a plurality of sample containers 21, and each of these sample containers 21 contains a sample to be analyzed or measured.
  • the sample supply unit 20 arranged on the right side in FIG. 2 moves to the left side in FIG. 22 is transferred to the specimen aspirating position IV between the reaction section 40 and the tip/reaction container standby position III and waits at this position.
  • a sample transporting unit for transporting the sample constituting the transport mechanism A first uniaxial transfer line (first sample transfer line) L1 is formed along this straight line along which the sample moves only in one axial direction (X-axis direction). Specifically, when a normal test item is selected by the test item selection unit 120, a holding unit that holds a sample suction nozzle (not shown) is moved along the first uniaxial transfer line L1 by the sample transfer unit. It is moved only in the X-axis direction.
  • This sample aspirating nozzle is moved in the + direction of the X axis (rightward in FIG. 2) by the sample transfer section, and the tip thereof reaches the first sample chip T1 temporarily placed at the tip/reaction container standby position III.
  • the specimen aspirating nozzle After being connected (when connecting, the specimen aspirating nozzle is moved up and down in the Z-axis direction by the specimen transfer section), while holding the first specimen chip T1 at the tip, it is further moved in the - direction of the X-axis (to the left in FIG. 2). ) to aspirate the sample through the first sample chip T1 from the sample container 21 waiting at the sample aspirating position IV, and then move toward the reaction section 40 in the - direction of the X axis.
  • the specimen aspirating nozzle dispenses (discharges) the specimen aspirated through the first specimen chip T1 into the first reaction container C1 on the reaction section 40 .
  • the specimen aspirating nozzle is moved by the specimen transfer section toward the tip disposal section 121 (provided between the reaction section 40 and the specimen aspiration position IV) on the first uniaxial transfer line L1. , and the used first sample chip T1 is detached from the sample aspirating nozzle and discarded by the tip disposal unit 121 thereof.
  • a second uniaxial transfer line (second sample transfer line) L2 along which a sample transfer section for transferring a sample, which constitutes the transfer mechanism, moves only in one axial direction (X-axis direction) along this straight line is the first uniaxial transfer line. It is formed without interfering with the transfer line L1. Specifically, when a specific test item is selected by the test item selection unit 120, a holding unit that holds a sample suction nozzle (not shown) is moved along the second uniaxial transfer line L2 by the sample transfer unit.
  • This specimen aspirating nozzle is moved in the + direction of the X axis (rightward in FIG. 2) by the specimen transporting section, and the tip thereof is held by the second specimen chip supplying section 300B.
  • the sample aspirating nozzle After being connected to the second sample chip T2 (during connection, the sample aspirating nozzle is moved up and down in the Z-axis direction by the sample transfer unit), while holding the second sample chip T2 at the tip, it is further moved in the - direction of the X-axis.
  • the sample is aspirated from the sample container 21 that is moved (to the left in FIG. 2) and stands by at the sample aspirating position IV through the second sample chip T2. be.
  • the ⁇ -D glucan-free second reaction vessel C2 held in the second reaction vessel supply section 200B is transferred to the reaction section 40 by the instrument transfer section constituting the transfer mechanism. It has already been set and awaited using the unit. Therefore, the specimen aspirating nozzle dispenses (discharges) the specimen aspirated through the second specimen chip T2 into the second reaction container C2 on the reaction section 40 . After that, the specimen aspirating nozzle is moved by the specimen transfer section toward the tip disposal section 122 (provided between the reaction section 40 and the specimen aspiration position IV) on the second uniaxial transfer line L2. , and the used second sample chip T2 is detached from the sample aspirating nozzle and discarded by the tip disposal unit 122 thereof.
  • the reaction section 40 includes a rotary table 42 that is driven to rotate, and a plurality of reaction vessel support sections 43 are provided on the outer periphery of the rotary table 42 at predetermined intervals over the entire circumference.
  • the reaction vessels C (C1, C2) are transferred and set on these reaction vessel support parts 43 by using the holding parts transferred by the instrument transfer part constituting the transfer mechanism as described above. Then, the sample is discharged from the sample suction nozzle into the reaction container C (C1, C2) rotated to the sample receiving position (dispensing position) by the rotary table 42, as described above.
  • the reagent supply unit 30 holds a plurality of reagent storage units 32 that store reagents corresponding to various types of analysis items in a unit form, for example, by a rotary table 34. 32 are rotated by the rotary table 34 to the corresponding reagent suction positions V (FIG. 2) positioned on a third uniaxial transfer line L3 (described later) that does not interfere with the first and second uniaxial transfer lines L1 and L2. (inside only one reagent aspiration position is labeled V).
  • the reagent supply unit 30 of the present embodiment is integrated so that a plurality of (three in the figure) reagent storage units 32 each form an elongated reagent container and are arranged along the radial direction of the turntable 34 .
  • a plurality of reagent storage units U configured by storing and holding formed container units in container holders are provided.
  • a predetermined number of reagent storage units U are radially arranged along the circumferential direction of the rotary table 34 .
  • the reagent supply unit 30 also includes a cooling device 36 for cooling the inside of the reagent storage, and a reagent container lid opening/closing unit for opening and closing container lids that close the openings of the reagent storage units 32 that constitute the reagent storage unit U. and a mechanism 160 .
  • a reagent chip supply unit 70 is provided on the outside of the reagent supply unit 30, that is, on the side opposite to the reaction unit 40 with respect to the reagent supply unit 30.
  • the reagent chip supply unit 70 is a ⁇ -D glucan-free sample attached to the tip of a reagent suction nozzle (not shown) that is moved by the nozzle moving mechanism 130 when a specific test item is selected by the test item selection unit 120. It has a rack 74 loaded with disposable reagent tips 72 .
  • the reagent chip supply unit 70 moves the reagent chip 72 on the rack 74 along the Y direction under position control using a position sensor, thereby moving the reagent chip 72 on the rack 74 to a third uniaxial transfer line described later.
  • a third uniaxial transfer line L3 which will be described later, is positioned so that the reagent suction nozzle is a nozzle cleaning liquid ( A plurality (three in this embodiment) of nozzle washing units 29 for washing with CC liquid) and a plurality (three in this embodiment) of tip discarding units 25 for discarding reagent chips 72 are provided. .
  • a third uniaxial transfer line (reagent transfer line) L3 is formed in which the reagent transfer section for the reagent moves only in one axial direction (X-axis direction) along this straight line.
  • three third uniaxial transfer lines L3 are also provided (of course, the number of third uniaxial transfer lines L3 is It is not limited to 3. It may be 4 or more, or 2 or less).
  • a holding unit that holds a reagent suction nozzle (not shown) is attached to the reagent transfer unit in each of the third uniaxial transfer lines L3. is moved only in the X-axis direction along the third uniaxial transfer line L3.
  • the reagent aspirating nozzle directly aspirates the reagent corresponding to the inspection item from the reagent storage portion 32 positioned at the reagent aspirating position V on the rotary table 34 in the reagent supplying portion 30 through the nozzle aspirating portion at the tip thereof, After that, it is moved in the + direction of the X-axis toward the reaction section 40 .
  • the first reaction container C1 which has already received the sample at the aforementioned sample receiving position, is rotated to the reagent receiving position by the rotary table 42. is dispensed (discharged) into this first reaction vessel C1. After that, the reagent aspirating nozzle is moved in the - direction of the X axis and washed in the nozzle washing section 29 .
  • the aspiration nozzle is operated after the reagent chip 72 is connected to the tip of the reagent chip supply unit 70 (at the time of connection, the reagent aspiration nozzle is moved in the Z-axis direction by the reagent transfer unit).
  • the reagent suction nozzle is further moved in the + direction of the X-axis toward the reaction section 40, and the reagent is applied to the ⁇ -D glucan-free second reaction container C2 positioned at the reagent receiving position as described above. is dispensed (dispensed).
  • the reagent aspirating nozzle is moved in the - direction of the X-axis toward the corresponding tip disposal section 25 of the tip disposal section 25 by the reagent transfer section, and the used reagent tip 72 is removed in the tip disposal section 25. It is detached from the reagent suction nozzle and discarded.
  • the mixed liquid of the sample and the reagent dispensed into the reaction containers C (C1, C2) as described above is reacted on the turntable 42 at a predetermined temperature for a predetermined time, and then the reaction product is is formed, the reaction container C (C1, C2) is rotated to the reaction container take-out position VI by the rotation of the turntable 42 .
  • the reaction container C (C1, C2) positioned at the reaction container take-out position VI is gripped by a holding part (grasping arm, etc.) transferred by the corresponding transfer part constituting the transfer mechanism, and B/F separation/measurement is performed. Introduced into unit 50 .
  • the B/F separation/measurement unit 50 performs predetermined processing on the introduced reaction product and performs electrical and optical measurements. Specifically, in analytical measurements using electrochemiluminescence immunoassay (ECLIA), B/F separation is performed to wash and discard labeled antibodies that do not form immune complexes. , B/F separation is provided.
  • a photometric part (chemiluminescence introduction/photometric part) 120 is also provided for sucking the processed material treated by them and measuring it based on electrochemiluminescence.
  • the used reaction vessel C for which the measurement has been completed is moved to a predetermined position by the rotation of the rotary table 52, and is gripped by the holding section transferred by the corresponding transfer section constituting the transfer mechanism and disposed of as a predetermined disposal. discarded by the department.
  • the measurement sequence includes a first measurement sequence in which B/F separation after reagent dispensing is performed a specified number of times, and a B/F separation after reagent dispensing that is omitted a predetermined number of times, resulting in a larger number of steps than the first sequence. and a second measurement sequence in which is reduced.
  • a sample diluent (R1) as a first reagent and a sample are dispensed into a first reaction container C1 and stirred.
  • a first step S1 for causing the first reaction, and antibody-bound magnetic beads (R2) are added as a second reagent to the reaction solution obtained in the first step S1 to cause a second reaction, and after the reaction
  • the magnetic beads are captured by the magnet 90, the liquid in the first reaction vessel C1 is extracted, and the magnetic beads are washed with a magnetic bead washing liquid (BF liquid) to remove non-specific binding substances other than the antigen-antibody reaction.
  • BF liquid magnetic bead washing liquid
  • a second step S2 of performing B/F separation, and adding a ruthenium complex-labeled antibody (R3) as a third reagent to the liquid after the second step S2 causes a third reaction, and magnetic beads after the reaction is captured by a magnet 90, the liquid in the first reaction vessel C1 is extracted, and the magnetic beads are washed with a washing liquid to remove non-specific binding substances other than the antigen-antibody reaction. and the steps of These first to third steps are performed in the B/F separation section (reaction system) of the reaction section 40 and the B/F separation/measurement section 50 .
  • a voltage is applied to the electrodes 95 in the presence of a buffer solution containing tripropylamine (TPA), which is a light-emitting electrolyte (EB solution), and the resulting electrochemiluminescence signal is read by a photodetector (photoelectron A step S4 of processing the resulting signal by recording it with a multiplier 96 is performed.
  • This step S4 is executed by the photometry section 120 (photometry system) of the B/F separation/measurement section 50 . Note that in the first measurement sequence including these steps S1 to S4, the first sample chip T1 is used during sample dispensing, but the ⁇ -D glucan-free reagent chip 72 is used during reagent dispensing. is not used.
  • the second measurement sequence is obtained by omitting the first B/F separation (B/F separation after the second reaction in the second step S2) from the above-described first measurement sequence.
  • the first sample chip T1 is used when the sample is dispensed, and the reagent
  • the ⁇ -D glucan-free reagent chip 72 is not used at the time of dispensing
  • a ⁇ -D glucan-free chip is used instead of the first reaction container C1.
  • a second reaction container C2 is used, a ⁇ -D glucan-free second sample chip T2 is used during sample dispensing, and a ⁇ -D glucan-free reagent is used during reagent dispensing Chip 72 is used.
  • the above-described control mode of the control unit 110 for controlling such a measurement sequence is executed when a normal test item is selected by the test item selection unit 120.
  • the inspection item selection unit 120 alternatively selects the specific inspection item and the normal inspection item (inspection item selection step S10), and the selection is the specific inspection item. (YES in step S11), the control unit 110 executes the control steps of the second control mode.
  • sample aspirating nozzle for aspirating the sample is moved along the second uniaxial transfer line L2 by the nozzle moving mechanism 130 (nozzle moving step), and held by the second sample chip supply section 300B as described above.
  • a ⁇ -D glucan-free second sample chip T2 is attached to the tip of the sample aspiration nozzle (sample chip attachment step S12).
  • sample chip attachment step S12 the sample is aspirated by the sample aspiration nozzle from the sample container 21 waiting at the sample aspiration position IV through the second sample chip T2, and the sample is transferred to the ⁇ -D glucan-free second sample on the reaction section 40. is dispensed (discharged) into the reaction container C2 (step S13).
  • the reagent aspirating nozzle for aspirating the reagent is moved along the third uniaxial transfer line L3 by the nozzle moving mechanism 130 (nozzle moving step).
  • ⁇ -D glucan-free reagent chip 72 is attached to (reagent chip attaching step S14).
  • the reagent is aspirated by the reagent aspirating nozzle through the reagent chip 72 in the reagent supply unit 30, and the reagent is dispensed into the second reaction container C2 at the reagent receiving position to which the sample has already been dispensed. (ejection) (step S15).
  • the B/F separation is performed by dividing the plurality of types of reagents into several batches and distributing them into the second reaction container C2, stirring them, and washing and discarding the labeled antibodies that do not form immunocomplexes.
  • the second control mode ends by completing the second measurement sequence (step S16).
  • control Unit 110 executes the control steps of the first control mode. That is, the sample aspirating nozzle for aspirating the sample is moved along the first uniaxial transfer line L1 by the nozzle moving mechanism 130 (nozzle moving step), and is temporarily placed at the chip/reaction container standby position III as described above. The first sample chip T1 that has been held is attached to the tip of the sample aspiration nozzle (sample chip attaching step S17).
  • the sample is aspirated from the sample container 21 waiting at the sample aspirating position IV by the sample aspirating nozzle through the first sample chip T1, and the sample is transferred into the first reaction container C1 on the reaction section 40. It is dispensed (discharged) (step S18).
  • the reagent aspirating nozzle for aspirating the reagent is moved along the third uniaxial transfer line L3 by the nozzle moving mechanism 130 (nozzle moving step), and the ⁇ -D glucan-free reagent chip 72 is removed as described above.
  • the reagent is aspirated by the reagent aspirating nozzle in the reagent supply unit 30 without attachment, and the reagent is dispensed (discharged) into the first reaction container C1 at the reagent receiving position where the sample has already been dispensed (step S19). Then, in this way, a plurality of types of reagents are divided into several times, and the B/F separation is performed by dispensing and stirring into the first reaction container C1, and washing and discarding the labeled antibody that does not form an immune complex.
  • the first control mode ends by completing the first measurement sequence or the second measurement sequence (step S20).
  • each of the uniaxial transfer lines L1, L2, and L3 is separated from each other in the first control mode and the second control mode in order to eliminate the movement paths in which the ⁇ -D glucan may be mutually contaminated.
  • the second sample chip supply unit 300B and the reagent chip supply unit 70 are executed when the normal test item is selected by the test item selection unit 120. Since it is located at a position that does not interfere with the movement path of the nozzle moving mechanism 130 in the first measurement sequence or the second measurement sequence, the measurement sequence for measuring ⁇ -D glucan and the measurement sequence for measuring other test objects avoid the risk of contamination between
  • the order of measurement of ⁇ -D glucan (measurement of specific test items) and other measurements (measurement of normal test items) is changed. may be specified. In this case, for example, it is possible to perform contamination risk control according to inspection items, and obtain the effect of obtaining highly accurate measurement results.
  • measurement information on specific test items for measuring ⁇ -D glucan and normal test items for measuring other test objects can be collected by one device.
  • all inspection items, including ⁇ -D glucan measurement can be completed with one device. (There is no need to use different devices), so continuous inspection is possible and the overall inspection time until measurement of all inspection items is completed can be shortened. can be reduced. Furthermore, the influence of time loss on measurement accuracy can be minimized to improve measurement accuracy.
  • the test time is shortened by the continuous test, it is not affected by deterioration (change in property) of the specimen over time, so that more accurate measurement values can be obtained.
  • control mode can be selected according to the inspection item (it is possible to select whether or not the reagent chip is attached and the measurement sequence can be selected)
  • a measurement sequence suitable for the inspection object can be realized. That is, by adopting a second measurement sequence with a small number of steps in a specific test item for measuring ⁇ -D glucan and using a ⁇ -D glucan-free disposable reagent chip, the opportunity to be exposed to the risk of contamination is reduced as much as possible. can be less. Therefore, it is possible to reduce the contamination risk and improve the measurement accuracy.

Abstract

Provided is an automatic analysis device and an automatic analysis method with which it is possible to select whether mounting of a chip is necessary, and to measure β-D glucan and another target of testing at once while preventing contamination. This automatic analysis device has control modes for controlling measurement sequences in which a plurality of reagents are dispensed into a reaction container in several additions by means of a reagent suction nozzle and agitated, and B/F separation is carried out to clean and dispose of a marker antibody which has not formed an immune complex. The measurement sequences include a first measurement sequence in which the B/F separation is carried out a specified number of times after the dispensing of the reagents, and a second measurement sequence in which the number of steps is reduced by omitting a prescribed number of times carrying out the B/F separation. The control modes include a first control mode which is executed during testing of a normal item and controls the first measurement sequence or the second measurement sequence without attaching a reagent chip to the end of the nozzle, and a second control mode which is executed during testing of a special item, attaches a reagent chip to the end of the nozzle, and controls the second measurement sequence.

Description

自動分析装置及び自動分析方法Automatic analysis device and automatic analysis method
 本発明は、血液や尿などのサンプル(検体)を種々の試薬で処理して測定することにより、様々な分析項目(検査項目)に関して測定情報を得ることができる自動分析装置及び自動分析方法に関する。 The present invention relates to an automatic analyzer and an automatic analysis method that can obtain measurement information on various analysis items (test items) by treating and measuring samples (specimens) such as blood and urine with various reagents. .
 血液凝固分析装置や、電気化学発光免疫測定法(ECLIA)を用いた分析測定装置など、血液や尿などの生体サンプルを種々の試薬で処理して測定することにより様々な検査項目(測定項目)に関して測定情報を得ることができる自動分析装置は、従来から様々な形態のものが知られている。例えば、生体サンプルとしての検体を検体容器から反応容器に分注し、その分注した検体に検査項目に応じた試薬を混合させて各種の測定及び分析を行なう。 Blood coagulation analyzers, electrochemiluminescence immunoassay (ECLIA) analysis and measurement devices, etc., treat biological samples such as blood and urine with various reagents and measure various test items (measurement items). Various forms of automated analyzers capable of obtaining measurement information regarding are known. For example, a specimen as a biological sample is dispensed from a specimen container into a reaction container, and the dispensed specimen is mixed with reagents corresponding to test items to perform various measurements and analyses.
 ところで、検体及び試薬を分注する機構、検体と試薬とを反応させる反応容器(キュベット)及び検体と試薬とを攪拌させる機構などの各種の機構や反応容器を、複数の検査項目の測定において共有する多項目分析装置の場合には、それぞれの反応液や試薬との間で発生するコンタミネーションにより測定結果に誤差を生ずる場合がある。例えば、分析項目Aの試薬成分に分析項目Bの反応に関与する物質(反応抑制、促進など)が含まれている場合には、分析項目Aと分析項目Bとを連続して測定した際に、分析項目Aの試薬が分析項目Bの試薬にコンタミネーションすると、分析項目Bの反応中に分析項目Aの反応が同時に進行し、測定結果に誤差が生ずる可能性がある。したがって、このような多項目分析装置では、こうしたコンタミネーションを回避するために、例えば、検体や試薬の吸引のためのノズルチップや検体が分注される反応容器(キュベット)などの器具は、通常、測定(又は反応)の度に交換されることになる(例えば、特許文献1参照)。 By the way, various mechanisms and reaction containers, such as a mechanism for dispensing specimens and reagents, a reaction container (cuvette) for reacting specimens and reagents, and a mechanism for stirring specimens and reagents, are shared in the measurement of a plurality of test items. In the case of multi-item analyzers, measurement results may be erroneous due to contamination occurring between the respective reaction solutions and reagents. For example, if the reagent component of analysis item A contains a substance that participates in the reaction of analysis item B (reaction inhibition, promotion, etc.), when analysis item A and analysis item B are continuously measured, If the reagent for analysis item A contaminates the reagent for analysis item B, the reaction for analysis item A proceeds simultaneously with the reaction for analysis item B, which may cause an error in the measurement result. Therefore, in such multi-item analyzers, in order to avoid such contamination, instruments such as nozzle tips for aspirating specimens and reagents and reaction vessels (cuvettes) into which specimens are dispensed are usually , are exchanged each time a measurement (or reaction) is performed (see, for example, Patent Document 1).
特開2020-60587号公報JP 2020-60587 A
 試薬相互間のコンタミネーションを防ぐ目的で使い捨ての試薬チップを用いる従来の分析装置は、全ての測定について一貫して試薬分注時に使い捨てのチップを用いており、同一装置内で必要に応じてチップの装着要否を選択できなかった。したがって、チップ装着が不必要な場合でもチップ着脱のための時間を要し、その分だけ、全体の測定時間が長くなり、コストもかかっていた。 Conventional analyzers that use disposable reagent tips to prevent contamination between reagents consistently use disposable tips when dispensing reagents for all measurements. It was not possible to select whether or not to wear the Therefore, even when the chip mounting is unnecessary, it takes time to attach and detach the chip, which lengthens the overall measurement time and costs.
 また、特定の検査対象物、とりわけ、真菌の主な細胞壁の構成成分であって心筋症のマーカーでもあるβ-Dグルカンを測定する分析装置は、現在、それ専用のものしかなく、そのため、β-Dグルカンとそれ以外の検査対象物とを測定する必要がある場合には、β-Dグルカンを測定する専用の分析装置とそれ以外の分析装置とを別々に使用しなければならなかった(装置を使い分ける必要があった)。すなわち、β-Dグルカン測定を含め、全ての検査項目の測定を1つの装置で完結できないため、β-Dグルカンを測定するために専用機を測定途中で介在させなければならなかった。したがって、連続的な検査ができず、全検査項目の測定が完了するまでの全体の検査時間が長くなり、その結果、測定者の作業負担及び検査コストの増大をもたらすとともに、測定精度に対する時間ロスの影響も大きくなり、測定精度が低下する場合もある。また、このように検査時間が長くなると、時間の経過による検体の劣化(性質の変化)、及び、それに伴う測定精度の低下も懸念される。 In addition, there are currently only dedicated analyzers for measuring specific test objects, especially β-D glucan, which is a major fungal cell wall component and a cardiomyopathy marker. When it was necessary to measure -D glucan and other test objects, it was necessary to use a dedicated analyzer for measuring β-D glucan and another analyzer separately ( equipment had to be used). That is, since one apparatus cannot complete the measurement of all test items including β-D glucan measurement, a dedicated machine had to be intervened in the middle of the measurement to measure β-D glucan. Therefore, continuous inspection cannot be performed, and the entire inspection time required to complete the measurement of all inspection items is lengthened. , and the measurement accuracy may decrease. In addition, if the examination time becomes long in this way, there is concern about deterioration (change in property) of the sample over time and a decrease in measurement accuracy associated therewith.
 したがって、β-Dグルカンとそれ以外の検査対象物とを1つの分析装置で測定できることが望まれる。しかし、β-Dグルカンは常在菌として存在する成分であることから、その血中における存在量を正確に測定するためには、ノズルチップや反応容器などの消耗品は、β-Dグルカンによって汚染されていないこと、すなわち、β-Dグルカンフリーであることが要求される。このようなコンタミネーション防止を図りながらβ-Dグルカンを含む多項目の分析を同一の装置内で行なうことは、依然として多くの課題が残り、現状では容易ではなかった。 Therefore, it is desirable to be able to measure β-D glucan and other test objects with a single analyzer. However, since β-D glucan is a component that exists as normal bacteria, in order to accurately measure its abundance in the blood, consumables such as nozzle tips and reaction vessels must contain β-D glucan. It is required to be uncontaminated, ie β-D glucan free. At present, many problems still remain and it is not easy to perform multiple analyzes including β-D glucan in the same apparatus while preventing such contamination.
 本発明は、上記した問題に着目してなされたものであり、必要に応じてチップの装着要否を選択できるとともに、コンタミネーション防止を図りながらβ-Dグルカンとそれ以外の検査対象物とを一括して測定できるようにする自動分析装置及び自動分析方法を提供することを目的とする。 The present invention has been made with a focus on the above-mentioned problems, and it is possible to select whether or not to attach a chip as needed, and to separate β-D glucan from other test objects while preventing contamination. An object of the present invention is to provide an automatic analyzer and an automatic analysis method that enable batch measurement.
 上記した目的を達成するために、本発明は、検体が分注された反応容器を保持する反応部と、試薬を供給する試薬供給部とを備え、前記試薬供給部から供給される試薬を検体と反応させてその反応過程又は反応結果を測定することにより、検体中のβ-Dグルカンを測定する特定検査項目と、それ以外の検査対象物を測定する通常検査項目とに関して測定情報を得る自動分析装置において、前記特定検査項目と前記通常検査項目とを択一的に選択するための検査項目選択部と、検体及び試薬を吸引するための吸引ノズルを装置内で移動させるノズル移動機構と、検体吸引ノズルの先端に取り付けられる使い捨て検体チップを供給するための検体チップ供給部であって、前記検査項目選択部によって通常検査項目が選択されるときに使用される第1の検体チップを供給する第1の検体チップ供給部と、前記検査項目選択部によって特定検査項目が選択されるときに使用されるβ-Dグルカンフリーの第2の検体チップを供給する第2の検体チップ供給部とを有する、検体チップ供給部と、前記検査項目選択部によって特定検査項目が選択されるときに試薬吸引ノズルの先端に取り付けられるβ-Dグルカンフリーの使い捨て試薬チップを供給するための試薬チップ供給部と、装置各部及び前記ノズル移動機構の動作を制御する制御部とを備え、前記制御部は、前記試薬吸引ノズルによって複数種の試薬を数回に分けて前記反応容器に分注して攪拌するとともに、免疫複合体を形成していない標識抗体を洗浄廃棄するB/F分離を行なう測定シーケンスを制御する制御モードを有し、前記測定シーケンスは、試薬分注後のB/F分離を規定回数行なう第1の測定シーケンスと、試薬分注後のB/F分離が所定回数省かれることにより前記第1のシーケンスよりも工程数が減らされた第2の測定シーケンスとを含み、前記制御モードは、前記検査項目選択部によって前記通常検査項目が選択されるときに実行され、前記試薬吸引ノズルの先端に対する前記試薬チップの取り付けを伴うことなく前記第1の測定シーケンス又は前記第2の測定シーケンスを制御する第1の制御モードと、前記検査項目選択部によって前記特定検査項目が選択されるときに実行され、前記試薬吸引ノズルの先端に対する前記試薬チップの取り付けを伴って前記第2の測定シーケンスを制御する第2の制御モードとを含むことを特徴とする。 In order to achieve the above object, the present invention comprises a reaction section that holds a reaction container into which a specimen is dispensed, and a reagent supply section that supplies a reagent. By reacting with and measuring the reaction process or reaction result, measurement information is obtained regarding a specific test item for measuring β-D glucan in a sample and a normal test item for measuring other test objects Automatic In an analyzer, a test item selection unit for alternatively selecting the specific test item and the normal test item; a nozzle moving mechanism for moving a suction nozzle for suctioning a specimen and a reagent within the device; A sample chip supply unit for supplying a disposable sample chip attached to the tip of a sample aspiration nozzle, the sample chip supply unit supplying a first sample chip used when a normal test item is selected by the test item selection unit. a first sample chip supply unit; and a second sample chip supply unit that supplies a β-D glucan-free second sample chip used when a specific test item is selected by the test item selection unit. and a reagent chip supply unit for supplying a β-D glucan-free disposable reagent chip attached to the tip of a reagent suction nozzle when a specific test item is selected by the test item selection unit. , and a controller for controlling the operation of each part of the device and the nozzle moving mechanism, the controller using the reagent suction nozzle to dispense and agitate the plurality of types of reagents into the reaction vessel in several batches. and a control mode for controlling a measurement sequence for performing B/F separation for washing and discarding the labeled antibody that has not formed an immune complex, and the measurement sequence performs B/F separation for a specified number of times after reagent dispensing. A first measurement sequence, and a second measurement sequence in which the number of steps is reduced compared to the first sequence by omitting B/F separation a predetermined number of times after reagent dispensing, and the control mode includes: Executed when the normal test item is selected by the test item selection unit, and controls the first measurement sequence or the second measurement sequence without attaching the reagent chip to the tip of the reagent suction nozzle. and a first control mode that is executed when the specific test item is selected by the test item selection unit, and controls the second measurement sequence with attachment of the reagent chip to the tip of the reagent suction nozzle. and a second control mode for
 上記構成の自動分析装置によれば、β-Dグルカンを測定する特定検査項目と、それ以外の検査対象物を測定する通常検査項目とに関する測定情報を1つの装置で得られるため、すなわち、β-Dグルカン測定を含め、1つの装置で全ての検査項目を完結できるため、従来のようにβ-Dグルカンを測定するために専用機を測定途中で介在させずに済み(装置を使い分ける必要がない)。したがって、連続検査が可能となり、全検査項目の測定が完了するまでの全体の検査時間を短くでき、その結果、測定者の作業負担の軽減及び検査コストの低減を図ることが可能になるとともに、測定精度に対する時間ロスの影響を最小限に抑えて、測定精度を高めることもできる。また、連続検査による検査時間短縮により、時間の経過による検体の劣化(性質の変化)の影響を受けないため、より精度の高い測定値を得ることができる。更に、検査項目に応じて制御モードを選択できる(試薬チップの装着有無の選択及び測定シーケンスの選択が可能である)ため、検査対象に適合した測定シーケンスを実現できる。すなわち、β-Dグルカンを測定する特定検査項目において工程数が少ない第2の測定シーケンスを採用してβ-Dグルカンフリーの使い捨て試薬チップを用いることにより、汚染リスクに晒される機会を可能な限り少なくできる。したがって、汚染リスクを低減して測定精度を高めることができる。 According to the automatic analyzer having the above configuration, measurement information regarding specific test items for measuring β-D glucan and normal test items for measuring other test objects can be obtained with a single device. -Because all inspection items, including D-glucan measurement, can be completed with a single device, there is no need to use a dedicated machine to measure β-D-glucan as in the past (need to use different devices) do not have). Therefore, continuous inspection becomes possible, and the overall inspection time until the measurement of all inspection items is completed can be shortened. Measurement accuracy can also be improved by minimizing the impact of time loss on measurement accuracy. In addition, since the test time is shortened by the continuous test, it is not affected by deterioration (change in property) of the specimen over time, so that more accurate measurement values can be obtained. Furthermore, since the control mode can be selected according to the inspection item (it is possible to select whether or not the reagent chip is attached and the measurement sequence can be selected), a measurement sequence suitable for the inspection object can be realized. That is, by adopting a second measurement sequence with a small number of steps in a specific test item for measuring β-D glucan and using a β-D glucan-free disposable reagent chip, the opportunity to be exposed to the risk of contamination is reduced as much as possible. can be less. Therefore, it is possible to reduce the contamination risk and improve the measurement accuracy.
 また、上記構成において、前記第1の測定シーケンスは、反応容器に第1の試薬としての検体希釈液及び検体を分注して攪拌することにより第1反応を引き起こす第1のステップと、前記第1のステップで得られた反応液に第2の試薬として抗体結合磁気ビーズを添加して第2反応を引き起こすとともに、反応後の磁気ビーズを磁石で捕捉して反応容器内の液体を抜き取り、洗浄液で磁気ビーズを洗浄して抗原抗体反応以外の非特異結合物質を除去する第1のB/F分離を行なう第2のステップと、前記第2のステップ後の液体に第3の試薬としてルテニウム錯体標識抗体を添加することにより第3反応を引き起こし、反応後の磁気ビーズを磁石で捕捉して反応容器内の液体を抜き取り、洗浄液で磁気ビーズを洗浄して抗原抗体反応以外の非特異結合物質を除去する第2のB/F分離を行なう第3のステップとを含み、前記第2の測定シーケンスは、前記第1の測定シーケンスから前記第1のB/F分離が省かれて成ることが好ましい。 In the above configuration, the first measurement sequence includes: a first step of inducing a first reaction by dispensing and stirring a sample diluent and a sample as a first reagent into a reaction container; Antibody-bound magnetic beads are added as a second reagent to the reaction solution obtained in step 1 to cause a second reaction, and the magnetic beads after the reaction are captured with a magnet to draw out the liquid in the reaction vessel, followed by a washing solution. a second step of performing a first B/F separation in which the magnetic beads are washed with to remove non-specific binding substances other than the antigen-antibody reaction, and a ruthenium complex as a third reagent in the liquid after the second step A third reaction is caused by adding a labeled antibody, the magnetic beads after the reaction are captured with a magnet, the liquid in the reaction vessel is extracted, and the magnetic beads are washed with a washing solution to remove non-specific binding substances other than the antigen-antibody reaction. and a third step of removing a second B/F separation, wherein said second measurement sequence preferably consists of said first measurement sequence omitting said first B/F separation. .
 一般に、第2反応後の第1のB/F分離では、β-Dグルカンによって汚染された磁気ビーズ洗浄液(BF液)を用いると、検体由来でないβ-Dグルカンが付着した磁気ビーズに基づくその後のサンドイッチ形成によって測定結果に悪影響を及ぼす。そのため、検査において発光電解液(EB液)、磁気ビーズ洗浄液(BF液)、ノズル洗浄液(CC液)などを用いる場合、特にBF液に関してβ-Dグルカンフリーの専用のものを使用する必要がある。しかしながら、上記構成のように、β-Dグルカンを測定する特定検査項目において、第2反応後の第1のB/F分離を排除することにより、BF液のβ-Dグルカン汚染に伴う前述の不都合を回避できる。これにより、汚染リスクの低減及び測定精度の向上を図りつつ、全ての制御モードで共通のEB液、BF液、CC液を使用できる(β-Dグルカンフリーの専用のBF液を使用しないで済む)。 In general, in the first B/F separation after the second reaction, if a magnetic bead washing solution (BF solution) contaminated with β-D glucan is used, the subsequent Sandwich formation of the Therefore, when using a light-emitting electrolyte (EB solution), a magnetic bead cleaning solution (BF solution), a nozzle cleaning solution (CC solution), etc. in an inspection, it is necessary to use a dedicated β-D glucan-free BF solution. . However, as in the above configuration, in the specific test item for measuring β-D glucan, by eliminating the first B / F separation after the second reaction, the above-mentioned BF solution accompanying β-D glucan contamination inconvenience can be avoided. As a result, while reducing the risk of contamination and improving measurement accuracy, common EB, BF, and CC solutions can be used in all control modes (there is no need to use a dedicated β-D glucan-free BF solution). ).
 また、上記構成において、前記第2の検体チップ供給部と前記試薬チップ供給部とが、前記検査項目選択部によって通常検査項目が選択されるときに実行される第1の測定シーケンス又は第2の測定シーケンスにおける前記ノズル移動機構の移動経路と干渉しない位置にあることが好ましい。このようにβ-Dグルカンフリーのチップを供給する第2の検体チップ供給部及び試薬チップ供給部を通常検査項目測定時のノズル移動経路と干渉しない位置に設けることにより、β-Dグルカンを測定する測定シーケンスとそれ以外の検査対象物を測定する測定シーケンスとの間での汚染のリスクを回避できる。例えば、具体的には、通常検査項目測定中に起こる可能性のある液垂れや異物混入といった汚染リスクを、複雑な装置機構を備えることなく回避することができる。これは測定精度の向上につながる。 Further, in the above configuration, the second sample chip supply unit and the reagent chip supply unit perform a first measurement sequence or a second measurement sequence executed when the inspection item selection unit selects a normal inspection item. It is preferably positioned so as not to interfere with the movement path of the nozzle movement mechanism in the measurement sequence. β-D glucan is measured by providing the second sample chip supply unit and the reagent chip supply unit that supply β-D glucan-free chips at positions that do not interfere with the nozzle movement path during normal test item measurement. This avoids the risk of contamination between a measurement sequence for measuring an object to be inspected and a measurement sequence for measuring another object to be inspected. For example, specifically, it is possible to avoid the risk of contamination such as dripping or contamination of foreign matter that may occur during normal test item measurement without providing a complicated device mechanism. This leads to improved measurement accuracy.
 また、上記構成では、装置内のβ-Dグルカンフリー状態をチェックする汚染チェック部が更に設けられることが好ましい。この場合、汚染チェック部は、装置の各部に個別に設けられてもよく、例えば、成分検出センサなどによって検出される検出値と所定の基準値とを比較することにより、装置内の各部や器具等がβ-Dグルカンにより汚染されているか否かをチェックする。このような汚染チェック部を設けることにより、β-Dグルカン測定の信頼性を向上させることができる。 In addition, in the above configuration, it is preferable that a contamination check section for checking the β-D glucan-free state in the device is further provided. In this case, the contamination check unit may be individually provided in each part of the apparatus. etc. are contaminated with β-D glucan. By providing such a contamination checker, the reliability of β-D glucan measurement can be improved.
 また、上記構成では、反応容器を供給するための反応容器供給部が更に設けられ、この反応容器供給部は、前記検査項目選択部によって通常検査項目が選択されるときに使用される第1の反応容器を供給する第1の反応容器供給部と、前記検査項目選択部によって特定検査項目が選択されるときに使用されるβ-Dグルカンフリーの第2の反応容器を供給する第2の反応容器供給部とを有することが好ましい。このように、チップのみならず、反応容器もβ-Dグルカンフリーのものを用意すれば、β-Dグルカン測定の信頼性を飛躍的に向上させることができる。 Further, in the above configuration, a reaction container supply unit for supplying reaction containers is further provided. A first reaction container supplying unit that supplies reaction containers, and a second reaction that supplies a β-D glucan-free second reaction container used when a specific test item is selected by the test item selection unit. It is preferred to have a container feeder. Thus, by preparing a β-D glucan-free reaction vessel as well as a chip, the reliability of β-D glucan measurement can be dramatically improved.
 本発明によれば、必要に応じてチップの装着要否を選択できるとともに、コンタミネーション防止を図りながらβ-Dグルカンとそれ以外の検査対象物とを一括して測定できるようにする自動分析装置及び自動分析方法が提供される。 INDUSTRIAL APPLICABILITY According to the present invention, it is possible to select whether or not to attach a chip as necessary, and to simultaneously measure β-D glucan and other test objects while preventing contamination. and automated analysis methods are provided.
本発明の一実施形態に係る自動分析装置の概略的な全体外観図である。1 is a schematic overall external view of an automatic analyzer according to an embodiment of the present invention; FIG. 図1の自動分析装置の内部構成を示す概略的な平面図である。FIG. 2 is a schematic plan view showing the internal configuration of the automatic analyzer of FIG. 1; 図1の自動分析装置の主要な構成要素を示すブロック図である。FIG. 2 is a block diagram showing the main components of the autoanalyzer of FIG. 1; 図1の自動分析装置の処理ステップの一例を示すフローチャートである。FIG. 2 is a flowchart showing an example of processing steps of the automatic analyzer of FIG. 1; FIG. 試薬吸引ノズルによって複数種の試薬を数回に分けて反応容器に分注して攪拌するとともに、免疫複合体を形成していない標識抗体を洗浄廃棄するB/F分離を行なう第1の測定シーケンスの一例を模式的に示す図である。A first measurement sequence that performs B/F separation in which multiple types of reagents are divided into several batches by a reagent aspirating nozzle and stirred into reaction containers, and labeled antibodies that do not form immune complexes are washed and discarded. It is a figure which shows an example typically.
 以下、図面を参照しながら本発明の実施形態について説明する。
 図1は本実施形態の自動分析装置の概略的な全体外観図、図2は図1の自動分析装置の内部構成を示す概略的な平面図、図3は、図1の自動分析装置の主要な構成要素を示すブロック図である。特に図2及び図3に明確に示されるように、本実施形態の自動分析装置1は、検体が分注される反応容器(キュベット)Cを保持する反応部40(図2及び図3参照)と、試薬を供給する試薬供給部30(図2参照)とを備えており、試薬供給部30から供給される試薬を検体と反応させてその反応過程又は反応結果を測定することにより、検体中のβ-Dグルカンを測定する特定検査項目と、それ以外の検査対象物を測定する通常検査項目とに関して測定情報を得ることができるようになっている。そのために、自動分析装置1は、前記特定検査項目と前記通常検査項目とを択一的に選択するための検査項目選択部120を有する(図3参照)。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic overall external view of the automatic analyzer of this embodiment, FIG. 2 is a schematic plan view showing the internal configuration of the automatic analyzer of FIG. 1, and FIG. 2 is a block diagram showing the components of the system; FIG. 2 and 3, the automatic analyzer 1 of the present embodiment includes a reaction section 40 (see FIGS. 2 and 3) that holds reaction containers (cuvettes) C into which samples are dispensed. and a reagent supply unit 30 (see FIG. 2) that supplies a reagent. It is possible to obtain measurement information regarding specific test items for measuring β-D glucan and normal test items for measuring other test objects. Therefore, the automatic analyzer 1 has an inspection item selection unit 120 for alternatively selecting the specific inspection item and the normal inspection item (see FIG. 3).
 また、本実施形態の自動分析装置1は、検体及び試薬を吸引するための吸引ノズル(図示せず)を装置1内で移動させるノズル移動機構130(図3参照)と、装置各部(反応部40を含む後述する処理部10,20,30,40,50)及びノズル移動機構130の動作を制御する制御部110とを有する。更に、本実施形態の自動分析装置1は、該装置1内のβ-Dグルカンフリー状態をチェックする汚染チェック部114を有する。汚染チェック部114は、装置1の各処理部10,20,30,40,50のうちの少なくとも1つに又は個別に設けられてもよく、例えば、成分検出センサなどによって検出される検出値と所定の基準値とを比較することにより、装置1内の各処理部や器具等がβ-Dグルカンにより汚染されているか否かをチェックする。制御部110は、例えば、汚染チェック部114からの検出信号を常時受信することによってβ-Dグルカンによる汚染状態を常時監視し、汚染状態が検出された場合には、その旨を操作者に報知するための信号を生成する、或いは、その他の措置(例えば、装置1の停止)を行なう。 In addition, the automatic analyzer 1 of the present embodiment includes a nozzle moving mechanism 130 (see FIG. 3) that moves a suction nozzle (not shown) for sucking a sample and a reagent within the device 1, and each part of the device (reaction part 40 (to be described later) and a control unit 110 for controlling the operation of the nozzle moving mechanism 130 . Furthermore, the automatic analyzer 1 of this embodiment has a contamination check section 114 that checks the β-D glucan-free state in the device 1 . The contamination check unit 114 may be provided in at least one of the processing units 10, 20, 30, 40, and 50 of the apparatus 1 or individually, and for example, the detection value detected by the component detection sensor and the like By comparing with a predetermined reference value, it is checked whether or not each processing section, instrument, etc. in the device 1 is contaminated with β-D glucan. For example, the control unit 110 constantly monitors the state of contamination by β-D glucan by constantly receiving the detection signal from the contamination check unit 114, and when the state of contamination is detected, notifies the operator to that effect. generate a signal or take some other action (for example, stop the device 1).
 図2、図3に示されるように、本実施形態の自動分析装置1は、該自動分析装置1で使用されるディスポーザプルな所定数の器具が装填されたラックRを後述する所定の器具取り出し位置IIへと搬送するための搬送部10と、生体サンプル等の所定の検体を供給するための検体供給部20と、所定の検査項目(分析項目)に対応する試薬を供給するための試薬供給部30と、検体と試薬とを反応させるための反応部40と、反応済みの検体を処理して測定するためのB/F分離・測定部50とを有し、これらの処理部10,20,30,40,50を筐体100(図1参照)内に配設して成る。 As shown in FIGS. 2 and 3, the automatic analyzer 1 of the present embodiment has a rack R loaded with a predetermined number of disposable instruments used in the automatic analyzer 1, and a predetermined instrument take-out device described later. A transport unit 10 for transporting to position II, a sample supply unit 20 for supplying a predetermined sample such as a biological sample, and a reagent supply unit for supplying a reagent corresponding to a predetermined inspection item (analysis item). a reaction unit 40 for reacting a sample and a reagent; and a B/F separation/measurement unit 50 for processing and measuring the reacted sample. , 30, 40 and 50 are arranged in a housing 100 (see FIG. 1).
 搬送部10によって搬送されるラックRは、ノズル移動機構130によって移動される検体吸引ノズル(図示せず)の先端に取り付けられる使い捨て検体チップTを供給するための検体チップ供給部と、反応容器Cを供給するための反応容器供給部とを含む。特に、本実施形態において、ラックRは、検査項目選択部120(図3)によって通常検査項目が選択されるときに使用される第1の検体チップT1を供給する第1の検体チップ供給部300Aと、検査項目選択部120によって通常検査項目が選択されるときに使用される第1の反応容器C1を供給する第1の反応容器供給部200Aとを有する。この場合、例えば、第1の検体チップ供給部300Aにおいて第1の検体チップT1が2次元的に配列されて保持され、第1の反応容器供給部200Aにおいて第1の反応容器C1が2次元的に配列されて保持される。 The rack R transported by the transport unit 10 includes a sample chip supply unit for supplying disposable sample chips T attached to the tip of a sample aspirating nozzle (not shown) moved by the nozzle moving mechanism 130, and a reaction container C. and a reaction vessel supply for supplying the In particular, in this embodiment, the rack R is a first sample chip supply section 300A that supplies the first sample chips T1 used when a normal test item is selected by the test item selection section 120 (FIG. 3). and a first reaction container supply unit 200A for supplying the first reaction container C1 used when the test item selection unit 120 selects a normal test item. In this case, for example, the first sample chips T1 are two-dimensionally arranged and held in the first sample chip supply unit 300A, and the first reaction containers C1 are two-dimensionally arranged in the first reaction container supply unit 200A. are arranged and held.
 また、自動分析装置1は、これらの処理部10,20,30,40,50の動作を制御する前述した制御部110(図3)と、処理部10,20,30,40,50の上方でX-Y方向に移動する移送機構(図示せず)とを更に備える。移送機構はノズル移動機構130を含み、把持アーム等の保持部を用いて各種器具(検体チップや反応容器等)を移送し、ノズルによる検体及び試薬の吸引等を行なうためにX-Y方向に移動できる。移送機構は、例えば延在されたレールに沿って筐体100内をX-Y方向に移動できるだけでなく、所定位置で更に上下方向(Z方向)に移動(昇降)することもできる。なお、図1に例示するようなタッチパネルから成る表示入力部60と、これを制御するユーザインタフェースなどを設けることにより、前述した検査項目選択部120を構成することができる。 In addition, the automatic analyzer 1 includes the above-described control unit 110 (FIG. 3) for controlling the operations of these processing units 10, 20, 30, 40, and 50, and a transfer mechanism (not shown) that moves in the XY directions. The transfer mechanism includes a nozzle movement mechanism 130, and uses a holding part such as a grip arm to transfer various instruments (specimen chips, reaction containers, etc.), and moves in the XY direction to perform aspiration of specimens and reagents by the nozzles. can move. The transfer mechanism can not only move in the XY directions within the housing 100 along, for example, extended rails, but can also move (lift) in the vertical direction (Z direction) at a predetermined position. By providing a display input unit 60 composed of a touch panel as illustrated in FIG. 1 and a user interface for controlling the display input unit 60, the inspection item selection unit 120 described above can be configured.
 搬送部10は、装置1内において、第1の検体チップT1及び第1の反応容器C1がそれぞれ装填された前述の複数のラックRを、上下方向に積み重ねた状態で昇降機構により上昇させることにより筐体100内の上部の検体処理空間(以下、単に処理空間という)S内に臨むラック待機位置(供給側位置)Iへ向けて搬送する。その後、ラックRを検体チップT1及び反応容器C1が分析測定処理のために取り出される取り出し位置(回収側位置)IIへ移動させるとともに、検体チップT1及び反応容器C1が全て取り出されて空のラックRを昇降機構によって順次に下降させて回収するようになっている。 In the apparatus 1, the transport unit 10 vertically stacks the plurality of racks R loaded with the first sample chips T1 and the first reaction containers C1, and lifts the racks R by an elevating mechanism. The sample is transported toward the rack standby position (supply side position) I facing the upper sample processing space (hereinafter simply referred to as processing space) S in the housing 100 . After that, the rack R is moved to the take-out position (recovery side position) II where the sample chips T1 and the reaction containers C1 are taken out for analysis and measurement processing, and the sample chips T1 and the reaction containers C1 are all taken out and the rack R is empty. are sequentially lowered by an elevating mechanism to be collected.
 具体的には、図2に右下に示されるように、操作者は、搬送部10をY方向に沿って装置1の外部へ引き出す(引き出された搬送部が図2中に参照符号10’で示される)ことによって、空のラックRを搬送部10から回収できるとともに、検体チップT及び反応容器Cがそれぞれ装填された未使用のラックRを搬送部10内に補充することができる。 Specifically, as shown in the lower right of FIG. 2, the operator pulls out the conveying unit 10 to the outside of the apparatus 1 along the Y direction (the pulled out conveying unit is denoted by reference numeral 10' in FIG. 2). ), an empty rack R can be recovered from the transport section 10, and the transport section 10 can be replenished with unused racks R loaded with sample chips T and reaction containers C, respectively.
 また、本実施形態において、自動分析装置1は、取り出し位置(回収側位置)IIに隣接して、検査項目選択部120によって特定検査項目が選択されるときに使用されるβ-Dグルカンフリーの第2の検体チップT2を供給する第2の検体チップ供給部300B(左側半分)と、検査項目選択部120によって特定検査項目が選択されるときに使用されるβ-Dグルカンフリーの第2の反応容器C2を供給する第2の反応容器供給部200B(右側半分)とを備える。これらの第2の供給部200B,300Bには、例えば、β-Dグルカン測定用の第2の検体チップT2及び第2の反応容器C2が保持されたラックを操作者が手で出し入れできるようになっている。 In addition, in the present embodiment, the automatic analyzer 1 has a β-D glucan-free β-D glucan-free sample used when a specific test item is selected by the test item selection unit 120, adjacent to the take-out position (recovery side position) II. A second sample chip supply unit 300B (left half) that supplies a second sample chip T2, and a β-D glucan-free second sample chip used when a specific test item is selected by the test item selection unit 120. and a second reaction container supply section 200B (right half) for supplying the reaction container C2. These second supply units 200B and 300B are configured so that the operator can manually put in and take out a rack holding a second sample chip T2 and a second reaction container C2 for measuring β-D glucan, for example. It's becoming
 また、これらの第2の供給部200B,300Bに隣接して(図2の第2の供給部の下側の位置に)仮置き場も存在する。この仮置き場は、取り出し位置IIに位置されるラックR内の第1の検体チップT1及び第1の反応容器C1を前記移送機構により移送して仮置きするチップ・反応容器待機位置IIIとなる。しかしながら、他の変形例では、反応容器C1が、器具移送部の保持部によってラックRからチップ・反応容器待機位置IIIを経由することなく直接に反応部40へ移送されてセットされてもよい。 There is also a temporary storage place adjacent to these second supply units 200B and 300B (at a position below the second supply unit in FIG. 2). This temporary storage site becomes a tip/reaction container standby position III where the first sample chip T1 and the first reaction container C1 in the rack R located at the take-out position II are transferred by the transfer mechanism and temporarily placed. However, in another modification, the reaction container C1 may be transferred and set directly from the rack R to the reaction section 40 by the holding section of the instrument transfer section without going through the tip/reaction container standby position III.
 検体供給部20は、図2中のX方向に沿って移動可能な検体テーブル23上に配置されている。検体ラック供給部20は、箱型の複数の検体ラック22が例えば検体テーブル23の移動方向に沿って配列された構成となっている。また、各検体ラック22には複数本の検体容器21が装填されており、これらの検体容器21にはそれぞれ分析又は測定されるべき検体が収容されている。特に本実施形態では、自動分析装置1の測定シーケンスの所定のタイミングで、例えば図2中の右側に配置された検体供給部20が図2中の左側へと移動し、そのうちの1つの検体ラック22が、反応部40とチップ・反応容器待機位置IIIとの間の検体吸引位置IVへと移送されてこの位置で待機されるようになっている。 The sample supply unit 20 is placed on a sample table 23 that is movable along the X direction in FIG. The sample rack supply unit 20 has a configuration in which a plurality of box-shaped sample racks 22 are arranged along the moving direction of the sample table 23, for example. Each sample rack 22 is loaded with a plurality of sample containers 21, and each of these sample containers 21 contains a sample to be analyzed or measured. In particular, in this embodiment, at a predetermined timing in the measurement sequence of the automatic analyzer 1, for example, the sample supply unit 20 arranged on the right side in FIG. 2 moves to the left side in FIG. 22 is transferred to the specimen aspirating position IV between the reaction section 40 and the tip/reaction container standby position III and waits at this position.
 チップ・反応容器待機位置IIIと検体吸引位置IVと反応部40の少なくとも一部とが一直線に沿って一列に並ぶ処理空間Sの領域では、前記移送機構を構成する検体移送のための検体移送部がこの一直線に沿って一軸方向(X軸方向)にのみ移動する第1の一軸移送ライン(第1の検体移送ライン)L1が形成される。具体的には、検査項目選択部120によって通常検査項目が選択されるときに、検体吸引ノズル(図示せず)を保持する保持部が前記検体移送部により第1の一軸移送ラインL1に沿ってX軸方向にのみ移動される。この検体吸引ノズルは、前記検体移送部によってX軸の+方向(図2において右方向)に移動されて、その先端がチップ・反応容器待機位置IIIに仮置きされた第1の検体チップT1に接続された後(接続時は検体吸引ノズルが前記検体移送部によりZ軸方向に昇降される)、第1の検体チップT1を先端に保持したまま更にX軸の-方向(図2において左方向)に移動されて検体吸引位置IVで待機する検体容器21から第1の検体チップT1を通じて検体を吸引し、その後、反応部40へ向けてX軸の-方向に移動される。このとき、反応部40には、チップ・反応容器待機位置IIIに仮置きされていた第1の反応容器C1が、前記移送機構を構成する器具移送部によって移送される保持部を用いて既にセッティングされて待機されている。したがって、検体吸引ノズルは、第1の検体チップT1を通じて吸引した検体を反応部40上の第1の反応容器C1内へ分注(吐出)する。その後、検体吸引ノズルは、前記検体移送部により、第1の一軸移送ラインL1上に位置される(反応部40と検体吸引位置IVとの間に設けられる)チップ廃棄部121へ向けてX軸の+方向に移動され、そのチップ廃棄部121で使用済みの第1の検体チップT1が検体吸引ノズルから離脱されて廃棄される。 In the area of the processing space S where the chip/reaction container standby position III, the sample aspirating position IV, and at least a part of the reaction unit 40 are aligned along a straight line, a sample transporting unit for transporting the sample constituting the transport mechanism A first uniaxial transfer line (first sample transfer line) L1 is formed along this straight line along which the sample moves only in one axial direction (X-axis direction). Specifically, when a normal test item is selected by the test item selection unit 120, a holding unit that holds a sample suction nozzle (not shown) is moved along the first uniaxial transfer line L1 by the sample transfer unit. It is moved only in the X-axis direction. This sample aspirating nozzle is moved in the + direction of the X axis (rightward in FIG. 2) by the sample transfer section, and the tip thereof reaches the first sample chip T1 temporarily placed at the tip/reaction container standby position III. After being connected (when connecting, the specimen aspirating nozzle is moved up and down in the Z-axis direction by the specimen transfer section), while holding the first specimen chip T1 at the tip, it is further moved in the - direction of the X-axis (to the left in FIG. 2). ) to aspirate the sample through the first sample chip T1 from the sample container 21 waiting at the sample aspirating position IV, and then move toward the reaction section 40 in the - direction of the X axis. At this time, the first reaction container C1 temporarily placed at the chip/reaction container standby position III has already been set in the reaction unit 40 using the holding unit transferred by the device transfer unit constituting the transfer mechanism. being waited for. Therefore, the specimen aspirating nozzle dispenses (discharges) the specimen aspirated through the first specimen chip T1 into the first reaction container C1 on the reaction section 40 . After that, the specimen aspirating nozzle is moved by the specimen transfer section toward the tip disposal section 121 (provided between the reaction section 40 and the specimen aspiration position IV) on the first uniaxial transfer line L1. , and the used first sample chip T1 is detached from the sample aspirating nozzle and discarded by the tip disposal unit 121 thereof.
 同様に、第2の反応容器供給部200B及び第2の検体チップ供給部300Bと検体吸引位置IVと反応部40の少なくとも一部とが一直線に沿って一列に並ぶ処理空間Sの領域では、前記移送機構を構成する検体移送のための検体移送部がこの一直線に沿って一軸方向(X軸方向)にのみ移動する第2の一軸移送ライン(第2の検体移送ライン)L2が第1の一軸移送ラインL1と干渉することなく形成される。具体的には、検査項目選択部120によって特定検査項目が選択されるときに、検体吸引ノズル(図示せず)を保持する保持部が前記検体移送部により第2の一軸移送ラインL2に沿ってX軸方向にのみ移動される。この検体吸引ノズルは、前記検体移送部によってX軸の+方向(図2において右方向)に移動されて、その先端が第2の検体チップ供給部300Bに保持されたβ-Dグルカンフリーの第2の検体チップT2に接続された後(接続時は検体吸引ノズルが前記検体移送部によりZ軸方向に昇降される)、第2の検体チップT2を先端に保持したまま更にX軸の-方向(図2において左方向)に移動されて検体吸引位置IVで待機する検体容器21から第2の検体チップT2を通じて検体を吸引し、その後、反応部40へ向けてX軸の-方向に移動される。このとき、反応部40には、第2の反応容器供給部200Bに保持されていたβ-Dグルカンフリーの第2の反応容器C2が、前記移送機構を構成する器具移送部によって移送される保持部を用いて既にセッティングされて待機されている。したがって、検体吸引ノズルは、第2の検体チップT2を通じて吸引した検体を反応部40上の第2の反応容器C2内へ分注(吐出)する。その後、検体吸引ノズルは、前記検体移送部により、第2の一軸移送ラインL2上に位置される(反応部40と検体吸引位置IVとの間に設けられる)チップ廃棄部122へ向けてX軸の+方向に移動され、そのチップ廃棄部122で使用済みの第2の検体チップT2が検体吸引ノズルから離脱されて廃棄される。 Similarly, in the region of the processing space S where the second reaction container supply section 200B, the second sample chip supply section 300B, the sample aspirating position IV, and at least part of the reaction section 40 are aligned along a straight line, A second uniaxial transfer line (second sample transfer line) L2 along which a sample transfer section for transferring a sample, which constitutes the transfer mechanism, moves only in one axial direction (X-axis direction) along this straight line is the first uniaxial transfer line. It is formed without interfering with the transfer line L1. Specifically, when a specific test item is selected by the test item selection unit 120, a holding unit that holds a sample suction nozzle (not shown) is moved along the second uniaxial transfer line L2 by the sample transfer unit. It is moved only in the X-axis direction. This specimen aspirating nozzle is moved in the + direction of the X axis (rightward in FIG. 2) by the specimen transporting section, and the tip thereof is held by the second specimen chip supplying section 300B. After being connected to the second sample chip T2 (during connection, the sample aspirating nozzle is moved up and down in the Z-axis direction by the sample transfer unit), while holding the second sample chip T2 at the tip, it is further moved in the - direction of the X-axis. The sample is aspirated from the sample container 21 that is moved (to the left in FIG. 2) and stands by at the sample aspirating position IV through the second sample chip T2. be. At this time, the β-D glucan-free second reaction vessel C2 held in the second reaction vessel supply section 200B is transferred to the reaction section 40 by the instrument transfer section constituting the transfer mechanism. It has already been set and awaited using the unit. Therefore, the specimen aspirating nozzle dispenses (discharges) the specimen aspirated through the second specimen chip T2 into the second reaction container C2 on the reaction section 40 . After that, the specimen aspirating nozzle is moved by the specimen transfer section toward the tip disposal section 122 (provided between the reaction section 40 and the specimen aspiration position IV) on the second uniaxial transfer line L2. , and the used second sample chip T2 is detached from the sample aspirating nozzle and discarded by the tip disposal unit 122 thereof.
 反応部40は回転駆動される回転テーブル42を備えており、この回転テーブル42の外周部には全周にわたり所定の間隔を隔てて複数の反応容器支持部43が設けられる。これらの反応容器支持部43には前述したように移送機構を構成する器具移送部によって移送される保持部を用いて反応容器C(C1,C2)が移送されてセッティングされる。そして、回転テーブル42によって検体受け入れ位置(分注位置)まで回転された反応容器C(C1,C2)内に前述したように検体吸引ノズルから検体が吐出される。 The reaction section 40 includes a rotary table 42 that is driven to rotate, and a plurality of reaction vessel support sections 43 are provided on the outer periphery of the rotary table 42 at predetermined intervals over the entire circumference. The reaction vessels C (C1, C2) are transferred and set on these reaction vessel support parts 43 by using the holding parts transferred by the instrument transfer part constituting the transfer mechanism as described above. Then, the sample is discharged from the sample suction nozzle into the reaction container C (C1, C2) rotated to the sample receiving position (dispensing position) by the rotary table 42, as described above.
 試薬供給部30は、多種類の分析項目に対応する試薬を収容する複数の試薬収容部32を回転テーブル34によって例えばユニット形態で保持しており、反応部40における検査項目に対応する試薬収容部32を、回転テーブル34による回転によって、第1及び第2の一軸移送ラインL1,L2と干渉しない後述する第3の一軸移送ラインL3上に位置されるそれぞれの対応する試薬吸入位置V(図2中には1つの試薬吸入位置にのみ参照符号Vが付されている)に位置付ける。特に、本実施形態の試薬供給部30は、複数(図では3つ)の試薬収容部32がそれぞれ細長い試薬容器の形態を成して回転テーブル34の径方向に沿って配列されるように一体形成されて成る容器ユニットを、容器ホルダ内に収容保持して構成される試薬収容ユニットUを複数備えている。試薬収容ユニットUは、所定の数だけ、回転テーブル34の周方向に沿って放射状に配列されている。また、試薬供給部30は、その試薬庫内を冷却するための冷却装置36と、試薬収容ユニットUを構成する各試薬収容部32の開口を閉塞する容器蓋を開閉するための試薬容器蓋開閉機構160とを更に備える。 The reagent supply unit 30 holds a plurality of reagent storage units 32 that store reagents corresponding to various types of analysis items in a unit form, for example, by a rotary table 34. 32 are rotated by the rotary table 34 to the corresponding reagent suction positions V (FIG. 2) positioned on a third uniaxial transfer line L3 (described later) that does not interfere with the first and second uniaxial transfer lines L1 and L2. (inside only one reagent aspiration position is labeled V). In particular, the reagent supply unit 30 of the present embodiment is integrated so that a plurality of (three in the figure) reagent storage units 32 each form an elongated reagent container and are arranged along the radial direction of the turntable 34 . A plurality of reagent storage units U configured by storing and holding formed container units in container holders are provided. A predetermined number of reagent storage units U are radially arranged along the circumferential direction of the rotary table 34 . The reagent supply unit 30 also includes a cooling device 36 for cooling the inside of the reagent storage, and a reagent container lid opening/closing unit for opening and closing container lids that close the openings of the reagent storage units 32 that constitute the reagent storage unit U. and a mechanism 160 .
 試薬供給部30の外側、すなわち、試薬供給部30に対して反応部40の反対側には、試薬チップ供給部70が設けられる。この試薬チップ供給部70は、検査項目選択部120によって特定検査項目が選択されるときにノズル移動機構130によって移動される試薬吸引ノズル(図示せず)の先端に取り付けられるβ-Dグルカンフリーの使い捨て試薬チップ72が装填されたラック74を有している。具体的には、試薬チップ供給部70は、位置センサを用いた位置制御下でラック74をY方向に沿って移動させることにより、ラック74上の試薬チップ72を後述する第3の一軸移送ラインL3上に位置させる。なお、試薬供給部30の内側、具体的には、試薬供給部30と反応部40との間には、後述する第3の一軸移送ラインL3上に位置して、試薬吸引ノズルをノズル洗浄液(CC液)で洗浄するための複数(本実施形態では3つ)のノズル洗浄部29と、試薬チップ72を廃棄するための複数(本実施形態では3つ)のチップ廃棄部25とが設けられる。 A reagent chip supply unit 70 is provided on the outside of the reagent supply unit 30, that is, on the side opposite to the reaction unit 40 with respect to the reagent supply unit 30. The reagent chip supply unit 70 is a β-D glucan-free sample attached to the tip of a reagent suction nozzle (not shown) that is moved by the nozzle moving mechanism 130 when a specific test item is selected by the test item selection unit 120. It has a rack 74 loaded with disposable reagent tips 72 . Specifically, the reagent chip supply unit 70 moves the reagent chip 72 on the rack 74 along the Y direction under position control using a position sensor, thereby moving the reagent chip 72 on the rack 74 to a third uniaxial transfer line described later. Position it on L3. Inside the reagent supply unit 30, more specifically, between the reagent supply unit 30 and the reaction unit 40, a third uniaxial transfer line L3, which will be described later, is positioned so that the reagent suction nozzle is a nozzle cleaning liquid ( A plurality (three in this embodiment) of nozzle washing units 29 for washing with CC liquid) and a plurality (three in this embodiment) of tip discarding units 25 for discarding reagent chips 72 are provided. .
 試薬チップ供給部70、試薬供給部30、ノズル洗浄部29、チップ廃棄部25、及び、反応部40が一直線に沿って一列に並ぶ処理空間Sの領域では、前記移送機構を構成する試薬移送のための試薬移送部がこの一直線に沿って一軸方向(X軸方向)にのみ移動する第3の一軸移送ライン(試薬移送ライン)L3が形成される。特に、本実施形態では、ノズル洗浄部29及びチップ廃棄部25がそれぞれ3つ設けられることから、第3の一軸移送ラインL3も3つ設けられる(無論、第3の一軸移送ラインL3の本数は3つに限定されない。4本以上であってもよく、或いは、2本以下であってもよい)。具体的には、検査項目選択部120によって通常検査項目が選択されるときに、それぞれの第3の一軸移送ラインL3において、試薬吸引ノズル(図示せず)を保持する保持部が前記試薬移送部により第3の一軸移送ラインL3に沿ってX軸方向にのみ移動される。この試薬吸引ノズルは、試薬供給部30において、回転テーブル34上の試薬吸入位置Vに位置される試薬収容部32から、その先端のノズル吸引部を通じて直接に検査項目に対応する試薬を吸引し、その後、反応部40へ向けてX軸の+方向に移動される。このとき、反応部40には、前述の検体受け入れ位置で検体を既に受け入れた第1の反応容器C1が回転テーブル42によって試薬受け入れ位置まで回転されており、したがって、試薬吸引ノズルは、吸引した試薬をこの第1の反応容器C1に対して分注(吐出)する。その後、試薬吸引ノズルは、X軸の-方向に移動されて、ノズル洗浄部29において洗浄される。 In the region of the processing space S where the reagent chip supply unit 70, the reagent supply unit 30, the nozzle cleaning unit 29, the tip disposal unit 25, and the reaction unit 40 are aligned along a straight line, the reagent transfer that constitutes the transfer mechanism is performed. A third uniaxial transfer line (reagent transfer line) L3 is formed in which the reagent transfer section for the reagent moves only in one axial direction (X-axis direction) along this straight line. In particular, in this embodiment, since three nozzle cleaning units 29 and three chip discarding units 25 are provided, three third uniaxial transfer lines L3 are also provided (of course, the number of third uniaxial transfer lines L3 is It is not limited to 3. It may be 4 or more, or 2 or less). Specifically, when a normal test item is selected by the test item selection unit 120, a holding unit that holds a reagent suction nozzle (not shown) is attached to the reagent transfer unit in each of the third uniaxial transfer lines L3. is moved only in the X-axis direction along the third uniaxial transfer line L3. The reagent aspirating nozzle directly aspirates the reagent corresponding to the inspection item from the reagent storage portion 32 positioned at the reagent aspirating position V on the rotary table 34 in the reagent supplying portion 30 through the nozzle aspirating portion at the tip thereof, After that, it is moved in the + direction of the X-axis toward the reaction section 40 . At this time, in the reaction section 40, the first reaction container C1, which has already received the sample at the aforementioned sample receiving position, is rotated to the reagent receiving position by the rotary table 42. is dispensed (discharged) into this first reaction vessel C1. After that, the reagent aspirating nozzle is moved in the - direction of the X axis and washed in the nozzle washing section 29 .
 一方、汚染リスクが高い検査項目であるβ-Dグルカン測定を実行する場合(ノズル洗浄だけでは不十分な場合)、すなわち、検査項目選択部120によって特定検査項目が選択される場合には、試薬吸引ノズルは、試薬供給部30で試薬を吸引する前に、試薬チップ供給部70においてその先端に試薬チップ72が接続された後(接続時は試薬吸引ノズルが前記試薬移送部によりZ軸方向に昇降される)、試薬チップ72を先端に保持したまま更にX軸の+方向に移動され、試薬供給部30において試薬チップ72を通じて試薬を吸引する。その後、試薬吸引ノズルは、更に反応部40へ向けてX軸の+方向に移動され、前述したように試薬受け入れ位置に位置されるβ-Dグルカンフリーの第2の反応容器C2に対して試薬を分注(吐出)する。その後、試薬吸引ノズルは、前記試薬移送部によってチップ廃棄部25のうちの対応するチップ廃棄部25へ向けてX軸の-方向に移動され、そのチップ廃棄部25で使用済みの試薬チップ72が試薬吸引ノズルから離脱されて廃棄される。 On the other hand, when performing β-D glucan measurement, which is an inspection item with a high contamination risk (when nozzle cleaning alone is insufficient), that is, when a specific inspection item is selected by the inspection item selection unit 120, the reagent Before the reagent is aspirated by the reagent supply unit 30, the aspiration nozzle is operated after the reagent chip 72 is connected to the tip of the reagent chip supply unit 70 (at the time of connection, the reagent aspiration nozzle is moved in the Z-axis direction by the reagent transfer unit). ), is further moved in the + direction of the X-axis while holding the reagent tip 72 at the tip, and sucks the reagent through the reagent tip 72 in the reagent supply section 30 . After that, the reagent suction nozzle is further moved in the + direction of the X-axis toward the reaction section 40, and the reagent is applied to the β-D glucan-free second reaction container C2 positioned at the reagent receiving position as described above. is dispensed (dispensed). After that, the reagent aspirating nozzle is moved in the - direction of the X-axis toward the corresponding tip disposal section 25 of the tip disposal section 25 by the reagent transfer section, and the used reagent tip 72 is removed in the tip disposal section 25. It is detached from the reagent suction nozzle and discarded.
 反応部40において前述したように反応容器C(C1,C2)に分注された検体及び試薬の混合液は、回転テーブル42上で所定時間にわたり所定温度で反応が進められ、その後、反応生成物が形成された反応容器C(C1,C2)は、回転テーブル42の回転によって反応容器取り出し位置VIまで回転される。反応容器取り出し位置VIに位置された反応容器C(C1,C2)は、前記移送機構を構成する対応する移送部によって移送される保持部(把持アーム等)により把持されてB/F分離・測定部50内へ導入される。 In the reaction unit 40, the mixed liquid of the sample and the reagent dispensed into the reaction containers C (C1, C2) as described above is reacted on the turntable 42 at a predetermined temperature for a predetermined time, and then the reaction product is is formed, the reaction container C (C1, C2) is rotated to the reaction container take-out position VI by the rotation of the turntable 42 . The reaction container C (C1, C2) positioned at the reaction container take-out position VI is gripped by a holding part (grasping arm, etc.) transferred by the corresponding transfer part constituting the transfer mechanism, and B/F separation/measurement is performed. Introduced into unit 50 .
 B/F分離・測定部50は、導入された反応生成物に対して所定の処理を施して電気的及び光学的に測定を実施する。具体的には、電気化学発光免疫測定法(ECLIA)を用いた分析測定において、免疫複合体を形成していない標識抗体を洗浄廃棄するB/F分離が行なわれ、そのための洗浄部及び撹拌部、B/F分離に使用されるマグネットが設けられる。また、それらによって処理した処理物を吸引して下方で電気化学発光に基づき測定する測光部(化学発光導入・測光部)120も設けられる。なお、測定が完了した使用済みの反応容器Cは、回転テーブル52の回転により所定の位置まで移動され、前記移送機構を構成する対応する移送部により移送される保持部によって把持されて所定の廃棄部で廃棄される。 The B/F separation/measurement unit 50 performs predetermined processing on the introduced reaction product and performs electrical and optical measurements. Specifically, in analytical measurements using electrochemiluminescence immunoassay (ECLIA), B/F separation is performed to wash and discard labeled antibodies that do not form immune complexes. , B/F separation is provided. In addition, a photometric part (chemiluminescence introduction/photometric part) 120 is also provided for sucking the processed material treated by them and measuring it based on electrochemiluminescence. The used reaction vessel C for which the measurement has been completed is moved to a predetermined position by the rotation of the rotary table 52, and is gripped by the holding section transferred by the corresponding transfer section constituting the transfer mechanism and disposed of as a predetermined disposal. discarded by the department.
 以上のような構成を伴う本実施形態の自動分析装置1の前述した動作は、全て、制御部110(図3参照)によって制御されるが、この制御部110は、試薬吸引ノズルによって複数種の試薬を数回に分けて反応容器C(C1,C2)に分注して攪拌するとともに、免疫複合体を形成していない標識抗体を洗浄廃棄するB/F分離を行なう測定シーケンスを制御する制御モードを有する。前記測定シーケンスは、試薬分注後のB/F分離を規定回数行なう第1の測定シーケンスと、試薬分注後のB/F分離が所定回数省かれることにより前記第1のシーケンスよりも工程数が減らされた第2の測定シーケンスとを含む。 All of the above-described operations of the automatic analyzer 1 of the present embodiment with the configuration described above are controlled by the control unit 110 (see FIG. 3). A control that controls a measurement sequence that performs B/F separation in which reagents are divided into several times and dispensed into reaction containers C (C1, C2) and stirred, and labeled antibodies that do not form immune complexes are washed and discarded. have a mode. The measurement sequence includes a first measurement sequence in which B/F separation after reagent dispensing is performed a specified number of times, and a B/F separation after reagent dispensing that is omitted a predetermined number of times, resulting in a larger number of steps than the first sequence. and a second measurement sequence in which is reduced.
 具体的には、第1の測定シーケンスは、図5に示されるように、第1の反応容器C1に第1の試薬としての検体希釈液(R1)及び検体を分注して攪拌することにより第1反応を引き起こす第1のステップS1と、第1のステップS1で得られた反応液に第2の試薬として抗体結合磁気ビーズ(R2)を添加して第2反応を引き起こすとともに、反応後の磁気ビーズを磁石90で捕捉して第1の反応容器C1内の液体を抜き取り、磁気ビーズ洗浄液(BF液)で磁気ビーズを洗浄して抗原抗体反応以外の非特異結合物質を除去する第1のB/F分離を行なう第2のステップS2と、第2のステップS2後の液体に第3の試薬としてルテニウム錯体標識抗体(R3)を添加することにより第3反応を引き起こし、反応後の磁気ビーズを磁石90で捕捉して第1の反応容器C1内の液体を抜き取り、洗浄液で磁気ビーズを洗浄して抗原抗体反応以外の非特異結合物質を除去する第2のB/F分離を行なう第3のステップとを含む。これらの第1乃至第3のステップは、反応部40及びB/F分離・測定部50のB/F分離部(反応系)で行なわれる。第3のステップS3の後、発光電解液(EB液)であるトリプロピルアミン(TPA)含有緩衝液の存在下で電極95に電圧を印加し、結果として生じる電気化学発光シグナルを受光器(光電子増倍管)96によって記録することにより、得られる信号を処理するステップS4が行なわれる。このステップS4はB/F分離・測定部50の測光部120(測光系)で実行される。なお、これらのステップS1~S4を含む第1の測定シーケンスでは、検体分注の際に第1の検体チップT1が使用されるが、試薬分注の際にβ-Dグルカンフリーの試薬チップ72は使用されない。 Specifically, in the first measurement sequence, as shown in FIG. 5, a sample diluent (R1) as a first reagent and a sample are dispensed into a first reaction container C1 and stirred. A first step S1 for causing the first reaction, and antibody-bound magnetic beads (R2) are added as a second reagent to the reaction solution obtained in the first step S1 to cause a second reaction, and after the reaction The magnetic beads are captured by the magnet 90, the liquid in the first reaction vessel C1 is extracted, and the magnetic beads are washed with a magnetic bead washing liquid (BF liquid) to remove non-specific binding substances other than the antigen-antibody reaction. A second step S2 of performing B/F separation, and adding a ruthenium complex-labeled antibody (R3) as a third reagent to the liquid after the second step S2 causes a third reaction, and magnetic beads after the reaction is captured by a magnet 90, the liquid in the first reaction vessel C1 is extracted, and the magnetic beads are washed with a washing liquid to remove non-specific binding substances other than the antigen-antibody reaction. and the steps of These first to third steps are performed in the B/F separation section (reaction system) of the reaction section 40 and the B/F separation/measurement section 50 . After a third step S3, a voltage is applied to the electrodes 95 in the presence of a buffer solution containing tripropylamine (TPA), which is a light-emitting electrolyte (EB solution), and the resulting electrochemiluminescence signal is read by a photodetector (photoelectron A step S4 of processing the resulting signal by recording it with a multiplier 96 is performed. This step S4 is executed by the photometry section 120 (photometry system) of the B/F separation/measurement section 50 . Note that in the first measurement sequence including these steps S1 to S4, the first sample chip T1 is used during sample dispensing, but the β-D glucan-free reagent chip 72 is used during reagent dispensing. is not used.
 また、第2の測定シーケンスは、前述した第1の測定シーケンスから第1のB/F分離(第2のステップS2における第2反応後のB/F分離)が省かれて成る。また、この第2の測定シーケンスでは、検査項目選択部120によって通常検査項目が選択される場合、第1の測定シーケンスと同様、検体分注の際に第1の検体チップT1が使用され、試薬分注の際にβ-Dグルカンフリーの試薬チップ72は使用されないが、検査項目選択部120によって特定検査項目が選択される場合には、第1の反応容器C1の代わりにβ-Dグルカンフリーの第2の反応容器C2が使用されるとともに、検体分注の際にβ-Dグルカンフリーの第2の検体チップT2が使用され、また、試薬分注の際にβ-Dグルカンフリーの試薬チップ72が使用される。 Also, the second measurement sequence is obtained by omitting the first B/F separation (B/F separation after the second reaction in the second step S2) from the above-described first measurement sequence. Further, in this second measurement sequence, when the normal test item is selected by the test item selection unit 120, the first sample chip T1 is used when the sample is dispensed, and the reagent Although the β-D glucan-free reagent chip 72 is not used at the time of dispensing, when a specific test item is selected by the test item selection unit 120, a β-D glucan-free chip is used instead of the first reaction container C1. A second reaction container C2 is used, a β-D glucan-free second sample chip T2 is used during sample dispensing, and a β-D glucan-free reagent is used during reagent dispensing Chip 72 is used.
 また、このような測定シーケンスを制御する制御部110の前述した制御モードは、検査項目選択部120によって通常検査項目が選択されるときに実行される、試薬吸引ノズルの先端に対する試薬チップ72の取り付けを伴うことなく前記第1の測定シーケンス又は前記第2の測定シーケンスを制御する第1の制御モードと、検査項目選択部120によって特定検査項目が選択されるときに実行される、試薬吸引ノズルの先端に対する試薬チップ72の取り付けを伴って前記第2の測定シーケンスを制御する第2の制御モードとを含む。具体的には、図4のフローチャートに示されるように、検査項目選択部120によって特定検査項目と通常検査項目とが択一的に選択され(検査項目選択ステップS10)、その選択が特定検査項目である場合(ステップS11でYESの場合)、制御部110は、第2の制御モードの制御ステップを実行する。すなわち、検体を吸引するための検体吸引ノズルがノズル移動機構130によって第2の一軸移送ラインL2に沿って移動され(ノズル移動ステップ)、前述したように第2の検体チップ供給部300Bに保持されたβ-Dグルカンフリーの第2の検体チップT2が検体吸引ノズルの先端に取り付けられる(検体チップ取り付けステップS12)。その後、前述したように、検体吸引位置IVで待機する検体容器21から第2の検体チップT2を通じて検体が検体吸引ノズルにより吸引され、その検体が反応部40上のβ-Dグルカンフリーの第2の反応容器C2内へ分注(吐出)される(ステップS13)。その後、試薬を吸引するための試薬吸引ノズルがノズル移動機構130によって第3の一軸移送ラインL3に沿って移動され(ノズル移動ステップ)、前述したように試薬チップ供給部70において試薬吸引ノズルの先端にβ-Dグルカンフリーの試薬チップ72が取り付けられる(試薬チップ取り付けステップS14)。その後、前述したように、試薬供給部30において試薬チップ72を通じて試薬が試薬吸引ノズルにより吸引され、その試薬が、既に検体を分注した試薬受け入れ位置の第2の反応容器C2に対して分注(吐出)される(ステップS15)。そして、このようにして複数種の試薬を数回に分けて第2の反応容器C2に分注して攪拌するとともに、免疫複合体を形成していない標識抗体を洗浄廃棄するB/F分離を行なう第2の測定シーケンスを完了する(ステップS16)ことにより第2の制御モードが終了する。 The above-described control mode of the control unit 110 for controlling such a measurement sequence is executed when a normal test item is selected by the test item selection unit 120. A first control mode that controls the first measurement sequence or the second measurement sequence without involving and a second control mode for controlling the second measurement sequence with attachment of the reagent tip 72 to the tip. Specifically, as shown in the flowchart of FIG. 4, the inspection item selection unit 120 alternatively selects the specific inspection item and the normal inspection item (inspection item selection step S10), and the selection is the specific inspection item. (YES in step S11), the control unit 110 executes the control steps of the second control mode. That is, the sample aspirating nozzle for aspirating the sample is moved along the second uniaxial transfer line L2 by the nozzle moving mechanism 130 (nozzle moving step), and held by the second sample chip supply section 300B as described above. A β-D glucan-free second sample chip T2 is attached to the tip of the sample aspiration nozzle (sample chip attachment step S12). After that, as described above, the sample is aspirated by the sample aspiration nozzle from the sample container 21 waiting at the sample aspiration position IV through the second sample chip T2, and the sample is transferred to the β-D glucan-free second sample on the reaction section 40. is dispensed (discharged) into the reaction container C2 (step S13). After that, the reagent aspirating nozzle for aspirating the reagent is moved along the third uniaxial transfer line L3 by the nozzle moving mechanism 130 (nozzle moving step). β-D glucan-free reagent chip 72 is attached to (reagent chip attaching step S14). Thereafter, as described above, the reagent is aspirated by the reagent aspirating nozzle through the reagent chip 72 in the reagent supply unit 30, and the reagent is dispensed into the second reaction container C2 at the reagent receiving position to which the sample has already been dispensed. (ejection) (step S15). Then, in this way, the B/F separation is performed by dividing the plurality of types of reagents into several batches and distributing them into the second reaction container C2, stirring them, and washing and discarding the labeled antibodies that do not form immunocomplexes. The second control mode ends by completing the second measurement sequence (step S16).
 一方、検査項目選択部120によって特定検査項目と通常検査項目とが択一的に選択され(検査項目選択ステップS10)、その選択が通常検査項目である場合(ステップS11でNOの場合)、制御部110は、第1の制御モードの制御ステップを実行する。すなわち、検体を吸引するための検体吸引ノズルがノズル移動機構130によって第1の一軸移送ラインL1に沿って移動され(ノズル移動ステップ)、前述したようにチップ・反応容器待機位置IIIに仮置きされていた第1の検体チップT1が検体吸引ノズルの先端に取り付けられる(検体チップ取り付けステップS17)。その後、前述したように、検体吸引位置IVで待機する検体容器21から第1の検体チップT1を通じて検体が検体吸引ノズルにより吸引され、その検体が反応部40上の第1の反応容器C1内へ分注(吐出)される(ステップS18)。その後、試薬を吸引するための試薬吸引ノズルがノズル移動機構130によって第3の一軸移送ラインL3に沿って移動されて(ノズル移動ステップ)、前述したようにβ-Dグルカンフリーの試薬チップ72の取り付けを伴うことなく試薬供給部30において試薬が試薬吸引ノズルにより吸引され、その試薬が、既に検体を分注した試薬受け入れ位置の第1の反応容器C1に対して分注(吐出)される(ステップS19)。そして、このようにして複数種の試薬を数回に分けて第1の反応容器C1に分注して攪拌するとともに、免疫複合体を形成していない標識抗体を洗浄廃棄するB/F分離を行なう第1の測定シーケンス又は第2の測定シーケンスを完了する(ステップS20)ことにより第1の制御モードが終了する。 On the other hand, the specific inspection item and the normal inspection item are alternatively selected by the inspection item selection unit 120 (inspection item selection step S10), and when the selection is the normal inspection item (NO in step S11), control Unit 110 executes the control steps of the first control mode. That is, the sample aspirating nozzle for aspirating the sample is moved along the first uniaxial transfer line L1 by the nozzle moving mechanism 130 (nozzle moving step), and is temporarily placed at the chip/reaction container standby position III as described above. The first sample chip T1 that has been held is attached to the tip of the sample aspiration nozzle (sample chip attaching step S17). Thereafter, as described above, the sample is aspirated from the sample container 21 waiting at the sample aspirating position IV by the sample aspirating nozzle through the first sample chip T1, and the sample is transferred into the first reaction container C1 on the reaction section 40. It is dispensed (discharged) (step S18). After that, the reagent aspirating nozzle for aspirating the reagent is moved along the third uniaxial transfer line L3 by the nozzle moving mechanism 130 (nozzle moving step), and the β-D glucan-free reagent chip 72 is removed as described above. The reagent is aspirated by the reagent aspirating nozzle in the reagent supply unit 30 without attachment, and the reagent is dispensed (discharged) into the first reaction container C1 at the reagent receiving position where the sample has already been dispensed ( step S19). Then, in this way, a plurality of types of reagents are divided into several times, and the B/F separation is performed by dispensing and stirring into the first reaction container C1, and washing and discarding the labeled antibody that does not form an immune complex. The first control mode ends by completing the first measurement sequence or the second measurement sequence (step S20).
 以上から分かるように、第1の制御モード時と第2の制御モード時とでβ-Dグルカンが相互にコンタミネーションし得る移動経路を排除するべく各一軸移送ラインL1,L2、L3同士を前述したように互いに干渉しないようにしているため、言い換えると、第2の検体チップ供給部300Bと試薬チップ供給部70とが、検査項目選択部120によって通常検査項目が選択されるときに実行される第1の測定シーケンス又は第2の測定シーケンスにおけるノズル移動機構130の移動経路と干渉しない位置にあるため、β-Dグルカンを測定する測定シーケンスとそれ以外の検査対象物を測定する測定シーケンスとの間での汚染のリスクを回避できる。 As can be seen from the above, each of the uniaxial transfer lines L1, L2, and L3 is separated from each other in the first control mode and the second control mode in order to eliminate the movement paths in which the β-D glucan may be mutually contaminated. In other words, the second sample chip supply unit 300B and the reagent chip supply unit 70 are executed when the normal test item is selected by the test item selection unit 120. Since it is located at a position that does not interfere with the movement path of the nozzle moving mechanism 130 in the first measurement sequence or the second measurement sequence, the measurement sequence for measuring β-D glucan and the measurement sequence for measuring other test objects avoid the risk of contamination between
 なお、本実施形態の自動分析装置1においては、以上のような制御モードに加え、β-Dグルカンの測定(特定検査項目の測定)と他の測定(通常検査項目の測定)との順番を規定してもよい。その場合、例えば、検査項目に応じた汚染リスクコントロールができ、精度の高い測定結果が得られるという効果を奏することができる。 In the automatic analyzer 1 of the present embodiment, in addition to the above control modes, the order of measurement of β-D glucan (measurement of specific test items) and other measurements (measurement of normal test items) is changed. may be specified. In this case, for example, it is possible to perform contamination risk control according to inspection items, and obtain the effect of obtaining highly accurate measurement results.
 以上説明したように、本実施形態の自動分析装置1によれば、β-Dグルカンを測定する特定検査項目と、それ以外の検査対象物を測定する通常検査項目とに関する測定情報を1つの装置で得られるため、すなわち、β-Dグルカン測定を含め、1つの装置で全ての検査項目を完結できるため、従来のようにβ-Dグルカンを測定するために専用機を測定途中で介在させずに済み(装置を使い分ける必要がなく)、したがって、連続検査が可能となり、全検査項目の測定が完了するまでの全体の検査時間を短くでき、その結果、測定者の作業負担の軽減及び検査コストの低減を図ることが可能になる。さらに、測定精度に対する時間ロスの影響を最小限に抑えて、測定精度を高めることもできる。また、連続検査による検査時間短縮により、時間の経過による検体の劣化(性質の変化)の影響を受けないため、より精度の高い測定値を得ることができる。更に、検査項目に応じて制御モードを選択できる(試薬チップの装着有無の選択及び測定シーケンスの選択が可能である)ため、検査対象に適合した測定シーケンスを実現できる。すなわち、β-Dグルカンを測定する特定検査項目において工程数が少ない第2の測定シーケンスを採用してβ-Dグルカンフリーの使い捨て試薬チップを用いることにより、汚染リスクに晒される機会を可能な限り少なくできる。したがって、汚染リスクを低減して測定精度を高めることができる。 As described above, according to the automatic analyzer 1 of the present embodiment, measurement information on specific test items for measuring β-D glucan and normal test items for measuring other test objects can be collected by one device. In other words, all inspection items, including β-D glucan measurement, can be completed with one device. (There is no need to use different devices), so continuous inspection is possible and the overall inspection time until measurement of all inspection items is completed can be shortened. can be reduced. Furthermore, the influence of time loss on measurement accuracy can be minimized to improve measurement accuracy. In addition, since the test time is shortened by the continuous test, it is not affected by deterioration (change in property) of the specimen over time, so that more accurate measurement values can be obtained. Furthermore, since the control mode can be selected according to the inspection item (it is possible to select whether or not the reagent chip is attached and the measurement sequence can be selected), a measurement sequence suitable for the inspection object can be realized. That is, by adopting a second measurement sequence with a small number of steps in a specific test item for measuring β-D glucan and using a β-D glucan-free disposable reagent chip, the opportunity to be exposed to the risk of contamination is reduced as much as possible. can be less. Therefore, it is possible to reduce the contamination risk and improve the measurement accuracy.
1 自動分析装置
30 試薬供給部
40 反応部
70 試薬チップ供給部
110 制御部
114 汚染チェック部
120 検査項目選択部
130 ノズル移動機構
200A 第1の反応容器供給部
200B 第2の反応容器供給部
300A 第1の検体チップ供給部
300B 第2の検体チップ供給部
C1 第1の反応容器
C2 第2の反応容器
T1 第1の検体チップ
T2 第2の検体チップ
 
1 Automatic analyzer 30 Reagent supply unit 40 Reaction unit 70 Reagent chip supply unit 110 Control unit 114 Contamination check unit 120 Inspection item selection unit 130 Nozzle movement mechanism 200A First reaction container supply unit 200B Second reaction container supply unit 300A 1 sample chip supply unit 300B 2nd sample chip supply unit C1 1st reaction container C2 2nd reaction container T1 1st sample chip T2 2nd sample chip

Claims (8)

  1.  検体が分注された反応容器を保持する反応部と、試薬を供給する試薬供給部とを備え、
    前記試薬供給部から供給される試薬を検体と反応させてその反応過程又は反応結果を測定することにより、検体中のβ-Dグルカンを測定する特定検査項目と、それ以外の検査対象物を測定する通常検査項目とに関して測定情報を得る自動分析装置において、
     前記特定検査項目と前記通常検査項目とを択一的に選択するための検査項目選択部と、
     検体及び試薬を吸引するための吸引ノズルを装置内で移動させるノズル移動機構と、
     検体吸引ノズルの先端に取り付けられる使い捨て検体チップを供給するための検体チップ供給部であって、前記検査項目選択部によって通常検査項目が選択されるときに使用される第1の検体チップを供給する第1の検体チップ供給部と、前記検査項目選択部によって特定検査項目が選択されるときに使用されるβ-Dグルカンフリーの第2の検体チップを供給する第2の検体チップ供給部とを有する、検体チップ供給部と、
     前記検査項目選択部によって特定検査項目が選択されるときに試薬吸引ノズルの先端に取り付けられるβ-Dグルカンフリーの使い捨て試薬チップを供給するための試薬チップ供給部と、
     装置各部及び前記ノズル移動機構の動作を制御する制御部と、
     を備え、
     前記制御部は、前記試薬吸引ノズルによって複数種の試薬を数回に分けて前記反応容器に分注して攪拌するとともに、免疫複合体を形成していない標識抗体を洗浄廃棄するB/F分離を行なう測定シーケンスを制御する制御モードを有し、
     前記測定シーケンスは、試薬分注後のB/F分離を規定回数行なう第1の測定シーケンスと、試薬分注後のB/F分離が所定回数省かれることにより前記第1のシーケンスよりも工程数が減らされた第2の測定シーケンスとを含み、
     前記制御モードは、前記検査項目選択部によって前記通常検査項目が選択されるときに実行され、前記試薬吸引ノズルの先端に対する前記試薬チップの取り付けを伴うことなく前記第1の測定シーケンス又は前記第2の測定シーケンスを制御する第1の制御モードと、前記検査項目選択部によって前記特定検査項目が選択されるときに実行され、前記試薬吸引ノズルの先端に対する前記試薬チップの取り付けを伴って前記第2の測定シーケンスを制御する第2の制御モードとを含む、
     ことを特徴とする自動分析装置。
    comprising a reaction unit holding a reaction container into which a specimen is dispensed, and a reagent supply unit for supplying a reagent,
    A specific test item for measuring β-D glucan in a sample and other test objects are measured by reacting the reagent supplied from the reagent supply unit with the sample and measuring the reaction process or reaction result. In an automatic analyzer that obtains measurement information on ordinary inspection items and
    an inspection item selection unit for alternatively selecting the specific inspection item and the normal inspection item;
    a nozzle moving mechanism for moving an aspiration nozzle for aspirating a sample and a reagent within the apparatus;
    A sample chip supply unit for supplying a disposable sample chip attached to the tip of a sample aspiration nozzle, the sample chip supply unit supplying a first sample chip used when a normal test item is selected by the test item selection unit. a first sample chip supply unit; and a second sample chip supply unit that supplies a β-D glucan-free second sample chip used when a specific test item is selected by the test item selection unit. a sample chip supply unit,
    a reagent chip supply unit for supplying a β-D glucan-free disposable reagent chip attached to the tip of a reagent suction nozzle when a specific test item is selected by the test item selection unit;
    a control unit that controls the operation of each part of the device and the nozzle moving mechanism;
    with
    The control unit dispenses a plurality of types of reagents several times into the reaction container by the reagent suction nozzle and agitates the reagents, and B/F separation for washing and discarding labeled antibodies that do not form immune complexes. has a control mode for controlling the measurement sequence for
    The measurement sequence includes a first measurement sequence in which B/F separation after reagent dispensing is performed a specified number of times, and a B/F separation after reagent dispensing that is omitted a predetermined number of times, resulting in a larger number of steps than the first sequence. a second measurement sequence in which is reduced;
    The control mode is executed when the normal test item is selected by the test item selection unit, and the first measurement sequence or the second measurement sequence is performed without attaching the reagent chip to the tip of the reagent suction nozzle. and the second control mode which is executed when the specific test item is selected by the test item selection unit and is accompanied by attachment of the reagent chip to the tip of the reagent suction nozzle. a second control mode for controlling the measurement sequence of
    An automatic analyzer characterized by:
  2.  前記第1の測定シーケンスは、反応容器に第1の試薬としての検体希釈液及び検体を分注して攪拌することにより第1反応を引き起こす第1のステップと、前記第1のステップで得られた反応液に第2の試薬として抗体結合磁気ビーズを添加して第2反応を引き起こすとともに、反応後の磁気ビーズを磁石で捕捉して反応容器内の液体を抜き取り、洗浄液で磁気ビーズを洗浄して抗原抗体反応以外の非特異結合物質を除去する第1のB/F分離を行なう第2のステップと、前記第2のステップ後の液体に第3の試薬としてルテニウム錯体標識抗体を添加することにより第3反応を引き起こし、反応後の磁気ビーズを磁石で捕捉して反応容器内の液体を抜き取り、洗浄液で磁気ビーズを洗浄して抗原抗体反応以外の非特異結合物質を除去する第2のB/F分離を行なう第3のステップとを含み、
     前記第2の測定シーケンスは、前記第1の測定シーケンスから前記第1のB/F分離が省かれて成る、
     ことを特徴とする請求項1に記載の自動分析装置。
    The first measurement sequence includes a first step of dispensing a sample diluent and a sample as a first reagent into a reaction container and stirring them to cause a first reaction; Antibody-bound magnetic beads are added as a second reagent to the resulting reaction solution to cause a second reaction, the magnetic beads after the reaction are captured with a magnet, the liquid in the reaction vessel is removed, and the magnetic beads are washed with a washing solution. a second step of performing a first B/F separation to remove non-specific binding substances other than the antigen-antibody reaction, and adding a ruthenium complex-labeled antibody as a third reagent to the liquid after the second step to cause the third reaction, capture the magnetic beads after the reaction with a magnet, extract the liquid in the reaction vessel, wash the magnetic beads with a washing solution, and remove non-specific binding substances other than the antigen-antibody reaction. a third step of performing /F separation;
    the second measurement sequence consists of the first measurement sequence omitting the first B/F separation;
    The automatic analyzer according to claim 1, characterized in that:
  3.  前記第2の検体チップ供給部と前記試薬チップ供給部とが、前記検査項目選択部によって通常検査項目が選択されるときに実行される第1の測定シーケンス又は第2の測定シーケンスにおける前記ノズル移動機構の移動経路と干渉しない位置にあることを特徴とする請求項1又は2に記載の自動分析装置。 The nozzle movement in the first measurement sequence or the second measurement sequence executed by the second sample chip supply unit and the reagent chip supply unit when the normal inspection item is selected by the inspection item selection unit. 3. The automatic analyzer according to claim 1, wherein the automatic analyzer is positioned so as not to interfere with the moving path of the mechanism.
  4.  装置内のβ-Dグルカンフリー状態をチェックする汚染チェック部を更に有することを特徴とする請求項1から3のいずれか一項に記載の自動分析装置。 The automatic analyzer according to any one of claims 1 to 3, further comprising a contamination check unit that checks the β-D glucan-free state in the device.
  5.  前記反応容器を供給するための反応容器供給部を更に備え、この反応容器供給部は、前記検査項目選択部によって通常検査項目が選択されるときに使用される第1の反応容器を供給する第1の反応容器供給部と、前記検査項目選択部によって特定検査項目が選択されるときに使用されるβ-Dグルカンフリーの第2の反応容器を供給する第2の反応容器供給部とを有する請求項1から4のいずれか一項に記載の自動分析装置。 A reaction container supply unit for supplying the reaction container is further provided, and the reaction container supply unit supplies the first reaction container used when a normal inspection item is selected by the inspection item selection unit. and a second reaction container supply unit for supplying a β-D glucan-free second reaction container used when a specific test item is selected by the test item selection unit. The automatic analyzer according to any one of claims 1 to 4.
  6.  試薬供給部から供給される試薬を反応部で保持される反応容器内に分注された検体と反応させてその反応過程又は反応結果を測定することにより、検体中のβ-Dグルカンを測定する特定検査項目と、それ以外の検査対象物を測定する通常検査項目とに関して測定情報を得る自動分析方法において、
     前記特定検査項目と前記通常検査項目とを択一的に選択する検査項目選択ステップと、
     検体及び試薬を吸引するための吸引ノズルをノズル移動機構によって移動させるノズル移動ステップと、
     検体チップ供給部で供給される使い捨て検体チップを、前記ノズル移動機構によって移動される検体吸引ノズルの先端に取り付ける検体チップ取り付けステップであって、前記使い捨て検体チップは、第1の検体チップ供給部で供給されるとともに検査項目選択部によって通常検査項目が選択されるときに使用される第1の検体チップと、第2の検体チップ供給部で供給されるとともに前記検査項目選択部によって特定検査項目が選択されるときに使用されるβ-Dグルカンフリーの第2の検体チップとを含む、検体チップ取り付けステップと、
     前記検査項目選択部によって特定検査項目が選択されるときに、試薬チップ供給部で供給されるβ-Dグルカンフリーの使い捨て試薬チップを、前記ノズル移動機構によって移動される試薬吸引ノズルの先端に取り付ける試薬チップ取り付けステップと、
     前記各部及び前記ノズル移動機構の動作を制御する制御ステップと、
     を含み、
     前記制御ステップは、前記試薬吸引ノズルによって複数種の試薬を数回に分けて前記反応容器に分注して攪拌するとともに、免疫複合体を形成していない標識抗体を洗浄廃棄するB/F分離を行なう測定シーケンスを制御する制御モードを有し、
     前記測定シーケンスは、試薬分注後のB/F分離を規定回数行なう第1の測定シーケンスと、試薬分注後のB/F分離が所定回数省かれることにより前記第1のシーケンスよりも工程数が減らされた第2の測定シーケンスとを含み、
     前記制御モードは、前記検査項目選択部によって前記通常検査項目が選択されるときに実行され、前記試薬吸引ノズルの先端に対する前記試薬チップの取り付けを伴うことなく前記第1の測定シーケンス又は前記第2の測定シーケンスを制御する第1の制御モードと、前記検査項目選択部によって前記特定検査項目が選択されるときに実行され、前記試薬吸引ノズルの先端に対する前記試薬チップの取り付けを伴って前記第2の測定シーケンスを制御する第2の制御モードとを含む、
     ことを特徴とする自動分析方法。
    β-D glucan in the specimen is measured by reacting the reagent supplied from the reagent supply part with the specimen dispensed into the reaction vessel held in the reaction part and measuring the reaction process or reaction result. In an automatic analysis method for obtaining measurement information regarding specific inspection items and normal inspection items for measuring other inspection objects,
    an inspection item selection step of alternatively selecting the specific inspection item and the normal inspection item;
    a nozzle moving step of moving an aspiration nozzle for aspirating a sample and a reagent by a nozzle moving mechanism;
    a sample chip attachment step of attaching a disposable sample chip supplied by a sample chip supply unit to a tip of a sample suction nozzle moved by the nozzle moving mechanism, wherein the disposable sample chip is supplied by a first sample chip supply unit; A first sample chip supplied and used when a normal test item is selected by the test item selection unit, and a second sample chip supplied by the sample chip supply unit and selected by the test item selection unit for a specific test item. a sample chip attachment step, including a second sample chip that is β-D glucan free to be used when selected;
    When a specific test item is selected by the test item selection unit, a β-D glucan-free disposable reagent chip supplied by the reagent chip supply unit is attached to the tip of the reagent suction nozzle moved by the nozzle moving mechanism. a reagent tip attachment step;
    a control step of controlling the operation of each part and the nozzle moving mechanism;
    including
    In the control step, a plurality of types of reagents are divided into several batches by the reagent aspirating nozzle, and the reagents are dispensed into the reaction container and stirred, and labeled antibodies that do not form immune complexes are washed and discarded in B/F separation. has a control mode for controlling the measurement sequence for
    The measurement sequence includes a first measurement sequence in which B/F separation after reagent dispensing is performed a specified number of times, and a B/F separation after reagent dispensing that is omitted a predetermined number of times, resulting in a larger number of steps than the first sequence. a second measurement sequence in which is reduced;
    The control mode is executed when the normal test item is selected by the test item selection unit, and the first measurement sequence or the second measurement sequence is performed without attaching the reagent chip to the tip of the reagent suction nozzle. and the second control mode which is executed when the specific test item is selected by the test item selection unit and is accompanied by attachment of the reagent chip to the tip of the reagent suction nozzle. a second control mode for controlling the measurement sequence of
    An automatic analysis method characterized by:
  7.  前記第1の測定シーケンスは、反応容器に第1の試薬としての検体希釈液及び検体を分注して攪拌することにより第1反応を引き起こす第1のステップと、前記第1のステップで得られた反応液に第2の試薬として抗体結合磁気ビーズを添加して第2反応を引き起こすとともに、反応後の磁気ビーズを磁石で捕捉して反応容器内の液体を抜き取り、洗浄液で磁気ビーズを洗浄して抗原抗体反応以外の非特異結合物質を除去する第1のB/F分離を行なう第2のステップと、前記第2のステップ後の液体に第3の試薬としてルテニウム錯体標識抗体を添加することにより第3反応を引き起こし、反応後の磁気ビーズを磁石で捕捉して反応容器内の液体を抜き取り、洗浄液で磁気ビーズを洗浄して抗原抗体反応以外の非特異結合物質を除去する第2のB/F分離を行なう第3のステップとを含み、
     前記第2の測定シーケンスは、前記第1の測定シーケンスから前記第1のB/F分離が省かれて成る、
     ことを特徴とする請求項6に記載の自動分析方法。
    The first measurement sequence includes a first step of dispensing a sample diluent and a sample as a first reagent into a reaction container and stirring them to cause a first reaction; Antibody-bound magnetic beads are added as a second reagent to the resulting reaction solution to cause a second reaction, the magnetic beads after the reaction are captured with a magnet, the liquid in the reaction vessel is removed, and the magnetic beads are washed with a washing solution. a second step of performing a first B/F separation to remove non-specific binding substances other than the antigen-antibody reaction, and adding a ruthenium complex-labeled antibody as a third reagent to the liquid after the second step to cause the third reaction, capture the magnetic beads after the reaction with a magnet, extract the liquid in the reaction vessel, wash the magnetic beads with a washing solution, and remove non-specific binding substances other than the antigen-antibody reaction. a third step of performing /F separation;
    the second measurement sequence consists of the first measurement sequence omitting the first B/F separation;
    The automatic analysis method according to claim 6, characterized by:
  8.  前記第2の検体チップ供給部と前記試薬チップ供給部とが、前記検査項目選択部によって通常検査項目が選択されるときに実行される第1の測定シーケンス又は第2の測定シーケンスにおける前記ノズル移動機構の移動経路と干渉しない位置にあることを特徴とする請求項6又は7に記載の自動分析方法。
     
    The nozzle movement in the first measurement sequence or the second measurement sequence executed by the second sample chip supply unit and the reagent chip supply unit when the normal inspection item is selected by the inspection item selection unit. 8. The automatic analysis method according to claim 6 or 7, wherein the position is such that it does not interfere with the moving path of the mechanism.
PCT/JP2022/026174 2021-12-28 2022-06-30 Automatic analysis device and automatic analysis method WO2023127182A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021214146A JP7114794B1 (en) 2021-12-28 2021-12-28 Automatic analysis device and automatic analysis method
JP2021-214146 2021-12-28

Publications (1)

Publication Number Publication Date
WO2023127182A1 true WO2023127182A1 (en) 2023-07-06

Family

ID=82748824

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/026174 WO2023127182A1 (en) 2021-12-28 2022-06-30 Automatic analysis device and automatic analysis method

Country Status (2)

Country Link
JP (1) JP7114794B1 (en)
WO (1) WO2023127182A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10123136A (en) * 1996-10-24 1998-05-15 Nippon Tectron Co Ltd Automatic immunoanalysis device
JP2001264344A (en) * 1998-07-27 2001-09-26 Hitachi Ltd Analyzing device
JP2003083988A (en) * 2001-09-13 2003-03-19 Olympus Optical Co Ltd Automatic analysis apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10123136A (en) * 1996-10-24 1998-05-15 Nippon Tectron Co Ltd Automatic immunoanalysis device
JP2001264344A (en) * 1998-07-27 2001-09-26 Hitachi Ltd Analyzing device
JP2003083988A (en) * 2001-09-13 2003-03-19 Olympus Optical Co Ltd Automatic analysis apparatus

Also Published As

Publication number Publication date
JP7114794B1 (en) 2022-08-08
JP2023097818A (en) 2023-07-10

Similar Documents

Publication Publication Date Title
US6579717B1 (en) Specific solution handling method for calibration and quality control by automatic analytical apparatus
US9594089B2 (en) Analyzing apparatus, solid-liquid separation device and solid-liquid separation method
US7341691B2 (en) Automatic analyzing apparatus
EP1087231B1 (en) Automatic analysis apparatus
US7381370B2 (en) Automated multi-detector analyzer
EP1293781B1 (en) Transfer unit and automatic analyzing apparatus having such transfer unit
JP2950698B2 (en) Automatic analyzer with washing function
JP5564037B2 (en) Automatic analyzer
JP2017198695A (en) Automated diagnostic analyzers having rear accessible track systems and related methods
WO2010064457A1 (en) Automatic analyzing apparatus, and specimen batching method in the automatic analyzing apparatus
EP2878956B1 (en) Automated analyzer
WO2007139212A1 (en) Automatic analyzer
US20200256868A1 (en) Immunoassay apparatus
JP7325171B2 (en) Rack transportation method, sample measurement system
JP3391734B2 (en) Biological sample handling method and analyzer
US8900876B2 (en) Abnormality-identifying method and analyzer
WO2023127182A1 (en) Automatic analysis device and automatic analysis method
JP7054616B2 (en) Automatic analyzer
WO2020217636A1 (en) Automatic analysis device
JP3380542B2 (en) Biological sample analysis method
JP3109443U (en) Automatic analyzer
JP2001264344A (en) Analyzing device
WO2020262361A1 (en) Automatic analysis device
JP2005201771A (en) Autoanalyzer
WO2023090017A1 (en) Analysis device and method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22915417

Country of ref document: EP

Kind code of ref document: A1